diff --git a/.gitattributes b/.gitattributes index 38e5600115cf4c7310a8c42c204c5d0811293252..8dd9a1156e8f87553ec0163cacc1f419eac41b97 100644 --- a/.gitattributes +++ b/.gitattributes @@ -1134,3 +1134,104 @@ T9FIT4oBgHgl3EQffis3/content/2301.11279v1.pdf filter=lfs diff=lfs merge=lfs -tex 1dA0T4oBgHgl3EQfMv9X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text 6tE2T4oBgHgl3EQf7Qi3/content/2301.04208v1.pdf filter=lfs diff=lfs merge=lfs -text cdAyT4oBgHgl3EQf-foD/content/2301.00891v1.pdf filter=lfs diff=lfs merge=lfs -text +BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +tNAyT4oBgHgl3EQf0PnV/content/2301.00716v1.pdf filter=lfs diff=lfs merge=lfs -text +aNE1T4oBgHgl3EQfcwSy/content/2301.03188v1.pdf filter=lfs diff=lfs merge=lfs -text +89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf filter=lfs diff=lfs merge=lfs -text +99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf filter=lfs diff=lfs merge=lfs -text +aNE1T4oBgHgl3EQfcwSy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +o9AzT4oBgHgl3EQfAfpB/content/2301.00926v1.pdf filter=lfs diff=lfs merge=lfs -text +otE1T4oBgHgl3EQf1wXJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +cdAyT4oBgHgl3EQf-foD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +o9AzT4oBgHgl3EQfAfpB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +jdE4T4oBgHgl3EQfsg0n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +QdA0T4oBgHgl3EQfDf80/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +b9E0T4oBgHgl3EQfWQBc/content/2301.02275v1.pdf filter=lfs diff=lfs merge=lfs -text +FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf filter=lfs diff=lfs merge=lfs -text +BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf filter=lfs diff=lfs merge=lfs -text +89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +tNAyT4oBgHgl3EQf0PnV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bNAyT4oBgHgl3EQfwPk2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bNAyT4oBgHgl3EQfwPk2/content/2301.00644v1.pdf filter=lfs diff=lfs merge=lfs -text +l9FPT4oBgHgl3EQf3jX-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KdE2T4oBgHgl3EQfVAc5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XtE1T4oBgHgl3EQfvwXS/content/2301.03404v1.pdf filter=lfs diff=lfs merge=lfs -text +6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +utE1T4oBgHgl3EQfQwOJ/content/2301.03044v1.pdf filter=lfs diff=lfs merge=lfs -text +cNAzT4oBgHgl3EQfLfum/content/2301.01116v1.pdf filter=lfs diff=lfs merge=lfs -text +FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +utE1T4oBgHgl3EQfQwOJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KdE2T4oBgHgl3EQfVAc5/content/2301.03818v1.pdf filter=lfs diff=lfs merge=lfs -text +XtE1T4oBgHgl3EQfvwXS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +h9AyT4oBgHgl3EQf-vq9/content/2301.00898v1.pdf filter=lfs diff=lfs merge=lfs -text +sdE1T4oBgHgl3EQfQAOj/content/2301.03035v1.pdf filter=lfs diff=lfs merge=lfs -text +etFKT4oBgHgl3EQfAi12/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf filter=lfs diff=lfs merge=lfs -text +b9E0T4oBgHgl3EQfWQBc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf filter=lfs diff=lfs merge=lfs -text +sdE1T4oBgHgl3EQfQAOj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +Z9FAT4oBgHgl3EQf4R6K/content/2301.08725v1.pdf filter=lfs diff=lfs merge=lfs -text +9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf filter=lfs diff=lfs merge=lfs -text +PNAyT4oBgHgl3EQf7fod/content/2301.00838v1.pdf filter=lfs diff=lfs merge=lfs -text +cNAzT4oBgHgl3EQfLfum/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf filter=lfs diff=lfs merge=lfs -text +3tAzT4oBgHgl3EQfffwg/content/2301.01452v1.pdf filter=lfs diff=lfs merge=lfs -text +EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf filter=lfs diff=lfs merge=lfs -text +etFKT4oBgHgl3EQfAi12/content/2301.11699v1.pdf filter=lfs diff=lfs merge=lfs -text +PNAyT4oBgHgl3EQf7fod/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +tdA0T4oBgHgl3EQfLf9-/content/2301.02119v1.pdf filter=lfs diff=lfs merge=lfs -text +3tAzT4oBgHgl3EQfffwg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +I9E2T4oBgHgl3EQfUQfh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf filter=lfs diff=lfs merge=lfs -text +EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +gNE1T4oBgHgl3EQfMQM3/content/2301.02986v1.pdf filter=lfs diff=lfs merge=lfs -text +x9FQT4oBgHgl3EQfAzVW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +WdFRT4oBgHgl3EQfMjc9/content/2301.13506v1.pdf filter=lfs diff=lfs merge=lfs -text +EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +gNE1T4oBgHgl3EQfMQM3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +x9FQT4oBgHgl3EQfAzVW/content/2301.13224v1.pdf filter=lfs diff=lfs merge=lfs -text +zdFRT4oBgHgl3EQfjzd-/content/2301.13592v1.pdf filter=lfs diff=lfs merge=lfs -text +v9AyT4oBgHgl3EQfnPij/content/2301.00486v1.pdf filter=lfs diff=lfs merge=lfs -text +rNFKT4oBgHgl3EQfIi19/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf filter=lfs diff=lfs merge=lfs -text +I9AyT4oBgHgl3EQfTfcL/content/2301.00104v1.pdf filter=lfs diff=lfs merge=lfs -text +rNFKT4oBgHgl3EQfIi19/content/2301.11734v1.pdf filter=lfs diff=lfs merge=lfs -text +I9AyT4oBgHgl3EQfTfcL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +p9E2T4oBgHgl3EQfKgZi/content/2301.03703v1.pdf filter=lfs diff=lfs merge=lfs -text +v9AyT4oBgHgl3EQfnPij/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dtE1T4oBgHgl3EQfyAVc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dtE1T4oBgHgl3EQfyAVc/content/2301.03428v1.pdf filter=lfs diff=lfs merge=lfs -text +1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf filter=lfs diff=lfs merge=lfs -text +p9E2T4oBgHgl3EQfKgZi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +zdFRT4oBgHgl3EQfjzd-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +LdE1T4oBgHgl3EQfGwON/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dtE0T4oBgHgl3EQfoQFr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf filter=lfs diff=lfs merge=lfs -text +dtE0T4oBgHgl3EQfoQFr/content/2301.02523v1.pdf filter=lfs diff=lfs merge=lfs -text +iNE1T4oBgHgl3EQfMwPW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KdE4T4oBgHgl3EQfiA17/content/2301.05130v1.pdf filter=lfs diff=lfs merge=lfs -text +1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +h9AyT4oBgHgl3EQf-vq9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +tdA0T4oBgHgl3EQfLf9-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +iNE0T4oBgHgl3EQfYAA8/content/2301.02300v1.pdf filter=lfs diff=lfs merge=lfs -text +CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +b9AyT4oBgHgl3EQfXPer/content/2301.00180v1.pdf filter=lfs diff=lfs merge=lfs -text +Z9FAT4oBgHgl3EQf4R6K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +oNAzT4oBgHgl3EQfqf3Z/content/2301.01631v1.pdf filter=lfs diff=lfs merge=lfs -text +e9E2T4oBgHgl3EQfGgbf/content/2301.03659v1.pdf filter=lfs diff=lfs merge=lfs -text +79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf filter=lfs diff=lfs merge=lfs -text +CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf filter=lfs diff=lfs merge=lfs -text +e9E2T4oBgHgl3EQfGgbf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +b9AyT4oBgHgl3EQfXPer/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +oNE5T4oBgHgl3EQfkA8i/content/2301.05659v1.pdf filter=lfs diff=lfs merge=lfs -text +f9AzT4oBgHgl3EQfavwP/content/2301.01372v1.pdf filter=lfs diff=lfs merge=lfs -text +I9E2T4oBgHgl3EQfUQfh/content/2301.03812v1.pdf filter=lfs diff=lfs merge=lfs -text +wtE0T4oBgHgl3EQf-QJD/content/2301.02811v1.pdf filter=lfs diff=lfs merge=lfs -text +kNFPT4oBgHgl3EQf1zVk/content/2301.13184v1.pdf filter=lfs diff=lfs merge=lfs -text +oNFPT4oBgHgl3EQfKjR1/content/2301.13019v1.pdf filter=lfs diff=lfs merge=lfs -text +LtAyT4oBgHgl3EQfgPig/content/2301.00356v1.pdf filter=lfs diff=lfs merge=lfs -text +99A0T4oBgHgl3EQfO__U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +edFST4oBgHgl3EQfFzg4/content/2301.13719v1.pdf filter=lfs diff=lfs merge=lfs -text +edFST4oBgHgl3EQfFzg4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text diff --git a/1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf b/1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4b333cbdfd3f611d1d851993336f33cf0aa224c3 --- /dev/null +++ b/1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:11b960abc5db177debf4f11e398aa702993a5e59f178302db36b709d8bfe43e4 +size 5144707 diff --git a/1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf b/1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2a6730c7b62c1bd37a6a2fcc8c7fdcf406f6d7a3 --- /dev/null +++ b/1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9802146da3b4a8c2129b1a8e6ccdfe901c5422478b4f1c624e0782ab8c0983cc +size 221890 diff --git a/1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss b/1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..47bbbe4a5d2f29648c9dbcb2a1eb2adc171eba7d --- /dev/null +++ b/1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7affa7a2b7e1faeeb277d51131251afe74e0dac2e37d9db01e73527e63e87a2d +size 2752557 diff --git a/1dAzT4oBgHgl3EQf8v7L/vector_store/index.pkl b/1dAzT4oBgHgl3EQf8v7L/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..114b4c55d38bbe73f8e3d518a2e32d88a7755161 --- /dev/null +++ b/1dAzT4oBgHgl3EQf8v7L/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:17334ceee2d4432c9fe3dac0945b2238ed659b74223d81e3e5527c5e0c1d203a +size 104048 diff --git a/2dE4T4oBgHgl3EQfagyV/content/tmp_files/2301.05065v1.pdf.txt b/2dE4T4oBgHgl3EQfagyV/content/tmp_files/2301.05065v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f9bbc4f6b9f3e19beb925be4eab0b27d2bb67df --- /dev/null +++ b/2dE4T4oBgHgl3EQfagyV/content/tmp_files/2301.05065v1.pdf.txt @@ -0,0 +1,3254 @@ +Toward Building General Foundation Models for Language, Vision, and +Vision-Language Understanding Tasks +Xinsong Zhang 1 Yan Zeng 1 Jipeng Zhang 2 Hang Li 1 +Abstract +Foundation models or pre-trained models have +substantially improved the performance of various +language, vision, and vision-language understand- +ing tasks. However, existing foundation models +can only perform the best in one type of tasks, +namely language, vision, or vision-language. It is +still an open question whether it is possible to con- +struct a foundation model performing the best for +all the understanding tasks, which we call a gen- +eral foundation model. In this paper, we propose +a new general foundation model, X-FM (the X- +Foundation Model). X-FM has one language en- +coder, one vision encoder, and one fusion encoder, +as well as a new training method. The training +method includes two new techniques for learning +X-FM from text, image, and image-text pair data. +One is to stop gradients from the vision-language +training when learning the language encoder. The +other is to leverage the vision-language training +to guide the learning of the vision encoder. Exten- +sive experiments on benchmark datasets show that +X-FM can significantly outperform existing gen- +eral foundation models and perform better than or +comparable to existing foundation models specif- +ically for language, vision, or vision-language +understanding. +1. Introduction +With the enormous power of foundation models, also known +as pre-trained models, remarkable performance gains have +recently been achieved in a variety of understanding tasks in +natural language processing (NLP), computer vision (CV), +and other fields (Devlin et al., 2019; Liu et al., 2019; Lewis +et al., 2020; Raffel et al., 2020; Brown et al., 2020; Doso- +vitskiy et al., 2021; He et al., 2022; Bao et al., 2021; Lu +1ByteDance AI Lab 2The Hong Kong University of Science +and Technology. Correspondence to: Xinsong Zhang . +Copyright 2023 by the author(s). The code and pre-trained models +will be released upon publication. +et al., 2019; Tan & Bansal, 2019a; Chen et al., 2020; Li +et al., 2020; 2021a; Zeng et al., 2021; 2022) . Foundation +models are usually equipped with Transformer (Vaswani +et al., 2017) as the backbone, pre-trained with a tremendous +amount of unlabeled data, and then fine-tuned with small +amounts of labeled data in downstream tasks. The strong +representation ability of the model, the massive amount of +data, and the effective means of training make the founda- +tion models powerful for successfully solving the tasks of +vision, language, and vision-language (Li et al., 2021b;c; +Singh et al., 2021; Wang et al., 2021b; 2022b; Diao et al., +2022; Wang et al., 2022a). +The state-of-the-art foundation models usually work the +best for one type of tasks, namely language, vision, and +vision-language. For example, RoBERTa (Liu et al., 2019), +BEiTv2 (Peng et al., 2022), and X-VLM (Zeng et al., 2021; +2022) are language, vision, and vision-language founda- +tion models respectively, and can achieve state-of-the-art +performances for the specific type of tasks. It is still very +challenging, however, to build a general foundation model +that can perform the best in all types of tasks. Existing +models, such as FLAVA (Singh et al., 2021), OFA (Wang +et al., 2022b), DaVinci (Diao et al., 2022) and Uni-Perceiver- +MoE (Zhu et al., 2022), are trying to achieve the goal. Their +performances are still not satisfactory, however, when com- +pared with the best performing foundation models for the +individual types of tasks, as shown in Table 1. Previous +work (Bingel & Søgaard, 2017; Wang et al., 2020) also +shows that it is difficult to train a general foundation model +in a multi-task learning setting that can effectively learn and +utilize representations for all types of tasks. The reason is +that language, vision, and vision-language are very different +in nature, and a simple way of jointly training a model from +language, vision, and vision-language data can easily create +a suboptimal solution. +To address the challenge, we propose a new general founda- +tion model, X-FM (X-Foundation Model). X-FM consists of +three modular encoders for language (text) encoding, vision +(image) encoding, and fusion encoding, as shown in Fig 1. +The language encoder, the vision encoder, and the entire +model can be used in downstream tasks of language, vision, +and vision-language understanding, respectively. All three +arXiv:2301.05065v1 [cs.CV] 12 Jan 2023 + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Methods +Text Tasks +Vision Tasks +Multi-modal Tasks (MSCOCO Retriveal & VQA) +GLUE +ImageNet +Zero-Shot +Fine-Tune +MNLI +RTE +FT/LE +TR +IR +TR +IR +VQA +Foundation models specifically for language, vision, or vision-language understanding +RoBERTa (Liu et al., 2019) +87.6 +78.7 +– +– +– +– +– +– +BEiTv2 (Peng et al., 2022) +– +– +85.5/80.1 +– +– +– +– +– +X-VLM (Zeng et al., 2021) +– +– +– +70.8/92.1/96.5 +55.6/82.7/90.0 +80.4/95.5/98.2 +63.1/85.7/91.6 +78.1 +X2-VLM (Zeng et al., 2022) +– +– +– +– +– +80.5/95.5/97.8 +62.7/84.7/90.7 +79.2 +General foundation models +UNIMO-2 (Li et al., 2021c) +87.5 +– +80.8/- +– +– +– +– +76.3 +SimVLM (Wang et al., 2021c) +83.4 +63.9 +-/80.6 +– +– +– +– +77.9 +FLAVA (Singh et al., 2021) +80.3 +57.8 +-/75.5 +42.7/76.8/- +38.4/67.5/- +61.5/82.1/89.6 +50.1/74.4/83.2 +72.8 +OFA (Wang et al., 2022b) +84.3 +70.8 +82.2/– +– +– +– +– +78.0 +DaVinci (Diao et al., 2022) +83.1 +64.2 +83.9/78.8 +– +– +– +– +76.3 +OmniVL (Wang et al., 2022a) +– +– +– +– +– +76.8/93.6/97.3 +58.5/82.6/89.5 +78.3 +Uni-Perceiver-MoE (Zhu et al., 2022) +81.5 +75.8 +84.5/– +64.6/–/– +51.6/–/– +70.5/–/– +54.1/–/– +– +X-FMbase +87.7 +83.2 +85.3/81.0 +73.8/93.9/97.2 +59.4/83.6/90.0 +81.8/96.0/98.3 +64.7/86.1/91.6 +79.1 +Table 1: Performance comparisons between foundation models. All results are from base-size models. MSCOCO is a +cross-modal retrieval task, and IR and TR are image-retrieval and text-retrieval, respectively. MNLI results are average +accuracies of MNLI-m and MNLI-mm. Accuracy is reported for RTE. For ImageNet1k classification, we report linear +evaluation (LE) performance and fine-tuning (FT) performance, respectively. We report R@1/R@5/R@10 for all retrieval +tasks at both zero-shot and fine-tune settings. We report the VQA test-dev result. bold denotes the best number across +general foundation models. underline denotes the best across all models. +encoders are stacked Transformer layers. The language en- +coder and the vision encoder follow the implementations +of BERT (Devlin et al., 2019) and ViT (Dosovitskiy et al., +2021), respectively. The fusion encoder has the same ar- +chitecture as BERT except that there is a cross-attention +sub-layer after the self-attention sub-layer in each Trans- +former layer. +In learning of X-FM, the language encoder, vision encoder, +and fusion encoder are jointly trained with text data, im- +age data, and image-text pair data as input. Given the text +data, we train the language encoder by masked language +modeling (MLM). Given the image data, we train the vi- +sion encoder by masked image modeling (MIM). Given the +image-text pair data, we train the fusion encoder by image +text matching (ITM), image-conditioned masked language +modeling (IMLM), bounding box prediction (BBP), train +the vision encoder and the language encoder by image-text +contrastive learning (ITC), and train the vision encoder by +MIM. (See Fig 1.) +The essential thinking of our learning method is that lan- +guage is more abstract than vision, and there is an asymmet- +ric relationship between language and vision. Therefore, we +separate the learning of the three encoders. The language +encoder is trained mainly from text data and is isolated from +the training of the fusion encoder. The vision encoder is +simultaneously trained from image data and image-text pair +data, guided by the vision-language training. The fusion +encoder is trained from image-text pair data. +Our learning method includes two new techniques. One +technique is to stop gradients from the vision-language train- +ing when learning the language encoder. The gradient flow +is stopped from the fusion encoder to the language encoder +in training, while the activation flow from the language en- +coder to the fusion encoder is as usual. As a result, the +language encoder is not affected by training of the fusion +encoder with image-text pair data. Moreover, the training of +the fusion encoder concentrates on learning the alignments +between language and vision features. +The other technique is to leverage the vision-language train- +ing to guide the learning of the vision encoder with masked +image modeling (MIM). In MIM, the masked image is com- +pared with the original image by the differences between the +predicted representations and target representations at the +masked and [CLS] positions. The vision encoder creates +both the predicated and target representations, while there +is gradient flow from the predicted representations but no +gradient flow from the target representations. The vision +encoder can create the target representations because it is +also trained in the vision-language training. +We conduct experiments on a variety of twenty-two tasks of +language, vision, and vision-language understanding. X-FM +can outperform other general foundation models by a large +margin and can even achieve better or comparable perfor- +mance than SOTA foundation models specifically designed +for language, vision, or vision-language understanding tasks, +as shown in Table 1. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +2. Related Work +Following the success of language model pre-training, vi- +sion pre-training and vision-language pre-training with +Transformer as the backbone (Vaswani et al., 2017) have +also made significant progress recently, pushing the state-of- +the-art of various understanding tasks of language, vision, +and vision-language. +In language understanding, BERT (Devlin et al., 2019) is +the first model adopting masked language modeling (MLM) +for pre-training, which achieves remarkable performance +on a wide range of tasks. Several other models are then +developed to improve training robustness (Liu et al., 2019), +sample efficiency (Sun et al., 2019; Joshi et al., 2020; Clark +et al., 2020), and prediction accuracy of BERT (Lan et al., +2020; Zhang et al., 2020; He et al., 2021). +In vision understanding, ViT (Dosovitskiy et al., 2021; Tou- +vron et al., 2021) is proposed, utilizing Transformer as the +backbone. Inspired by MLM, subsequent work proposes +using masked image modeling (MIM) with the objective of +recovering masked images. The learning targets vary from +pixels (He et al., 2022) to image tokens (Bao et al., 2021; +Peng et al., 2022). +In vision-language understanding, there are generally two +approaches. One is “dual encoders,” in which image and text +are encoded separately, followed by a shallow interaction +layer. The other is “fusion encoder(s)” in which attention +or self-attention is used to fuse information from the two +modalities after encoding. The former approach includes +CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) +and performs well in vision tasks and cross-modal retrieval +tasks. However, it cannot perform so well in multi-modal +fusion tasks such as visual question answering (VQA (Goyal +et al., 2017)) and visual reasoning (NLVR2 (Suhr et al., +2019b)). The latter approach varies depending on the way +of using image features. Early work feeds pre-extracted +object features along with texts into Transformer models +and trains the models to make multi-modal modeling and +multi-modal alignments with suitable objectives (Lu et al., +2019; Tan & Bansal, 2019b; Li et al., 2020; Chen et al., +2020; Cho et al., 2021; Zhang et al., 2021). Later work +uses patch embeddings directly with new architectures such +as vision Transformer (Li et al., 2021a; 2022) or multiway +Transformer (Wang et al., 2021a; Bao et al., 2022) and uses +new objectives such as bounding box prediction (Zeng et al., +2021; 2022). +Recently, the fact that Transformer can model multi-modal +data within a single architecture has inspired research to +develop general foundation models that can solve lan- +guage, vision, and vision-language tasks at the same time. +UNIMO (Li et al., 2021b;c) jointly learns from image +and text data vision representations, language representa- +tions, and vision-language alignments in a shared space. +FLAVA (Singh et al., 2021), a general foundation model, per- +forms pre-training with masked uni-modal and multi-modal +modeling objectives. OFA (Wang et al., 2022c) formulates +vision-language tasks as sequence-to-sequence (seq2seq) +problems and pre-trains a seq2seq model in multi-task learn- +ing. SimVLM (Wang et al., 2021c) pre-trains a seq2seq +model with a single objective of language generation (prefix +language modeling). DaVinci (Diao et al., 2022) combines +prefix language modeling and prefix image modeling to +learn a general foundation model for a wide range of tasks. +Uni-Perceiver (Zhu et al., 2021; 2022) builds a unified per- +ception architecture that processes various modalities and +tasks with a single Transformer network and shared parame- +ters. +Previous studies on general foundation models have shown +that different capabilities can be established with only one +model. Still, few studies demonstrate that the best perfor- +mance can be achieved in all tasks with one model. In this +paper, we propose a new general foundation model and show +that it can perform the best for all the understanding tasks +of language, vision, and vision-language. We compare our +model extensively with recent general foundation models +on multiple dimensions, as shown in Appendix A. +Several super-large foundation models (over 1B parame- +ters) are proposed recently, most of which are trained on +super-large in-house datasets (over 400M image-text pairs). +The authors do not report results at the base (about 280M +parameters) and large (about 800M parameters) scale on +public datasets, which we consider in this paper. CoCa (Yu +et al., 2022) pre-trains an image-text sequence-to-sequence +model with contrastive loss and captioning loss. BEiT- +3 (Wang et al., 2022d) uses a multi-way Transformer and a +unified objective of masked “language” modeling for learn- +ing from image (Imglish1), text, and image-text pair data. +Florence (Yuan et al., 2021) first scales the web-scale image- +text pairs to 900M representations and then adapts to vari- +ous computer vision tasks. Flamingo (Alayrac et al., 2022) +makes use of a large language model in vision-language +pre-training to solve the “in-context learning” problem for +vision-language tasks. PaLI (Chen et al., 2022) jointly scales +up the vision encoder and language encoder to cover a vari- +ety of language, vision, vision-language, and multilingual +tasks. +3. Method +3.1. Model Architecture and Training Process +We propose a new general foundation model X-FM, having +a language encoder, a vision encoder, and a fusion encoder, +shown as Fig 1. The language encoder is a stack of Trans- +1They view the image as a foreign language. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Text Encoder +Cross-Attention +Fusion Encoder +Feed Forward +Self-Attention +Vision Encoder +Feed Forward +Self-Attention +two +brown +and +white +dogs. +Mask +Feed Forward +Self-Attention +stop grad +MIM +MLM +IMLM, ITM, BBP +ITC +x M +x N +x L +Mask +target +Figure 1: The architecture and pre-training process of X-FM, a Transformer-based general foundation model. Given +a text, we learn the language encoder by MLM. Given an image, we learn the vision encoder by MIM. Given an image-text +pair, we learn the fusion encoder by BBP, ITM, IMLM and ITC, and further learn the vision encoder by MIM. The gradients +of BBP, ITM, and IMLM are stopped from the fusion encoder to the language encoder. The vision encoder is trained by +MIM with both the image-text pair data and the image data. M, N and P denote numbers of encoder layers. +former layers like that of BERT (Devlin et al., 2019), while +the vision encoder is a stack of Transformer layers like that +of ViT (Dosovitskiy et al., 2021). The language encoder uses +a post-layer-norm, while the vision encoder uses a pre-layer- +norm. The fusion encoder is similar to that of ALBEF (Li +et al., 2021a) and X-VLM (Zeng et al., 2021), in which +each layer has an attention sub-layer after a self-attention +sub-layer. In the self-attention sub-layers, the queries are +from language and the keys & values are from vision. +We propose a new method for learning X-FM, also shown in +Fig 1. Text, image, and image-text pair data are used as input +to train X-FM. The language encoder is trained by masked +language modeling (MLM) and image text contrastive learn- +ing (ITC). The vision encoder is trained by masked image +modeling (MIM) and ITC. The fusion encoder is trained +by image text matching (ITM), image-conditioned masked +language modeling (IMLM), and bounding box prediction +(BBP). There are two new techniques developed for the +training. +Stop Gradient. We stop gradients from the vision-language +training when learning the language encoder. Specifically, +when the fusion encoder is trained with image-text pair +data by ITM, IMLM, and BBP, there are forward flows +(activations) from the language encoder to the fusion en- +coder, but there are no backward flows (gradients) from the +fusion encoder to the language encoder. In this way, the +language encoder is only trained with text data by MLM +and with image-text pair data by ITC. The former helps the +language encoder to learn text representations, and the latter +helps the language encoder and the vision encoder to make +alignments between their respective text representations and +image representations. Meanwhile, the training of the fusion +encoder is performed separately with the focus of learning +from image-text pair data. +Masked Image Modeling. The training of vision encoder +by MIM is carried out as follows. The image data is first +masked and then predicted by the vision encoder. The dif- +ferences between predicted representations and ‘target’ rep- +resentations at masked positions and [CLS] position are +then measured with MSE (mean squared error) loss. The +target representations are obtained from the same image +data (without masking) by the vision encoder. There are +no gradients from the target representations in the learning +of the vision encoder. The vision encoder can create target +representations because it is also trained with image-text +pair data. In this way, the vision encoder is trained by both +the cross-modal objectives (ITC, ITM, BBP, IMLM) with +image-text pair data and the uni-modal objective (MIM) +with image data. The representations obtained from the +vision-language training are highly semantic, which is nec- +essary for MIM as demonstrated in previous work (Bao +et al., 2021; Peng et al., 2022; Wei et al., 2022a;b). +There are three advantages by exploiting the new MIM +technique. First, it becomes possible to leverage image data +for learning of the vision encoder, which is relatively easy +to obtain. Second, it is convenient to conduct MIM with the +signals from the vision-language training. Note that most +previous work for MIM makes use of an external image +tokenizer such as VQ-VAE (Bao et al., 2021; Singh et al., +2021), CLIP (Wei et al., 2022b), and VQ-KL (Peng et al., + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +2022). Third, the learning of the vision encoder and that +of the fusion encoder are mutually enhanced. Once the +vision encoder is trained, it is also utilized to train the fusion +encoder. +3.2. Pre-training Objectives +We explain six objectives in learning of X-FM. Here, T +represents the distribution of text data, I represents the +distribution of image data, and D represents the distribution +of image-text pair data. +Masked Language Modeling (MLM) We perform MLM +on text data to learn the language encoder of X-FM. Specifi- +cally we recover the masked tokens in a text by minimizing +the cross entropy loss below. +Lmlm = ET ∼T H(⃗y( ¯T), ˆ⃗p( ¯T)) +(1) +where T denotes a text, ¯T denotes the masked text of T, ˆ⃗p +denotes the predicted probability vectors of masked tokens +of ¯T, ⃗y denotes the one-hot vectors representing the original +tokens of ¯T, and H denotes cross-entropy. +Image-Text Contrastive Learning (ITC). We use an +image-text contrastive loss as in CLIP (Radford et al., 2021) +to learn the alignments between images and texts in ITC. +Given a batch of images and texts, we calculate the cosine +similarities between all image-text pairs. For each image, +there is one text matched and the rest is unmatched. For each +text, there is one image matched and the rest is unmatched. +The contrastive loss is defined as follows. +Litc = 1 +2E(I,T )∼D +� +H(⃗yi2t(I), ⃗pi2t(I)) ++ H(⃗yt2i(T), ⃗pt2i(T)) +� +(2) +where (I, T) denotes an image-text pair, ⃗pi2t(I) denotes the +in-batch image-to-text similarities, ⃗pt2i(T) denotes the in- +batch text-to-image similarities, ⃗yi2t(I) denotes the one-hot +vectors representing the image-to-text matching relations, +⃗yt2i(T) denotes the one-hot vectors representing the text-to- +image matching relations, and H denotes cross-entropy. +Image-Text Matching (ITM). We also learn the align- +ments between images and texts in ITM, using a loss in- +dicating whether an image-text pair is matched. For each +image in a batch there is a matched (positive) text, and we +sample an unmatched (negative) text in the batch. For each +text there is a matched (positive) image, and we sample +an unmatched image in the batch. The loss is defined as +follows. +Litm = E(I,T )∼D +� +H(pmatch(I, T)) ++H(pmatch(˜I, T)) +(3) ++H(pmatch(I, ˜T)) +� +where (I, T) denotes a positive image-text pair, (˜I, T) and +(I, ˜T) denote negative image-text pairs, pmatch(I, T) de- +notes a predicted matching probability of (I, T), and H +denotes logistic loss. +Image-conditioned +Masked +Language +Modeling +(IMLM) We conduct IMLM on image-text pair data to +learn the fusion encoder. +Specifically, we recover the +masked tokens of the text given for an image-text pair by +minimizing the cross entropy loss below. +Limlm = E(I,T )∼DH(⃗y( ¯T), ˆ⃗p(I, ¯T)) +(4) +where (I, T) denotes an image-text pair, ¯T denotes the +masked text of T, ˆ⃗p(I, ¯T) denotes the predicted probability +vectors of the masked tokens of ¯T based on I, ⃗y denotes the +one-hot vectors representing the original tokens of ¯T, and +H denotes cross-entropy. +Bounding Box Prediction (BBP) We adopt the BBP in X- +VLM (Zeng et al., 2021; 2022), which locates the visual +concept in the image by a bounding box given the text. With +BBP we learn the alignments between the images and texts +in multi-granularity. In BBP, two losses are simultaneously +minimized to measure the differences between the predicted +bounding box and the ground-truth bounding box. One +is generalized intersection over union GIoU (Rezatofighi +et al., 2019) and the other is ℓ1 distance. +Lbbp = E(I,T )∼D{GIoU(⃗b,ˆ⃗b) + ∥⃗b − ˆ⃗b∥1} +(5) +where⃗b = (cx, cy, w, h) denotes the ground truth bounding +box, ˆ⃗b = ( ˆcx, ˆcy, ˆw, ˆh) denotes the predicted bounding box. +A bounding box is represented by two coordinates, width, +and height. +Masked Image Modeling (MIM) We perform MIM on im- +age data and image-text pair data to learn the vision encoder. +Specifically, we recover the masked image patches in an +image by minimizing the loss below. +Lmim = E(I,T )∼D||⃗v(¯I) − ˆ⃗v(¯I)||2 + EI∼I||⃗v(¯I) − ˆ⃗v(¯I)||2 +(6) +where (I, T) and I denote an image-text pair and a single +image respectively, ¯I denotes the masked image I, ˆ⃗v(¯I) de- +notes the predicted representations at the masked positions +and [CLS] of ¯I, and ⃗v(¯I) denotes the target representa- +tions at the masked positions and [CLS] of ¯I. ||˙||2 is the +MSE loss. We employ block masking following previous +work (Bao et al., 2021; Peng et al., 2022). Note that (I, T) +and I are independently sampled from D and I, and the +sample sizes are not necessarily equal. +Finally, the pre-training objective of X-FM is defined as the +sum of the losses described above. +L = Lmlm + Litc + Litm + Limlm + Lbbp + Lmim (7) + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Base-Size Models +Large-Size Models +RoBERTa +BEiTv2 +X2-VLM +UNIMO-2 +FLAVA +SimVLM +OFA +DaVinci +Uni-Per. +OmniVL +X-FM +RoBERTa +BEiTv2 +X2-VLM +SimVLM +OFA +Uni-Per. +X-FM +Task +Eval. +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +MNLI +FT +87.6 +– +– +87.5 +80.3 +83.4 +84.3 +82.3 +81.5 +– +87.7 +90.2 +– +– +– +84.3 +85.7 +90.4 +CoLA +FT +63.6 +– +– +62.1 +50.7 +46.7 +52.3 +52.1 +52.2 +– +65.3 +68.0 +– +– +– +52.3 +57.4 +69.9 +MRPC +FT +90.2 +– +– +– +84.2 +79.8 +88.7 +83.1 +– +– +91.7 +90.9 +– +– +– +88.7 +– +92.4 +QQP +FT +91.9 +– +– +– +88.7 +90.4 +91.3 +88.2 +– +– +91.8 +92.2 +– +– +– +91.3 +– +92.2 +SST-2 +FT +94.8 +– +– +94.7 +90.9 +90.9 +92.7 +90.5 +90.9 +– +95.0 +96.4 +– +– +– +92.7 +93.4 +96.7 +QNLI +FT +92.8 +– +– +– +87.3 +88.6 +91.1 +87.2 +88.2 +– +92.9 +94.7 +– +– +– +91.1 +91.9 +94.8 +RTE +FT +78.70 +– +– +– +57.8 +63.9 +70.8 +60.7 +75.8 +– +83.8 +86.6 +– +– +– +70.8 +78.4 +87.4 +STS-B +FT +91.2 +– +– +91.2 +85.7 +87.2 +– +86.3 +– +– +90.8 +92.4 +– +– +– +– +– +92.1 +Language Avg. +86.4 +– +– +– +78.2 +78.9 +– +78.8 +– +– +87.4 +88.9 +– +– +– +– +– +89.5 +ImageNet +FT +– +85.5 +– +80.8 +– +– +82.2 +83.9 +84.5 +– +85.3 +– +87.3 +– +– +– +86.4 +86.3 +ImageNet +LE +– +80.1 +– +– +75.5 +80.6 +71.4† +75.9 +– +– +81.0 +– +66.8† +– +82.3 +74.7† +– +81.0 +Food101 +LE +– +88.2† +– +– +88.5 +– +75.2† +89.3 +– +87.4 +88.7 +– +52.2† +– +– +81.6† +– +88.9 +CIFAR10 +LE +– +95.3† +– +– +92.9 +– +86.1† +93.0 +– +96.2 +97.2 +– +63.5† +– +– +91.9† +– +97.2 +CIFAR100 +LE +– +81.5† +– +– +77.7 +– +66.7† +79.0 +– +83.2 +86.7 +– +39.7† +– +– +75.6† +– +85.1 +Pets +LE +– +93.1† +– +– +84.8 +– +81.0† +85.5 +– +87.1 +90.8 +– +38.9† +– +– +86.8† +– +90.0 +DTD +LE +– +78.4† +– +– +77.3 +– +70.3† +77.1 +– +76.2 +78.4 +– +44.4† +– +– +74.4† +– +79.0 +Flowers102 +LE +– +95.7† +– +– +96.4 +– +86.3† +96.1 +– +89.8 +97.1 +– +66.6† +– +– +92.6† +– +95.8 +Vision Avg. +– +88.7 +– +– +86.3 +– +79.2 +86.7 +– +86.7 +89.8 +– +50.9 +– +– +83.8 +– +89.3 +VQAv2 +FT +– +– +79.2 +76.3 +72.5 +77.9 +78.0 +73.9 +– +78.3 +79.1 +– +– +80.5 +79.3 +80.3 +– +79.5 +NLVR2 +FT +– +– +86.1 +– +– +81.8 +– +77.9 +– +– +86.7 +– +– +87.6 +84.8 +– +– +87.8 +Flickr30K TR R@1 +ZS +– +– +85.1† +88.5 +67.7 +– +– +– +82.1 +– +90.1 +– +– +86.8† +– +– +83.6 +89.7 +Flickr30K IR R@1 +ZS +– +– +77.3† +72.7 +65.2 +– +– +– +72.4 +– +79.1 +– +– +80.5† +– +– +75.9 +79.1 +Flickr30K TR R@1 +FT +– +– +97.4 +92.0 +– +– +– +– +93.6 +94.9 +97.4 +– +– +99.1 +– +– +94.1 +97.9 +Flickr30K IR R@1 +FT +– +– +90.0 +80.1 +– +– +– +– +79.8 +83.4 +88.6 +– +– +91.1 +– +– +83.7 +89.4 +COCO TR R@1 +ZS +– +– +68.4† +– +42.7 +– +– +– +64.6 +– +73.8 +– +– +69.7† +– +– +67.9 +74.4 +COCO IR R@1 +ZS +– +– +55.2† +– +38.4 +– +– +– +51.6 +– +59.4 +– +– +58.3† +– +– +55.3 +59.4 +COCO TR R@1 +FT +– +– +80.5 +– +– +– +– +– +70.5 +76.8 +81.8 +– +– +82.3 +– +– +74.7 +82.1 +COCO IR R@1 +FT +– +– +62.7 +– +– +– +– +– +52.6 +58.5 +64.7 +– +– +65.2 +– +– +57.1 +65.4 +Vision-Language Avg. +– +– +78.2 +– +– +– +– +– +– +– +80.1 +– +– +80.1 +– +– +– +80.5 +Table 2: Experimental results on vision, language and vision-language tasks. MNLI results are average of MNLI-m +and MNLI-mm. MRPC results are average accuracies and F1 scores. Matthews correlation coefficient (MCC) is reported for +CoLA, and Pearson correlation coefficient (PCC) is reported for STS-B. We report accuracies for all the vision and multi- +modal tasks. FT is short for fine-tuning, LE for linear evaluation, ZS for zero-shot, TR for text retrieval, and IR for image +retrieval. Results for RoBERTa are from its corresponding paper (Liu et al., 2019), and they use the mid-training (Phang +et al., 2018) on MNLI for RTE, MRPC, and STS-B while other models (e.g., BERT, SimVLM, DaVinci, X-FM) do not +use this trick. Language Avg. is the average score of all the language tasks, while Vision Avg. is the average score of six +line evaluation tasks except ImageNet. Vision-Language Avg. is the average score of all vision-language tasks. † are our +reproduced results with the officially released models. Uni-Per. stands for Uni-Perceiver-MoE (Zhu et al., 2022). +4. Experiments +4.1. Pre-training Datasets +We conduct our experiments on several widely used pub- +lic datasets, which consist of two in-domain datasets, +COCO (Lin et al., 2014) and Visual Genome (VG) (Kr- +ishna et al., 2017), and two out-of-domain datasets, SBU +Captions (Ordonez et al., 2011) and Conceptual Captions +(CC) (Sharma et al., 2018). Following X-VLM (Zeng et al., +2021; 2022), we also include annotations of objects and +regions from RefCOCO (Yu et al., 2016), Objects365 (Shao +et al., 2019) and OpenImages (Kuznetsova et al., 2018). +Since we assume also using uni-modal data, we include +RoBERTa corpus (Liu et al., 2019), C4 datasets (Raffel +et al., 2020) and Imagenet21K (Ridnik et al., 2021). All +pre-training datasets are listed in Table 3. +4.2. Implementation Details +Pre-training +Our model is of base size and large size, and +the parameters are listed in Table 5. The vision encoder is +initialized with BEiTv2 (Peng et al., 2022). The language +encoder is initialized with RoBERTa (Liu et al., 2019). The +fusion encoder is trained from scratch. X-FM is pre-trained +at image resolution of 224 × 224 with patch size of 16 × 16. +Dataset +# Images +# Texts +# Objects +# Regions +COCO +0.11M +0.55M +0.45M +- +VG +0.10M +- +2.0M +3.7M +SBU +0.86M +0.86M +- +- +CC-3M +2.9M +2.9M +- +- +Objects365 +0.58M +- +2.0M +- +OpenImages +1.7M +- +4.2M +- +C4 +- +800GB +- +- +RoBERTa Corpus +- +160GB +- +- +ImageNet-21k +14M +- +- +- +Table 3: Statistics of the pre-training datasets. +We pre-train X-FMbase for 200K steps with a batch size of +3072 image-text pairs, 3072 images, and 8192 sentences on +32 A100 and pre-train X-FMlarge with the same batch for +160K steps on 64 A100, which takes about six days. The +learning rate for both models is warmed-up to 1e−4 in the +first 2500 steps and decayed following a linear schedule. We +set the maximum number of text tokens to 30 for image-text +pairs, while that of pure text corpus is set to 128. We apply +mixed precision for pre-training. +Fine-tuning +We choose widely used downstream tasks +whose details are shown in Appendix B. We report overall + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Model +# Params +MSCOCO (5K test set) +Flickr30K (1K test set) +MSCOCO (5K test set) +Flickr30K (1K test set) +TR-Fine-Tune +IR-Fine-Tune +TR-Fine-Tune +IR-Fine-Tune +TR-Zero-Shot +IR-Zero-Shot +TR-Zero-Shot +IR-Zero-Shot +R@1/R@5/R@10 +R@1/R@5/R@10 +R@1/R@5/R@10 +R@1/R@5/R@10 +R@1/R@5/R@10 +R@1/R@5/R@10 +R@1/R@5/R@10 +R@1/R@5/R@10 +ALBEF +210M +73.1/91.4/96.0 +56.8/81.5/89.2 +94.3/99.4/99.8 +82.8/96.7/98.4 +– +– +90.5/98.8/99.7 +76.8/93.7/96.7 +VLMobase +175M +74.8/93.1/96.9 +57.2/82.6/89.8 +92.3/99.4/99.9 +79.3/95.7/97.8 +– +– +– +– +VL-BEiT +175M +79.5/–/– +61.5/–/– +95.8/–/– +83.9/–/– +– +– +– +– +OmniVL +288M +76.8/93.6/97.3 +58.5/82.6/89.5 +94.9/9.6/99.9 +83.4/97.0/98.6 +– +– +– +– +X-VLM +216M +80.4/95.5/98.2 +63.1/85.7/91.6 +96.8/99.8/100 +86.1/97.4/98.7 +70.8/92.1/96.5 +55.6/82.7/90.0 +85.3/97.8/99.6 +71.9/93.3/96.4 +X2-VLMbase +255M +80.5/95.5/97.8 +62.7/84.7/90.7 +97.4/99.9/100 +90.0/98.6/99.3 +68.4†/92.5†/96.8† +55.2†/82.2†/89.3† +85.1†/99.2†/100.0† +77.3†/95.3†/97.6† +X-FMbase +284M +81.8/96.0/98.3 +64.7/86.1/91.6 +97.4/100/100 +88.6/97.9/98.9 +73.8/93.9/97.2 +59.4/83.6/90.0 +90.1/99.2/99.9 +79.1/95.2/97.3 +VLMolarge +562M +78.2/94.4/97.4 +60.6/84.4/91.0 +95.3/99.9/100 +84.5/97.3/98.6 +– +– +– +– +X2-VLMlarge +593M +82.3/96.2/98.3 +65.2/86.4/91.9 +99.1/100/100 +91.1/98.6/99.4 +69.7†/93.0†/97.2† +58.3†/83.8†/90.5† +86.8†/98.9†/99.9† +80.5†/96.4†/98.3† +X-FMlarge +807M +82.1/96.2/98.2 +65.4/86.6/91.9 +97.9/100/100 +89.4/98.2/99.1 +74.4/94.1/97.3 +59.4/84.4/90.7 +89.7/99.1/100 +79.1/95.4/97.9 +Super-Large Models or Super-Large Datasets +CLIP +490M +– +– +88.7/98.0/99.2 +76.7/93.6/96.4 +58.4/81.5/88.1 +37.8/62.4/72.2 +88.0/98.7/99.4 +68.7/90.6/95.2 +ALIGN +490M +77.0/93.5/96.9 +59.9/83.3/89.8 +95.3/99.8/100 +84.9/97.4/98.6 +58.6/83.0/89.7 +45.6/69.8/78.6 +88.6/98.7/99.7 +75.7/93.8/96.8 +Florence +893M +81.8/95.2/– +63.2/85.7/– +97.2/99.9/– +87.9/98.1/– +64.7/85.9/– +47.2/71.4/– +90.9/99.1/– +76.7/93.6/– +CoCa +2.1B +– +– +– +– +66.3/86.2/91.8 +51.2/74.2/82.0 +92.5/99.5/99.9 +80.4/95.7/97.7 +BEiT-3 +1.9B +84.8/96.5/98.3 +67.2/87.7/92.8 +98.0/100/100 +90.3/98.7/99.5 +– +– +94.9/99.9/100.0 +81.5/95.6/97.8 +X2-VLMlarge +593M +84.4/96.5/98.5 +67.7/87.5/92.5 +98.8/100/100 +91.8/98.6/99.5 +– +– +– +– +Table 4: Results of text-retrieval (TR) and image-retrieval (IR) on COCO and Flickr30K. † denotes our reproduced results +with the officially released models. Giant models with over 1B parameters (e.g., BEiT-3) and models are pre-trained with +over 400M data (e.g., CLIP and X2-VLMlarge) are in grey since they are not directly comparable with other models. +Model +Param +Hidden +Layers +Vision +Text +Fusion +X-FMbase +284 +768 +12 +12 +12 +X-FMlarge +807 +1024 +24 +24 +12 +Table 5: Size variants of X-FM. All modules consist of +transformer layers. Param indicates the parameter number +of transformer layers. +performance on eight language tasks from GLUE (Wang +et al., 2019), eight vision tasks following OmniVL (Wang +et al., 2022a), four multi-modal tasks, which are text- +image retrieval on MSCOCO and Flickr, visual question +answering (VQA (Goyal et al., 2017)) and visual reason- +ing (NLVR2 (Suhr et al., 2019b)). For image-text retrieval +task, we report both zero-shot results and fine-tuned results. +For the ImageNet classification task, we report both linear +evaluation results and fine-tuning results. The other vision +tasks are evaluated in the linear evaluation setting. All the +other tasks are evaluated in the fine-tuning setting. Because +the image resolution differs between pre-training and fine- +tuning, the position parameters are adapted using linear +interpolation. For all downstream tasks, we apply random +resize crops and horizontal flips augmentation for the im- +ages during training. More details of network architectures +and hyper-parameters setups are given in Appendix C. +4.3. Comparison with SOTA Foundation Models +We extensively compare the performance of X-FM with +state-of-the-art foundation models on vision, language, and +multi-modal tasks. We first compare our model with general +foundation models, including UNIMO-v2 (Li et al., 2021c), +FLAVA (Singh et al., 2021), SimVLM (Wang et al., 2021c), +OFA (Wang et al., 2022b), DaVinci (Diao et al., 2022), Om- +niVL (Wang et al., 2022a), and Uni-Perceiver-MoE (Zhu +et al., 2022). We also include comparisons with SOTA +foundation models specifically designed for language, vi- +sion, or vision-language tasks, RoBERTa (Liu et al., 2019), +BEiTv2 (Peng et al., 2022), and X2-VLM (Zeng et al., 2022). +There are several observations in Table 2. First, X-FMbase +(column 11) outperforms all the previous general foundation +models (column 4-10) across almost all tasks by a large mar- +gin, becoming a new and stronger general foundation model. +Compared to the previous general foundation models, X- +FMbase improves at least 3.2% and the most even to 9.7% +on the average of all the reported numbers. Second, we com- +pare X-FM with state-of-the-art foundation models specif- +ically designed for language, vision, and vision-language +tasks, RoBERTa, BEiTv2 and X2-VLM. We observe that +X-FM is also better than or comparable with the foundation +models at both base and large scale (column 1,2,3 vs 11 and +12,13,14 vs 18). +4.4. Comparison with SOTA Vision-Language Models +In addition to general foundation models, we also compare +X-FM with state-of-the-art vision-language models. The re- +sults are shown in Table 4 and Table 7. X-FM demonstrates +its superiority on MSCOCO retrieval and NLVR2, while +achieving competitive performance on Flickr retrieval and +VQA. Note that X-FMbase outperforms CLIP, ALIGN and +Florence on image-text retrieval tasks with fewer parame- +ters and much less training data. Compared to the recently +released SOTA vision-language model, X2-VLM, X-FM is +much better on image-text retrieval tasks at the zero-shot +setting. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +X-FMbase +RoBERTa† +S-MLM +S-ITM +wostop +BEiTv2† +woMIM +wBEiTv2 Tokenizer +X2-VLM† +Multi-task +ALL +Task +Eval. +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +MNLI +FT +87.7 +87.4 +87.3 +87.7 +– +– +– +– +87.4 +87.6 +CoLA +FT +63.2 +61.6 +63.6 +64.2 +– +– +– +– +62.2 +65.2 +MRPC +FT +90.7 +92.2 +91.1 +90.7 +– +– +– +– +92.0 +92.5 +QQP +FT +91.5 +91.6 +91.6 +91.6 +– +– +– +– +91.6 +91.6 +SST-2 +FT +95.0 +95.1 +94.2 +94.6 +– +– +– +– +94.4 +95.3 +QNLI +FT +93.1 +93.0 +93.2 +92.5 +– +– +– +– +92.8 +92.9 +RTE +FT +80.9 +79.1 +81.6 +81.2 +– +– +– +– +79.8 +81.9 +STS-B +FT +90.9 +90.7 +90.7 +90.4 +– +– +– +– +90.1 +90.8 +Language Avg. +86.6 +86.4 +86.7 +86.6 +– +– +– +– +86.3 +87.2 +ImageNet +FT +– +– +– +– +85.5 +84.8 +85.0 +– +85.0 +85.3 +ImageNet +LE +– +– +– +– +80.5 +79.1 +79.4 +– +79.3 +81.1 +Food101 +LE +– +– +– +– +88.2 +86.9 +87.2 +– +86.9 +88.7 +CIFAR10 +LE +– +– +– +– +95.3 +96.6 +96.5 +– +96.6 +97.5 +CIFAR100 +LE +– +– +– +– +81.5 +83.3 +83.9 +– +84.1 +86.9 +Pets +LE +– +– +– +– +93.1 +88.1 +88.5 +– +88.2 +90.7 +DTD +LE +– +– +– +– +78.4 +77.7 +76.9 +– +78.0 +78.7 +Flowers102 +LE +– +– +– +– +95.7 +94.1 +94.5 +– +94.2 +97.1 +Vision Avg. +– +– +– +– +87.3 +86.3 +86.5 +– +86.5 +88.2 +VQAv2 +FT +– +78.8 +78.5 +78.7 +– +78.3 +78.2 +78.0 +78.2 +78.6 +NLVR2 +FT +– +86.3 +86.0 +86.4 +– +85.9 +85.5 +86.2 +86.1 +86.7 +Flickr30K TR R@1 +ZS +– +88.3 +87.2 +87.1 +– +87.1 +87.2 +87.7 +85.0 +89.3 +Flickr30K IR R@1 +ZS +– +76.6 +74.9 +75.8 +– +76.1 +75.3 +75.1 +75.6 +77.4 +Flickr30K TR R@1 +FT +– +97.5 +97.0 +97.2 +– +96.4 +96.7 +97.0 +97.0 +97.7 +Flickr30K IR R@1 +FT +– +87.4 +86.9 +87.3 +– +86.2 +86.6 +86.2 +86.4 +87.4 +COCO TR R@1 +ZS +– +72.0 +72.1 +70.5 +– +73.0 +72.1 +73.2 +69.9 +72.8 +COCO IR R@1 +ZS +– +58.4 +57.1 +57.7 +– +58.2 +57.7 +57.7 +56.5 +59.0 +COCO TR R@1 +FT +– +81.2 +80.2 +80.9 +– +80.6 +80.1 +80.3 +80.0 +81.2 +COCO IR R@1 +FT +– +64.2 +63.4 +63.6 +– +63.7 +63.0 +63.1 +63.0 +64.0 +Vision-Language Avg. +– +79.1 +78.3 +78.5 +– +78.6 +78.2 +78.5 +77.8 +79.4 +Table 6: Ablation studies on vision, language, and vision-language tasks. We use the same settings as Table 2. “ALL” for +X-FMbase is trained with the same data under the same settings for pre-training and fine-tuning compared to all the variants. +Language Avg. is the average of all language tasks, while Vision Avg. is the average of all vision tasks. Vision-Language +Avg. is the average of all vision-language tasks. Note that performance of “ALL” is slightly different from X-FMbase in +Table 2, because we use less training steps (160k) for ablation to save the computational resources. +4.5. Ablation Study +To verify the contributions of different modules in our frame- +work, we ablate them and evaluate the performance of X- +FM on all downstream tasks. The results are shown in +Table 6. We first explain several abbreviations in the table. +S-MLM means that we only separate the language represen- +tations in the learning IMLM task, while S-ITM means that +language representations for computing ITM and BBP are +separated. wostop indicates without stopping the gradients +of all language representations. woMIM means that we do +not learn by MIM, while wBEiTv2 tokenizer means that +we learn by MIM with the image tokenizer used in BEiTv2. +Multi-task is a variation that uses straightforward multi-task +learning to optimize the three encoders in X-FM. To make +a fair comparison, we also train RoBERTa, BEiTv2 and +X2-VLM with the same data noted as RoBERTa†, BEiTv2† +and X2-VLM†. Note that we also increase the fusion layers +in X2-VLM† to make the parameter sizes comparable to +our models. RoBERTa†, BEiTv2† and X2-VLM† all have +slightly better results on average than the official ones. From +the results, we have the following observations. +First, both designs (stop gradient and masked image mod- +eling) bring improvements, and the combination can make +further improvements on all three downstream tasks (col- +umn 10 vs. others). Second, without separated language +representations, models always perform worse on language +understanding tasks (column 10 vs. 2,3,4). Besides, the sep- +arate language representations in the IMLM task on image- +text data are helpful for multi-modal tasks (column 2 vs. 4). +As we point out in section 1, the fusion encoder can learn +better cross-modal feature alignments by IMLM task from +image-text pairs instead of utilizing text tokens. Although S- +ITM shows slight side effects (column 4 vs. 3), stopping the +gradients of language representation in the fusion encoder +is necessary to simultaneously achieve strong language un- +derstanding and vision-language understanding capability. +Third, the MIM task is useful for vision-language and vi- +sion learning (column 10 vs. 6). Meanwhile, the targets +in our MIM task are better than the BEiTv2 tokenizer (col- +umn 10 vs. 7). Four, X-FM is much better than a naive + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Method +# Params +VQA +NLVR2 +test-dev +test-std +dev +test-P +ALBEF +210M +74.5 +74.7 +80.2 +80.5 +VLMobase +175M +76.6 +76.9 +82.8 +83.3 +METER +341M +77.7 +77.6 +82.3 +83.1 +VL-BEiT +175M +77.5 +77.8 +81.9 +82.7 +BLIPbase +240M +78.2 +78.2 +82.5 +83.1 +X-VLM +216M +78.1 +78.1 +84.2 +84.2 +OFAbase +182M +78.0 +78.1 +- +- +OmniVL +288M +78.3 +78.4 +- +- +X2-VLMbase +255M +79.2 +79.3 +85.9 +86.1 +X-FMbase +284M +79.1 +79.2 +86.3 +86.5 +VLMolarge +562M +79.9 +80.0 +85.6 +86.9 +OFAlarge +472M +80.3 +80.5 +- +- +X2-VLMlarge +593M +80.5 +80.5 +87.2 +87.6 +X-FMlarge +807M +79.5 +79.6 +86.2 +87.8 +Super-Large Models or Super-Large Datasets +SimVLMbase +273M +77.9 +78.1 +81.7 +X2-VLMbase +255M +80.4 +80.2 +86.2 +87.0 +SimVLMlarge +783M +79.3 +79.6 +84.1 +84.8 +X2-VLMlarge +593M +81.9 +81.8 +88.7 +89.4 +Florence +893M +80.2 +80.3 +– +– +CoCa +2.1B +82.3 +82.3 +86.1 +87.0 +BEiT-3 +1.9B +84.2 +84.0 +91.5 +92.6 +Table 7: Results on VQA and visual reasoning. Giant mod- +els with over 1B parameters (e.g., CoCa and BEiT-3) or +models are pre-trained with over 400M data (e.g., SimVLM +and X2-VLMlarge) are in grey because they are not directly +comparable with other models. +multi-task learning strategy for a foundation model (column +10 vs. 8). Compared with the straightforward multi-task +strategy, X-FMbase improves an average of 0.9%, 1.7% +and 1.6% on language, vision, and vision-language tasks, +respectively. Five, X-FM is also slightly better than foun- +dation models specifically designed for language, vision, +and vision-language tasks with the same training corpus +(column 10 vs. 1,5,8). +5. Conclusion and Limitation +5.1. Conclusion +In this work, we address the problem of how to build a +general foundation model that can perform the best for all +the understanding tasks of language, vision, and vision- +language. We propose a general foundation model with two +new and effective training techniques, X-FM, to learn rich +language, vision and vision-language representations at the +same time. Experimental results explicitly imply that X-FM +outperforms other general foundation models by a large +margin. Moreover, X-FM can even be better or comparable +compared with the SOTA foundation models specifically +designed for language, vision, or vision-language under- +standing tasks. +5.2. Limitation +Like most existing work on foundation models, the entire +project consumed over 5 A100 GPU years on a computing +cluster with high electricity costs, although we only tested +base and large models. There is still potential for efficiency +improvement through sparse attention (Zaheer et al., 2020) +or the lottery ticket hypothesis (Frankle & Carbin, 2018). +We will explore the techniques to improve the training effi- +ciency and reduce the carbon footprint so that we can adhere +to the proposals on “green” deep learning (Schwartz et al., +2020; Xu et al., 2021). +Due to considerations of fair comparisons and computa- +tional resources, we did not try super-large models which +use at least 1.9B or more parameters like BEITv3 (Wang +et al., 2022d), CoCa (Yu et al., 2022) and PaLI (Chen et al., +2022). However, scalability is also an important factor for +foundation models. We leave the investigations to future +work. +References +Agirre, E., Màrquez, L., and Wicentowski, R. (eds.). Pro- +ceedings of the Fourth International Workshop on Seman- +tic Evaluations (SemEval-2007), Prague, Czech Republic, +2007. Association for Computational Linguistics. URL +https://aclanthology.org/S07-1000. +Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., +Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds, +M., et al. Flamingo: a visual language model for few-shot +learning. arXiv preprint arXiv:2204.14198, 2022. +Bao, H., Dong, L., and Wei, F. BEiT: Bert pre-training of +image transformers. arXiv preprint, 2021. +Bao, H., Wang, W., Dong, L., and Wei, F. +Vl-beit: +Generative vision-language pretraining. arXiv preprint +arXiv:2206.01127, 2022. +Bentivogli, L., Clark, P., Dagan, I., and Giampiccolo, D. +The fifth pascal recognizing textual entailment challenge. +In TAC, 2009. +Bingel, J. and Søgaard, A. Identifying beneficial task re- +lations for multi-task learning in deep neural networks. +arXiv preprint arXiv:1702.08303, 2017. +Bossard, L., Guillaumin, M., and Gool, L. V. Food-101– +mining discriminative components with random forests. +In European conference on computer vision, pp. 446–461. +Springer, 2014. +Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, +J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., +Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., +Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., +Litwin, M., Gray, S., Chess, B., Clark, J., Berner, +C., McCandlish, S., Radford, A., Sutskever, I., and +Amodei, D. +Language models are few-shot learners. +In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, +M., and Lin, H. (eds.), Advances in Neural Information +Processing Systems 33: Annual Conference on Neural +Information Processing Systems 2020, NeurIPS 2020, +December 6-12, 2020, virtual, 2020. +URL https: +//proceedings.neurips.cc/paper/2020/hash/ +1457c0d6bfcb4967418bfb8ac142f64a-Abstract. +html. +Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., +Bojanowski, P., and Joulin, A. Emerging properties in +self-supervised vision transformers. In Proceedings of +the IEEE/CVF International Conference on Computer +Vision, pp. 9650–9660, 2021. +Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A., +Padlewski, P., Salz, D., Goodman, S., Grycner, A., +Mustafa, B., Beyer, L., et al. +Pali: A jointly-scaled +multilingual language-image model. +arXiv preprint +arXiv:2209.06794, 2022. +Chen, Y.-C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, +Z., Cheng, Y., and Liu, J. UNITER: Universal image- +text representation learning. In European Conference on +Computer Vision (ECCV), 2020. +Cho, J., Lei, J., Tan, H., and Bansal, M. +Unifying +vision-and-language tasks via text generation. In Meila, +M. and Zhang, T. (eds.), Proceedings of the 38th In- +ternational Conference on Machine Learning, ICML +2021, 18-24 July 2021, Virtual Event, volume 139 of +Proceedings of Machine Learning Research, pp. 1931– +1942. PMLR, 2021. URL http://proceedings.mlr. +press/v139/cho21a.html. +Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and +Vedaldi, A. Describing textures in the wild. In 2014 +IEEE Conference on Computer Vision and Pattern Recog- +nition, CVPR 2014, Columbus, OH, USA, June 23-28, +2014, pp. 3606–3613. IEEE Computer Society, 2014. doi: +10.1109/CVPR.2014.461. URL https://doi.org/10. +1109/CVPR.2014.461. +Clark, K., Luong, M., Le, Q. V., and Manning, C. D. +ELECTRA: pre-training text encoders as discriminators +rather than generators. +In 8th International Confer- +ence on Learning Representations, ICLR 2020, Addis +Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, +2020. URL https://openreview.net/forum?id= +r1xMH1BtvB. +Dagan, I., Glickman, O., and Magnini, B. The pascal recog- +nising textual entailment challenge. In Machine Learning +Challenges Workshop, pp. 177–190. Springer, 2005. +Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: +Pre-training of deep bidirectional transformers for lan- +guage understanding. In Proceedings of the 2019 Confer- +ence of the North American Chapter of the Association for +Computational Linguistics: Human Language Technolo- +gies, Volume 1 (Long and Short Papers), pp. 4171–4186, +Minneapolis, Minnesota, 2019. Association for Compu- +tational Linguistics. doi: 10.18653/v1/N19-1423. URL +https://aclanthology.org/N19-1423. +Diao, S., Zhou, W., Zhang, X., and Wang, J. Prefix lan- +guage models are unified modal learners. arXiv preprint +arXiv:2206.07699, 2022. +Dolan, W. B. and Brockett, C. Automatically construct- +ing a corpus of sentential paraphrases. +In Proceed- +ings of the Third International Workshop on Paraphras- +ing (IWP2005), 2005. URL https://aclanthology. +org/I05-5002. +Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, +D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, +M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. +An image is worth 16x16 words: Transformers for image +recognition at scale. In 9th International Conference on +Learning Representations, ICLR 2021, Virtual Event, Aus- +tria, May 3-7, 2021. OpenReview.net, 2021. URL https: +//openreview.net/forum?id=YicbFdNTTy. +Frankle, J. and Carbin, M. The lottery ticket hypothesis: +Finding sparse, trainable neural networks. arXiv preprint +arXiv:1803.03635, 2018. +Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. The +third PASCAL recognizing textual entailment challenge. +In Proceedings of the ACL-PASCAL Workshop on Textual +Entailment and Paraphrasing, pp. 1–9, Prague, 2007. +Association for Computational Linguistics. URL https: +//aclanthology.org/W07-1401. +Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and +Parikh, D. Making the V in VQA matter: Elevating +the role of image understanding in visual question an- +swering. In 2017 IEEE Conference on Computer Vi- +sion and Pattern Recognition, CVPR 2017, Honolulu, +HI, USA, July 21-26, 2017, pp. 6325–6334. IEEE Com- +puter Society, 2017. doi: 10.1109/CVPR.2017.670. URL +https://doi.org/10.1109/CVPR.2017.670. +Haim, R. B., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, +D., Magnini, B., and Szpektor, I. The second pascal recog- +nising textual entailment challenge. In Proceedings of the +Second PASCAL Challenges Workshop on Recognising +Textual Entailment, volume 7, 2006. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Mo- +mentum contrast for unsupervised visual representation +learning. In 2020 IEEE/CVF Conference on Computer +Vision and Pattern Recognition, CVPR 2020, Seattle, WA, +USA, June 13-19, 2020, pp. 9726–9735. IEEE, 2020. +doi: 10.1109/CVPR42600.2020.00975. URL https: +//doi.org/10.1109/CVPR42600.2020.00975. +He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, +R. Masked autoencoders are scalable vision learners. In +Proceedings of the IEEE/CVF Conference on Computer +Vision and Pattern Recognition, pp. 16000–16009, 2022. +He, P., Liu, X., Gao, J., and Chen, W. Deberta: decoding- +enhanced bert with disentangled attention. In 9th Interna- +tional Conference on Learning Representations, ICLR +2021, Virtual Event, Austria, May 3-7, 2021. Open- +Review.net, 2021. URL https://openreview.net/ +forum?id=XPZIaotutsD. +Iyer, S., Dandekar, N., Csernai, K., et al. First quora dataset +release: Question pairs. data. quora. com, 2017. +Jia, C., Yang, Y., Xia, Y., Chen, Y., Parekh, Z., Pham, H., +Le, Q. V., Sung, Y., Li, Z., and Duerig, T. Scaling up +visual and vision-language representation learning with +noisy text supervision. In Meila, M. and Zhang, T. (eds.), +Proceedings of the 38th International Conference on Ma- +chine Learning, ICML 2021, 18-24 July 2021, Virtual +Event, volume 139 of Proceedings of Machine Learning +Research, pp. 4904–4916. PMLR, 2021. URL http: +//proceedings.mlr.press/v139/jia21b.html. +Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, +L., and Levy, O. Spanbert: Improving pre-training by +representing and predicting spans. Transactions of the As- +sociation for Computational Linguistics, 8:64–77, 2020. +Karpathy, A. and Li, F. Deep visual-semantic alignments +for generating image descriptions. In IEEE Conference +on Computer Vision and Pattern Recognition, CVPR +2015, Boston, MA, USA, June 7-12, 2015, pp. 3128–3137. +IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015. +7298932. +URL https://doi.org/10.1109/CVPR. +2015.7298932. +Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., +Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma, +D. A., et al. Visual genome: Connecting language and +vision using crowdsourced dense image annotations. In- +ternational Journal of Computer Vision (IJCV), 2017. +Krizhevsky, A., Hinton, G., et al. Learning multiple layers +of features from tiny images. 2009. +Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, +I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., +Kolesnikov, A., et al. The open images dataset v4: Unified +image classification, object detection, and visual relation- +ship detection at scale. arXiv preprint arXiv:1811.00982, +2018. URL https://arxiv.org/abs/1811.00982. +Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., +and Soricut, R. ALBERT: A lite BERT for self-supervised +learning of language representations. In 8th International +Conference on Learning Representations, ICLR 2020, Ad- +dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, +2020. URL https://openreview.net/forum?id= +H1eA7AEtvS. +Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo- +hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L. +BART: Denoising sequence-to-sequence pre-training for +natural language generation, translation, and comprehen- +sion. In Proceedings of the 58th Annual Meeting of the As- +sociation for Computational Linguistics, pp. 7871–7880, +Online, 2020. Association for Computational Linguis- +tics. doi: 10.18653/v1/2020.acl-main.703. URL https: +//aclanthology.org/2020.acl-main.703. +Li, J., Selvaraju, R. R., Gotmare, A. D., Joty, S., Xiong, +C., and Hoi, S. Align before fuse: Vision and language +representation learning with momentum distillation. In +Conference on Neural Information Processing Systems +(NeurIPS), 2021a. +Li, J., Li, D., Xiong, C., and Hoi, S. +Blip: +Boot- +strapping language-image pre-training for unified vision- +language understanding and generation. arXiv preprint +arXiv:2201.12086, 2022. +Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu, +H., and Wang, H. UNIMO: Towards unified-modal un- +derstanding and generation via cross-modal contrastive +learning. In Proceedings of the 59th Annual Meeting of +the Association for Computational Linguistics and the +11th International Joint Conference on Natural Language +Processing (Volume 1: Long Papers), pp. 2592–2607, +Online, 2021b. Association for Computational Linguis- +tics. doi: 10.18653/v1/2021.acl-long.202. URL https: +//aclanthology.org/2021.acl-long.202. +Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu, +H., and Wang, H. UNIMO: Towards unified-modal un- +derstanding and generation via cross-modal contrastive +learning. In Proceedings of the 59th Annual Meeting of +the Association for Computational Linguistics and the +11th International Joint Conference on Natural Language +Processing (Volume 1: Long Papers), pp. 2592–2607, +Online, 2021c. Association for Computational Linguis- +tics. doi: 10.18653/v1/2021.acl-long.202. URL https: +//aclanthology.org/2021.acl-long.202. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, +L., Hu, H., Dong, L., Wei, F., et al. +Oscar: Object- +semantics aligned pre-training for vision-language tasks. +In European Conference on Computer Vision (ECCV), +2020. +Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., +Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft +COCO: Common objects in context. In European Con- +ference on Computer Vision (ECCV), 2014. +Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., +Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, +V. +RoBERTa: A robustly optimized bert pretraining +approach. arXiv preprint, 2019. +Lu, J., Batra, D., Parikh, D., and Lee, S. Vilbert: Pre- +training task-agnostic visiolinguistic representations +for vision-and-language tasks. +In Wallach, H. M., +Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., +Fox, E. B., and Garnett, R. (eds.), Advances in Neural +Information Processing Systems 32: +Annual Con- +ference on Neural Information Processing Systems +2019, NeurIPS 2019, December 8-14, 2019, Vancou- +ver, BC, Canada, pp. 13–23, 2019. +URL https: +//proceedings.neurips.cc/paper/2019/hash/ +c74d97b01eae257e44aa9d5bade97baf-Abstract. +html. +Nilsback, M.-E. and Zisserman, A. Automated flower clas- +sification over a large number of classes. In 2008 Sixth +Indian Conference on Computer Vision, Graphics & Im- +age Processing, pp. 722–729. IEEE, 2008. +Ordonez, V., Kulkarni, G., and Berg, T. L. Im2text: Describ- +ing images using 1 million captioned photographs. In +Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. +C. N., and Weinberger, K. Q. (eds.), Advances in Neural +Information Processing Systems 24: 25th Annual Confer- +ence on Neural Information Processing Systems 2011. +Proceedings of a meeting held 12-14 December 2011, +Granada, Spain, pp. 1143–1151, 2011. URL https: +//proceedings.neurips.cc/paper/2011/hash/ +5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract. +html. +Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, +C. V. +Cats and dogs. +In 2012 IEEE Conference on +Computer Vision and Pattern Recognition, Providence, RI, +USA, June 16-21, 2012, pp. 3498–3505. IEEE Computer +Society, 2012. doi: 10.1109/CVPR.2012.6248092. URL +https://doi.org/10.1109/CVPR.2012.6248092. +Peng, Z., Dong, L., Bao, H., Ye, Q., and Wei, F. Beit v2: +Masked image modeling with vector-quantized visual +tokenizers. arXiv preprint arXiv:2208.06366, 2022. +Phang, J., Févry, T., and Bowman, S. R. Sentence encoders +on stilts: Supplementary training on intermediate labeled- +data tasks. ArXiv, abs/1811.01088, 2018. +Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., +Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, +J., Krueger, G., and Sutskever, I. Learning transferable +visual models from natural language supervision. +In +Meila, M. and Zhang, T. (eds.), Proceedings of the 38th +International Conference on Machine Learning, ICML +2021, 18-24 July 2021, Virtual Event, volume 139 of +Proceedings of Machine Learning Research, pp. 8748– +8763. PMLR, 2021. URL http://proceedings.mlr. +press/v139/radford21a.html. +Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., +Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the +limits of transfer learning with a unified text-to-text trans- +former. Journal of Machine Learning Research (JMLR), +2020. +Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD: +100,000+ questions for machine comprehension of text. +In Proceedings of the 2016 Conference on Empirical +Methods in Natural Language Processing, pp. 2383– +2392, Austin, Texas, 2016. Association for Computa- +tional Linguistics. doi: 10.18653/v1/D16-1264. URL +https://aclanthology.org/D16-1264. +Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, +I. D., and Savarese, S. Generalized intersection over +union: A metric and a loss for bounding box regression. +In IEEE Conference on Computer Vision and Pattern +Recognition, CVPR 2019, Long Beach, CA, USA, June +16-20, 2019, pp. 658–666. Computer Vision Foundation / +IEEE, 2019. doi: 10.1109/CVPR.2019.00075. +Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor, L. +Imagenet-21k pretraining for the masses, 2021. +Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., +Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, +M., et al. Imagenet large scale visual recognition chal- +lenge. International journal of computer vision, 115(3): +211–252, 2015. +Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green +ai. Communications of the ACM, 63(12):54–63, 2020. +Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li, +J., and Sun, J. Objects365: A large-scale, high-quality +dataset for object detection. In 2019 IEEE/CVF Interna- +tional Conference on Computer Vision, ICCV 2019, Seoul, +Korea (South), October 27 - November 2, 2019, pp. 8429– +8438. IEEE, 2019. doi: 10.1109/ICCV.2019.00852. URL +https://doi.org/10.1109/ICCV.2019.00852. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Sharma, P., Ding, N., Goodman, S., and Soricut, R. Con- +ceptual captions: A cleaned, hypernymed, image alt-text +dataset for automatic image captioning. In Proceedings +of the 56th Annual Meeting of the Association for Compu- +tational Linguistics (Volume 1: Long Papers), pp. 2556– +2565, Melbourne, Australia, 2018. Association for Com- +putational Linguistics. doi: 10.18653/v1/P18-1238. URL +https://aclanthology.org/P18-1238. +Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba, +W., Rohrbach, M., and Kiela, D. Flava: A foundational +language and vision alignment model. ArXiv preprint, +abs/2112.04482, 2021. +URL https://arxiv.org/ +abs/2112.04482. +Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, +C. D., Ng, A., and Potts, C. Recursive deep models for +semantic compositionality over a sentiment treebank. In +Proceedings of the 2013 Conference on Empirical Meth- +ods in Natural Language Processing, pp. 1631–1642, +Seattle, Washington, USA, 2013. Association for Com- +putational Linguistics. URL https://aclanthology. +org/D13-1170. +Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., and +Artzi, Y. A corpus for reasoning about natural language +grounded in photographs. In Proceedings of the 57th +Annual Meeting of the Association for Computational +Linguistics, pp. 6418–6428, Florence, Italy, 2019a. As- +sociation for Computational Linguistics. doi: 10.18653/ +v1/P19-1644. +URL https://aclanthology.org/ +P19-1644. +Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., and +Artzi, Y. A corpus for reasoning about natural language +grounded in photographs. In Proceedings of the 57th +Annual Meeting of the Association for Computational +Linguistics, pp. 6418–6428, Florence, Italy, 2019b. As- +sociation for Computational Linguistics. doi: 10.18653/ +v1/P19-1644. +URL https://aclanthology.org/ +P19-1644. +Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., +Tian, X., Zhu, D., Tian, H., and Wu, H. Ernie: Enhanced +representation through knowledge integration. +arXiv +preprint arXiv:1904.09223, 2019. +Tan, H. and Bansal, M. LXMERT: Learning cross-modality +encoder representations from transformers. +In Pro- +ceedings of the 2019 Conference on Empirical Meth- +ods in Natural Language Processing and the 9th In- +ternational Joint Conference on Natural Language Pro- +cessing (EMNLP-IJCNLP), pp. 5100–5111, Hong Kong, +China, 2019a. Association for Computational Linguis- +tics. +doi: 10.18653/v1/D19-1514. +URL https:// +aclanthology.org/D19-1514. +Tan, H. and Bansal, M. LXMERT: Learning cross-modality +encoder representations from transformers. +In Pro- +ceedings of the 2019 Conference on Empirical Meth- +ods in Natural Language Processing and the 9th In- +ternational Joint Conference on Natural Language Pro- +cessing (EMNLP-IJCNLP), pp. 5100–5111, Hong Kong, +China, 2019b. Association for Computational Linguis- +tics. +doi: 10.18653/v1/D19-1514. +URL https:// +aclanthology.org/D19-1514. +Touvron, H., Cord, M., Douze, M., Massa, F., Sablay- +rolles, A., and Jégou, H. +Training data-efficient im- +age transformers & distillation through attention. +In +Meila, M. and Zhang, T. (eds.), Proceedings of the 38th +International Conference on Machine Learning, ICML +2021, 18-24 July 2021, Virtual Event, volume 139 of +Proceedings of Machine Learning Research, pp. 10347– +10357. PMLR, 2021. +URL http://proceedings. +mlr.press/v139/touvron21a.html. +Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., +Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, +I. +Attention is all you need. +In Guyon, I., von +Luxburg, U., Bengio, S., Wallach, H. M., Fergus, +R., Vishwanathan, S. V. N., and Garnett, R. (eds.), +Advances in Neural Information Processing Systems +30: Annual Conference on Neural Information Pro- +cessing Systems 2017, December 4-9, 2017, Long +Beach, CA, USA, pp. 5998–6008, 2017. URL https: +//proceedings.neurips.cc/paper/2017/hash/ +3f5ee243547dee91fbd053c1c4a845aa-Abstract. +html. +Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and +Bowman, S. R. GLUE: A multi-task benchmark and +analysis platform for natural language understanding. In +7th International Conference on Learning Representa- +tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. +OpenReview.net, 2019. URL https://openreview. +net/forum?id=rJ4km2R5t7. +Wang, J., Chen, D., Wu, Z., Luo, C., Zhou, L., Zhao, Y., +Xie, Y., Liu, C., Jiang, Y.-G., and Yuan, L. Omnivl: +One foundation model for image-language and video- +language tasks. arXiv preprint arXiv:2209.07526, 2022a. +Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., +Zhou, C., Zhou, J., and Yang, H. Ofa: Unifying architec- +tures, tasks, and modalities through a simple sequence- +to-sequence learning framework. In International Con- +ference on Machine Learning, pp. 23318–23340. PMLR, +2022b. +Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., +Ma, J., Zhou, C., Zhou, J., and Yang, H. +Unifying +architectures, tasks, and modalities through a simple + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +sequence-to-sequence learning framework. arXiv preprint +arXiv:2202.03052, 2022c. +Wang, W., Tran, D., and Feiszli, M. What makes training +multi-modal classification networks hard? In Proceedings +of the IEEE/CVF Conference on Computer Vision and +Pattern Recognition, pp. 12695–12705, 2020. +Wang, W., Bao, H., Dong, L., and Wei, F. Vlmo: Unified +vision-language pre-training with mixture-of-modality- +experts. ArXiv preprint, abs/2111.02358, 2021a. URL +https://arxiv.org/abs/2111.02358. +Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu, +Q., Aggarwal, K., Mohammed, O. K., Singhal, S., Som, +S., et al. Image as a foreign language: Beit pretraining +for all vision and vision-language tasks. arXiv preprint +arXiv:2208.10442, 2022d. +Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao, +Y. Simvlm: Simple visual language model pretraining +with weak supervision. CoRR, abs/2108.10904, 2021b. +Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao, +Y. Simvlm: Simple visual language model pretraining +with weak supervision. arXiv preprint, 2021c. +Warstadt, A., Singh, A., and Bowman, S. R. Neural network +acceptability judgments. Transactions of the Association +for Computational Linguistics, 7:625–641, 2019. doi: +10.1162/tacl_a_00290. URL https://aclanthology. +org/Q19-1040. +Wei, C., Fan, H., Xie, S., Wu, C.-Y., Yuille, A., and Feicht- +enhofer, C. Masked feature prediction for self-supervised +visual pre-training. In Proceedings of the IEEE/CVF Con- +ference on Computer Vision and Pattern Recognition, pp. +14668–14678, 2022a. +Wei, L., Xie, L., Zhou, W., Li, H., and Tian, Q. Mvp: +Multimodality-guided visual pre-training. arXiv preprint +arXiv:2203.05175, 2022b. +Williams, A., Nangia, N., and Bowman, S. +A broad- +coverage challenge corpus for sentence understanding +through inference. +In Proceedings of the 2018 Con- +ference of the North American Chapter of the Associ- +ation for Computational Linguistics: Human Language +Technologies, Volume 1 (Long Papers), pp. 1112–1122, +New Orleans, Louisiana, 2018. Association for Compu- +tational Linguistics. doi: 10.18653/v1/N18-1101. URL +https://aclanthology.org/N18-1101. +Xu, J., Zhou, W., Fu, Z., Zhou, H., and Li, L. A survey +on green deep learning. ArXiv preprint, abs/2111.05193, +2021. URL https://arxiv.org/abs/2111.05193. +Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, +M., and Wu, Y. Coca: Contrastive captioners are image- +text foundation models. arXiv preprint arXiv:2205.01917, +2022. +Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L. +Modeling context in referring expressions. In European +Conference on Computer Vision, pp. 69–85. Springer, +2016. +Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, +J., Hu, H., Huang, X., Li, B., Li, C., Liu, C., Liu, M., +Liu, Z., Lu, Y., Shi, Y., Wang, L., Wang, J., Xiao, B., +Xiao, Z., Yang, J., Zeng, M., Zhou, L., and Zhang, P. +Florence: A new foundation model for computer vision. +arXiv preprint, 2021. +Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al- +berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., +Yang, L., et al. Big bird: Transformers for longer se- +quences. Advances in Neural Information Processing +Systems, 33:17283–17297, 2020. +Zeng, Y., Zhang, X., and Li, H. +Multi-grained vision +language pre-training: Aligning texts with visual con- +cepts. +ArXiv preprint, abs/2111.08276, 2021. +URL +https://arxiv.org/abs/2111.08276. +Zeng, Y., Zhang, X., Li, H., Wang, J., Zhang, J., and Zhou, +W. X2-vlm: All-in-one pre-trained model for vision- +language tasks. arXiv preprint arXiv:2211.12402, 2022. +Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., +Choi, Y., and Gao, J. VinVL: Revisiting visual repre- +sentations in vision-language models. In Conference on +Computer Vision and Pattern Recognition (CVPR), 2021. +Zhang, X., Li, P., and Li, H. Ambert: A pre-trained language +model with multi-grained tokenization. arXiv preprint +arXiv:2008.11869, 2020. +Zhu, J., Zhu, X., Wang, W., Wang, X., Li, H., Wang, X., +and Dai, J. Uni-perceiver-moe: Learning sparse gen- +eralist models with conditional moes. arXiv preprint +arXiv:2206.04674, 2022. +Zhu, X., Zhu, J., Li, H., Wu, X., Wang, X., Li, H., Wang, +X., and Dai, J. Uni-perceiver: Pre-training unified archi- +tecture for generic perception for zero-shot and few-shot +tasks. arXiv preprint arXiv:2112.01522, 2021. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +A. Comparison of Recent Foundation Models +Table 8 shows an extensive comparison of recent foundation +models and X-FM on multiple axes. Previous work either (i) +perform best on uni-modal tasks (Liu et al., 2019; Peng et al., +2022) or vision-language tasks (Zeng et al., 2021; 2022); (2) +target a specific uni-modal domain along with part of vision- +and-language tasks (Wang et al., 2021a; Radford et al., 2021; +Jia et al., 2021; Wang et al., 2021c; Yu et al., 2022; Wang +et al., 2022b; Diao et al., 2022); or (3) target all domains +but cannot perform best on all the tasks (Li et al., 2021c; +Singh et al., 2021; Zhu et al., 2022). Our model, X-FM, is +a general foundation model that can perform the best for +all the understanding tasks of language, vision, and vision +language. +B. Details of Downstream Tasks +Language Understanding. +We conduct experiments on GLUE benchmark including +MNLI (Williams et al., 2018), CoLA (Warstadt et al., 2019), +MRPC (Dolan & Brockett, 2005), QQP (Iyer et al., 2017), +SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2016), +RTE (Dagan et al., 2005; Haim et al., 2006; Giampiccolo +et al., 2007; Bentivogli et al., 2009), and STS-B (Agirre +et al., 2007). We follow the practice of BERT (Devlin et al., +2019; Liu et al., 2019) and feed the input into the language +encoder, and the hidden state of the [CLS] is fed into a +new multi-class linear classifier or regression head. +Vision Understanding. +We conduct vision experiments on both fine-tuning and lin- +ear evaluation (linear eval). The linear evaluation follows +a common practice (Caron et al., 2021; He et al., 2020; +Singh et al., 2021) in self-supervised learning to evaluate +the representation quality, where the pre-trained backbone +model is frozen, and an MLP head is appended on top of it. +We choose 7 popular datasets following OmnVL (Wang +et al., 2022a): +ImageNet (Russakovsky et al., 2015), +Food101 (Bossard et al., 2014), CIFAR10 (Krizhevsky et al., +2009), CIFAR100 (Krizhevsky et al., 2009), DTD (Cimpoi +et al., 2014), Pets (Parkhi et al., 2012) and Flowers102 (Nils- +back & Zisserman, 2008). +Vision-Language Understanding. +Image-Text Retrieval We evaluate X-FM on both +MSCOCO and Flickr30K datasets. We adopt the widely +used Karpathy split (Karpathy & Li, 2015) for both datasets. +Following the previous work (Li et al., 2021a; Zeng et al., +2021; 2022), we first encode images and texts separately +and calculate s(I, T) to obtain the top-k candidates, and +then use the fusion encoder to re-rank the candidates. +Visual Question Answering The task requires the model +to predict an answer given an image and a question. We +evaluate X-FM on the VQA v2.0 dataset (Goyal et al., 2017). +Following the previous work (Zeng et al., 2021), we use +a Transformer decoder to generate answers based on the +outputs of the fusion module. The decoder network shares +the same network architecture with the fusion encoder. Note +that we use an image resolution of 768*768 for the final +result of X-FMbase, and use an image resolution of 480*480 +for X-FMlarge and X-FMbase in ablation studies for efficient +fine-tuning. +Visual Reasoning We evaluate X-FM on a widely used +benchmark NLVR2 (Suhr et al., 2019a). The task allows the +model to determine whether a text describes the relations +between two images. Following previous work (Wang et al., +2021a; Bao et al., 2022), we formulate the triplet input into +two image-text pairs, each containing the text description +and an image. We then concatenate the final output [CLS] +features of the fusion module of the two pairs to predict the +label. +C. Details of hyper parameters +Pre-training +X-FMbase is implemented with a 12-layer +language encoder, a 12-layer vision encoder, and a 12-layer +fusion encoder, 768 dimensions for hidden states, 3072 for +intermediate size, and 128 for maximum input length. X- +FMlarge is implemented with a 24-layer language encoder, a +24-layer vision encoder, and a 12-layer fusion encoder, 1024 +dimensions for hidden states, 4096 for intermediate size, and +128 for maximum input length. We initialize the language +encoder with RoBERTa and the vision encoder with BEiTv2. +The weight decay is set to 0.01 with β1 = 0.9, β2 = 0.98. +The learning rate is 1e-4 with a warm-up period for the first +2500 steps and then linearly decayed to 0. In each batch, +there are 3072 image-text pairs, 3072 images, and 8192 text- +only sentences. We use center-crop to resize each image +to the size of 224×224. The default settings are shown in +Table 9. +Fine-tuning +The learning rate is ∈ {1e-5, 2e-5, 5e-5} and +our model is optimized by AdamW. Because the image +resolution differs between pre-training and fine-tuning, the +position parameters are adapted using linear interpolation. +For all downstream tasks, we apply random resize crops +and horizontal flips augmentation during training. The de- +fault settings for text classification, image classification and +vision-language understanding are shown in Tables 10, 11, +12 and 13, respectively. Note that the resolution for VQA is +different as described in Section B. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +Methods +Multimodal data +Pretraining Objectives +Fusion Arch. +Target Modalities +public +dataset(s) +size +Contr. +ITM +BBP +(M/P)LM +Unimodal +ST +CT +MT +V +CV&L +MV&L +L +RoBERTa (Liu et al., 2019) +– +– +– +– +– +– +– +MLM +– +– +– +– +– +– +� +BEiTv2 (Peng et al., 2022) +– +– +– +– +– +– +– +MIM +– +– +– +� +– +– +– +X-VLM (Zeng et al., 2021; 2022) +� +Combination +5M +� +� +� +MLM +– +– +� +– +– +� +� +– +VLMo (Wang et al., 2021a) +� +Combination +5M +� +� +– +MLM +MLM+MIM +– +– +� +– +� +� +– +CLIP (Radford et al., 2021) +� +WebImageText +400M +� +– +– +– +– +– +– +– +� +� +– +– +ALIGN (Jia et al., 2021) +� +JFT +1.8B +� +– +– +– +– +– +– +– +� +� +– +– +SimVLM (Wang et al., 2021c) +� +JFT +1.8B +– +– +– +PrefixLM +PrefixLM +� +– +– +∗ +– +� +� +CoCa (Yu et al., 2022) +� +JFT +4.8B +� +– +– +LM +– +� +– +– +� +� +� +– +UNIMO-2 (Li et al., 2021c) +� +Combination +5M +– +� +– +MLM +VCL +� +– +– +� +� +� +� +OFA (Wang et al., 2022b) +� +Combination +15M +– +– +– +LM +LM +� +– +– +∗ +– +� +� +DaVinci (Diao et al., 2022) +� +Combination +46M +– +– +– +PrefixLM + PrefixIM +PrefixLM +� +– +– +� +– +� +� +FLAVA (Singh et al., 2021) +� +Combination +70M +� +� +– +MLM +MLM+MIM +� +– +– +� +� +� +� +Uni-Perceiver-MoE (Zhu et al., 2022) +� +Combination +116M +– +� +– +LM+MLM +LM+MLM+Classify. +� +– +– +� +� +� +� +X-FM +� +Combination +5M +� +� +� +MLM+MIM +MLM+MIM +– +� +– +� +� +� +� +Super-Large Models +Flamingo (Alayrac et al., 2022) +� +Combination +2.2B +– +– +– +LM +– +� +– +– +– +� +� +– +BEiT-v3 (Wang et al., 2022d) +� +Combination +21M +– +– +– +MLM +MLM+MIM +– +– +� +∗ +� +� +– +PaLI (Chen et al., 2022) +� +WebImageText +41B +– +– +– +LM +– +� +– +– +� +� +� +� +Table 8: Comparison of recent foundation models in different modalities. Contr. indicates contrastive learning. ITM is +short for image-text matching. BBP represents boundary box prediction. (M/P)LM means image-conditioned (masked/prefix) +language modeling. V, CV&L, MV&L and L stand for vision tasks, cross-modal retrieval tasks, multi-modal fusion tasks +and language tasks respectively. ST, CT and MT are abbreviations for single Transformer, cross-attention Transformer and +multiway Transformer. VCL stands for visual contrastive learning. ∗ means the modality is partially targeted (SimVLM +and OFA include ImageNet.). Giant models with over 1B parameters (e.g. BEiT-3) are in grey since they are not directly +comparable with other models. +config +value +optimizer +AdamW +learning rate +1e-4 +weight decay +0.01 +optimizer momentum +β1, β2=0.9, 0.999 +language batch size +8192 +vision batch size +3072 +vision-language batch size +3072 +learning rate schedule +linear decay +warmup steps +2500 +training steps +200k +augmentation +RandomResizedCrop +image res +224*224 +patch size +16 +text length for MLM +128 +text length for IMLM +30 +Table 9: Pre-training setting. +config +value +optimizer +AdamW +learning rate +{1e-5, 2e-5, 5e-5} +weight decay +0.0 +optimizer momentum +β1, β2=0.9, 0.999 +batch size +{16, 32, 64} +learning rate schedule +linear decay +warmup ratio +0.0 +training epochs +{5, 10, 20} +Table 10: Text classification: GLUE setting. +config +value +optimizer +AdamW +learning rate +[2e-5, 4e-5] +weight decay +0.01 +optimizer momentum +β1, β2=0.9, 0.999 +batch size +[256, 2048] +learning rate schedule +linear decay +warmup rate +0.1 +training epochs +100 +augmentation +RandomResizedCrop +image res +224*224 +patch size +16 +Table 11: Image classification: Linear probing setting. + +Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks +config +value +optimizer +AdamW +learning rate +4e-5 +minimal learning rate +1e-7 +weight decay +0.01 +optimizer momentum +β1, β2=0.9, 0.999 +batch size +1024 +learning rate schedule +linear decay +warmup rate +0.1 +training epochs +100 +augmentation +RandomResizedCrop +image res +224*224 +patch size +16 +label smoothing +0.1 +mixup prob. +1.0 +cutmix prob. +1.0 +Table 12: ImageNet classification: Fine-tuning setting. +config +value +optimizer +AdamW +learning rate +{1e-5, 2e-5, 5e-5} +weight decay +0.01 +optimizer momentum +β1, β2=0.9, 0.999 +batch size +{64, 192, 512} +learning rate schedule +linear decay +warmup rate +0.1 +training epochs +{10, 15, 20} +augmentation +RandomResizedCrop +image res +384*384 +patch size +16 +Table 13: Vision-Language understanding: fine-tuning set- +ting. + diff --git a/2dE4T4oBgHgl3EQfagyV/content/tmp_files/load_file.txt b/2dE4T4oBgHgl3EQfagyV/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..04824be0516b063ddab7584df56e02cac8efc9ec --- /dev/null +++ b/2dE4T4oBgHgl3EQfagyV/content/tmp_files/load_file.txt @@ -0,0 +1,2701 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf,len=2700 +page_content='Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks Xinsong Zhang 1 Yan Zeng 1 Jipeng Zhang 2 Hang Li 1 Abstract Foundation models or pre-trained models have substantially improved the performance of various language, vision, and vision-language understand- ing tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' However, existing foundation models can only perform the best in one type of tasks, namely language, vision, or vision-language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' It is still an open question whether it is possible to con- struct a foundation model performing the best for all the understanding tasks, which we call a gen- eral foundation model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' In this paper, we propose a new general foundation model, X-FM (the X- Foundation Model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' X-FM has one language en- coder, one vision encoder, and one fusion encoder, as well as a new training method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' The training method includes two new techniques for learning X-FM from text, image, and image-text pair data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' One is to stop gradients from the vision-language training when learning the language encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' The other is to leverage the vision-language training to guide the learning of the vision encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Exten- sive experiments on benchmark datasets show that X-FM can significantly outperform existing gen- eral foundation models and perform better than or comparable to existing foundation models specif- ically for language, vision, or vision-language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Introduction With the enormous power of foundation models, also known as pre-trained models, remarkable performance gains have recently been achieved in a variety of understanding tasks in natural language processing (NLP), computer vision (CV), and other fields (Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Lewis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Raffel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Doso- vitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Bao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Lu 1ByteDance AI Lab 2The Hong Kong University of Science and Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dE4T4oBgHgl3EQfagyV/content/2301.05065v1.pdf'} +page_content=' Correspondence to: Xinsong Zhang 0 +(1.1) +frequently appeared in the simulation of the shallow water waves, see e.g., [1], where α, γ and ci (i = 0, 1, 2, 3) are +real constants; u denotes a horizontal velocity field with the independent spatial variable x and temporal variable t. +A typical such equation (1.1) with α2 = c0 = c2 = c3 = 0, c1 = 2, γ = −2 is the KdV equation +ut − 4uux − 2uxxx = 0, +x ∈ R, t > 0, +(1.2) +which describes the unidirectional propagation of waves at the free surface of shallow water under the influence +of gravity. The first four invariants of (1.2) are respectively as (see e.g., [2], although there is a minor typo in the +coefficient of the fourth invariant, it does not affect the reading of this classic review) +M1 = +� +R +udx, +M2 = +� +R +u2dx, +M3 = +� +R +� +u2 +x − 2 +3u3� +dx, +M4 = +� +R +� +u2 +xx − 10 +3 uu2 +x + 5 +9u4� +dx. +Taking α2 = c3 = 1, γ = c0 = 0, c1 = − 3 +2, c2 = +1 +2, we have another example called the Camassa–Holm +equation [3] +ut − uxxt + 3uux = 2uxuxx + uuxxx, +x ∈ R, t > 0, +(1.3) +which models the unidirectional propagation of shallow water waves over a flat bottom. The first three invariants +are listed as follows +E1 = +� +R +(u − uxx)dx, +E2 = 1 +2 +� +R +(u2 + u2 +x)dx, +E3 = 1 +2 +� +R +u(u2 + u2 +x)dx. +The third example by assigning α2 = c2 = c3 = 1, γ = c0 = 0, c1 = −2 is called the Degasperis–Procesi +equation +ut − uxxt + 4uux = 3uxuxx + uuxxx, +x ∈ R, t > 0, +(1.4) +∗E-mail address: zhangqifeng0504@gmail.com (Q. Zhang), tyan0320@mails.zstu.edu.cn (Tong Yan), gaogh@njupt.edu.cn (G. Gao) +Preprint submitted to Elsevier +January 4, 2023 + +which can be regarded as a model for nonlinear shallow water dynamics [4]. The frequently discussed invariants +are +H1 = +� +R +(u − uxx)dx, +H2 = +� +R +(u − uxx)vdx, +H3 = +� +R +u3dx, +where 4v − vxx = u. +Up to now, there have been thousands of papers focusing on the theoretical and numerical studies on these three +equations. It is worth mentioning that the invariant-preserving property is a key index of the success for numerical +methods. However, high-order invariants are usually difficult to preserve numerically. Liu et al. also pointed out “it +appears a rather difficult task to preserve all three conservation laws” in [5]. In this work, higher-order invariants of +these equations will be re-derived in view of the energy method, which may be possible to provide some thoughts +for invariant-preserving numerical methods. Actually, the energy method originated from conservation laws in +physics was first proposed in 1928 by Courant, Friedrichs and Lewy [6]. From then on, it has been widely applied +to the mathematical and numerical analysis of nonlinear evolution equations. We trust the readers with [7] instead +of a long list of references to relevant works. +The rest of the paper is arranged as follows. +In Section 2, combining the energy method and a skew- +adjoint operator, we show the high-order invariants for the KdV equation, the Camassa–Holm equation and the +Degasperis–Procesi equation, respectively. Then we list several applications for seeking some high-order invariants +of other types of the shallow water wave equations in Section 3. +2. Main results +In what follows, we directly show that Mi (i = 1, 2, 3, 4), Ei (i = 1, 2, 3) and Hi (i = 1, 2, 3) are invariants of +(1.2), (1.3) and (1.4) subjected to the periodic boundary conditions based on the energy method, respectively. +2.1. Invariants of the KdV equation +Proof: (I) Multiplying by 1, u and (u2 + uxx), respectively, with (1.2), we have Mi (i = 1, 2, 3). In what follows, we +show the fourth invariant M4 of the KdV equation by the energy method. +Multiplying both sides of (1.2) by 2uxxxx + 10 +3 u2 +x + 20 +3 uuxx + 20 +9 u3 and integrating the result, we have +0 = +� +R +� +2uxxxx + 10 +3 u2 +x + 20 +3 uuxx + 20 +9 u3� +· utdx +− +� +R +� +2uxxxx + 10 +3 u2 +x + 20 +3 uuxx + 20 +9 u3� +· (4uux + 2uxxx)dx += +� +R +� +2uxxuxxt − 10 +3 (utu2 +x + 2uuxuxt) + 20 +9 u3ut +� +dx +− +� +R +� +2uxxxx + 10 +3 u2 +x + 20 +3 uuxx + 20 +9 u3� +· (4uux + 2uxxx)dx += d +dt M4 − 8 +� +R +uuxuxxxxdx − 40 +3 +� +R +uu3 +xdx − 80 +3 +� +R +u2uxuxxdx − 80 +9 +� +R +u4uxdx +− 4 +� +R +uxxxuxxxxdx − 20 +3 +� +R +uxxxu2 +xdx − 40 +3 +� +R +uuxxuxxxdx − 40 +9 +� +R +u3uxxxdx. +(2.1) +It remains to check that the sum of all the integral terms in the above equation is zero. Calculating each term in +(2.1) using the integration by parts, we have +− 8 +� +R +uuxuxxxxdx = −20 +� +R +uxu2 +xxdx, +(2.2) +− 80 +3 +� +R +u2uxuxxdx = 80 +3 +� +R +uu3 +xdx, +(2.3) +− 80 +9 +� +R +u4uxdx = 0, +(2.4) +− 4 +� +R +uxxxuxxxxdx = 0, +(2.5) +2 + +− 20 +3 +� +R +uxxxu2 +xdx = 40 +3 +� +R +uxu2 +xxdx, +(2.6) +− 40 +3 +� +R +uuxxuxxxdx = 20 +3 +� +R +uxu2 +xxdx, +(2.7) +− 40 +9 +� +R +u3uxxxdx = −40 +3 +� +R +uu3 +xdx. +(2.8) +Substituting (2.2)–(2.8) into (2.1), we have d +dt M4 = 0, which completes the proof. +Remark 1. Suppose the general form of the KdV equation is +ut − auux − buxxx = 0, +and the corresponding high-order invariant +M(t) = +� +R +(u2 +xx − Auu2 +x + Bu4)dx. +Using the same method above, we could derive +� 5a = 3Ab, +12Bb = Aa, +which can be rewritten as +a +b = 3A +5 = 12B +A . +Therefore, it follows +A2 = 20B. +For instance, when a = −6, b = −1, we have A = 10, B = 5, which deduces to the KdV equation as +ut + 6uux + uxxx = 0, +with a fourth-order invariant +M(t) = +� +R +(u2 +xx − 10uu2 +x + 5u4)dx. +2.2. Invariants of the Camassa–Holm equation +Proof: Multiplying by 1 and u on both sides of (1.3), respectively, and then integrating the results, which implies +E1 and E2 through the integration by parts. Below, we prove E3 by the energy method. Firstly, noticing that (1.3) +can be written with a skew-adjoint operator (1 − ∂xx)−1 as +ut + uux + ∂x(1 − ∂xx)−1� +u2 + 1 +2u2 +x +� += 0. +Let g = (1 − ∂xx)−1� +u2 + 1 +2u2 +x +� +. Then we see from the above equation that (1.3) is equivalent to + +ut + uux + gx = 0, +(2.9) +g − gxx = u2 + 1 +2u2 +x. +(2.10) +Multiplying (2.9) by 3u2 + u2 +x − 2(uux)x and integrating the result on both sides, we have +0 = +� +R +(ut + uux + gx) · (3u2 + u2 +x − 2(uux)x)dx += +� +R +ut · (3u2 + u2 +x − 2(uux)x)dx + +� +R +(uux + gx) · (3u2 + u2 +x − 2(uux)x)dx +≜ A + B. +(2.11) +3 + +Calculating each term derives that +A = +� +R +ut · (3u2 + u2 +x − 2(uux)x)dx += +� +R +ut · (3u2 + u2 +x)dx + +� +R +2uux · uxtdx += +� +R +ut · 3u2dx + +� +R +ut · u2 +xdx + +� +R +u · (u2 +x)tdx += +� +R +(u3)tdx + +� +R +(u · u2 +x)tdx += d +dt +� +R +(u3 + uu2 +x)dx +(2.12) +and +B = +� +R +(uux + gx) · (3u2 + u2 +x − 2(uux)x)dx += +� +R +u · u3 +xdx + +� +R +gx · (3u2 + u2 +x)dx − +� +R +gx · 2(uux)xdx += +� +R +u · u3 +xdx + +� +R +gx · (3u2 + u2 +x)dx + 2 +� +R +gxx · uuxdx += +� +R +u · u3 +xdx + +� +R +gx · (3u2 + u2 +x)dx + 2 +� +R +(g − u2 − 1 +2u2 +x) · uuxdx += +� +R +gx · (3u2 + u2 +x)dx + 2 +� +R +g · uuxdx += +� +R +gx · (3u2 + u2 +x)dx − +� +R +gx · u2dx += +� +R +gx · (2u2 + u2 +x)dx += 2 +� +R +gx · (g − gxx)dx = 0. +(2.13) +Substituting (2.12) and (2.13) into (2.11), we have +d +dt +� +R +(u3 + uu2 +x)dx = 0, +which implies E3. +2.3. Invariants of the Degasperis–Procesi equation +Proof: Integrating on both sides of (1.4), it easily obtains H1. Then we show invariants H2 and H3 of (1.4), +respectively. Firstly let g = (1 − ∂xx)−1� 3 +2u2� +, then (1.4) is equivalent to + +ut + uux + gx = 0, +(2.14) +g − gxx = 3 +2u2. +(2.15) +Multiplying by 2u − 6v on both sides of (2.14) and then integrating the result, we have +0 = +� +R +(ut + uux + gx) · (2u − 6v)dx += +� +R +ut · (2u − 6v)dx + +� +R +uux · (2u − 6v)dx + +� +R +gx · (2u − 6v)dx +≜ C + D. +(2.16) +4 + +The each term in the above identity is estimated as +C = +� +R +ut · (2u − 6v)dx = 2 +� +R +ut · udx − 6 +� +R +ut · vdx = 2 +� +R +ut · udx − 6 +� +R +(4vt − vxxt) · vdx += 2 +� +R +ut · udx − 24 +� +R +vt · vdx − 6 +� +R +vxt · vxdx = d +dt +� +R +(u2 − 12v2 − 3v2 +x)dx += d +dt +� +R +� +u2 − 3(4v − vxx) · v +� +dx = d +dt +� +R +(u2 − 3uv)dx = d +dt +� +R +u · (u − 3v)dx += d +dt +� +R +u · (v − vxx)dx = d +dt +� +R +(u − uxx) · vdx +(2.17) +and +D = +� +R +uux · (2u − 6v)dx + +� +R +gx · (2u − 6v)dx += −6 +� +R +uux · vdx + +� +R +gx · (2u − 6v)dx += 3 +� +R +u2 · vxdx + +� +R +gx · (2u − 6v)dx += 2 +� +R +(g − gxx) · vxdx + +� +R +gx · (2u − 6v)dx += 2 +� +R +g · vxdx − 2 +� +R +gxx · vxdx + +� +R +gx · (2v − 2vxx)dx += 2 +� +R +g · vxdx + 2 +� +R +gx · vdx − 2 +� +R +gxx · vxdx − 2 +� +R +gx · vxxdx += 2 +� +R +(gv)xdx − 2 +� +R +(gx · vx)xdx = 0. +(2.18) +Substituting (2.17) and (2.18) into (2.16), we have +d +dt +� +R +(u − uxx) · vdx = 0, +which implies H2. +Finally, we show H3. Multiplying (2.14) on both sides by u2 and integrating the result, it yields by noting (2.15) +0 = +� +R +(ut + uux + gx) · u2dx += +� +R +ut · u2dx + +� +R +u3 · uxdx + +� +R +gx · u2dx += +� +R +�1 +3u3� +tdx + 2 +3 +� +gx · (g − gxx)dx += 1 +3 +d +dt +� +R +u3dx, +which implies the invariant H3. +3. Applications to other periodic nonlinear dispersive waves +3.1. Benjamin-Bona-Mahony equation +Consider the Benjamin-Bona-Mahony equation [8] of the form +ut − uxxt + ux + εuux = 0, +x ∈ R. +(3.1) +5 + +It can be written as +ut + ∂x(1 − ∂xx)−1� +u + ε +2u2� += 0, +x ∈ R. +Let g = (1 − ∂xx)−1� +u + ε +2u2� +, then the equation (3.1) turns out to be + +ut + gx = 0, +(3.2) +g − gxx = u + ε +2u2. +(3.3) +Multiplying both sides of (3.2) by u2 and integrating the result, and then using (3.3), we have +0 = +� +R +(ut + gx) · u2dx = +� +R +ut · u2dx + +� +R +gx · u2dx += +� +R +ut · u2dx + 2 +ε +� +R +gx · (g − gxx − u)dx = +� +R +ut · u2dx − 2 +ε +� +R +gx · udx += +� +R +ut · u2dx + 2 +ε +� +R +ut · udx = d +dt +� +R +�1 +3u3 + 1 +εu2� +dx, +which indicates +� +R +1 +3 +� +u3 + 1 +εu2� +dx +is a three-order invariant for (3.1). +3.2. Regularized long wave equation +Consider the regularized long wave equation [9] of the form +ut − µuxxt + ux + upux = 0, +(3.4) +where µ > 0 is a positive constant. When p = 2, it is called modified regularized long wave equation; when p ⩾ 3, +it is called generalized regularized long wave equation. Similar to the foregoing argument, (3.4) can be written as +an equivalent form of + +ut + gx = 0, +(3.5) +g − µgxx = u + +1 +p + 1up+1. +(3.6) +Multiplying both sides of (3.5) by up+1, integrating the result, and then using (3.6), we have +0 = +� +R +(ut + gx) · up+1dx = +� +R +ut · up+1dx + +� +R +gx · up+1dx += +� +R +ut · up+1dx + (p + 1) +� +R +gx · (g − µgxx − u)dx += +� +R +ut · up+1dx − (p + 1) +� +R +gx · udx += +� +R +ut · up+1dx + (p + 1) +� +R +ut · udx += d +dt +� +R +� +1 +p + 2up+2 + p + 1 +2 +u2� +dx, +which indicates +� +R +� +1 +p + 2up+2 + p + 1 +2 +u2� +dx +is a high-order invariant for (3.4). This corrects an invariant I3 in Example 4 appeared in [10] (pp. 492). +6 + +3.3. Rosenau equation +Consider the Rosenau equation [11] +ut + uxxxxt + ux + uux = 0, +(3.7) +which is equivalent to + +ut + gx = 0, +(3.8) +g + gxxxx = u + 1 +2u2. +(3.9) +Multiplying both sides of (3.8) by u2 and noticing (3.9), similar to the argument in the above, we have a third-order +invariant for (3.7) of the form +� +R +�1 +3u3 + u2� +dx. +Acknowledgement +We appreciate Prof. Zhi-zhong Sun for many useful discussions. This work is dedicated to Prof. Zhi-zhong Sun +on the occasion of his 60th birthday. The work is supported by Natural Science Foundation of Zhejiang Province +(Grant No. LZ23A010007). +References +References +[1] J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal., 241 (2006) +457–485. +[2] T. Tao, Low-regularity global solutions to nonlinear dispersive equations. Surveys in analysis and operator theory (Canberra, 2001), +19–48, Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, (2002). +[3] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71 (1993) 1661–1664. +[4] A. Degasperis, M. Procesi, Asymptotic integrability, in: A. Degasperis, G. Gaeta (Eds.). Symmetry and Perturbation Theory, World +Scientific, Singapore, (1999) 23–37. +[5] H. Liu, Y. Xing, An invariant preserving discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Sci. Comput., 38 +(2016) A1919–A1934. +[6] R. Courant, K.O. Friedrichs, H. Lewy, ¨Uber die partiellen Differenzenglei-chungen der mathematischen physik, Math. Ann., 100 (1928) +32–74. +[7] Z. Sun. Finite Difference Methods for Nonlinear Evolution Equations, Science Press, Beijing, (2018). +[8] L.A. Medeiros, G.P. Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation. SIAM J. Math. +Anal., 8(5) (1977) 792–799. +[9] C.E. Seyler, D.L. Fenstermacher, A symmetric regularized-long-wave equation. The Physics of Fluids, 27(4) (1984) 4–7. +[10] A. Ghiloufi, K. Omrani, New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear +dispersive waves. Numer. Methods Partial Differential Equation, 34 (2018) 451–500. +[11] M.A. Park, On the Rosenau equation. Math. Appl. Comput., 9 (1990) 145–152. +7 + diff --git a/49AzT4oBgHgl3EQfEPqD/content/tmp_files/load_file.txt b/49AzT4oBgHgl3EQfEPqD/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5ac7ec83eaf2bab2c8f35119955a00dac4131974 --- /dev/null +++ b/49AzT4oBgHgl3EQfEPqD/content/tmp_files/load_file.txt @@ -0,0 +1,340 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf,len=339 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='00990v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='NA] 3 Jan 2023 The energy method for high-order invariants in shallow water wave equations Qifeng Zhanga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Tong Yana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Guang-hua Gaob aDepartment of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Zhejiang Sci-Tech University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Hangzhou,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 310018,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' China bDepartment of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Nanjing University of Posts and Telecommunications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Nanjing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 210096,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' China Abstract Third order dispersive evolution equations are widely adopted to model one-dimensional long waves and have extensive applications in fluid mechanics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' plasma physics and nonlinear optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Among them are the KdV equation, the Camassa–Holm equation and the Degasperis–Procesi equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' They share many common features such as complete integrability, Lax pairs and bi-Hamiltonian structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' In this paper we revisit high-order invariants for these three types of shallow water wave equations by the energy method in combination of a skew-adjoint operator (1 − ∂xx)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Several applications to seek high-order invariants of the Benjamin-Bona-Mahony equation, the regularized long wave equation and the Rosenau equation are also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Keywords: Energy method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' High-order invariant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Shallow water wave equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Introduction A family of third order dispersive evolution equations of the form ut − α2uxxt + γuxxx + c0ux = (c1u2 + c2u2 x + c3uuxx)x, x ∈ R, t > 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1) frequently appeared in the simulation of the shallow water waves, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', [1], where α, γ and ci (i = 0, 1, 2, 3) are real constants;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' u denotes a horizontal velocity field with the independent spatial variable x and temporal variable t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' A typical such equation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1) with α2 = c0 = c2 = c3 = 0, c1 = 2, γ = −2 is the KdV equation ut − 4uux − 2uxxx = 0, x ∈ R, t > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2) which describes the unidirectional propagation of waves at the free surface of shallow water under the influence of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The first four invariants of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2) are respectively as (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', [2], although there is a minor typo in the coefficient of the fourth invariant, it does not affect the reading of this classic review) M1 = � R udx, M2 = � R u2dx, M3 = � R � u2 x − 2 3u3� dx, M4 = � R � u2 xx − 10 3 uu2 x + 5 9u4� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Taking α2 = c3 = 1, γ = c0 = 0, c1 = − 3 2, c2 = 1 2, we have another example called the Camassa–Holm equation [3] ut − uxxt + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3) which models the unidirectional propagation of shallow water waves over a flat bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The first three invariants are listed as follows E1 = � R (u − uxx)dx, E2 = 1 2 � R (u2 + u2 x)dx, E3 = 1 2 � R u(u2 + u2 x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The third example by assigning α2 = c2 = c3 = 1, γ = c0 = 0, c1 = −2 is called the Degasperis–Procesi equation ut − uxxt + 4uux = 3uxuxx + uuxxx, x ∈ R, t > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4) ∗E-mail address: zhangqifeng0504@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='com (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Zhang), tyan0320@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='zstu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='cn (Tong Yan), gaogh@njupt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='cn (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Gao) Preprint submitted to Elsevier January 4, 2023 which can be regarded as a model for nonlinear shallow water dynamics [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The frequently discussed invariants are H1 = � R (u − uxx)dx, H2 = � R (u − uxx)vdx, H3 = � R u3dx, where 4v − vxx = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Up to now, there have been thousands of papers focusing on the theoretical and numerical studies on these three equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' It is worth mentioning that the invariant-preserving property is a key index of the success for numerical methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' However, high-order invariants are usually difficult to preserve numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' also pointed out “it appears a rather difficult task to preserve all three conservation laws” in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' In this work, higher-order invariants of these equations will be re-derived in view of the energy method, which may be possible to provide some thoughts for invariant-preserving numerical methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Actually, the energy method originated from conservation laws in physics was first proposed in 1928 by Courant, Friedrichs and Lewy [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' From then on, it has been widely applied to the mathematical and numerical analysis of nonlinear evolution equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' We trust the readers with [7] instead of a long list of references to relevant works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The rest of the paper is arranged as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' In Section 2, combining the energy method and a skew- adjoint operator, we show the high-order invariants for the KdV equation, the Camassa–Holm equation and the Degasperis–Procesi equation, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Then we list several applications for seeking some high-order invariants of other types of the shallow water wave equations in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Main results In what follows, we directly show that Mi (i = 1, 2, 3, 4), Ei (i = 1, 2, 3) and Hi (i = 1, 2, 3) are invariants of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4) subjected to the periodic boundary conditions based on the energy method, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Invariants of the KdV equation Proof: (I) Multiplying by 1, u and (u2 + uxx), respectively, with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2), we have Mi (i = 1, 2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' In what follows, we show the fourth invariant M4 of the KdV equation by the energy method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Multiplying both sides of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2) by 2uxxxx + 10 3 u2 x + 20 3 uuxx + 20 9 u3 and integrating the result,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' we have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='0 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2uxxxx + 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='x + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 uuxx + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9 u3� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='utdx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2uxxxx + 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='x + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 uuxx + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9 u3� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='(4uux + 2uxxx)dx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2uxxuxxt − 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 (utu2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='x + 2uuxuxt) + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9 u3ut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='dx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2uxxxx + 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='x + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 uuxx + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9 u3� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='(4uux + 2uxxx)dx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='= d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='dt M4 − 8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='uuxuxxxxdx − 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='uu3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='xdx − 80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='u2uxuxxdx − 80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='u4uxdx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='− 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='uxxxuxxxxdx − 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='uxxxu2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='xdx − 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='uuxxuxxxdx − 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='u3uxxxdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1) It remains to check that the sum of all the integral terms in the above equation is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Calculating each term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1) using the integration by parts, we have − 8 � R uuxuxxxxdx = −20 � R uxu2 xxdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2) − 80 3 � R u2uxuxxdx = 80 3 � R uu3 xdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3) − 80 9 � R u4uxdx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4) − 4 � R uxxxuxxxxdx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='5) 2 − 20 3 � R uxxxu2 xdx = 40 3 � R uxu2 xxdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='6) − 40 3 � R uuxxuxxxdx = 20 3 � R uxu2 xxdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='7) − 40 9 � R u3uxxxdx = −40 3 � R uu3 xdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='8) Substituting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2)–(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='8) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1), we have d dt M4 = 0, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Suppose the general form of the KdV equation is ut − auux − buxxx = 0, and the corresponding high-order invariant M(t) = � R (u2 xx − Auu2 x + Bu4)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Using the same method above, we could derive � 5a = 3Ab, 12Bb = Aa, which can be rewritten as a b = 3A 5 = 12B A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Therefore, it follows A2 = 20B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' For instance, when a = −6, b = −1, we have A = 10, B = 5, which deduces to the KdV equation as ut + 6uux + uxxx = 0, with a fourth-order invariant M(t) = � R (u2 xx − 10uu2 x + 5u4)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Invariants of the Camassa–Holm equation Proof: Multiplying by 1 and u on both sides of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3), respectively, and then integrating the results, which implies E1 and E2 through the integration by parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Below, we prove E3 by the energy method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Firstly, noticing that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3) can be written with a skew-adjoint operator (1 − ∂xx)−1 as ut + uux + ∂x(1 − ∂xx)−1� u2 + 1 2u2 x � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Let g = (1 − ∂xx)−1� u2 + 1 2u2 x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Then we see from the above equation that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3) is equivalent to \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + uux + gx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9) g − gxx = u2 + 1 2u2 x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='10) Multiplying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9) by 3u2 + u2 x − 2(uux)x and integrating the result on both sides, we have 0 = � R (ut + uux + gx) · (3u2 + u2 x − 2(uux)x)dx = � R ut · (3u2 + u2 x − 2(uux)x)dx + � R (uux + gx) · (3u2 + u2 x − 2(uux)x)dx ≜ A + B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='11) 3 Calculating each term derives that A = � R ut · (3u2 + u2 x − 2(uux)x)dx = � R ut · (3u2 + u2 x)dx + � R 2uux · uxtdx = � R ut · 3u2dx + � R ut · u2 xdx + � R u · (u2 x)tdx = � R (u3)tdx + � R (u · u2 x)tdx = d dt � R (u3 + uu2 x)dx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='12) and B = � R (uux + gx) · (3u2 + u2 x − 2(uux)x)dx = � R u · u3 xdx + � R gx · (3u2 + u2 x)dx − � R gx · 2(uux)xdx = � R u · u3 xdx + � R gx · (3u2 + u2 x)dx + 2 � R gxx · uuxdx = � R u · u3 xdx + � R gx · (3u2 + u2 x)dx + 2 � R (g − u2 − 1 2u2 x) · uuxdx = � R gx · (3u2 + u2 x)dx + 2 � R g · uuxdx = � R gx · (3u2 + u2 x)dx − � R gx · u2dx = � R gx · (2u2 + u2 x)dx = 2 � R gx · (g − gxx)dx = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='13) Substituting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='12) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='13) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='11), we have d dt � R (u3 + uu2 x)dx = 0, which implies E3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Invariants of the Degasperis–Procesi equation Proof: Integrating on both sides of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4), it easily obtains H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Then we show invariants H2 and H3 of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Firstly let g = (1 − ∂xx)−1� 3 2u2� , then (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4) is equivalent to \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + uux + gx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='14) g − gxx = 3 2u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='15) Multiplying by 2u − 6v on both sides of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='14) and then integrating the result, we have 0 = � R (ut + uux + gx) · (2u − 6v)dx = � R ut · (2u − 6v)dx + � R uux · (2u − 6v)dx + � R gx · (2u − 6v)dx ≜ C + D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='16) 4 The each term in the above identity is estimated as C = � R ut · (2u − 6v)dx = 2 � R ut · udx − 6 � R ut · vdx = 2 � R ut · udx − 6 � R (4vt − vxxt) · vdx = 2 � R ut · udx − 24 � R vt · vdx − 6 � R vxt · vxdx = d dt � R (u2 − 12v2 − 3v2 x)dx = d dt � R � u2 − 3(4v − vxx) · v � dx = d dt � R (u2 − 3uv)dx = d dt � R u · (u − 3v)dx = d dt � R u · (v − vxx)dx = d dt � R (u − uxx) · vdx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='17) and D = � R uux · (2u − 6v)dx + � R gx · (2u − 6v)dx = −6 � R uux · vdx + � R gx · (2u − 6v)dx = 3 � R u2 · vxdx + � R gx · (2u − 6v)dx = 2 � R (g − gxx) · vxdx + � R gx · (2u − 6v)dx = 2 � R g · vxdx − 2 � R gxx · vxdx + � R gx · (2v − 2vxx)dx = 2 � R g · vxdx + 2 � R gx · vdx − 2 � R gxx · vxdx − 2 � R gx · vxxdx = 2 � R (gv)xdx − 2 � R (gx · vx)xdx = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='18) Substituting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='17) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='18) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='16), we have d dt � R (u − uxx) · vdx = 0, which implies H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Finally, we show H3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Multiplying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='14) on both sides by u2 and integrating the result, it yields by noting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='15) 0 = � R (ut + uux + gx) · u2dx = � R ut · u2dx + � R u3 · uxdx + � R gx · u2dx = � R �1 3u3� tdx + 2 3 � gx · (g − gxx)dx = 1 3 d dt � R u3dx, which implies the invariant H3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Applications to other periodic nonlinear dispersive waves 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Benjamin-Bona-Mahony equation Consider the Benjamin-Bona-Mahony equation [8] of the form ut − uxxt + ux + εuux = 0, x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1) 5 It can be written as ut + ∂x(1 − ∂xx)−1� u + ε 2u2� = 0, x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Let g = (1 − ∂xx)−1� u + ε 2u2� , then the equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1) turns out to be \uf8f1\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f3 ut + gx = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2) g − gxx = u + ε 2u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3) Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2) by u2 and integrating the result, and then using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3), we have 0 = � R (ut + gx) · u2dx = � R ut · u2dx + � R gx · u2dx = � R ut · u2dx + 2 ε � R gx · (g − gxx − u)dx = � R ut · u2dx − 2 ε � R gx · udx = � R ut · u2dx + 2 ε � R ut · udx = d dt � R �1 3u3 + 1 εu2� dx, which indicates � R 1 3 � u3 + 1 εu2� dx is a three-order invariant for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Regularized long wave equation Consider the regularized long wave equation [9] of the form ut − µuxxt + ux + upux = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4) where µ > 0 is a positive constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' When p = 2, it is called modified regularized long wave equation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' when p ⩾ 3, it is called generalized regularized long wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Similar to the foregoing argument, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4) can be written as an equivalent form of \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + gx = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='5) g − µgxx = u + 1 p + 1up+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='6) Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='5) by up+1, integrating the result, and then using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='6), we have 0 = � R (ut + gx) · up+1dx = � R ut · up+1dx + � R gx · up+1dx = � R ut · up+1dx + (p + 1) � R gx · (g − µgxx − u)dx = � R ut · up+1dx − (p + 1) � R gx · udx = � R ut · up+1dx + (p + 1) � R ut · udx = d dt � R � 1 p + 2up+2 + p + 1 2 u2� dx, which indicates � R � 1 p + 2up+2 + p + 1 2 u2� dx is a high-order invariant for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' This corrects an invariant I3 in Example 4 appeared in [10] (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 492).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Rosenau equation Consider the Rosenau equation [11] ut + uxxxxt + ux + uux = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='7) which is equivalent to \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + gx = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='8) g + gxxxx = u + 1 2u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9) Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='8) by u2 and noticing (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='9), similar to the argument in the above, we have a third-order invariant for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='7) of the form � R �1 3u3 + u2� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Acknowledgement We appreciate Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Zhi-zhong Sun for many useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' This work is dedicated to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Zhi-zhong Sun on the occasion of his 60th birthday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The work is supported by Natural Science Foundation of Zhejiang Province (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' LZ23A010007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' References References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Escher, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 241 (2006) 457–485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Tao, Low-regularity global solutions to nonlinear dispersive equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Surveys in analysis and operator theory (Canberra, 2001), 19–48, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Centre Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 40, Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', Canberra, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Camassa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Holm, An integrable shallow water equation with peaked solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 71 (1993) 1661–1664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Degasperis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Procesi, Asymptotic integrability, in: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Degasperis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Gaeta (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Symmetry and Perturbation Theory, World Scientific, Singapore, (1999) 23–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Xing, An invariant preserving discontinuous Galerkin method for the Camassa-Holm equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 38 (2016) A1919–A1934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Courant, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Friedrichs, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Lewy, ¨Uber die partiellen Differenzenglei-chungen der mathematischen physik, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 100 (1928) 32–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [7] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Finite Difference Methods for Nonlinear Evolution Equations, Science Press, Beijing, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Medeiros, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 8(5) (1977) 792–799.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [9] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Seyler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Fenstermacher, A symmetric regularized-long-wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' The Physics of Fluids, 27(4) (1984) 4–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Ghiloufi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Omrani, New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Methods Partial Differential Equation, 34 (2018) 451–500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Park, On the Rosenau equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=', 9 (1990) 145–152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} +page_content=' 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'} diff --git a/6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss b/6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..2a695cc53f5b1a36d71f9e3fab6e0639cf97f13b --- /dev/null +++ b/6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b24495c5010fa3f7b048648148112965ded73097e1856d3e97f54c6acdcfb697 +size 2621485 diff --git a/79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf b/79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c8fa8a28ce5f5e8328d01f8adc9d29654f86d95f --- /dev/null +++ b/79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f40400add0a99df05a448f65a729583ee54450a058a5a93f29ea055eb51a7305 +size 3000697 diff --git a/79FLT4oBgHgl3EQfAy4h/vector_store/index.pkl b/79FLT4oBgHgl3EQfAy4h/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a0ba60c2199947e8e3741c68492f8ef7db3dc38b --- /dev/null +++ b/79FLT4oBgHgl3EQfAy4h/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d9aaabffa6d8cd3c272a553552179a525d8d50408b82161083b6f13e0a5b03b4 +size 142250 diff --git a/89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf b/89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..db6e5de4dc7410eb60039fd538f67c58eff9d1ea --- /dev/null +++ b/89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9123c1852f7c939b6dfbde1dea226903321fa44fa9c8772e947b3f9ab564b984 +size 25647033 diff --git a/89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf b/89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..cda134a445da37d02f1b73024daacc81c246d43d --- /dev/null +++ b/89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b3f7e53a9baddb0b2f4df378ac41044dd3942190990959b45e55350abac4cc7b +size 293704 diff --git a/89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss b/89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a637e91757fd09914c9ed765e5ae6d612b31a06f --- /dev/null +++ b/89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:824a7bb7a97473d08814defd6cdbd83d2d3d700468e9a85b19be9a68fe63b3b1 +size 2752557 diff --git a/8tE3T4oBgHgl3EQfSAk3/content/tmp_files/2301.04427v1.pdf.txt b/8tE3T4oBgHgl3EQfSAk3/content/tmp_files/2301.04427v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..78ae55b12c64839041ddaf3b864794512ae41e65 --- /dev/null +++ b/8tE3T4oBgHgl3EQfSAk3/content/tmp_files/2301.04427v1.pdf.txt @@ -0,0 +1,1228 @@ +Quantum sensing of electric field distributions of liquid electrolytes with NV-centers +in nanodiamonds +M. Hollendonner,1, 2 S. Sharma,2 D. B. R. Dasari,3 A. Finkler,4 S. V. Kusminskiy,2, 5 and R. Nagy1, ∗ +1Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany +2Max Planck Institute for the Science of Light, 91058 Erlangen, Germany +33rd Institute of Physics, IQST, and Research Center SCoPE, +University of Stuttgart, 70569 Stuttgart, Germany +4Department of Chemical and Biological Physics, +Weizmann Institute of Science, Rehovot 7610001, Israel +5Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany +(Dated: January 12, 2023) +To use batteries as large-scale energy storage systems it is necessary to measure and understand +their degradation in-situ and in-operando. As a battery’s degradation is often the result of molecular +processes inside the electrolyte, a sensing platform which allows to measure the ions with a high +spatial resolution is needed. Primary candidates for such a platform are NV-centers in diamonds. +We propose to use a single NV-center to deduce the electric field distribution generated by the +ions inside the electrolyte through microwave pulse sequences. We show that the electric field can +be reconstructed with great accuracy by using a protocol which includes different variations of the +Free Induction Decay to obtain the mean electric field components and a modified Hahn-echo pulse +sequence to measure the electric field’s standard deviation σE. From a semi-analytical ansatz we find +that for a lithium ion battery there is a direct relationship between σE and the ionic concentration. +Our results show that it is therefore possible to use NV-centers as sensors to measure both the +electric field distribution and the local ionic concentration inside electrolytes. +I. +INTRODUCTION +Rechargeable batteries play an important role for our +society and are a key ingredient for the transition to- +wards renewable energy sources [1–3]. As the production +of batteries is accompanied with a considerable use of re- +sources, recyclable [4] batteries with a long lifetime are +needed. The latter is limited by degradation mechanisms, +such as the formation of solid-electrolyte interfaces [5] or +lithium-plating [6] which can reduce the battery’s capac- +ity with increasing cell age [7]. As these processes happen +on a molecular level within nanometer scales [5], a sensor +which is capable of monitoring the ionic concentration +in-situ and in-operando with high spatial and temporal +resolutions is needed. Even though MRI allows to recon- +struct transport properties [8, 9] of a battery, tools which +allow to perform measurements inside the electrolyte are +still absent [5]. +It has been demonstrated that nitrogen-vacancy (NV) +centers in diamond (see Fig. 1(b)) are high-resolution +quantum sensors, which can detect oscillating or fluctu- +ating [10–13] magnetic fields with nano- [14, 15] and even +subpico-Tesla [16] sensitivities. Besides this, NV-centers +have great ability for the detection of electric fields. They +can not only detect DC [17, 18] or AC [19] electric fields +with remarkable precision, but are additionally capable +of detecting single fundamental charges [20] even within +the diamond lattice [21]. This electric field sensitivity was +used by Ref. [22] to show that, based on theoretical con- +∗ roland.nagy@fau.de +siderations, bulk NV-centers can work as electrochemical +sensors if they are in contact with an electrolyte solution. +Here we show that nanodiamonds equipped with sin- +gle NV-centers can act as in-situ electric field sensors +inside liquid electrolytes (Fig. 1(a)). By exploiting how +transverse and axial electric fields act on the NV-center’s +ground state spin states, we find variations of the free- +induction decay (FID) pulse sequence, which allow to +measure the mean electric field components. +Further, +we show that it is possible to use variants of the Hahn- +echo pulse sequence to additionally obtain the electric +field’s standard deviation σE. +From a semi-analytical +ansatz we demonstrate exemplarily for a lithium ion bat- +tery (LIB) that there is a direct relationship between the +electric field’s standard deviation and the local ionic con- +centration. A nanodiamond with a single NV-center can +therefore work as a sensor which allows to simultaneously +reconstruct the electric field distribution and to measure +the ionic concentration with nm spatial resolution. +II. +ELECTRIC FIELD DISTRIBUTION IN +LIQUID ELECTROLYTES +Before introducing measurements of the electric field +distribution by the NV-center, we would like to develop +an analytic expression of the electric field induced inside +the nanodiamond by the positive and negative ions of the +electrolyte. +The potential Φ at position r inside the nanodiamond +due to a single charge q at position b, is described by +arXiv:2301.04427v1 [quant-ph] 11 Jan 2023 + +2 +FIG. 1. (a) Experimental setting. A nanodiamond which is dissolved in the liquid electrolyte of the battery is surrounded by +positive (orange) and negative (blue) ions. Two perpendicular aligned gold wires allow to generate polarized microwave drives. +(b) To work as a quantum sensor, the nanodiamond contains a vacancy (V) next to a nitrogen atom (red). (c) Standard deviation +of Ez, calculated from 500 repeated sets of randomly placed ions of concentration c around the nanodiamond (rND = 100 nm) +and inside a sphere of radius R. The relative permittivities are ϵND = 5.8 [22] and ϵe = 17.5 [23]. Solid lines are fits following +Eq. (3) with A as a fit parameter. (d) Fit parameters A obtained from (c), compared to the theory value. +Poisson’s equation +∇2Φ (r) = −ρ (r) +ϵ +. +(1) +Here ϵ = ϵ0ϵi with i = e, ND, are the permittivities of, re- +spectively, the electrolyte and the nanodiamond in terms +of the vacuum permittivity ϵ0 and ρ is the charge density +induced by q. The solution inside the nanodiamond, ΦND +(see Methods for the detailed derivation), allows to ob- +tain the electric field at the center of the nanodiamond, +which is +END = +q +4πϵ0 +3 +2ϵe + ϵND +b +b3 . +(2) +By considering the positions of ions of a molar concentra- +tion c to be normally distributed within a sphere of radius +R around a nanodiamond (radius rND), the standard de- +viation of the electric field distribution at the center of +the nanodiamond is +σEz = A +� +c +� 1 +rND +− 1 +R +� +A = +|q| +ϵ0 (2ϵe + ϵND) +� +3NA +4π . +(3) +To validate Eq. (3), we simulated the standard deviation +of 500 sets of uniformly and randomly placed ions for dif- +ferent molar ionic concentrations (see Fig. 1(c)). As it is +the most widely used electrolyte of LIBs [24], we chose +LiPF− +6 with ϵe = 17.5 [23]. The total electric field was +calculated as the linear sum of Eq. (2) for all randomly +placed ions around a 200 nm spherical nanodiamond [25]. +As it can be seen from Fig. 1(d), the expected A value is +in fair agreement with the simulations. From Eq. (3) it +can be calculated that for R = 500 nm, the fluctuations +will increase only by 3%, compared to σE (R = 400 nm). +As σE therefore saturates for R ≳ 500 nm, this implies +that electric field fluctuations only affect the nanodia- +mond within sub-micrometer range and the system is +limited by the confocal volume of the experimental setup, +which typically is ∼ 1 µm3 [26, 27]. +III. +SENSING OF STATIC ELECTRIC FIELDS +INSIDE ELECTROLYTES +An electric field E can in cylindrical coordinates be +expressed by its axial component Ez, its transverse pro- +jection E⊥ = +� +E2x + E2y and an angle φE, which defines +the projections onto the x and y axis as Ex = E⊥ cos φE +and Ey = E⊥ sin φE. The total Hamiltonian which de- +scribes the NV-center in presence of electric and axial +magnetic fields will in the following be denoted as ˆH0. +By taking into account that the NV-center can be driven +by two perpendicular microwave wires (see Fig. 1(a)) with +amplitude Ω, frequency ωd and a phase φ between each +other, the total ground state Hamiltonian in a frame ro- +tating with ωd is ˆH = ˆH0 + ˆHd (see Methods), where +ˆH0 = (∆ + ξz) ˆS2 +z + βz ˆSz − ξ⊥ +2 +� +ˆS2 ++eiφE + h.c. +� +ˆHd = Ω +√ +2 +� +ϵ−σ0,−1 + ϵ+σ† +0,+1 + h.c. +� +. +(4) +Here ∆ = D − ωd is the detuning between the zero- +field splitting, D = 2.87 GHz [28], and the microwave +drive frequency. +Si, i = x, y, z, are the spin-1 op- +erators, which can be used to define ladder operators +S± = Sx ± iSy. σ0,±1 = |0⟩ ⟨±1| are operators which +describe transitions between |0⟩ and, respectively, |±1⟩. +Frequency contributions generated by electric and axial +magnetic fields are considered through ξz = d∥Ez and +ξ⊥ = d⊥E⊥ (d∥ = 0.35 Hz cm/V, d⊥ = 17 Hz cm/V [29]) +and βz = γeBz (γe = 28 GHz/T [30]). +The phase factors ϵ± = +� +1 − ie∓iφ� +/2 which enter into +Eq. (4), allow to describe the transitions which are caused +by circularly (φ = ±π/2) or linearly (φ = 0) polarized +microwave drives [31]. The time-evolution operators of +ˆHd, ˆR (t) = e−i ˆ +Hdt (see Methods), show that one can +induce Rabi oscillations between |0⟩ and |1⟩ for right cir- +cularly polarized drives and |0⟩ ↔ |−1⟩ for left circular +polarizations. +Linearly polarized drives allow to drive +transitions between |0⟩ and both |±1⟩. + +MW +Pos.Electrode3 +FIG. 2. (a) FID-variations to extract ξ⊥, φE and ξz through subsequent pulse sequences. Here Tπ (Tπ/2) is the duration of +the microwave pulse such that a π-pulse (π/2-pulse) is performed. Subscripts ± denote circularly polarized drives which cause +oscillations between |0⟩ and either |1⟩ or |−1⟩. Subscript 0 denotes linear polarization of the drive and the free evolution is +described through ˆF. (b) FIDξ⊥ for different magnetic fields up to βz = 2.7 MHz, corresponding to Bz = 1 G. For βz = 0 the +signal has the highest contrast with the lowest frequency of oscillation. (c) Fourier transform of FIDξ⊥,ξz with Ω = 10 MHz +and Ex,y,z = 10 V/µm. Only for T ∗ +2 > 10 µs the peaks at ξ⊥ ± ξz = 2.4 ± 0.04 MHz and 2ξ⊥ can be resolved. +In absence of microwave drives, the |±1⟩ states are +symmetrically mixed by ξ⊥ and axial electric fields ef- +fectively shift |0⟩ from |±1⟩, which can be seen from +ˆF (τ) = e−i ˆ +H0τ (see Methods). As axial and transverse +electric fields thus act differently on the |ms = 0, ±1⟩ +states of the NV-center, one can derive variations of the +Free Induction Decay (FID), which allow to extract these +electric field components. +A. +Measurement of electric field components +The FID consists of two microwave pulses separated +by a free evolution period τ. Electric field contributions +ξ⊥, φE and ξz can be sensed through FID-variations, +as shown in Fig. 2(a). The NV-center can be initialized +into its |0⟩ state via excitation with green laser light, fol- +lowed by intersystem-crossing [32]. This state can then +be driven to −i |1⟩ through a right-polarized π-pulse, de- +noted as ˆR (Tπ)+, and will be influenced by both axial +magnetic as well as transverse electric fields. The latter +induce mixing with |−1⟩. By using a microwave π-pulse +with the same polarization as the initial one, the trans- +ferred population from |1⟩ to |−1⟩ can be obtained from +the FID-signal +FIDξ⊥ (τ) = | ⟨0| ˆR (Tπ)+ ˆF (τ) ˆR (Tπ)+ |0⟩ |2 += cos2 +� +τ +� +β2z + ξ2 +⊥ +� ++ +β2 +z +β2z + ξ2 +⊥ +sin2 +� +τ +� +β2z + ξ2 +⊥ +� +, +(5) +which is a measure of the population which has been +transferred from |1⟩ to |−1⟩. In Fig. 2(b) one can see this +FID-signal as a function of the free evolution time τ for +βz values up to 2.8 MHz, which corresponds to Bz = 1 G. +Besides having a decreased contrast for βz ̸= 0, the +frequency +� +β2z + ξ2 +⊥ of the FID-oscillations depends on +both axial magnetic and transverse electric fields. It is +therefore strongly recommended to perform the measure- +ments in a magnetically shielded environment, for exam- +ple by a µ-metal as in Ref. [33]. In the following it will +be assumed that all measurement are performed without +any magnetic field being present. +The transverse electric field components are uniquely +defined through φE, as ξx += +ξ⊥ cos φE and ξy += +ξ⊥ sin φE. A superposition state −eiπ/4 (|1⟩ + |−1⟩) / +√ +2 +generated through a linearly polarized π-pulse (consid- +ered via ˆR (Tπ)0, see Methods) will additionally to ξ⊥ +also be affected by φE as this phase differs in its sign +for |1⟩ and |−1⟩ (see Methods). If either |1⟩ or |−1⟩ is +projected to |0⟩ through the final microwave pulse, one +obtains an FID-signal, which both depends on ξ⊥ and +φE, +FIDφE,ξ⊥ (τ) = 1 +2 (1 − sin (2τξ⊥) sin φE) . +(6) +One can obtain φE as the relative fraction between the +value of the FID-signal at τ = 0 and its first maxima at +2τξ⊥ = π/2, +FIDφE,ξ⊥ +� +τ = π +2 +1 +2ξ⊥ +� +FIDφE,ξ⊥ (τ = 0) += 1 − sin φE . +(7) +By using FIDξ⊥ and FIDξ⊥,φE, it is therefore possible to +not only determine the electric field’s transverse compo- +nent, but also to obtain the projection onto the x and y +axes, which are determined through φE. +Axial electric field contributions ξz cause a Stark +shift between |0⟩ and |±1⟩. +A superposition state +(|0⟩ − i |−1⟩) / +√ +2 generated by a circularly polarized +π/2-pulse (see Fig. 2(a)) will therefore be affected both +by ξz and ξ⊥. If the final microwave π/2-pulse has the +same polarization as the initial one, an FID-signal is ob- +tained which depends both on ξ⊥ and ξz, +FIDξz,ξ⊥ (τ) = 1 +4 +� +1 − 2 cos (τξ⊥) cos (τξz) + cos2 (τξ⊥) +� +, +(8) +if the NV-center was driven with ωd = D. The Fourier + +4 +transform of Eq. (8) (see Methods), +� +FID (ω > 0) = π +4 +�1 +2δ (2ξ⊥ − ω) +− δ (ξ⊥ + ξz − ω) − δ (ξ⊥ − ξz − ω) +� +, (9) +shows, that ξz can be measured if it is possible to spec- +trally resolve ξ⊥ ± ξz. +To study this, we numerically +[34, 35] simulated FIDξz,ξ⊥ and included dephasing at +rates 1/T ∗ +2 through a Lindblad operator +� +1/T ∗ +2 Sz for +T ∗ +2 in the range up to 15 µs (see Fig. 2(c)). One can re- +solve ξ⊥±ξz for nanodiamonds with T ∗ +2 > 10 µs, which is +higher than the value of typical nanodiamonds [36]. For +a nanodiamond with T ∗ +2 ≈ 15 µs it would be possible to +distinguish between ξ⊥ and ξz and therefore to determine +the projection of the electric field onto the symmetry axis +of the NV-center. +IV. +INFLUENCE OF FLUCTUATING +ELECTRIC FIELDS +It can be assumed that the ions surrounding the nan- +odiamond will not stay static for the timescales in which +measurements are performed but will be subject to, for +instance, drift and diffusion. +These fluctuations will +affect the electric field inside the nanodiamond. +Due +to the limited T ∗ +2 of nanodiamonds, the FID pulse se- +quences as introduced before will be mainly suitable for +the measurement of the average electric fields (see Meth- +ods). +The coherence time of a nanodiamond can be +significantly prolonged if instead of an FID, a Hahn- +Echo pulse sequence is used [25]. +As it is shown in +Fig. 3(a), we propose a modified version of the Hahn- +Echo, where after the first free evolution interval, a π- +pulse with right-circular polarization is performed, be- +fore the spin is allowed to precess freely during a sec- +ond free evolution interval τ. Before being read out, a +right-circularly polarized π-pulse is applied, which leads +to a signal Hahn (τ) = (1 − cos (2τξ⊥))2 /4. Simulations +of this Hahn-Echo variation show that the averages (see +Methods for an example) can be fit by +⟨Hahn (τ)⟩ = 1 +4 +� +1 − cos (2τξ⊥) e−τ/T2�2 +. +(10) +Here T2 is the sum of the intrinsic spin coherence time +T2,int. = 100 µs [25] and a contribution due to the fluc- +tuating electric fields, +1 +T2 += +1 +T2,int. ++ +1 +T2,E +. +(11) +In Fig. 3(b), one can see T2 as a function of the electric +field’s standard deviation σE, where solid lines are T2,E = +αEm/σ2 +E in terms of a fit parameters α. The total spin +coherence time is therefore strongly affected by σE and +the mean electric field value Em. If the mean transverse +electric field has been sensed by the FID sequence as +shown in Eq. (5), it is therefore possible to derive the +electric field’s standard deviation, which together with +ξ⊥, φE and ξz defines the electric field distribution. As +there is a direct relationship between σE and the local +ionic concentration (see Fig. 1(c)), the proposed Hahn- +echo pulse sequence additionally allows to use the NV- +center inside the nanodiamond as a local concentration +sensor. +FIG. 3. +(a) Hahn-echo pulse sequence used to simulate +Eq. (10). +(b) Total T2 for numerically [34, 35] simulated +Hahn-Echoes with T2,int = 100 µs, with the electric field com- +ponents sampled from a normal distribution with mean Em +and standard deviation σE. +For the simulations a drive of +Ω = 10 MHz was used. Solid lines are fits of αEm/σ2 +E. Every +trajectory was obtained from 1000 individual simulations. Er- +ror bars of one standard deviation are smaller than the data +points. +V. +CONCLUSION AND OUTLOOK +In conclusion we have shown here a full reconstruc- +tion of the mean electric field generated in a liquid elec- +trolyte, through the spin control of a quantum sensor +immersed in the electrolyte. We have found exact ex- +pressions correlating the electric field components with +the free-induction decay of the sensor spin, and the de- +pendence of the variance on the spin-echo measurements. +Together we were able to deduce the electric field distri- +bution and also measure the local ionic concentration, a +key parameter in characterizing the performance of the +liquid electrolyte for battery applications. We envisage +that with improved modeling of the electric field distribu- +tion in liquid electrolytes and using better quantum con- +trol methods, for example using correlation spectroscopy +[37], we could enhance the sensitivity of the sensor to the +local electric-field environment, allowing for an in-situ +monitoring of the battery using the liquid electrolyte. +ACKNOWLEDGMENTS +R. N. would like to acknowledge financial support by +the Federal Ministry of Education and Research (BMBF) + +5 +project QMNDQCNet and DFG (Project No. 507241320 +and 46256793). +S. V. K. and D. D. would like to +acknowledge the funding support from BMBF (Grant +No. 16KIS1590K). A. F. is the incumbent of the Elaine +Blond Career Development Chair and acknowledges sup- +port from Israel Science Foundation (ISF grants 963/19 +and 418/20) as well as the Abramson Family Center for +Young Scientists and the Willner Family Leadership In- +stitute for the Weizmann Institute of Science. +[1] B. Diouf and R. Pode, “Potential of lithium-ion batteries +in renewable energy,” Renewable Energy, vol. 76, pp. 375– +380, Apr. 2015. +[2] D. Di Lecce, R. Verrelli, and J. Hassoun, “Lithium- +ion batteries for sustainable energy storage: recent ad- +vances towards new cell configurations,” Green Chem- +istry, vol. 19, no. 15, pp. 3442–3467, 2017. +[3] A. Jaiswal, “Lithium-ion battery based renewable energy +solution for off-grid electricity: A techno-economic analy- +sis,” Renewable and Sustainable Energy Reviews, vol. 72, +pp. 922–934, May 2017. +[4] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, +P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Hei- +drich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, and +P. Anderson, “Recycling lithium-ion batteries from elec- +tric vehicles,” Nature, vol. 575, pp. 75–86, Nov. 2019. +[5] Y. S. Meng, V. Srinivasan, and K. Xu, “Designing better +electrolytes,” Science, vol. 378, p. eabq3750, Dec. 2022. +[6] U. S. Meda, L. Lal, S. M, and P. Garg, “Solid Electrolyte +Interphase (SEI), a boon or a bane for lithium batter- +ies: A review on the recent advances,” Journal of Energy +Storage, vol. 47, p. 103564, Mar. 2022. +[7] J. S. Edge, S. O’Kane, R. Prosser, N. D. Kirkaldy, A. N. +Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang, +S. Li, M.-C. Pang, L. Bravo Diaz, A. Tomaszewska, +M. W. Marzook, K. N. Radhakrishnan, H. Wang, Y. Pa- +tel, B. Wu, and G. J. Offer, “Lithium ion battery degra- +dation: +what you need to know,” Physical Chemistry +Chemical Physics, vol. 23, no. 14, pp. 8200–8221, 2021. +[8] M. Klett, M. Giesecke, A. Nyman, F. Hallberg, R. W. +Lindstr¨om, G. Lindbergh, and I. Fur´o, “Quantifying +Mass Transport during Polarization in a Li Ion Battery +Electrolyte by in Situ 7 Li NMR Imaging,” Journal of the +American Chemical Society, vol. 134, pp. 14654–14657, +Sept. 2012. +[9] S. A. Krachkovskiy, J. D. Bazak, P. Werhun, B. J. Bal- +com, I. C. Halalay, and G. R. Goward, “Visualization +of Steady-State Ionic Concentration Profiles Formed in +Electrolytes during Li-Ion Battery Operation and De- +termination of Mass-Transport Properties by in Situ +Magnetic Resonance Imaging,” Journal of the American +Chemical Society, vol. 138, pp. 7992–7999, June 2016. +[10] L. T. Hall, J. H. Cole, C. D. Hill, and L. C. L. Hollenberg, +“Sensing of Fluctuating Nanoscale Magnetic Fields Using +Nitrogen-Vacancy Centers in Diamond,” Physical Review +Letters, vol. 103, p. 220802, Nov. 2009. +[11] S. Steinert, F. Ziem, L. T. Hall, A. Zappe, M. Schweik- +ert, N. G¨otz, A. Aird, G. Balasubramanian, L. Hollen- +berg, and J. Wrachtrup, “Magnetic spin imaging under +ambient conditions with sub-cellular resolution,” Nature +Communications, vol. 4, p. 1607, June 2013. +[12] L. Luan, M. S. Grinolds, S. Hong, P. Maletinsky, R. L. +Walsworth, and A. Yacoby, “Decoherence imaging of spin +ensembles using a scanning single-electron spin in dia- +mond,” Scientific Reports, vol. 5, p. 8119, July 2015. +[13] K. Agarwal, R. Schmidt, B. Halperin, V. Oganesyan, +G. Zar´and, M. D. Lukin, and E. Demler, “Magnetic noise +spectroscopy as a probe of local electronic correlations in +two-dimensional systems,” Physical Review B, vol. 95, +p. 155107, Apr. 2017. +[14] G. +Balasubramanian, +P. +Neumann, +D. +Twitchen, +M. Markham, +R. Kolesov, +N. Mizuochi, +J. Isoya, +J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hem- +mer, F. Jelezko, and J. Wrachtrup, “Ultralong spin co- +herence time in isotopically engineered diamond,” Nature +Materials, vol. 8, pp. 383–387, May 2009. +[15] J. L. Webb, J. D. Clement, L. Troise, S. Ahmadi, G. J. +Johansen, A. Huck, and U. L. Andersen, “Nanotesla sen- +sitivity magnetic field sensing using a compact diamond +nitrogen-vacancy magnetometer,” Applied Physics Let- +ters, vol. 114, p. 231103, June 2019. +[16] T. Wolf, +P. Neumann, +K. Nakamura, +H. Sumiya, +T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla +Diamond Magnetometry,” Physical Review X, vol. 5, +p. 041001, Oct. 2015. +[17] F. Dolde, H. Fedder, M. W. Doherty, T. N¨obauer, +F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, +L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, +“Electric-field sensing using single diamond spins,” Na- +ture Physics, vol. 7, pp. 459–463, June 2011. +[18] K. Bian, W. Zheng, X. Zeng, X. Chen, R. St¨ohr, +A. Denisenko, S. Yang, J. Wrachtrup, and Y. Jiang, +“Nanoscale electric-field imaging based on a quantum +sensor and its charge-state control under ambient con- +dition,” Nature Communications, vol. 12, p. 2457, Dec. +2021. +[19] J. Michl, J. Steiner, A. Denisenko, A. B¨ulau, A. Zim- +mermann, K. Nakamura, H. Sumiya, S. Onoda, P. Neu- +mann, J. Isoya, and J. Wrachtrup, “Robust and Accurate +Electric Field Sensing with Solid State Spin Ensembles,” +Nano Letters, vol. 19, pp. 4904–4910, Aug. 2019. +[20] F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Nay- +denov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, +N. B. Manson, and J. Wrachtrup, “Nanoscale Detection +of a Single Fundamental Charge in Ambient Conditions +Using the NV - Center in Diamond,” Physical Review +Letters, vol. 112, p. 097603, Mar. 2014. +[21] T. Mittiga, S. Hsieh, C. Zu, B. Kobrin, F. Machado, +P. Bhattacharyya, N. Rui, A. Jarmola, S. Choi, D. Bud- +ker, and N. Y. Yao, “Imaging the local charge environ- +ment of nitrogen-vacancy centers in diamond,” Physical +Review Letters, vol. 121, p. 246402, Dec. 2018. +[22] H. T. Dinani, E. Mu˜noz, and J. R. Maze, “Sensing elec- +trochemical signals using a nitrogen-vacancy center in +diamond,” Nanomaterials, vol. 11, p. 358, Feb. 2021. +[23] M. Liu, P. J. Chimtali, X.-b. Huang, and R.-b. Zhang, +“Structures and dynamic properties of the LiPF 6 elec- +trolytic solution under electric fields – a theoretical + +6 +study,” Physical Chemistry Chemical Physics, vol. 21, +no. 24, pp. 13186–13193, 2019. +[24] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, +L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bit- +ner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P. �L¸e˙zak, +Z. Zukowska, A. Zalewska, and W. Wieczorek, “Elec- +trolytes for Li-ion transport – Review,” Solid State Ion- +ics, vol. 276, pp. 107–126, Aug. 2015. +[25] B. D. Wood, G. A. Stimpson, J. E. March, Y. N. D. +Lekhai, C. J. Stephen, B. L. Green, A. C. Frangeskou, +L. Gin´es, S. Mandal, O. A. Williams, and G. W. Morley, +“Long spin coherence times of nitrogen vacancy centers +in milled nanodiamonds,” Physical Review B, vol. 105, +p. 205401, May 2022. +[26] D. Misonou, K. Sasaki, S. Ishizu, Y. Monnai, K. M. Itoh, +and E. Abe, “Construction and operation of a tabletop +system for nanoscale magnetometry with single nitrogen- +vacancy centers in diamond,” AIP Advances, vol. 10, +p. 025206, Feb. 2020. +[27] B. J. Maertz, A. P. Wijnheijmer, G. D. Fuchs, M. E. +Nowakowski, and D. D. Awschalom, “Vector magnetic +field microscopy using nitrogen vacancy centers in dia- +mond,” Applied Physics Letters, vol. 96, p. 092504, Mar. +2010. +[28] J. H. N. Loubser and J. A. van Wyk, “Electron spin +resonance in the study of diamond,” Reports on Progress +in Physics, vol. 41, pp. 1201–1248, Aug. 1978. +[29] E. Van Oort and M. Glasbeek, “Electric-field-induced +modulation of spin echoes of N-V centers in diamond,” +Chemical Physics Letters, vol. 168, pp. 529–532, May +1990. +[30] E. Abe and K. Sasaki, “Tutorial: Magnetic resonance +with nitrogen-vacancy centers in diamond—microwave +engineering, +materials +science, +and +magnetometry,” +Journal of Applied Physics, vol. 123, p. 161101, Apr. +2018. +[31] P. London, P. Balasubramanian, B. Naydenov, L. P. +McGuinness, and F. Jelezko, “Strong driving of a single +spin using arbitrarily polarized fields,” Physical Review +A, vol. 90, p. 012302, July 2014. +[32] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, +J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen- +vacancy colour centre in diamond,” Physics Reports, +vol. 528, pp. 1–45, July 2013. +[33] N. Zhao, J.-L. Hu, S.-W. Ho, J. T. K. Wan, and R. B. +Liu, “Atomic-scale magnetometry of distant nuclear spin +clusters via nitrogen-vacancy spin in diamond,” Nature +Nanotechnology, vol. 6, pp. 242–246, Apr. 2011. +[34] J. Johansson, P. Nation, and F. Nori, “QuTiP: An +open-source Python framework for the dynamics of open +quantum systems,” Computer Physics Communications, +vol. 183, pp. 1760–1772, Aug. 2012. +[35] J. Johansson, P. Nation, and F. Nori, “QuTiP 2: +A +Python framework for the dynamics of open quantum +systems,” Computer Physics Communications, vol. 184, +pp. 1234–1240, Apr. 2013. +[36] H. S. Knowles, D. M. Kara, and M. Atat¨ure, “Observ- +ing bulk diamond spin coherence in high-purity nanodia- +monds,” Nature Materials, vol. 13, pp. 21–25, Jan. 2014. +[37] A. +Laraoui, +F. +Dolde, +C. +Burk, +F. +Reinhard, +J. Wrachtrup, and C. A. Meriles, “High-resolution corre- +lation spectroscopy of 13C spins near a nitrogen-vacancy +centre in diamond,” Nature Communications, vol. 4, +p. 1651, June 2013. + +1 +Quantum sensing of electric field distributions of liquid electrolytes with NV-centers +in nanodiamonds - Supplementary Information +I. +ELECTRIC FIELD AT CENTER OF NANODIAMOND +In the following we would like to deduce the electric field of a single point charge q at a distance b from the origin +of the nanodiamond with radius rND by following Ref. [S1]. Poisson’s equation describes the electrostatic potential Φ, +∇2Φ (r) = −ρ (r) +ϵ +, +(S1) +where ϵ = ϵ0ϵi, i = e, ND is the permittivity of, respectively, the electrolyte and the nanodiamond in terms of the +vacuum permittivity ϵ0. By exploiting azimuthal symmetry of the problem, the above expression reduces to Laplace’s +equation for r ̸= b, which in spherical coordinates with |r| = r and θ the angle spanned by r and b is +∇2Φ (r, θ) = 1 +r2 +∂ +∂r +� +r2 ∂Φ +∂r +� ++ +1 +r2 sin θ +∂ +∂θ +� +sin θ∂Φ +∂θ +� += 0 . +(S2) +The general solution of this partial differential equation can be expressed in terms of the associated Legendre poly- +nomials Pl of order l and in terms of two constants Al and Cl as [S1, S2] +Φ (r, θ) = +∞ +� +l=0 +� +Alrl + Cl +1 +rl+1 +� +Pl (cos θ) . +(S3) +As the potential inside the nanodiamond must be finite at r = 0, Cl needs to vanish and one therefore has +ΦND (r, θ) = +∞ +� +l=0 +AlrlPl (cos θ) . +(S4) +By using that 1/|r − b| = �∞ +l=0 +� +rl + +� +Pl (cos θ) [S1, S2] with r≷ being the greater (smaller) of |r| and |b|, one can +derive the potential in the electrolyte without discontinuity, i.e. without nanodiamond, to be +˜Φe (r, θ) = +q +4πϵ0ϵe +∞ +� +l=0 +rl +< +rl+1 +> +Pl (cos θ) . +(S5) +The general solution would then be given as a superposition of this expression with Eq. (S3), i.e. Φe = ˜Φe + Φ, which +reads +Φe (r, θ) = +∞ +� +l=0 +� +Cl +1 +rl+1 + +q +4πϵ0ϵe +rl +< +rl+1 +> +� +Pl (cos θ) , +(S6) +where it was used that in this case Al = 0 to ensure a vanishing potential at infinite distances to the origin, i.e. +Φe → 0 for r → ∞. The constants Al and Cl, which enter into, respectively, Eq. (S4) and Eq. (S6), can be determined +by requiring continuity at the interface between electrolyte and nanodiamond, +� +ϵeEe − ϵNDEND� +· nND = 0 +(S7) +� +Ee − END� +× nND , +(S8) +where nND = r/r is the unit vector normal to the surface of the nanodiamond. +These boundary conditions are +satisfied, if +Al = +q +4πϵ0ϵe +1 +bl+1 +ϵe (2l + 1) +ϵNDl + ϵe (l + 1) +(S9) +Cl = +q +4πϵ0ϵe +lr2l+1 +ND +bl+1 +ϵe − ϵND +ϵNDl + ϵe (l + 1) . +(S10) + +2 +The electrostatic potential inside the nanodiamond therefore is +ΦND (r, θ) = +q +4πϵ0ϵe +∞ +� +l=0 +1 +bl+1 +ϵe (2l + 1) +ϵNDl + ϵe (l + 1)rlPl (cos θ) +(S11) +and the electric field at the center, i.e. for r = 0, can be calculated as +E (r = 0, θ) = +q +4πϵ0 +3 +2ϵe + ϵND +b +b3 , +(S12) +if it is used that in cartesian coordinates one has ez = cos θer − sin θeθ with ez the azimuthally symmetric unit vector +and er and eθ the radial and altitudinal unit vectors. +A. +Electric field variance +The probability of an ion to be located at b witin a sphere of radius R around the nanodiamond is +p (b) = +� 3 +4π +1 +R3−r3 +ND , +rND ≤ b ≤ R +0, +otherwise. +(S13) +It can be easily verified that this distribution is normalized, i.e. +� +R3 d3b p (b) = 1. Direct calculation reveals ⟨Ez⟩ = 0 +and therefore +σ2 +Ez,ion = ⟨E2 +z⟩ += +9q2 +(4πϵ0)2 +1 +(2ϵe + ϵND)2 +1 +R3 − r3 +ND +� 1 +rND +− 1 +R +� +. +(S14) +Under the assumption that the electric fields generated by the single ions are uncorrelated, the total fluctuations +are given by multiplying the above expression with the number of ions inside the sphere. The standard deviation +σ2 +Ez = cNAV σ2 +Ez,ion of the electric field components with NA Avogadro’s number, c the molar ionic concentration +and V the volume in which the ions reside therefore is +σEz = +|q| +ϵ0 (2ϵe + ϵND) +� +3NA +4π +� +c +� 1 +rNV +− 1 +R +� +. +(S15) +From this it can be seen that the expected electric field fluctuations increase with the molar concentration, i.e. +σEz ∝ √c. +II. +HAMILTONIAN IN ROTATING FRAME +As derived by Doherty et al. in Ref. [S3], the Hamiltonian of the NV-center in presence of axial magnetic fields Bz +and electric field components Ei with i = x, y, z and ℏ = 1 is +ˆHNV = +� +D + d∥Ez +� ˆS2 +z + γeBz ˆSz ++ d⊥ +� +Ex +� +ˆS2 +y − ˆS2 +x +� ++ Ey +� +ˆSx ˆSy + ˆSy ˆSx +�� +, +(S16) +with γe = 2.8 MHz/G the NV’s gyromagnetic ratio [S4] and d∥ = 0.35 Hz · cm/V and d⊥ = 17 Hz · cm/V the axial +and transverse dipole moments [S5]. By rewriting this Hamiltonian in terms of its frequency contributions βz = γeBz, +ξz = d∥Ez and ξ⊥ = d⊥ +� +E2x + E2y and by introducing the electric field polarization φE, which defines the transverse +electric field projections via ξx = ξ⊥ cos φE and ξy = ξ⊥ sin φE, Eq. (S16) can be rewritten as +ˆHNV = (D + ξz) ˆS2 +z + βz ˆSz − ξ⊥ +2 +� +eiφE ˆS2 ++ + h.c. +� +, +(S17) +where ˆS± = ˆSx ± i ˆSy are spin-1 ladder-operators and h.c. means the hermitian conjugate. + +3 +The NV-center can be driven by perpendicular (compared to the NV’s symmetry axis) microwave magnetic fields +of amplitude Ω = γeBd and frequency ωd. +To exert polarized drives onto the NV-center, two wires which are +perpendicular to each other (see Fig. 1(a) main text) are operated with a phase φ between each other. This drive can +be described by an Hamiltonian [S6] +ˆHd (t) = Ω +� +ˆSx cos (ωdt) + ˆSy cos (ωdt + φ) +� +. +(S18) +Defining phase-factors ϵ± (φ) = +� +1 − ie∓iφ� +/2, similarly to Ref. +[S6], allows to compactly account for different +polarizations as ϵ+ = 1 only if φ = −π/2 (i.e. right-circular polarization) and ϵ− = 1 for left-circular polarized +microwave fields (φ = +π/2). By transforming ˆHNV + ˆHd (t) into a frame oscillating with ωd through the unitary +U = eiωdS2 +z, one can derive the Hamiltonian under the rotating-wave approximation, which is +ˆH = ˆH0 + ˆHd +ˆH0 = (∆ + ξz) ˆS2 +z + βz ˆSz − ξ⊥ +2 +� +eiφE ˆS2 ++ + h.c. +� +ˆHd = Ω +√ +2 (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.c.) . +(S19) +A. +Derivation of time-evolution operators +To allow for the efficient calculation of pulse-sequences, time evolution operators of the free evolution ˆF (τ) and the +drive ˆR (T) will be derived in the following. +1. +Free Evolution +A possible set of eigenstates of ˆH0 is {|0⟩ , |+⟩ , |−⟩} with +|+⟩ = cos θ +2eiφE/2 |1⟩ + sin θ +2e−iφE/2 |−1⟩ +|−⟩ = sin θ +2eiφE/2 |1⟩ − cos θ +2e−iφE/2 |−1⟩ , +(S20) +where tan θ = −ξ⊥/βz, with corresponding eigenenergies ω0 = 0 and ω± = ∆ + ξz ± +� +β2z + ξ2 +⊥. The time evolution +operator of ˆH0 is ˆF (τ) = � +i={0,±} e−iωiτ |i⟩ ⟨i|, where the sum is performed over all eigenstates of ˆH0. In the basis +of {|0⟩ , |±1⟩} this is +ˆF (τ) = |0⟩ ⟨0| + e−iτ(∆+ξz)� +iξ⊥ +x sin (τx) +� +eiφE |1⟩ ⟨−1| + h.c. +� ++ +� +cos (τx) − iβz +x sin (τx) +� +|1⟩ ⟨1| ++ +� +cos (τx) + iβz +x sin (τx) +� +|−1⟩ ⟨−1| +� +. +(S21) +Here the frequency of oscillation has been defined as x = +� +β2z + ξ2 +⊥. +2. +Microwave Drive +To derive operators which describe the action of the microwave pulses, it will be assumed that these pulses +exceed all other frequency scales in magnitude, i.e. +Ω ≫ ∆, βz, ξz, ξ⊥, such that +ˆH ≈ +Ω +√ +2 +ˆ� +Hd with ˆ� +Hd = + +4 +(ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.c.). By noting that ˆ� +H +3 +d = ˆ� +Hd, the time evolution +ˆR (t) = e−it ˆ +Hd = +∞ +� +k=0 +� +−itΩ +√ +2 +�n +n! +� ˆ� +Hd +�n +, +(S22) +can be calculated as +ˆR (t) = |1⟩ ⟨1| +� +1 − |ϵ+|2� ++ |−1⟩ ⟨−1| +� +1 − |ϵ−|2� +− ϵ+ϵ− |1⟩ ⟨−1| − ϵ∗ ++ϵ∗ +− |−1⟩ ⟨1| ++ cos +� tΩ +√ +2 +� � +|0⟩ ⟨0| + |ϵ+|2 |1⟩ ⟨1| + |ϵ−|2 |−1⟩ ⟨−1| + ϵ+ϵ− |1⟩ ⟨−1| + ϵ∗ ++ϵ∗ +− |−1⟩ ⟨1| +� +− i sin +� tΩ +√ +2 +� +(ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.c.) . +(S23) +Depending on the polarization, one can induce Rabi oscillations between |0⟩ and either |−1⟩ for φ = π/2 (denoted as +ˆR+) or |+1⟩ (φ = −π/2, ˆR−), +ˆR (t)± = |∓1⟩ ⟨∓1| + cos +� Ωt +√ +2 +� � +|0⟩ ⟨0| + |±1⟩ ⟨±1| +� +− i sin +� Ωt +√ +2 +� � +|0⟩ ⟨±1| + h.c. +� +. +(S24) +The system can be driven to both |±1⟩, if a linearly polarized drive is used, +R (t)0 = 1 +2 (|1⟩ ⟨1| + |−1⟩ ⟨−1| + i |1⟩ ⟨−1| − i |−1⟩ ⟨1|) ++ cos +� tΩ +√ +2 +� � +|0⟩ ⟨0| ++ 1 +2 (|1⟩ ⟨1| + |−1⟩ ⟨−1| − i |1⟩ ⟨−1| + i |−1⟩ ⟨1|) +� +− 1 + i +2 +sin +� tΩ +√ +2 +� +(|0⟩ ⟨−1| + |1⟩ ⟨0| + h.c.) . +(S25) +The last expression can similarly be compactly written by noting that (1 ± i) /2 = e±iπ/4/ +√ +2. These operators can +then be used to describe the action of (polarized) π- and π/2-pulses onto the |ms = 0, ±1⟩-states of the NV-center. +III. +FOURIER TRANSFORMATION OF FID-SIGNAL +Some arbitrary signals f and ˜f in time- and frequency-domain are connected to each other as +˜f (ω) = FT [f (τ)] = +� +∞ +−∞ +dτ f (τ) e−iωτ +FT−1 � +˜f (ω) +� += 1 +2π +� +∞ +−∞ +dω ˜f (ω) eiωτ . +(S26) +To simplify the calculation of the Fourier transformed FID-signal, one can rewrite FIDξ⊥,φE (Eq. (6) main text) as +FIDξz,ξ⊥ (τ) = 1 +4 +�3 +2 + 1 +2 cos (2τξ⊥) − cos (τ [ξ⊥ + ξz]) +− cos (τ [ξ⊥ − ξz]) +� +. +(S27) +From Eq. (S26), one sees that FT [cos (τx)] = π [δ (x − ω) + δ (x + ω)] and therefore +� +FID (ω) = π +4 +�3 +2δ (ω) + 1 +2 [δ (2ξ⊥ − ω) + δ (2ξ⊥ + ω)] +− [δ (ξ⊥ + ξz − ω) + δ (ξ⊥ + ξz + ω)] +− [δ (ξ⊥ − ξz − ω) + δ (ξ⊥ − ξz + ω)] +� +. +(S28) + +5 +IV. +SIMULATED PULSE SEQUENCES FOR NORMALLY DISTRIBUTED ELECTRIC FIELDS +FIG. S1. Simulated expected FID-values of FIDξ⊥ (Eq. (5) main text), calculated from 500 individual FID-simulations with +drive amplitude of Ω = 10 MHz, intrinsic T ∗ +2,int. and electric field components sampled from a normal distribution with mean +Em and standard deviation σE. Dephasing is considered through a Lindblad-Operator +� +1/T ∗ +2,int.Sz. For both mean electric +field values of (a) 1.0 V/µm and (b) 4.0 V/µm, it is not possible to resolve ξ⊥. +To understand how fluctuating electric fields alter the FID-signal, we numerically [S7, S8] simulated FIDξ⊥ (Eq. (5) +main text) for normally distributed electric fields. Hereby, at every timestep at which the time-evolution is calcuated, +the electric field components are passed from a beforehand sampled normal distribution with mean Em and standard +deviation σE. It can be seen from Fig. S1 that the average FIDξ⊥ signal decays rapidly to its steady-state value of +1/2, which is due to the short T ∗ +2 time of 1 µs. For this reason it is proposed to use the Hahn-Echo pulse sequence for +measurements of strongly fluctuating electric fields. +0 +50 +100 +150 +200 +τ in µs +0.0 +0.2 +0.4 +0.6 +0.8 +⟨Hahn (τ)⟩ +Sim. +Fit +FIG. S2. +Example of the average Hahn-echo signal, which was obtained numerically from 1000 individual simulations of +the pulse sequence shown in Fig. 3(a) (main text) with a mean electric field value of Em = 1.0 V/µm, standard deviation +σE = 0.75 V/µm, drive amplitude Ω = 10 MHz and intrisic T2,int. = 100 µs together with the fit following Eq. (10) (main text). +The total T2 value obtained from this fit is T2 = (39.87 ± 0.86) µs. +As described in the main text, the numerically obtained Hahn-echo trajectories (see Fig. S2 for an example) are well +fitted by ⟨Hahn (τ)⟩ = 1 +4 +� +1 − cos (2τξ⊥) e−τ/T2�2. Here both the intrinsic T2,int. = 100 µs and T2,E due to fluctuating +elecric fields contribute to the total T2 via +1 +T2 += +1 +T2,int. ++ +1 +T2,E +. +(S29) +The latter can be fitted in terms of Em and σE via +T2,E = αEm +σ2 +E +. +(S30) +The values of the fit parameter α can be found in Fig. S3. + +6 +1 +2 +Em in V/µm +30 +35 +40 +α +FIG. S3. Fit parameter α, obtained by numerically fitting Eq. (S29) and Eq. (S30) with T2,int. = 100 µs to the data from Fig. 3 +(main text). +[S1] R. Messina, “Image charges in spherical geometry: Application to colloidal systems,” The Journal of Chemical +Physics, vol. 117, no. 24, pp. 11062-11074, Dec. 2002. +[S2] J. D. Jackson, “Klassische Elektrodynamik,” De Gruyter, Dec. 2006. +[S3] M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. B. Manson, and L. C. L. Hollenberg, “Theory +of the ground-state spin of the NV center in diamond,” Physical Review B, vol. 85, no. 20, p. 205203, May +2012. +[S4] E. Abe and K. Sasaki, “Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond - microwave +engineering, materials science, and magnetometry,” Journal of Applied Physics, vol. 123, no. 16, p. 161101, +Apr. 2018. +[S5] E. Van Oort and M. Glasbeek, “Electric-field induced modulation of spin echoes of N-V centers in diamond,” +Chemical Physics Letters, vol. 168, no. 6, pp. 529-532, May 1990. +[S6] P. London, P. Balasubramanian, B. Naydenov, L. P. McGuiness, and F. Jelezko, “Strong driving of a single spin +using arbitrarily polarized fields,” Physical Review A, vol. 90, no. 1, p. 012302, July 2014. +[S7] J. Johansson, P. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open +quantum systems,” Computer Physics Communications, vol. 183, no. 8, pp. 1760-1772, Aug. 2012. +[S8] J. Johansson, P. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum +systems,” Computer Physics Communications, vol. 184, no. 4, pp. 1234-1240, Apr. 2013. + diff --git a/8tE3T4oBgHgl3EQfSAk3/content/tmp_files/load_file.txt b/8tE3T4oBgHgl3EQfSAk3/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9072744033207d8aabd14ee591dcb515ad6e05ab --- /dev/null +++ b/8tE3T4oBgHgl3EQfSAk3/content/tmp_files/load_file.txt @@ -0,0 +1,860 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf,len=859 +page_content='Quantum sensing of electric field distributions of liquid electrolytes with NV-centers in nanodiamonds M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hollendonner,1, 2 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sharma,2 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dasari,3 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Finkler,4 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kusminskiy,2, 5 and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nagy1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' ∗ 1Friedrich-Alexander-University Erlangen-Nuremberg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 91058 Erlangen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Germany 2Max Planck Institute for the Science of Light,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 91058 Erlangen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Germany 33rd Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' IQST,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' and Research Center SCoPE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' University of Stuttgart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 70569 Stuttgart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Germany 4Department of Chemical and Biological Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Weizmann Institute of Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Rehovot 7610001,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Israel 5Institute for Theoretical Solid State Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' RWTH Aachen University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 52074 Aachen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Germany (Dated: January 12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2023) To use batteries as large-scale energy storage systems it is necessary to measure and understand their degradation in-situ and in-operando.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As a battery’s degradation is often the result of molecular processes inside the electrolyte, a sensing platform which allows to measure the ions with a high spatial resolution is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Primary candidates for such a platform are NV-centers in diamonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' We propose to use a single NV-center to deduce the electric field distribution generated by the ions inside the electrolyte through microwave pulse sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' We show that the electric field can be reconstructed with great accuracy by using a protocol which includes different variations of the Free Induction Decay to obtain the mean electric field components and a modified Hahn-echo pulse sequence to measure the electric field’s standard deviation σE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' From a semi-analytical ansatz we find that for a lithium ion battery there is a direct relationship between σE and the ionic concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Our results show that it is therefore possible to use NV-centers as sensors to measure both the electric field distribution and the local ionic concentration inside electrolytes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' INTRODUCTION Rechargeable batteries play an important role for our society and are a key ingredient for the transition to- wards renewable energy sources [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As the production of batteries is accompanied with a considerable use of re- sources, recyclable [4] batteries with a long lifetime are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The latter is limited by degradation mechanisms, such as the formation of solid-electrolyte interfaces [5] or lithium-plating [6] which can reduce the battery’s capac- ity with increasing cell age [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As these processes happen on a molecular level within nanometer scales [5], a sensor which is capable of monitoring the ionic concentration in-situ and in-operando with high spatial and temporal resolutions is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Even though MRI allows to recon- struct transport properties [8, 9] of a battery, tools which allow to perform measurements inside the electrolyte are still absent [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' It has been demonstrated that nitrogen-vacancy (NV) centers in diamond (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(b)) are high-resolution quantum sensors, which can detect oscillating or fluctu- ating [10–13] magnetic fields with nano- [14, 15] and even subpico-Tesla [16] sensitivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Besides this, NV-centers have great ability for the detection of electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' They can not only detect DC [17, 18] or AC [19] electric fields with remarkable precision, but are additionally capable of detecting single fundamental charges [20] even within the diamond lattice [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' This electric field sensitivity was used by Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [22] to show that, based on theoretical con- ∗ roland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='nagy@fau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='de siderations, bulk NV-centers can work as electrochemical sensors if they are in contact with an electrolyte solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Here we show that nanodiamonds equipped with sin- gle NV-centers can act as in-situ electric field sensors inside liquid electrolytes (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By exploiting how transverse and axial electric fields act on the NV-center’s ground state spin states, we find variations of the free- induction decay (FID) pulse sequence, which allow to measure the mean electric field components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Further, we show that it is possible to use variants of the Hahn- echo pulse sequence to additionally obtain the electric field’s standard deviation σE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' From a semi-analytical ansatz we demonstrate exemplarily for a lithium ion bat- tery (LIB) that there is a direct relationship between the electric field’s standard deviation and the local ionic con- centration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A nanodiamond with a single NV-center can therefore work as a sensor which allows to simultaneously reconstruct the electric field distribution and to measure the ionic concentration with nm spatial resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' ELECTRIC FIELD DISTRIBUTION IN LIQUID ELECTROLYTES Before introducing measurements of the electric field distribution by the NV-center, we would like to develop an analytic expression of the electric field induced inside the nanodiamond by the positive and negative ions of the electrolyte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The potential Φ at position r inside the nanodiamond due to a single charge q at position b, is described by arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='04427v1 [quant-ph] 11 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (a) Experimental setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A nanodiamond which is dissolved in the liquid electrolyte of the battery is surrounded by positive (orange) and negative (blue) ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Two perpendicular aligned gold wires allow to generate polarized microwave drives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (b) To work as a quantum sensor, the nanodiamond contains a vacancy (V) next to a nitrogen atom (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (c) Standard deviation of Ez, calculated from 500 repeated sets of randomly placed ions of concentration c around the nanodiamond (rND = 100 nm) and inside a sphere of radius R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The relative permittivities are ϵND = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='8 [22] and ϵe = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='5 [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Solid lines are fits following Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (3) with A as a fit parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (d) Fit parameters A obtained from (c), compared to the theory value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Poisson’s equation ∇2Φ (r) = −ρ (r) ϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (1) Here ϵ = ϵ0ϵi with i = e, ND, are the permittivities of, re- spectively, the electrolyte and the nanodiamond in terms of the vacuum permittivity ϵ0 and ρ is the charge density induced by q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The solution inside the nanodiamond, ΦND (see Methods for the detailed derivation), allows to ob- tain the electric field at the center of the nanodiamond, which is END = q 4πϵ0 3 2ϵe + ϵND b b3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (2) By considering the positions of ions of a molar concentra- tion c to be normally distributed within a sphere of radius R around a nanodiamond (radius rND), the standard de- viation of the electric field distribution at the center of the nanodiamond is σEz = A � c � 1 rND − 1 R � A = |q| ϵ0 (2ϵe + ϵND) � 3NA 4π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (3) To validate Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (3), we simulated the standard deviation of 500 sets of uniformly and randomly placed ions for dif- ferent molar ionic concentrations (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As it is the most widely used electrolyte of LIBs [24], we chose LiPF− 6 with ϵe = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='5 [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The total electric field was calculated as the linear sum of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (2) for all randomly placed ions around a 200 nm spherical nanodiamond [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As it can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(d), the expected A value is in fair agreement with the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (3) it can be calculated that for R = 500 nm, the fluctuations will increase only by 3%, compared to σE (R = 400 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As σE therefore saturates for R ≳ 500 nm, this implies that electric field fluctuations only affect the nanodia- mond within sub-micrometer range and the system is limited by the confocal volume of the experimental setup, which typically is ∼ 1 µm3 [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' SENSING OF STATIC ELECTRIC FIELDS INSIDE ELECTROLYTES An electric field E can in cylindrical coordinates be expressed by its axial component Ez, its transverse pro- jection E⊥ = � E2x + E2y and an angle φE, which defines the projections onto the x and y axis as Ex = E⊥ cos φE and Ey = E⊥ sin φE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The total Hamiltonian which de- scribes the NV-center in presence of electric and axial magnetic fields will in the following be denoted as ˆH0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By taking into account that the NV-center can be driven by two perpendicular microwave wires (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(a)) with amplitude Ω, frequency ωd and a phase φ between each other, the total ground state Hamiltonian in a frame ro- tating with ωd is ˆH = ˆH0 + ˆHd (see Methods), where ˆH0 = (∆ + ξz) ˆS2 z + βz ˆSz − ξ⊥ 2 � ˆS2 +eiφE + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � ˆHd = Ω √ 2 � ϵ−σ0,−1 + ϵ+σ† 0,+1 + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (4) Here ∆ = D − ωd is the detuning between the zero- field splitting, D = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='87 GHz [28], and the microwave drive frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Si, i = x, y, z, are the spin-1 op- erators, which can be used to define ladder operators S± = Sx ± iSy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' σ0,±1 = |0⟩ ⟨±1| are operators which describe transitions between |0⟩ and, respectively, |±1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Frequency contributions generated by electric and axial magnetic fields are considered through ξz = d∥Ez and ξ⊥ = d⊥E⊥ (d∥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='35 Hz cm/V, d⊥ = 17 Hz cm/V [29]) and βz = γeBz (γe = 28 GHz/T [30]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The phase factors ϵ± = � 1 − ie∓iφ� /2 which enter into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (4), allow to describe the transitions which are caused by circularly (φ = ±π/2) or linearly (φ = 0) polarized microwave drives [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The time-evolution operators of ˆHd, ˆR (t) = e−i ˆ Hdt (see Methods), show that one can induce Rabi oscillations between |0⟩ and |1⟩ for right cir- cularly polarized drives and |0⟩ ↔ |−1⟩ for left circular polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Linearly polarized drives allow to drive transitions between |0⟩ and both |±1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' MW Pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='Electrode3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (a) FID-variations to extract ξ⊥, φE and ξz through subsequent pulse sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Here Tπ (Tπ/2) is the duration of the microwave pulse such that a π-pulse (π/2-pulse) is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Subscripts ± denote circularly polarized drives which cause oscillations between |0⟩ and either |1⟩ or |−1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Subscript 0 denotes linear polarization of the drive and the free evolution is described through ˆF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (b) FIDξ⊥ for different magnetic fields up to βz = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='7 MHz, corresponding to Bz = 1 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' For βz = 0 the signal has the highest contrast with the lowest frequency of oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (c) Fourier transform of FIDξ⊥,ξz with Ω = 10 MHz and Ex,y,z = 10 V/µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Only for T ∗ 2 > 10 µs the peaks at ξ⊥ ± ξz = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='04 MHz and 2ξ⊥ can be resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' In absence of microwave drives, the |±1⟩ states are symmetrically mixed by ξ⊥ and axial electric fields ef- fectively shift |0⟩ from |±1⟩, which can be seen from ˆF (τ) = e−i ˆ H0τ (see Methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As axial and transverse electric fields thus act differently on the |ms = 0, ±1⟩ states of the NV-center, one can derive variations of the Free Induction Decay (FID), which allow to extract these electric field components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Measurement of electric field components The FID consists of two microwave pulses separated by a free evolution period τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Electric field contributions ξ⊥, φE and ξz can be sensed through FID-variations, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The NV-center can be initialized into its |0⟩ state via excitation with green laser light, fol- lowed by intersystem-crossing [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' This state can then be driven to −i |1⟩ through a right-polarized π-pulse, de- noted as ˆR (Tπ)+, and will be influenced by both axial magnetic as well as transverse electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The latter induce mixing with |−1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By using a microwave π-pulse with the same polarization as the initial one, the trans- ferred population from |1⟩ to |−1⟩ can be obtained from the FID-signal FIDξ⊥ (τ) = | ⟨0| ˆR (Tπ)+ ˆF (τ) ˆR (Tπ)+ |0⟩ |2 = cos2 � τ � β2z + ξ2 ⊥ � + β2 z β2z + ξ2 ⊥ sin2 � τ � β2z + ξ2 ⊥ � , (5) which is a measure of the population which has been transferred from |1⟩ to |−1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2(b) one can see this FID-signal as a function of the free evolution time τ for βz values up to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='8 MHz, which corresponds to Bz = 1 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Besides having a decreased contrast for βz ̸= 0, the frequency � β2z + ξ2 ⊥ of the FID-oscillations depends on both axial magnetic and transverse electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' It is therefore strongly recommended to perform the measure- ments in a magnetically shielded environment, for exam- ple by a µ-metal as in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' In the following it will be assumed that all measurement are performed without any magnetic field being present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The transverse electric field components are uniquely defined through φE, as ξx = ξ⊥ cos φE and ξy = ξ⊥ sin φE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A superposition state −eiπ/4 (|1⟩ + |−1⟩) / √ 2 generated through a linearly polarized π-pulse (consid- ered via ˆR (Tπ)0, see Methods) will additionally to ξ⊥ also be affected by φE as this phase differs in its sign for |1⟩ and |−1⟩ (see Methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' If either |1⟩ or |−1⟩ is projected to |0⟩ through the final microwave pulse, one obtains an FID-signal, which both depends on ξ⊥ and φE, FIDφE,ξ⊥ (τ) = 1 2 (1 − sin (2τξ⊥) sin φE) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (6) One can obtain φE as the relative fraction between the value of the FID-signal at τ = 0 and its first maxima at 2τξ⊥ = π/2, FIDφE,ξ⊥ � τ = π 2 1 2ξ⊥ � FIDφE,ξ⊥ (τ = 0) = 1 − sin φE .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (7) By using FIDξ⊥ and FIDξ⊥,φE, it is therefore possible to not only determine the electric field’s transverse compo- nent, but also to obtain the projection onto the x and y axes, which are determined through φE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Axial electric field contributions ξz cause a Stark shift between |0⟩ and |±1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A superposition state (|0⟩ − i |−1⟩) / √ 2 generated by a circularly polarized π/2-pulse (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2(a)) will therefore be affected both by ξz and ξ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' If the final microwave π/2-pulse has the same polarization as the initial one, an FID-signal is ob- tained which depends both on ξ⊥ and ξz, FIDξz,ξ⊥ (τ) = 1 4 � 1 − 2 cos (τξ⊥) cos (τξz) + cos2 (τξ⊥) � , (8) if the NV-center was driven with ωd = D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The Fourier 4 transform of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (8) (see Methods), � FID (ω > 0) = π 4 �1 2δ (2ξ⊥ − ω) − δ (ξ⊥ + ξz − ω) − δ (ξ⊥ − ξz − ω) � , (9) shows, that ξz can be measured if it is possible to spec- trally resolve ξ⊥ ± ξz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' To study this, we numerically [34, 35] simulated FIDξz,ξ⊥ and included dephasing at rates 1/T ∗ 2 through a Lindblad operator � 1/T ∗ 2 Sz for T ∗ 2 in the range up to 15 µs (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' One can re- solve ξ⊥±ξz for nanodiamonds with T ∗ 2 > 10 µs, which is higher than the value of typical nanodiamonds [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' For a nanodiamond with T ∗ 2 ≈ 15 µs it would be possible to distinguish between ξ⊥ and ξz and therefore to determine the projection of the electric field onto the symmetry axis of the NV-center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' INFLUENCE OF FLUCTUATING ELECTRIC FIELDS It can be assumed that the ions surrounding the nan- odiamond will not stay static for the timescales in which measurements are performed but will be subject to, for instance, drift and diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' These fluctuations will affect the electric field inside the nanodiamond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Due to the limited T ∗ 2 of nanodiamonds, the FID pulse se- quences as introduced before will be mainly suitable for the measurement of the average electric fields (see Meth- ods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The coherence time of a nanodiamond can be significantly prolonged if instead of an FID, a Hahn- Echo pulse sequence is used [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As it is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3(a), we propose a modified version of the Hahn- Echo, where after the first free evolution interval, a π- pulse with right-circular polarization is performed, be- fore the spin is allowed to precess freely during a sec- ond free evolution interval τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Before being read out, a right-circularly polarized π-pulse is applied, which leads to a signal Hahn (τ) = (1 − cos (2τξ⊥))2 /4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Simulations of this Hahn-Echo variation show that the averages (see Methods for an example) can be fit by ⟨Hahn (τ)⟩ = 1 4 � 1 − cos (2τξ⊥) e−τ/T2�2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (10) Here T2 is the sum of the intrinsic spin coherence time T2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' = 100 µs [25] and a contribution due to the fluc- tuating electric fields, 1 T2 = 1 T2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' + 1 T2,E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (11) In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3(b), one can see T2 as a function of the electric field’s standard deviation σE, where solid lines are T2,E = αEm/σ2 E in terms of a fit parameters α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The total spin coherence time is therefore strongly affected by σE and the mean electric field value Em.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' If the mean transverse electric field has been sensed by the FID sequence as shown in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (5), it is therefore possible to derive the electric field’s standard deviation, which together with ξ⊥, φE and ξz defines the electric field distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As there is a direct relationship between σE and the local ionic concentration (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(c)), the proposed Hahn- echo pulse sequence additionally allows to use the NV- center inside the nanodiamond as a local concentration sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (a) Hahn-echo pulse sequence used to simulate Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (b) Total T2 for numerically [34, 35] simulated Hahn-Echoes with T2,int = 100 µs, with the electric field com- ponents sampled from a normal distribution with mean Em and standard deviation σE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' For the simulations a drive of Ω = 10 MHz was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Solid lines are fits of αEm/σ2 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Every trajectory was obtained from 1000 individual simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Er- ror bars of one standard deviation are smaller than the data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' CONCLUSION AND OUTLOOK In conclusion we have shown here a full reconstruc- tion of the mean electric field generated in a liquid elec- trolyte, through the spin control of a quantum sensor immersed in the electrolyte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' We have found exact ex- pressions correlating the electric field components with the free-induction decay of the sensor spin, and the de- pendence of the variance on the spin-echo measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Together we were able to deduce the electric field distri- bution and also measure the local ionic concentration, a key parameter in characterizing the performance of the liquid electrolyte for battery applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' We envisage that with improved modeling of the electric field distribu- tion in liquid electrolytes and using better quantum con- trol methods, for example using correlation spectroscopy [37], we could enhance the sensitivity of the sensor to the local electric-field environment, allowing for an in-situ monitoring of the battery using the liquid electrolyte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' ACKNOWLEDGMENTS R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' would like to acknowledge financial support by the Federal Ministry of Education and Research (BMBF) 5 project QMNDQCNet and DFG (Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 507241320 and 46256793).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' would like to acknowledge the funding support from BMBF (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 16KIS1590K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' is the incumbent of the Elaine Blond Career Development Chair and acknowledges sup- port from Israel Science Foundation (ISF grants 963/19 and 418/20) as well as the Abramson Family Center for Young Scientists and the Willner Family Leadership In- stitute for the Weizmann Institute of Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Diouf and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Pode, “Potential of lithium-ion batteries in renewable energy,” Renewable Energy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 76, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 375– 380, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Di Lecce, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Verrelli, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hassoun, “Lithium- ion batteries for sustainable energy storage: recent ad- vances towards new cell configurations,” Green Chem- istry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 15, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3442–3467, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jaiswal, “Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analy- sis,” Renewable and Sustainable Energy Reviews, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 72, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 922–934, May 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Harper, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sommerville, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kendrick, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Driscoll, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Slater, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Stolkin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Walton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Christensen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hei- drich, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Lambert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Abbott, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ryder, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Gaines, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Anderson, “Recycling lithium-ion batteries from elec- tric vehicles,” Nature, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 575, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 75–86, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Meng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Srinivasan, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Xu, “Designing better electrolytes,” Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 378, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' eabq3750, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [6] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Meda, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Lal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' M, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Garg, “Solid Electrolyte Interphase (SEI), a boon or a bane for lithium batter- ies: A review on the recent advances,” Journal of Energy Storage, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 47, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 103564, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Edge, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' O’Kane, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Prosser, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kirkaldy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Patel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hales, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ghosh, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Pang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bravo Diaz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Tomaszewska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Marzook, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Radhakrishnan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Pa- tel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Offer, “Lithium ion battery degra- dation: what you need to know,” Physical Chemistry Chemical Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 14, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 8200–8221, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Klett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Giesecke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nyman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hallberg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Lindstr¨om, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Lindbergh, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Fur´o, “Quantifying Mass Transport during Polarization in a Li Ion Battery Electrolyte by in Situ 7 Li NMR Imaging,” Journal of the American Chemical Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 134, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 14654–14657, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Krachkovskiy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bazak, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Werhun, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bal- com, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Halalay, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Goward, “Visualization of Steady-State Ionic Concentration Profiles Formed in Electrolytes during Li-Ion Battery Operation and De- termination of Mass-Transport Properties by in Situ Magnetic Resonance Imaging,” Journal of the American Chemical Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 138, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 7992–7999, June 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hall, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Cole, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hill, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hollenberg, “Sensing of Fluctuating Nanoscale Magnetic Fields Using Nitrogen-Vacancy Centers in Diamond,” Physical Review Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 103, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 220802, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Steinert, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ziem, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hall, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zappe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Schweik- ert, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' G¨otz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Aird, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Balasubramanian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hollen- berg, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, “Magnetic spin imaging under ambient conditions with sub-cellular resolution,” Nature Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1607, June 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Luan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Grinolds, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hong, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Maletinsky, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Walsworth, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Yacoby, “Decoherence imaging of spin ensembles using a scanning single-electron spin in dia- mond,” Scientific Reports, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 8119, July 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Agarwal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Schmidt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Halperin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Oganesyan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zar´and, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Lukin, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Demler, “Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems,” Physical Review B, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 95, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 155107, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [14] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Balasubramanian, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Neumann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Twitchen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Markham, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kolesov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Mizuochi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Isoya, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Achard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Tissler, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jacques, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hem- mer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, “Ultralong spin co- herence time in isotopically engineered diamond,” Nature Materials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 383–387, May 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Webb, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Clement, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Troise, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ahmadi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Johansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Huck, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Andersen, “Nanotesla sen- sitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer,” Applied Physics Let- ters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 114, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 231103, June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wolf, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Neumann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nakamura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sumiya, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ohshima, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Isoya, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, “Subpicotesla Diamond Magnetometry,” Physical Review X, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 041001, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [17] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dolde, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Fedder, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Doherty, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' N¨obauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Rempp, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Balasubramanian, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wolf, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Reinhard, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hollenberg, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, “Electric-field sensing using single diamond spins,” Na- ture Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 459–463, June 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bian, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zheng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Chen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' St¨ohr, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Denisenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jiang, “Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient con- dition,” Nature Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 12, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2457, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Michl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Steiner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Denisenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' B¨ulau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zim- mermann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nakamura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sumiya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Onoda, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Neu- mann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Isoya, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, “Robust and Accurate Electric Field Sensing with Solid State Spin Ensembles,” Nano Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 19, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 4904–4910, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [20] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dolde, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Doherty, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Michl, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jakobi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nay- denov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Pezzagna, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Meijer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Neumann, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Manson, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, “Nanoscale Detection of a Single Fundamental Charge in Ambient Conditions Using the NV - Center in Diamond,” Physical Review Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 112, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 097603, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [21] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Mittiga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hsieh, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kobrin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Machado, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bhattacharyya, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Rui, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jarmola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Choi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bud- ker, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Yao, “Imaging the local charge environ- ment of nitrogen-vacancy centers in diamond,” Physical Review Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 121, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 246402, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [22] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dinani, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Mu˜noz, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Maze, “Sensing elec- trochemical signals using a nitrogen-vacancy center in diamond,” Nanomaterials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 11, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 358, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Liu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Chimtali, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='-b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Huang, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='-b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zhang, “Structures and dynamic properties of the LiPF 6 elec- trolytic solution under electric fields – a theoretical 6 study,” Physical Chemistry Chemical Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 24, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 13186–13193, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Marcinek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Syzdek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Marczewski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Piszcz, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Niedzicki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kalita, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Plewa-Marczewska, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Bit- ner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wieczorek, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Trzeciak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kasprzyk, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' �L¸e˙zak, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zukowska, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zalewska, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wieczorek, “Elec- trolytes for Li-ion transport – Review,” Solid State Ion- ics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 276, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 107–126, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [25] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wood, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Stimpson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' March, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Lekhai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Stephen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Green, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Frangeskou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Gin´es, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Mandal, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Williams, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Morley, “Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds,” Physical Review B, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 105, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 205401, May 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [26] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Misonou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sasaki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ishizu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Monnai, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Itoh, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Abe, “Construction and operation of a tabletop system for nanoscale magnetometry with single nitrogen- vacancy centers in diamond,” AIP Advances, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 10, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 025206, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [27] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Maertz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wijnheijmer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Fuchs, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nowakowski, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Awschalom, “Vector magnetic field microscopy using nitrogen vacancy centers in dia- mond,” Applied Physics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 96, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 092504, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Loubser and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' van Wyk, “Electron spin resonance in the study of diamond,” Reports on Progress in Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 41, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1201–1248, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [29] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Van Oort and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Glasbeek, “Electric-field-induced modulation of spin echoes of N-V centers in diamond,” Chemical Physics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 168, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 529–532, May 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [30] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Abe and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sasaki, “Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry,” Journal of Applied Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 123, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 161101, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' London, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Balasubramanian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Naydenov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' McGuinness, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, “Strong driving of a single spin using arbitrarily polarized fields,” Physical Review A, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 90, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 012302, July 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Doherty, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Manson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Delaney, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hollenberg, “The nitrogen- vacancy colour centre in diamond,” Physics Reports, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 528, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1–45, July 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [33] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wan, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Liu, “Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond,” Nature Nanotechnology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 242–246, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Johansson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nation, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nori, “QuTiP: An open-source Python framework for the dynamics of open quantum systems,” Computer Physics Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 183, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1760–1772, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Johansson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nation, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nori, “QuTiP 2: A Python framework for the dynamics of open quantum systems,” Computer Physics Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 184, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1234–1240, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [36] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Knowles, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Kara, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Atat¨ure, “Observ- ing bulk diamond spin coherence in high-purity nanodia- monds,” Nature Materials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 21–25, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Laraoui, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dolde, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Burk, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Reinhard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Meriles, “High-resolution corre- lation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond,” Nature Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1651, June 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1 Quantum sensing of electric field distributions of liquid electrolytes with NV-centers in nanodiamonds - Supplementary Information I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' ELECTRIC FIELD AT CENTER OF NANODIAMOND In the following we would like to deduce the electric field of a single point charge q at a distance b from the origin of the nanodiamond with radius rND by following Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Poisson’s equation describes the electrostatic potential Φ, ∇2Φ (r) = −ρ (r) ϵ , (S1) where ϵ = ϵ0ϵi, i = e, ND is the permittivity of, respectively, the electrolyte and the nanodiamond in terms of the vacuum permittivity ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By exploiting azimuthal symmetry of the problem, the above expression reduces to Laplace’s equation for r ̸= b, which in spherical coordinates with |r| = r and θ the angle spanned by r and b is ∇2Φ (r, θ) = 1 r2 ∂ ∂r � r2 ∂Φ ∂r � + 1 r2 sin θ ∂ ∂θ � sin θ∂Φ ∂θ � = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S2) The general solution of this partial differential equation can be expressed in terms of the associated Legendre poly- nomials Pl of order l and in terms of two constants Al and Cl as [S1, S2] Φ (r, θ) = ∞ � l=0 � Alrl + Cl 1 rl+1 � Pl (cos θ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S3) As the potential inside the nanodiamond must be finite at r = 0, Cl needs to vanish and one therefore has ΦND (r, θ) = ∞ � l=0 AlrlPl (cos θ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S4) By using that 1/|r − b| = �∞ l=0 � rl � Pl (cos θ) [S1, S2] with r≷ being the greater (smaller) of |r| and |b|, one can derive the potential in the electrolyte without discontinuity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' without nanodiamond, to be ˜Φe (r, θ) = q 4πϵ0ϵe ∞ � l=0 rl < rl+1 > Pl (cos θ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S5) The general solution would then be given as a superposition of this expression with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Φe = ˜Φe + Φ, which reads Φe (r, θ) = ∞ � l=0 � Cl 1 rl+1 + q 4πϵ0ϵe rl < rl+1 > � Pl (cos θ) , (S6) where it was used that in this case Al = 0 to ensure a vanishing potential at infinite distances to the origin, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Φe → 0 for r → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The constants Al and Cl, which enter into, respectively, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S4) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S6), can be determined by requiring continuity at the interface between electrolyte and nanodiamond, � ϵeEe − ϵNDEND� nND = 0 (S7) � Ee − END� × nND , (S8) where nND = r/r is the unit vector normal to the surface of the nanodiamond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' These boundary conditions are satisfied, if Al = q 4πϵ0ϵe 1 bl+1 ϵe (2l + 1) ϵNDl + ϵe (l + 1) (S9) Cl = q 4πϵ0ϵe lr2l+1 ND bl+1 ϵe − ϵND ϵNDl + ϵe (l + 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S10) 2 The electrostatic potential inside the nanodiamond therefore is ΦND (r, θ) = q 4πϵ0ϵe ∞ � l=0 1 bl+1 ϵe (2l + 1) ϵNDl + ϵe (l + 1)rlPl (cos θ) (S11) and the electric field at the center, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' for r = 0, can be calculated as E (r = 0, θ) = q 4πϵ0 3 2ϵe + ϵND b b3 , (S12) if it is used that in cartesian coordinates one has ez = cos θer − sin θeθ with ez the azimuthally symmetric unit vector and er and eθ the radial and altitudinal unit vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Electric field variance The probability of an ion to be located at b witin a sphere of radius R around the nanodiamond is p (b) = � 3 4π 1 R3−r3 ND , rND ≤ b ≤ R 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S13) It can be easily verified that this distribution is normalized, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � R3 d3b p (b) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Direct calculation reveals ⟨Ez⟩ = 0 and therefore σ2 Ez,ion = ⟨E2 z⟩ = 9q2 (4πϵ0)2 1 (2ϵe + ϵND)2 1 R3 − r3 ND � 1 rND − 1 R � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S14) Under the assumption that the electric fields generated by the single ions are uncorrelated, the total fluctuations are given by multiplying the above expression with the number of ions inside the sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The standard deviation σ2 Ez = cNAV σ2 Ez,ion of the electric field components with NA Avogadro’s number, c the molar ionic concentration and V the volume in which the ions reside therefore is σEz = |q| ϵ0 (2ϵe + ϵND) � 3NA 4π � c � 1 rNV − 1 R � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S15) From this it can be seen that the expected electric field fluctuations increase with the molar concentration, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' σEz ∝ √c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' HAMILTONIAN IN ROTATING FRAME As derived by Doherty et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S3], the Hamiltonian of the NV-center in presence of axial magnetic fields Bz and electric field components Ei with i = x, y, z and ℏ = 1 is ˆHNV = � D + d∥Ez � ˆS2 z + γeBz ˆSz + d⊥ � Ex � ˆS2 y − ˆS2 x � + Ey � ˆSx ˆSy + ˆSy ˆSx �� , (S16) with γe = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='8 MHz/G the NV’s gyromagnetic ratio [S4] and d∥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='35 Hz · cm/V and d⊥ = 17 Hz · cm/V the axial and transverse dipole moments [S5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By rewriting this Hamiltonian in terms of its frequency contributions βz = γeBz, ξz = d∥Ez and ξ⊥ = d⊥ � E2x + E2y and by introducing the electric field polarization φE, which defines the transverse electric field projections via ξx = ξ⊥ cos φE and ξy = ξ⊥ sin φE, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S16) can be rewritten as ˆHNV = (D + ξz) ˆS2 z + βz ˆSz − ξ⊥ 2 � eiφE ˆS2 + + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � , (S17) where ˆS± = ˆSx ± i ˆSy are spin-1 ladder-operators and h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' means the hermitian conjugate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3 The NV-center can be driven by perpendicular (compared to the NV’s symmetry axis) microwave magnetic fields of amplitude Ω = γeBd and frequency ωd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' To exert polarized drives onto the NV-center, two wires which are perpendicular to each other (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1(a) main text) are operated with a phase φ between each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' This drive can be described by an Hamiltonian [S6] ˆHd (t) = Ω � ˆSx cos (ωdt) + ˆSy cos (ωdt + φ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S18) Defining phase-factors ϵ± (φ) = � 1 − ie∓iφ� /2, similarly to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S6], allows to compactly account for different polarizations as ϵ+ = 1 only if φ = −π/2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' right-circular polarization) and ϵ− = 1 for left-circular polarized microwave fields (φ = +π/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By transforming ˆHNV + ˆHd (t) into a frame oscillating with ωd through the unitary U = eiωdS2 z, one can derive the Hamiltonian under the rotating-wave approximation, which is ˆH = ˆH0 + ˆHd ˆH0 = (∆ + ξz) ˆS2 z + βz ˆSz − ξ⊥ 2 � eiφE ˆS2 + + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � ˆHd = Ω √ 2 (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=') .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S19) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Derivation of time-evolution operators To allow for the efficient calculation of pulse-sequences, time evolution operators of the free evolution ˆF (τ) and the drive ˆR (T) will be derived in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Free Evolution A possible set of eigenstates of ˆH0 is {|0⟩ , |+⟩ , |−⟩} with |+⟩ = cos θ 2eiφE/2 |1⟩ + sin θ 2e−iφE/2 |−1⟩ |−⟩ = sin θ 2eiφE/2 |1⟩ − cos θ 2e−iφE/2 |−1⟩ , (S20) where tan θ = −ξ⊥/βz, with corresponding eigenenergies ω0 = 0 and ω± = ∆ + ξz ± � β2z + ξ2 ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The time evolution operator of ˆH0 is ˆF (τ) = � i={0,±} e−iωiτ |i⟩ ⟨i|, where the sum is performed over all eigenstates of ˆH0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' In the basis of {|0⟩ , |±1⟩} this is ˆF (τ) = |0⟩ ⟨0| + e−iτ(∆+ξz)� iξ⊥ x sin (τx) � eiφE |1⟩ ⟨−1| + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � + � cos (τx) − iβz x sin (τx) � |1⟩ ⟨1| + � cos (τx) + iβz x sin (τx) � |−1⟩ ⟨−1| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S21) Here the frequency of oscillation has been defined as x = � β2z + ξ2 ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Microwave Drive To derive operators which describe the action of the microwave pulses, it will be assumed that these pulses exceed all other frequency scales in magnitude, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Ω ≫ ∆, βz, ξz, ξ⊥, such that ˆH ≈ Ω √ 2 ˆ� Hd with ˆ� Hd = 4 (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' By noting that ˆ� H 3 d = ˆ� Hd, the time evolution ˆR (t) = e−it ˆ Hd = ∞ � k=0 � −itΩ √ 2 �n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � ˆ� Hd �n , (S22) can be calculated as ˆR (t) = |1⟩ ⟨1| � 1 − |ϵ+|2� + |−1⟩ ⟨−1| � 1 − |ϵ−|2� − ϵ+ϵ− |1⟩ ⟨−1| − ϵ∗ +ϵ∗ − |−1⟩ ⟨1| + cos � tΩ √ 2 � � |0⟩ ⟨0| + |ϵ+|2 |1⟩ ⟨1| + |ϵ−|2 |−1⟩ ⟨−1| + ϵ+ϵ− |1⟩ ⟨−1| + ϵ∗ +ϵ∗ − |−1⟩ ⟨1| � − i sin � tΩ √ 2 � (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=') .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S23) Depending on the polarization, one can induce Rabi oscillations between |0⟩ and either |−1⟩ for φ = π/2 (denoted as ˆR+) or |+1⟩ (φ = −π/2, ˆR−), ˆR (t)± = |∓1⟩ ⟨∓1| + cos � Ωt √ 2 � � |0⟩ ⟨0| + |±1⟩ ⟨±1| � − i sin � Ωt √ 2 � � |0⟩ ⟨±1| + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S24) The system can be driven to both |±1⟩, if a linearly polarized drive is used, R (t)0 = 1 2 (|1⟩ ⟨1| + |−1⟩ ⟨−1| + i |1⟩ ⟨−1| − i |−1⟩ ⟨1|) + cos � tΩ √ 2 � � |0⟩ ⟨0| + 1 2 (|1⟩ ⟨1| + |−1⟩ ⟨−1| − i |1⟩ ⟨−1| + i |−1⟩ ⟨1|) � − 1 + i 2 sin � tΩ √ 2 � (|0⟩ ⟨−1| + |1⟩ ⟨0| + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=') .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S25) The last expression can similarly be compactly written by noting that (1 ± i) /2 = e±iπ/4/ √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' These operators can then be used to describe the action of (polarized) π- and π/2-pulses onto the |ms = 0, ±1⟩-states of the NV-center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' FOURIER TRANSFORMATION OF FID-SIGNAL Some arbitrary signals f and ˜f in time- and frequency-domain are connected to each other as ˜f (ω) = FT [f (τ)] = � +∞ −∞ dτ f (τ) e−iωτ FT−1 � ˜f (ω) � = 1 2π � +∞ −∞ dω ˜f (ω) eiωτ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S26) To simplify the calculation of the Fourier transformed FID-signal, one can rewrite FIDξ⊥,φE (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (6) main text) as FIDξz,ξ⊥ (τ) = 1 4 �3 2 + 1 2 cos (2τξ⊥) − cos (τ [ξ⊥ + ξz]) − cos (τ [ξ⊥ − ξz]) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S27) From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S26), one sees that FT [cos (τx)] = π [δ (x − ω) + δ (x + ω)] and therefore � FID (ω) = π 4 �3 2δ (ω) + 1 2 [δ (2ξ⊥ − ω) + δ (2ξ⊥ + ω)] − [δ (ξ⊥ + ξz − ω) + δ (ξ⊥ + ξz + ω)] − [δ (ξ⊥ − ξz − ω) + δ (ξ⊥ − ξz + ω)] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S28) 5 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' SIMULATED PULSE SEQUENCES FOR NORMALLY DISTRIBUTED ELECTRIC FIELDS FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Simulated expected FID-values of FIDξ⊥ (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (5) main text), calculated from 500 individual FID-simulations with drive amplitude of Ω = 10 MHz, intrinsic T ∗ 2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' and electric field components sampled from a normal distribution with mean Em and standard deviation σE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dephasing is considered through a Lindblad-Operator � 1/T ∗ 2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='Sz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' For both mean electric field values of (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='0 V/µm and (b) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='0 V/µm, it is not possible to resolve ξ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' To understand how fluctuating electric fields alter the FID-signal, we numerically [S7, S8] simulated FIDξ⊥ (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (5) main text) for normally distributed electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hereby, at every timestep at which the time-evolution is calcuated, the electric field components are passed from a beforehand sampled normal distribution with mean Em and standard deviation σE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' It can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S1 that the average FIDξ⊥ signal decays rapidly to its steady-state value of 1/2, which is due to the short T ∗ 2 time of 1 µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' For this reason it is proposed to use the Hahn-Echo pulse sequence for measurements of strongly fluctuating electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 0 50 100 150 200 τ in µs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='8 ⟨Hahn (τ)⟩ Sim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Fit FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Example of the average Hahn-echo signal, which was obtained numerically from 1000 individual simulations of the pulse sequence shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3(a) (main text) with a mean electric field value of Em = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='0 V/µm, standard deviation σE = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='75 V/µm, drive amplitude Ω = 10 MHz and intrisic T2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' = 100 µs together with the fit following Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (10) (main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' The total T2 value obtained from this fit is T2 = (39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='87 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content='86) µs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' As described in the main text, the numerically obtained Hahn-echo trajectories (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S2 for an example) are well fitted by ⟨Hahn (τ)⟩ = 1 4 � 1 − cos (2τξ⊥) e−τ/T2�2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Here both the intrinsic T2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' = 100 µs and T2,E due to fluctuating elecric fields contribute to the total T2 via 1 T2 = 1 T2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' + 1 T2,E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S29) The latter can be fitted in terms of Em and σE via T2,E = αEm σ2 E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S30) The values of the fit parameter α can be found in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 6 1 2 Em in V/µm 30 35 40 α FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Fit parameter α, obtained by numerically fitting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S29) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' (S30) with T2,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' = 100 µs to the data from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 3 (main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Messina, “Image charges in spherical geometry: Application to colloidal systems,” The Journal of Chemical Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 117, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 24, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 11062-11074, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jackson, “Klassische Elektrodynamik,” De Gruyter, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Doherty, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Dolde, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Fedder, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Wrachtrup, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Manson, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Hollenberg, “Theory of the ground-state spin of the NV center in diamond,” Physical Review B, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 85, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 20, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 205203, May 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Abe and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Sasaki, “Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond - microwave engineering, materials science, and magnetometry,” Journal of Applied Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 123, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 16, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 161101, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Van Oort and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Glasbeek, “Electric-field induced modulation of spin echoes of N-V centers in diamond,” Chemical Physics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 168, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 529-532, May 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' London, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Balasubramanian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Naydenov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' McGuiness, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Jelezko, “Strong driving of a single spin using arbitrarily polarized fields,” Physical Review A, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 90, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 012302, July 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Johansson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nation, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nori, “QuTiP: An open-source Python framework for the dynamics of open quantum systems,” Computer Physics Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 183, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1760-1772, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' [S8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Johansson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nation, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' Nori, “QuTiP 2: A Python framework for the dynamics of open quantum systems,” Computer Physics Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 184, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 1234-1240, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tE3T4oBgHgl3EQfSAk3/content/2301.04427v1.pdf'} diff --git a/99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf b/99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..44de419ffdf9adb7cd45c5057f89922596c0031d --- /dev/null +++ b/99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1f20ad216a560d2b0666d9c88e4f4f2578b43ea93de7f4bd4ba17061504e504 +size 502938 diff --git a/99A0T4oBgHgl3EQfO__U/vector_store/index.faiss b/99A0T4oBgHgl3EQfO__U/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..6b0e4ba53cd55a9194503eb0fcfc8f6ef1e77f7d --- /dev/null +++ b/99A0T4oBgHgl3EQfO__U/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:07fbf523691c679eb4d95d32e256bd3015c74ffc0d78ff815d5c7d66fb3998b2 +size 7798829 diff --git a/9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf b/9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ae5b654a967939dc3827612d3926f58d2c6d5033 --- /dev/null +++ b/9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:624a56b4844611187e782f5f4cbc45ccfcc3ddf83b7464f01c3dd9be673f4ae8 +size 299893 diff --git a/9NE4T4oBgHgl3EQfdgy1/vector_store/index.pkl b/9NE4T4oBgHgl3EQfdgy1/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..62c13904e28019ba014d0ddf81a3719b1dc79d79 --- /dev/null +++ b/9NE4T4oBgHgl3EQfdgy1/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3810c81325f13cbe1c0669c77fb2bf8a119e973999c5ed76d59a6bd7b462eaf +size 152679 diff --git a/9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/2301.03540v1.pdf.txt b/9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/2301.03540v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4297f2ceb756abf8054a5f3716aaf899220575d5 --- /dev/null +++ b/9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/2301.03540v1.pdf.txt @@ -0,0 +1,1008 @@ +3D ZEROS IN ELECTROMAGNETIC FIELDS +Alex J. Vernon1†, Mark R. Dennis2‡, and Francisco J. Rodr´ıguez-Fortu˜no1∗ +1Department of Physics and London Centre for Nanotechnology, King’s College London, +Strand, London WC2R 2LS, UK +2School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK +†alexander.vernon@kcl.ac.uk +‡m.r.dennis@bham.ac.uk +∗francisco.rodriguez fortuno@kcl.ac.uk +Abstract. We present a study of 3D electromagnetic field zeros, uncovering their re- +markable characteristic features and propose a classifying framework. These are a spe- +cial case of general dark spots in optical fields, which sculpt light’s spatial structure into +matter-moving, information-rich vortices, escape the diffraction limit for single-molecule +imaging, and can trap particles for nanoscale manipulation. Conventional dark spots +are two-dimensional in two aspects: localised in a plane and having a non-zero out-of- +plane field component. We focus on non-paraxial fields, where three-dimensional dark +spots can exist non-stably at fully localised points, making distinct imprints in the flux +of energy and momentum, and in the light’s polarisation texture. With this work, we +hope to enhance current dark spot applications, or inspire new ones impossible with +lower-dimensional zeros. +1. Introduction +An optical vortex is the name commonly given to a zero in a complex scalar field, such +as a component of the electric E or magnetic H field. Vortices in these components occur +naturally in general 3D monochromatic interference [1], where they are infinitely thin con- +tinuous strands either extending infinitely through space, or coiled into knotted, un-knotted +or linked closed loops [2]–[5]. On a vortex strand, the phase of the complex scalar field (with +zero real and imaginary parts) is undefined creating circulation in the phase of the rest of the +field. This phase increases in a clockwise or anti-clockwise sense by an integer multiple of 2π +along any closed loop containing one vortex line. Vortex lines in optics have direct analogues +in acoustics and water waves, and as a type of topological defect, are related to vortices in +(super)fluids [6] and in Bose-Einstein condensates [7], and even cosmic strings [8]. Strong +research interest in optical vortices over the past 30 years, combined with the availability +of instruments and the flexibility in generating [9]–[12] and structuring [13] vortex-carrying +beams, has positioned optics to act as a sandbox for exploring topological phenomena that +appear more broadly across physics. +When considering the full 3D vector characteristics of an optical field, vortex lines in +individual field components like Ex, Ey, and Ez are basis-dependent and not so physically +meaningful. By picturing these different scalar vortex threads permeating the vector field, +we can appreciate how unlikely it is that the optical field is zero at a point (i.e. E = 0, all +1 +arXiv:2301.03540v1 [physics.optics] 9 Jan 2023 + +2 +3D ZEROS IN ELECTROMAGNETIC FIELDS +three components simultaneously zero) in typical 3D interference (the vortex line in each of +the three field components would meet at such a zero point, requiring the manipulation of +three extra parameters beyond the spatial x, y, z). Despite the rarity of zeros in the wild, a +lower-dimensional version can be readily manufactured in optical beams, and is remarkably +well-studied. Paraxial doughnut beams have an axial zero in the transverse field surrounded +by a bright ring, and are used in modern spectroscopy techniques [14], [15] because of the +zero’s immunity to the diffraction limit. The transverse field effectively consists of one or +two scalar components with the vortex line along the beam axis, causing the real part of +the local wavevector to curl around the axis and imbue the beam with intrinsic orbital an- +gular momentum. The longitudinal field, meanwhile, is non-zero (albeit very small due to +paraxiality) in the centre of the beam which, therefore, is better imagined not as an exact +axial zero, but as a dim line of linear polarisation (an L line) polarised parallel to the beam +direction. This, and its confinement in only two dimensions, stretching along the third, is +why we refer to the almost-dark centre of the doughnut beam as a two-dimensional zero. +Its topological index is straightforward to define by counting how many multiples of 2π the +phases of the transverse components climb through over an enclosing circuit. The intrinsic +orbital angular momentum carried by doughnut beams is the key property of the spatial +structure of light that can rotate matter [16], [17] and store information [18]–[20]. +Surprisingly, the fully localised, three-dimensional optical field zero, E = 0, has been left +largely unexplored. This is probably due to its unstable nature—a perturbation will destroy +the zero point (i.e. cause the vortices in the three components no longer to coincide). Never- +theless, such a point is theoretically possible and can be artificially synthesised [21], but very +little is understood about how it is imprinted into the surrounding field, and there is no clas- +sifying topological index like the topological charge of a 2D vortex. The 3D electromagnetic +field zero is the focus of this work. A zero in the E-field alone has codimension 6, requiring +that the six total degrees of freedom of two real, three-dimensional vectors (the real and +imaginary parts of the three components E) are suppressed simultaneously. This means 3D +zeros exist stably in a six-dimensional parameter space, and is why optical field zeros are +not natural in random interference patterns spanning only three spatial dimensions, being +hidden by instability. Instead, 3D zeros must be revealed by tuning an additional three +parameters (this is discussed in [22] for a zero in two electric field components). Some of +these parameters could be the polarisation components of a plane wave, for example, and in +fact, 3D zeros can be very easily manufactured and controlled in pure plane wave interfer- +ence or near fields with a simple technique [21], and their higher dimensional confinement +could provide a greater degree of precision in dark spot spectroscopy. Due to their electric +field dependence, the zero in E is coupled to a collection of singularities, each with its own +topological signature, in various physical quantities associated with the light field includ- +ing the complex Poynting vector, canonical momentum, spin momentum and spin angular +momentum. Learning how energy flow and momentum circulate around a 3D vortex could +inspire applications which would be otherwise unfeasible using typical lower dimensional +zeros. Alternatively, the magnetic field H may vanish at a point, or more extremely, both +E and H might simultaneously vanish, giving a true electromagnetic null with codimension +12. Here, we report the key features of a 3D field electric or magnetic field zero, including +the way that polarisation singularities are forced to intersect and the flux of the complex +Poynting vector and canonical and spin momentum. With these findings, for the first time, +we propose a framework to classify the physically realisable varieties of 3D field zero. + +3D ZEROS IN ELECTROMAGNETIC FIELDS +3 +2. Results +To contextualise our study, we begin with some brief intuition on the special features +which we might expect to find near to a 3D zero. +If either E or H is zero at a point r0, then of that field, say E, the flux of energy, canon- +ical momentum, spin angular momentum (and other quantities) are zero too. Since these +fluxes are vector quantities, their direction is singular at r0 and an imprint is made in the +surrounding space where they are well-defined. In three spatial dimensions, even if these +fluxes are divergence-less, there is more than one possible (topologically unique) imprint +which can be left by and characterise the zero in E. The electric field spin is particularly +interesting, because its zeros (in non-paraxial fields) are co-dimension 2 objects—meaning +they are one-dimensional continuous lines, defining the threads of pure linear electric polar- +isation. This continuity should require at least one zero-spin line, an L line, to pass through +r0. A similar argument can be made for lines of pure circular electric polarisation, except +that C lines are defined by a complex quadratic equation, E · E = 0, equivalent to a real +quartic equation, |E · E|2 = 0, which has either zero, two or four real roots. It turns out, +as we will show, that a given number of C lines and L lines must always intersect in a 3D +electric field zero. Before reporting these and other findings in detail from mathematical +argument and analytical simulations in section 2.3 and beyond, the next two subsections 2.1 +and 2.2 provide an overview of polarisation singularities and set out our way of classifying +3D field zeros using dyadics associated with the field. +2.1. Overview of Polarisation Singularities in Paraxial and Non-Paraxial Fields. +L lines and C lines are called polarisation singularities and are the vector version of scalar +vortex lines in wave fields, existing in light [23]–[25], acoustic and water waves [26] (both +acoustic and water waves have a vector nature [27], [28]) where some property of the general +polarisation ellipse is not defined. In 3D fields, polarisation singularities are often described +as the underlying skeleton which embeds highly complex topologies into the field’s polar- +isation texture [29], [30]. +Polarisation singularities have been studied in full 3D and in +paraxial fields [31], where in paraxial fields (considering only the two transverse field com- +ponents), polarisation is circular at points and linear along lines. Propagating the paraxial +field (maintaining the transverse polarisation) draws out the C points and L lines in the +transverse plane into C lines and L surfaces in three dimensions. +A polarisation ellipse has orthogonal semi-major and semi-minor axes, telling us which +way the ellipse is oriented. But because a polarisation circle has no semi-major or semi- +minor axes, at a C point, the orientation of the circle is undefined causing neighbouring +polarisation ellipses (almost circular) to rotate when tracked along a C point-enclosing loop. +The ellipse major axis is described throughout space with a line field, in that the axis is +oriented some way in space but does not point one way or another—an ellipse looks identi- +cal to its 180 degree rotated self. This means that along the enclosing circuit, the rotating +ellipses turn continuously through an integer multiple of π radians, rather than 2π, which +is why C points are assigned a half-integer index. When the field is fully three dimensional +and the polarisation ellipse is free to tilt in any Cartesian direction, circular polarisation still +occurs along one-dimensional threads (C lines which are no longer straight as in the paraxial +case) but the surrounding polarisation ellipses also twist, so that their major axes sweep out +M¨obius strips [32]–[34]. Analogues of C lines exist in polychromatic fields, shaping the rest +of the field into other remarkable topological structures [35]. + +4 +3D ZEROS IN ELECTROMAGNETIC FIELDS +L lines/L surfaces in paraxial fields (ignoring longitudinal fields) separate regions of left +and right handed polarisation ellipses. +In non-paraxial fields, L lines are strictly one- +dimensional lines (not surfaces) and complement C lines in shaping the surrounding po- +larisation structure. +This reduction of dimension to the L entity occurs because, to be +linearly polarised, the real and imaginary parts of the field (say E = p + iq) need to be +(anti)parallel (not necessarily equal). If E is paraxial and linearly polarised, then in the +transverse plane, the ratio of the x components of p and q must equal the ratio of their y +components—a single condition, dissolving only one degree of freedom of one vector relative +to the other. If E is non-paraxial, then an extra condition accounting for the ratio of the +z components of p and q must be satisfied for linear polarisation [23]. Between paraxial +and full 3D fields, the linear polarisation object’s codimension, which is the dimension of +the electric spin angular momentum field SE minus the dimension of the L line/L surface +which lies in SE, increases from one to two. The spin angular momentum of the field is zero +when linearly polarised, meaning the direction of the normal to the field oscillations cannot +be defined. Drawing a circuit around an L line, the spin vector rotates through 2π radians +in a clockwise or anti-clockwise sense and defines the L line’s topological index. +The characteristics of scalar vortices and C lines and L lines are visualised in Fig. 1. +2.2. Indexing Point-like Singularities. Polarisation singularities occur equally often +among the general polarisation ellipses in E and H fields, and need not coincide with each +other. Phase singularities, C lines and L lines are all indexed by looking at the circulation or +rotation of a scalar or vector quantity around a loop enclosing the singularity of interest [36]. +All three of these singularities are threads in 3D fields, but the winding number concept can +be generalised to higher dimensional singularities and calculated for point-like, 3D vector +singularities via the topological degree. Instead of integrating a quantity associated with +a line singularity around a 1D closed circuit, for isolated singular points in 3D, we should +integrate an appropriate quantity over a closed surface enclosing the point singularity. For +a vector V(rS) on a surface S (rS ∈ S) in 3D real space, for example, the topological de- +gree of rS �→ V (the mapping from the real space surface rS to V) is a calculation of the +integer number of times that every possible direction of V is realised (on a sphere) on all +the points rS on the surface S. As with other kinds of topological singularities in physical +fields, the easiest realised topological degrees (winding numbers) are ±1. Mathematically, a +0, ±1 topological degree is the integral of the determinant of the dyadic D(V) of V over S +divided by A, the area of S, +(1) +deg(V) = 1 +A +� +S +det(D(V))dS. +The dyadic D(V), also called the Jacobian matrix of V, contains the first order spatial +derivatives of each component of V. +The sign of the determinant of D(V) equals the +product of the signs of its eigenvalues. For 3D vectors where D(V) is a 3 × 3 matrix, it +is possible for drastically different behaviour of V to be hidden under the same topological +degree. For example, if V(r = 0) = 0 (meaning the direction of V is singular at the origin) +and we assume that a linear map from an origin-enclosing surface to V has a topological +degree of −1, then D(V) at r = 0 could have signed eigenvalues (in any order) of + + − +or − − −. Physically, the origin could either be a saddle point or a sink for V with no +distinction in topological degree because both + + − and − − − eigenvalues multiply to a +negative sign. Rather than calculating the topological degree, to try to classify the flux of + +3D ZEROS IN ELECTROMAGNETIC FIELDS +5 +C-l +in +e +L +-l +in +e +S +c +a +l +a +r +V +o +r +t +e +x +± +2 +l +π +on-plane view +on-plane view +Figure 1. Visualisation of scalar and polarisation singularities in a non- +paraxial electromagnetic field. Scalar vortices (black line) exist in complex +scalar fields, such as the components of E, where the scalar field is zero +and its phase is undefined, forming 1D threads in the interference of three +or more plane waves. Around a scalar vortex line, the phase of the field +increases by an integer l multiple of 2π in a clockwise or anticlockwise +sense. Singular lines exist in the complex vector characteristic of E and +H fields, called polarisation singularities, which include C lines (lines of +circular polarisation) and L lines (lines of linear polarisation). In a circuit +around a point on a C line (blue line), in the plane of the polarisation +circle at that point, nearby polarisation ellipses rotate through an integer +multiple of π radians. Around an L line (green line), the normal to nearby +polarisation ellipses rotates by an integer multiple of 2π radians. +energy and canonical momentum through a 3D optical field zero, we use the signs of the +eigenvalues of their first order dyadics evaluated in the position of the field zero. +We use the ideas discussed here to report our findings in the following sub-sections, +beginning with the six possible ways that C lines and L lines can intersect in a 3D zero. +2.3. Polarisation Singularities at a 3D Electric Field Zero. We will focus on a 3D +electric field zero in a position r0, that is E(r0) = 0, and study the nearby strands of circular + +6 +3D ZEROS IN ELECTROMAGNETIC FIELDS +and linear electric polarisation. Identical arguments to those given here could be made for +magnetic field zeros (H(r0) = 0) and magnetic polarisation singularities, or for simultaneous +electric and magnetic field zeros (E(r0) = H(r0) = 0) and polarisation singularities of either +E or H. Any smooth function of r is nearly linear over small distances, which means all +fundamental behaviour of the electric field in the immediate vicinity of the zero is captured by +its Jacobian, JE = D(E), a complex 3×3 matrix containing all first-order spatial derivatives +of Ex, Ey and Ez, evaluated at r0, +(2) +JE = D(E) = +� +� +� +∂Ex +∂x +∂Ex +∂y +∂Ex +∂z +∂Ey +∂x +∂Ey +∂y +∂Ey +∂z +∂Ez +∂x +∂Ez +∂y +∂Ez +∂z +� +� +� = (∇ ⊗ E)T . +The Jacobian of the magnetic field at r0, JH, can be defined similarly. In free space, JE +and JH are always traceless because E and H are divergence-free. Maxwell’s equations also +require that if E(r0) = 0, then JH must be symmetric at r0 and vice versa for H(r0) = 0. +We make a first-order approximation of the electric field vector near r0 with, +(3) +˜E = JEv, +where v = r−r0. +Nearby C lines emerge in our approximated field wherever ˜E · ˜E = 0, which we may +calculate using (3) and separate into real and imaginary parts, +(4) +˜E · ˜E = (JEv) · (JEv) += vT Mv + ivT Nv, +where M = Re{JT +EJE} and N = Im{JT +EJE}. The two terms in equation (4) are quadric +surfaces connecting constant valued real and imaginary parts of ˜E · ˜E, and the real and +imaginary surfaces described by setting (4) equal to zero cross in real space where ˜E is +circularly polarised. The real 3 × 3 matrices M and N are symmetric and always have real +eigenvalues. Normally, these eigenvalues have signs + + − or − − + (in any order) so that +the surfaces vT Mv = 0 and vT Nv = 0 are both double cones, vertices touching at v = 0 +as shown in Fig. 2(a). The cones have an elliptical cross section whose ellipticity is constant +with distance from v = 0 in the linear approximation. Because two ellipses can intersect +at either zero, two or four points (as shown in the lower part of Fig. 2(a)), there must be +either zero, two or four C lines passing through the electric field zero. If one matrix, say +M, is positive or negative definite (all positive or all negative eigenvalues), Re{˜E · ˜E} will +solely increase or decrease in all outward directions from v = 0. Then, the constant-valued +surface vT Mv = C becomes an ellipsoid, and vT Mv = 0 is satisfied only at v = 0 so that +no C lines pass through the 3D vortex. +To reveal the number of L lines that extend through the 3D electric field zero, we must +calculate the electric field spin, given by, +(5) +SE ∝ Im{E∗ × E} = 2Re{E} × Im{E}. +When the electric field is linearly polarised (SE = 0), the real and imaginary parts of E +must be (anti)parallel. Under the approximation (3), this means, +(6) +Re{JE}v = λIm{JE}v, + +3D ZEROS IN ELECTROMAGNETIC FIELDS +7 +b +a +L-line +C-line +cone cross section +on unit sphere +Re{E · E} = 0 +E = 0 +Im{E · E} = 0 +2 +0 +4 +Figure 2. Electric polarisation singularities passing through a 3D electric +field zero at a position r0. (a) Visualisation of why zero, two or four C +lines must pass through r0. In a first-order approximation, the surfaces +Re{E · E} = 0 (red) and Im{E · E} = 0 (blue) are double cones, and where +they intersect, C lines exist. Two double cones intersect along two or four +lines, or do not intersect at all, which is easy to see by considering the cones’ +cross sections on the unit sphere: ellipses which cross at zero, two or four +points. (b) Six different examples of electric field zeros created at a position +r0 (red circle), one per unique combination of C lines and L lines meeting +there. The C lines are marked by blue regions where E · E ≈ 0 and the L +lines by the green regions where Im{E∗ × E} ≈ 0. Each field zero is created +in analytical simulations by designing the polarisation of ten plane waves +with random wavevectors, wavelength 500 nm, to interfere destructively at +r0. The plane waves have different polarisations and wavevectors for each +example zero in (b). +where λ is a positive or negative scalar. The directions of the L lines crossing through v = 0 +are given by the three eigenvectors of the matrix Im{JE}−1Re{JE}. Since this matrix is +real-valued, either all three of these eigenvectors are real, corresponding to three L lines, or +only one of them is real and is accompanied by a conjugate pair of complex eigenvectors. In +that case, just one L line passes through the 3D zero because v cannot point in a complex +direction. +Summarising, either zero, two or four C lines and either one or three L lines always meet +at r0 in a 3D electric field zero E(r0) = 0. An identical conclusion can be drawn for C lines +and L lines of the magnetic field for the case of H(r0) = 0. In Fig. 2(b), an example of +each of the six possible C line/L line combinations through a 3D zero is presented, the zeros + +8 +3D ZEROS IN ELECTROMAGNETIC FIELDS +created in the interference of ten plane waves. Each zero is enforced by separate ensembles +of ten plane waves with random wavevector directions that are deliberately polarised to +destructively interfere at a single point. +2.4. Energy Flux Singularity. The flow of energy in a light field is described by the +complex Poynting vector, +1 +2E∗ × H. +The real part of this vector (often itself called the +‘Poynting vector’) corresponds to the time-averaged power transfer (sometimes known as +active power) in the field, while reactive power (associated with oscillations in the transfer +of power) is accounted for by the less-used imaginary part. We refer to these two real vectors +as Pr and Pi, +(7) +Pr = 1 +2Re{E∗ × H} +(8) +Pi = 1 +2Im{E∗ × H} +When either E or H is zero at a point r0, the complex Poynting vector vanishes, and its +real and imaginary parts circulate in the space around the zero according to their first-order +derivatives at r0. The real part Pr is divergence-less in free space where there is no absorption +or energy generation, and must therefore be organised into a vector saddle point at r0. An +example flow of active power around a 3D electric field zero created at r0 (E(r0) = 0, +H(r0) ̸= 0) is given in the top row of panels in Fig. 3, where Pr is plotted on the xy, xz, and +yz planes coinciding at r0. Although there is no net flow of active power in or out of the zero, +Pr streamlines can be arranged in two topologically different ways depending on whether +the signs of the eigenvalues of its first-order dyadic, Im{(JT +E − JE)J∗ +E} (written electrically +without prefactors), are + + − or + − −, corresponding to two possible topological orders +of −1 or +1. One might notice that the imaginary Poynting vector Pi, which is plotted on +the same planes for the same free space electric field zero at r0 in the lower row of panels of +Fig. 3, is not divergence-free—in fact, it is physically possible for a source, sink or saddle of +Pi to exist there, depending on whether E or H is zero. To see why, we first note that using +Maxwell’s equations in free space (see supplemental information), the imaginary Poynting +vector can be decomposed into a sum of two terms, one polarisation-independent and one +polarisation-dependent, each containing electric and magnetic contributions, +(9) +Pi = − c2 +2ω ϵ0Re{(JT +E − JE)E∗} += c2 +2ω µ0Re{(JT +H − JH)H∗} += c2 +4ω +� +−1 +2ϵ0∇(E∗ · E) + 1 +2µ0∇(H∗ · H) +� ++ c2 +4ω Re{ϵ0JEE∗ − µ0JHH∗}. +The first term in Eq. (9) represents the difference in gradient of the electric and magnetic +energy density of the light field, while polarisation-dependent behaviour of Pi derives from +the second term since JEE∗ and JHH∗ contain inter-component multiplication. In certain +cases such as a uniformly polarised standing wave, the second term is zero and the gradient +of the difference in electric and magnetic energy density determines the direction of reactive +power flow. Because E∗ · E = |E|2 is a positive real quantity, a 3D zero in E is a source for + +3D ZEROS IN ELECTROMAGNETIC FIELDS +9 +Pi +Pr +x +y +0.08λ +x +z +y +z +y +x +x +y +z +z +Figure 3. Flow of the real (Pr, red) and imaginary (Pi, teal) parts of the +Poynting vector, 1 +2E∗ × H, on the xy, xz and yz planes coinciding with an +electric field zero at position r0 (blue circle). The real Poynting vector is +divergence-free, meaning a vector saddle point of Pr is set up at r0. The +imaginary Poynting vector is not necessarily divergence-free and can be or- +ganised in a sink at r0 when E(r0) = 0 (a source is not possible unless +the magnetic field is zero). Results are generated by designing the polari- +sation of ten plane waves with random propagation directions to interfere +completely at r0. +the vector ∇(E∗ · E) (and likewise for H). Depending on how the polarisation-independent +and polarisation-dependent terms combine in Eq. (9), the imaginary Poynting vector could +have non-zero divergence at r0. Note that there is a difference in sign between the electric +and magnetic terms in Eq. (9), meaning Pi behaves differently for E(r0) = 0, H(r0) ̸= 0 +and H(r0) = 0, E(r0) ̸= 0 and E(r0) = H(r0) = 0 3D zeros. To understand the flow of +Pi through an optical field zero, we assume a non-dual electric field zero (E(r0) = 0 and +H(r0) ̸= 0) and make a first-order approximation of Pi, this time referring to the relevant +linear transformation matrix as the first-order dyadic of the imaginary Poynting vector, +D(Pi), which is defined identically to JE in Eq. (2) with Pi and its components in place of +E. Our approximate imaginary Poynting vector is, +(10) +˜Pi = D(Pi)v + +10 +3D ZEROS IN ELECTROMAGNETIC FIELDS +where v = r − r0. The dyadic D(Pi) = (∇ ⊗ Pi)T evaluated at r0 is, using the electric +representation of Pi in Eq. (9) (top line), +(11) +D(Pi) = − c2 +2ω ϵ0Re{(JT +E − JE)J∗ +E}. +There are no second order derivatives of E in Eq. (11) because E(r0) = 0. Surprisingly, +D(Pi) cannot have three positive eigenvalues, as justified in the supplemental information. +The result is that at a 3D electric field zero, Pi is organised into one of two types of sad- +dle with topological degree 1 or −1, or a sink with topological degree −1, never a source. +When H(r0) = 0 and E(r0) ̸= 0, the opposite is true because of the dual-asymmetry of the +imaginary Poynting vector: Pi can form a saddle or source at r0 but not a sink. +2.5. Orbital Current Singularity. When divided by c2, the real Poynting vector Eq. (7) +turns into a momentum density, the kinetic momentum density, which, using Maxwell’s +equations for time-harmonic fields, can be split in to a well-known sum of separate orbit +and spin contributions [37], [38]. For instance, by substituting (with prefactors) the curl of +E for H, the kinetic momentum density can be written as, +(12) +Π = +1 +2c2 Re{E∗ × H} += 1 +2ω ϵ0Im{E∗ · (∇)E} + 1 +2ω ϵ0∇ × 1 +2Im{E∗ × E}, +where A · (∇)B = Ax∇Bx + Ay∇By + Az∇Bz = JT +BA, with JB being the Jacobian +of B defined identically to Eq. (2) (the decomposition is explained in more detail in the +supplemental information). The first decomposed term is po +E, the orbital contribution to +the kinetic momentum density, called the canonical momentum density, imparted by the +electric field only, +(13) +po +E = 1 +2ω ϵ0Im{E∗ · (∇)E} = 1 +2ω ϵ0Im{JT +EE∗}. +Eq. (12) can also be written purely in terms of H and by averaging these equivalent repre- +sentations of Π, the dual-symmetric canonical momentum density is obtained, +(14) +po = 1 +4ω Im{ϵ0E∗ · (∇)E + µ0H∗ · (∇)H}. +This momentum density definition contains both the electric and magnetic field’s influence, +and produces the total orbital angular momentum of the field within a volume when r×po is +integrated. Naturally, the electric and magnetic contributions to (14) become zero whenever +E = 0 and H = 0. This means that, in a 3D electric field zero positioned at r0, the direction +of the electric contribution po +E is undefined and should circulate around r0 in some fashion. +Of course, while the total canonical momentum density at r0 is not zero when only E = 0, +we could draw the same conclusions we make here for Eq. (14) rather than Eq. (13) near a +dual 3D vortex (E(r0) = H(r0) = 0). Note that by normalising E, the argument to Im{} +in Eq. (13) defines the local electric wavevector [25], +(15) +ke +loc = −ie∗ · (∇)e, +where e = +E +√ +E∗·E. The real part of ke +loc is the local phase gradient of the electric field, while + +3D ZEROS IN ELECTROMAGNETIC FIELDS +11 +Re{kloc} on yz plane +xplane = -25 nm +xplane = -95 nm +xplane = 0 nm +xplane = +25 nm +|Re{kloc}| < 0.1*k +r0 +Figure 4. Vortex pseudo-line (red) of the real electric local wavevector, +Re{ke +loc}, passing though an electric field zero at position r0 (blue circle), +that is E(r0) = 0 and H(r0) ̸= 0. The red line indicates regions of space +where |Re{ke +loc}| < 0.1k, where k = 2π +λ and λ = 500 nm. The line is roughly +oriented along the x axis and the electric local wavevector is plotted on four +different yz planes. The three planes which coincide with the line are −25 +nm, 0 nm, +25 nm in the x direction away from r0, showing clear vortex- +like circulation of momentum around the axis of the red line. On the fourth +plane −95 nm away from r0, the vortex-like circulation of Re{ke +loc} has lost +some definition, highlighting that Re{ke +loc} is not exactly zero along a line, +and only appears line-like near to the E field zero (the only location where +Re{ke +loc} is exactly zero is at r0, because Re{ke +loc} vanishes at points, not +along lines). Results are generated from interference of ten plane waves +with random wavevectors, wavelength λ = 500 nm, deliberately polarised +to create a 3D electric field zero at r0. + +12 +3D ZEROS IN ELECTROMAGNETIC FIELDS +Im{ke +loc} points in the direction of decreasing electric field intensity. A three-dimensional, +real vector, Re{kE +loc} (and therefore canonical momentum density) can vanish at localised +points in space with non-zero electric field, where a saddle-like circulation of Re{kE +loc} sur- +rounds [39], similar to the top row of panels in Fig. 3. But when the electric field vanishes +and the direction of Re{kE +loc} is automatically undefined, a different behaviour emerges. +To understand why, we once again make a first-order approximation, this time of po +E, +capturing the electric canonical momentum very near to a 3D electric field zero at r0 in its +dyadic D(po +E), +(16) +˜po +E = D(po +E)v, +where v = r − r0. The dyadic D(po +E) = (∇ ⊗ po +E)T at a general point in space is given by, +(17) +D(po +E) = 1 +4ω ϵ0Im{JT +EJ∗ +E} + 1 +4ω ϵ0Im{E∗ +xHess(Ex) + E∗ +yHess(Ey) + E∗ +zHess(Ez)}, +where Hess(A) is the Hessian matrix of the scalar field A, +(18) +Hess(A) = +� +� +� +∂2A +∂x2 +∂2A +∂x∂y +∂2A +∂x∂z +∂2A +∂y∂x +∂2A +∂y2 +∂2A +∂y∂z +∂2A +∂z∂x +∂2A +∂z∂y +∂2A +∂z2 +� +� +� . +As E approaches zero, the trace-less matrix D(po +E) is dominated by the first term in Eq. (17) +and if evaluated at a location r0 where E(r0) = 0, the linear approximation of po +E responds +only to the properties of the matrix in the first term of Eq. (17), Im{JT +EJ∗ +E}. This is an +anti-symmetric matrix which always has one zero and two purely imaginary eigenvalues, +meaning that in the direction of the one real eigenvector of D(po +E) at r0, the approximated +electric canonical momentum does not increase at all, producing a zero-momentum line. The +imaginary eigenvalues of D(po +E) twists po +E into a surrounding vortex-like structure. This +special type of vector field singularity is called a circulation. Fundamentally, the canonical +momentum should only be zero at confined points in general 3D fields, so this apparent +vortex line is only preserved locally to the electric field zero at r0, dissolving with distance +as higher-order derivatives of po +E become significant (it is, in fact, just a very elongated null +point of po +E). The direction of the vortex pseudo-line in the vicinity of the electric field zero +is also given by the curl of the orbital current, +(19) D = ∇×po +E ∝ Re{∇Ex}×Im{∇Ex}+Re{∇Ey}×Im{∇Ey}+Re{∇Ez}×Im{∇Ez}. +We visualise this feature in Fig. 4, where a 3D electric field zero is created at a point r0 +by deliberately polarising ten plane waves, each with random wavevectors, to destructively +interfere at r0. The real part of the electric local wavevector, Re{ke +loc}, the real part of +Eq. (15), is calculated and the region of space where |Re{ke +loc}| < 0.1k (k = 2π +λ ) is revealed +by a red line approximately 0.1λ in length. The electric local wavevector is proportional to +po +E and shows the direction of canonical momentum carried by the electric field. This red +line is not continuous; Re{ke +loc} actually vanishes only at r0 but it increases in magnitude +so slowly in a certain direction (the direction of the real eigenvector of Im{JT +EJ∗ +E}) that a +line-like structure of |Re{ke +loc}| ≈ 0 exists very near to r0, stirring the electric canonical +momentum into a local vortex. This is shown by the four yz planes on which Re{ke +loc} is +plotted in Fig. 4. The real part of the electric local wavevector forms a swirl around the +red line, a swirl losing definition if the plotting plane is too far from r0. This remarkable + +3D ZEROS IN ELECTROMAGNETIC FIELDS +13 +structure always appears when all three electric field components are zero together at a point. +2.6. Spin Current. In the decomposition of the kinetic momentum density, Eq. (12), the +second term is called the spin momentum. It is proportional (and should not be confused +with) the curl of the spin angular momentum of the electric, magnetic or electromagnetic field +depending on the representation. Like before, we will focus on the electric representation of +the decomposed kinetic momentum density, referring to the electric spin momentum with +ps +E, +(20) +ps +E = 1 +2ω ϵ0∇ × 1 +2Im{E∗ × E} = − 1 +2ω ϵ0Im{JEE∗}. +The electric spin momentum is a divergence-free vector whose dyadic D(ps +E) has three non- +zero eigenvalues when evaluated in the position of an electric field zero, organising ps +E into +one of two types of 3D vector saddle point, just like the real Poynting vector in Fig. 3. +Expressing, in Eq. (20), the electric spin momentum with the electric field Jacobian reveals +that only a difference in sign and orientation of JE separates ps +E from the electric canon- +ical momentum po +E, given by Eq. (13). This means that, in a dual electric-magnetic zero, +E(r0) = H(r0) = 0, where JE is symmetric from Maxwell’s equations, the spin and canoni- +cal momentum dyadics are equal and opposite, D(ps +E) = −D(po +E) (this also means that the +dyadic of the real Poynting vector is zero). In a first-order approximation of both ps +E and +po +E near r0 in this case, a zero-line exists in exactly the same place for both vectors, and +around it, ps +E and po +E have vortex-like circulation with opposite handedness to each other. +2.7. Spin Angular Momentum. The dual spin angular momentum, created by the rota- +tion of the electric and magnetic field vectors, is given by [40], +(21) +S = 1 +4ω Im{ϵ0E∗ × E + µ0H∗ × H}. +The electric and magnetic parts individually describe the ellipticity of the electric and mag- +netic polarisation ellipses, pointing in the perpendicular direction to the ellipse plane. Once +more for simplicity, we will focus on the singularity in the electric field spin angular momen- +tum, SE = +1 +4ωIm{ϵ0E∗ × E}, left in a 3D electric field zero positioned at r0. The total spin +angular momentum, Eq. (21), is not zero if only E(r0) = 0, but we could draw similar con- +clusions for S as we do here for SE when the electric and magnetic fields are simultaneously +zero at r0. +Decomposing SE using Maxwell’s equations, we can write its first-order dyadic at r0 in +terms of the light field Jacobian matrices (see supplemental material), +(22) +D(SE) = +1 +4ω2 ϵ0Re{(JT +H − JH)J∗ +E}. +We note that Eq. (22), describing the spatial derivatives of the electric field spin only, de- +pends on the magnetic field Jacobian matrix JH, which is automatically symmetric whenever +E = 0 from Maxwell’s equations. The consequence is that JT +H − JH = 0 and all elements +of D(SE) at r0 are zero when E(r0) = 0. Higher-order derivatives of SE (Hessian matrices +for each component) need to be calculated to fully understand the flux of the electric spin +angular momentum in the neighbourhood of a 3D zero in E. + +14 +3D ZEROS IN ELECTROMAGNETIC FIELDS +Matrix at r0 +Characteristic +JE +3D complex Jacobian of the electric field at r0 (Eq. (2)) +1. +Im{JE}−1Re{JE} +Number of real eigenvalues is the number of L lines passing through r0 +2. +Re{JT +EJE} +Eigenvectors are the principle axes of the double cone Re{E · E} = 0. +Number of intersections of this double cone with that of matrix 3 are the number of C lines. +3. +Im{JT +EJE} +Eigenvectors are the principle axes of the double cone Im{E · E} = 0. +Number of intersections of this double cone with that of matrix 2 are the number of C lines. +4. +Im{JT +EJ∗ +E} +Direction of real eigenvector (there is only one) is the axis of the electric local wavevector vortex. +Imaginary eigenvectors give the handedness of momentum circulation. +5. +−Im{JEJ∗ +E} +Proportional to first-order dyadic of spin current (Eq. (20)). +Eigenvalue signs give the type of minimum at r0 +6. +Im{(JT +E − JE)J∗ +E} +Proportional to first-order dyadic of real Poynting vector (active power flow). +Eigenvalue signs give the type of minimum at r0 +7. +−Re{(JT +E − JE)J∗ +E} +Proportional to first-order dyadic of imaginary Poynting vector (reactive power flow). +Eigenvalue signs give the type of minimum at r0 +Table 1. Summary of the seven dyadics (numbered) which classify the +vector field singularities organised by a 3D electric field zero. +2.8. Summary Table. Here, in Table 1, we summarise the seven dyadics which classify +the number of crossing C lines and L lines, the flux of the real and imaginary parts of the +Poynting vector, the spin current, and the orientation of the canonical momentum vortex +pseudo-line existing at a 3D electric field zero, E(r0) = 0 while H(r0) ̸= 0. To characterise +a magnetic field zero, the matrices can be written magnetically by substituting JE for JH +(and changing the ‘−’ sign in front of matrix 7 to a ‘+’), in which case matrices 1, 2, and +3 characterise magnetic polarisation singularities, and matrix 4 and 5 the magnetic local +wavevector and spin current respectively. In the case of a dual 3D zero, E(r0) = H(r0) = 0, +matrices 6 and 7 are zero because both JE and JH are symmetric. +3. Discussion +Three-dimensional optical field zeros are co-dimension 6 entities which, unlike axial zeros +in beams, are completely localised, the optical field growing brighter in all outward directions. +Although they rarely occur naturally in light (requiring three additional parameters beyond +spatial x, y, z due to their codimension), 3D zeros can be deliberately created in plane wave +interference or in the near fields of light-scattering matter [21] to reveal the unusual features +they imprint in the light field’s energy, wavevector and polarisation structures. Both with +mathematical argument and by creating field zeros in plane wave interference, we showed +that whenever the electric or magnetic field is zero at a point r0, then some combination of +zero, two or four C lines, lines of pure circular polarisation, and one or three L lines, lines of +pure linear polarisation of the field in question, intersect at r0. Likewise, an imprint is made +at r0 in the surrounding flux of the parts of the complex Poynting vector 1 +2E∗ × H, the local +wavevector, the spin momentum and spin angular momentum, each organised in a vector +source, sink or saddle point. The signs of the eigenvalues of the first-order dyadics of each +quantity at r0 reveal this. Of particular interest is the canonical momentum: while typically + +3D ZEROS IN ELECTROMAGNETIC FIELDS +15 +vanishing at confined points in space, a zero in E or H at r0 twists the canonical momentum +imparted by that null-containing field into a sub-wavelength, vortex-like structure around +an axis with an easily calculated direction. We say it is a sub-wavelength object because, +although it resembles the twisted vortex structures of well-known doughnut beams, it is +not preserved with increasing distance from r0. +In the combination of the way energy +flows through r0 and the number of intersecting polarisation singularities, any 3D field zero +inscribes one of a discrete number of topologically unique signatures in the electromagnetic +field. We identify seven dyadics whose spectra could classify all physically possible imprints +of 3D optical field zeros. +It is tempting to speculate that a surface enclosing an electric or magnetic field point +zero might, in addition to the quantities already identified, possess a nonzero topological +Chern number due to a nontrivial geometric phase 2-form (Berry curvature) resulting from +the neighbouring polarisation pattern. The appropriate expression for the geometric phase +2-form is the curl of the local wavevector Eq. (15), +(23) +V = ∇ × ke +loc +Near an electric field zero, V is anti-symmetric; integrating over a small sphere centred on +the field zero gives zero. We showed that in its neighbourhood, a 3D zero in E constructs +a local wavevector vortex with an identifiable axis along which |V| is very large. +It is +interesting that even when the complete vector characteristics of light are considered, a +linear momentum vortex line still persists when all three field components are zero at a +confined point. This vector field vortex is an analogue to a phase vortex in a complex scalar +field, with a key difference being that the vector field vortex line is not continuous. Although +the electromagnetic zero has some topological effects as we described in this paper, it is not +so strong as to endow a surface around it with a nonzero Chern number. +We have shown that, despite being unstable to perturbation, 3D zeros of the electric and +electromagnetic field have topological properties generalising those of scalar vortices and +polarisation singularities. Further studies might indicate how these properties behave under +perturbation. We hope that by highlighting the unusual properties of 3D field zeros, we +can inspire new applications that may be otherwise unachievable with traditionally used, +lower-dimensional dark spots, such as those in beams or simple standing waves. +4. Methods +3D electric field zeros were created in analytical simulations of ten monochromatic inter- +fering plane waves. In all simulations, ten random wavevectors (all of the same magnitude +k = 2π +λ ) were generated, and for each, two orthogonal polarisation basis vectors were defined, +representing the two electric field degrees of freedom of a plane wave propagating in that +direction. The ten plane waves were then polarised deliberately to destructively interfere +and leave a 3D electric field zero at a single confined point, r0, following the procedure given +in [21]. Let eikj·rˆej,1 and eikj·rˆej,2 be the two orthogonal polarisation states (degrees of free- +dom) of the electric field of the jth plane wave with unit amplitude at the origin (j ranges +from 1 to 10, kj is the jth plane wave’s random wavevector with magnitude |kj| = +2π +λ , +and ˆej,1 and ˆej,2 are two orthogonal unit vectors satisfying ˆej,1 · ˆej,2 = 0, ˆej,1 · kj = 0, +ˆej,2 · kj = 0). In total, we have twenty available polarisation degrees of freedom, and by +propagating each plane wave, we can calculate the electric field that each individual degree +of freedom develops in the position of a desired electric field zero, r0. Now, we multiply + +16 +3D ZEROS IN ELECTROMAGNETIC FIELDS +each degree of freedom by a complex scalar, so that the jth plane wave has components +xj,1eikj·rˆej,1 and xj,2eikj·rˆej,2. Adding together all scaled degrees of freedom, evaluated at +r = r0, we have a linear system of three equations, one per component of the total field +at r0, with complex variables xj,1 and xj,2 representing the amplitude of the orthogonal +components of the jth plane wave phasor. Setting to zero all three total electric field com- +ponents at r0, we may solve the system of equations to find the polarisation components of +each plane wave required for complete destructive interference at r0. Since only three scalar +conditions are enforced (Ex = 0, Ey = 0 and Ez = 0 for the total field at r0) by twenty +degrees of freedom, the system is under-determined and seventeen possible solutions exist +for a 3D zero at r0. Any one of these solutions may be chosen to realise the zero, or, as we +do, the solutions may be combined in a linear sum with random complex amplitudes. A 3D +zero could be produced with as few as four plane waves (in fact, a zero could be enforced by +only two plane waves, but it would not be three-dimensional), though the total field would +appear less random. +References +1. +O’Holleran, K., Dennis, M. R. & Padgett, M. J. Topology of Light’s Darkness. Physical +Review Letters 102 (2009). +2. +Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Knotted threads of darkness. +Nature 432 (2004). +3. +O’Holleran, K., Padgett, M. J. & Dennis, M. R. Topology of optical vortex lines formed +by the interference of three, four, and five plane waves. Optics Express 14, 3039 (2006). +4. +Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated optical +vortex knots. Nature Physics 6 (2010). +5. +Tempone-Wiltshire, S. J., Johnstone, S. P. & Helmerson, K. Optical vortex knots – one +photon at a time. Scientific Reports 6 (2016). +6. +Kleckner, D. & Irvine, W. T. M. Creation and dynamics of knotted vortices. Nature +Physics 9 (2013). +7. +Weiler, C. N., Neely, T. W., Scherer, D. R., et al. Spontaneous vortices in the formation +of Bose–Einstein condensates. Nature 455 (2008). +8. +Hindmarsh, M. B. & Kibble, T. W. B. Cosmic strings. Reports on Progress in Physics +58 (1995). +9. +Guo, X., Zhong, J., Li, P., et al. Creation of topological vortices using Pancharatnam- +Berry phase liquid crystal holographic plates. Chinese Physics B 29 (2020). +10. +Wang, L., Zhang, W., Yin, H. & Zhang, X. Ultrasmall Optical Vortex Knots Generated +by Spin-Selective Metasurface Holograms. Advanced Optical Materials 7 (2019). +11. +Li, P., Guo, X., Zhong, J., et al. Optical vortex knots and links via holographic meta- +surfaces. Advances in Physics: X 6 (2021). +12. +Zhang, W., Wei, K., Huang, L., et al. Optical vortex generation with wavelength tun- +ability based on an acoustically-induced fiber grating. Optics Express 24 (2016). +13. +Lim, S. W. D., Park, J.-S., Meretska, M. L., Dorrah, A. H. & Capasso, F. Engineering +phase and polarization singularity sheets. Nature Communications 12, 4190 (2021). +14. +Balzarotti, F., Eilers, Y., Gwosch, K. C., et al. Nanometer resolution imaging and +tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 +(2017). + +REFERENCES +17 +15. +Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated +emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19, 780 +(1994). +16. +He, H., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical Particle Trapping with +Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated +Holograms. Journal of Modern Optics 42 (1995). +17. +He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct Obser- +vation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam +with a Phase Singularity. Physical Review Letters 75 (1995). +18. +Wang, J., Yang, J.-Y., Fazal, I. M., et al. Terabit free-space data transmission employ- +ing orbital angular momentum multiplexing. Nature Photonics 6 (2012). +19. +Huang, H., Xie, G., Yan, Y., et al. 100 Tbit/s free-space data link enabled by three- +dimensional multiplexing of orbital angular momentum, polarization, and wavelength. +Optics Letters 39 (2014). +20. +Willner, A. E., Pang, K., Song, H., Zou, K. & Zhou, H. Orbital angular momentum of +light for communications. Applied Physics Reviews 8 (2021). +21. +Vernon, A. J. & Rodr´ıguez-Fortu˜no, F. J. Creating and moving nanoantenna cold spots +anywhere. Light: Science & Applications 11 (2022). +22. +Spaegele, C. M., Tamagnone, M., Lim, S. W. D., et al. Topologically protected four- +dimensional optical singularities 2022. +23. +Nye, J. F. & V, H. J. The wave structure of monochromatic electromagnetic radiation. +Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences +409, 21–36 (1987). +24. +Nye, J. Lines of circular polarization in electromagnetic wave fields. Proceedings of the +Royal Society of London. A. Mathematical and Physical Sciences 389 (1983). +25. +Berry, M. & Dennis, M. Polarization singularities in isotropic random vector waves. +Proceedings of the Royal Society of London. Series A: Mathematical, Physical and +Engineering Sciences 457, 141–155 (2001). +26. +Bliokh, K. Y., Alonso, M. A., Sugic, D., et al. Polarization singularities and M¨obius +strips in sound and water-surface waves. Physics of Fluids 33 (2021). +27. +Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Physical +Review B 99 (2019). +28. +Bliokh, K. Y., Punzmann, H., Xia, H., Nori, F. & Shats, M. Field theory spin and +momentum in water waves. Science Advances 8 (2022). +29. +Sugic, D., Droop, R., Otte, E., et al. Particle-like topologies in light. Nature Commu- +nications 12 (2021). +30. +Larocque, H., Sugic, D., Mortimer, D., et al. Reconstructing the topology of optical +polarization knots. Nature Physics 14 (2018). +31. +Dennis, M. Polarization singularities in paraxial vector fields: morphology and statis- +tics. Optics Communications 213, 201–221 (2002). +32. +Freund, I. Multitwist optical M¨obius strips. Optics Letters 35, 148 (2010). +33. +Dennis, M. R. Fermionic out-of-plane structure of polarization singularities. Optics +Letters 36 (2011). +34. +Bauer, T., Banzer, P., Karimi, E., et al. Observation of optical polarization M¨obius +strips. Science 347, 964–966 (2015). + +18 +REFERENCES +35. +Pisanty, E., Machado, G. J., Vicu˜na-Hern´andez, V., et al. Knotting fractional-order +knots with the polarization state of light. Nature Photonics 13 (2019). +36. +Berry, M. V. Index formulae for singular lines of polarization. Journal of Optics A: +Pure and Applied Optics 6, 675–678 (2004). +37. +Berry, M. V. Optical currents. Journal of Optics A: Pure and Applied Optics 11 (2009). +38. +Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum and angular momen- +tum in complex media: from the Abraham–Minkowski debate to unusual properties of +surface plasmon-polaritons. New Journal of Physics 19 (2017). +39. +Berry, M. V. & Shukla, P. Geometry of 3D monochromatic light: local wavevectors, +phases, curl forces, and superoscillations. Journal of Optics 21 (2019). +40. +Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse Spin and Momentum in Two- +Wave Interference. Physical Review X 5 (2015). +5. Acknowledgements +We would like to thank Sinuh´e Perea-Puente for a mathematical proof. This work was sup- +ported by European Research Council Starting Grant ERC2016-STG-714151-PSINFONI. +6. Author Contribution +A.J.V. conducted mathematical analyses and simulations; M.R.D. gave direction to and +supervised the research; F.J.R-F. supervised the research. All authors wrote the manuscript; +A.J.V. wrote the first draft. +7. Competing Interests +The Authors declare no competing interests. + diff --git a/9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/load_file.txt b/9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3d4c4d2b2c558bc30c9f40d9f450d7dc62a3ee79 --- /dev/null +++ b/9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/load_file.txt @@ -0,0 +1,655 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf,len=654 +page_content='3D ZEROS IN ELECTROMAGNETIC FIELDS Alex J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Vernon1†, Mark R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Dennis2‡, and Francisco J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Rodr´ıguez-Fortu˜no1∗ 1Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, London WC2R 2LS, UK 2School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK †alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='vernon@kcl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='uk ‡m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='dennis@bham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='uk ∗francisco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='rodriguez fortuno@kcl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='uk Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We present a study of 3D electromagnetic field zeros, uncovering their re- markable characteristic features and propose a classifying framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' These are a spe- cial case of general dark spots in optical fields, which sculpt light’s spatial structure into matter-moving, information-rich vortices, escape the diffraction limit for single-molecule imaging, and can trap particles for nanoscale manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Conventional dark spots are two-dimensional in two aspects: localised in a plane and having a non-zero out-of- plane field component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We focus on non-paraxial fields, where three-dimensional dark spots can exist non-stably at fully localised points, making distinct imprints in the flux of energy and momentum, and in the light’s polarisation texture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' With this work, we hope to enhance current dark spot applications, or inspire new ones impossible with lower-dimensional zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Introduction An optical vortex is the name commonly given to a zero in a complex scalar field, such as a component of the electric E or magnetic H field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Vortices in these components occur naturally in general 3D monochromatic interference [1], where they are infinitely thin con- tinuous strands either extending infinitely through space, or coiled into knotted, un-knotted or linked closed loops [2]–[5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' On a vortex strand, the phase of the complex scalar field (with zero real and imaginary parts) is undefined creating circulation in the phase of the rest of the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This phase increases in a clockwise or anti-clockwise sense by an integer multiple of 2π along any closed loop containing one vortex line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Vortex lines in optics have direct analogues in acoustics and water waves, and as a type of topological defect, are related to vortices in (super)fluids [6] and in Bose-Einstein condensates [7], and even cosmic strings [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Strong research interest in optical vortices over the past 30 years, combined with the availability of instruments and the flexibility in generating [9]–[12] and structuring [13] vortex-carrying beams, has positioned optics to act as a sandbox for exploring topological phenomena that appear more broadly across physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' When considering the full 3D vector characteristics of an optical field, vortex lines in individual field components like Ex, Ey, and Ez are basis-dependent and not so physically meaningful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' By picturing these different scalar vortex threads permeating the vector field, we can appreciate how unlikely it is that the optical field is zero at a point (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' E = 0, all 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='03540v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='optics] 9 Jan 2023 2 3D ZEROS IN ELECTROMAGNETIC FIELDS three components simultaneously zero) in typical 3D interference (the vortex line in each of the three field components would meet at such a zero point, requiring the manipulation of three extra parameters beyond the spatial x, y, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Despite the rarity of zeros in the wild, a lower-dimensional version can be readily manufactured in optical beams, and is remarkably well-studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Paraxial doughnut beams have an axial zero in the transverse field surrounded by a bright ring, and are used in modern spectroscopy techniques [14], [15] because of the zero’s immunity to the diffraction limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The transverse field effectively consists of one or two scalar components with the vortex line along the beam axis, causing the real part of the local wavevector to curl around the axis and imbue the beam with intrinsic orbital an- gular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The longitudinal field, meanwhile, is non-zero (albeit very small due to paraxiality) in the centre of the beam which, therefore, is better imagined not as an exact axial zero, but as a dim line of linear polarisation (an L line) polarised parallel to the beam direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This, and its confinement in only two dimensions, stretching along the third, is why we refer to the almost-dark centre of the doughnut beam as a two-dimensional zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Its topological index is straightforward to define by counting how many multiples of 2π the phases of the transverse components climb through over an enclosing circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The intrinsic orbital angular momentum carried by doughnut beams is the key property of the spatial structure of light that can rotate matter [16], [17] and store information [18]–[20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Surprisingly, the fully localised, three-dimensional optical field zero, E = 0, has been left largely unexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This is probably due to its unstable nature—a perturbation will destroy the zero point (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' cause the vortices in the three components no longer to coincide).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Never- theless, such a point is theoretically possible and can be artificially synthesised [21], but very little is understood about how it is imprinted into the surrounding field, and there is no clas- sifying topological index like the topological charge of a 2D vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The 3D electromagnetic field zero is the focus of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A zero in the E-field alone has codimension 6, requiring that the six total degrees of freedom of two real, three-dimensional vectors (the real and imaginary parts of the three components E) are suppressed simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This means 3D zeros exist stably in a six-dimensional parameter space, and is why optical field zeros are not natural in random interference patterns spanning only three spatial dimensions, being hidden by instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Instead, 3D zeros must be revealed by tuning an additional three parameters (this is discussed in [22] for a zero in two electric field components).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Some of these parameters could be the polarisation components of a plane wave, for example, and in fact, 3D zeros can be very easily manufactured and controlled in pure plane wave interfer- ence or near fields with a simple technique [21], and their higher dimensional confinement could provide a greater degree of precision in dark spot spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Due to their electric field dependence, the zero in E is coupled to a collection of singularities, each with its own topological signature, in various physical quantities associated with the light field includ- ing the complex Poynting vector, canonical momentum, spin momentum and spin angular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Learning how energy flow and momentum circulate around a 3D vortex could inspire applications which would be otherwise unfeasible using typical lower dimensional zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Alternatively, the magnetic field H may vanish at a point, or more extremely, both E and H might simultaneously vanish, giving a true electromagnetic null with codimension 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Here, we report the key features of a 3D field electric or magnetic field zero, including the way that polarisation singularities are forced to intersect and the flux of the complex Poynting vector and canonical and spin momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' With these findings, for the first time, we propose a framework to classify the physically realisable varieties of 3D field zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3D ZEROS IN ELECTROMAGNETIC FIELDS 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Results To contextualise our study, we begin with some brief intuition on the special features which we might expect to find near to a 3D zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' If either E or H is zero at a point r0, then of that field, say E, the flux of energy, canon- ical momentum, spin angular momentum (and other quantities) are zero too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Since these fluxes are vector quantities, their direction is singular at r0 and an imprint is made in the surrounding space where they are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In three spatial dimensions, even if these fluxes are divergence-less, there is more than one possible (topologically unique) imprint which can be left by and characterise the zero in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The electric field spin is particularly interesting, because its zeros (in non-paraxial fields) are co-dimension 2 objects—meaning they are one-dimensional continuous lines, defining the threads of pure linear electric polar- isation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This continuity should require at least one zero-spin line, an L line, to pass through r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A similar argument can be made for lines of pure circular electric polarisation, except that C lines are defined by a complex quadratic equation, E · E = 0, equivalent to a real quartic equation, |E · E|2 = 0, which has either zero, two or four real roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' It turns out, as we will show, that a given number of C lines and L lines must always intersect in a 3D electric field zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Before reporting these and other findings in detail from mathematical argument and analytical simulations in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='3 and beyond, the next two subsections 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='2 provide an overview of polarisation singularities and set out our way of classifying 3D field zeros using dyadics associated with the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Overview of Polarisation Singularities in Paraxial and Non-Paraxial Fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' L lines and C lines are called polarisation singularities and are the vector version of scalar vortex lines in wave fields, existing in light [23]–[25], acoustic and water waves [26] (both acoustic and water waves have a vector nature [27], [28]) where some property of the general polarisation ellipse is not defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In 3D fields, polarisation singularities are often described as the underlying skeleton which embeds highly complex topologies into the field’s polar- isation texture [29], [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Polarisation singularities have been studied in full 3D and in paraxial fields [31], where in paraxial fields (considering only the two transverse field com- ponents), polarisation is circular at points and linear along lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Propagating the paraxial field (maintaining the transverse polarisation) draws out the C points and L lines in the transverse plane into C lines and L surfaces in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A polarisation ellipse has orthogonal semi-major and semi-minor axes, telling us which way the ellipse is oriented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' But because a polarisation circle has no semi-major or semi- minor axes, at a C point, the orientation of the circle is undefined causing neighbouring polarisation ellipses (almost circular) to rotate when tracked along a C point-enclosing loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The ellipse major axis is described throughout space with a line field, in that the axis is oriented some way in space but does not point one way or another—an ellipse looks identi- cal to its 180 degree rotated self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This means that along the enclosing circuit, the rotating ellipses turn continuously through an integer multiple of π radians, rather than 2π, which is why C points are assigned a half-integer index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' When the field is fully three dimensional and the polarisation ellipse is free to tilt in any Cartesian direction, circular polarisation still occurs along one-dimensional threads (C lines which are no longer straight as in the paraxial case) but the surrounding polarisation ellipses also twist, so that their major axes sweep out M¨obius strips [32]–[34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Analogues of C lines exist in polychromatic fields, shaping the rest of the field into other remarkable topological structures [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 4 3D ZEROS IN ELECTROMAGNETIC FIELDS L lines/L surfaces in paraxial fields (ignoring longitudinal fields) separate regions of left and right handed polarisation ellipses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In non-paraxial fields, L lines are strictly one- dimensional lines (not surfaces) and complement C lines in shaping the surrounding po- larisation structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This reduction of dimension to the L entity occurs because, to be linearly polarised, the real and imaginary parts of the field (say E = p + iq) need to be (anti)parallel (not necessarily equal).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' If E is paraxial and linearly polarised, then in the transverse plane, the ratio of the x components of p and q must equal the ratio of their y components—a single condition, dissolving only one degree of freedom of one vector relative to the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' If E is non-paraxial, then an extra condition accounting for the ratio of the z components of p and q must be satisfied for linear polarisation [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Between paraxial and full 3D fields, the linear polarisation object’s codimension, which is the dimension of the electric spin angular momentum field SE minus the dimension of the L line/L surface which lies in SE, increases from one to two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The spin angular momentum of the field is zero when linearly polarised, meaning the direction of the normal to the field oscillations cannot be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Drawing a circuit around an L line, the spin vector rotates through 2π radians in a clockwise or anti-clockwise sense and defines the L line’s topological index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The characteristics of scalar vortices and C lines and L lines are visualised in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Indexing Point-like Singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Polarisation singularities occur equally often among the general polarisation ellipses in E and H fields, and need not coincide with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Phase singularities, C lines and L lines are all indexed by looking at the circulation or rotation of a scalar or vector quantity around a loop enclosing the singularity of interest [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' All three of these singularities are threads in 3D fields, but the winding number concept can be generalised to higher dimensional singularities and calculated for point-like, 3D vector singularities via the topological degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Instead of integrating a quantity associated with a line singularity around a 1D closed circuit, for isolated singular points in 3D, we should integrate an appropriate quantity over a closed surface enclosing the point singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' For a vector V(rS) on a surface S (rS ∈ S) in 3D real space, for example, the topological de- gree of rS �→ V (the mapping from the real space surface rS to V) is a calculation of the integer number of times that every possible direction of V is realised (on a sphere) on all the points rS on the surface S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' As with other kinds of topological singularities in physical fields, the easiest realised topological degrees (winding numbers) are ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Mathematically, a 0, ±1 topological degree is the integral of the determinant of the dyadic D(V) of V over S divided by A, the area of S, (1) deg(V) = 1 A � S det(D(V))dS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The dyadic D(V), also called the Jacobian matrix of V, contains the first order spatial derivatives of each component of V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The sign of the determinant of D(V) equals the product of the signs of its eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' For 3D vectors where D(V) is a 3 × 3 matrix, it is possible for drastically different behaviour of V to be hidden under the same topological degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' For example, if V(r = 0) = 0 (meaning the direction of V is singular at the origin) and we assume that a linear map from an origin-enclosing surface to V has a topological degree of −1, then D(V) at r = 0 could have signed eigenvalues (in any order) of + + − or − − −.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Physically, the origin could either be a saddle point or a sink for V with no distinction in topological degree because both + + − and − − − eigenvalues multiply to a negative sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Rather than calculating the topological degree, to try to classify the flux of 3D ZEROS IN ELECTROMAGNETIC FIELDS 5 C-l in e L l in e S c a l a r V o r t e x ± 2 l π on-plane view on-plane view Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Visualisation of scalar and polarisation singularities in a non- paraxial electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Scalar vortices (black line) exist in complex scalar fields, such as the components of E, where the scalar field is zero and its phase is undefined, forming 1D threads in the interference of three or more plane waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Around a scalar vortex line, the phase of the field increases by an integer l multiple of 2π in a clockwise or anticlockwise sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Singular lines exist in the complex vector characteristic of E and H fields, called polarisation singularities, which include C lines (lines of circular polarisation) and L lines (lines of linear polarisation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In a circuit around a point on a C line (blue line), in the plane of the polarisation circle at that point, nearby polarisation ellipses rotate through an integer multiple of π radians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Around an L line (green line), the normal to nearby polarisation ellipses rotates by an integer multiple of 2π radians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' energy and canonical momentum through a 3D optical field zero, we use the signs of the eigenvalues of their first order dyadics evaluated in the position of the field zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We use the ideas discussed here to report our findings in the following sub-sections, beginning with the six possible ways that C lines and L lines can intersect in a 3D zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Polarisation Singularities at a 3D Electric Field Zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We will focus on a 3D electric field zero in a position r0, that is E(r0) = 0, and study the nearby strands of circular 6 3D ZEROS IN ELECTROMAGNETIC FIELDS and linear electric polarisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Identical arguments to those given here could be made for magnetic field zeros (H(r0) = 0) and magnetic polarisation singularities, or for simultaneous electric and magnetic field zeros (E(r0) = H(r0) = 0) and polarisation singularities of either E or H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Any smooth function of r is nearly linear over small distances, which means all fundamental behaviour of the electric field in the immediate vicinity of the zero is captured by its Jacobian, JE = D(E), a complex 3×3 matrix containing all first-order spatial derivatives of Ex, Ey and Ez, evaluated at r0, (2) JE = D(E) = � � � ∂Ex ∂x ∂Ex ∂y ∂Ex ∂z ∂Ey ∂x ∂Ey ∂y ∂Ey ∂z ∂Ez ∂x ∂Ez ∂y ∂Ez ∂z � � � = (∇ ⊗ E)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The Jacobian of the magnetic field at r0, JH, can be defined similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In free space, JE and JH are always traceless because E and H are divergence-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Maxwell’s equations also require that if E(r0) = 0, then JH must be symmetric at r0 and vice versa for H(r0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We make a first-order approximation of the electric field vector near r0 with, (3) ˜E = JEv, where v = r−r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nearby C lines emerge in our approximated field wherever ˜E · ˜E = 0, which we may calculate using (3) and separate into real and imaginary parts, (4) ˜E · ˜E = (JEv) · (JEv) = vT Mv + ivT Nv, where M = Re{JT EJE} and N = Im{JT EJE}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The two terms in equation (4) are quadric surfaces connecting constant valued real and imaginary parts of ˜E · ˜E, and the real and imaginary surfaces described by setting (4) equal to zero cross in real space where ˜E is circularly polarised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real 3 × 3 matrices M and N are symmetric and always have real eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Normally, these eigenvalues have signs + + − or − − + (in any order) so that the surfaces vT Mv = 0 and vT Nv = 0 are both double cones, vertices touching at v = 0 as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The cones have an elliptical cross section whose ellipticity is constant with distance from v = 0 in the linear approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Because two ellipses can intersect at either zero, two or four points (as shown in the lower part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2(a)), there must be either zero, two or four C lines passing through the electric field zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' If one matrix, say M, is positive or negative definite (all positive or all negative eigenvalues), Re{˜E · ˜E} will solely increase or decrease in all outward directions from v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Then, the constant-valued surface vT Mv = C becomes an ellipsoid, and vT Mv = 0 is satisfied only at v = 0 so that no C lines pass through the 3D vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' To reveal the number of L lines that extend through the 3D electric field zero, we must calculate the electric field spin, given by, (5) SE ∝ Im{E∗ × E} = 2Re{E} × Im{E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' When the electric field is linearly polarised (SE = 0), the real and imaginary parts of E must be (anti)parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Under the approximation (3), this means, (6) Re{JE}v = λIm{JE}v, 3D ZEROS IN ELECTROMAGNETIC FIELDS 7 b a L-line C-line cone cross section on unit sphere Re{E · E} = 0 E = 0 Im{E · E} = 0 2 0 4 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Electric polarisation singularities passing through a 3D electric field zero at a position r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (a) Visualisation of why zero, two or four C lines must pass through r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In a first-order approximation, the surfaces Re{E · E} = 0 (red) and Im{E · E} = 0 (blue) are double cones, and where they intersect, C lines exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Two double cones intersect along two or four lines, or do not intersect at all, which is easy to see by considering the cones’ cross sections on the unit sphere: ellipses which cross at zero, two or four points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (b) Six different examples of electric field zeros created at a position r0 (red circle), one per unique combination of C lines and L lines meeting there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The C lines are marked by blue regions where E · E ≈ 0 and the L lines by the green regions where Im{E∗ × E} ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Each field zero is created in analytical simulations by designing the polarisation of ten plane waves with random wavevectors, wavelength 500 nm, to interfere destructively at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The plane waves have different polarisations and wavevectors for each example zero in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' where λ is a positive or negative scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The directions of the L lines crossing through v = 0 are given by the three eigenvectors of the matrix Im{JE}−1Re{JE}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Since this matrix is real-valued, either all three of these eigenvectors are real, corresponding to three L lines, or only one of them is real and is accompanied by a conjugate pair of complex eigenvectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In that case, just one L line passes through the 3D zero because v cannot point in a complex direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Summarising, either zero, two or four C lines and either one or three L lines always meet at r0 in a 3D electric field zero E(r0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' An identical conclusion can be drawn for C lines and L lines of the magnetic field for the case of H(r0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2(b), an example of each of the six possible C line/L line combinations through a 3D zero is presented, the zeros 8 3D ZEROS IN ELECTROMAGNETIC FIELDS created in the interference of ten plane waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Each zero is enforced by separate ensembles of ten plane waves with random wavevector directions that are deliberately polarised to destructively interfere at a single point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Energy Flux Singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The flow of energy in a light field is described by the complex Poynting vector, 1 2E∗ × H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real part of this vector (often itself called the ‘Poynting vector’) corresponds to the time-averaged power transfer (sometimes known as active power) in the field, while reactive power (associated with oscillations in the transfer of power) is accounted for by the less-used imaginary part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We refer to these two real vectors as Pr and Pi, (7) Pr = 1 2Re{E∗ × H} (8) Pi = 1 2Im{E∗ × H} When either E or H is zero at a point r0, the complex Poynting vector vanishes, and its real and imaginary parts circulate in the space around the zero according to their first-order derivatives at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real part Pr is divergence-less in free space where there is no absorption or energy generation, and must therefore be organised into a vector saddle point at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' An example flow of active power around a 3D electric field zero created at r0 (E(r0) = 0, H(r0) ̸= 0) is given in the top row of panels in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3, where Pr is plotted on the xy, xz, and yz planes coinciding at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Although there is no net flow of active power in or out of the zero, Pr streamlines can be arranged in two topologically different ways depending on whether the signs of the eigenvalues of its first-order dyadic, Im{(JT E − JE)J∗ E} (written electrically without prefactors), are + + − or + − −, corresponding to two possible topological orders of −1 or +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' One might notice that the imaginary Poynting vector Pi, which is plotted on the same planes for the same free space electric field zero at r0 in the lower row of panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3, is not divergence-free—in fact, it is physically possible for a source, sink or saddle of Pi to exist there, depending on whether E or H is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' To see why, we first note that using Maxwell’s equations in free space (see supplemental information), the imaginary Poynting vector can be decomposed into a sum of two terms, one polarisation-independent and one polarisation-dependent, each containing electric and magnetic contributions, (9) Pi = − c2 2ω ϵ0Re{(JT E − JE)E∗} = c2 2ω µ0Re{(JT H − JH)H∗} = c2 4ω � −1 2ϵ0∇(E∗ · E) + 1 2µ0∇(H∗ · H) � + c2 4ω Re{ϵ0JEE∗ − µ0JHH∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The first term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (9) represents the difference in gradient of the electric and magnetic energy density of the light field, while polarisation-dependent behaviour of Pi derives from the second term since JEE∗ and JHH∗ contain inter-component multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In certain cases such as a uniformly polarised standing wave, the second term is zero and the gradient of the difference in electric and magnetic energy density determines the direction of reactive power flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Because E∗ · E = |E|2 is a positive real quantity, a 3D zero in E is a source for 3D ZEROS IN ELECTROMAGNETIC FIELDS 9 Pi Pr x y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='08λ x z y z y x x y z z Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Flow of the real (Pr, red) and imaginary (Pi, teal) parts of the Poynting vector, 1 2E∗ × H, on the xy, xz and yz planes coinciding with an electric field zero at position r0 (blue circle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real Poynting vector is divergence-free, meaning a vector saddle point of Pr is set up at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The imaginary Poynting vector is not necessarily divergence-free and can be or- ganised in a sink at r0 when E(r0) = 0 (a source is not possible unless the magnetic field is zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Results are generated by designing the polari- sation of ten plane waves with random propagation directions to interfere completely at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' the vector ∇(E∗ · E) (and likewise for H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Depending on how the polarisation-independent and polarisation-dependent terms combine in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (9), the imaginary Poynting vector could have non-zero divergence at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Note that there is a difference in sign between the electric and magnetic terms in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (9), meaning Pi behaves differently for E(r0) = 0, H(r0) ̸= 0 and H(r0) = 0, E(r0) ̸= 0 and E(r0) = H(r0) = 0 3D zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' To understand the flow of Pi through an optical field zero, we assume a non-dual electric field zero (E(r0) = 0 and H(r0) ̸= 0) and make a first-order approximation of Pi, this time referring to the relevant linear transformation matrix as the first-order dyadic of the imaginary Poynting vector, D(Pi), which is defined identically to JE in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (2) with Pi and its components in place of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Our approximate imaginary Poynting vector is, (10) ˜Pi = D(Pi)v 10 3D ZEROS IN ELECTROMAGNETIC FIELDS where v = r − r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The dyadic D(Pi) = (∇ ⊗ Pi)T evaluated at r0 is, using the electric representation of Pi in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (9) (top line), (11) D(Pi) = − c2 2ω ϵ0Re{(JT E − JE)J∗ E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' There are no second order derivatives of E in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (11) because E(r0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Surprisingly, D(Pi) cannot have three positive eigenvalues, as justified in the supplemental information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The result is that at a 3D electric field zero, Pi is organised into one of two types of sad- dle with topological degree 1 or −1, or a sink with topological degree −1, never a source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' When H(r0) = 0 and E(r0) ̸= 0, the opposite is true because of the dual-asymmetry of the imaginary Poynting vector: Pi can form a saddle or source at r0 but not a sink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Orbital Current Singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' When divided by c2, the real Poynting vector Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (7) turns into a momentum density, the kinetic momentum density, which, using Maxwell’s equations for time-harmonic fields, can be split in to a well-known sum of separate orbit and spin contributions [37], [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' For instance, by substituting (with prefactors) the curl of E for H, the kinetic momentum density can be written as, (12) Π = 1 2c2 Re{E∗ × H} = 1 2ω ϵ0Im{E∗ · (∇)E} + 1 2ω ϵ0∇ × 1 2Im{E∗ × E}, where A · (∇)B = Ax∇Bx + Ay∇By + Az∇Bz = JT BA, with JB being the Jacobian of B defined identically to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (2) (the decomposition is explained in more detail in the supplemental information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The first decomposed term is po E, the orbital contribution to the kinetic momentum density, called the canonical momentum density, imparted by the electric field only, (13) po E = 1 2ω ϵ0Im{E∗ · (∇)E} = 1 2ω ϵ0Im{JT EE∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (12) can also be written purely in terms of H and by averaging these equivalent repre- sentations of Π, the dual-symmetric canonical momentum density is obtained, (14) po = 1 4ω Im{ϵ0E∗ · (∇)E + µ0H∗ · (∇)H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This momentum density definition contains both the electric and magnetic field’s influence, and produces the total orbital angular momentum of the field within a volume when r×po is integrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Naturally, the electric and magnetic contributions to (14) become zero whenever E = 0 and H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This means that, in a 3D electric field zero positioned at r0, the direction of the electric contribution po E is undefined and should circulate around r0 in some fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Of course, while the total canonical momentum density at r0 is not zero when only E = 0, we could draw the same conclusions we make here for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (14) rather than Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (13) near a dual 3D vortex (E(r0) = H(r0) = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Note that by normalising E, the argument to Im{} in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (13) defines the local electric wavevector [25], (15) ke loc = −ie∗ · (∇)e, where e = E √ E∗·E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real part of ke loc is the local phase gradient of the electric field, while 3D ZEROS IN ELECTROMAGNETIC FIELDS 11 Re{kloc} on yz plane xplane = -25 nm xplane = -95 nm xplane = 0 nm xplane = +25 nm |Re{kloc}| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='1*k r0 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Vortex pseudo-line (red) of the real electric local wavevector, Re{ke loc}, passing though an electric field zero at position r0 (blue circle), that is E(r0) = 0 and H(r0) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The red line indicates regions of space where |Re{ke loc}| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='1k, where k = 2π λ and λ = 500 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The line is roughly oriented along the x axis and the electric local wavevector is plotted on four different yz planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The three planes which coincide with the line are −25 nm, 0 nm, +25 nm in the x direction away from r0, showing clear vortex- like circulation of momentum around the axis of the red line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' On the fourth plane −95 nm away from r0, the vortex-like circulation of Re{ke loc} has lost some definition, highlighting that Re{ke loc} is not exactly zero along a line, and only appears line-like near to the E field zero (the only location where Re{ke loc} is exactly zero is at r0, because Re{ke loc} vanishes at points, not along lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Results are generated from interference of ten plane waves with random wavevectors, wavelength λ = 500 nm, deliberately polarised to create a 3D electric field zero at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 12 3D ZEROS IN ELECTROMAGNETIC FIELDS Im{ke loc} points in the direction of decreasing electric field intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A three-dimensional, real vector, Re{kE loc} (and therefore canonical momentum density) can vanish at localised points in space with non-zero electric field, where a saddle-like circulation of Re{kE loc} sur- rounds [39], similar to the top row of panels in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' But when the electric field vanishes and the direction of Re{kE loc} is automatically undefined, a different behaviour emerges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' To understand why, we once again make a first-order approximation, this time of po E, capturing the electric canonical momentum very near to a 3D electric field zero at r0 in its dyadic D(po E), (16) ˜po E = D(po E)v, where v = r − r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The dyadic D(po E) = (∇ ⊗ po E)T at a general point in space is given by, (17) D(po E) = 1 4ω ϵ0Im{JT EJ∗ E} + 1 4ω ϵ0Im{E∗ xHess(Ex) + E∗ yHess(Ey) + E∗ zHess(Ez)}, where Hess(A) is the Hessian matrix of the scalar field A, (18) Hess(A) = � � � ∂2A ∂x2 ∂2A ∂x∂y ∂2A ∂x∂z ∂2A ∂y∂x ∂2A ∂y2 ∂2A ∂y∂z ∂2A ∂z∂x ∂2A ∂z∂y ∂2A ∂z2 � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' As E approaches zero, the trace-less matrix D(po E) is dominated by the first term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (17) and if evaluated at a location r0 where E(r0) = 0, the linear approximation of po E responds only to the properties of the matrix in the first term of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (17), Im{JT EJ∗ E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This is an anti-symmetric matrix which always has one zero and two purely imaginary eigenvalues, meaning that in the direction of the one real eigenvector of D(po E) at r0, the approximated electric canonical momentum does not increase at all, producing a zero-momentum line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The imaginary eigenvalues of D(po E) twists po E into a surrounding vortex-like structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This special type of vector field singularity is called a circulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Fundamentally, the canonical momentum should only be zero at confined points in general 3D fields, so this apparent vortex line is only preserved locally to the electric field zero at r0, dissolving with distance as higher-order derivatives of po E become significant (it is, in fact, just a very elongated null point of po E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The direction of the vortex pseudo-line in the vicinity of the electric field zero is also given by the curl of the orbital current, (19) D = ∇×po E ∝ Re{∇Ex}×Im{∇Ex}+Re{∇Ey}×Im{∇Ey}+Re{∇Ez}×Im{∇Ez}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We visualise this feature in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 4, where a 3D electric field zero is created at a point r0 by deliberately polarising ten plane waves, each with random wavevectors, to destructively interfere at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real part of the electric local wavevector, Re{ke loc}, the real part of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (15), is calculated and the region of space where |Re{ke loc}| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='1k (k = 2π λ ) is revealed by a red line approximately 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='1λ in length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The electric local wavevector is proportional to po E and shows the direction of canonical momentum carried by the electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This red line is not continuous;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Re{ke loc} actually vanishes only at r0 but it increases in magnitude so slowly in a certain direction (the direction of the real eigenvector of Im{JT EJ∗ E}) that a line-like structure of |Re{ke loc}| ≈ 0 exists very near to r0, stirring the electric canonical momentum into a local vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This is shown by the four yz planes on which Re{ke loc} is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The real part of the electric local wavevector forms a swirl around the red line, a swirl losing definition if the plotting plane is too far from r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This remarkable 3D ZEROS IN ELECTROMAGNETIC FIELDS 13 structure always appears when all three electric field components are zero together at a point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Spin Current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In the decomposition of the kinetic momentum density, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (12), the second term is called the spin momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' It is proportional (and should not be confused with) the curl of the spin angular momentum of the electric, magnetic or electromagnetic field depending on the representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Like before, we will focus on the electric representation of the decomposed kinetic momentum density, referring to the electric spin momentum with ps E, (20) ps E = 1 2ω ϵ0∇ × 1 2Im{E∗ × E} = − 1 2ω ϵ0Im{JEE∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The electric spin momentum is a divergence-free vector whose dyadic D(ps E) has three non- zero eigenvalues when evaluated in the position of an electric field zero, organising ps E into one of two types of 3D vector saddle point, just like the real Poynting vector in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Expressing, in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (20), the electric spin momentum with the electric field Jacobian reveals that only a difference in sign and orientation of JE separates ps E from the electric canon- ical momentum po E, given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This means that, in a dual electric-magnetic zero, E(r0) = H(r0) = 0, where JE is symmetric from Maxwell’s equations, the spin and canoni- cal momentum dyadics are equal and opposite, D(ps E) = −D(po E) (this also means that the dyadic of the real Poynting vector is zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In a first-order approximation of both ps E and po E near r0 in this case, a zero-line exists in exactly the same place for both vectors, and around it, ps E and po E have vortex-like circulation with opposite handedness to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Spin Angular Momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The dual spin angular momentum, created by the rota- tion of the electric and magnetic field vectors, is given by [40], (21) S = 1 4ω Im{ϵ0E∗ × E + µ0H∗ × H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The electric and magnetic parts individually describe the ellipticity of the electric and mag- netic polarisation ellipses, pointing in the perpendicular direction to the ellipse plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Once more for simplicity, we will focus on the singularity in the electric field spin angular momen- tum, SE = 1 4ωIm{ϵ0E∗ × E}, left in a 3D electric field zero positioned at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The total spin angular momentum, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (21), is not zero if only E(r0) = 0, but we could draw similar con- clusions for S as we do here for SE when the electric and magnetic fields are simultaneously zero at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Decomposing SE using Maxwell’s equations, we can write its first-order dyadic at r0 in terms of the light field Jacobian matrices (see supplemental material), (22) D(SE) = 1 4ω2 ϵ0Re{(JT H − JH)J∗ E}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We note that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (22), describing the spatial derivatives of the electric field spin only, de- pends on the magnetic field Jacobian matrix JH, which is automatically symmetric whenever E = 0 from Maxwell’s equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The consequence is that JT H − JH = 0 and all elements of D(SE) at r0 are zero when E(r0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Higher-order derivatives of SE (Hessian matrices for each component) need to be calculated to fully understand the flux of the electric spin angular momentum in the neighbourhood of a 3D zero in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 14 3D ZEROS IN ELECTROMAGNETIC FIELDS Matrix at r0 Characteristic JE 3D complex Jacobian of the electric field at r0 (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (2)) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Im{JE}−1Re{JE} Number of real eigenvalues is the number of L lines passing through r0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Re{JT EJE} Eigenvectors are the principle axes of the double cone Re{E · E} = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Number of intersections of this double cone with that of matrix 3 are the number of C lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Im{JT EJE} Eigenvectors are the principle axes of the double cone Im{E · E} = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Number of intersections of this double cone with that of matrix 2 are the number of C lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Im{JT EJ∗ E} Direction of real eigenvector (there is only one) is the axis of the electric local wavevector vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Imaginary eigenvectors give the handedness of momentum circulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' −Im{JEJ∗ E} Proportional to first-order dyadic of spin current (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (20)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Eigenvalue signs give the type of minimum at r0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Im{(JT E − JE)J∗ E} Proportional to first-order dyadic of real Poynting vector (active power flow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Eigenvalue signs give the type of minimum at r0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' −Re{(JT E − JE)J∗ E} Proportional to first-order dyadic of imaginary Poynting vector (reactive power flow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Eigenvalue signs give the type of minimum at r0 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Summary of the seven dyadics (numbered) which classify the vector field singularities organised by a 3D electric field zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Summary Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Here, in Table 1, we summarise the seven dyadics which classify the number of crossing C lines and L lines, the flux of the real and imaginary parts of the Poynting vector, the spin current, and the orientation of the canonical momentum vortex pseudo-line existing at a 3D electric field zero, E(r0) = 0 while H(r0) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' To characterise a magnetic field zero, the matrices can be written magnetically by substituting JE for JH (and changing the ‘−’ sign in front of matrix 7 to a ‘+’), in which case matrices 1, 2, and 3 characterise magnetic polarisation singularities, and matrix 4 and 5 the magnetic local wavevector and spin current respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In the case of a dual 3D zero, E(r0) = H(r0) = 0, matrices 6 and 7 are zero because both JE and JH are symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Discussion Three-dimensional optical field zeros are co-dimension 6 entities which, unlike axial zeros in beams, are completely localised, the optical field growing brighter in all outward directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Although they rarely occur naturally in light (requiring three additional parameters beyond spatial x, y, z due to their codimension), 3D zeros can be deliberately created in plane wave interference or in the near fields of light-scattering matter [21] to reveal the unusual features they imprint in the light field’s energy, wavevector and polarisation structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Both with mathematical argument and by creating field zeros in plane wave interference, we showed that whenever the electric or magnetic field is zero at a point r0, then some combination of zero, two or four C lines, lines of pure circular polarisation, and one or three L lines, lines of pure linear polarisation of the field in question, intersect at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Likewise, an imprint is made at r0 in the surrounding flux of the parts of the complex Poynting vector 1 2E∗ × H, the local wavevector, the spin momentum and spin angular momentum, each organised in a vector source, sink or saddle point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The signs of the eigenvalues of the first-order dyadics of each quantity at r0 reveal this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Of particular interest is the canonical momentum: while typically 3D ZEROS IN ELECTROMAGNETIC FIELDS 15 vanishing at confined points in space, a zero in E or H at r0 twists the canonical momentum imparted by that null-containing field into a sub-wavelength, vortex-like structure around an axis with an easily calculated direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We say it is a sub-wavelength object because, although it resembles the twisted vortex structures of well-known doughnut beams, it is not preserved with increasing distance from r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In the combination of the way energy flows through r0 and the number of intersecting polarisation singularities, any 3D field zero inscribes one of a discrete number of topologically unique signatures in the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We identify seven dyadics whose spectra could classify all physically possible imprints of 3D optical field zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' It is tempting to speculate that a surface enclosing an electric or magnetic field point zero might, in addition to the quantities already identified, possess a nonzero topological Chern number due to a nontrivial geometric phase 2-form (Berry curvature) resulting from the neighbouring polarisation pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The appropriate expression for the geometric phase 2-form is the curl of the local wavevector Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' (15), (23) V = ∇ × ke loc Near an electric field zero, V is anti-symmetric;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' integrating over a small sphere centred on the field zero gives zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We showed that in its neighbourhood, a 3D zero in E constructs a local wavevector vortex with an identifiable axis along which |V| is very large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' It is interesting that even when the complete vector characteristics of light are considered, a linear momentum vortex line still persists when all three field components are zero at a confined point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This vector field vortex is an analogue to a phase vortex in a complex scalar field, with a key difference being that the vector field vortex line is not continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Although the electromagnetic zero has some topological effects as we described in this paper, it is not so strong as to endow a surface around it with a nonzero Chern number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We have shown that, despite being unstable to perturbation, 3D zeros of the electric and electromagnetic field have topological properties generalising those of scalar vortices and polarisation singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Further studies might indicate how these properties behave under perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' We hope that by highlighting the unusual properties of 3D field zeros, we can inspire new applications that may be otherwise unachievable with traditionally used, lower-dimensional dark spots, such as those in beams or simple standing waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Methods 3D electric field zeros were created in analytical simulations of ten monochromatic inter- fering plane waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In all simulations, ten random wavevectors (all of the same magnitude k = 2π λ ) were generated, and for each, two orthogonal polarisation basis vectors were defined, representing the two electric field degrees of freedom of a plane wave propagating in that direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The ten plane waves were then polarised deliberately to destructively interfere and leave a 3D electric field zero at a single confined point, r0, following the procedure given in [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Let eikj·rˆej,1 and eikj·rˆej,2 be the two orthogonal polarisation states (degrees of free- dom) of the electric field of the jth plane wave with unit amplitude at the origin (j ranges from 1 to 10, kj is the jth plane wave’s random wavevector with magnitude |kj| = 2π λ , and ˆej,1 and ˆej,2 are two orthogonal unit vectors satisfying ˆej,1 · ˆej,2 = 0, ˆej,1 · kj = 0, ˆej,2 · kj = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' In total, we have twenty available polarisation degrees of freedom, and by propagating each plane wave, we can calculate the electric field that each individual degree of freedom develops in the position of a desired electric field zero, r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Now, we multiply 16 3D ZEROS IN ELECTROMAGNETIC FIELDS each degree of freedom by a complex scalar, so that the jth plane wave has components xj,1eikj·rˆej,1 and xj,2eikj·rˆej,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Adding together all scaled degrees of freedom, evaluated at r = r0, we have a linear system of three equations, one per component of the total field at r0, with complex variables xj,1 and xj,2 representing the amplitude of the orthogonal components of the jth plane wave phasor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Setting to zero all three total electric field com- ponents at r0, we may solve the system of equations to find the polarisation components of each plane wave required for complete destructive interference at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Since only three scalar conditions are enforced (Ex = 0, Ey = 0 and Ez = 0 for the total field at r0) by twenty degrees of freedom, the system is under-determined and seventeen possible solutions exist for a 3D zero at r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Any one of these solutions may be chosen to realise the zero, or, as we do, the solutions may be combined in a linear sum with random complex amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A 3D zero could be produced with as few as four plane waves (in fact, a zero could be enforced by only two plane waves, but it would not be three-dimensional), though the total field would appear less random.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' O’Holleran, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Padgett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Topology of Light’s Darkness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Physical Review Letters 102 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Leach, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Courtial, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Padgett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Knotted threads of darkness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature 432 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' O’Holleran, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Padgett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Topology of optical vortex lines formed by the interference of three, four, and five plane waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Express 14, 3039 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', King, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Jack, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', O’Holleran, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Padgett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Isolated optical vortex knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Physics 6 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Tempone-Wiltshire, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Johnstone, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Helmerson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optical vortex knots – one photon at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Scientific Reports 6 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Kleckner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Irvine, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Creation and dynamics of knotted vortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Physics 9 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Weiler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Neely, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Scherer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Spontaneous vortices in the formation of Bose–Einstein condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature 455 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Hindmarsh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Kibble, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Cosmic strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Reports on Progress in Physics 58 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Zhong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Creation of topological vortices using Pancharatnam- Berry phase liquid crystal holographic plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Chinese Physics B 29 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Yin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Ultrasmall Optical Vortex Knots Generated by Spin-Selective Metasurface Holograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Advanced Optical Materials 7 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Zhong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optical vortex knots and links via holographic meta- surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Advances in Physics: X 6 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Wei, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Huang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optical vortex generation with wavelength tun- ability based on an acoustically-induced fiber grating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Express 24 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Lim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Meretska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Dorrah, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Capasso, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Engineering phase and polarization singularity sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Communications 12, 4190 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Balzarotti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Eilers, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Gwosch, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Science 355, 606–612 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' REFERENCES 17 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Hell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Wichmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Letters 19, 780 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' He, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Heckenberg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Rubinsztein-Dunlop, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Journal of Modern Optics 42 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' He, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Friese, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Heckenberg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Rubinsztein-Dunlop, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Direct Obser- vation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Physical Review Letters 75 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Fazal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Terabit free-space data transmission employ- ing orbital angular momentum multiplexing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Photonics 6 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Xie, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Yan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 100 Tbit/s free-space data link enabled by three- dimensional multiplexing of orbital angular momentum, polarization, and wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Letters 39 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Willner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Pang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Song, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Zou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Orbital angular momentum of light for communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Applied Physics Reviews 8 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Vernon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Rodr´ıguez-Fortu˜no, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Creating and moving nanoantenna cold spots anywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Light: Science & Applications 11 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Spaegele, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Tamagnone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Lim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Topologically protected four- dimensional optical singularities 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & V, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' The wave structure of monochromatic electromagnetic radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Proceedings of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Mathematical and Physical Sciences 409, 21–36 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Lines of circular polarization in electromagnetic wave fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Proceedings of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Mathematical and Physical Sciences 389 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Berry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Polarization singularities in isotropic random vector waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Proceedings of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Series A: Mathematical, Physical and Engineering Sciences 457, 141–155 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Bliokh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Alonso, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Sugic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Polarization singularities and M¨obius strips in sound and water-surface waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Physics of Fluids 33 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Bliokh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Nori, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Spin and orbital angular momenta of acoustic beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Physical Review B 99 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Bliokh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Punzmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Xia, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Nori, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Shats, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Field theory spin and momentum in water waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Science Advances 8 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Sugic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Droop, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Otte, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Particle-like topologies in light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Commu- nications 12 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Larocque, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Sugic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Mortimer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Reconstructing the topology of optical polarization knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Physics 14 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Polarization singularities in paraxial vector fields: morphology and statis- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Communications 213, 201–221 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Freund, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Multitwist optical M¨obius strips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Letters 35, 148 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Dennis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Fermionic out-of-plane structure of polarization singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optics Letters 36 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Bauer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Banzer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Karimi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Observation of optical polarization M¨obius strips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Science 347, 964–966 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 18 REFERENCES 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Pisanty, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Machado, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Vicu˜na-Hern´andez, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Knotting fractional-order knots with the polarization state of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Nature Photonics 13 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Berry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Index formulae for singular lines of polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Journal of Optics A: Pure and Applied Optics 6, 675–678 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Berry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optical currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Journal of Optics A: Pure and Applied Optics 11 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Bliokh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Bekshaev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Nori, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Optical momentum and angular momen- tum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' New Journal of Physics 19 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Berry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Shukla, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Geometry of 3D monochromatic light: local wavevectors, phases, curl forces, and superoscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Journal of Optics 21 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Bekshaev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=', Bliokh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' & Nori, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Transverse Spin and Momentum in Two- Wave Interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Physical Review X 5 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Acknowledgements We would like to thank Sinuh´e Perea-Puente for a mathematical proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' This work was sup- ported by European Research Council Starting Grant ERC2016-STG-714151-PSINFONI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Author Contribution A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' conducted mathematical analyses and simulations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' gave direction to and supervised the research;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='R-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' supervised the research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' All authors wrote the manuscript;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' wrote the first draft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} +page_content=' Competing Interests The Authors declare no competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQf8AVQ/content/2301.03540v1.pdf'} diff --git a/9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf b/9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..72abede53a1ab51405b522be75b9be9c14c86849 --- /dev/null +++ b/9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c7d3b2149d9385a9c4fc5c8772d20f658cc374a218625c76296386c92fa6662 +size 3086526 diff --git a/9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss b/9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0c7f06b0173cb0cd4e7a5694b498bd33427f7aa7 --- /dev/null +++ b/9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1c23c06929f8e125b722e4f680f419a7dd43acd133e35d8ccd86994f88ec8d98 +size 6881325 diff --git a/9dE3T4oBgHgl3EQfSQko/vector_store/index.pkl b/9dE3T4oBgHgl3EQfSQko/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..20b1045197f7f798090a49545228655f88e5f60a --- /dev/null +++ b/9dE3T4oBgHgl3EQfSQko/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a5bc215ac62de89348eb3ebff2168b293d342c06dad9ffacb59ecaf841b1653a +size 287335 diff --git a/AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf b/AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..488f12bcab1ed4a54a325d4588e8dd8b93c7ad5f --- /dev/null +++ b/AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:17ea3965965bd7cc11cd24368e173e8959a79ca82a0f18fcfd0f99c67aeea658 +size 655893 diff --git a/AdFLT4oBgHgl3EQfEy_H/vector_store/index.pkl b/AdFLT4oBgHgl3EQfEy_H/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..de0204b2e66aec100b696e0744b2838b6ef2eb89 --- /dev/null +++ b/AdFLT4oBgHgl3EQfEy_H/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c08fefd17fb896b91f9c937af3fb706726ff5b30e665a2e6cbdc82754a099bc7 +size 373736 diff --git a/BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf b/BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c6eee3fbf5bc8d5b1cdf73125ae80ce1af2e870c --- /dev/null +++ b/BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a54e8cdd765c83be86d509a4332540543e1b4aa871cb78d5368a2f40031e5184 +size 602080 diff --git a/BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss b/BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..907890613e56c2dd9d2a471c20584cfc699b9849 --- /dev/null +++ b/BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8409271edeae02b25fd6251c60f5e2d7814a1a3d03f20e2312b8ef7a04410438 +size 2949165 diff --git a/CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf b/CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..457436672cacb301bd4df087bb15a243dca63f47 --- /dev/null +++ b/CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:428031ac2f6fbfc00616178dd9e25ee904eefe495c07af9afcf95fdcc5bc83cc +size 2882587 diff --git a/CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss b/CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..c653eb05e6b2a9cbf057193d048577e09f7953f8 --- /dev/null +++ b/CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f70c2cc5f7cec08faea24d9299b52fd9c44bdb2a9fbc050ff0b053deaac06249 +size 3407917 diff --git a/CdFJT4oBgHgl3EQftC3b/vector_store/index.pkl b/CdFJT4oBgHgl3EQftC3b/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4bfac90a098ba0bc3991501ea67e1898994e1bce --- /dev/null +++ b/CdFJT4oBgHgl3EQftC3b/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8672a5657d290bf9a26b0f89fbcc53f03354a231f698192768dfd93e1175ca96 +size 137337 diff --git a/EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf b/EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..492d49534aeb64e64feed8a6675eadfb506ccdf8 --- /dev/null +++ b/EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:925ef4555a30838df06af04de4718e654c6042c5de3e97dc0fcc9532b0943a62 +size 688106 diff --git a/EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss b/EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..86103291ab7b55079236ad72a19468a50a8b3aa7 --- /dev/null +++ b/EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e709140c18a25e3192df22fc202df0c72fa86cea49464f02456c947a812c614b +size 3145773 diff --git a/EdAzT4oBgHgl3EQfwv7y/vector_store/index.pkl b/EdAzT4oBgHgl3EQfwv7y/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9a84dc91737d17728e3cda3876d9f0f22fcdc80a --- /dev/null +++ b/EdAzT4oBgHgl3EQfwv7y/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:796955ba0da267ae55dc5660a29d27a90ca666c1a6779912d4e1734f96605dcb +size 114890 diff --git a/EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf b/EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8f0e088ea3a55afdf507b4413607d09c3a941df4 --- /dev/null +++ b/EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:caebc8f93fb3d9988484e24f6181bd4615a82f817adb53eefe1911a6df45ff92 +size 13465609 diff --git a/EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss b/EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..bc8fb21eb9ddac1aa4cd66be6dc4da46375bd1c0 --- /dev/null +++ b/EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9564be9d2f62ffc08e3e96c4b87a4e74d24c6f8ee385898c1f7dbdd029c61d56 +size 4587565 diff --git a/EtE2T4oBgHgl3EQf-Ak-/vector_store/index.pkl b/EtE2T4oBgHgl3EQf-Ak-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..bfc560bcdccb4f8cf38821d0b71de709a83b3a21 --- /dev/null +++ b/EtE2T4oBgHgl3EQf-Ak-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc0227cccf938264aa3a03bf1c701fd0c59843d03c9795c9707d8ab939f3bc0d +size 175698 diff --git a/FNE0T4oBgHgl3EQfzAKR/content/tmp_files/2301.02667v1.pdf.txt b/FNE0T4oBgHgl3EQfzAKR/content/tmp_files/2301.02667v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2d506a90a637b6ea1b26bb7a8114529871725015 --- /dev/null +++ b/FNE0T4oBgHgl3EQfzAKR/content/tmp_files/2301.02667v1.pdf.txt @@ -0,0 +1,1363 @@ +Locomotion-Action-Manipulation: +Synthesizing Human-Scene Interactions in Complex 3D Environments +Jiye Lee +Hanbyul Joo +Seoul National University +{kay2353,hbjoo}@snu.ac.kr +Figure 1. Our system, LAMA, produces high-quality and realistic 3D human motions that include locomotion, scene interactions, and +manipulations given a 3D environment and designated interaction cues. +Abstract +Synthesizing interaction-involved human motions has +been challenging due to the high complexity of 3D environ- +ments and the diversity of possible human behaviors within. +We present LAMA, Locomotion-Action-MAnipulation, to +synthesize natural and plausible long term human move- +ments in complex indoor environments. The key motivation +of LAMA is to build a unified framework to encompass a +series of motions commonly observable in our daily lives, +including locomotion, interactions with 3D scenes, and ma- +nipulations of 3D objects. LAMA is based on a reinforce- +ment learning framework coupled with a motion matching +algorithm to synthesize locomotion and scene interaction +seamlessly under common constraints and collision avoid- +ance handling. LAMA also exploits a motion editing frame- +work via manifold learning to cover possible variations +in interaction and manipulation motions. We quantitatively +and qualitatively demonstrate that LAMA outperforms ex- +isting approaches in various challenging scenarios. Project +page: https://lama-www.github.io/. +1. Introduction +In our daily lives, we can easily observe that humans do +not live in isolation nor in voids, but continuously interact +with a complex environment surrounded by many objects. +Notably, humans perform such a diverse set of daily life +actions effortlessly. Imagine that we visit a new indoor en- +vironment (e.g., a hotel room) we have never been before. +It is expected that we can still easily figure out how to move +from rooms to rooms, how to sit on a chair, how to open the +doors of closets, and so on. However, endowing machines +or virtual humans with such abilities is still a largely unex- +plored area, despite its importance. +Synthesizing scene interactions within real-life 3D envi- +ronments has been a challenging research problem due to +its complexity and diversity. Human movements in real life +consists of various types of behaviors, including locomotion +with avoiding cluttered areas, diverse interactions with 3D +scenes, and sophisticated object-manipulations. In particu- +lar, the spatial constraint that arises from real-life 3D envi- +ronments where many objects are cluttered makes motion +synthesis highly constrained and complex, and various pos- +sible arrangements of 3D environments make generalization +difficult. As human-scene interactions cover a wide range of +technical challenges, previous approaches have focused on +sub-problems, such as (1) modeling static poses [17,24,49, +64,69,71,72] or (2) human object interactions with a single +target object or interaction type [10, 47, 53–55, 66, 67, 70]. +Recent methods [15,59,60] extend to synthesizing dynamic +interaction motions in cluttered real-world 3D scenes. How- +ever, the performance of these methods are fundamentally +limited due to the lack of 3D ground truth data that contains +both human motions and paired 3D environments. +1 +arXiv:2301.02667v1 [cs.CV] 9 Jan 2023 + +In this paper, we present LAMA, Locomotion-Action- +MAnipulation, to synthesize natural and plausible long term +human motions in complex indoor environments. The key +motivation of LAMA is to build a unified framework to +include locomotion, interactions with 3D scenes, and ma- +nipulations of 3D objects, which are the series of motions +commonly observable in our daily lives. LAMA is based +on a reinforcement learning framework coupled with a mo- +tion matching algorithm to synthesize locomotion and scene +interaction seamlessly while adapting to complicated 3D +scenes with collision avoidance handling. The reinforce- +ment learning framework interprets the 3D information of +the given scene and optimally traverses among the motion +capture database via motion matching. As an advantage, our +system does not require any “scene-paired” datasets where +human movements are captured with the surrounding 3D +environments simultaneously, which is rarely available. To +further cover the numerous variations of interaction mo- +tions, we also exploit an autoencoder based motion editing +approach to learn the motion manifold space [20] in which +the editing is performed. Through extensive quantitative +and qualitative evaluations against existing approaches, we +demonstrate that our method outperforms previous methods +in various challenging scenarios. +Our contributions are summarized as follows: (1) we +present the first method to generate realistic long term mo- +tions combined with locomotion, interaction with scene, +and manipulation in complicated cluttered scenes; (2) we +propose a novel, unified framework that synthesizes loco- +motion and human-scene interactions in a seamless man- +ner, by introducing scene interpretation terms to a reinforce- +ment learning based approach to automatically generate op- +timal transitions; and (3) our outputs show the state-of-the- +art motion synthesis quality with longer duration (more than +10 sec) than previous methods. +2. Related Work +Generating Human-Scene Interactions. Generating +natural human motion has been a widely researched topic +in the computer vision community. Early methods focus on +synthesizing or predicting human movements by exploiting +neural networks [11,13,35,35,38,46,56,58]. However, these +approaches primarily address the synthesis of human mo- +tion itself, without taking into account the surrounding 3D +environments. Recent approaches begin to tackle modeling +and synthesizing human interactions within 3D scenes, or +with objects. Most of the researches focus on statically pos- +ing humans within the given 3D environment [16,24,69,71], +by generating human scene interaction poses from vari- +ous types of input including object semantics [17], im- +ages [21,23,64,65,68], and text descriptions [49,72]. +More recently, there have been approaches to synthesize +dynamic human object interactions (e.g., sitting on chairs, +Encoder +Decoder +Task-Adaptive Motion Editing +Motion Generation +Action +Controller +3D Scene +Interaction +Cue +Action +Posture +Motion +Synthesizer +Optimization +Figure 2. Overview of LAMA. +carrying boxes). Starke et al. [53] introduce an autoregres- +sive learning framework with object geometry-based envi- +ronmental encodings to synthesize various human-object +interactions. Later work [15, 70] extends this by synthe- +sizing motions conditioned with variations of objects and +contact points. Other approaches [47, 54, 55, 66, 67] focus +on generating natural hand movements for manipulation, +which is extended by including full body motions [54]. +Physics-based character control to synthesize human object +interactions has been also explored in [8,10,39,47,66]. Al- +though these approaches cover a wide range of human ob- +ject interactions, most of them solely focus on the relation- +ship between human and the target object without long-term +navigation in cluttered 3D scenes. +More recent approaches include generating natural hu- +man scene interactions within a complex 3D scene clut- +tered with many objects [6, 59–61], closely related to ours. +These methods are trained using human motion datasets +paired with 3D scenes, which require both ground truth mo- +tions and simultaneously captured 3D scenes for supervi- +sion. Due to such difficulties, some methods exploit syn- +thetic datasets [6,61] or data fitted from depth videos [60]. +In previous approaches [15,59], navigation to move through +cluttered environments is often performed by a separate +module via a path planning algorithm (e.g., A∗ algorithm) +by approximating the volume of a human as a cylinder. This +path planning based methods approximate the spatial infor- +mation of the scene and the human body and therefore have +limitations under highly complex conditions. +Motion Synthesis and Editing. Synthesizing natural +human motions by leveraging motion capture data has also +been a long-researched topic in computer graphics. Some +approaches [26,37] construct motion graphs, where plausi- +ble transitions are inserted as edges and motion synthesis is +done by traversing through the constructed graph. Similar +approaches [31, 51] connect motion patches to synthesize +interactions in a virtual environment or multi-person inter- +actions. Due to its versatility and simplicity, a number of +variations have been made on the graph based approach, +such as motion grammar [22] which enforces traversing +rules in the motion graph. Motion matching [5, 9] can also +be understood as a special case of motion graph traver- +sal, where the plausible transitions are not precomputed but +searched during runtime. Recent advances in deep learning +allow to leverage motion capture data for motion manifold +2 + +rendel +reset +prev +play +nextlearning [19, 20, 52]. Autoregressive approaches based on +variational autoencoders (VAE) [36, 46] and recurrent neu- +ral networks [14,29,41] are also used to forecast future mo- +tions based on past frames. These frameworks are general- +ized to synthesizing a diverse set of motions including lo- +comotion on terrains [19] mazes [36], action-specified mo- +tions [46], and interaction-involved sports [29, 41]. Neural +network-based methods are also reported to be successful +in various motion editing tasks such as skeleton retarget- +ing [2], style transfer [3,20], and inbetweening [14]. +Reinforcement learning (RL) has also been successful in +combination with both data-driven and physics-based ap- +proaches for synthesizing human motions. Combined with +data-driven approaches, these RL frameworks serve as a +control module that generates corresponding motions to a +given user input by traversing through motion graphs [28], +latent space [34, 36, 57], and precomputed transition ta- +bles [30]. Deep reinforcement learning (DRL) has been +widely used recently in physics simulation as well to syn- +thesize physically plausible movements with a diverse set +of motor skills [4,32,41,43–45,62]. +3. Method +3.1. Overview +Our system, dubbed as LAMA, outputs a sequence of +human poses M = {mt}T +t=1 by taking the 3D surrounding +cues W and desired interaction cues Φ, as inputs: +M = LAMA(W, Φ). +(1) +The output posture at time t, mt = (p0, r1, ..., rJ) ∈ +R3J+3, is represented by a concatenated vector of global +root position p0 ∈ R3 and local joint orientations of J +joints where each j-th joint is in angle-axis representations +rj ∈ so(3). Throughout our system, the skeleton tree struc- +ture and joint offsets are fixed and shown in Fig. 3 (a). We +represent the 3D environments W = {wi} as a set of 3D +object and environment meshes, including the background +scene mesh and other object meshes targeted for manip- +ulation. The interaction cues, Φ = [φ1, φ2, ...φn], are an +ordered list of desired interaction inputs φi = {qj}j∈Ji +where qj ∈ R3 indicates desired positions of j-th joint, +and Ji is a set of specified joints for interaction (in prac- +tice, few joints such as root 1 or end-effectors). Examples of +the 3D environment W and interaction inputs φi are shown +in Fig. 5 (a). Intuitively, φi specifies the expected positions +of selected joints of the human character. Note that we do +not specify the exact timing of the interaction, as the timing +is automatically determined by our action controller. More +details are addressed in Sec. 3.4. +To synthesize locomotion, interaction, and manipulation +together, LAMA is designed via a three-level system com- +1For root, orientation in angle-axis representation is also included in φ. +Figure 3. (a) Skeleton with joints and box nodes. (b) Automatically +detected collision points (colored as red). +posed of the action controller A and the motion synthesizer +S, followed by a manifold-based motion editor E. By taking +3D scene cues W and desired interaction cues Φ as input, +the action controller A makes the use of a reinforcement +learning (RL) framework by training the control policy π to +sample an action at time t, π(at|st, W, Φ), where at con- +tains the plausible next action cues including predicted ac- +tion types and short-term future forecasting. st is the state +cues to represent the current status of human characters in- +cluding its body posture, surrounding scene occupancy, and +current target interaction cue, which can be computed via +a function ψ, st = ψ(mt−1, mt, W, Φ). Intuitively, action +controller A predicts the plausible next action cues at by +considering the current character-scene state st. The gener- +ated action signals at from the action controller A is pro- +vided as the input for the motion synthesizer S, which then +determines the posture at the next time step mt+1, i. e., +S(mt, at) = mt+1. Afterwards, the character’s next state +can be computed again via st+1 = ψ(mt, mt+1, W, Φ), +which is input to the action controller recursively. +Followed by the initial motion generation part from A +and S, our system furthermore applies a motion editor +E(M) = ˜M, where ˜M = { ˜Mt}T +t=1 is the edited motions +to further express the motions involving complex human- +object interactions such as manipulation (e.g. moving ob- +jects, opening doors). Fig. 2 shows the overview of LAMA. +3.2. Scene-Aware Action Controller +Based on reinforcement learning, our action controller +A enables the character to perform locomotion and desired +actions with fulfilling the interaction cues Φ and avoiding +collisions in the 3D environment W. A is a trained control +policy π where π(at|st, W, Φ). Different from previous +approaches where navigation and scene-object interactions +(e.g., sitting) are performed by separate modules [15, 59], +our RL-based framework performs both in a unified way +with a common objective by automatically determining the +transition from navigation to specific actions. As a key ad- +vantage, LAMA can be robustly generalized to challenging +unseen 3D clutters in long-term human motion synthesis +and also outperforms previous methods by avoiding colli- +sions throughout the whole process, including navigation +3 + +Joint +- Node +Jointand interaction. +State. The state st = ψ(mt−1, mt, W, Φ) at time t is +a feature vector representing the current status of the hu- +man character. st = (sbody +t +, sscene +t +, sinter +t +) is composed of +body configuration sbody, 2D scene occupancy sscene, and +desired current target interaction sinter. Body configuration +sbody = {r, ˙r, θup, h, pe} includes r, ˙r ∈ RJ′×6 that are the +joint rotations and velocities respectively for the J′ joints +excluding the root in 6D representations [73], θup ∈ R that +is the up vector of the root (represented by the angle w.r.t +the Y-axis), h ∈ R that is the root height from the floor, +and pe ∈ Re×3 that is the end-effector positions in person- +centric coordinate (where e is the number of end-effectors). +sscene = {gocc, groot} includes scene occupancy informa- +tion in 2D floor plane, as shown in Fig. 4. gocc ∈ Rn2 rep- +resents the 2D occupancy grid on the floor plane of neigh- +boring n cells around the agent and groot ∈ R2 denote the +current 2D global root position of the character in the dis- +cretized grid plane. sinter is an element of Φ and represents +the interaction cue the character is currently targeting, that +is sinter = φi. +Action. Given the current status of the character st, +the control policy π outputs the feasible action at += +(atype +t +, afuture +t +, aoffset +t +). atype +t +provides the probabilities +of next action type among all possible actions, determining +the transition timing between actions (e.g., from locomo- +tion to sitting). afuture +t +predict future motion cues such as +plausible root position for the next 10, 20, and 30 frames. +aoffset +t +is intended to update the raw motion data searched +from the motion database in motion synthesizer module S. +Intuitively, our learned control policy generates an optimal +posture offset aoffset +t +which is applied to the closest plau- +sible raw posture in the database. This enables the character +to perform more plausible scene-aware human poses, allow- +ing our system to be generalized to any unseen 3D scenes +given a limited amount of motion capture data. More details +are addressed in Sec. 3.3. +3.3. Motion Synthesizer +Given the current motion output mt and actions sig- +nals at from the action controller A as inputs, the mo- +tion synthesizer produces the next plausible character pos- +ture: S(mt, at) = mt+1. As the first step, motion synthe- +sizer searches for the motion from a motion database that +best matches the closest motion feature, then modifies the +searched raw motion to be more suitable for the scene envi- +ronment. To this end, motion synthesizer’s output mt+1 is +in turn fed into the action controller recursively. We exploit +a modified version of motion matching algorithm [5, 9, 18] +for the first step of motion synthesis. In motion matching, +motion synthesis is performed periodically by searching the +most plausible next shot motion segments from a motion +DB, and compositing them into a long connected sequence. +Figure 4. Visual representation of the 2D occupancy grid near the +root. Grid on the right represents top view of the grid. Blue in- +dicates root position while gray represents the space is occupied. +Occupied cells near the root are colored as black. +Motion features. Motion feature represents the charac- +teristic of each frame in the short motion segment and is +computed as f(m) = {{pj}, { ˙pj}, θup, c, ofuture}. From +a posture m, the positions and velocities pj, ˙pj +∈ R3 +are extracted for the selected joints j ∈ {Head, Hand, +Foot}, which are defined in a person-centric coordinate +of m. θup ∈ R3 is the up-vector of the root joint, and +c ∈ {0, 0.5, 1} indicates automatically computed foot con- +tact cues of the left and right foot (0 for non-contact, 1 for +contact, 0.5 for non-contact but close to the floor within +a threshold). ofuture = {{pdt +0 }, {rdt +0 }} contains the cues +for the short-term future postures, where pdt +0 and rdt +0 are +the position and orientation of root joint at dt frames later +from the current target frame. ofuture are computed in 2D +XZ plane in person-centric coordinate of the current tar- +get motion m, and thus pdt +0 , rdt +0 +∈ R2. The selected fu- +ture frames are action-type specific, and for locomotion we +extract 10, 20, and 30 frames in the future (at 30Hz) fol- +lowing [9]. Intuitively, the motion feature extracts the target +frame’s posture and temporal cues by considering neigh- +boring frames 2. We pre-compute motion features for every +frame of the motion clips in the motion database. Motion +feature of the current state of the character, or the query +feature, is also computed in the same way based on posture +mt−1, mt and afuture +t +produced by the action controller, +that is xt = f(mt−1, mt, atype +t +, afuture +t +). The component +afuture +t +serves as ofuture in the query feature, which can be +understood as the action controller providing cues for pre- +dicted future postures. +Motion searching and updating. The query motion fea- +ture xt from the current character is computed as addressed +above, and let the motion features in motion database de- +noted as yk for the k-th clips in the DB. Motion searching +finds the best matches in the motion database by computing +the weighted euclidean distances between the query feature +and DB features: +k∗ = arg min +k +||wT +f (xt − yk)||2, +(2) +where wf is a fixed weight vector to control the impor- +2In practice, the input of feature extractor function f should take into +account the motions of neighboring timesteps. +4 + +2D +occupancy gridtance of feature elements. After finding the best match ˆmk∗ +from motion database, the motion synthesizer further up- +dates it with the predicted motion offset aoffset +t +from at, +that is τ( ˆmk∗+1, aoffset) = mt+1, where ˆmk∗+1 is the +next plausible character posture and τ is an update function +to update selected joints. In practice, the motion searching +is performed periodically (e.g., every N-th frames) to make +the synthesized motion temporally more coherent. +3.4. Learning for Scene-Aware Action Controller +In the reinforcement learning framework, the objective is +to learn the optimal policy which maximizes the discounted +cumulative reward. In our method, we design rewards to +guide the agent to perform locomotion towards the target +objects (e.g., sofa) and also perform desired interaction with +the object (e.g., sitting). In particular, our RL-framework +performs both navigation and interaction with common con- +straints (e.g., smooth transitions, collision avoidance). +Our reward function consist of the following terms: +Rtotal = wtrRtr + wactRact + wregRreg, +(3) +where wtr, wact, and wreg are the weights to balance among +reward terms. The trajectory reward Rtr is obtained when +the character moves towards the desired interaction input φ +while meeting the spatial constraints from the surrounding +3D scene, described below: +Rtr = rcoli · rpos · rroot, where +(4) +rcoli = exp +� +− 1 +σ2 +coli +� +b∈B +wbρ(b, W) +� +, +(5) +rpos = exp +� +�− +1 +σ2 +root +� +j∈J +∥p0 − qj∥2 +� +� , +(6) +rvel = +� +1 +when ˙proot ≥ σth +σvel∥ ˙p0∥2 +else. +(7) +The collision-avoidance reward rcoli penalizes collisions +with 3D scenes. As depicted in Fig. 3 (a), body limbs in +the skeletal structure are represented as a set of box-shaped +nodes B with a fixed width, where each element b ∈ B is +a 3D box representation of legs and arms (we exclude torso +and head). The function ρ(b, W) detects the collision be- +tween edges of a box-shaped node b with 3D scene meshes +W and returns the number of intersection points. (Fig. 3 +(b)). wb is the weights to control importance of each limb b. +The collision-avoidance reward is maximized when no pen- +etration occurs, making the control policy π to find the opti- +mal trajectory and pose offset to avoid physically implausi- +ble collisions and penetrations. rpos are obtained when the +agent moves to reach the targeting interaction cue φ, by en- +couraging agent’s root position p0 to be closer to the target +interaction cue {qj}. rvel encourages the character to move +by penalizing when the root velocity ˙proot is less than a +threshold σth. σcoli, σroot, and vel are weights to control +the balance between terms. +Action reward Ract enforces the synthesized motion to +fulfill the given interaction cue φ = {qj}: +Ract = rinter · r∆t · r∆v, +where +rinter = exp +� +�− +1 +σ2 +inter +� +j∈J +∥pj − qj∥2 +� +� , +r∆t = exp +� +−σ2 +∆tCtr +� +, +r∆v = exp +� +−σ2 +∆vCvel +� +, +(8) +where interaction reward term rinter is maximized when the +performed action meets the positional constraints provided +by interaction cues. Smoothness reward terms r∆t and r∆v +minimizes the transition cost, which is based on the subpart +of the feature distances defined in Eq. 2, where Ctr is the +weighted feature distances of pj, θup, and c, and Cvel is +from ˙p. These are intended to penalize the case where the +character makes abrupt changes. +Regularization reward Rreg penalizes the aoffset +t +exces- +sively modifying the original posture brought from the mo- +tion synthesizer, denoted as ˆmt, and maintains temporal +consistency among frames. +Rreg = exp +� +− +1 +σ2reg +� +∥ ˆmt − mt∥2 + ∥mt − mt−1∥2�� +. +It is reported that [33, 41] multiplying rewards with con- +sistent goals are suitable for learning, as the reward is re- +ceived when the conditions are simultaneously met. Fur- +thermore, to accelerate learning, we use early termination +conditions [43] and limited action transitions. The episode +is terminated when the character moves out of the scene +bounding box, or when the collision reward rcoli is under a +certain threshold. Also, the action controller first checks in +advance whether the action signal is valid when it makes +transitions from locomotion to other actions. When the +nearest feature distance of Eq. 2 in the motion synthesizer +is over a certain threshold, the action controller discards the +transition and continues navigating. The control policy is +learned through Proximal Policy Optimization (PPO) algo- +rithm [50]. +3.5. Task-Adaptive Motion Editing +Interaction includes a massively diverse pool of mo- +tions, and these variations cannot be fully handled by lim- +ited amount of motion database. In order to cover such di- +versity, we include a task-adaptive motion editing module +in our motion synthesis framework. The goal of our edit- +ing module E is (1) to edit motion M to fit into diverse +5 + +Figure 5. Visual representation of system input Φ, W and output +motion sequence. On the left, interaction cues are shown as cyan +spheres and arrows (indicating orientation). The right is the syn- +thesized human motion ˜ +M. +target object geometries (e.g., sitting on a chair with dif- +ferent height), and (2) to generate additional hand move- +ments for manipulation (e.g., grasping). In particular, in the +case of manipulation, additional interaction cue φ can be +provided to enforce an end-effector (e.g., a hand) to fol- +low the desired trajectories to express the manipulation task +on the target object, as shown in Fig 8 (left). The edited +motion ˜M = E(M) should not only fulfill the sparsely +given positional constraints, but also preserve the temporal +consistency between frames and spatial correlations among +joints in order to maintain its naturalness. We adopt the mo- +tion manifold learning approach with convolutional autoen- +coders [20] to compress motion to a latent vector within a +motion manifold space. Motion editing is done by searching +for an optimal latent vector among the manifold. For train- +ing the autoencoder, motion sequence, which we denote as +X converted from M, is represented as a time-series of hu- +man postures by concatenating joint rotations in 6D repre- +sentations [73], root height, root transform relative to the +previous frame projected on the XZ plane, and foot contact +labels. The encoder and decoder module are trained based +on reconstruction loss, ||X − Ψ−1(Ψ (X)) ||2, where Ψ is +the encoder and Ψ−1 is the decoder. +The latent vector from the encoder z = Ψ(X) repre- +sent the motion manifold space by preserving the spatio- +temporal relationship among joints and frames within the +motion sequence. As demonstrated in [20], editing motions +in this manifold space ensures the edited motion to be re- +alistic and temporally coherent. To this end, we find the +optimal latent vector z∗ by minimizing a loss function L +by constraining the outputs motions to follow the interac- +tion constraint φ. We also include additional regularizers in +L so that the output motion to maintain the foot locations +and root trajectories to the original motions. See supp. mat. +for more details on L. Finally, the edited motion ˜M can be +computed via Ψ−1(z∗). +4. Experiments +We evaluate LAMA’s ability on synthesizing long-term +motions with various human-scene and human-object inter- +Method +Plausibility +Naturalness +Slip +Penetration +FDtotal +FDroot +FDjoint +Wang et al. [60] +5.13 +3.88 +1.38 +0.45 +0.93 +Wang et al. [60]* +24.8 +4.58 +1.44 +0.44 +1.00 +SAMP [15] +10.5 +12.49 +1.25 +0.30 +0.95 +LAMA (ours) +5.21 +1.52 +1.22 +0.31 +0.91 +Table 1. Baseline comparison Foot slip loss (cm, ↓) averaged over +all frames. Penetration loss(percentage, ↓) is counted based on in- +tersection points of the 3D environment and the skeleton. Natural- +ness score is based on fr´echet distance (FD ↓). Wang et al. with an +asterisk indicates without post-processing optimization. +actions involved. We exploit an extensive set of quantitative +metrics and perceptual study to evaluate the physical plau- +sibility and naturalness of the synthesized motion. +Dataset. For constructing the database for the motion +synthesizer, motion capture data are selectively collected +and refined from Ubisoft La Forge [14], COUCH [70], +and SAMP [15]. All the data used in this system are mo- +tion capture data (in bvh format) with no scene or ob- +ject related information, and are retargeted into a unified +skeletal structure with MotionBuilder. We use PROX [16] +and Matterport3D [7] datasets for 3D environment and +SAPIEN [63] object meshes for manipulation. Our code and +pre-processed data will be publicly released. +Implementation Details. The policy and the value net- +work of the action controller module consists of 4 and +2 fully connected layers of 256 nodes, respectively. The +encoder and decoder of the task-adaptive motion editing +module consist of three convolutional layers. Adam opti- +mizer [25] is used for training and optimization. We use +Nvidia RTX 3090 for training the action controller and the +motion editing module. It takes 10 to 80 minutes to learn +a single control policy, where the training time mainly de- +pends on how difficult the interaction cues are to achieve. +For optimization in the motion editing module, it takes 3 to +4 minutes for 500 epochs. See supp. mat. for more detail. +4.1. Experimental Setup +Evaluation metrics. Quantifying motion synthesis quality +is challenging due to the lack of ground-truth data or offi- +cial evaluation metrics. We try to quantify them in terms of +physical plausibility and naturalness. +• Physical plausibility: We use contact and penetration +metrics to evaluate the physical plausibility of the synthe- +sized motions. Contact loss penalizes the foot movement +when the foot is in contact. Since foot contact is a critical +element in dynamics, contact-based metric is closely related +in determining the physical plausibility of motions. Pene- +tration loss (“Penetration” in Table 1) measures implausible +cases when the body penetrates the objects in the scene. We +compute penetration metric by counting frames where the +6 + +interaction cue Φ2 +interaction cue ΦFigure 6. Comparison with LAMA (left) and LAMA without col- +lision reward (right). As shown in the right, without collision re- +ward the character fails to avoid collisions with obstacles (marked +as red). +intersection points (Sec. 3.4) goes over a certain threshold. 3 +• Naturalness: We measure the naturalness of the synthe- +sized motions by measuring the Fr´echet distance, as re- +ported in [15, 35, 40] between the synthesized motion and +motions from motion capture data. Features are extracted +from motion sequences and the Fr´echet distance is com- +puted with the extracted features. We measure the natural- +ness of character root movements FDroot, including root ori- +entation and velocity, and character joint rotations FDjoint. +Baselines. We compare our LAMA with the state-of-the-art +approaches as well as variations of ours. +• Wang et al. [60] is the state-of-the-art long term mo- +tion synthesis method for human-scene interactions within +a given 3D scene. We use the author’s code for evaluation. +As Wang et al. uses optimization to post-process the synthe- +sized motion to improve foot contact and reduce collisions, +we both compare Wang et al. with and without optimization. +• SAMP [15] generates interactions which can be general- +ized not only for object variations but also random starting +points within a given 3D scene. SAMP explicitly exploits a +path planning module to navigate through cluttered 3D en- +vironments. +• Ablative baselines We perform ablation studies on the ac- +tion controller and task-adaptive motion editing module. We +perform ablation studies on the scene reward rcoli, and ac- +tion offset aoffset +t +to present the contribution of both terms +on our system’s capability to generate scene-aware motions. +We also compare our method without the transition reward +r∆t and r∆v terms (Sec. 3.4) in the action controller. Fi- +nally, we demonstrate the strength of our task-adaptive mo- +tion editing module to edit motions naturally (Sec. 3.5) by +comparing with inverse kinematics (IK). +4.2. Comparisons with Previous Work +Quantitative Evaluation. We compare methods in 6 +different scenarios from various 3D scenes in the PROX +dataset [16]. Foot contact is automatically labeled based on +310 for legs and 7 for arms +Figure 7. Comparison with LAMA (left) and LAMA without ac- +tion offset (right). The character in original LAMA moves forward +while tilting its arms to avoid collision with walls, while in LAMA +without action offset does not. +positional velocity of the foot joint. Foot slip metric is mea- +sured by foot joint positions. To compute penetration metric +in a fair way, SMPL-X outputs of Wang et al. and SAMP are +converted to box-shaped skeletons as in ours and intersec- +tion point are counted. Table 1 shows the results. +As shown, our LAMA outperforms Wang et al both in +naturalness and physical plausibility. It is noted that Wang +et al performs optimization as post-processing to explic- +itly minimize foot slip, and yet LAMA still shows on-par +performance against it (and better in all other metrics). +Compared with SAMP, our method shows much better re- +sults in plausibility metrics (both Slip and Penetration), +and shows slightly better performance in naturalness. Apart +from SAMP which relies on a separate navigation mod- +ule, our RL-based action controller handles collisions in the +same way of scene-interaction and shows much better per- +formance in in complex and cluttered 3D scenes. +A Human Study. To further validate our results, we +compare the quality of our output over other baselines, +Wang et al. and SAMP, through A/B testing from human +observers. For the study, we choose 5 scenarios from dif- +ferent indoor scenes, and render the results of each method +using the exactly same view and 3D characters, so that they +cannot be distinguished from the appearance side. We build +two separate sets, where in each set the result videos of +our method are shown with each competitor side by side +in a random order. Human observers are asked to choose a +motion clip that is more human-like and plausible in the +given 3D scene. We perform each set of tests with non- +overlapping 15 participants. See our supp. mat. for more +details about the study setup. As the result, the outputs of +our method are preferred by the majority (more than 50% +voting) in all cases. By considering all votes independently, +our method are preferred 80.0% over SAMP and 97.3% +over Wang et al.’s work. In particular, we found that our +method greatly outperform the competing methods in terms +of the naturalism of foot stepping, transition between loco- +motion and action, and collision avoidance with the scenes. +See our supp. videos for more results. +7 + +LAMA +LAMA w/o collision rewardoffset +LAMA w/o a +LAMA +LAMAFigure 8. (a) Comparison with LAMA (top) and LAMA without +manifold and replaced with IK (bottom) of a character opening the +toilet lid. (b) Comparison with LAMA (top) and LAMA without +motion editing (bottom) in sitting. +4.3. Ablation Studies +Ablation Studies on Action Controller. We quantita- +tively compare the original LAMA and the LAMA without +collision reward rcoli. We intend to demonstrate the role of +rcoli that enforces the action controller to search for optimal +actions for generating motions without collisions. Ablation +studies are done in 5 PROX scenes. In the original LAMA, +penetrations occur in only 1.1% of the frames among the +whole motion sequences, while the ratio is 15.7% in LAMA +without collision reward. The result supports that the colli- +sion reward rcoli enforces the action controller to compute +optimal actions for synthesizing body movement according +to the spatial constraint of the given 3D scene. Example re- +sults are shown in Fig. 6. +We also compare the contribution of other components +in the action controller module in generating natural inter- +actions. As seen in Fig. 7, with the action controller without +aoffset +t +the character fails to avoid penetration with objects +or walls, as the raw motion from the motion database does +not have any information of the scene. This demonstrates +that action offset also plays a role in generating detailed +scene-aware poses even from raw motion capture data. +Moreover, the results with the action controller without +smoothness rewards r∆t and r∆v are not smooth enough, +showing unnatural movements such as jerking. These abla- +tion studies justify the advantages of our reward terms. +Ablation Studies on Task-Adaptive Motion Editing. +We ablate our motion editing module by replacing it with +an alternative approach via Inverse-Kinematics (IK). An ex- +ample result is shown in Fig. 8 (left). For manipulation, the +results with IK show jerky and awkward motions because +the temporal and inter-joint correlations in natural human +motions are not reflected in IK, while original LAMA with +task-adaptive motion editing module shows much natural +motions. Our motion editing module can also be used to +Figure 9. Examples of synthesized manipulation motions. The tar- +get object for manipulation is colored as orange. Top is a motion +sequence of walking and opening a toilet lid, and the bottom is a +sequence of walking and opening doors. The character is colored +purple at start and aqua at the end. +further adjust the character movements in different object +geometries, going over the limit of the motion database. As +seen in Fig 8 (right), the motion editing module enables the +character to properly sit in chairs with various sizes. +5. Discussion +In this paper, we present a method to synthesize locomo- +tion, scene-interaction, and manipulation in a unified sys- +tem. Leveraging a RL framework with motion matching, +our method enables to produce natural and plausible hu- +mans motions in complex and cluttered 3D environments +only with a limited amount of motion-only datasets. Our +method has been thoroughly evaluated in diverse scenar- +ios, outperforming previous approaches [15, 60]. We also +demonstrate the robustness and generalization ability of our +system by covering a wide range of human interactions in +many different 3D environments. +While our RL-based method can be generalized to any +unseen 3D environments, a new control policy has to be +trained for each motion sequence. Combining RL with a +supervised learning framework for better efficiency can be +an interesting future research direction. Furthermore, al- +though we assume a fixed skeletal information throughout +the system, interaction motions may change depending on +the character’s body shape and sizes. We leave synthesizing +motions on varying body shapes as future work. +Acknowledgments: This work was supported by SNU- +Naver Hyperscale AI Center, SNU Creative-Pioneering Re- +searchers Program, and NRF grant funded by the Korea +government (MSIT) (No. 2022R1A2C209272411). +8 + +LAMA +LAMA +LAMA w/o motion editing +LAMA w/o manifold + IK梦人庆A. Supplementary Video +The supplementary video shows the results of our +method, LAMA, on various scenarios. In the video, we +show the human motion synthesis results on PROX [16], +Matterport3D [7], and also our own home-brewed 3D scene +produced by Polycam App [1] in an iPad pro. We use +SAPIEN [63] object meshes for manipulation examples. As +shown, our method successfully produces plausible and nat- +ural human motions in many challenging scenarios. Our +supplementary video contains several ablation studies of +our method by showing the importance of collision reward +rcoli in Eq. (4), transition reward (r∆t , r∆v) in Eq. (8), pos- +ture offset aoffset +t +in Action Controller (Sec. 3.2), and our +motion editing modules (Sec. 3.5) compared to the tradi- +tional Inverse Kinematics (IK). We also show the compari- +son with previous state-of-the arts [15, 59, 60] and demon- +strate that our results produces better quality of motions +with better collision avoidance performance in complicated +3D scenes. +B. Additional Details on Implementations +B.1. Action Controller +Implementation Details. +For the action controller A and +motion synthesizer module S, we use the animation library +DART [27]. We also use a publicly available PPO imple- +mentation [32, 41], where we remove the variable time- +stepping functions stepping in [32] by following the origi- +nal PPO algorithm. The details of the training regarding the +policy and value network of the action controller are written +in Table 2. +Early Termination Conditions. +As written in the main +paper, the episode is terminated (1) when the character +moves out of the scene bounding box; (2) when the colli- +sion reward rcoli is under a certain threshold; or (3) when +the root of the human character is located in the blocked +(occupied) regions of the scenes in 2D grid space during +the locomotion status. +Name +Value +Learning rate of policy network +2e-4 +Learning rate of value network +0.001 +Discount factor (γ) +0.95 +GAE and TD (λ) +0.95 +Clip parameter (ϵ) +0.2 +# of tuples per policy update +30000 +Batch size for policy/value update +512 +Table 2. Details on the hyper-parameters for learning the control +policy of the action controller A. +B.2. Motion Synthesizer +Motion Database Information. +As described in our +main paper, we pre-process the motion segments by selec- +tively collecting and clipping from Ubisoft La Forge [14], +COUCH [70], and SAMP [15]. The length (in frames) +of motion segments (“Seg. Length” in tables), number of +motion segment (“Seg. Count” in tables), and the number +of total frames (“Total Frames” in tables) are summarized +in Table 3. +Action-Specific Feature Definition. +The motion feature, +as defined in our main paper Sec 3.3, represents both the +current state of the motion and a short term future move- +ments: f(m) = {{pj}, { ˙pj}, θup, c, ofuture}. In particu- +lar the action specific feature ofuture = {{pdt +0 }, {rdt +0 }} +contains future motions so that the motion search process +can take into account the future motion consistency, where +pdt +0 , rdt +0 ∈ R2 are the position and orientation of root joint at +dt frames later from the current target frame. For locomo- +tion, we extract dt = 10, 20, and 30 frames in the future (at +30Hz) following [9], as addressed in our main paper. For sit- +ting, we specifically choose dt as the frame where the char- +acter completes the sit-down motion. The major motivation +of this design choice is encourage the motion synthesizer to +search the motion clips with the desired target action. +Computation Cost for Searching. +The computation time +for searching the motion database is done between 1-2 mil- +liseconds in CPU, where we test on AMD Ryzen 5950X +CPU. The number of search times varies and is dependent +to the 3D scenes and desired motions. In one of our sce- +narios, total 17 searches in locomotion(walk) and 14 in ac- +tion(sit) were done. For locomotion, the searching time is +average 1.743 milliseconds (standard deviation 0.46) and +for action(sit) 1.103 milliseconds (standard deviation 0.63). +B.3. Motion Editing via Motion Manifold +Implementation Details. +For the convolutional autoen- +coder of task-adaptive motion editing, we use PyTorch [42], +FairMotion [12], and PyTorch3d [48]. The autoencoder is +trained with the Adam optimizer with learning rate 0.0001. +We use 3 layers of 1D temporal-convolutions with kernel +width of 25 and stride 2, and the channel dimension of each +output feature is 256. The training datasets are summarized +in Table 4. Note that we use different pre-processing steps +between Motion editing module and Motion Synthesizer. +Reconstruction Loss. +The encoder Ψ and decoder Ψ−1 +are trained based on reconstruction loss Lrecon = ||X − +Ψ−1(Ψ (X)) ||2, where: +Lrecon = wcLcontact + wrLroot + wqLquat + wpLpos. +(9) +9 + +Lcontact, Lroot, and Lquat are the MSE losses of foot con- +tact labels, root status (height and transform relative to the +previous frame projected on the XZ plane), and the joint +rotations in 6D representations [73]. To penalize errors ac- +cumulating along the kinematic chain, we perform forward +kinematics (FK) and measure the global position distance of +joints between original and reconstructed motion. As global +positions of the joints are highly dependent on the root po- +sitions, for the early epochs, the distance is measured based +on root-centric coordinates to ignore the global location of +roots, which we found empirically more stable. +Motion Editing Loss +For motion editing, the positional +loss and regularization loss are defined as follows. +L = wpLpos + wfLfoot + wrLroot, +where +Lpos = +� +j,qj∈φ +∥pj − qj∥2, if φ exists at t +Lfoot = +� +foot +∥pe +foot − pi +foot∥2, +Lroot = wr∥re +xz − ri +xz∥2 + w∆r∥˙re +xz − ˙ri +xz∥2. +(10) +pj denotes positions of joint j, and r, ˙r denotes root po- +sitions and velocities respectively. Superscript e and i in- +dicates whether it is from edited or initial motion, respec- +tively. Subscript xz indicates the vector is projected onto +the XZ plane. The loss term L enforces the edited motion +to maintain contact and root trajectory (in the XZ plane) of +the initial motion, while generating natural movements of +the other joints to meet the sparse positional constraints. +Generating Interaction Cue for Manipulation +To syn- +thesize character’s arm motions naturally interacting with +the movements of articulated target objects, we produce +desired interaction cues by producing the 3D trajectories +of a chosen 3D position of the object at which the hand +part of the character are expected to touch. Specifically, +we apply the expected articulated motion of the 3D object +model to produce the 3D trajectory of a chosen object ver- +tex, v(Rt, Tt, θt), where Rt, Tt, are the global orientation +and translation of the object and θt is the parameters for the +object articulation (e.g., the hinge angle of the cover of a +laptop) at time t. v(·) represents the 3D location of the cho- +sen vertex v. To this end, we input the produced trajectory +as the desired 3D interaction cue for a character’s joint (e.g., +a hand joint) assuming the joint is touching this object tra- +jectory for manipulation φ = [v(Rt, Tt, θt)]t. Note that, in +our visualization, we apply the desired articulated motions +for the 3D object at each time, synced to the produced in- +teraction cues. +Label +Seg. Length +Seg. Count +Total Frames +Locomotion +10 +11063 +11498 +Sit +50 – 85 +5842 +14942 +Table 3. Details on pre-processed motion datasets per each action +category for training our motion synthesizer S. +Name +Value +Motion sequence length +120 +Number of sequence (training) +11397 +Number of sequence (validation) +3135 +Number of sequence (test) +2139 +Table 4. Details on pre-processed motion datasets for training our +motion editing module M. +C. More Details on Experiments +C.1. Frechet Distance Features +FDroot is computed by root feature vector, which is a con- +catenated vector of root orientation in angle-axis represen- +tation, root up vector, and root transform relative to the pre- +vious frame. We note that all of the motions for comparison +have the same up axis (y) and floor plane (xz). FDjoint is +computed by joint feature vector, represented as joint orien- +tations in angle-axis representation, excluding the root. +References +[1] Polycam - lidar and 3d scanner for iphone & android. +https://poly.cam/. 9 +[2] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine- +Hornung, Daniel Cohen-Or, and Baoquan Chen. Skeleton- +aware networks for deep motion retargeting. ACM Trans. +Graph, 39(4), 2020. 3 +[3] Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen- +Or, and Baoquan Chen. Unpaired motion style transfer from +video to animation. ACM Trans. Graph., 39(4), 2020. 3 +[4] Kevin +Bergamin, +Simon +Clavet, +Daniel +Holden, +and +James Richard Forbes. Drecon: data-driven responsive con- +trol of physics-based characters. ACM Trans. Graph., 38(6), +2019. 3 +[5] Michael B¨uttner and Simon Clavet. Motion matching - the +road to next gen animation. In Proc. of Nucl.ai, 2015. 2, 4 +[6] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, +Minh Vo, and Jitendra Malik. Long-term human motion pre- +diction with scene context. In ECCV, 2020. 2 +[7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal- +ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy +Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d +data in indoor environments. In 3DV, 2017. 6, 9 +[8] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng. +Learning to sit: Synthesizing human-chair interactions via +hierarchical control. In AAAI, 2021. 2 +10 + +[9] Simon Clavet. Motion matching and the road to next-gen +animation. In Proc. of GDC, 2016. 2, 4, 9 +[10] Haegwang Eom, Daseong Han, Joseph S Shin, and Junyong +Noh. +Model predictive control with a visuomotor system +for physics-based character animation. ACM Trans. Graph., +39(1), 2019. 1, 2 +[11] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji- +tendra Malik. Recurrent network models for human dynam- +ics. In ICCV, 2015. 2 +[12] Deepak Gopinath and Jungdam Won. fairmotion - tools to +load, process and visualize motion capture data. +Github, +2020. 9 +[13] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe +Yearsley, and Taku Komura. A recurrent variational autoen- +coder for human motion synthesis. In BMVC, 2017. 2 +[14] F´elix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and +Christopher Pal. Robust motion in-betweening. ACM Trans. +Graph, 39(4), 2020. 3, 6, 9 +[15] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, +Jimei Yang, Yi Zhou, and Michael Black. Stochastic scene- +aware motion prediction. In ICCV, 2021. 1, 2, 3, 6, 7, 8, +9 +[16] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas, +and Michael J. Black. Resolving 3D human pose ambigu- +ities with 3D scene constraints. In ICCV, 2019. 2, 6, 7, 9 +[17] Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios +Tzionas, and Michael J Black. +Populating 3d scenes by +learning human-scene interaction. In CVPR, 2021. 1, 2 +[18] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and +Tiberiu Popa. +Learned motion matching. +ACM Trans. +Graph., 39(4), 2020. 4 +[19] Daniel Holden, Taku Komura, and Jun Saito. +Phase- +functioned neural networks for character control. +ACM +Trans. Graph., 36(4), 2017. 3 +[20] Daniel Holden, Jun Saito, and Taku Komura. A deep learning +framework for character motion synthesis and editing. ACM +Trans. Graph., 35(4), 2016. 2, 3, 6 +[21] Chun-Hao P Huang, Hongwei Yi, Markus H¨oschle, Matvey +Safroshkin, Tsvetelina Alexiadis, Senya Polikovsky, Daniel +Scharstein, and Michael J Black. Capturing and inferring +dense full-body human-scene contact. In CVPR, 2022. 2 +[22] Kyunglyul Hyun, Kyungho Lee, and Jehee Lee. +Motion +grammars for character animation. In Computer Graphics +Forum, volume 35, 2016. 2 +[23] Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen +Guo, Minye Wu, Jingyi Yu, and Lan Xu. Neuralhofusion: +Neural volumetric rendering under human-object interac- +tions. In CVPR, 2022. 2 +[24] Vladimir G Kim, Siddhartha Chaudhuri, Leonidas Guibas, +and Thomas Funkhouser. Shape2pose: Human-centric shape +analysis. ACM Trans. Graph., 33(4), 2014. 1, 2 +[25] Diederik P Kingma and Jimmy Ba. Adam: A method for +stochastic optimization. +arXiv preprint arXiv:1412.6980, +2014. 6 +[26] Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hod- +gins, and Nancy S Pollard. +Interactive control of avatars +animated with human motion data. In Proceedings of the +29th annual conference on Computer graphics and interac- +tive techniques, 2002. 2 +[27] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, +Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike Stilman, +and C Karen Liu. +Dart: Dynamic animation and robotics +toolkit. The Journal of Open Source Software, 3(22), 2018. +9 +[28] Jehee Lee and Kang Hoon Lee. +Precomputing avatar be- +havior from human motion data. +In Proceedings of the +2004 ACM SIGGRAPH/Eurographics symposium on Com- +puter animation, 2004. 3 +[29] Kyungho Lee, Seyoung Lee, and Jehee Lee. Interactive char- +acter animation by learning multi-objective control. ACM +Trans. Graph., 37(6), 2018. 3 +[30] Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee. +Learning time-critical responses for interactive character +control. ACM Trans. Graph., 40(4), 2021. 3 +[31] Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. Motion +patches: building blocks for virtual environments annotated +with motion data. In ACM SIGGRAPH 2006 Papers. 2006. +2 +[32] Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee. +Learning a family of motor skills from a single motion clip. +ACM Trans. Graph., 40(4), 2021. 3, 9 +[33] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Je- +hee Lee. Scalable muscle-actuated human simulation and +control. ACM Trans. Graph., 38(4), 2019. 5 +[34] Sergey Levine, Jack M Wang, Alexis Haraux, Zoran +Popovi´c, and Vladlen Koltun. +Continuous character con- +trol with low-dimensional embeddings. ACM Trans. Graph, +31(4), 2012. 3 +[35] Ruilong Li, Shan Yang, David A. Ross, and Angjoo +Kanazawa. Ai choreographer: Music conditioned 3d dance +generation with aist++. In ICCV, 2021. 2, 7 +[36] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van +De Panne. Character controllers using motion vaes. ACM +Trans. Graph., 39(4), 2020. 3 +[37] Kovar Lucas, Gleicher Michael, and Pighin Fr´ed´eric. Motion +graphs. In Proceedings of the 29th Annual Conference on +Computer Graphics and Interactive Techniques, 2002. 2 +[38] Julieta Martinez, Michael J Black, and Javier Romero. On +human motion prediction using recurrent neural networks. +In CVPR, 2017. 2 +[39] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval +Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg +Wayne, and Nicolas Heess. Catch & carry: reusable neural +controllers for vision-guided whole-body tasks. ACM Trans. +Graph., 39(4), 2020. 2 +[40] Evonne Ng, Hanbyul Joo, Liwen Hu, Hao Li, , Trevor Dar- +rell, Angjoo Kanazawa, and Shiry Ginosar. Learning to lis- +ten: Modeling non-deterministic dyadic facial motion. +In +CVPR, 2022. 7 +[41] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and +Jehee Lee. Learning predict-and-simulate policies from un- +organized human motion data. ACM Trans. Graph., 38(6), +2019. 3, 5, 9 +11 + +[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, +James Bradbury, Gregory Chanan, Trevor Killeen, Zeming +Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, +Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai- +son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, +Lu Fang, Junjie Bai, and Soumith Chintala. +Pytorch: An +imperative style, high-performance deep learning library. +In Advances in Neural Information Processing Systems 32, +pages 8024–8035. Curran Associates, Inc., 2019. 9 +[43] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel +Van de Panne. Deepmimic: Example-guided deep reinforce- +ment learning of physics-based character skills. ACM Trans. +Graph., 37(4), 2018. 3, 5 +[44] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, +and Sanja Fidler. Ase: Large-scale reusable adversarial skill +embeddings for physically simulated characters. ACM Trans. +Graph, 41(4), 2022. 3 +[45] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and +Angjoo Kanazawa. Amp: Adversarial motion priors for styl- +ized physics-based character control. ACM Trans. Graph, +40(4), 2021. 3 +[46] Mathis Petrovich, Michael J Black, and G¨ul Varol. Action- +conditioned 3d human motion synthesis with transformer +vae. In ICCV, 2021. 2, 3 +[47] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui- +han Yang, Yang Fu, and Xiaolong Wang. Dexmv: Imitation +learning for dexterous manipulation from human videos. In +ECCV, 2022. 1, 2 +[48] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay- +lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia +Gkioxari. +Accelerating 3d deep learning with pytorch3d. +arXiv:2007.08501, 2020. 9 +[49] Manolis Savva, Angel X Chang, Pat Hanrahan, Matthew +Fisher, and Matthias Nießner. Pigraphs: learning interaction +snapshots from observations. +ACM Trans. Graph., 35(4), +2016. 1, 2 +[50] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad- +ford, and Oleg Klimov. Proximal policy optimization algo- +rithms. arXiv preprint arXiv:1707.06347, 2017. 5 +[51] Hubert PH Shum, Taku Komura, Masashi Shiraishi, and +Shuntaro Yamazaki. Interaction patches for multi-character +animation. ACM Trans. Graph., 27(5), 2008. 2 +[52] Sebastian Starke, Ian Mason, and Taku Komura. Deepphase: +periodic autoencoders for learning motion phase manifolds. +ACM Trans. Graph., 41(4):1–13, 2022. 3 +[53] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. +Neural state machine for character-scene interactions. ACM +Trans. Graph., 38(6), 2019. 1, 2 +[54] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim- +itrios Tzionas. Goal: Generating 4d whole-body motion for +hand-object grasping. In CVPR, 2022. 1, 2 +[55] Omid Taheri, Nima Ghorbani, Michael J Black, and Dim- +itrios Tzionas. Grab: A dataset of whole-body human grasp- +ing of objects. In ECCV, 2020. 1, 2 +[56] Graham W Taylor and Geoffrey E Hinton. Factored con- +ditional restricted boltzmann machines for modeling motion +style. In ICML, 2009. 2 +[57] Adrien Treuille, Yongjoon Lee, and Zoran Popovi´c. Near- +optimal character animation with continuous control. +In +ACM SIGGRAPH 2007 papers. 2007. 3 +[58] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, +Xunyu Lin, and Honglak Lee. Learning to generate long- +term future via hierarchical prediction. In ICML, 2017. 2 +[59] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin, +and Bo Dai. Towards diverse and natural scene-aware 3d +human motion synthesis. In CVPR, 2022. 1, 2, 3, 9 +[60] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao- +long Wang. Synthesizing long-term 3d human motion and +interaction in 3d scenes. In CVPR, 2021. 1, 2, 6, 7, 8, 9 +[61] Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin. +Scene- +aware generative network for human motion synthesis. In +CVPR, 2021. 2 +[62] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A +scalable approach to control diverse behaviors for physically +simulated characters. ACM Trans. Graph., 39(4), 2020. 3 +[63] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao +Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, +He Wang, et al. Sapien: A simulated part-based interactive +environment. In CVPR, 2020. 6, 9 +[64] Xianghui Xie, Bharat Lal Bhatnagar, and Gerard Pons-Moll. +Chore: Contact, human and object reconstruction from a sin- +gle rgb image. In ECCV, 2022. 1, 2 +[65] Xiang Xu, Hanbyul Joo, Greg Mori, and Manolis Savva. +D3d-hoi: Dynamic 3d human-object interactions from +videos. arXiv preprint arXiv:2108.08420, 2021. 2 +[66] Zeshi Yang, Kangkang Yin, and Libin Liu. Learning to use +chopsticks in diverse gripping styles. ACM Trans. Graph., +41(4), 2022. 1, 2 +[67] He Zhang, Yuting Ye, Takaaki Shiratori, and Taku Komura. +Manipnet: Neural manipulation synthesis with a hand-object +spatial representation. ACM Trans. Graph., 40(4), 2021. 1, 2 +[68] Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, +Jitendra Malik, and Angjoo Kanazawa. +Perceiving 3d +human-object spatial arrangements from a single image in +the wild. In ECCV, 2020. 2 +[69] Siwei Zhang, Yan Zhang, Qianli Ma, Michael J Black, and +Siyu Tang. Place: Proximity learning of articulation and con- +tact in 3d environments. In 3DV, 2020. 1, 2 +[70] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke, +Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards +controllable human-chair interactions. In ECCV, 2022. 1, 2, +6, 9 +[71] Yan Zhang, Mohamed Hassan, Heiko Neumann, Michael J +Black, and Siyu Tang. Generating 3d people in scenes with- +out people. In CVPR, 2020. 1, 2 +[72] Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler, , +and Siyu Tang. Compositional human-scene interaction syn- +thesis with semantic control. In ECCV, 2022. 1, 2 +[73] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li +Hao. On the continuity of rotation representations in neural +networks. In CVPR, 2019. 4, 6, 10 +12 + diff --git a/FNE0T4oBgHgl3EQfzAKR/content/tmp_files/load_file.txt b/FNE0T4oBgHgl3EQfzAKR/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..52c6a97cee7d9927f3a07110fbb89424b647078e --- /dev/null +++ b/FNE0T4oBgHgl3EQfzAKR/content/tmp_files/load_file.txt @@ -0,0 +1,780 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf,len=779 +page_content='Locomotion-Action-Manipulation: Synthesizing Human-Scene Interactions in Complex 3D Environments Jiye Lee Hanbyul Joo Seoul National University {kay2353,hbjoo}@snu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='kr Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our system, LAMA, produces high-quality and realistic 3D human motions that include locomotion, scene interactions, and manipulations given a 3D environment and designated interaction cues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Abstract Synthesizing interaction-involved human motions has been challenging due to the high complexity of 3D environ- ments and the diversity of possible human behaviors within.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We present LAMA, Locomotion-Action-MAnipulation, to synthesize natural and plausible long term human move- ments in complex indoor environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The key motivation of LAMA is to build a unified framework to encompass a series of motions commonly observable in our daily lives, including locomotion, interactions with 3D scenes, and ma- nipulations of 3D objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' LAMA is based on a reinforce- ment learning framework coupled with a motion matching algorithm to synthesize locomotion and scene interaction seamlessly under common constraints and collision avoid- ance handling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' LAMA also exploits a motion editing frame- work via manifold learning to cover possible variations in interaction and manipulation motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We quantitatively and qualitatively demonstrate that LAMA outperforms ex- isting approaches in various challenging scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Project page: https://lama-www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='io/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Introduction In our daily lives, we can easily observe that humans do not live in isolation nor in voids, but continuously interact with a complex environment surrounded by many objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Notably, humans perform such a diverse set of daily life actions effortlessly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Imagine that we visit a new indoor en- vironment (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', a hotel room) we have never been before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' It is expected that we can still easily figure out how to move from rooms to rooms, how to sit on a chair, how to open the doors of closets, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' However, endowing machines or virtual humans with such abilities is still a largely unex- plored area, despite its importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Synthesizing scene interactions within real-life 3D envi- ronments has been a challenging research problem due to its complexity and diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Human movements in real life consists of various types of behaviors, including locomotion with avoiding cluttered areas, diverse interactions with 3D scenes, and sophisticated object-manipulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In particu- lar, the spatial constraint that arises from real-life 3D envi- ronments where many objects are cluttered makes motion synthesis highly constrained and complex, and various pos- sible arrangements of 3D environments make generalization difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As human-scene interactions cover a wide range of technical challenges, previous approaches have focused on sub-problems, such as (1) modeling static poses [17,24,49, 64,69,71,72] or (2) human object interactions with a single target object or interaction type [10, 47, 53–55, 66, 67, 70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Recent methods [15,59,60] extend to synthesizing dynamic interaction motions in cluttered real-world 3D scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' How- ever, the performance of these methods are fundamentally limited due to the lack of 3D ground truth data that contains both human motions and paired 3D environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='02667v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='CV] 9 Jan 2023 In this paper, we present LAMA, Locomotion-Action- MAnipulation, to synthesize natural and plausible long term human motions in complex indoor environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The key motivation of LAMA is to build a unified framework to include locomotion, interactions with 3D scenes, and ma- nipulations of 3D objects, which are the series of motions commonly observable in our daily lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' LAMA is based on a reinforcement learning framework coupled with a mo- tion matching algorithm to synthesize locomotion and scene interaction seamlessly while adapting to complicated 3D scenes with collision avoidance handling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The reinforce- ment learning framework interprets the 3D information of the given scene and optimally traverses among the motion capture database via motion matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As an advantage, our system does not require any “scene-paired” datasets where human movements are captured with the surrounding 3D environments simultaneously, which is rarely available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To further cover the numerous variations of interaction mo- tions, we also exploit an autoencoder based motion editing approach to learn the motion manifold space [20] in which the editing is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Through extensive quantitative and qualitative evaluations against existing approaches, we demonstrate that our method outperforms previous methods in various challenging scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our contributions are summarized as follows: (1) we present the first method to generate realistic long term mo- tions combined with locomotion, interaction with scene, and manipulation in complicated cluttered scenes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (2) we propose a novel, unified framework that synthesizes loco- motion and human-scene interactions in a seamless man- ner, by introducing scene interpretation terms to a reinforce- ment learning based approach to automatically generate op- timal transitions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' and (3) our outputs show the state-of-the- art motion synthesis quality with longer duration (more than 10 sec) than previous methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Related Work Generating Human-Scene Interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Generating natural human motion has been a widely researched topic in the computer vision community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Early methods focus on synthesizing or predicting human movements by exploiting neural networks [11,13,35,35,38,46,56,58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' However, these approaches primarily address the synthesis of human mo- tion itself, without taking into account the surrounding 3D environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Recent approaches begin to tackle modeling and synthesizing human interactions within 3D scenes, or with objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Most of the researches focus on statically pos- ing humans within the given 3D environment [16,24,69,71], by generating human scene interaction poses from vari- ous types of input including object semantics [17], im- ages [21,23,64,65,68], and text descriptions [49,72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' More recently, there have been approaches to synthesize dynamic human object interactions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', sitting on chairs, Encoder Decoder Task-Adaptive Motion Editing Motion Generation Action Controller 3D Scene Interaction Cue Action Posture Motion Synthesizer Optimization Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Overview of LAMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' carrying boxes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Starke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' [53] introduce an autoregres- sive learning framework with object geometry-based envi- ronmental encodings to synthesize various human-object interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Later work [15, 70] extends this by synthe- sizing motions conditioned with variations of objects and contact points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Other approaches [47, 54, 55, 66, 67] focus on generating natural hand movements for manipulation, which is extended by including full body motions [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Physics-based character control to synthesize human object interactions has been also explored in [8,10,39,47,66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Al- though these approaches cover a wide range of human ob- ject interactions, most of them solely focus on the relation- ship between human and the target object without long-term navigation in cluttered 3D scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' More recent approaches include generating natural hu- man scene interactions within a complex 3D scene clut- tered with many objects [6, 59–61], closely related to ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' These methods are trained using human motion datasets paired with 3D scenes, which require both ground truth mo- tions and simultaneously captured 3D scenes for supervi- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Due to such difficulties, some methods exploit syn- thetic datasets [6,61] or data fitted from depth videos [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In previous approaches [15,59], navigation to move through cluttered environments is often performed by a separate module via a path planning algorithm (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', A∗ algorithm) by approximating the volume of a human as a cylinder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' This path planning based methods approximate the spatial infor- mation of the scene and the human body and therefore have limitations under highly complex conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion Synthesis and Editing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Synthesizing natural human motions by leveraging motion capture data has also been a long-researched topic in computer graphics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Some approaches [26,37] construct motion graphs, where plausi- ble transitions are inserted as edges and motion synthesis is done by traversing through the constructed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Similar approaches [31, 51] connect motion patches to synthesize interactions in a virtual environment or multi-person inter- actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Due to its versatility and simplicity, a number of variations have been made on the graph based approach, such as motion grammar [22] which enforces traversing rules in the motion graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion matching [5, 9] can also be understood as a special case of motion graph traver- sal, where the plausible transitions are not precomputed but searched during runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Recent advances in deep learning allow to leverage motion capture data for motion manifold 2 rendel reset prev play nextlearning [19, 20, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Autoregressive approaches based on variational autoencoders (VAE) [36, 46] and recurrent neu- ral networks [14,29,41] are also used to forecast future mo- tions based on past frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' These frameworks are general- ized to synthesizing a diverse set of motions including lo- comotion on terrains [19] mazes [36], action-specified mo- tions [46], and interaction-involved sports [29, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Neural network-based methods are also reported to be successful in various motion editing tasks such as skeleton retarget- ing [2], style transfer [3,20], and inbetweening [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Reinforcement learning (RL) has also been successful in combination with both data-driven and physics-based ap- proaches for synthesizing human motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Combined with data-driven approaches, these RL frameworks serve as a control module that generates corresponding motions to a given user input by traversing through motion graphs [28], latent space [34, 36, 57], and precomputed transition ta- bles [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Deep reinforcement learning (DRL) has been widely used recently in physics simulation as well to syn- thesize physically plausible movements with a diverse set of motor skills [4,32,41,43–45,62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Method 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Overview Our system, dubbed as LAMA, outputs a sequence of human poses M = {mt}T t=1 by taking the 3D surrounding cues W and desired interaction cues Φ, as inputs: M = LAMA(W, Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (1) The output posture at time t, mt = (p0, r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', rJ) ∈ R3J+3, is represented by a concatenated vector of global root position p0 ∈ R3 and local joint orientations of J joints where each j-th joint is in angle-axis representations rj ∈ so(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Throughout our system, the skeleton tree struc- ture and joint offsets are fixed and shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We represent the 3D environments W = {wi} as a set of 3D object and environment meshes, including the background scene mesh and other object meshes targeted for manip- ulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The interaction cues, Φ = [φ1, φ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='φn], are an ordered list of desired interaction inputs φi = {qj}j∈Ji where qj ∈ R3 indicates desired positions of j-th joint, and Ji is a set of specified joints for interaction (in prac- tice, few joints such as root 1 or end-effectors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Examples of the 3D environment W and interaction inputs φi are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 5 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Intuitively, φi specifies the expected positions of selected joints of the human character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Note that we do not specify the exact timing of the interaction, as the timing is automatically determined by our action controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' More details are addressed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To synthesize locomotion, interaction, and manipulation together, LAMA is designed via a three-level system com- 1For root, orientation in angle-axis representation is also included in φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (a) Skeleton with joints and box nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (b) Automatically detected collision points (colored as red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' posed of the action controller A and the motion synthesizer S, followed by a manifold-based motion editor E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' By taking 3D scene cues W and desired interaction cues Φ as input, the action controller A makes the use of a reinforcement learning (RL) framework by training the control policy π to sample an action at time t, π(at|st, W, Φ), where at con- tains the plausible next action cues including predicted ac- tion types and short-term future forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' st is the state cues to represent the current status of human characters in- cluding its body posture, surrounding scene occupancy, and current target interaction cue, which can be computed via a function ψ, st = ψ(mt−1, mt, W, Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Intuitively, action controller A predicts the plausible next action cues at by considering the current character-scene state st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The gener- ated action signals at from the action controller A is pro- vided as the input for the motion synthesizer S, which then determines the posture at the next time step mt+1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', S(mt, at) = mt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Afterwards, the character’s next state can be computed again via st+1 = ψ(mt, mt+1, W, Φ), which is input to the action controller recursively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Followed by the initial motion generation part from A and S, our system furthermore applies a motion editor E(M) = ˜M, where ˜M = { ˜Mt}T t=1 is the edited motions to further express the motions involving complex human- object interactions such as manipulation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' moving ob- jects, opening doors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 shows the overview of LAMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Scene-Aware Action Controller Based on reinforcement learning, our action controller A enables the character to perform locomotion and desired actions with fulfilling the interaction cues Φ and avoiding collisions in the 3D environment W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' A is a trained control policy π where π(at|st, W, Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Different from previous approaches where navigation and scene-object interactions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', sitting) are performed by separate modules [15, 59], our RL-based framework performs both in a unified way with a common objective by automatically determining the transition from navigation to specific actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As a key ad- vantage, LAMA can be robustly generalized to challenging unseen 3D clutters in long-term human motion synthesis and also outperforms previous methods by avoiding colli- sions throughout the whole process, including navigation 3 Joint Node Jointand interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' State.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The state st = ψ(mt−1, mt, W, Φ) at time t is a feature vector representing the current status of the hu- man character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' st = (sbody t , sscene t , sinter t ) is composed of body configuration sbody, 2D scene occupancy sscene, and desired current target interaction sinter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Body configuration sbody = {r, ˙r, θup, h, pe} includes r, ˙r ∈ RJ′×6 that are the joint rotations and velocities respectively for the J′ joints excluding the root in 6D representations [73], θup ∈ R that is the up vector of the root (represented by the angle w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='t the Y-axis), h ∈ R that is the root height from the floor, and pe ∈ Re×3 that is the end-effector positions in person- centric coordinate (where e is the number of end-effectors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' sscene = {gocc, groot} includes scene occupancy informa- tion in 2D floor plane, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' gocc ∈ Rn2 rep- resents the 2D occupancy grid on the floor plane of neigh- boring n cells around the agent and groot ∈ R2 denote the current 2D global root position of the character in the dis- cretized grid plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' sinter is an element of Φ and represents the interaction cue the character is currently targeting, that is sinter = φi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Given the current status of the character st, the control policy π outputs the feasible action at = (atype t , afuture t , aoffset t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' atype t provides the probabilities of next action type among all possible actions, determining the transition timing between actions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', from locomo- tion to sitting).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' afuture t predict future motion cues such as plausible root position for the next 10, 20, and 30 frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' aoffset t is intended to update the raw motion data searched from the motion database in motion synthesizer module S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Intuitively, our learned control policy generates an optimal posture offset aoffset t which is applied to the closest plau- sible raw posture in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' This enables the character to perform more plausible scene-aware human poses, allow- ing our system to be generalized to any unseen 3D scenes given a limited amount of motion capture data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' More details are addressed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion Synthesizer Given the current motion output mt and actions sig- nals at from the action controller A as inputs, the mo- tion synthesizer produces the next plausible character pos- ture: S(mt, at) = mt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As the first step, motion synthe- sizer searches for the motion from a motion database that best matches the closest motion feature, then modifies the searched raw motion to be more suitable for the scene envi- ronment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To this end, motion synthesizer’s output mt+1 is in turn fed into the action controller recursively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We exploit a modified version of motion matching algorithm [5, 9, 18] for the first step of motion synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In motion matching, motion synthesis is performed periodically by searching the most plausible next shot motion segments from a motion DB, and compositing them into a long connected sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Visual representation of the 2D occupancy grid near the root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Grid on the right represents top view of the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Blue in- dicates root position while gray represents the space is occupied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Occupied cells near the root are colored as black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion feature represents the charac- teristic of each frame in the short motion segment and is computed as f(m) = {{pj}, { ˙pj}, θup, c, ofuture}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' From a posture m, the positions and velocities pj, ˙pj ∈ R3 are extracted for the selected joints j ∈ {Head, Hand, Foot}, which are defined in a person-centric coordinate of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' θup ∈ R3 is the up-vector of the root joint, and c ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='5, 1} indicates automatically computed foot con- tact cues of the left and right foot (0 for non-contact, 1 for contact, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='5 for non-contact but close to the floor within a threshold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ofuture = {{pdt 0 }, {rdt 0 }} contains the cues for the short-term future postures, where pdt 0 and rdt 0 are the position and orientation of root joint at dt frames later from the current target frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ofuture are computed in 2D XZ plane in person-centric coordinate of the current tar- get motion m, and thus pdt 0 , rdt 0 ∈ R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The selected fu- ture frames are action-type specific, and for locomotion we extract 10, 20, and 30 frames in the future (at 30Hz) fol- lowing [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Intuitively, the motion feature extracts the target frame’s posture and temporal cues by considering neigh- boring frames 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We pre-compute motion features for every frame of the motion clips in the motion database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion feature of the current state of the character, or the query feature, is also computed in the same way based on posture mt−1, mt and afuture t produced by the action controller, that is xt = f(mt−1, mt, atype t , afuture t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The component afuture t serves as ofuture in the query feature, which can be understood as the action controller providing cues for pre- dicted future postures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion searching and updating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The query motion fea- ture xt from the current character is computed as addressed above, and let the motion features in motion database de- noted as yk for the k-th clips in the DB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion searching finds the best matches in the motion database by computing the weighted euclidean distances between the query feature and DB features: k∗ = arg min k ||wT f (xt − yk)||2, (2) where wf is a fixed weight vector to control the impor- 2In practice, the input of feature extractor function f should take into account the motions of neighboring timesteps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4 2D occupancy gridtance of feature elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' After finding the best match ˆmk∗ from motion database, the motion synthesizer further up- dates it with the predicted motion offset aoffset t from at, that is τ( ˆmk∗+1, aoffset) = mt+1, where ˆmk∗+1 is the next plausible character posture and τ is an update function to update selected joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In practice, the motion searching is performed periodically (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', every N-th frames) to make the synthesized motion temporally more coherent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning for Scene-Aware Action Controller In the reinforcement learning framework, the objective is to learn the optimal policy which maximizes the discounted cumulative reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In our method, we design rewards to guide the agent to perform locomotion towards the target objects (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', sofa) and also perform desired interaction with the object (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', sitting).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In particular, our RL-framework performs both navigation and interaction with common con- straints (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', smooth transitions, collision avoidance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our reward function consist of the following terms: Rtotal = wtrRtr + wactRact + wregRreg, (3) where wtr, wact, and wreg are the weights to balance among reward terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The trajectory reward Rtr is obtained when the character moves towards the desired interaction input φ while meeting the spatial constraints from the surrounding 3D scene, described below: Rtr = rcoli · rpos · rroot, where (4) rcoli = exp � − 1 σ2 coli � b∈B wbρ(b, W) � , (5) rpos = exp � �− 1 σ2 root � j∈J ∥p0 − qj∥2 � � , (6) rvel = � 1 when ˙proot ≥ σth σvel∥ ˙p0∥2 else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (7) The collision-avoidance reward rcoli penalizes collisions with 3D scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 (a), body limbs in the skeletal structure are represented as a set of box-shaped nodes B with a fixed width, where each element b ∈ B is a 3D box representation of legs and arms (we exclude torso and head).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The function ρ(b, W) detects the collision be- tween edges of a box-shaped node b with 3D scene meshes W and returns the number of intersection points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' wb is the weights to control importance of each limb b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The collision-avoidance reward is maximized when no pen- etration occurs, making the control policy π to find the opti- mal trajectory and pose offset to avoid physically implausi- ble collisions and penetrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' rpos are obtained when the agent moves to reach the targeting interaction cue φ, by en- couraging agent’s root position p0 to be closer to the target interaction cue {qj}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' rvel encourages the character to move by penalizing when the root velocity ˙proot is less than a threshold σth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' σcoli, σroot, and vel are weights to control the balance between terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Action reward Ract enforces the synthesized motion to fulfill the given interaction cue φ = {qj}: Ract = rinter · r∆t · r∆v, where rinter = exp � �− 1 σ2 inter � j∈J ∥pj − qj∥2 � � , r∆t = exp � −σ2 ∆tCtr � , r∆v = exp � −σ2 ∆vCvel � , (8) where interaction reward term rinter is maximized when the performed action meets the positional constraints provided by interaction cues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Smoothness reward terms r∆t and r∆v minimizes the transition cost, which is based on the subpart of the feature distances defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, where Ctr is the weighted feature distances of pj, θup, and c, and Cvel is from ˙p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' These are intended to penalize the case where the character makes abrupt changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Regularization reward Rreg penalizes the aoffset t exces- sively modifying the original posture brought from the mo- tion synthesizer, denoted as ˆmt, and maintains temporal consistency among frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Rreg = exp � − 1 σ2reg � ∥ ˆmt − mt∥2 + ∥mt − mt−1∥2�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' It is reported that [33, 41] multiplying rewards with con- sistent goals are suitable for learning, as the reward is re- ceived when the conditions are simultaneously met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Fur- thermore, to accelerate learning, we use early termination conditions [43] and limited action transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The episode is terminated when the character moves out of the scene bounding box, or when the collision reward rcoli is under a certain threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Also, the action controller first checks in advance whether the action signal is valid when it makes transitions from locomotion to other actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' When the nearest feature distance of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 in the motion synthesizer is over a certain threshold, the action controller discards the transition and continues navigating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The control policy is learned through Proximal Policy Optimization (PPO) algo- rithm [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Task-Adaptive Motion Editing Interaction includes a massively diverse pool of mo- tions, and these variations cannot be fully handled by lim- ited amount of motion database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In order to cover such di- versity, we include a task-adaptive motion editing module in our motion synthesis framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The goal of our edit- ing module E is (1) to edit motion M to fit into diverse 5 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Visual representation of system input Φ, W and output motion sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' On the left, interaction cues are shown as cyan spheres and arrows (indicating orientation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The right is the syn- thesized human motion ˜ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' target object geometries (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', sitting on a chair with dif- ferent height), and (2) to generate additional hand move- ments for manipulation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', grasping).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In particular, in the case of manipulation, additional interaction cue φ can be provided to enforce an end-effector (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', a hand) to fol- low the desired trajectories to express the manipulation task on the target object, as shown in Fig 8 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The edited motion ˜M = E(M) should not only fulfill the sparsely given positional constraints, but also preserve the temporal consistency between frames and spatial correlations among joints in order to maintain its naturalness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We adopt the mo- tion manifold learning approach with convolutional autoen- coders [20] to compress motion to a latent vector within a motion manifold space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion editing is done by searching for an optimal latent vector among the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For train- ing the autoencoder, motion sequence, which we denote as X converted from M, is represented as a time-series of hu- man postures by concatenating joint rotations in 6D repre- sentations [73], root height, root transform relative to the previous frame projected on the XZ plane, and foot contact labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The encoder and decoder module are trained based on reconstruction loss, ||X − Ψ−1(Ψ (X)) ||2, where Ψ is the encoder and Ψ−1 is the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The latent vector from the encoder z = Ψ(X) repre- sent the motion manifold space by preserving the spatio- temporal relationship among joints and frames within the motion sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As demonstrated in [20], editing motions in this manifold space ensures the edited motion to be re- alistic and temporally coherent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To this end, we find the optimal latent vector z∗ by minimizing a loss function L by constraining the outputs motions to follow the interac- tion constraint φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We also include additional regularizers in L so that the output motion to maintain the foot locations and root trajectories to the original motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' See supp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' for more details on L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Finally, the edited motion ˜M can be computed via Ψ−1(z∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Experiments We evaluate LAMA’s ability on synthesizing long-term motions with various human-scene and human-object inter- Method Plausibility Naturalness Slip Penetration FDtotal FDroot FDjoint Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' [60] 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='88 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='93 Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' [60]* 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='58 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='44 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='00 SAMP [15] 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='95 LAMA (ours) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='52 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='91 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Baseline comparison Foot slip loss (cm, ↓) averaged over all frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Penetration loss(percentage, ↓) is counted based on in- tersection points of the 3D environment and the skeleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Natural- ness score is based on fr´echet distance (FD ↓).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' with an asterisk indicates without post-processing optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' actions involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We exploit an extensive set of quantitative metrics and perceptual study to evaluate the physical plau- sibility and naturalness of the synthesized motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For constructing the database for the motion synthesizer, motion capture data are selectively collected and refined from Ubisoft La Forge [14], COUCH [70], and SAMP [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' All the data used in this system are mo- tion capture data (in bvh format) with no scene or ob- ject related information, and are retargeted into a unified skeletal structure with MotionBuilder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We use PROX [16] and Matterport3D [7] datasets for 3D environment and SAPIEN [63] object meshes for manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our code and pre-processed data will be publicly released.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Implementation Details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The policy and the value net- work of the action controller module consists of 4 and 2 fully connected layers of 256 nodes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The encoder and decoder of the task-adaptive motion editing module consist of three convolutional layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Adam opti- mizer [25] is used for training and optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We use Nvidia RTX 3090 for training the action controller and the motion editing module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' It takes 10 to 80 minutes to learn a single control policy, where the training time mainly de- pends on how difficult the interaction cues are to achieve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For optimization in the motion editing module, it takes 3 to 4 minutes for 500 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' See supp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' for more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Experimental Setup Evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Quantifying motion synthesis quality is challenging due to the lack of ground-truth data or offi- cial evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We try to quantify them in terms of physical plausibility and naturalness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Physical plausibility: We use contact and penetration metrics to evaluate the physical plausibility of the synthe- sized motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Contact loss penalizes the foot movement when the foot is in contact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Since foot contact is a critical element in dynamics, contact-based metric is closely related in determining the physical plausibility of motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Pene- tration loss (“Penetration” in Table 1) measures implausible cases when the body penetrates the objects in the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We compute penetration metric by counting frames where the 6 interaction cue Φ2 interaction cue ΦFigure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Comparison with LAMA (left) and LAMA without col- lision reward (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As shown in the right, without collision re- ward the character fails to avoid collisions with obstacles (marked as red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' intersection points (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='4) goes over a certain threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 Naturalness: We measure the naturalness of the synthe- sized motions by measuring the Fr´echet distance, as re- ported in [15, 35, 40] between the synthesized motion and motions from motion capture data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Features are extracted from motion sequences and the Fr´echet distance is com- puted with the extracted features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We measure the natural- ness of character root movements FDroot, including root ori- entation and velocity, and character joint rotations FDjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We compare our LAMA with the state-of-the-art approaches as well as variations of ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' [60] is the state-of-the-art long term mo- tion synthesis method for human-scene interactions within a given 3D scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We use the author’s code for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' uses optimization to post-process the synthe- sized motion to improve foot contact and reduce collisions, we both compare Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' with and without optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' SAMP [15] generates interactions which can be general- ized not only for object variations but also random starting points within a given 3D scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' SAMP explicitly exploits a path planning module to navigate through cluttered 3D en- vironments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ablative baselines We perform ablation studies on the ac- tion controller and task-adaptive motion editing module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We perform ablation studies on the scene reward rcoli, and ac- tion offset aoffset t to present the contribution of both terms on our system’s capability to generate scene-aware motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We also compare our method without the transition reward r∆t and r∆v terms (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='4) in the action controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Fi- nally, we demonstrate the strength of our task-adaptive mo- tion editing module to edit motions naturally (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='5) by comparing with inverse kinematics (IK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Comparisons with Previous Work Quantitative Evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We compare methods in 6 different scenarios from various 3D scenes in the PROX dataset [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Foot contact is automatically labeled based on 310 for legs and 7 for arms Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Comparison with LAMA (left) and LAMA without ac- tion offset (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The character in original LAMA moves forward while tilting its arms to avoid collision with walls, while in LAMA without action offset does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' positional velocity of the foot joint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Foot slip metric is mea- sured by foot joint positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To compute penetration metric in a fair way, SMPL-X outputs of Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' and SAMP are converted to box-shaped skeletons as in ours and intersec- tion point are counted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Table 1 shows the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As shown, our LAMA outperforms Wang et al both in naturalness and physical plausibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' It is noted that Wang et al performs optimization as post-processing to explic- itly minimize foot slip, and yet LAMA still shows on-par performance against it (and better in all other metrics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Compared with SAMP, our method shows much better re- sults in plausibility metrics (both Slip and Penetration), and shows slightly better performance in naturalness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Apart from SAMP which relies on a separate navigation mod- ule, our RL-based action controller handles collisions in the same way of scene-interaction and shows much better per- formance in in complex and cluttered 3D scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' A Human Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To further validate our results, we compare the quality of our output over other baselines, Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' and SAMP, through A/B testing from human observers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For the study, we choose 5 scenarios from dif- ferent indoor scenes, and render the results of each method using the exactly same view and 3D characters, so that they cannot be distinguished from the appearance side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We build two separate sets, where in each set the result videos of our method are shown with each competitor side by side in a random order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Human observers are asked to choose a motion clip that is more human-like and plausible in the given 3D scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We perform each set of tests with non- overlapping 15 participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' See our supp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' for more details about the study setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As the result, the outputs of our method are preferred by the majority (more than 50% voting) in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' By considering all votes independently, our method are preferred 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='0% over SAMP and 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='3% over Wang et al.’s work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In particular, we found that our method greatly outperform the competing methods in terms of the naturalism of foot stepping, transition between loco- motion and action, and collision avoidance with the scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' See our supp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' videos for more results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 7 LAMA LAMA w/o collision rewardoffset LAMA w/o a LAMA LAMAFigure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (a) Comparison with LAMA (top) and LAMA without manifold and replaced with IK (bottom) of a character opening the toilet lid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (b) Comparison with LAMA (top) and LAMA without motion editing (bottom) in sitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ablation Studies Ablation Studies on Action Controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We quantita- tively compare the original LAMA and the LAMA without collision reward rcoli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We intend to demonstrate the role of rcoli that enforces the action controller to search for optimal actions for generating motions without collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ablation studies are done in 5 PROX scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In the original LAMA, penetrations occur in only 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='1% of the frames among the whole motion sequences, while the ratio is 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='7% in LAMA without collision reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The result supports that the colli- sion reward rcoli enforces the action controller to compute optimal actions for synthesizing body movement according to the spatial constraint of the given 3D scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Example re- sults are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We also compare the contribution of other components in the action controller module in generating natural inter- actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 7, with the action controller without aoffset t the character fails to avoid penetration with objects or walls, as the raw motion from the motion database does not have any information of the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' This demonstrates that action offset also plays a role in generating detailed scene-aware poses even from raw motion capture data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Moreover, the results with the action controller without smoothness rewards r∆t and r∆v are not smooth enough, showing unnatural movements such as jerking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' These abla- tion studies justify the advantages of our reward terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ablation Studies on Task-Adaptive Motion Editing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We ablate our motion editing module by replacing it with an alternative approach via Inverse-Kinematics (IK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' An ex- ample result is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 8 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For manipulation, the results with IK show jerky and awkward motions because the temporal and inter-joint correlations in natural human motions are not reflected in IK, while original LAMA with task-adaptive motion editing module shows much natural motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our motion editing module can also be used to Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Examples of synthesized manipulation motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The tar- get object for manipulation is colored as orange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Top is a motion sequence of walking and opening a toilet lid, and the bottom is a sequence of walking and opening doors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The character is colored purple at start and aqua at the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' further adjust the character movements in different object geometries, going over the limit of the motion database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As seen in Fig 8 (right), the motion editing module enables the character to properly sit in chairs with various sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Discussion In this paper, we present a method to synthesize locomo- tion, scene-interaction, and manipulation in a unified sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Leveraging a RL framework with motion matching, our method enables to produce natural and plausible hu- mans motions in complex and cluttered 3D environments only with a limited amount of motion-only datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our method has been thoroughly evaluated in diverse scenar- ios, outperforming previous approaches [15, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We also demonstrate the robustness and generalization ability of our system by covering a wide range of human interactions in many different 3D environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' While our RL-based method can be generalized to any unseen 3D environments, a new control policy has to be trained for each motion sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Combining RL with a supervised learning framework for better efficiency can be an interesting future research direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Furthermore, al- though we assume a fixed skeletal information throughout the system, interaction motions may change depending on the character’s body shape and sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We leave synthesizing motions on varying body shapes as future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Acknowledgments: This work was supported by SNU- Naver Hyperscale AI Center, SNU Creative-Pioneering Re- searchers Program, and NRF grant funded by the Korea government (MSIT) (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2022R1A2C209272411).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 8 LAMA LAMA LAMA w/o motion editing LAMA w/o manifold + IK梦人庆A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Supplementary Video The supplementary video shows the results of our method, LAMA, on various scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In the video, we show the human motion synthesis results on PROX [16], Matterport3D [7], and also our own home-brewed 3D scene produced by Polycam App [1] in an iPad pro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We use SAPIEN [63] object meshes for manipulation examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As shown, our method successfully produces plausible and nat- ural human motions in many challenging scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Our supplementary video contains several ablation studies of our method by showing the importance of collision reward rcoli in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (4), transition reward (r∆t , r∆v) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (8), pos- ture offset aoffset t in Action Controller (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='2), and our motion editing modules (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='5) compared to the tradi- tional Inverse Kinematics (IK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We also show the compari- son with previous state-of-the arts [15, 59, 60] and demon- strate that our results produces better quality of motions with better collision avoidance performance in complicated 3D scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Additional Details on Implementations B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Action Controller Implementation Details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For the action controller A and motion synthesizer module S, we use the animation library DART [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We also use a publicly available PPO imple- mentation [32, 41], where we remove the variable time- stepping functions stepping in [32] by following the origi- nal PPO algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The details of the training regarding the policy and value network of the action controller are written in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Early Termination Conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As written in the main paper, the episode is terminated (1) when the character moves out of the scene bounding box;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (2) when the colli- sion reward rcoli is under a certain threshold;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' or (3) when the root of the human character is located in the blocked (occupied) regions of the scenes in 2D grid space during the locomotion status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Name Value Learning rate of policy network 2e-4 Learning rate of value network 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='001 Discount factor (γ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='95 GAE and TD (λ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='95 Clip parameter (ϵ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='2 # of tuples per policy update 30000 Batch size for policy/value update 512 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Details on the hyper-parameters for learning the control policy of the action controller A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion Synthesizer Motion Database Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As described in our main paper, we pre-process the motion segments by selec- tively collecting and clipping from Ubisoft La Forge [14], COUCH [70], and SAMP [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The length (in frames) of motion segments (“Seg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Length” in tables), number of motion segment (“Seg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Count” in tables), and the number of total frames (“Total Frames” in tables) are summarized in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Action-Specific Feature Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The motion feature, as defined in our main paper Sec 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='3, represents both the current state of the motion and a short term future move- ments: f(m) = {{pj}, { ˙pj}, θup, c, ofuture}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In particu- lar the action specific feature ofuture = {{pdt 0 }, {rdt 0 }} contains future motions so that the motion search process can take into account the future motion consistency, where pdt 0 , rdt 0 ∈ R2 are the position and orientation of root joint at dt frames later from the current target frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For locomo- tion, we extract dt = 10, 20, and 30 frames in the future (at 30Hz) following [9], as addressed in our main paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For sit- ting, we specifically choose dt as the frame where the char- acter completes the sit-down motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The major motivation of this design choice is encourage the motion synthesizer to search the motion clips with the desired target action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Computation Cost for Searching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The computation time for searching the motion database is done between 1-2 mil- liseconds in CPU, where we test on AMD Ryzen 5950X CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The number of search times varies and is dependent to the 3D scenes and desired motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In one of our sce- narios, total 17 searches in locomotion(walk) and 14 in ac- tion(sit) were done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For locomotion, the searching time is average 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='743 milliseconds (standard deviation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='46) and for action(sit) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='103 milliseconds (standard deviation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='63).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion Editing via Motion Manifold Implementation Details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' For the convolutional autoen- coder of task-adaptive motion editing, we use PyTorch [42], FairMotion [12], and PyTorch3d [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The autoencoder is trained with the Adam optimizer with learning rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We use 3 layers of 1D temporal-convolutions with kernel width of 25 and stride 2, and the channel dimension of each output feature is 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The training datasets are summarized in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Note that we use different pre-processing steps between Motion editing module and Motion Synthesizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Reconstruction Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The encoder Ψ and decoder Ψ−1 are trained based on reconstruction loss Lrecon = ||X − Ψ−1(Ψ (X)) ||2, where: Lrecon = wcLcontact + wrLroot + wqLquat + wpLpos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (9) 9 Lcontact, Lroot, and Lquat are the MSE losses of foot con- tact labels, root status (height and transform relative to the previous frame projected on the XZ plane), and the joint rotations in 6D representations [73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To penalize errors ac- cumulating along the kinematic chain, we perform forward kinematics (FK) and measure the global position distance of joints between original and reconstructed motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' As global positions of the joints are highly dependent on the root po- sitions, for the early epochs, the distance is measured based on root-centric coordinates to ignore the global location of roots, which we found empirically more stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion Editing Loss For motion editing, the positional loss and regularization loss are defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' L = wpLpos + wfLfoot + wrLroot, where Lpos = � j,qj∈φ ∥pj − qj∥2, if φ exists at t Lfoot = � foot ∥pe foot − pi foot∥2, Lroot = wr∥re xz − ri xz∥2 + w∆r∥˙re xz − ˙ri xz∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' (10) pj denotes positions of joint j, and r, ˙r denotes root po- sitions and velocities respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Superscript e and i in- dicates whether it is from edited or initial motion, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Subscript xz indicates the vector is projected onto the XZ plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The loss term L enforces the edited motion to maintain contact and root trajectory (in the XZ plane) of the initial motion, while generating natural movements of the other joints to meet the sparse positional constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Generating Interaction Cue for Manipulation To syn- thesize character’s arm motions naturally interacting with the movements of articulated target objects, we produce desired interaction cues by producing the 3D trajectories of a chosen 3D position of the object at which the hand part of the character are expected to touch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Specifically, we apply the expected articulated motion of the 3D object model to produce the 3D trajectory of a chosen object ver- tex, v(Rt, Tt, θt), where Rt, Tt, are the global orientation and translation of the object and θt is the parameters for the object articulation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', the hinge angle of the cover of a laptop) at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' v(·) represents the 3D location of the cho- sen vertex v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' To this end, we input the produced trajectory as the desired 3D interaction cue for a character’s joint (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', a hand joint) assuming the joint is touching this object tra- jectory for manipulation φ = [v(Rt, Tt, θt)]t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Note that, in our visualization, we apply the desired articulated motions for the 3D object at each time, synced to the produced in- teraction cues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Label Seg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Length Seg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Count Total Frames Locomotion 10 11063 11498 Sit 50 – 85 5842 14942 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Details on pre-processed motion datasets per each action category for training our motion synthesizer S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Name Value Motion sequence length 120 Number of sequence (training) 11397 Number of sequence (validation) 3135 Number of sequence (test) 2139 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Details on pre-processed motion datasets for training our motion editing module M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' More Details on Experiments C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Frechet Distance Features FDroot is computed by root feature vector, which is a con- catenated vector of root orientation in angle-axis represen- tation, root up vector, and root transform relative to the pre- vious frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' We note that all of the motions for comparison have the same up axis (y) and floor plane (xz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' FDjoint is computed by joint feature vector, represented as joint orien- tations in angle-axis representation, excluding the root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' References [1] Polycam - lidar and 3d scanner for iphone & android.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' https://poly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='cam/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 9 [2] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine- Hornung, Daniel Cohen-Or, and Baoquan Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Skeleton- aware networks for deep motion retargeting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph, 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [3] Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen- Or, and Baoquan Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Unpaired motion style transfer from video to animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [4] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Drecon: data-driven responsive con- trol of physics-based characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 38(6), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [5] Michael B¨uttner and Simon Clavet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion matching - the road to next gen animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' of Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='ai, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, 4 [6] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, Minh Vo, and Jitendra Malik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Long-term human motion pre- diction with scene context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal- ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Matterport3d: Learning from rgb-d data in indoor environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In 3DV, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 6, 9 [8] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning to sit: Synthesizing human-chair interactions via hierarchical control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In AAAI, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 10 [9] Simon Clavet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion matching and the road to next-gen animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' of GDC, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, 4, 9 [10] Haegwang Eom, Daseong Han, Joseph S Shin, and Junyong Noh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Model predictive control with a visuomotor system for physics-based character animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 39(1), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [11] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji- tendra Malik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Recurrent network models for human dynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICCV, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [12] Deepak Gopinath and Jungdam Won.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' fairmotion - tools to load, process and visualize motion capture data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Github, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 9 [13] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley, and Taku Komura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' A recurrent variational autoen- coder for human motion synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In BMVC, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [14] F´elix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Robust motion in-betweening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph, 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3, 6, 9 [15] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael Black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Stochastic scene- aware motion prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICCV, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2, 3, 6, 7, 8, 9 [16] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas, and Michael J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Resolving 3D human pose ambigu- ities with 3D scene constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICCV, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, 6, 7, 9 [17] Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios Tzionas, and Michael J Black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Populating 3d scenes by learning human-scene interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [18] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learned motion matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4 [19] Daniel Holden, Taku Komura, and Jun Saito.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Phase- functioned neural networks for character control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 36(4), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [20] Daniel Holden, Jun Saito, and Taku Komura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' A deep learning framework for character motion synthesis and editing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 35(4), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, 3, 6 [21] Chun-Hao P Huang, Hongwei Yi, Markus H¨oschle, Matvey Safroshkin, Tsvetelina Alexiadis, Senya Polikovsky, Daniel Scharstein, and Michael J Black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Capturing and inferring dense full-body human-scene contact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [22] Kyunglyul Hyun, Kyungho Lee, and Jehee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion grammars for character animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Computer Graphics Forum, volume 35, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [23] Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen Guo, Minye Wu, Jingyi Yu, and Lan Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Neuralhofusion: Neural volumetric rendering under human-object interac- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [24] Vladimir G Kim, Siddhartha Chaudhuri, Leonidas Guibas, and Thomas Funkhouser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Shape2pose: Human-centric shape analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 33(4), 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [25] Diederik P Kingma and Jimmy Ba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Adam: A method for stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='6980, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 6 [26] Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hod- gins, and Nancy S Pollard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Interactive control of avatars animated with human motion data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Proceedings of the 29th annual conference on Computer graphics and interac- tive techniques, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [27] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike Stilman, and C Karen Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Dart: Dynamic animation and robotics toolkit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' The Journal of Open Source Software, 3(22), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 9 [28] Jehee Lee and Kang Hoon Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Precomputing avatar be- havior from human motion data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Com- puter animation, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [29] Kyungho Lee, Seyoung Lee, and Jehee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Interactive char- acter animation by learning multi-objective control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 37(6), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [30] Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning time-critical responses for interactive character control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 40(4), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [31] Kang Hoon Lee, Myung Geol Choi, and Jehee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion patches: building blocks for virtual environments annotated with motion data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ACM SIGGRAPH 2006 Papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [32] Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning a family of motor skills from a single motion clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 40(4), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3, 9 [33] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Je- hee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Scalable muscle-actuated human simulation and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 38(4), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 5 [34] Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popovi´c, and Vladlen Koltun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Continuous character con- trol with low-dimensional embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph, 31(4), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [35] Ruilong Li, Shan Yang, David A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ross, and Angjoo Kanazawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ai choreographer: Music conditioned 3d dance generation with aist++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICCV, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, 7 [36] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Character controllers using motion vaes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [37] Kovar Lucas, Gleicher Michael, and Pighin Fr´ed´eric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Motion graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [38] Julieta Martinez, Michael J Black, and Javier Romero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' On human motion prediction using recurrent neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [39] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg Wayne, and Nicolas Heess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Catch & carry: reusable neural controllers for vision-guided whole-body tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [40] Evonne Ng, Hanbyul Joo, Liwen Hu, Hao Li, , Trevor Dar- rell, Angjoo Kanazawa, and Shiry Ginosar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning to lis- ten: Modeling non-deterministic dyadic facial motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 7 [41] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning predict-and-simulate policies from un- organized human motion data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 38(6), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3, 5, 9 11 [42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai- son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Pytorch: An imperative style, high-performance deep learning library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems 32, pages 8024–8035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 9 [43] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Deepmimic: Example-guided deep reinforce- ment learning of physics-based character skills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 37(4), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3, 5 [44] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph, 41(4), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [45] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Amp: Adversarial motion priors for styl- ized physics-based character control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph, 40(4), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [46] Mathis Petrovich, Michael J Black, and G¨ul Varol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Action- conditioned 3d human motion synthesis with transformer vae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICCV, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2, 3 [47] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui- han Yang, Yang Fu, and Xiaolong Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Dexmv: Imitation learning for dexterous manipulation from human videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [48] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay- lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Accelerating 3d deep learning with pytorch3d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='08501, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 9 [49] Manolis Savva, Angel X Chang, Pat Hanrahan, Matthew Fisher, and Matthias Nießner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Pigraphs: learning interaction snapshots from observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 35(4), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [50] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad- ford, and Oleg Klimov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Proximal policy optimization algo- rithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='06347, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 5 [51] Hubert PH Shum, Taku Komura, Masashi Shiraishi, and Shuntaro Yamazaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Interaction patches for multi-character animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 27(5), 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [52] Sebastian Starke, Ian Mason, and Taku Komura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Deepphase: periodic autoencoders for learning motion phase manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 41(4):1–13, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [53] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Neural state machine for character-scene interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 38(6), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [54] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim- itrios Tzionas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Goal: Generating 4d whole-body motion for hand-object grasping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [55] Omid Taheri, Nima Ghorbani, Michael J Black, and Dim- itrios Tzionas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Grab: A dataset of whole-body human grasp- ing of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [56] Graham W Taylor and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Factored con- ditional restricted boltzmann machines for modeling motion style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICML, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [57] Adrien Treuille, Yongjoon Lee, and Zoran Popovi´c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Near- optimal character animation with continuous control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ACM SIGGRAPH 2007 papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [58] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and Honglak Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning to generate long- term future via hierarchical prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ICML, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [59] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin, and Bo Dai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Towards diverse and natural scene-aware 3d human motion synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2, 3, 9 [60] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao- long Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Synthesizing long-term 3d human motion and interaction in 3d scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2, 6, 7, 8, 9 [61] Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Scene- aware generative network for human motion synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [62] Jungdam Won, Deepak Gopinath, and Jessica Hodgins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' A scalable approach to control diverse behaviors for physically simulated characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 39(4), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 3 [63] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Sapien: A simulated part-based interactive environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 6, 9 [64] Xianghui Xie, Bharat Lal Bhatnagar, and Gerard Pons-Moll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Chore: Contact, human and object reconstruction from a sin- gle rgb image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [65] Xiang Xu, Hanbyul Joo, Greg Mori, and Manolis Savva.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' D3d-hoi: Dynamic 3d human-object interactions from videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content='08420, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [66] Zeshi Yang, Kangkang Yin, and Libin Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Learning to use chopsticks in diverse gripping styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 41(4), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [67] He Zhang, Yuting Ye, Takaaki Shiratori, and Taku Komura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Manipnet: Neural manipulation synthesis with a hand-object spatial representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=', 40(4), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [68] Jason Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, Jitendra Malik, and Angjoo Kanazawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Perceiving 3d human-object spatial arrangements from a single image in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 2 [69] Siwei Zhang, Yan Zhang, Qianli Ma, Michael J Black, and Siyu Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Place: Proximity learning of articulation and con- tact in 3d environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In 3DV, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [70] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke, Vladimir Guzov, and Gerard Pons-Moll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Couch: Towards controllable human-chair interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2, 6, 9 [71] Yan Zhang, Mohamed Hassan, Heiko Neumann, Michael J Black, and Siyu Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Generating 3d people in scenes with- out people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [72] Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler, , and Siyu Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' Compositional human-scene interaction syn- thesis with semantic control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In ECCV, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 1, 2 [73] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li Hao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' On the continuity of rotation representations in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' In CVPR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} +page_content=' 4, 6, 10 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf'} diff --git a/FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf b/FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9894dc7db9180d705207dcbb9c33d0493f59e92b --- /dev/null +++ b/FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:03208bc0f2477510ed8d67c765746a7d627f9b98639c8e32e7c9904d21c68e8e +size 221312 diff --git a/FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss b/FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..047b63e07e35a96aaeec53736a50602ab930ae67 --- /dev/null +++ b/FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90b48d51617bbb71df1b815fc00ebe451f447910edbd3d0b2daea1a7449c2406 +size 1638445 diff --git a/FdFJT4oBgHgl3EQfDCyN/vector_store/index.pkl b/FdFJT4oBgHgl3EQfDCyN/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..48f009ed08d238920d9081852eb03882253c0ae6 --- /dev/null +++ b/FdFJT4oBgHgl3EQfDCyN/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:303cb74baadf59f951360c835a4afd1ba07a11642253c7446b90c6310a1e9c55 +size 53443 diff --git a/HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf b/HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0ad64d3953f9323d9e97e76f89daf1f9b9c275ba --- /dev/null +++ b/HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:55fccdce5be01ca1a2a5a69a3f7e1de839adabac949ee02bfa18c7f9a46d5f80 +size 451039 diff --git a/HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss b/HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..2bd69d816c94321e8c948d1b858670754e282ec6 --- /dev/null +++ b/HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e501500941e2869b7fc2df4d9c1ac7901033112590724ab6f7df8829403e4af1 +size 2883629 diff --git a/HNAzT4oBgHgl3EQfjP3H/vector_store/index.pkl b/HNAzT4oBgHgl3EQfjP3H/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..38c251275ae6ac1278cd86c5a8c65f22b6f033d5 --- /dev/null +++ b/HNAzT4oBgHgl3EQfjP3H/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c54b0db55708b7c8289eea9ceec398baed7cff44ee28f8b77334bd87c7dad445 +size 94452 diff --git a/I9AyT4oBgHgl3EQfTfcL/content/2301.00104v1.pdf b/I9AyT4oBgHgl3EQfTfcL/content/2301.00104v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ae9229e293c70bd381b11eb98489c3e8bd87a714 --- /dev/null +++ b/I9AyT4oBgHgl3EQfTfcL/content/2301.00104v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ad4080b21447fdc76cf5786f5e8b2be63f94126b26a73fe050d61f0ead31020 +size 427699 diff --git a/I9AyT4oBgHgl3EQfTfcL/vector_store/index.faiss b/I9AyT4oBgHgl3EQfTfcL/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..150f178271982ad332b521f41f07cda574761ca2 --- /dev/null +++ b/I9AyT4oBgHgl3EQfTfcL/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e0bb6699d3d69af6fcef5a93a753e6c87f6b19eff6f5e7c75a6c4545517ba233 +size 7077933 diff --git a/I9AyT4oBgHgl3EQfTfcL/vector_store/index.pkl b/I9AyT4oBgHgl3EQfTfcL/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..6cabcbfce7f60472b2cd3aef2ee2ad779dab4ec6 --- /dev/null +++ b/I9AyT4oBgHgl3EQfTfcL/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:da7fcfd7044bf1e9160aedae47c8c9cd59fb940474ab169fde61b332da99ac4a +size 249925 diff --git a/I9E2T4oBgHgl3EQfUQfh/content/2301.03812v1.pdf b/I9E2T4oBgHgl3EQfUQfh/content/2301.03812v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a5049f59a508c03a4aa3edb44233499f4dbf998b --- /dev/null +++ b/I9E2T4oBgHgl3EQfUQfh/content/2301.03812v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6c57409970194d35e8576126d1b8ebb9b87877b00071496de9625d0214aa966 +size 5788712 diff --git a/I9E2T4oBgHgl3EQfUQfh/vector_store/index.faiss b/I9E2T4oBgHgl3EQfUQfh/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..681a12274fa634d133a052de6f47ac7ed61f42ba --- /dev/null +++ b/I9E2T4oBgHgl3EQfUQfh/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:09aeb37dde8305e52c4ce4f298f602f84300f6ef5c6df3423cc97afd8df50835 +size 5439533 diff --git a/I9E2T4oBgHgl3EQfUQfh/vector_store/index.pkl b/I9E2T4oBgHgl3EQfUQfh/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..87d6aa7d7f48ce7319c8b65af0b52324f699ae4a --- /dev/null +++ b/I9E2T4oBgHgl3EQfUQfh/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:69a52bbedf1326de0e1c7dea7dd8c2305f22955ec21091604c0a25dc9d33d39f +size 186483 diff --git a/KdE2T4oBgHgl3EQfVAc5/content/2301.03818v1.pdf b/KdE2T4oBgHgl3EQfVAc5/content/2301.03818v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9039e4315f4b7fda952de1340828295709adf723 --- /dev/null +++ b/KdE2T4oBgHgl3EQfVAc5/content/2301.03818v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:456c2154cd0adfac88786a20162b79ecfaf1d95053fdc24fe5935d31be07615a +size 7519318 diff --git a/KdE2T4oBgHgl3EQfVAc5/vector_store/index.faiss b/KdE2T4oBgHgl3EQfVAc5/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..351ebb22de728103107089b96ab01ecc9669b89b --- /dev/null +++ b/KdE2T4oBgHgl3EQfVAc5/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f39c4b6a11c1949e4c4e5c1a6d68a8b3dcbd878ab1b7589b02fcc857df1b6fac +size 2097197 diff --git a/KdE2T4oBgHgl3EQfVAc5/vector_store/index.pkl b/KdE2T4oBgHgl3EQfVAc5/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..2dcfece1e815adc49c13728a33ce60abf83d806c --- /dev/null +++ b/KdE2T4oBgHgl3EQfVAc5/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eed13aca514b0e892a05786ab0b40b0338ea8ce89239fb9da4037926b6b2e2bc +size 75194 diff --git a/KdE4T4oBgHgl3EQfiA17/content/2301.05130v1.pdf b/KdE4T4oBgHgl3EQfiA17/content/2301.05130v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9a9be94f32db2abfd68ff5e58f9bb7faae1325c1 --- /dev/null +++ b/KdE4T4oBgHgl3EQfiA17/content/2301.05130v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d234681ba0885d6e1144f8fc768107d61f4a961b92d7498adbac847045900ee4 +size 1250446 diff --git a/KdE4T4oBgHgl3EQfiA17/vector_store/index.pkl b/KdE4T4oBgHgl3EQfiA17/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..669fb92e10fce870f2f4a41f1d1d4566a55a73b7 --- /dev/null +++ b/KdE4T4oBgHgl3EQfiA17/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d84a88a16493f3c00133a5dea34745ae2c607adb4a0e0a98a0c2f4716af6fbe +size 327018 diff --git a/L9E1T4oBgHgl3EQfHAM0/content/tmp_files/2301.02920v1.pdf.txt b/L9E1T4oBgHgl3EQfHAM0/content/tmp_files/2301.02920v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..dc17ee9456a6a030173b471e2bc59fe910ca513b --- /dev/null +++ b/L9E1T4oBgHgl3EQfHAM0/content/tmp_files/2301.02920v1.pdf.txt @@ -0,0 +1,1313 @@ +arXiv:2301.02920v1 [math.GR] 7 Jan 2023 +BEAUVILLE STRUCTURES FOR QUOTIENTS +OF GENERALISED GGS-GROUPS +ELENA DI DOMENICO, S¸ ¨UKRAN G¨UL, AND ANITHA THILLAISUNDARAM +Abstract. A finite group with a Beauville structure gives rise to a certain compact +complex surface called a Beauville surface. G¨ul and Uria-Albizuri showed that quotients +of the periodic Grigorchuk-Gupta-Sidki (GGS-)groups that act on the p-adic tree, for +p an odd prime, admit Beauville structures. +We extend their result by showing that +quotients of infinite periodic GGS-groups acting on pn-adic trees, for p any prime and +n ≥ 2, also admit Beauville structures. +1. Introduction +A Beauville surface is a compact complex surface isomorphic to (C1 × C2)/G, where +• C1 and C2 are algebraic curves of genus at least 2, and G is a finite group acting +freely on C1 × C2 by holomorphic transformations, +• the group G acts faithfully on the curves Ci such that Ci/G ∼= P1(C) and the +covering map Ci → Ci/G is ramified over three points, for i ∈ {1, 2}. +The group G is then said to be a Beauville group. +One can reformulate the condition for a finite group G to be a Beauville group purely +in group-theoretical terms: for x, y ∈ G, let +Σ(x, y) = +� +g∈G +� +⟨x⟩g ∪ ⟨y⟩g ∪ ⟨xy⟩g� +, +that is, the union of all conjugates of the cyclic subgroups generated by x, y and xy. +Then G is a Beauville group if and only if G is 2-generated and there exist generating sets +{x1, y1} and {x2, y2} of G such that Σ(x1, y1) ∩ Σ(x2, y2) = {1}. The sets {x1, y1} and +{x2, y2} are then called a Beauville structure for G. +Beauville groups have been intensely studied in recent times; see surveys [1, 7, 8, 16]. +For example, the abelian Beauville groups were classified by Catanese [4]: a finite abelian +group G is a Beauville group if and only if G ∼= Cn×Cn for n > 1 with gcd(n, 6) = 1. After +abelian groups, the most natural class of finite groups to consider are nilpotent groups. +The determination of nilpotent Beauville groups is easily reduced to the case of p-groups. +In [1], it was shown that there are non-abelian Beauville p-groups of order pn for ev- +ery p ≥ 5 and every n ≥ 3. The first explicit infinite family of Beauville 2-groups was +constructed in [2]. In [19], Stix and Vdovina constructed an infinite family of Beauville +p-groups, for every prime p, by considering quotients of ordinary triangle groups. In [9], +Date: January 10, 2023. +2010 Mathematics Subject Classification. Primary 20E08; Secondary 20D15, 14J29. +Key words and phrases. Groups acting on rooted trees, finite p-groups, Beauville structures. +The first and the second authors are supported by the Spanish Government, grant MTM2017-86802- +P, partly with FEDER funds, and by the Basque Government, grant IT974-16. The first author is also +supported by the National Group for Algebraic and Geometric Structures, and their Applications (GN- +SAGA - INdAM). The third author acknowledges support from EPSRC, grant EP/T005068/1, and from +the Lincoln Institute of Advanced Studies. She also thanks the University of the Basque Country for its +hospitality. The first and second authors would like to thank the University of Lincoln for its hospitality +while this research was conducted. +1 + +2 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Fern´andez-Alcober and G¨ul extended Catanese’s criterion for abelian Beauville groups to +finite p-groups satisfying certain conditions which are much weaker than commutativity. +They also give the first explicit infinite family of Beauville 3-groups, and they show that +there are Beauville 3-groups of order 3n for every n ≥ 5. +In [15], G¨ul and Uria-Albizuri showed that the quotients of periodic Grigorchuk-Gupta- +Sidki (GGS-)groups admit Beauville structures, giving another infinite family of Beauville +p-groups, for p an odd prime. The GGS-groups were some of the early examples of groups +acting on rooted trees, which first arose as easily describable examples of infinite finitely +generated periodic groups. Since then, groups acting on rooted trees have provided many +other interesting and exotic examples, such as infinite finitely generated groups of inter- +mediate word growth, infinite finitely generated amenable but not elementary amenable +groups, etc; see for instance [14, 3]. +The GGS-groups are infinite groups acting faithfully on the p-adic tree. The natural +quotients of a GGS-group G are G/ StG(n), for n ∈ N, where StG(n) is the normal subgroup +of the elements of G that pointwise fix the vertices at the nth level of the tree. The quotient +G/ StG(n) acts on the finite tree consisting of the first n layers of the full p-adic tree. +We extend the result of [15] to a generalisation of the GGS-groups to the pn-adic tree, +for any prime p and n ≥ 2, by showing that infinitely many quotients of infinite periodic +GGS-groups acting on the pn-adic tree do admit Beauville structures. +Briefly, a GGS-group acting on the pn-adic tree is a group G = ⟨a, b⟩, where a = +(1 2 · · · pn) permutes the first-level vertices, whereas b fixes the first-level vertices and is +defined recursively by b = (ae1, . . . , aepn−1, b), for e1, . . . , epn−1 ∈ Z/pnZ with not all ei +being zero. Here (ae1, . . . , aepn−1, b) refers to the respective independent actions at the pn +maximal subtrees. We write e = (e1, . . . , epn−1) and call it the defining vector of G. We +refer the reader to Section 2 for background material and precise definitions. These groups +were constructed by Vovkivsky [20]. A prominent group in this family, that was defined +earlier in [13], is the second Grigorchuk group, which acts on the 4-adic tree with defining +vector e = (1, 0, 1). +For an infinite periodic GGS-group G acting on the pn-adic tree, we associate to G a +number mG ∈ N that is related to the order of certain group elements; we refer the reader +to Section 4 for precise details. The main result of this paper is as follows. +Theorem 1.1. Let G be an infinite periodic GGS-group acting on the pn-adic tree for p +a prime and n ≥ 2. Then G/ StG(k) admits a Beauville structure for k ≥ mG. +In particular, these quotients of infinite periodic GGS-groups acting on the 2n-adic tree +yield infinite families of Beauville 2-groups, and infinite periodic GGS-groups acting on the +3n-adic tree give many more infinite families of Beauville 3-groups. Note that Beauville 2- +groups and 3-groups are somewhat rare, precisely because of the small number of maximal +subgroups. Indeed, for a time it was unclear whether such groups even existed, until the +first examples were given in [11]. We also want to emphasise that for the GGS-groups +acting on the p-adic tree, if one were to consider the case p = 2 there is only one group, +which is the infinite dihedral group, hence its quotients do not admit Beauville structures, +and for p = 3 only one out of the three isomorphism classes of such groups has quotients +admitting Beauville structures; see [15] and [18]. +G¨ul and Uria-Albizuri also showed in [15] that for G a GGS-group acting on the p-adic +tree, there are quotients of G admitting Beauville structures if and only if G is periodic. +The situation is not so clear cut for GGS-groups acting on the pn-adic tree, for n ≥ 2. +In particular, there are non-periodic GGS-groups acting on the pn-adic tree which have +quotients admitting Beauville structures; see Remark 4.2. Futhermore, our main result +above deals only with infinite periodic GGS-groups. For finite GGS-groups, some quotients + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +3 +admit Beauville structures; see Remark 4.3. However a large class E of finite GGS-groups +have no level-stabliser quotients admitting Beauville structures. We refer the reader to +Section 5 for the definition of E. We have the following result. +Theorem 1.2. Let G ∈ E be a finite GGS-group acting on the pn-adic tree for p a prime +and n ≥ 2. Then G/ StG(k) is not a Beauville group for all k ∈ N. +To prove our theorems, we largely make use of the subgroup structure of the respective +groups. +Organisation. Section 2 of this paper consists of background material for groups acting on +rooted trees and here we also recall the generalisation of the GGS-groups. In Section 3 we +establish key properties of these groups. In Section 4 we prove Theorem 1.1 and lastly in +Section 5 we prove Theorem 1.2. +Acknowledgements. We thank G. A. Fern´andez-Alcober for his valuable feedback and +helpful suggestions. +2. Preliminaries +All trees considered here will be rooted, meaning that there is a distinguished vertex +called the root, with one degree less than all other vertices. For d ∈ N≥2, let T be the +d-adic tree, meaning all vertices have d children. Using the alphabet A = {1, . . . , d}, the +vertices uω of T are labelled bijectively by elements ω of the free monoid A∗ as follows: +the root of T is labelled by the empty word ∅, and for each word ω ∈ A∗ and letter a ∈ A +there is an edge connecting uω to uωa. We say that uω precedes uλ whenever ω is a prefix +of λ. When convenient, we do not differentiate between A∗ and vertices of T. +There is a natural length function on A∗. The words ω of length |ω| = n, representing +vertices uω that are at distance n from the root, are the nth-level vertices and form the +nth layer of the tree. The elements of the boundary ∂T correspond naturally to infinite +simple rooted paths, and they are in one-to-one correspondence with the d-adic integers. +Denote by Tu the full subtree of T that has its root at a vertex u and includes all vertices +succeeding u. For any two vertices u = uω and v = uλ, the map uωτ �→ uλτ, induced by +replacing the prefix ω by λ, yields an isomorphism between the subtrees Tu and Tv. +Every automorphism of T fixes the root, and the orbits of Aut(T) on the vertices of the +tree T are precisely its layers. For f ∈ Aut(T), the image of a vertex u under f is denoted +by uf. The automorphism f induces a faithful action on the monoid A∗ and for a ∈ A we +have (ωa)f = ωfa′ where a′ ∈ A is uniquely determined by ω and f. From this we have a +permutation f(ω) of A where +(ωa)f = ωfaf(ω), +and hence +(uωa)f = uωf af(ω), +and f(ω) is called the label of f at ω. The collection of all labels of f constitutes the +portrait of f, and there is a one-to-one correspondence between automorphisms of T and +portraits. +The automorphism f is rooted if f(ω) = 1 for ω ̸= ∅. +It is directed, with +directed path ℓ for some ℓ ∈ ∂T, if the support {ω | f(ω) ̸= 1} of its labelling is infinite +and marks only vertices at distance 1 from the set of vertices corresponding to the path ℓ. +Additionally, the section of f at a vertex u is defined to be the unique automorphism fu +of T ∼= Tu given by the condition (uv)f = ufvfu for v ∈ A∗. +2.1. Subgroups of Aut(T). For G ≤ Aut(T), the vertex stabiliser stG(u) is the subgroup +consisting of elements in G that fix the vertex u. +For n ∈ N, the nth-level stabiliser +StG(n) = � +|ω|=n stG(uω) is the subgroup consisting of automorphisms that fix all vertices +at level n. Let T[n] be the finite subtree of T of vertices up to level n. Then StG(n) is the +kernel of the induced action of G on T[n], and we will denote by Gn the quotient G/ StG(n). + +4 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Each g ∈ StAut(T)(n) can be described completely in terms of its restrictions to the +subtrees rooted at vertices at level n. Indeed, the map +ψn : StAut(T)(n) −→ +� +|ω|=n +Aut(Tuω) ∼= Aut(T) × +dn +· · · × Aut(T) +is a natural isomorphism mapping g ∈ StAut(T)(n) to its nth-level sections. For ease of +notation, we write ψ = ψ1. +For ω ∈ A∗, we further define: +ϕω : stAut(T)(uω) −→ Aut(Tuω) ∼= Aut(T) +g +�−→ +gω +A group G ≤ Aut(T) is said to be self-similar if for every g ∈ G and every vertex u, the +section gu, of g at u, is an element of G. For a self-similar group G ≤ Aut(T), for m ≥ 2 +and i ∈ Am−1, we will write +ψi +m = ψ ◦ ϕi. +That is, for g ∈ stG(ui) with ϕi(g) ∈ StG(1), we have ψi +m(g) gives the components of ϕi(g) +corresponding to the children of the (m − 1)th-level vertex i. In addition, we write +φn,m : StGn(m) −→ Gn−1 × +dm +· · · × Gn−1 +for the corresponding ψm when working in the quotient. Likewise, we write φn = φn,1 for +simplicity. +2.2. GGS-groups acting on the pn-adic tree. Let T be the pn-adic tree for a prime p +and n ∈ N. +Given a non-zero vector e = (e1, . . . , epn−1) ∈ (Z /pn Z)pn−1, the GGS- +group G = Ge associated to the defining vector e is the group generated by the rooted +automorphism a corresponding to the cycle (1 2 · · · pn) and by a directed automorphism +b ∈ StAut(T)(1) defined recursively via +ψ(b) = (ae1, ae2, . . . , aepn−1, b). +Unlike the GGS-groups acting on the p-adic tree, the GGS-groups acting on the pn-adic +tree for n ≥ 2 are not all infinite. A necessary and sufficient condition for these groups to +be infinite was given by Vovkivsky [20]. He proved that such a group is infinite if and only +if there exists an i ≥ 0 such that +R0 ≤ R1 ≤ · · · ≤ Ri = Ri+1 = · · · < n +where the sequence Rj is defined recursively as follows: R0 is the largest integer such that +pR0 | eℓ for all ℓ ∈ {1, . . . , pn−1}; and then for j ≥ 0 and while Rj < n, the number Rj+1 is +defined as the largest integer such that pRj+1 divides eℓ for all ℓ ∈ {pRj, 2pRj, . . . , pn−pRj}. +Note that the order of a is pn and the order of b is pn−R0. Further, from [6, Thm. 2.1] +we have G/G′ ∼= Cpn × Cpn−R0. +Vovkivsky further proved in [20] that a GGS-group acting on the pn-adic tree is a +periodic group if and only if for each k ∈ {0, . . . , n − 1}, +S[k] ≡ 0 +(mod pk+1) +where +(2.1) +S[k] = epk + e2pk + · · · + epn−pk. +We recall the prominent example of such a GGS-group, which is for the case p = n = 2: + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +5 +Example 2.1. Let T be the 4-adic tree. The second Grigorchuk group Γ ≤ Aut(T) is +generated by two automorphisms a and b, where a is the rooted automorphism corre- +sponding to the cycle (1 2 3 4), and b ∈ StΓ(1) is recursively defined by ψ(b) = (a, 1, a, b). +The group Γ, which is periodic, was first defined in [13]. +For more information on GGS-groups acting on the pn-adic tree, see [20, 5, 6]. +3. Properties of GGS-groups acting on the pn-adic tree +For G = Ge, a GGS-group acting on the pn-adic tree, recall that R0 is the largest integer +such that pR0 | eℓ for all ℓ ∈ {1, . . . , pn − 1}. +Suppose now that G is periodic. To each element aiprbjps in G, where 0 ≤ r < n, +0 ≤ s < n − R0 and i, j ̸≡ 0 (mod p), we associate the following numbers: +(i) If pn−s ∤ S[r], let t0, t1, . . . , tmr,s ∈ N for some 1 ≤ mr,s < n be such that +• tk < n − s ≤ tmr,s for all k < mr,s, +• pt0 | S[r] and pt0+1 ∤ S[r], +• ptk | S[tk−1 + s] and ptk+1 ∤ S[tk−1 + s] for 1 ≤ k < mr,s, +• ptmr,s | S[tmr,s−1 + s], +where the S[λ] for λ ∈ {0, 1, . . . , n − 1} are as in (2.1). +(ii) If pn−s | S[r], then we set mr,s = 0, and for convenience define t0 = n − s. +If we are in case (i), note that t0 does not depend on s. +Lemma 3.1. Let G = ⟨a, b⟩ be a periodic GGS-group acting on the pn-adic tree, let +0 ≤ r < n, 0 ≤ s < n − R0 and i, j ̸≡ 0 (mod p). Let m := mr,s and t0, t1, . . . , tm ∈ N be +as above. Then the order of aiprbjps in both G and Gm+3 is pt(r,s) where +t(r, s) = (m + 2)n − (t0 + · · · + tm−1 + s(m + 1) + r + R0), +and if pn−s | S[r], that is, when m = 0, we take t0 + · · · + tm−1 = 0. +Proof. Clearly the order of aiprbjps is a multiple of pn−r. We have +ψ +� +(aiprbjps)pn−r� += ψ +� +(bjps)a(pn−r−1)ipr +· · · (bjps)a2ipr +(bjps)aipr +bjps� += +� +(ajps+R0)∗, pr−1 +. . . , (ajps+R0)∗, ajpsS[r](bjps)ajps(eipr +e2ipr +···+epr ) +, +(ajps+R0)∗, pr−1 +. . . , (ajps+R0)∗, ajpsS[r](bjps)ajps(eipr +e2ipr +···+e2pr ) +, . . . , . . . , +(ajps+R0)∗, pr−1 +. . . , (ajps+R0)∗, ajpsS[r](bjps)a +jps(eipr +e2ipr +···+e(pn−r−1)pr ) +, +(ajps+R0)∗, pr−1 +. . . , (ajps+R0)∗, ajpsS[r]bjps� +(3.1) +where the ∗ denotes an unspecified exponent, and the last equality follows from the fact that +the set {ipr, 2ipr, . . . , (pn−r − 1)ipr, pn} coincides, modulo pn, with {pr, 2pr, . . . , (pn−r − +1)pr, pn}. So the components of ψ((aiprbjps)pn−r) in positions a multiple of pr are conju- +gates of ajpsS[r]bjps and the other components are powers of ajps+R0 whose order is at most +pn−s−R0. +Suppose that pn−s | S[r]. Then using (3.1), we have +ψ +� +(aiprbjps)pn−r� += +� +(ajps+R0)∗, pr−1 +. . . , (ajps+R0)∗, (bjps)ajps(eipr +e2ipr +···+epr ) +, . . . , +(ajps+R0)∗, pr−1 +. . . , (ajps+R0)∗, bjps� +. + +6 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Note that the order of bjps is pn−s−R0. Thus, the order of aiprbjps in G is pt(r,s), for +t(r, s) = 2n − (r + s + R0). +Also since (bjps)pn−s−R0−1 ̸∈ StG(2), it follows that (aiprbjps)pt(r,s)−1 ̸∈ StG(3). Thus the +element aiprbjps is of order pt(r,s) in G3 as well. +It remains to settle the case pn−s ∤ S[r], which we will now assume till the end of +the proof. Since by hypothesis pt0+s+1 ∤ jpsS[r], the order of ajpsS[r]bjps is a multiple of +pn−(t0+s). Applying ψ we get +ψpn +2 +� +(aiprbjps)pn−rpn−(t0+s)� += ψ +� +(ajpsS[r]bjps)pn−(t0+s)� += ψ +� +(bjps)a(pn−(t0+s)−1)jpsS[r] · · · (bjps)a2jpsS[r](bjps)ajpsS[r]bjps� +. +As before, it follows that {jpsS[r], 2jpsS[r], . . . , (pn−(t0+s) −1)jpsS[r], pn} coincides, mod- +ulo pn, with the set {pt0+s, 2pt0+s, . . . , pn − pt0+s, pn}. This means that the b’s appear in +all positions a multiple of pt0+s and only in these positions, and we can write each of the +elements in these positions as +ajpsS[t0+s](bjps)a +jps� +ejpsS[r]+e2jpsS[r]+···+eℓpt0+s +� +for certain ℓ ∈ {1, . . . , pn−(t0+s)−1}. Since we are interested in the order of these elements, +up to conjugation the order of these elements coincides with the order of the element +ajpsS[t0+s]bjps. In the other components of ψ((ajpsS[r]bjps)pn−(t0+s)), there is a power of +ajps+R0 whose order is at most pn−s−R0. By hypothesis pt1+s+1 ∤ psS[t0 + s] thus the order +of ajpsS[t0+s]bjps is at least pn−(t1+s). Proceeding in this way, after m − 1 further steps we +find +ψpmn +m+1 +� +(aiprbjps)pn−rpn−(t0+s)pn−(t1+s)···pn−(tm−1+s)� += ψ +� +(bjps)a(pn−(tm−1+s)−1)jpsS[tm−2+s] · · · (bjps)a2jpsS[tm−2+s](bjps)ajpsS[tm−2+s](bjps) +� += +� +(ajps+R0)∗, ptm−1−1 +. . . +, (ajps+R0)∗, ajpsS[tm−1+s](bjps)a∗, (ajps+R0)∗, ptm−1−1 +. . . +, (ajps+R0)∗, +ajpsS[tm−1+s](bjps)a∗, . . . , . . . , (ajps+R0)∗, ptm−1−1 +. . . +, (ajps+R0)∗, ajpsS[tm−1+s](bjps) +� += +� +(ajps+R0)∗, ptm−1−1 +. . . +, (ajps+R0)∗, (bjps)a∗, . . . , (ajps+R0)∗, ptm−1−1 +. . . +, (ajps+R0)∗, bjps� +where the last equality holds since ptm+s | psS[tm−1 + s], thus pn | psS[tm−1 + s] by +the definition of tm. Since by hypothesis j ̸≡ 0 (mod p) it follows that the order of the +elements in positions a multiple of ptm−1 is pn−s−R0 and the orders of the other elements +are at most pn−s−R0. This proves that the order of aiprbjps is pt(r,s), where +t(r, s) = (m + 2)n − (t0 + · · · + tm−1 + s(m + 1) + r + R0). + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +7 +Finally, let us prove that the element (aiprbjps)pt(r,s)−1 ̸∈ StG(m + 3), which implies that +aiprbjps is of order pt(r,s) in Gm+3. We observe that +ψpmn +m+1 +� +(aiprbjps)pt(r,s)−1� += +� +(ajpn−1)∗, ptm−1−1 +. . . +, (ajpn−1)∗, (bjpn−R0−1)a∗, +. . . , . . . , (ajpn−1)∗, ptm−1−1 +. . . +, (ajpn−1)∗, bjpn−R0−1� +. +Since the components (bjpn−R0−1)a∗ are non-trivial in G2, the result follows. +□ +In the next three results, we identify a sort of branching structure within certain sub- +groups of GGS-groups. For convenience, we set R−1 = 0. +Lemma 3.2. Let G = ⟨a, b⟩ be a GGS-group acting on the pn-adic tree, for p a prime +and n ∈ N. +Then for j ∈ {0, 1, . . . , n − 1}, we have ϕv(stG(v)) ≥ ⟨apRj−1, b⟩ for any +vertex v = u1 · · · uj ∈ Aj of length j, where ui ≡ 0 (mod pRi−2) for i ∈ {1, . . . , j}. +Proof. For a vertex v of length one, the result is clear from considering the sections of +b, ba, . . . , bapn−1, which are the generators of stG(v). As the subgroup generated by the +sections of b is ⟨apR0, b⟩, it follows that for a vertex w of length 2, +b, bapR0 , . . . , bapn−pR0 ∈ ϕv(stG(w)), +where v is the prefix of w of length 1. It then follows that for vertices w = u1u2, with +u1, u2 ∈ A such that u2 ≡ 0 (mod pR0), we have ϕw(stG(w)) ≥ ⟨apR1, b⟩. The result now +follows recursively. +□ +Lemma 3.3. Let G = ⟨a, b⟩ be a GGS-group acting on the pn-adic tree, for p a prime and +n ∈ N. Let α ∈ {0, . . . , n − 1} and let pR be the highest power of p dividing eipα for all +i ∈ {1, . . . , pn−α − 1}. Suppose that +(i) the highest power of p dividing ejpα+1 for all j ∈ {1, . . . , pn−α−1 − 1} is strictly +greater than pR, and +(ii) there exists ℓ ∈ {1, . . . , pn−α − 1} such that pR+1 | eℓpα. +Then, writing Nα = ⟨apα, b⟩ and NR = ⟨apR, b⟩, we have +1 × +pα−1 +· · · × 1 × γ3(NR) × · · · · · · × 1 × +pα−1 +· · · × 1 × γ3(NR) = ψ +� +γ3(StNα(1)) +� +. +Note that if α = n − 1, condition (i) is vacuous. +Proof. By assumption (i), there exists k ∈ {1, . . . , pn−α −1} with k ̸≡ 0 (mod p) such that +ekpα = κpR for some κ ̸≡ 0 (mod p). Up to replacing b with a suitable power of itself, +we may assume without loss of generality that κ = 1. It suffices to show, since we can +conjugate by apα, that +1 × +kpα−1 +· · · × 1 × γ3(NR) × 1 × · · · × 1 ≤ ψ +� +γ3(StNα(1)) +� +. +Case 1: Suppose e(pn−α−k)pα = 0. Then, as γ3(NR) = ⟨[apR, b, apR], [apR, b, b]⟩NR, the +result follows from +ψ +� +[b, bakpα +, b] +� += (1, kpα−1 +. . . , 1, [apR, b, apR], 1, . . . , 1) +ψ +� +[b, bakpα +, bakpα +] +� += (1, kpα−1 +. . . , 1, [apR, b, b], 1, . . . , 1) +and using Lemma 3.2. + +8 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Case 2: Suppose e(pn−α−k)pα ̸= 0 and let χ ∈ {1, . . . , pn−R−1} be such that e(pn−α−k)pα = +χpR. +If p | χ, consider +ψ +� +[b, bakpα +, b] +� += (1, kpα−1 +. . . , 1, [apR, b, apR], 1, . . . , 1, [b, aχpR, b]), +ψ +� +[b, bakpα +, bakpα +] +� += (1, kpα−1 +. . . , 1, [apR, b, b], 1, . . . , 1, [b, aχpR, aχpR]). +Let us refer to those commutators in the final component as the error terms. We proceed +to cancel those error terms by respectively multiplying with the following: +ψ +�� +[bakpα +, bχ, bakpα +]−1�a−kpα� += (1, . . . , 1, [aχpR, bχ, aχpR]−1, 1, kpα−1 +. . . , 1, [b, aχpR, b]−1), +ψ +�� +[bakpα +, bχ, bχ]−1�a−kpα� += (1, . . . , 1, [aχpR, bχ, bχ]−1, 1, kpα−1 +. . . , 1, [b, aχpR, aχpR]−1). +This introduces a new set of error terms, this time in the (pn − kpα)th component. We +notice that the new set of error terms involve a higher p-power of a or b. Hence, after +repeating this process a finite number of times, we will eventually have a set of error +terms consisting of commutators with at least one component being the trivial element +apn = bpn−R0. In other words, we have completely cancelled any error terms, showing that +(1, kpα−1 +. . . , 1, [apR, b, apR], 1, . . . , 1) ∈ ψ +� +γ3(StNα(1)) +� +, +(1, kpα−1 +. . . , 1, [apR, b, b], 1, . . . , 1) ∈ ψ +� +γ3(StNα(1)) +� +. +Now suppose that p ∤ χ. By hypothesis, there exists ℓ ∈ {1, . . . , pn−α − 1} such that +eℓpα = λpR with p | λ. We claim that we may choose ℓ such that e(ℓ−k)pα = ξpR with +p ∤ ξ. Indeed, suppose on the contrary that for all choices of ℓ satisfying condition (ii), we +have pR+1 | e(ℓ−k)pα. Since k ̸≡ 0 (mod p), repeatedly replacing ℓ with ℓ − k, this means +that ejpα ≡ 0 (mod pR+1) for all j ∈ {1, . . . , pn−α − 1}, a contradiction. Hence the claim. +For convenience, we write e(k−ℓ)pα = ζpR, and let ν ∈ {1, . . . , pn−R} be such that νξ ≡ χ +(mod pn−R). Then we have +ψ +� +[b, (bν)a(k−ℓ)pα +, b]−1� += (1, (k−ℓ)pα−1 +. . . +, 1, [aζpR, bν, aζpR]−1, 1, . . . , 1, [b, aχpR, b]−1), +ψ +� +[b, bakpα +, (bν)a(k−ℓ)pα +]−1� += (1, kpα−1 +. . . , 1, [apR, b, aνλpR]−1, 1, . . . , 1, [b, aχpR, aχpR]−1). +If p | ζ, we proceed to cancel the error terms as in the above argument. +If p ∤ ζ, let +θ ∈ {1, . . . , pn−R} be such that θχ ≡ ζ (mod pn−R). Then, since p | λ, we can use the +following element to proceed: +ψ +� +[(bθ)akpα +, bν, (bθν)a(k−ℓ)pα +] +� += (1, kpα−1 +. . . , 1, [bθ, aνpR, aθνλpR], 1, . . . , 1, [aζpR, bν, aζpR]). □ +Lemma 3.4. Let G = ⟨a, b⟩ be a GGS-group acting on the pn-adic tree, for p an odd prime +and n ∈ N. Let R ≤ n − 1 be such that ekpR ≡ 0 (mod pR) for all k ∈ {1, . . . , pn−R − 1} +and suppose that ekpR ̸≡ 0 (mod pR+1) for all k ∈ {1, . . . , pn−R − 1}. Suppose further that +S[R] ≡ 0 (mod pR+1). Then, writing N = ⟨apR, b⟩, we have +1 × +pR−1 +· · · × 1 × γ3(N) × · · · · · · × 1 × +pR−1 +· · · × 1 × γ3(N) = ψ +� +γ3(StN(1)) +� +. +Proof. Let ekpR = ikpR for k, ik ∈ {1, . . . , pn−R − 1} with ik ̸≡ 0 (mod p). Further, by +replacing b with an appropriate power, we may assume that i1 = 1. As reasoned in the +previous proof, it suffices to show that +1 × +pR−1 +· · · × 1 × γ3(N) × 1 × · · · × 1 ≤ ψ +� +γ3(StN(1)) +� +. + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +9 +We proceed as in [10, Lem. 3.2] by considering the following two cases: +(a) There exists an ℓ ∈ {2, . . . , pn−R − 2} such that i2 +ℓ − iℓ−1iℓ+1 ̸≡ 0 (mod p). +(b) For all ℓ ∈ {2, . . . , pn−R − 2}, we have i2 +ℓ − iℓ−1iℓ+1 ≡ 0 (mod p). +Note that if p = 3 and R = n − 1, then Case (b) trivially holds. +Suppose we are in Case (a). Let us define gℓ as follows: +gℓ = +� +(biℓ)apR +b−iℓ−1�a−ℓpR +Writing µ = i2 +ℓ − iℓ−1iℓ+1, we have +ψ(gℓ) = (∗, pR−1 +. . . , ∗, aµpR, ∗, . . . , ∗, 1) +where ∗ represents unspecified elements. By assumption, we have µ ̸≡ 0 (mod p). Hence +there is a power g of gℓ satisfying +ψ(g) = (∗, pR−1 +. . . , ∗, apR, ∗, . . . , ∗, 1). +Furthermore, for simplicity let λ := ipn−R−1 ̸≡ 0 (mod p). Then +ψ +� +bapR +(ba−pR +)−λ� += (∗, pR−1 +. . . , ∗, ba−λe2pR , ∗, . . . , ∗, 1), +and multiplying by an appropriate power of g we obtain an element h ∈ StN(1) with +ψ(h) = (∗, pR−1 +. . . , ∗, b, ∗, . . . , ∗, 1). +Then the result follows from: +ψ +� +[b, bapR +, g] +� += (1, pR−1 +. . . , 1, [apR, b, apR], 1, . . . , 1) +ψ +� +[b, bapR +, h] +� += (1, pR−1 +. . . , 1, [apR, b, b], 1, . . . , 1) +We now suppose that we are in Case (b). It then follows, for j ∈ {2, . . . , pn−R − 1}, +that ij = λj−1 for some λ̸≡ 0 (mod p). However, as S[R] ≡ 0 (mod pR+1), we have λ ̸≡ 1 +(mod p). Further we have λpn−R−1pR ≡ pR (mod pR+1). +Note that +ψ +� +b(bapR +)−λ� += +(∗, pR−1 +. . . , ∗, apRb−λ, ∗, pR−1 +. . . , ∗, 1, . . . . . . , ∗, pR−1 +. . . , ∗, 1, ∗, pR−1 +. . . , ∗, ba−pR+νpR+1) +for some ν, and ∗ represents some power of a. Let χ be such that λχ ≡ 1 (mod pn−R0); +recall that pn−R0 is the order of b. Then +ψ +� +bχ� +b−χλ�apR� += ψ +� +bχ� +b−1�apR� += +(∗, pR−1 +. . . , ∗, aχpRb−1, ∗, pR−1 +. . . , ∗, 1, . . . . . . , ∗, pR−1 +. . . , ∗, 1, ∗, pR−1 +. . . , ∗, bχ∗). +Thus, since χ ̸≡ 1 (mod p) and hence +N = ⟨aχpRb−1, ba−pR+νpR+1⟩ = ⟨a(χ−1)pR+νpR+1, ba−pR+νpR+1⟩, +the result follows from the observations below: +ψ +�� +b(1−νp), bapR +, bapR +(ba2pR +)−λ�� += (1, pR−1 +. . . , 1, [apR−νpR+1, b, ba−pR+νpR+1], 1, . . . , 1), +ψ +�� +(ba2pR +)λ, bapR +, bχ� +b−χλ�apR�� += (1, pR−1 +. . . , 1, [apR−νpR+1, b, aχpRb−1], 1, . . . , 1). +□ +Next, we record some properties of certain finite GGS-groups acting on the 2n-adic tree, +which will be needed in Section 5. + +10 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Lemma 3.5. Let G be a periodic GGS-group acting on the 2n-adic tree for n ≥ 2, and +assume that R0 = n − 1. Then StG(4) is trivial. Furthermore StG(3) is non-trivial if and +only if ei = e2n−1+i for all i ∈ {1, . . . , 2n−1 − 1}. +Proof. Note that as R0 = n − 1, we have that 2n−1 divides each ei. Thus the ei’s are 0 +or 2n−1. Since G is periodic, it follows that e2n−1 = 0 and hence +� +b, ba2n−1� ∼= C2 × C2. +Let g be an element in StG(4). Certainly ϕω(g) ∈ StG(1) for all ω ∈ A. Since +ψ(StG(1)) ∩ StG(1) × · · · × StG(1) ⊆ +� +b, ba2n−1� +× +2n +· · · × +� +b, ba2n−1 � +, +it follows that +ϕω(g) ∈ +� +1, b, ba2n−1 +, bba2n−1� +. +As +� +b, ba2n−1� +∩ StG(3) = 1, the first claim follows. +For the second statement, let g be a non-trivial element in StG(3), in particular ϕω(g) ∈ +StG(2) for all ω ∈ A. From the previous paragraph, it follows that ϕω(g) ∈ +� +1, bba2n−1 � +. +Thus there exists ω ∈ A such that ϕω(g) = bba2n−1 +. We observe that +ψ +� +bba2n−1� += (ae1+e2n−1+1, . . . , ae2n−1−1+e2n−1, b, ae1+e2n−1+1, . . . , ae2n−1−1+e2n−1, b), +so ϕω(g) ∈ StG(2) if and only if ei = e2n−1+i for all i ∈ {1, . . . , 2n−1 − 1}, as required. +□ +Lemma 3.6. Let G be a periodic GGS-group acting on the 2n-adic tree for n ≥ 2. +Suppose R0 = n − 1 and S[0] ≡ 0 (mod pn). Then γ2n+1(G) ≤ StG(1)′. Furthermore +[b, a, 2n−1 +. . . , a]2 = 1 and [b, a, 2n−1+i +. . . , a]2 ∈ γ2n+i+2(G) for all i ∈ N. +Proof. As StG(1)/ StG(1)′ is elementary abelian, we have (G′)2 ≤ StG(1)′. +Therefore, +from [17, Prop. 1.1.32(ii)], we have +1 = [a2n, b] ≡ [b, a, 2n +. . ., a] +(mod StG(1)′), +which gives γ2n+1(G) ≤ StG(1)′, as required. +Also from [17, Prop. 1.1.32(ii)], we obtain +[a2n−1, b] ≡ [a, b, a, 2n−1−1 +. . . , a] +(mod StG(1)′) +and so [b, a, 2n−1 +. . . , a]2 = 1, as StG(1)′ is elementary abelian and [StG(1), StG(1)′] = 1. +For the last statement, we proceed by induction on i. For i = 1, the statement follows +from +1 = +� +[b, a, 2n−1 +. . . , a]2, a +� += [b, a, 2n−1+1 +. . . , a]2� +b, a, 2n−1+1 +. . . , a, [b, a, 2n−1 +. . . , a] +� +, +and similarly for the inductive step, as +� +[b, a, 2n−1+i +. . . , a]2, a +� += [b, a, 2n−1+i+1 +. . . +, a]2� +b, a, 2n−1+i+1 +. . . +, a, [b, a, 2n−1+i +. . . , a] +� +. +□ +Lemma 3.7. Let G be a GGS-group satisfying the conditions of Lemma 3.6. +Then +γi(G)/γi+1(G) is isomorphic to a subgroup of C2 × C2, for i ≥ 2. +Furthermore |γi(G) : γi+1(G)| ≤ 2 for i > 2n. +Proof. We notice that +ψ(StG(1)′) ⊆ S := +�� +[b, a2n−1]ǫ1, . . . , [b, a2n−1]ǫ2n� +| ǫ1, . . . , ǫ2n ∈ {0, 1} +� +. +Since |S| = 22n, it follows that log2 | StG(1)′| ≤ 2n. +First we consider the case when the defining vector e is non-symmetric, that is, there +exists j ∈ {1, . . . , 2n−1 − 1} with ej ̸= e2n−j. Then, there exists some k ∈ {1, . . . , 2n − 1} +such that +ψ([b, bak]) = +� +1, . . . , 1, [b, a2n−1] +� +∈ ψ(StG(1)′). + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +11 +Hence for e non-symmetric, we have log2 | StG(1)′| = 2n, and +StG(1)′ = ⟨[b, bak], [b, bak]a, [b, bak]a2, . . . , [b, bak]a2n−1⟩ += ⟨[b, bak], [b, bak, a], [b, bak, a2], . . . , [b, bak, a2n−1]⟩ += ⟨[b, bak], [b, bak, a], [b, bak, a, a], . . . , [b, bak, a, 2n−1 +. . . , a]⟩. +Indeed, the last equality follows from the more general fact that +⟨h, [h, a], [h, a2], . . . , [h, aℓ]⟩ = ⟨h, [h, a], [h, a, a], . . . , [h, a, +ℓ. . ., a]⟩ +for h ∈ StG(1)′ and 0 ≤ ℓ ≤ 2n − 1. This is proved by induction on ℓ, using the identity +[h, aℓ+1] = [h, a][h, aℓ][h, aℓ, a]. +From this, we deduce that for each i ≥ 2, either StG(1)′ ∩ γi(G) = StG(1)′ ∩ γi+1(G) or +(StG(1)′ ∩ γi(G))/(StG(1)′ ∩ γi+1(G)) ∼= C2. As +γi(G) = ⟨[b, a, i−1 +. . ., a]⟩(StG(1)′ ∩ γi(G))γi+1(G), +the result follows, with the final statement coming from the fact that [b, a, 2n +. . ., a] ∈ StG(1)′. +Now we suppose that e is symmetric, so ej = e2n−j for all j ∈ {1, . . . , 2n−1 − 1}. Then +there exists a minimal k ∈ {1, . . . , 2n−1 − 2} such that +� +1, . . . , 1, [b, a2n−1], 1, k−1 +. . ., 1, [b, a2n−1], 1, . . . , 1 +� +∈ ψ(StG(1)′). +Let g ∈ StG(1)′ be such an element, chosen such that g ∈ γℓ(G) with ℓ minimal. We +observe that k = 2λ for some λ ∈ {0, 1, . . . , n − 2}, else k will not be minimal. Also, +� +1, . . . , 1, [b, a2n−1] +� +/∈ ψ(StG(1)′). +Looking at the 2n × 2n circulant matrix C defined by (1, 0, 2λ−1 +. . . , 0, 1, 0, . . . , 0) ∈ (F2)2n, +a direct generalisation of [10, Lem. 2.7(i)] yields that the rank of C is 2n − 2λ, as the +polynomial associated to the circulant matrix is 1 + x2λ = (1 + x)2λ. Therefore we obtain +that log2 | StG(1)′| = 2n − 2λ, and +StG(1)′ = ⟨g, ga, ga2, . . . , ga2n−2λ−1⟩ += ⟨g, [g, a], [g, a, a], . . . , [g, a, 2n−2λ−1 +. . . +, a]⟩. +The result now follows as in the non-symmetric case. +□ +Lemma 3.8. Let G be a GGS-group satisfying the conditions of Lemma 3.6. +Then +⟨[b, a, 2n−1 +. . . , a, b]⟩G = {[(ab)2n, g] | g ∈ G}. +Proof. Setting h = (ab)2n, we know from [17, Prop. 1.1.32(i)] that +h = [b, a, 2n−1−1 +. . . , a]2[b, a, 2n−1 +. . . , a]c +for some c ∈ γ2n(G) ∩ StG(1)′. Using Lemma 3.6, we observe that for all 1 ≤ i ≤ 2n − 1, +we have [h, ai] ∈ γ2n+1(G) ≤ StG(1)′. Furthermore, one can check that +[h, a] = [h, b] = [b, a, 2n−1 +. . . , a, b]. +Let j > 2n be maximal such that [b, a, 2n−1 +. . . , a, b] ∈ γj(G). Thus, since log2 | StG(1)′| ≤ 2n +as seen in the proof of Lemma 3.7, we have +γj(G) = ⟨[h, b], [h, b, a], . . . , [h, b, a, 2n−1 +. . . , a]⟩. +Our goal is now to show that +{[h, g] | g ∈ G} = ⟨[h, b], [h, b, a], . . . , [h, b, a, 2n−1 +. . . , a]⟩. + +12 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +To this purpose, as seen in the previous proof it suffices to prove +(3.2) +{[h, g] | g ∈ G} = ⟨[h, b], [h, b]a, . . . , [h, b]a2n−1⟩. +For any 1 ≤ i ≤ 2n − 1, we have that +(3.3) +[h, b]ai = [hai, bai] = [h[h, ai], bai] = [h, bai], +where the last equality follows from the fact that [h, ai] ∈ γ2n+1(G) ≤ StG(1)′. Next we +note that +(3.4) +[h, ak] = [h, b][h, b]a · · · [h, b]ak−1 +for all 1 ≤ k ≤ 2n − 1. Now, every element g ∈ G is of the form g = aλbaℓ1 · · · baℓd for some +d ≥ 0 and λ, ℓ1, . . . , ℓd ∈ {0, 1, . . . , 2n − 1}. Then taking into account (3.3) and (3.4), we +get +[h, g] = [h, b]aℓd · · · [h, b]aℓ1[h, aλ], +from which we deduce that (3.2) holds. +□ +4. Beauville structures for quotients of infinite GGS-groups +acting on the pn-adic tree +We are now ready to prove that certain quotients of G are Beauville groups, for G +an infinite periodic GGS-group acting on the pn-adic tree where p is a prime and n ≥ 2. +Recall that for a 2-generator finite group H, the sets {x1, x2} and {y1, y2} form a Beauville +structure for H, if and only if +(4.1) +⟨x⟩ ∩ ⟨yg⟩ = 1 +for all x ∈ X = {x1, x2, x1x2}, y ∈ Y = {y1, y2, y1y2} and g ∈ H. We also remark that we +will only consider G/StG(k) for k large enough such that the order of each element in X +(or in Y ) is the same in G and in G/StG(k). The reason for this will become apparent +when we prove Theorem 1.1 later in this section. +Recall mr,s from the beginning of Section 3. For G an infinite GGS-group, recall that +there exists some 1 ≤ q ≤ n − 1 such that Rq = Rq+1 < n. We write pd for the or- +der of [apRq, b, apRq ]b in G, and we denote by λ′ the minimal level where all sections of +([apRq , b, apRq ]b)pd−1 that involve b are of the form (b∗)a∗ for some unspecified exponents ∗. +For the rest of this section, we set m = max{m0,0 + λ′, m1,0}. +Theorem 4.1. Let G be an infinite periodic GGS-group acting on the pn-adic tree, for p +a prime and n ≥ 2. Then the quotient G/StG(m + 3) is a Beauville group. +Proof. Case 1: Suppose that ekpn−1 ̸= 0 for some k ∈ {1, . . . , p − 1}. Observe that by +assumption the prime p must be odd. Let 1 ≤ q ≤ n−1 be such that R := Rq = Rq+1 < n. +Suppose first that eℓpn−1 = 0 for some ℓ ∈ {1, . . . , p−1}. Then writing µ = m0,0 and using +Lemmata 3.3 and 3.2 repeatedly we obtain +c = ψ−1 +µ+1 +� +(1, p(µ+1)n−1 +. . . +, 1, [apR, b, apR]) +� +∈ γ3(G). +By abuse of notation, we still write a and b for their images in Gm+3. We set +X = {ap−1, ab, apb} +with +Y = {ac, b, acb}. +Assume first that x = ap−1, and consider y = ac. We write pτ for the order of ac +in Gm+3, which is strictly greater than pn. In order to prove our claim for this choice of x +and y, it suffices to show that +⟨apn−1⟩ ̸= ⟨(ac)pτ−1⟩g, + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +13 +for all g ∈ Gm+3. Note that the element (ac)pτ−1 is in StGm+3(1) and so is any conjugate +of (ac)pτ−1. However apn−1 ̸∈ StGm+3(1), hence (4.1) holds here. Similarly for y ∈ {b, acb}. +Suppose next that x = ab, and consider y = b. By Lemma 3.1, the element ab has +order pt(0,0). It suffices to consider the intersection of ⟨(ab)pt(0,0)−1⟩ and ⟨bpn−R0−1⟩g. We +observe that ψ((bpn−R0−1)g) has exactly one component consisting of purely a non-rooted +automorphism in StG(1), whereas ψ((ab)pt(0,0)−1) has pn such components. Therefore (4.1) +holds. For y = ac, we observe that ψµ+1((ac)pτ−1) has pn components consisting of non- +rooted automorphisms in γ3(G), whereas for ψµ+1((ab)pt(0,0)−1) all components consisting +of non-rooted automorphisms are in StG(1)\γ3(G). Hence the result holds for this pair. +Let x = apb. Since (apb)pn−1 has pn−1 non-rooted automorphisms at the first level, +whereas both (ac)pn and (acb)pn have pn such automorphisms and bpn−R0−1 has one such +automorphism, we have that (4.1) holds here. +Hence, it remains to establish (4.1) for x = ab with y = acb. Recall from the proof of +Lemma 3.1 that +ψpµn +µ+1 +� +(ab)pt(0,0)−n+R0 +� += +� +(apR0)∗, ptµ−1−1 +. . . +, (apR0)∗, ba∗, +. . . , . . . , (apR0)∗, ptµ−1−1 +. . . +, (apR0)∗, b +� +. +However, +ψpµn +µ+1 +� +(acb)pt(0,0)−n+R0 +� += +� +(apR0)∗, ptµ−1−1 +. . . +, (apR0)∗, ([apR, b, apR]b)a∗, +. . . , . . . , (apR0)∗, ptµ−1−1 +. . . +, (apR0)∗, [apR, b, apR]b +� +. +As ψ([apR, b, apR]b) has more than one section with a non-rooted automorphism, whereas +ψ(b) has only one, the result follows. Indeed, +ψ([apR, b, apR]b) = (a∗, pR−1 +. . . , a∗, (ba−epn−pRb)a +epR , a∗, pR−1 +. . . , a∗, (aepRb−1aepR)a +e2pR , +a∗, . . . , a∗, b−1a2epn−pR−epn−2pRb), +and so if epR = epn−pR = 0 then +ψ([apR, b, apR]b) = (a∗, pR−1 +. . . , a∗, b2, a∗, pR−1 +. . . , a∗, (b−1) +e2pR , a∗, . . . , a∗, (a−epn−2pR)b) +and the result is clear. +If either epR or epn−pR is non-zero, we see from the proof of +Lemma 3.1 that, writing pχ for the order of acb in G, the minimal level λ of the tree, for +which all λ-level sections of (acb)pχ−1 that involve b are of the form (b∗)a∗ for some unspec- +ified exponents ∗, is strictly greater than µ+1. In particular, all these cases imply that the +number of sections of (acb)pχ−1 at level λ consisting of purely non-rooted automorphisms is +strictly greater than pn−tµ−1, which is the corresponding number for (ab)pt(0,0)−1 at level λ. +Suppose now that eℓpn−1 ̸= 0 for all ℓ ∈ {1, . . . , p−1}. The result follows similarly using +Lemma 3.4. +Case 2: Suppose that ekpn−1 = 0 for all k ∈ {1, . . . , p − 1}. Since G is infinite, for some +1 ≤ q ≤ n − 1 we have R := Rq = Rq+1 < n − 1. Then we proceed as in the previous +proof, however noting that for p = 2, we replace c with +ψ−1 +µ+1 +� +(1, 2(µ+1)n−1 +. . . +, 1, [a2R, b, a2R+1]) +� +, + +14 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +since then, recalling that R < n − 1, +ψ([a2R, b, a2R+1]b) = +� +a∗, 2R−1 +. . . , a∗, (ba−e2n−2R+1+e2n−2R)ae2R , a∗, 2R−1 +. . . , a∗, (ae2R−e2n−2Rb)ae2R+1 , +a∗, 2R−1 +. . . , a∗, (ae2R+1b−1ae2R)ae3·2R , a∗, . . . , . . . , a∗, (ae2n−2R−e2n−3·2R+e2n−2R+1)b� +. +□ +Proof of Theorem 1.1. Let G be an infinite periodic GGS-group acting on the pn-adic tree +with p a prime and n ≥ 2. Let t0 be defined according to r = s = 0, and set mG = m+3. By +Theorem 4.1, the quotient G/StG(mG) is a Beauville group with triples X = {ap−1, ab, apb} +and Y = {ac, b, acb}, for c defined as in Theorem 4.1. +As the orders of each of the elements in X are the same in G/ StG(k) and G/ StG(mG) +for all k ≥ mG, it follows from [12, Lem. 4.2] that G/ StG(k) is a Beauville group for every +k ≥ mG. +□ +Remark 4.2. In the above theorems, we only require that S[i] ≡ 0 (mod pi+1) for i ∈ I, +for some subset I ⊆ {0, 1, . . . , n − 1}. Therefore there are non-periodic GGS-groups acting +on the pn-adic tree, for n ≥ 2, with quotients being Beauville groups. For instance, if +• t0 > 2 for the pairs r = s = 0 and r = 1, s = 0, and +• R > 2, and +• S[2] ̸≡ 0 (mod p3), but S[i] ≡ 0 (mod pi+1) for all other i, +the proofs above still hold. +Remark 4.3. In some cases, the proofs above can be extended to finite GGS-groups G. +Since G is finite, there exists d ∈ {0, 1, . . . , n − 1} such that Rd+1 = n. Writing µ = m0,0, +we observe that d ≥ µ − 1. If d > µ, then by repeated application of Lemmata 3.3 and +3.2, we have an element +c := ψ−1 +µ+1 +� +(1, p(µ+1)n−1 +. . . +, 1, [apRµ , b, apRµ]) +� +∈ γ3(G). +Setting X = {ap−1, ab, apb} and Y = {ac, b, acb}, we are done as in Case 1 of the proof of +Theorem 4.1. +If d = µ, then using the same c and the sets X and Y as before, since eℓpRµ = 0 for +any ℓ, we observe that +ψ([apRµ, b, apRµ]b) = (a∗, pRµ−1 +. . . , a∗, b2, a∗, pRµ−1 +. . . , a∗, b−1, a∗, . . . , a∗, 1), +and hence if p is odd, the same argument follows. For p = 2, the same argument can +clearly be used upon replacing c with +ψ−1 +µ+1 +� +(1, 2(µ+1)n−1 +. . . +, 1, [a2Rµ , b, a2Rµ+1]) +� +, +provided Rµ < n − 1, since then +ψ([a2Rµ , b, a2Rµ+1]b) = (a∗, 2Rµ−1 +. . . , a∗, b, a∗, 2Rµ−1 +. . . , a∗, b, a∗, 2Rµ−1 +. . . , a∗, b−1, a∗, . . . , a∗, 1). +However, for each of these finite groups G, one would only obtain finitely many (Beauville) +quotients G/StG(k), for k ≥ mG. +In the next section, we identify a class of finite GGS-groups where no quotient by a level +stabiliser is Beauville. +5. Finite GGS-groups acting on the pn-adic tree +We define the subclass E of finite GGS-groups to consist of: +(i) the GGS-groups acting on the pn-adic tree, for p any prime and n ≥ 2, with +t0 = R0, . . . , tm0,0−1 = Rm0,0−1 and Rm0,0 = n; and + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +15 +(ii) the GGS-groups acting on the 2n-adic tree with R0 = n − 1, S[0] ≡ 0 (mod pn), +and e2n−1 = 0. +We show here that quotients of the GGS-groups G ∈ E by level stabilisers do not yield +Beauville groups. We first consider the subfamily (i) of groups in E. +Theorem 5.1. Let G ∈ E be a GGS-group acting on the pn-adic tree for n ≥ 2, and +assume that t0 = R0, . . . , tm0,0−1 = Rm0,0−1 and Rm0,0 = n, where t0, t1, . . . , tm0,0−1 are +defined according to r = s = 0. Then the quotient G/StG(k) is not a Beauville group for +all k ∈ N. +Proof. The result is clear for k = 1 since G/ StG(1) is cyclic, so we assume k ≥ 2. Let +{x1, x2} and {y1, y2} be two systems of generators for G. At least one of x1, x2, x1x2, call +it z1, must be in the coset aibjG′ for i, j ̸≡ 0 (mod p). Likewise for y1, y2, y1y2, and call +it z2. By Lemma 3.1 and its proof, the order of ab is pt(0,0) if k ≥ m0,0 + 3, and p2n−R0 if +k = 2. For 3 ≤ k ≤ m0,0 + 1, the order of ab is at least +pnpn−R0pn−R1 · · · pn−Rk−2, +and for k = m0,0 + 2, the order of ab is at least +pnpn−R0pn−R1 · · · pn−Rm0,0−1. +Suppose first that k = 2. For i, j ̸≡ 0 (mod p) and w ∈ G′ +2, as +φ2((aibjw)pn) = (ajS[0], . . . , ajS[0]) +it follows that ⟨zp2n−R0−1 +1 +⟩ = ⟨zp2n−R0−1 +2 +⟩, which gives the result. +Now let k ≥ m0,0 + 3. Here, writing t = t(0, 0), we claim that +⟨(ab)pt−1⟩ = ⟨(aibjw)pt−1⟩ ∼= Cp +for all i, j ̸≡ 0 (mod p) and w ∈ G′. +To prove the claim, we first note, writing ψ(w) = (w1, . . . , wpn), that the product of all +the components w1, . . . , wpn, irrespective of the order, has zero total exponent in a, and +in b, and if written as +(bβ1)aα1 · · · (bβd)aαd +for some d ≥ 2 with β1, . . . , βd ∈ Z/pn−R0Z and α1, . . . , αd ∈ Z/pnZ, then we have αi ≡ 0 +(mod pR0) for all i ∈ {1, . . . , d}. +Hence, each component of ψ +� +(aibjw)pn� +is of the form +ajS[0]bjv0, +for some v0 ∈ ⟨apR0, b⟩′. We note that, for ω ∈ A with ω ̸≡ 0 (mod pR0), +ϕω +� +(ajS[0]bjv0)pn−R0 +� += ϕω +� +(aS[0]b)jpn−R0 +� += ajγω +where +γω = +pn−R0−1 +� +ℓ=0 +eω+ℓpR0, +and for ω ∈ A with ω ≡ 0 (mod pR0), +ϕω +�� +(ajS[0]bjv0)pn−R0�afpR0 � += ajS[R0]bjv1 +for v1 ∈ ⟨apR1, b⟩′ and f ∈ {0, 1, . . . , pn−R0 − 1}. + +16 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Hence, continuing in this manner, we see that it suffices to compare +(ajS[Rµ−2]bjvµ−1)pn−Rµ−1 +with +(aS[Rµ−2]b)pn−Rµ−1, +where µ = m0,0 and vµ−1 ∈ ⟨apRµ−1, b⟩′. Recalling also that Rµ = n, equivalently the +components of ψ(b) in positions pRµ−1, 2pRµ−1, . . . , pn − pRµ−1 are trivial, we have +ψ +� +(ajS[Rµ−2]bjvµ−1)pn−Rµ−1� += (ajδ1, . . . , a +jδ +pRµ−1 −1, bj, . . . , ajδ1, . . . , a +jδ +pRµ−1 −1, bj) +where, for q ∈ {1, . . . , pRµ−1 − 1}, +δq = +pn−Rµ−1−1 +� +ℓ=0 +eq+ℓpRµ−1. +As +ψ +� +(aS[Rµ−2]b)pn−Rµ−1� += (aδ1, . . . , a +δ +pRµ−1 −1, b, . . . , aδ1, . . . , a +δ +pRµ−1 −1, b), +and, from the above computations, we deduce that all other non-trivial labels in the +portraits of (ab)jpt−1 and (aibjw)pt−1 are equal powers of a. Hence, the claim follows. +Thus, we have ⟨zpt−1 +1 +⟩ = ⟨zpt−1 +2 +⟩. +For 3 ≤ k ≤ µ + 2, writing pˆt for the order of ab modulo StG(k), the analogous result +⟨zpˆt−1 +1 +⟩ = ⟨zpˆt−1 +2 +⟩ follows similarly from the component-wise description of +(ajS[0]bjv0)pn−R0, (ajS[R0]bjv1)pn−R1, . . . , (ajS[Rk−4]bjvk−3)pn−Rk−3, +where we recall that R−1 = 0. +□ +Theorem 5.2. Let G be a periodic GGS-group acting on the 2n-adic tree for n ≥ 2. +Suppose that R0 = n − 1 and S[0] ≡ 0 (mod pn). Then, the quotient G/StG(k) is not a +Beauville group for all k ∈ N. +Proof. From Lemma 3.5, we only need to consider k ≤ 4. For k = 1 the result is clear +since Beauville groups are not cyclic. For the remaining values of k, let X = {x1, x2, x1x2} +and Y = {y1, y2, y1y2} be two systems of generators for Gk. +Assume now k = 2. Then there exists some z1 ∈ X with z1 ≡ ai (mod G′ +2) for some +odd i, and there exists z2 ∈ Y with z2 ≡ aj (mod G′ +2) for some odd j. Noting that the +order of both z1 and z2 is 2n, we now prove that (aiw)2n−1 is conjugate to (ajv)2n−1, for +w, v ∈ G′ +2. +We observe that StG2(1), and hence G′ +2, is elementary abelian. Furthermore for each +odd i ∈ {1, . . . , 2n − 1} we have +(5.1) +G′ +2 ≤ ⟨[ai, b], [ai, b, ai], . . . , [ai, b, ai, 2n−2 +. . . , ai]⟩; +compare Lemma 3.6 and the proof of Lemma 3.7. It then follows from [17, Prop. 1.1.32(i)] +that +(aiw)2n−1 = ai2n−1[w, ai, 2n−1−1 +. . . , ai]. +From (5.1) there exist j1, . . . , j2n−1 ∈ {0, 1} such that w can be expressed as: +w = [ai, b]j1[ai, b, ai]j2 · · · [ai, b, ai, 2n−2 +. . . , ai]j2n−1 +Now for h ∈ StG2(1), bearing in mind that StG2(1) is elementary abelian, we obtain +from [17, Prop. 1.1.32(ii)] that [ai2n−1, h] = [ai, h, ai, 2n−1−1 +. . . , ai] in G2. +Thus, setting h = bj1[ai, b]j2 · · · [ai, b, ai, 2n−3 +. . . , ai]j2n−1 we deduce that +[ai2n−1, h] = [w, ai, 2n−1−1 +. . . , ai]. + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +17 +Indeed, +[ai2n−1, h] += [ai, bj1, ai, 2n−1−1 +. . . , ai][ai, [ai, b]j2, ai, 2n−1−1 +. . . , ai] · · · [ai, [ai, b, ai, 2n−3 +. . . , ai]j2n−1, ai, 2n−1−1 +. . . , ai] += [[ai, b]j1, ai, 2n−1−1 +. . . , ai][[ai, b, ai]j2, ai, 2n−1−1 +. . . , ai] · · · [[ai, b, ai, 2n−2 +. . . , ai]j2n−1, ai, 2n−1−1 +. . . , ai] += [w, ai, 2n−1−1 +. . . , ai] +where the second equality holds since StG2(1)′ is trivial and [a, x] = [x, a] for all x ∈ +StG2(1). +Thus we have +(aiw)2n−1 = ai2n−1[ai2n−1, h] = (ai2n−1)h = (a2n−1)h +where the last equality holds since a has order 2n and i = 1 + 2d for some d ∈ N. This +proves that for all i ∈ {1, . . . , 2n − 1} and w ∈ G′ +2 the element (aiw)2n−1 is conjugate +to a2n−1. Hence z1 and z2 are conjugate and G2 is not a Beauville group. +Now suppose StG(3) ̸= 1. Then there exists some z1 ∈ X with z1 ≡ aib (mod G′ +3) for +some odd i, and there exists z2 ∈ Y with z2 ≡ ajb (mod G′ +3) for some odd j. Observe that +for w ∈ G′ +3, we have +φ3 +� +(aibw)2n� += +� +baλ1·2n−1 +, . . . , baλ2n ·2n−1� +where λ1, . . . , λ2n ∈ {0, 1}. Since by Lemma 3.5 the elements b and ba2n−1 +coincide modulo +StG(2), we further have +φ3((aibw)2n) = (b, . . . , b). +This proves that z 2n +1 +and z 2n +2 +are equal, and thus G3 is not a Beauville group when +StG(3) ̸= 1. +We now consider the remaining cases, where here Gk = G. As before there exists some +z1 ∈ X with z1 ≡ aib (mod G′) for some odd i, and there exists z2 ∈ Y with z2 ≡ ajb +(mod G′) for some odd j. Therefore it suffices to show, for δ ∈ {0, 1, . . . , 2n−1 − 1} and +w ∈ G′, that (a1+2δbw)2n is conjugate to (ab)2n in G. +Recall that (G′)2 ≤ StG(1)′ and that StG(1)′ is elementary abelian. Hence, from [17, +Prop. 1.1.32(i)] we have +(ab)2n = [b, a, 2n−1−1 +. . . , a]2[b, a, 2n−1 +. . . , a]c +for some c ∈ γ2n(G) ∩ StG(1)′. Let i1, i2, i3 ≥ 2n be such that +� +[b, a, 2n−1−1 +. . . , a]2, a +� +∈ γi1(G)\γi1+1(G) +[b, a, 2n +. . ., a] ∈ γi2(G)\γi2+1(G) +c ∈ γi3(G)\γi3+1(G), +and set +ℓ := min{i1, i2, i3 + 1}. +In other words, the integer ℓ is such that [(ab)2n, a] ∈ γℓ(G)\γℓ+1(G). +Now +(a1+2δbw)2n = [bw, a1+2δ, 2n−1−1 +. . . , a1+2δ]2[bw, a1+2δ, 2n−1 +. . . , a1+2δ]cd, +where d ∈ γi3+1(G) is obtained as follows: starting with the commutator c, which is a +product of commutators in b and a of weight at least 2n, with weight exactly 2 in b; +compare [17, Prop. 1.1.32(i)], we have that cd = �c, where �c is obtained from c by replacing +all occurrences of b with bw. Here we have also used the standard identities [xy, z] = +[x, z]y[y, z] and [x, yz] = [x, z][x, y]z. + +18 +E. DI DOMENICO, S¸. G¨UL, AND A. THILLAISUNDARAM +Next, using these standard identities together with Lemmata 3.6 and 3.7, we have +(a1+2δbw)2n ≡ [bw, a1+2δ, 2n−1−1 +. . . , a1+2δ]2[bw, a1+2δ, 2n−1 +. . . , a1+2δ]c +(mod γℓ(G)) +≡ [b, a, 2n−1−1 +. . . , a]2[b, a, 2n−1 +. . . , a]c +(mod γℓ(G)). +Therefore +(a1+2δbw)2n ≡ (ab)2n +(mod γℓ(G)). +In other words, we have (a1+2δbw)2n = (ab)2nv for v ∈ γℓ(G). By Lemma 3.8, we have +that v = [(ab)2n, g] for some g ∈ G, and hence we are done. +□ +References +[1] N. Barker, N. Boston, and B. Fairbairn, A note on Beauville p-groups, Experiment. Math. 21 (2012), +298–306. +[2] N. Barker, N. Boston, N. Peyerimhoff, and A. Vdovina, An infinite family of 2-groups with mixed +Beauville structures, Int. Math. Res. Notices 11 (2015), 3598–3618. +[3] L. Bartholdi, R. I. Grigorchuk and Z. ˘Suni´c, Branch groups, in Handbook of algebra 3, North-Holland, +Amsterdam, 2003. +[4] F. Catanese, Fibered surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. +Math. 122 (2000), 1–44. +[5] E. Di Domenico, Some questions regarding groups of automorphisms of primary trees, PhD thesis, +University of Trento and University of the Basque Country, 2022. +[6] E. Di Domenico, G. A. Fern´andez-Alcober, and N. Gavioli, GGS-groups over primary trees: branch +structures, Monatsh. Math., https://doi.org/10.1007/s00605-022-01705-1. +[7] B. Fairbairn, Recent work on Beauville surfaces, structures and groups, in Groups St Andrews 2013, +London Math. Soc. Lecture Note Ser. 422, Cambridge University Press, 2015. +[8] B. Fairbairn, Beauville p-groups: a survey, in Groups St Andrews 2017, London Math. Soc. Lecture +Note Ser. 455, Cambridge University Press, 2019. +[9] G. A. Fern´andez-Alcober and S¸. G¨ul, Beauville structures in finite p-groups, J. Algebra 474 (2017), +1–23. +[10] G. A. Fern´andez-Alcober and A. Zugadi-Reizabal, GGS-groups: Order of congruence quotients and +Hausdorff dimension, Trans. Amer. Math. Soc. 366 (2014), 1993–2017. +[11] Y. Fuertes, G. Gonz´alez-Diez and A. Jaikin-Zapirain, On Beauville surfaces, Groups Geom. Dyn. 5 +(2011), 107–119. +[12] Y. Fuertes and G. A. Jones, Beauville surfaces and finite groups, J. Algebra 340 (2011), 13–27. +[13] R. I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen 14 (1980), +53–54. +[14] R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, +Izv. Akad. Nauk SSSR Ser. Mat. 48 (5) (1984), 939–985. +[15] S¸. G¨ul and J. Uria-Albizuri, Grigorchuk-Gupta-Sidki groups as a source for Beauville surfaces, Groups +Geom. Dyn. 14 (2) (2020), 689–704. +[16] G. Jones, Beauville surfaces and groups: a survey, in Rigidity and Symmetry, Fields Institute Com- +munications 70, Springer, 2014. +[17] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, Oxford University +Press, Oxford, 2002. +[18] J. M. Petschick, On conjugacy of GGS-groups, J. Group Theory 22 (2019), 347–358. +[19] J. Stix and A. Vdovina, Series of p-groups with Beauville structure, Monatsh. Math. 181 (2016), +177–186. +[20] T. Vovkivsky, Infinite torsion groups arising as generalizations of the second Grigorchuk group, in: +Algebra (Moscow, 1998), de Gruyter, Berlin, 2000. +[21] J. S. Wilson, Groups with every proper quotient finite, Proc. Cambridge Philos. Soc. 69 (1971), 373– +391. + +BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS +19 +Elena Di Domenico: Department of Mathematics, University of Trento, 38123 Trento, +Italy - University of the Basque Country UPV/EHU, 48080 Bilbao Spain +Email address: elena.didomenico@yahoo.it +S¸¨ukran G¨ul: Department of Mathematics, TED University, 06420 Ankara, Turkey +Email address: sukran.gul@tedu.edu.tr +Anitha Thillaisundaram: +Centre for Mathematical Sciences, Lund University, 223 62 +Lund, Sweden +Email address: anitha.t@cantab.net + diff --git a/L9E1T4oBgHgl3EQfHAM0/content/tmp_files/load_file.txt b/L9E1T4oBgHgl3EQfHAM0/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..af8bb4a5c92d87232faf5fb719dde64e9a25559c --- /dev/null +++ b/L9E1T4oBgHgl3EQfHAM0/content/tmp_files/load_file.txt @@ -0,0 +1,1428 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf,len=1427 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='02920v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='GR] 7 Jan 2023 BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS ELENA DI DOMENICO, S¸ ¨UKRAN G¨UL, AND ANITHA THILLAISUNDARAM Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A finite group with a Beauville structure gives rise to a certain compact complex surface called a Beauville surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨ul and Uria-Albizuri showed that quotients of the periodic Grigorchuk-Gupta-Sidki (GGS-)groups that act on the p-adic tree, for p an odd prime, admit Beauville structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We extend their result by showing that quotients of infinite periodic GGS-groups acting on pn-adic trees, for p any prime and n ≥ 2, also admit Beauville structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Introduction A Beauville surface is a compact complex surface isomorphic to (C1 × C2)/G, where C1 and C2 are algebraic curves of genus at least 2, and G is a finite group acting freely on C1 × C2 by holomorphic transformations, the group G acts faithfully on the curves Ci such that Ci/G ∼= P1(C) and the covering map Ci → Ci/G is ramified over three points, for i ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The group G is then said to be a Beauville group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' One can reformulate the condition for a finite group G to be a Beauville group purely in group-theoretical terms: for x, y ∈ G, let Σ(x, y) = � g∈G � ⟨x⟩g ∪ ⟨y⟩g ∪ ⟨xy⟩g� , that is, the union of all conjugates of the cyclic subgroups generated by x, y and xy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then G is a Beauville group if and only if G is 2-generated and there exist generating sets {x1, y1} and {x2, y2} of G such that Σ(x1, y1) ∩ Σ(x2, y2) = {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The sets {x1, y1} and {x2, y2} are then called a Beauville structure for G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Beauville groups have been intensely studied in recent times;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' see surveys [1, 7, 8, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For example, the abelian Beauville groups were classified by Catanese [4]: a finite abelian group G is a Beauville group if and only if G ∼= Cn×Cn for n > 1 with gcd(n, 6) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' After abelian groups, the most natural class of finite groups to consider are nilpotent groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The determination of nilpotent Beauville groups is easily reduced to the case of p-groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In [1], it was shown that there are non-abelian Beauville p-groups of order pn for ev- ery p ≥ 5 and every n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The first explicit infinite family of Beauville 2-groups was constructed in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In [19], Stix and Vdovina constructed an infinite family of Beauville p-groups, for every prime p, by considering quotients of ordinary triangle groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In [9], Date: January 10, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Primary 20E08;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Secondary 20D15, 14J29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Groups acting on rooted trees, finite p-groups, Beauville structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The first and the second authors are supported by the Spanish Government, grant MTM2017-86802- P, partly with FEDER funds, and by the Basque Government, grant IT974-16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The first author is also supported by the National Group for Algebraic and Geometric Structures, and their Applications (GN- SAGA - INdAM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The third author acknowledges support from EPSRC, grant EP/T005068/1, and from the Lincoln Institute of Advanced Studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' She also thanks the University of the Basque Country for its hospitality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The first and second authors would like to thank the University of Lincoln for its hospitality while this research was conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1 2 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Fern´andez-Alcober and G¨ul extended Catanese’s criterion for abelian Beauville groups to finite p-groups satisfying certain conditions which are much weaker than commutativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' They also give the first explicit infinite family of Beauville 3-groups, and they show that there are Beauville 3-groups of order 3n for every n ≥ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In [15], G¨ul and Uria-Albizuri showed that the quotients of periodic Grigorchuk-Gupta- Sidki (GGS-)groups admit Beauville structures, giving another infinite family of Beauville p-groups, for p an odd prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The GGS-groups were some of the early examples of groups acting on rooted trees, which first arose as easily describable examples of infinite finitely generated periodic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since then, groups acting on rooted trees have provided many other interesting and exotic examples, such as infinite finitely generated groups of inter- mediate word growth, infinite finitely generated amenable but not elementary amenable groups, etc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' see for instance [14, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The GGS-groups are infinite groups acting faithfully on the p-adic tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The natural quotients of a GGS-group G are G/ StG(n), for n ∈ N, where StG(n) is the normal subgroup of the elements of G that pointwise fix the vertices at the nth level of the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The quotient G/ StG(n) acts on the finite tree consisting of the first n layers of the full p-adic tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We extend the result of [15] to a generalisation of the GGS-groups to the pn-adic tree, for any prime p and n ≥ 2, by showing that infinitely many quotients of infinite periodic GGS-groups acting on the pn-adic tree do admit Beauville structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Briefly, a GGS-group acting on the pn-adic tree is a group G = ⟨a, b⟩, where a = (1 2 · · · pn) permutes the first-level vertices, whereas b fixes the first-level vertices and is defined recursively by b = (ae1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , aepn−1, b), for e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , epn−1 ∈ Z/pnZ with not all ei being zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Here (ae1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , aepn−1, b) refers to the respective independent actions at the pn maximal subtrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We write e = (e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , epn−1) and call it the defining vector of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We refer the reader to Section 2 for background material and precise definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' These groups were constructed by Vovkivsky [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A prominent group in this family, that was defined earlier in [13], is the second Grigorchuk group, which acts on the 4-adic tree with defining vector e = (1, 0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For an infinite periodic GGS-group G acting on the pn-adic tree, we associate to G a number mG ∈ N that is related to the order of certain group elements;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' we refer the reader to Section 4 for precise details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The main result of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be an infinite periodic GGS-group acting on the pn-adic tree for p a prime and n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then G/ StG(k) admits a Beauville structure for k ≥ mG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In particular, these quotients of infinite periodic GGS-groups acting on the 2n-adic tree yield infinite families of Beauville 2-groups, and infinite periodic GGS-groups acting on the 3n-adic tree give many more infinite families of Beauville 3-groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that Beauville 2- groups and 3-groups are somewhat rare, precisely because of the small number of maximal subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Indeed, for a time it was unclear whether such groups even existed, until the first examples were given in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We also want to emphasise that for the GGS-groups acting on the p-adic tree, if one were to consider the case p = 2 there is only one group, which is the infinite dihedral group, hence its quotients do not admit Beauville structures, and for p = 3 only one out of the three isomorphism classes of such groups has quotients admitting Beauville structures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' see [15] and [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨ul and Uria-Albizuri also showed in [15] that for G a GGS-group acting on the p-adic tree, there are quotients of G admitting Beauville structures if and only if G is periodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The situation is not so clear cut for GGS-groups acting on the pn-adic tree, for n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In particular, there are non-periodic GGS-groups acting on the pn-adic tree which have quotients admitting Beauville structures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' see Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Futhermore, our main result above deals only with infinite periodic GGS-groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For finite GGS-groups, some quotients BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 3 admit Beauville structures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' see Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' However a large class E of finite GGS-groups have no level-stabliser quotients admitting Beauville structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We refer the reader to Section 5 for the definition of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We have the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G ∈ E be a finite GGS-group acting on the pn-adic tree for p a prime and n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then G/ StG(k) is not a Beauville group for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' To prove our theorems, we largely make use of the subgroup structure of the respective groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Organisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Section 2 of this paper consists of background material for groups acting on rooted trees and here we also recall the generalisation of the GGS-groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In Section 3 we establish key properties of these groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In Section 4 we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1 and lastly in Section 5 we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We thank G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fern´andez-Alcober for his valuable feedback and helpful suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Preliminaries All trees considered here will be rooted, meaning that there is a distinguished vertex called the root, with one degree less than all other vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For d ∈ N≥2, let T be the d-adic tree, meaning all vertices have d children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Using the alphabet A = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , d}, the vertices uω of T are labelled bijectively by elements ω of the free monoid A∗ as follows: the root of T is labelled by the empty word ∅, and for each word ω ∈ A∗ and letter a ∈ A there is an edge connecting uω to uωa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We say that uω precedes uλ whenever ω is a prefix of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' When convenient, we do not differentiate between A∗ and vertices of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' There is a natural length function on A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The words ω of length |ω| = n, representing vertices uω that are at distance n from the root, are the nth-level vertices and form the nth layer of the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The elements of the boundary ∂T correspond naturally to infinite simple rooted paths, and they are in one-to-one correspondence with the d-adic integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Denote by Tu the full subtree of T that has its root at a vertex u and includes all vertices succeeding u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For any two vertices u = uω and v = uλ, the map uωτ �→ uλτ, induced by replacing the prefix ω by λ, yields an isomorphism between the subtrees Tu and Tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Every automorphism of T fixes the root, and the orbits of Aut(T) on the vertices of the tree T are precisely its layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For f ∈ Aut(T), the image of a vertex u under f is denoted by uf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The automorphism f induces a faithful action on the monoid A∗ and for a ∈ A we have (ωa)f = ωfa′ where a′ ∈ A is uniquely determined by ω and f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' From this we have a permutation f(ω) of A where (ωa)f = ωfaf(ω), and hence (uωa)f = uωf af(ω), and f(ω) is called the label of f at ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The collection of all labels of f constitutes the portrait of f, and there is a one-to-one correspondence between automorphisms of T and portraits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The automorphism f is rooted if f(ω) = 1 for ω ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It is directed, with directed path ℓ for some ℓ ∈ ∂T, if the support {ω | f(ω) ̸= 1} of its labelling is infinite and marks only vertices at distance 1 from the set of vertices corresponding to the path ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Additionally, the section of f at a vertex u is defined to be the unique automorphism fu of T ∼= Tu given by the condition (uv)f = ufvfu for v ∈ A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Subgroups of Aut(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For G ≤ Aut(T), the vertex stabiliser stG(u) is the subgroup consisting of elements in G that fix the vertex u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For n ∈ N, the nth-level stabiliser StG(n) = � |ω|=n stG(uω) is the subgroup consisting of automorphisms that fix all vertices at level n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let T[n] be the finite subtree of T of vertices up to level n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then StG(n) is the kernel of the induced action of G on T[n], and we will denote by Gn the quotient G/ StG(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 4 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Each g ∈ StAut(T)(n) can be described completely in terms of its restrictions to the subtrees rooted at vertices at level n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Indeed, the map ψn : StAut(T)(n) −→ � |ω|=n Aut(Tuω) ∼= Aut(T) × dn · · × Aut(T) is a natural isomorphism mapping g ∈ StAut(T)(n) to its nth-level sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For ease of notation, we write ψ = ψ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For ω ∈ A∗, we further define: ϕω : stAut(T)(uω) −→ Aut(Tuω) ∼= Aut(T) g �−→ gω A group G ≤ Aut(T) is said to be self-similar if for every g ∈ G and every vertex u, the section gu, of g at u, is an element of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For a self-similar group G ≤ Aut(T), for m ≥ 2 and i ∈ Am−1, we will write ψi m = ψ ◦ ϕi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' That is, for g ∈ stG(ui) with ϕi(g) ∈ StG(1), we have ψi m(g) gives the components of ϕi(g) corresponding to the children of the (m − 1)th-level vertex i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In addition, we write φn,m : StGn(m) −→ Gn−1 × dm · · × Gn−1 for the corresponding ψm when working in the quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Likewise, we write φn = φn,1 for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' GGS-groups acting on the pn-adic tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let T be the pn-adic tree for a prime p and n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Given a non-zero vector e = (e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , epn−1) ∈ (Z /pn Z)pn−1, the GGS- group G = Ge associated to the defining vector e is the group generated by the rooted automorphism a corresponding to the cycle (1 2 · · · pn) and by a directed automorphism b ∈ StAut(T)(1) defined recursively via ψ(b) = (ae1, ae2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , aepn−1, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Unlike the GGS-groups acting on the p-adic tree, the GGS-groups acting on the pn-adic tree for n ≥ 2 are not all infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A necessary and sufficient condition for these groups to be infinite was given by Vovkivsky [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' He proved that such a group is infinite if and only if there exists an i ≥ 0 such that R0 ≤ R1 ≤ · · · ≤ Ri = Ri+1 = · · · < n where the sequence Rj is defined recursively as follows: R0 is the largest integer such that pR0 | eℓ for all ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−1};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' and then for j ≥ 0 and while Rj < n, the number Rj+1 is defined as the largest integer such that pRj+1 divides eℓ for all ℓ ∈ {pRj, 2pRj, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−pRj}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that the order of a is pn and the order of b is pn−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Further, from [6, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1] we have G/G′ ∼= Cpn × Cpn−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Vovkivsky further proved in [20] that a GGS-group acting on the pn-adic tree is a periodic group if and only if for each k ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 1}, S[k] ≡ 0 (mod pk+1) where (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) S[k] = epk + e2pk + · · · + epn−pk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We recall the prominent example of such a GGS-group, which is for the case p = n = 2: BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 5 Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let T be the 4-adic tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The second Grigorchuk group Γ ≤ Aut(T) is generated by two automorphisms a and b, where a is the rooted automorphism corre- sponding to the cycle (1 2 3 4), and b ∈ StΓ(1) is recursively defined by ψ(b) = (a, 1, a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The group Γ, which is periodic, was first defined in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For more information on GGS-groups acting on the pn-adic tree, see [20, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Properties of GGS-groups acting on the pn-adic tree For G = Ge, a GGS-group acting on the pn-adic tree, recall that R0 is the largest integer such that pR0 | eℓ for all ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose now that G is periodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' To each element aiprbjps in G, where 0 ≤ r < n, 0 ≤ s < n − R0 and i, j ̸≡ 0 (mod p), we associate the following numbers: (i) If pn−s ∤ S[r], let t0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , tmr,s ∈ N for some 1 ≤ mr,s < n be such that tk < n − s ≤ tmr,s for all k < mr,s, pt0 | S[r] and pt0+1 ∤ S[r], ptk | S[tk−1 + s] and ptk+1 ∤ S[tk−1 + s] for 1 ≤ k < mr,s, ptmr,s | S[tmr,s−1 + s], where the S[λ] for λ ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 1} are as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' (ii) If pn−s | S[r], then we set mr,s = 0, and for convenience define t0 = n − s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If we are in case (i), note that t0 does not depend on s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G = ⟨a, b⟩ be a periodic GGS-group acting on the pn-adic tree, let 0 ≤ r < n, 0 ≤ s < n − R0 and i, j ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let m := mr,s and t0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , tm ∈ N be as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then the order of aiprbjps in both G and Gm+3 is pt(r,s) where t(r, s) = (m + 2)n − (t0 + · · · + tm−1 + s(m + 1) + r + R0), and if pn−s | S[r], that is, when m = 0, we take t0 + · · · + tm−1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Clearly the order of aiprbjps is a multiple of pn−r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We have ψ � (aiprbjps)pn−r� = ψ � (bjps)a(pn−r−1)ipr · · (bjps)a2ipr (bjps)aipr bjps� = � (ajps+R0)∗, pr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[r](bjps)ajps(eipr +e2ipr +···+epr ) , (ajps+R0)∗, pr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[r](bjps)ajps(eipr +e2ipr +···+e2pr ) , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, pr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[r](bjps)a jps(eipr +e2ipr +···+e(pn−r−1)pr ) , (ajps+R0)∗, pr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[r]bjps� (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) where the ∗ denotes an unspecified exponent, and the last equality follows from the fact that the set {ipr, 2ipr, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (pn−r − 1)ipr, pn} coincides, modulo pn, with {pr, 2pr, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (pn−r − 1)pr, pn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' So the components of ψ((aiprbjps)pn−r) in positions a multiple of pr are conju- gates of ajpsS[r]bjps and the other components are powers of ajps+R0 whose order is at most pn−s−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose that pn−s | S[r].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1), we have ψ � (aiprbjps)pn−r� = � (ajps+R0)∗, pr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, (bjps)ajps(eipr +e2ipr +···+epr ) , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, pr−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, bjps� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 6 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Note that the order of bjps is pn−s−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus, the order of aiprbjps in G is pt(r,s), for t(r, s) = 2n − (r + s + R0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Also since (bjps)pn−s−R0−1 ̸∈ StG(2), it follows that (aiprbjps)pt(r,s)−1 ̸∈ StG(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus the element aiprbjps is of order pt(r,s) in G3 as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It remains to settle the case pn−s ∤ S[r], which we will now assume till the end of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since by hypothesis pt0+s+1 ∤ jpsS[r], the order of ajpsS[r]bjps is a multiple of pn−(t0+s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Applying ψ we get ψpn 2 � (aiprbjps)pn−rpn−(t0+s)� = ψ � (ajpsS[r]bjps)pn−(t0+s)� = ψ � (bjps)a(pn−(t0+s)−1)jpsS[r] · · · (bjps)a2jpsS[r](bjps)ajpsS[r]bjps� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As before, it follows that {jpsS[r], 2jpsS[r], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (pn−(t0+s) −1)jpsS[r], pn} coincides, mod- ulo pn, with the set {pt0+s, 2pt0+s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn − pt0+s, pn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' This means that the b’s appear in all positions a multiple of pt0+s and only in these positions, and we can write each of the elements in these positions as ajpsS[t0+s](bjps)a jps� ejpsS[r]+e2jpsS[r]+···+eℓpt0+s � for certain ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−(t0+s)−1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since we are interested in the order of these elements, up to conjugation the order of these elements coincides with the order of the element ajpsS[t0+s]bjps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In the other components of ψ((ajpsS[r]bjps)pn−(t0+s)), there is a power of ajps+R0 whose order is at most pn−s−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By hypothesis pt1+s+1 ∤ psS[t0 + s] thus the order of ajpsS[t0+s]bjps is at least pn−(t1+s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proceeding in this way, after m − 1 further steps we find ψpmn m+1 � (aiprbjps)pn−rpn−(t0+s)pn−(t1+s)···pn−(tm−1+s)� = ψ � (bjps)a(pn−(tm−1+s)−1)jpsS[tm−2+s] · · · (bjps)a2jpsS[tm−2+s](bjps)ajpsS[tm−2+s](bjps) � = � (ajps+R0)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[tm−1+s](bjps)a∗, (ajps+R0)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[tm−1+s](bjps)a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ajpsS[tm−1+s](bjps) � = � (ajps+R0)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, (bjps)a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajps+R0)∗, bjps� where the last equality holds since ptm+s | psS[tm−1 + s], thus pn | psS[tm−1 + s] by the definition of tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since by hypothesis j ̸≡ 0 (mod p) it follows that the order of the elements in positions a multiple of ptm−1 is pn−s−R0 and the orders of the other elements are at most pn−s−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' This proves that the order of aiprbjps is pt(r,s), where t(r, s) = (m + 2)n − (t0 + · · · + tm−1 + s(m + 1) + r + R0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 7 Finally, let us prove that the element (aiprbjps)pt(r,s)−1 ̸∈ StG(m + 3), which implies that aiprbjps is of order pt(r,s) in Gm+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We observe that ψpmn m+1 � (aiprbjps)pt(r,s)−1� = � (ajpn−1)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajpn−1)∗, (bjpn−R0−1)a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajpn−1)∗, ptm−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajpn−1)∗, bjpn−R0−1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since the components (bjpn−R0−1)a∗ are non-trivial in G2, the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ In the next three results, we identify a sort of branching structure within certain sub- groups of GGS-groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For convenience, we set R−1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G = ⟨a, b⟩ be a GGS-group acting on the pn-adic tree, for p a prime and n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then for j ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 1}, we have ϕv(stG(v)) ≥ ⟨apRj−1, b⟩ for any vertex v = u1 · · · uj ∈ Aj of length j, where ui ≡ 0 (mod pRi−2) for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , j}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For a vertex v of length one, the result is clear from considering the sections of b, ba, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , bapn−1, which are the generators of stG(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As the subgroup generated by the sections of b is ⟨apR0, b⟩, it follows that for a vertex w of length 2, b, bapR0 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , bapn−pR0 ∈ ϕv(stG(w)), where v is the prefix of w of length 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It then follows that for vertices w = u1u2, with u1, u2 ∈ A such that u2 ≡ 0 (mod pR0), we have ϕw(stG(w)) ≥ ⟨apR1, b⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The result now follows recursively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G = ⟨a, b⟩ be a GGS-group acting on the pn-adic tree, for p a prime and n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let α ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 1} and let pR be the highest power of p dividing eipα for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−α − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose that (i) the highest power of p dividing ejpα+1 for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−α−1 − 1} is strictly greater than pR, and (ii) there exists ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−α − 1} such that pR+1 | eℓpα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then, writing Nα = ⟨apα, b⟩ and NR = ⟨apR, b⟩, we have 1 × pα−1 · · × 1 × γ3(NR) × · · · · · · × 1 × pα−1 · · × 1 × γ3(NR) = ψ � γ3(StNα(1)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that if α = n − 1, condition (i) is vacuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By assumption (i), there exists k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−α −1} with k ̸≡ 0 (mod p) such that ekpα = κpR for some κ ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Up to replacing b with a suitable power of itself, we may assume without loss of generality that κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It suffices to show, since we can conjugate by apα, that 1 × kpα−1 · · × 1 × γ3(NR) × 1 × · · · × 1 ≤ ψ � γ3(StNα(1)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Case 1: Suppose e(pn−α−k)pα = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then, as γ3(NR) = ⟨[apR, b, apR], [apR, b, b]⟩NR, the result follows from ψ � [b, bakpα , b] � = (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, apR], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1) ψ � [b, bakpα , bakpα ] � = (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, b], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1) and using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 8 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Case 2: Suppose e(pn−α−k)pα ̸= 0 and let χ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R−1} be such that e(pn−α−k)pα = χpR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If p | χ, consider ψ � [b, bakpα , b] � = (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, apR], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, aχpR, b]), ψ � [b, bakpα , bakpα ] � = (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, b], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, aχpR, aχpR]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let us refer to those commutators in the final component as the error terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We proceed to cancel those error terms by respectively multiplying with the following: ψ �� [bakpα , bχ, bakpα ]−1�a−kpα� = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [aχpR, bχ, aχpR]−1, 1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, aχpR, b]−1), ψ �� [bakpα , bχ, bχ]−1�a−kpα� = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [aχpR, bχ, bχ]−1, 1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, aχpR, aχpR]−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' This introduces a new set of error terms, this time in the (pn − kpα)th component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We notice that the new set of error terms involve a higher p-power of a or b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence, after repeating this process a finite number of times, we will eventually have a set of error terms consisting of commutators with at least one component being the trivial element apn = bpn−R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In other words, we have completely cancelled any error terms, showing that (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, apR], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1) ∈ ψ � γ3(StNα(1)) � , (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, b], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1) ∈ ψ � γ3(StNα(1)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Now suppose that p ∤ χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By hypothesis, there exists ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−α − 1} such that eℓpα = λpR with p | λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We claim that we may choose ℓ such that e(ℓ−k)pα = ξpR with p ∤ ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Indeed, suppose on the contrary that for all choices of ℓ satisfying condition (ii), we have pR+1 | e(ℓ−k)pα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since k ̸≡ 0 (mod p), repeatedly replacing ℓ with ℓ − k, this means that ejpα ≡ 0 (mod pR+1) for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−α − 1}, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For convenience, we write e(k−ℓ)pα = ζpR, and let ν ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R} be such that νξ ≡ χ (mod pn−R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then we have ψ � [b, (bν)a(k−ℓ)pα , b]−1� = (1, (k−ℓ)pα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [aζpR, bν, aζpR]−1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, aχpR, b]−1), ψ � [b, bakpα , (bν)a(k−ℓ)pα ]−1� = (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, aνλpR]−1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, aχpR, aχpR]−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If p | ζ, we proceed to cancel the error terms as in the above argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If p ∤ ζ, let θ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R} be such that θχ ≡ ζ (mod pn−R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then, since p | λ, we can use the following element to proceed: ψ � [(bθ)akpα , bν, (bθν)a(k−ℓ)pα ] � = (1, kpα−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [bθ, aνpR, aθνλpR], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [aζpR, bν, aζpR]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G = ⟨a, b⟩ be a GGS-group acting on the pn-adic tree, for p an odd prime and n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let R ≤ n − 1 be such that ekpR ≡ 0 (mod pR) for all k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R − 1} and suppose that ekpR ̸≡ 0 (mod pR+1) for all k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose further that S[R] ≡ 0 (mod pR+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then, writing N = ⟨apR, b⟩, we have 1 × pR−1 · · × 1 × γ3(N) × · · · · · · × 1 × pR−1 · · × 1 × γ3(N) = ψ � γ3(StN(1)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let ekpR = ikpR for k, ik ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R − 1} with ik ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Further, by replacing b with an appropriate power, we may assume that i1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As reasoned in the previous proof, it suffices to show that 1 × pR−1 · · × 1 × γ3(N) × 1 × · · · × 1 ≤ ψ � γ3(StN(1)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 9 We proceed as in [10, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2] by considering the following two cases: (a) There exists an ℓ ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R − 2} such that i2 ℓ − iℓ−1iℓ+1 ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' (b) For all ℓ ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R − 2}, we have i2 ℓ − iℓ−1iℓ+1 ≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that if p = 3 and R = n − 1, then Case (b) trivially holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose we are in Case (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let us define gℓ as follows: gℓ = � (biℓ)apR b−iℓ−1�a−ℓpR Writing µ = i2 ℓ − iℓ−1iℓ+1, we have ψ(gℓ) = (∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, aµpR, ∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1) where ∗ represents unspecified elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By assumption, we have µ ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence there is a power g of gℓ satisfying ψ(g) = (∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, apR, ∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Furthermore, for simplicity let λ := ipn−R−1 ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then ψ � bapR (ba−pR )−λ� = (∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, ba−λe2pR , ∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1), and multiplying by an appropriate power of g we obtain an element h ∈ StN(1) with ψ(h) = (∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, b, ∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then the result follows from: ψ � [b, bapR , g] � = (1, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, apR], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1) ψ � [b, bapR , h] � = (1, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, b], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1) We now suppose that we are in Case (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It then follows, for j ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R − 1}, that ij = λj−1 for some λ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' However, as S[R] ≡ 0 (mod pR+1), we have λ ̸≡ 1 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Further we have λpn−R−1pR ≡ pR (mod pR+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that ψ � b(bapR )−λ� = (∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, apRb−λ, ∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1, ∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, ba−pR+νpR+1) for some ν, and ∗ represents some power of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let χ be such that λχ ≡ 1 (mod pn−R0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' recall that pn−R0 is the order of b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then ψ � bχ� b−χλ�apR� = ψ � bχ� b−1�apR� = (∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, aχpRb−1, ∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, 1, ∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ∗, bχ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus, since χ ̸≡ 1 (mod p) and hence N = ⟨aχpRb−1, ba−pR+νpR+1⟩ = ⟨a(χ−1)pR+νpR+1, ba−pR+νpR+1⟩, the result follows from the observations below: ψ �� b(1−νp), bapR , bapR (ba2pR )−λ�� = (1, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR−νpR+1, b, ba−pR+νpR+1], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1), ψ �� (ba2pR )λ, bapR , bχ� b−χλ�apR�� = (1, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR−νpR+1, b, aχpRb−1], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Next, we record some properties of certain finite GGS-groups acting on the 2n-adic tree, which will be needed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 10 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be a periodic GGS-group acting on the 2n-adic tree for n ≥ 2, and assume that R0 = n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then StG(4) is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Furthermore StG(3) is non-trivial if and only if ei = e2n−1+i for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n−1 − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that as R0 = n − 1, we have that 2n−1 divides each ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus the ei’s are 0 or 2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since G is periodic, it follows that e2n−1 = 0 and hence � b, ba2n−1� ∼= C2 × C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let g be an element in StG(4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Certainly ϕω(g) ∈ StG(1) for all ω ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since ψ(StG(1)) ∩ StG(1) × · · · × StG(1) ⊆ � b, ba2n−1� × 2n · · × � b, ba2n−1 � , it follows that ϕω(g) ∈ � 1, b, ba2n−1 , bba2n−1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As � b, ba2n−1� ∩ StG(3) = 1, the first claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For the second statement, let g be a non-trivial element in StG(3), in particular ϕω(g) ∈ StG(2) for all ω ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' From the previous paragraph, it follows that ϕω(g) ∈ � 1, bba2n−1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus there exists ω ∈ A such that ϕω(g) = bba2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We observe that ψ � bba2n−1� = (ae1+e2n−1+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ae2n−1−1+e2n−1, b, ae1+e2n−1+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ae2n−1−1+e2n−1, b), so ϕω(g) ∈ StG(2) if and only if ei = e2n−1+i for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n−1 − 1}, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be a periodic GGS-group acting on the 2n-adic tree for n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose R0 = n − 1 and S[0] ≡ 0 (mod pn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then γ2n+1(G) ≤ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Furthermore [b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2 = 1 and [b, a, 2n−1+i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2 ∈ γ2n+i+2(G) for all i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As StG(1)/ StG(1)′ is elementary abelian, we have (G′)2 ≤ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Therefore, from [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(ii)], we have 1 = [a2n, b] ≡ [b, a, 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', a] (mod StG(1)′), which gives γ2n+1(G) ≤ StG(1)′, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Also from [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(ii)], we obtain [a2n−1, b] ≡ [a, b, a, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a] (mod StG(1)′) and so [b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2 = 1, as StG(1)′ is elementary abelian and [StG(1), StG(1)′] = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For the last statement, we proceed by induction on i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For i = 1, the statement follows from 1 = � [b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2, a � = [b, a, 2n−1+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2� b, a, 2n−1+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a, [b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a] � , and similarly for the inductive step, as � [b, a, 2n−1+i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2, a � = [b, a, 2n−1+i+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2� b, a, 2n−1+i+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a, [b, a, 2n−1+i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be a GGS-group satisfying the conditions of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then γi(G)/γi+1(G) is isomorphic to a subgroup of C2 × C2, for i ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Furthermore |γi(G) : γi+1(G)| ≤ 2 for i > 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We notice that ψ(StG(1)′) ⊆ S := �� [b, a2n−1]ǫ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [b, a2n−1]ǫ2n� | ǫ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ǫ2n ∈ {0, 1} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since |S| = 22n, it follows that log2 | StG(1)′| ≤ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' First we consider the case when the defining vector e is non-symmetric, that is, there exists j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n−1 − 1} with ej ̸= e2n−j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then, there exists some k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n − 1} such that ψ([b, bak]) = � 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, a2n−1] � ∈ ψ(StG(1)′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 11 Hence for e non-symmetric, we have log2 | StG(1)′| = 2n, and StG(1)′ = ⟨[b, bak], [b, bak]a, [b, bak]a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [b, bak]a2n−1⟩ = ⟨[b, bak], [b, bak, a], [b, bak, a2], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [b, bak, a2n−1]⟩ = ⟨[b, bak], [b, bak, a], [b, bak, a, a], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [b, bak, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Indeed, the last equality follows from the more general fact that ⟨h, [h, a], [h, a2], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [h, aℓ]⟩ = ⟨h, [h, a], [h, a, a], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [h, a, ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', a]⟩ for h ∈ StG(1)′ and 0 ≤ ℓ ≤ 2n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' This is proved by induction on ℓ, using the identity [h, aℓ+1] = [h, a][h, aℓ][h, aℓ, a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' From this, we deduce that for each i ≥ 2, either StG(1)′ ∩ γi(G) = StG(1)′ ∩ γi+1(G) or (StG(1)′ ∩ γi(G))/(StG(1)′ ∩ γi+1(G)) ∼= C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As γi(G) = ⟨[b, a, i−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', a]⟩(StG(1)′ ∩ γi(G))γi+1(G), the result follows, with the final statement coming from the fact that [b, a, 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', a] ∈ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Now we suppose that e is symmetric, so ej = e2n−j for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n−1 − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then there exists a minimal k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n−1 − 2} such that � 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, a2n−1], 1, k−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', 1, [b, a2n−1], 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1 � ∈ ψ(StG(1)′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let g ∈ StG(1)′ be such an element, chosen such that g ∈ γℓ(G) with ℓ minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We observe that k = 2λ for some λ ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 2}, else k will not be minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Also, � 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [b, a2n−1] � /∈ ψ(StG(1)′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Looking at the 2n × 2n circulant matrix C defined by (1, 0, 2λ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 0, 1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 0) ∈ (F2)2n, a direct generalisation of [10, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='7(i)] yields that the rank of C is 2n − 2λ, as the polynomial associated to the circulant matrix is 1 + x2λ = (1 + x)2λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Therefore we obtain that log2 | StG(1)′| = 2n − 2λ, and StG(1)′ = ⟨g, ga, ga2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ga2n−2λ−1⟩ = ⟨g, [g, a], [g, a, a], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [g, a, 2n−2λ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The result now follows as in the non-symmetric case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be a GGS-group satisfying the conditions of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then ⟨[b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a, b]⟩G = {[(ab)2n, g] | g ∈ G}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Setting h = (ab)2n, we know from [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(i)] that h = [b, a, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2[b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]c for some c ∈ γ2n(G) ∩ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='6, we observe that for all 1 ≤ i ≤ 2n − 1, we have [h, ai] ∈ γ2n+1(G) ≤ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Furthermore, one can check that [h, a] = [h, b] = [b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let j > 2n be maximal such that [b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a, b] ∈ γj(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus, since log2 | StG(1)′| ≤ 2n as seen in the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='7, we have γj(G) = ⟨[h, b], [h, b, a], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [h, b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Our goal is now to show that {[h, g] | g ∈ G} = ⟨[h, b], [h, b, a], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [h, b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 12 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM To this purpose, as seen in the previous proof it suffices to prove (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2) {[h, g] | g ∈ G} = ⟨[h, b], [h, b]a, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [h, b]a2n−1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For any 1 ≤ i ≤ 2n − 1, we have that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3) [h, b]ai = [hai, bai] = [h[h, ai], bai] = [h, bai], where the last equality follows from the fact that [h, ai] ∈ γ2n+1(G) ≤ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Next we note that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='4) [h, ak] = [h, b][h, b]a · · · [h, b]ak−1 for all 1 ≤ k ≤ 2n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Now, every element g ∈ G is of the form g = aλbaℓ1 · · · baℓd for some d ≥ 0 and λ, ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ℓd ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then taking into account (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='4), we get [h, g] = [h, b]aℓd · · · [h, b]aℓ1[h, aλ], from which we deduce that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Beauville structures for quotients of infinite GGS-groups acting on the pn-adic tree We are now ready to prove that certain quotients of G are Beauville groups, for G an infinite periodic GGS-group acting on the pn-adic tree where p is a prime and n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Recall that for a 2-generator finite group H, the sets {x1, x2} and {y1, y2} form a Beauville structure for H, if and only if (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) ⟨x⟩ ∩ ⟨yg⟩ = 1 for all x ∈ X = {x1, x2, x1x2}, y ∈ Y = {y1, y2, y1y2} and g ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We also remark that we will only consider G/StG(k) for k large enough such that the order of each element in X (or in Y ) is the same in G and in G/StG(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The reason for this will become apparent when we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1 later in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Recall mr,s from the beginning of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For G an infinite GGS-group, recall that there exists some 1 ≤ q ≤ n − 1 such that Rq = Rq+1 < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We write pd for the or- der of [apRq, b, apRq ]b in G, and we denote by λ′ the minimal level where all sections of ([apRq , b, apRq ]b)pd−1 that involve b are of the form (b∗)a∗ for some unspecified exponents ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For the rest of this section, we set m = max{m0,0 + λ′, m1,0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be an infinite periodic GGS-group acting on the pn-adic tree, for p a prime and n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then the quotient G/StG(m + 3) is a Beauville group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Case 1: Suppose that ekpn−1 ̸= 0 for some k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , p − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Observe that by assumption the prime p must be odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let 1 ≤ q ≤ n−1 be such that R := Rq = Rq+1 < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose first that eℓpn−1 = 0 for some ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , p−1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then writing µ = m0,0 and using Lemmata 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2 repeatedly we obtain c = ψ−1 µ+1 � (1, p(µ+1)n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apR, b, apR]) � ∈ γ3(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By abuse of notation, we still write a and b for their images in Gm+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We set X = {ap−1, ab, apb} with Y = {ac, b, acb}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Assume first that x = ap−1, and consider y = ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We write pτ for the order of ac in Gm+3, which is strictly greater than pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In order to prove our claim for this choice of x and y, it suffices to show that ⟨apn−1⟩ ̸= ⟨(ac)pτ−1⟩g, BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 13 for all g ∈ Gm+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Note that the element (ac)pτ−1 is in StGm+3(1) and so is any conjugate of (ac)pτ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' However apn−1 ̸∈ StGm+3(1), hence (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) holds here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Similarly for y ∈ {b, acb}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose next that x = ab, and consider y = b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1, the element ab has order pt(0,0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It suffices to consider the intersection of ⟨(ab)pt(0,0)−1⟩ and ⟨bpn−R0−1⟩g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We observe that ψ((bpn−R0−1)g) has exactly one component consisting of purely a non-rooted automorphism in StG(1), whereas ψ((ab)pt(0,0)−1) has pn such components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Therefore (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For y = ac, we observe that ψµ+1((ac)pτ−1) has pn components consisting of non- rooted automorphisms in γ3(G), whereas for ψµ+1((ab)pt(0,0)−1) all components consisting of non-rooted automorphisms are in StG(1)\\γ3(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence the result holds for this pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let x = apb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since (apb)pn−1 has pn−1 non-rooted automorphisms at the first level, whereas both (ac)pn and (acb)pn have pn such automorphisms and bpn−R0−1 has one such automorphism, we have that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) holds here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence, it remains to establish (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) for x = ab with y = acb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Recall from the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1 that ψpµn µ+1 � (ab)pt(0,0)−n+R0 � = � (apR0)∗, ptµ−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (apR0)∗, ba∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (apR0)∗, ptµ−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (apR0)∗, b � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' However, ψpµn µ+1 � (acb)pt(0,0)−n+R0 � = � (apR0)∗, ptµ−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (apR0)∗, ([apR, b, apR]b)a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (apR0)∗, ptµ−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (apR0)∗, [apR, b, apR]b � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As ψ([apR, b, apR]b) has more than one section with a non-rooted automorphism, whereas ψ(b) has only one, the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Indeed, ψ([apR, b, apR]b) = (a∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (ba−epn−pRb)a epR , a∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (aepRb−1aepR)a e2pR , a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b−1a2epn−pR−epn−2pRb), and so if epR = epn−pR = 0 then ψ([apR, b, apR]b) = (a∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b2, a∗, pR−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (b−1) e2pR , a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (a−epn−2pR)b) and the result is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If either epR or epn−pR is non-zero, we see from the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1 that, writing pχ for the order of acb in G, the minimal level λ of the tree, for which all λ-level sections of (acb)pχ−1 that involve b are of the form (b∗)a∗ for some unspec- ified exponents ∗, is strictly greater than µ+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In particular, all these cases imply that the number of sections of (acb)pχ−1 at level λ consisting of purely non-rooted automorphisms is strictly greater than pn−tµ−1, which is the corresponding number for (ab)pt(0,0)−1 at level λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose now that eℓpn−1 ̸= 0 for all ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , p−1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The result follows similarly using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Case 2: Suppose that ekpn−1 = 0 for all k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , p − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since G is infinite, for some 1 ≤ q ≤ n − 1 we have R := Rq = Rq+1 < n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then we proceed as in the previous proof, however noting that for p = 2, we replace c with ψ−1 µ+1 � (1, 2(µ+1)n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [a2R, b, a2R+1]) � , 14 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM since then, recalling that R < n − 1, ψ([a2R, b, a2R+1]b) = � a∗, 2R−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (ba−e2n−2R+1+e2n−2R)ae2R , a∗, 2R−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (ae2R−e2n−2Rb)ae2R+1 , a∗, 2R−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (ae2R+1b−1ae2R)ae3·2R , a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, (ae2n−2R−e2n−3·2R+e2n−2R+1)b� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be an infinite periodic GGS-group acting on the pn-adic tree with p a prime and n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let t0 be defined according to r = s = 0, and set mG = m+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1, the quotient G/StG(mG) is a Beauville group with triples X = {ap−1, ab, apb} and Y = {ac, b, acb}, for c defined as in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As the orders of each of the elements in X are the same in G/ StG(k) and G/ StG(mG) for all k ≥ mG, it follows from [12, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2] that G/ StG(k) is a Beauville group for every k ≥ mG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In the above theorems, we only require that S[i] ≡ 0 (mod pi+1) for i ∈ I, for some subset I ⊆ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Therefore there are non-periodic GGS-groups acting on the pn-adic tree, for n ≥ 2, with quotients being Beauville groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For instance, if t0 > 2 for the pairs r = s = 0 and r = 1, s = 0, and R > 2, and S[2] ̸≡ 0 (mod p3), but S[i] ≡ 0 (mod pi+1) for all other i, the proofs above still hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In some cases, the proofs above can be extended to finite GGS-groups G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since G is finite, there exists d ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , n − 1} such that Rd+1 = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Writing µ = m0,0, we observe that d ≥ µ − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If d > µ, then by repeated application of Lemmata 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2, we have an element c := ψ−1 µ+1 � (1, p(µ+1)n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [apRµ , b, apRµ]) � ∈ γ3(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Setting X = {ap−1, ab, apb} and Y = {ac, b, acb}, we are done as in Case 1 of the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' If d = µ, then using the same c and the sets X and Y as before, since eℓpRµ = 0 for any ℓ, we observe that ψ([apRµ, b, apRµ]b) = (a∗, pRµ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b2, a∗, pRµ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b−1, a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, 1), and hence if p is odd, the same argument follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For p = 2, the same argument can clearly be used upon replacing c with ψ−1 µ+1 � (1, 2(µ+1)n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 1, [a2Rµ , b, a2Rµ+1]) � , provided Rµ < n − 1, since then ψ([a2Rµ , b, a2Rµ+1]b) = (a∗, 2Rµ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b, a∗, 2Rµ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b, a∗, 2Rµ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, b−1, a∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a∗, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' However, for each of these finite groups G, one would only obtain finitely many (Beauville) quotients G/StG(k), for k ≥ mG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In the next section, we identify a class of finite GGS-groups where no quotient by a level stabiliser is Beauville.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Finite GGS-groups acting on the pn-adic tree We define the subclass E of finite GGS-groups to consist of: (i) the GGS-groups acting on the pn-adic tree, for p any prime and n ≥ 2, with t0 = R0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , tm0,0−1 = Rm0,0−1 and Rm0,0 = n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' and BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 15 (ii) the GGS-groups acting on the 2n-adic tree with R0 = n − 1, S[0] ≡ 0 (mod pn), and e2n−1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We show here that quotients of the GGS-groups G ∈ E by level stabilisers do not yield Beauville groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We first consider the subfamily (i) of groups in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G ∈ E be a GGS-group acting on the pn-adic tree for n ≥ 2, and assume that t0 = R0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , tm0,0−1 = Rm0,0−1 and Rm0,0 = n, where t0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , tm0,0−1 are defined according to r = s = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then the quotient G/StG(k) is not a Beauville group for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' The result is clear for k = 1 since G/ StG(1) is cyclic, so we assume k ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let {x1, x2} and {y1, y2} be two systems of generators for G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' At least one of x1, x2, x1x2, call it z1, must be in the coset aibjG′ for i, j ̸≡ 0 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Likewise for y1, y2, y1y2, and call it z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1 and its proof, the order of ab is pt(0,0) if k ≥ m0,0 + 3, and p2n−R0 if k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For 3 ≤ k ≤ m0,0 + 1, the order of ab is at least pnpn−R0pn−R1 · · · pn−Rk−2, and for k = m0,0 + 2, the order of ab is at least pnpn−R0pn−R1 · · · pn−Rm0,0−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose first that k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For i, j ̸≡ 0 (mod p) and w ∈ G′ 2, as φ2((aibjw)pn) = (ajS[0], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ajS[0]) it follows that ⟨zp2n−R0−1 1 ⟩ = ⟨zp2n−R0−1 2 ⟩, which gives the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Now let k ≥ m0,0 + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Here, writing t = t(0, 0), we claim that ⟨(ab)pt−1⟩ = ⟨(aibjw)pt−1⟩ ∼= Cp for all i, j ̸≡ 0 (mod p) and w ∈ G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' To prove the claim, we first note, writing ψ(w) = (w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , wpn), that the product of all the components w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , wpn, irrespective of the order, has zero total exponent in a, and in b, and if written as (bβ1)aα1 · · · (bβd)aαd for some d ≥ 2 with β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , βd ∈ Z/pn−R0Z and α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , αd ∈ Z/pnZ, then we have αi ≡ 0 (mod pR0) for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence, each component of ψ � (aibjw)pn� is of the form ajS[0]bjv0, for some v0 ∈ ⟨apR0, b⟩′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We note that, for ω ∈ A with ω ̸≡ 0 (mod pR0), ϕω � (ajS[0]bjv0)pn−R0 � = ϕω � (aS[0]b)jpn−R0 � = ajγω where γω = pn−R0−1 � ℓ=0 eω+ℓpR0, and for ω ∈ A with ω ≡ 0 (mod pR0), ϕω �� (ajS[0]bjv0)pn−R0�afpR0 � = ajS[R0]bjv1 for v1 ∈ ⟨apR1, b⟩′ and f ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn−R0 − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 16 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Hence, continuing in this manner, we see that it suffices to compare (ajS[Rµ−2]bjvµ−1)pn−Rµ−1 with (aS[Rµ−2]b)pn−Rµ−1, where µ = m0,0 and vµ−1 ∈ ⟨apRµ−1, b⟩′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Recalling also that Rµ = n, equivalently the components of ψ(b) in positions pRµ−1, 2pRµ−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pn − pRµ−1 are trivial, we have ψ � (ajS[Rµ−2]bjvµ−1)pn−Rµ−1� = (ajδ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a jδ pRµ−1 −1, bj, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ajδ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a jδ pRµ−1 −1, bj) where, for q ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , pRµ−1 − 1}, δq = pn−Rµ−1−1 � ℓ=0 eq+ℓpRµ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As ψ � (aS[Rµ−2]b)pn−Rµ−1� = (aδ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a δ pRµ−1 −1, b, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , aδ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a δ pRµ−1 −1, b), and, from the above computations, we deduce that all other non-trivial labels in the portraits of (ab)jpt−1 and (aibjw)pt−1 are equal powers of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence, the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus, we have ⟨zpt−1 1 ⟩ = ⟨zpt−1 2 ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For 3 ≤ k ≤ µ + 2, writing pˆt for the order of ab modulo StG(k), the analogous result ⟨zpˆt−1 1 ⟩ = ⟨zpˆt−1 2 ⟩ follows similarly from the component-wise description of (ajS[0]bjv0)pn−R0, (ajS[R0]bjv1)pn−R1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , (ajS[Rk−4]bjvk−3)pn−Rk−3, where we recall that R−1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let G be a periodic GGS-group acting on the 2n-adic tree for n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Suppose that R0 = n − 1 and S[0] ≡ 0 (mod pn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then, the quotient G/StG(k) is not a Beauville group for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='5, we only need to consider k ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For k = 1 the result is clear since Beauville groups are not cyclic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' For the remaining values of k, let X = {x1, x2, x1x2} and Y = {y1, y2, y1y2} be two systems of generators for Gk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Assume now k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then there exists some z1 ∈ X with z1 ≡ ai (mod G′ 2) for some odd i, and there exists z2 ∈ Y with z2 ≡ aj (mod G′ 2) for some odd j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Noting that the order of both z1 and z2 is 2n, we now prove that (aiw)2n−1 is conjugate to (ajv)2n−1, for w, v ∈ G′ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We observe that StG2(1), and hence G′ 2, is elementary abelian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Furthermore for each odd i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n − 1} we have (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) G′ 2 ≤ ⟨[ai, b], [ai, b, ai], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , [ai, b, ai, 2n−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai]⟩;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' compare Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='6 and the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' It then follows from [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(i)] that (aiw)2n−1 = ai2n−1[w, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' From (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1) there exist j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , j2n−1 ∈ {0, 1} such that w can be expressed as: w = [ai, b]j1[ai, b, ai]j2 · · · [ai, b, ai, 2n−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai]j2n−1 Now for h ∈ StG2(1), bearing in mind that StG2(1) is elementary abelian, we obtain from [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(ii)] that [ai2n−1, h] = [ai, h, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai] in G2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus, setting h = bj1[ai, b]j2 · · · [ai, b, ai, 2n−3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai]j2n−1 we deduce that [ai2n−1, h] = [w, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 17 Indeed, [ai2n−1, h] = [ai, bj1, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai][ai, [ai, b]j2, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai] · · · [ai, [ai, b, ai, 2n−3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai]j2n−1, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai] = [[ai, b]j1, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai][[ai, b, ai]j2, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai] · · · [[ai, b, ai, 2n−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai]j2n−1, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai] = [w, ai, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , ai] where the second equality holds since StG2(1)′ is trivial and [a, x] = [x, a] for all x ∈ StG2(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Thus we have (aiw)2n−1 = ai2n−1[ai2n−1, h] = (ai2n−1)h = (a2n−1)h where the last equality holds since a has order 2n and i = 1 + 2d for some d ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' This proves that for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n − 1} and w ∈ G′ 2 the element (aiw)2n−1 is conjugate to a2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence z1 and z2 are conjugate and G2 is not a Beauville group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Now suppose StG(3) ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Then there exists some z1 ∈ X with z1 ≡ aib (mod G′ 3) for some odd i, and there exists z2 ∈ Y with z2 ≡ ajb (mod G′ 3) for some odd j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Observe that for w ∈ G′ 3, we have φ3 � (aibw)2n� = � baλ1·2n−1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , baλ2n ·2n−1� where λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , λ2n ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Since by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='5 the elements b and ba2n−1 coincide modulo StG(2), we further have φ3((aibw)2n) = (b, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' This proves that z 2n 1 and z 2n 2 are equal, and thus G3 is not a Beauville group when StG(3) ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' We now consider the remaining cases, where here Gk = G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' As before there exists some z1 ∈ X with z1 ≡ aib (mod G′) for some odd i, and there exists z2 ∈ Y with z2 ≡ ajb (mod G′) for some odd j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Therefore it suffices to show, for δ ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , 2n−1 − 1} and w ∈ G′, that (a1+2δbw)2n is conjugate to (ab)2n in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Recall that (G′)2 ≤ StG(1)′ and that StG(1)′ is elementary abelian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Hence, from [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(i)] we have (ab)2n = [b, a, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2[b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]c for some c ∈ γ2n(G) ∩ StG(1)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Let i1, i2, i3 ≥ 2n be such that � [b, a, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2, a � ∈ γi1(G)\\γi1+1(G) [b, a, 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', a] ∈ γi2(G)\\γi2+1(G) c ∈ γi3(G)\\γi3+1(G), and set ℓ := min{i1, i2, i3 + 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In other words, the integer ℓ is such that [(ab)2n, a] ∈ γℓ(G)\\γℓ+1(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Now (a1+2δbw)2n = [bw, a1+2δ, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a1+2δ]2[bw, a1+2δ, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a1+2δ]cd, where d ∈ γi3+1(G) is obtained as follows: starting with the commutator c, which is a product of commutators in b and a of weight at least 2n, with weight exactly 2 in b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' compare [17, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='32(i)], we have that cd = �c, where �c is obtained from c by replacing all occurrences of b with bw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Here we have also used the standard identities [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 18 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' DI DOMENICO, S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨UL, AND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' THILLAISUNDARAM Next, using these standard identities together with Lemmata 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='6 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='7, we have (a1+2δbw)2n ≡ [bw, a1+2δ, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a1+2δ]2[bw, a1+2δ, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a1+2δ]c (mod γℓ(G)) ≡ [b, a, 2n−1−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]2[b, a, 2n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' , a]c (mod γℓ(G)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Therefore (a1+2δbw)2n ≡ (ab)2n (mod γℓ(G)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' In other words, we have (a1+2δbw)2n = (ab)2nv for v ∈ γℓ(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='8, we have that v = [(ab)2n, g] for some g ∈ G, and hence we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' □ References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Barker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Boston, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fairbairn, A note on Beauville p-groups, Experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 21 (2012), 298–306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Barker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Boston, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Peyerimhoff, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Vdovina, An infinite family of 2-groups with mixed Beauville structures, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Notices 11 (2015), 3598–3618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Bartholdi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Grigorchuk and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' ˘Suni´c, Branch groups, in Handbook of algebra 3, North-Holland, Amsterdam, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [4] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Catanese, Fibered surfaces, varieties isogenous to a product and related moduli spaces, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 122 (2000), 1–44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Di Domenico, Some questions regarding groups of automorphisms of primary trees, PhD thesis, University of Trento and University of the Basque Country, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Di Domenico, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fern´andez-Alcober, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Gavioli, GGS-groups over primary trees: branch structures, Monatsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=', https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='1007/s00605-022-01705-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fairbairn, Recent work on Beauville surfaces, structures and groups, in Groups St Andrews 2013, London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Lecture Note Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 422, Cambridge University Press, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fairbairn, Beauville p-groups: a survey, in Groups St Andrews 2017, London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Lecture Note Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 455, Cambridge University Press, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fern´andez-Alcober and S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨ul, Beauville structures in finite p-groups, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Algebra 474 (2017), 1–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fern´andez-Alcober and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Zugadi-Reizabal, GGS-groups: Order of congruence quotients and Hausdorff dimension, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 366 (2014), 1993–2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fuertes, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Gonz´alez-Diez and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Jaikin-Zapirain, On Beauville surfaces, Groups Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 5 (2011), 107–119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Fuertes and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Jones, Beauville surfaces and finite groups, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Algebra 340 (2011), 13–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Grigorchuk, On Burnside’s problem on periodic groups, Funktsional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' i Prilozhen 14 (1980), 53–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Nauk SSSR Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 48 (5) (1984), 939–985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [15] S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' G¨ul and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Uria-Albizuri, Grigorchuk-Gupta-Sidki groups as a source for Beauville surfaces, Groups Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 14 (2) (2020), 689–704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Jones, Beauville surfaces and groups: a survey, in Rigidity and Symmetry, Fields Institute Com- munications 70, Springer, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Leedham-Green and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' McKay, The structure of groups of prime power order, Oxford University Press, Oxford, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Petschick, On conjugacy of GGS-groups, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Group Theory 22 (2019), 347–358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Stix and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Vdovina, Series of p-groups with Beauville structure, Monatsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 181 (2016), 177–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [20] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Vovkivsky, Infinite torsion groups arising as generalizations of the second Grigorchuk group, in: Algebra (Moscow, 1998), de Gruyter, Berlin, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Wilson, Groups with every proper quotient finite, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Cambridge Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' 69 (1971), 373– 391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content=' BEAUVILLE STRUCTURES FOR QUOTIENTS OF GENERALISED GGS-GROUPS 19 Elena Di Domenico: Department of Mathematics, University of Trento, 38123 Trento, Italy - University of the Basque Country UPV/EHU, 48080 Bilbao Spain Email address: elena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='didomenico@yahoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='it S¸¨ukran G¨ul: Department of Mathematics, TED University, 06420 Ankara, Turkey Email address: sukran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='gul@tedu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='tr Anitha Thillaisundaram: Centre for Mathematical Sciences, Lund University, 223 62 Lund, Sweden Email address: anitha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='t@cantab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} +page_content='net' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E1T4oBgHgl3EQfHAM0/content/2301.02920v1.pdf'} diff --git a/LdE1T4oBgHgl3EQfGwON/vector_store/index.faiss b/LdE1T4oBgHgl3EQfGwON/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..df84680872758360d89a7d81a64ac6ff64b6192d --- /dev/null +++ b/LdE1T4oBgHgl3EQfGwON/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:244c1d5d318a6f25b95613ad964934683c8e2fca18738a0426f9fcb47dbaba6a +size 5505069 diff --git a/LtAyT4oBgHgl3EQfgPig/content/2301.00356v1.pdf b/LtAyT4oBgHgl3EQfgPig/content/2301.00356v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..72bd2a672dc09703a73dcc7a5920449e1d923b06 --- /dev/null +++ b/LtAyT4oBgHgl3EQfgPig/content/2301.00356v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8c22efaa6732e0d57f079cbc729bb917a6248162d3c95108e9654bf603d5f20d +size 1760547 diff --git a/LtAyT4oBgHgl3EQfgPig/vector_store/index.pkl b/LtAyT4oBgHgl3EQfgPig/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e0caeee35d70b95e86dfde90f49f53474e2d2bcf --- /dev/null +++ b/LtAyT4oBgHgl3EQfgPig/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:db799e3ec0c822f374ed6a47b829515ce5545a090e4466f0bb1964fbb964f0b1 +size 106798 diff --git a/MdFIT4oBgHgl3EQfcCt7/content/tmp_files/2301.11264v1.pdf.txt b/MdFIT4oBgHgl3EQfcCt7/content/tmp_files/2301.11264v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..54c08d94f6bcd7ecd19041a8fa8bd9f2fc6c1f44 --- /dev/null +++ b/MdFIT4oBgHgl3EQfcCt7/content/tmp_files/2301.11264v1.pdf.txt @@ -0,0 +1,3521 @@ +MNRAS 000, 1–20 (2022) +Preprint 27 January 2023 +Compiled using MNRAS LATEX style file v3.0 +Spectroscopy of CASSOWARY gravitationally-lensed galaxies in +SDSS: characterisation of an extremely bright reionization-era +analog at 𝑧 = 1.42 +Ramesh Mainali1,2,3★, Daniel P. Stark2, Tucker Jones4†, Richard S. Ellis5, Yashar D. Hezaveh6,7, +& Jane R. Rigby1 +1 Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA +2 Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ, USA +3Department of Physics, The Catholic University of America, Washington, DC 20064, USA +4 Department of Physics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA +5 Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK +6Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA +7Département de Physique, Université de Montréal, Montreal, Quebec, Canada H3T 1J4 +Accepted XXX. Received YYY; in original form ZZZ +ABSTRACT +We present new observations of sixteen bright (𝑟 = 19 − 21) gravitationally lensed galaxies at +𝑧 ≃ 1−3 selected from the CASSOWARY survey. Included in our sample is the 𝑧 = 1.42 galaxy +CSWA-141, one of the brightest known reionization-era analogs at high redshift (g=20.5), with +a large sSFR (31.2 Gyr−1) and an [OIII]+H𝛽 equivalent width (EW[OIII]+H𝛽=730 Å) that is +nearly identical to the average value expected at 𝑧 ≃ 7 − 8. In this paper, we investigate the +rest-frame UV nebular line emission in our sample with the goal of understanding the factors +that regulate strong CIII] emission. Whereas most of the sources in our sample show weak +UV line emission, we find elevated CIII] in the spectrum of CSWA-141 (EWCIII]=4.6±1.9 Å) +together with detections of other prominent emission lines (OIII], Si III], Fe II★, Mg II). We +compare the rest-optical line properties of high redshift galaxies with strong and weak CIII] +emission, and find that systems with the strongest UV line emission tend to have young stellar +populations and nebular gas that is moderately metal-poor and highly ionized, consistent +with trends seen at low and high redshift. The brightness of CSWA-141 enables detailed +investigation of the extreme emission line galaxies which become common at 𝑧 > 6. We find +that gas traced by the CIII] doublet likely probes higher densities than that traced by [OII] and +[SII]. Characterisation of the spectrally resolved Mg II emission line and several low ionization +absorption lines suggests neutral gas around the young stars is likely optically thin, potentially +facilitating the escape of ionizing radiation. +Key words: galaxies: evolution - galaxies: formation - galaxies: high-redshift +1 +INTRODUCTION +Over the last decade, much progress has been made in our under- +standing of galaxies in the first billion years of cosmic time (for a +review, see Stark 2016). Deep infrared imaging has uncovered thou- +sands of photometrically-selected star forming systems thought to +lie in the redshift range 6 < 𝑧 < 9 (e.g., McLure et al. 2013; Finkel- +stein et al. 2014; Bouwens et al. 2015, 2021; Livermore et al. 2017; +Ishigaki et al. 2018), providing a census of UV-selected galaxies +throughout the reionization era. The spectral energy distributions +(SEDs) point toward a population undergoing rapid stellar mass +★ E-mail: ramesh.mainali@nasa.gov +growth with blue UV continuum spectral slopes (e.g., Rogers et al. +2013; Bouwens et al. 2014), low stellar masses and large specific star +formation rates (Stark et al. 2013b; González et al. 2014; Grazian +et al. 2015; Salmon et al. 2015; Curtis-Lake et al. 2016). +In the last five years, our first constraints on the nebular emis- +sion properties of galaxies at these early epochs have emerged. +Spitzer/IRAC photometry suggests that nearly half of the UV- +selected galaxies at 𝑧 ≃ 7 have extremely large [OIII]+H𝛽 equiv- +alent widths (EWs) (Labbé et al. 2013; Smit et al. 2014, 2015; +Roberts-Borsani et al. 2015; De Barros et al. 2017; Endsley et al. +2020), indicating that very recent (∼< 50 Myr) activity powers the +UV and optical luminosity, as expected for galaxies undergoing +rapidly rising star formation histories. Roughly 20% of the popula- +© 2022 The Authors +arXiv:2301.11264v1 [astro-ph.GA] 26 Jan 2023 + +2 +Mainali et al. +tion have yet more intense rest-optical nebular emission ([OIII]+H𝛽 +EW > 1000 Å), indicating an extremely young stellar population +(<10 Myr) is dominating the light, as expected for systems that have +undergone a recent burst of star formation. Since such extreme emis- +sion line galaxies (EELGs) are very rare at lower redshifts (Boyett +et al. 2022), we lack a detailed understanding of the gas and ionizing +agents in typical reionziation-era systems. +Ground-based near-infrared spectrographs offer a path toward +progress at the highest redshifts, providing access to the rest-frame +ultraviolet where a suite of valuable diagnostic lines are situ- +ated. The first deep spectra have revealed strong nebular emission +from high ionization metal species ([CIII],CIII]𝜆𝜆1907,1909 Å, +OIII]𝜆𝜆1660,1666 Å, CIV𝜆𝜆1548,1550 Å), a significant departure +from what is commonly seen at lower redshifts (Stark et al. 2015b,a, +2017; Mainali et al. 2017; Laporte et al. 2017; Mainali et al. 2018; +Hutchison et al. 2019; Topping et al. 2021). The detection of these +lines reveals gas under extreme ionization conditions and points to +a population of intense ionizing agents, potentially AGN in some +cases (Laporte et al. 2017; Mainali et al. 2018) and low metallic- +ity massive stars in others (Mainali et al. 2017; Stark et al. 2017; +Berg et al. 2019, 2021). The detection of CIV𝜆𝜆1548,1550 Å and +[CIII],CIII]𝜆𝜆1907,1909 Å may further indicate a higher fraction +of ionizing photons escape from a galaxy(Schaerer et al. 2022). +While the equivalent width distribution in the total population is +still subject to limited statistics (Mainali et al. 2018), it appears that +both the gas and ionizing sources at 𝑧 ∼> 6 are often significantly +different from that in galaxies at 𝑧 ≃ 2 − 3. +The presence of strong rest-UV nebular emission in a subset of +𝑧 ∼> 6 galaxies bodes well for future studies of the reionization era. +For the next-generation 25-30m ground based optical/infrared ob- +servatories (which are limited to constraints on the rest-frame UV at +𝑧 > 6), these lines may provide the only way in which early galaxies +can be studied spectroscopically. While typically fainter than the +strong lines in the rest-optical, the suite of emission lines in the +far-UV provide unique diagnostic power of the ionizing spectrum +and gas physical conditions (i.e, density, temperature, ionization). +Meanwhile in the near-UV, the resonant nature of the nebular Mg +II emission line makes it an ideal probe of the neutral gas opacity +in early galaxies, potentially providing an indirect indicator of LyC +leakage at 𝑧 ∼> 6 (e.g., Henry et al. 2018; Chisholm et al. 2020; Xu +et al. 2022; Izotov et al. 2022; Seive et al. 2022). The advantage of +Mg II relative to Ly𝛼 is that it is not obscured by the neutral IGM +at very high redshifts. +To ensure that the faint rest-UV spectra provide reliable phys- +ical diagnostics from these future facilities, it is important that we +understand the gas conditions and stellar populations which support +prominent UV line emission. With current facilities, this is most eas- +ily done at lower redshifts where rest-frame optical emission lines +which constrain the gas-phase metallicity and ionization parameter +are observable with ground-based facilities. Over the last few years, +a wide range of observations have been conducted with the goal of +better understanding the physics regulating rest-UV emission line +spectra. These studies have demonstrated that prominent CIII] ap- +pears to be a fairly ubiquitous feature in the rest-UV spectra of dwarf +star forming galaxies (Erb et al. 2010; Christensen et al. 2012; Stark +et al. 2014; Rigby et al. 2015; Vanzella et al. 2016, 2017; Senchyna +et al. 2017; Berg et al. 2018; Mainali et al. 2020; Du et al. 2020; +Schmidt et al. 2021; Tang et al. 2021; Llerena et al. 2021; Berg et al. +2022; Mainali et al. 2022), reflecting the large electron temperatures +associated with metal poor gas and the hard ionizing spectrum of +young, low metallicity massive stars. +Here we seek to build on this progress, improving our un- +derstanding of the connection between UV line emission and the +physical properties of the massive stars and ionized gas. Over the +last decade, we have utilized a wide range of ground-based facilities +(LBT, Keck, Magellan) to obtain deep spectra and imaging of some +of the brightest known (g=19-21) 𝑧 ≃ 1.5 − 3 gravitationally lensed +galaxies within Sloan Digital Sky Survey (SDSS). This sample con- +tains galaxies with a range of physical properties, including two of +the brightest known systems with the large specific star formation +rates (and extreme emission lines) that are typical in the reioniza- +tion era. Central to this observational campaign are newly-acquired +optical spectra from the Echellette Spectrograph and Imager (ESI; +Sheinis et al. 2002) on the Keck II telescope (see Jones et al. 2018 +for more details). The ESI spectra provide moderate resolution (R= +6300) rest-UV spectra, enabling a unique exploration of the na- +ture of the massive stars and the physical conditions of the ionized +gas. We supplement the Keck observations (9 galaxies) with optical +spectra from LBT (1 galaxy) and MMT (6 galaxies), near-infrared +spectra from Magellan, and new optical and near-infrared imaging. +The large continuum brightness of the SDSS lensed galaxies +offers several distinct advantages with respect to the much fainter +low mass galaxies that are typical of cluster fields imaged by HST +(e.g., Christensen et al. 2012; Stark et al. 2014; Vanzella et al. +2017). First, it enables improved constraints on the ionized gas phys- +ical conditions (metallicity, density, ionization parameter) through +detection of the full suite of rest-optical strong emission lines as +well as occasionally allowing detection of multiple temperature and +density-sensitive lines, providing a more comprehensive view of the +conditions in the gas and the most important factors regulating the +rest-UV line spectra. Second, the large continuum S/N in the rest- +UV spectra makes it possible to detect very weak rest-UV nebular +lines. This enables the rest-UV lines to be characterized in indi- +vidual galaxies for a wide range of gas conditions, not only in the +most extreme and metal-poor systems. This will provide a valuable +control sample for our analysis, offering insight into what factors +are most important in regulating rest-UV emission line spectra. This +insight will be critical in assessing the feasibility of detecting and +characterizing lines in the rest-frame far and near-UV with future +facilities. In this paper, we will focus primarily on CIII] emission, +comparing measured line strengths to other empirical and model- +based quantities (i.e., gas-phase metallicity, optical line ratios with +the goal of understanding the factors regulating the CIII] strength. +The paper is organized as follows. We present the new imaging +and spectra and discuss population synthesis modeling of broadband +SEDs in §2. In §3, we provide our results on individual galaxies. +We discuss implications of our spectra of a reionization-era analog +in §4 and summarize our findings in §5. +Throughout the paper, we adopt a Λ-dominated, flat universe +with ΩΛ = 0.7, Ω𝑀 = 0.3 and H0 = 70 km s−1 Mpc−1. All mag- +nitudes in this paper are quoted in the AB system and equivalent +widths (EW) are given in rest-frame, unless stated otherwise. +2 +OBSERVATIONS AND ANALYSIS +2.1 +Sample Selection +The galaxies studied in this paper were originally identified using +a search algorithm that identifies blue arcs surrounding red early +type galaxies in Sloan Digital Sky Survey (SDSS) imaging as part +of the Cambridge And Sloan Survey Of Wide ARcs on the skY +(CASSOWARY; e.g., Belokurov et al. 2007, 2009). The most recent +catalog of CASSOWARY lensed galaxies was presented in Stark +MNRAS 000, 1–20 (2022) + +3 +Object +RA +DEC +𝑧𝑠𝑝𝑒𝑐 +mAB +Dates +Rest-UV Coverage +texp +PA +MUV +𝜇 +Instrument +(Å) +(ksec) +(deg) +CSWA-165 +01:05:19.65 ++01:44:56.4 +2.127 +21.1 +12 Dec 2012 +1020-2560 +3.6 +5.0 +-22.0 +5.4𝑎 +MMT/BCS +CSWA-116 +01:43:50.13 ++16:07:39.0 +1.499 +20.8 +29 Sep 2011 +1280-3200 +2.7 +105 +-20.9 +10.7𝑎 +MMT/BCS +CSWA-103 +01:45:04.18 +-04:55:42.7 +1.959 +22.1 +8-10 Nov 2012 +1350-3425 +25 +115 +-20.9 +4.7𝑎 +Keck/ESI +CSWA-164 +02:32:49.97 +-03:23:29.3 +2.512 +19.9 +8-10 Nov 2012 +1140-2880 +28 +158 +-22.0 +20.8𝑎 +Keck/ESI +CSWA-11 +08:00:12.37 ++08:12:07.0 +1.409 +21.1 +24 March 2012 +1330-3280 +1.8 +60 +-22.3 +1.9𝑐 +MMT/BCS +CSWA-139 +08:07:31.51 ++44:10:48.5 +2.536 +22.1 +23 Mar 2012 +905-2260 +3.6 +80 +-20.8 +3.8𝑎 +MMT/BCS +CSWA-141 +08:46:47.53 ++04:46:09.3 +1.425 +20.5 +8 Nov 2012 +1655-4180 +5.2 +190 +-22.1 +5.5𝑎 +Keck/ESI +. . . +. . . +. . . +. . . +. . . +11 Nov 2015 +1440-2140 +3.6 +190 +. . . +. . . +LBT/MODS +CSWA-19 +09:00:02.64 ++22:34:04.9 +2.032 +20.9 +9-10 Nov 2012 +1320-3330 +20 +86 +-21.9 +6.5𝑎 +Keck/ESI +CSWA-40 +09:52:40.22 ++34:34:46.1 +2.189 +21.4 +5-6 Mar 2013 +1255-3175 +16.2 +70 +-22.3 +3.2𝑎 +Keck/ESI +CSWA-2 +10:38:43.58 ++48:49:17.7 +2.196 +20.9 +5 Mar 2013 +1250-3125 +7.2 +17 +-22.3 +8.4𝑎 +Keck/ESI +CSWA-16 +11:11:03.68 ++53:08:54.9 +1.945 +22.1 +24 Mar 2012 +1085-2715 +2.7 +267 +-20.8 +3.9𝑑 +MMT/BCS +CSWA-38 +12:26:51.69 ++21:52:25.5 +2.925 +21.3 +6 Mar 2013 +1020-2580 +10.8 +130 +-20.2 +40𝑏 +Keck/ESI +CSWA-13 +12:37:36.20 ++55:33:42.9 +1.864 +20.3 +24 Mar 2012 +1120-2790 +1.8 +320 +-23.0 +1.9𝑑 +MMT/BCS +CSWA-39 +15:27:45.02 ++06:52:33.9 +2.762 +20.9 +5-6 Mar 2013 +1065-2695 +18 +105 +-21.5 +15𝑏 +Keck/ESI +CSWA-128 +19:58:35.65 ++59:50:53.6 +2.225 +20.6 +8-10 Nov 2012 +1240-3140 +16.3 +60 +-21.9 +10𝑐 +Keck/ESI +CSWA-163 +21:58:43.68 ++02:57:30.2 +2.081 +22.4 +30 Sep 2011 +1035-2600 +1.8 +20 +-20.4 +6.5𝑎 +MMT/BCS +𝑎Stark et al. (2013a), 𝑏Koester et al. (2010), 𝑐Leethochawalit et al. (2016), 𝑑This work. +Table 1. Summary of rest-frame UV observations of our bright gravitationally lensed CASSOWARY galaxy sample. New ultra-deep moderate resolution optical +spectra have been obtained for nine of these sources using ESI on Keck. We also include an additional seven sources from Stark et al. (2013a) with high quality +MMT blue channel spectra. From left to right, we present the object ID in the CASSOWARY catalog, the RA and DEC, the spectroscopic redshift, apparent +magnitude, the date the optical spectra were obtained, the rest-UV wavelength coverage provided by the optical spectra, the exposure time and position angle +of the optical spectra, the absolute magnitude of the arc in the rest-UV, the magnification factor provided by gravitational lensing, and the optical spectrograph +utilized. Further details are presented in §2. +et al. (2013a) following a large spectroscopic campaign aimed at +obtaining redshifts of the source and lens galaxies. The catalog +of galaxies released in Stark et al. (2013a) contains more than 50 +gravitationally-lensed galaxies in SDSS. Optical magnitudes of this +sample are in the range 19.6 < 𝑟 < 22.3. +Here we present the results from a large observational invest- +ment targeting sixteen of these bright lensed sources with Keck, +Magellan, LBT, and MMT (see Table 1). Object identifiers from +the CASSOWARY survey are abbreviated as “CSWA" in the table +and subsequent discussion. A mosaic of the galaxies considered in +this paper is shown in Figure 1. In the following subsections, we +describe the imaging and spectral datasets that we have obtained +for this paper. The galaxies considered here were selected from the +larger sample of Stark et al. (2013a) based on the brightness of +the continuum. We also preferentially targeted sources at redshifts +which place rest-optical lines in regions of significant atmospheric +transmission in the near-IR. +2.2 +Spectroscopy +2.2.1 +Optical Spectroscopy +We have acquired deep Keck/ESI optical spectra of nine galaxies +from the Stark et al. (2013a) sample (see Table 1 for details), en- +abling robust constraints to be placed on the strength of nebular UV +metal line emission. The positioning of the ESI slit on the lensed +galaxies is shown in Figure 1. The spectra were obtained in two +observing runs between November 2012 and March 2013. The ESI +spectra cover observed wavelengths between 4000 to 10100 Å, pro- +viding rest-frame spectral coverage that typically ranges between +1300 and 2000 Å (see Table 1). A slit width of 0.′′75 was used, pro- +viding a resolving power of R=6300 (FWHM=48 km s−1). The data +were reduced using the ESIRedux code written by J. X. Prochaska. +Sky subtraction is performed following the bias subtraction and flat +fielding. The 1D spectra are then extracted using a boxcar aper- +ture matched to the spatial extent of the arc. When multiple lensed +images appear on the slit, the traces are extracted separately and +then combined to maximize the S/N. The continuum is generally +well detected, with S/N ≃ 10 per resolution element at 6200 Å. +Example spectra are shown in Figure 2. A full description of the +ESI observations and spectral reduction is presented in Jones et al. +(2018). +One source in the ESI sample, CSWA-141, was also observed +with the Multi Object Double Spectrograph (MODS, Pogge et al. +2010) on the LBT. MODS provides bluer wavelength coverage than +ESI, allowing constraints to be placed on emission from CIV, OIII], +and He II. We used a long slit of width 0.′′8 with the 400 lines/mm +grating, providing spectral resolution of ∼ 3 . +We also include seven other galaxies from Stark et al. (2013a) +for which the MMT Blue Channel Spectrograph (BCS) discovery +spectra have sufficient continuum S/N to characterize the rest-UV +metal emission lines. The MMT BCS data were obtained with the +300 lines/mm grating, providing total spectral coverage of ∼ 5300 +. For the slit width of 1.′′0 used in the observations, the typical +spectral resolution is ∼ 6.5 . More details of the MMT observations +are provided in Stark et al. (2013b). +In total, the Keck, LBT, and MMT data provides rest-UV spec- +tra for 16 galaxies. Our aim is to characterize CIII] emission fea- +ture, typically the strongest rest-UV emission line, along with other +rest-UV emission features in the whole sample. Using redshift pre- +sented in Jones et al. (2018) for Keck/ESI data and Stark et al. +(2013a) for MMT data, we first searched for CIII] emission in indi- +vidual galaxy spectrum. The line is spectrally resolved in the Keck +spectra, whereas it remained unresolved in the MMT spectra. For +the resolved CIII] doublet, we measured emission line fluxes and +associated errors (for error spectrum) in individual components by +directly integrating the flux levels within ±1 Å of individual line +MNRAS 000, 1–20 (2022) + +4 +Mainali et al. +CSWA-141 +CSWA-2 +CSWA-40 +CSWA-19 +CSWA-128 +CSWA-165 +CSWA-13 +CSWA-164 +CSWA-163 +CSWA-11 +CSWA-128 +CSWA-16 +CSWA-139 +CSWA-38 +CSWA-39 +CSWA-165 +CSWA-116 +CSWA-103 +CSWA-141 +CSWA-2 +CSWA-19 +CSWA-13 +CSWA-164 +CSWA-163 +CSWA-11 +CSWA-128 +CSWA-16 +CSWA-139 +CSWA-38 +CSWA-39 +Figure 1. Color images of sixteen gravitationally lensed galaxies. The name of each sources is presented at the top of each image, along with the slit position +used for the observations. For seven galaxies (CSWA-141, CSWA-13, CSWA-139, CSWA-116, CSWA-16, CSWA-165, CSWA-164) the color images are +created from g,r and i band images from LBT/MODS. The color images for four galaxies (CSWA-11,CSWA-163,CSWA-128,CSWA-103) are made with g,r +and i bands images from LBT/LBC. Three color images (CSWA-38, CSWA-39, CSWA-40) are made using Keck/ESI images in V,R and I bands. For other two +galaxies (CSWA-2, CSWA-19), color images are created using archival HST images. North is up and east is to the left. Each postage stamp is 25” × 25” in size. +The orientation and centroid of the ESI or MMT slit is overlaid in each image. +centers (rest-frame). When the line is unresolved, we computed +total CIII] emission line fluxes and associated line flux errors di- +rectly from the flux spectra and error spectra, respectively. If the +line remained undetected at 3𝜎 level, we calculated upper limits by +integrating error spectrum from 1905 Å to 1912 Å. The emission +line equivalent width is then computed by dividing the line fluxes +(or upper limits) by median continuum level measured on either side +of the CIII] line. We then searched for any other rest-UV emission +features in the spectra and characterized them when detected. Our +sample includes 10 galaxies with CIII] detection where the equiva- +lent widths range from 0.4 Å to 4.6 Å (see Table 2). We will come +back to interpret the CIII] equivalent widths in §3.2, comparing the +line strengths to optical line ratios and gas physical properties. +2.2.2 +Near-Infrared Spectroscopy +Near-infrared (NIR) spectra supplement the optical spectra de- +scribed above, providing constraints on the metallicity, ionization +parameter, and electron density of the ionized gas. Near-infrared +spectroscopic analysis is limited to the subset of sources from Ta- +ble 1 which are located at redshifts placing strong rest-optical emis- +sion lines in spectral windows in which atmospheric transmission +is near-unity. One of the sources in our sample (CSWA-2) was tar- +MNRAS 000, 1–20 (2022) + +.5 +Object +EW (Å) +Ly𝛼 +[CIII]𝜆1907 +CIII]𝜆1909 +CIII]𝜆1908𝑎 +CSWA-141 +. . . +2.3(1.3) +2.3(1.4) +4.6(1.9) +CSWA-13 +5.4(2.1) +. . . +. . . +4.4(0.9) +CSWA-139 +. . . +. . . +. . . +3.4(2.6) +CSWA-2 +. . . +2.0(1.6) +1.1(0.9) +3.1(1.6) +CSWA-39 +11.8(6.2) +0.6(0.1) +0.5(0.1) +1.1(0.2) +CSWA-19 +. . . +0.4(0.1) +0.3(0.1) +0.7(0.1) +CSWA-38 +2.6(1.1) +. . . +0.4(0.1) +CSWA-128 +. . . +0.3(0.1) +0.3(0.1) +0.6(0.1) +CSWA-103 +. . . +0.3(0.1) +0.2(0.1) +0.5(0.1) +CSWA-164 +2.0(0.5) +0.2(0.1) +0.2(0.1) +0.4(0.1) +CSWA-163 +. . . +. . . +. . . +< 3.1 +CSWA-16 +. . . +. . . +. . . +< 2.3 +CSWA-165 +. . . +. . . +. . . +< 1.9 +CSWA-40 +. . . +< 1.2 +< 1.2 +< 1.7 +CSWA-11 +. . . +. . . +. . . +< 1.4 +CSWA-116 +. . . +. . . +. . . +< 1.1 +𝑎 Total CIII] doublet. +Table 2. Equivalent width measurements of rest-UV emission lines. The +numbers within parentheses represent uncertainty. The upper limits are 3𝜎. +Object +Dates +texp +PA +Observatory/ +(ksec) +(deg) +Instrument +CSWA-165 +2014 June 22 +7.2 +120 +Magellen/FIRE +CSWA-164 +2015 Nov 03 +4.8 +58 +Magellen/FIRE +CSWA-11 +2015 Nov 04 +2.7 +-10 +Magellen/FIRE +CSWA-141 +2012 Feb 15 +1.2 +280 +Magellen/FIRE +CSWA-128 +2012 Nov 7 +3.6 +190 +LBT/LUCI +CSWA-163 +2014 June 22 +9.0 +90 +Magellen/FIRE +Table 3. Details of near-infrared spectroscopic observations obtained for this +paper. From left to right, the columns denote the object ID, observation dates, +exposure time, position angle of slit, and the observatory and instrument used +to acquire near-IR spectroscopy. Further details are provided in §2.2. +geted with Keck near-infrared spectroscopy in Jones et al. (2013). +In observing runs between November 2012 and November 2015, +we have obtained near-infrared spectroscopic observations of five +additional sources (CSWA-141, CSWA-164, CSWA-165, CSWA- +163, CSWA-11) using the Folded-port InfraRed Echellette (FIRE; +Simcoe et al. 2008) on the Magellan Baade Telescope. We used +FIRE in its echelle mode, providing continuous spectral coverage +spanning 0.82-2.51 𝜇m. We adopted a slit width of 0.′′75, delivering +a spectral resolution of 2.6 in the J band, 3.4 in the H band and 4.7 +in the K band. Spectroscopic data reduction was performed using +standard routines in the FIREHOSE data reduction pipeline1. +One additional galaxy (CSWA-128) was observed on 2012 +Nov 7 with the LUCI near-IR spectrograph on the Large Binocular +Telescope (LBT). We used the N1.8 camera and 200_H+K grating in +longslit mode. We first observed the lensed source with the HKSpec +filter centered at 1.93 microns, providing spectral coverage from +1.50 to 2.30 𝜇m. We also observed CSWA-128 with the zJSpec +filter centered at 1.1 microns, providing spectral coverage between +0.95 and 1.40𝜇m. A slit width of 1.′′0 was used, resulting in a spectral +resolution of 16 . Spectroscopic data reduction was performed using +standard IDL long slit reduction packages (see Bian et al. 2010 for +1 wikis.mit.edu/confluence/display/FIRE/FIRE+Data+Reduction +details). We summarize details of near-infrared spectroscopy of +CASSOWARY galaxies in Table 3. Example spectra are shown in +Figure 3. +Emission line fluxes in the NIR spectra are measured using the +IDL routine MPFITPEAK which computes line fluxes after fitting +a gaussian model. In cases where the emission lines are partially +affected by a skyline, we mask the contaminated region before fit- +ting the emission line. Additionally, if one of the components of +[OIII]𝜆𝜆4959,5007 is strongly affected by an emission line, we as- +sume the theoretical line ratio of [OIII]𝜆5007/[OIII]𝜆4959=2.98 +(Storey & Zeippen 2000) in calculating the total [OIII] line flux. +We calculate the impact of dust on the nebular lines using the +Balmer decrement flux ratio of H𝛼/H𝛽. The observed line ratio is +compared to the line ratio expected in absence of dust (H𝛼/H𝛽=2.86; +Osterbrock & Ferland 2006) for case B recombination assuming +T𝑒=10,000 K. In the two cases where the Balmer line ratios are not +available, we use the stellar reddening inferred from the broadband +data to estimate the nebular attenuation (see §2.5). We note that +using stellar reddening for nebular attenuation correction doesn’t +impact our results. We assume that the nebular gas attenuation +is similar to the stellar continuum attenuation. We presented the +observed and dust-corrected emission line measurements in Table 4. +For one object (CSWA-141) where auroral [OIII]𝜆4363 line +is detected, we calculated electron temperature using PyNeb (ver- +sion 1.1.8; Luridiana et al. 2015) using emission line flux ratio of +OIII]𝜆4363/[OIII]𝜆5007. For our calculations, we adopted the de- +fault PyNeb atomic data sets. We assumed electron density of 250 +cm−3, which is typical to 𝑧 ∼ 2 galaxies (Sanders et al. 2016a). How- +ever, we note that our assumed electron density value has negligible +effect on the derived electron temperature in the low density regime +(<103 cm−3). Since we don’t have T𝑒([OII]) sensitive emission line +measurements, we followed the relation given by Izotov et al. (2006) +for low metallicity to estimate the electron temperature in the O+2 +region. We use our electron temperature measurements to infer the +direct oxygen abundance. We only use O+/H+ and O+2/H+ to com- +pute oxygen abundance since the ionization states higher than O+2 +contributes significantly low at less than 1 per cent (Izotov et al. +2006). O+/H+ and O+2/H+ are calculated from PyNeb using our +T𝑒([OIII], T𝑒([OII], 𝑛𝑒 and emission line fluxes of [OII], H𝛽 and +[OIII]. +We use PyNeb to calculate the electron density using the flux +ratio of the [OII], [SII], and [CIII], CIII] doublets. The typical +error in measurements is then calculated using the errors in emis- +sion line fluxes. When an electron temperature measurement is not +available, we assumed electron temperature of 10,000K following +Sanders et al. (2016a) to adopt temperature dependent effective col- +lision strengths. Adopting electron temperature of 7000K (15000K) +instead would overestimate (underestimate) electron density by 15- +20% which is effectively lower than density error from our line flux +measurements. +2.3 +Imaging +Each of the CASSOWARY galaxies was discovered in SDSS imag- +ing. In many cases, the photometric constraints from SDSS are +unreliable owing to blending with neighbors and low S/N detec- +tion of diffuse emission associated with the arcs. We have obtained +deeper optical multi-band imaging for each of the galaxies discussed +in this paper using cameras on the LBT and Keck. In order to better +characterize the stellar populations, we have also obtained near-IR +imaging sampling across the Balmer break for a subset of our tar- +gets using the LBT, MMT and Keck. In the following subsections, +MNRAS 000, 1–20 (2022) + +6 +Mainali et al. +Line +𝜆rest(Å) +𝜆obs (Å) +F(𝜆)/F(5007) +I(𝜆)/I(5007) +CSWA-141 +[OII] +3727.13 +9039.2 +0.060 ± 0.002 +0.088 ± 0.003 +[OII] +3729.92 +9045.9 +0.075 ± 0.004 +0.110 ± 0.006 +[NeIII] +3869.66 +9384.9 +0.054 ± 0.017 +0.075 ± 0.023 +H𝛿 +4102.90 +9950.5 +0.030 ± 0.004 +0.039 ± 0.005 +H𝛾 +4341.58 +10529.4 +0.063 ± 0.003 +0.076 ± 0.004 +[OIII] +4365.31 +10586.9 +0.019 ± 0.002 +0.023 ± 0.002 +H𝛽 +4862.55 +11792.9 +0.13 ± 0.003 +0.135 ± 0.003 +[OIII] +4960.25 +12029.8 +0.338 ± 0.004 +0.342 ± 0.004 +[OIII] +5008.27 +12146.3 +1.000 +1.000 +[SIII] +6310.48 +15304.4 +0.007 ± 0.001 +0.005 ± 0.001 +[NII] +6549.84 +. . . +< 0.004 +< 0.002 +H𝛼 +6564.61 +15920.7 +0.529 ± 0.003 +0.386 ± 0.002 +[SII] +6717.96 +16292.7 +0.017 ± 0.001 +0.013 ± 0.001 +[SII] +6732.34 +16327.5 +0.016 ± 0.001 +0.012 ± 0.001 +CSWA-165 +[OII] +3727.13 +11657.1 +0.56 ± 0.06 +1.01 ± 0.11 +[OII] +3729.92 +11665.9 +0.63 ± 0.08 +1.13 ± 0.14 +[NeIII] +3869.66 +. . . +< 0.23 +< 0.38 +H𝛽 +4862.55 +15208.9 +0.46 ± 0.08 +0.49 ± 0.08 +[OIII] +5008.27 +15665.2 +1.00 +1.00 +H𝛼 +6564.61 +20532.4 +2.25 ± 0.15 +1.40 ± 0.09 +[NII] +6585.28 +20597.5 +0.55 ± 0.09 +0.34 ± 0.06 +CSWA-163 +[OII] +3727.13 +11482.5 +0.28 ± 0.01 +0.53 ± 0.02 +[OII] +3729.92 +11491.2 +0.35 ± 0.03 +0.66 ± 0.06 +[NeIII] +3869.66 +. . . +< 0.04 +< 0.07 +H𝛾 +4341.58 +13375.6 +0.06 ± 0.03 +0.08 ± 0.04 +H𝛽 +4862.55 +14981.5 +0.22 ± 0.03 +0.23 ± 0.03 +[OIII] +4960.25 +15282.5 +0.35 ± 0.02 +0.35 ± 0.02 +[OIII] +5008.27 +15429.9 +1.00 +1.00 +H𝛼 +6564.61 +20225.5 +1.12 ± 0.04 +0.67 ± 0.02 +[NII] +6585.28 +20289.2 +0.18 ± 0.06 +0.11 ± 0.04 +CSWA-128 +[OII] +3729.01 +12019.6 +0.28 ± 0.08 +0.40 ± 0.11 +[NeIII] +3869.66 +12476. 4 +0.10 ± 0.03 +0.14 ± 0.04 +H𝛽 +4862.55 +15681.7 +0.24 ± 0.06 +0.25 ± 0.06 +[OIII] +4960.25 +15997.7 +0.32 ± 0.04 +0.33 ± 0.04 +[OIII] +5008.27 +16151.8 +1.00 +1.00 +[NII] +6549.84 +21121.3 +0.05 ± 0.01 +0.04 ± 0.01 +H𝛼 +6564.61 +21170.3 +0.96 ± 0.05 +0.71 ± 0.04 +[NII] +6585.28 +21237.2 +0.13 ± 0.02 +0.09 ± 0.01 +[SII] +6717.96 +21664.9 +0.10 ± 0.02 +0.07 ± 0.01 +[SII] +6732.34 +21711.1 +0.08 ± 0.04 +0.06 ± 0.02 +CSWA-164 +[OII] +3727.13 +13090.9 +0.52 ± 0.11 +0.80 ± 0.17 +[OII] +3729.92 +13100.4 +0.64 ± 0.04 +0.99 ± 0.0.07 +[OIII] +5008.27 +17590.4 +1.00 +1.00 +H𝛼 +6564.61 +23064.8 +1.91 ± 0.09 +1.34 ± 0.06 +CSWA-11 +[OII] +3727.13 +8979.9 +0.67 ± 0.13 +0.85 ± 0.16 +[OII] +3729.92 +8986.6 +0.66 ± 0.09 +0.83 ± 0.11 +[NeIII] +3869.66 +. . . +< 0.43 +< 0.53 +[OIII] +5008.27 +12068.7 +1.00 +1.00 +H𝛼 +6564.61 +15816.5 +1.08 ± 0.06 +0.89 ± 0.05 +Table 4. Rest-optical emission line measurements of six bright lensed +Cassowary galaxies. Measurements are from Magellan/FIRE (CSWA-141, +CSWA-165, CSWA-163, CSWA-164, CSWA-11) and LBT/LUCI (CSWA- +128). Line flux measurements are quoted relative to [OIII]𝜆5007. We adopt +[OIII]𝜆5007 as a reference line due to its high S/N. Three-sigma upper limits +are reported for emission lines that are not detected. +Object +Observatory / +Filters +Dates +texp +Instrument +Observed +(sec) +CSWA-165 +LBT/MODS +g +2014 Jan 27 +720 +LBT/MODS +r, z +2014 Jan 27 +360 +MMT/MMIRS +J +2015 Sep 30 +900 +MMT/MMIRS +K +2015 Sep 30 +1200 +CSWA-116 +LBT/MODS +g +2014 Jan 27 +720 +LBT/MODS +r, z +2014 Jan 27 +360 +MMT/MMIRS +J,K +2015 Oct 01 +600 +CSWA-103 +LBT/LBC +g +2015 Nov 15 +600 +LBT/LBC +r, i +2015 Nov 15 +300 +MMT/MMIRS +J,K +2015 Oct 01 +600 +CSWA-164 +LBT/MODS +g +2014 Jan 27 +720 +LBT/MODS +r, z +2014 Jan 27 +360 +CSWA-11 +LBT/LBC +g +2015 Nov 15 +600 +LBT/LBC +r, z +2015 Nov 15 +300 +Keck/ MOSFIRE +K𝑠 +2015 Nov 30 +300 +CSWA-139 +LBT/MODS +g +2014 Jan 27 +720 +LBT/MODS +r, z +2014 Jan 27 +360 +MMT/MMIRS +H +2017 Jan 11 +900 +CSWA-141 +LBT/ MODS +g +2014 Jan 27 +720 +LBT/ MODS +r, z +2014 Jan 27 +360 +Keck/ MOSFIRE +K𝑠 +2014 Apr 11 +300 +Keck/ MOSFIRE +Y +2015 Nov 30 +300 +Keck/ MOSFIRE +J2 +2015 Nov 30 +300 +CSWA-40 +Keck/ESI +V, R, I +2013 Mar 06 +200 +CSWA-16 +LBT/MODS +g, r +2014 Jan 27 +360 +CSWA-38 +Keck/ESI +V, R, I +2013 Mar 06 +200 +CSWA-13 +LBT/MODS +g +2014 Jan 27 +720 +LBT/MODS +r, z +2014 Jan 27 +360 +LBT/LUCI +K𝑠 +2014 Apr 13 +1200 +CSWA-39 +Keck/ESI +V, R, I +2013 Mar 06 +200 +CSWA-128 +LBT/LBC +g +2015 Nov 15 +600 +LBT/LBC +r, i +2015 Nov 15 +300 +Keck/ MOSFIRE +K𝑠 +2014 Apr 11 +300 +CSWA-163 +LBT/LBC +g +2015 Nov 15 +600 +LBT/LBC +r, i +2015 Nov 15 +300 +MMT/MMIRS +J +2015 Sep 30 +900 +MMT/MMIRS +K +2015 Sep 30 +1200 +Table 5. New optical and near-infrared imaging of CASSOWARY lensed +galaxies obtained with Keck, LBT, and MMT. From left to right, columns +denote the object ID, observatory and instrument, filters utilized, dates of +observations, and exposure time. +we describe the optical and near-infrared imaging observations and +analysis. Details of the new imaging observations are summarized +in Table 5. +2.3.1 +Optical imaging +We secured images of seven galaxies from Table 1 using the Multi +Object Double Spectrograph (MODS, Pogge et al. 2010) on LBT in +January 2014. The dual channel mode of MODS provides images +in two separate filters simultaneously over a field of view of 6 × +6 arc minutes. We used the blue and red channel to obtain g, r, +and z-band images for CSWA-13, CSWA-16, CSWA-116, CSWA- +139, CSWA-141, CSWA-164 and CSWA-165. Each arc was first +observed in the g and r-band for 360 seconds and then in the g +and z-band for an additional 360 seconds. For one source (CSWA +16), we obtained imaging only in the g and r-bands. The sky was +partly covered by clouds throughout the MODS observations and +the seeing varied between 1.′′0 and 1.′′5. Optical images of three +MNRAS 000, 1–20 (2022) + +7 +other galaxies (CSWA-39, CSWA-38, CSWA-40) were taken with +ESI on Keck, providing a field of view of 2×3.5 arc minutes. These +three sources were observed with V, R and I filters. There was some +cloud during the observations, and the seeing was between 0.′′8 and +1.′′2. For the two other sources in Table 1, CSWA-2 and CSWA-19, +we make use of archival HST images (program 11974, PI: Allam). +We summarize the details of the imaging observations in Table 5. +The optical images were reduced using standard routines for +flat fielding and image combination. The 5𝜎 typical limiting magni- +tude in the g, r and z bands of MODS images are 25.5, 24.7 and 23.2 +respectively. Similarly, for the ESI images the typical 5𝜎 limiting +magnitude in V, R and I bands are 22.7, 22.6 and 22.6 respectively. +For the archival HST images, the typical 5𝜎 limiting magnitudes in +F450W, F606W, and F814W filters are 26.3, 26.1 and 25.5 respec- +tively. Each image was flux calibrated using stars that are isolated +and well detected in SDSS imaging. The mosaic in Figure 1 shows +the multi-color optical imaging obtained for each source. +Before performing photometry on the lensed galaxies, we mod- +eled the foreground lens using GALFIT (Peng et al. 2002) and +subtracted its contribution to the lensed source. To calculate the ab- +solute magnitude for the galaxies in our sample, we first measured +the integrated flux in the g-band. After applying the appropriate +magnification corrections (see §2.4), we arrive at the absolute UV +magnitudes shown in Table 1. The values span MUV = −23.1 to +MUV = −20.4, corresponding to 0.8-9 L★ +UV at 𝑧 ≃ 2 − 3 (Reddy & +Steidel 2009; Parsa et al. 2016). +2.3.2 +Near-infrared imaging +We obtained near-infrared images of CSWA-141, CSWA-11 and +CSWA-128 in the Ks-band using the Multi-Object Spectrometer for +Infra-Red Exploration (MOSFIRE, McLean et al. 2012) on Keck I. +Conditions were photometric with seeing of 0.′′5. We obtained 10 +dithered frames having 6.1×6.1 arc minute field of view, each with +exposure time of 30 seconds. The 5𝜎 AB limiting magnitude in the +MOSFIRE Ks-band images is 23.1. With the goal of constraining +the equivalent width of [OIII] and H-beta emission, we observed +CSWA-141 with the MOSFIRE J2 medium band filter. The filter +spans 1.11-1.25 𝜇m, covering H-beta and [OIII]. +We secured a Ks-band image of CSWA-13 using the LUCI +near-IR Spectrograph on the LBT when the seeing was 1.′′2. We +utilized the N3.75 camera providing 4×4 arc minutes of field of view +with a plate scale of 0.12 arcseconds per pixel. The near-IR imaging +reduction was performed using standard IDL routines designed to +flat field, sky-subtract and stack the dithered frames. Finally, we +used isolated and unsaturated stars that are in the 2MASS catalog +to flux calibrate the images. The 5𝜎 AB limiting magnitude in the +LUCI Ks-band image is 23.4. For another four galaxies (CSWA- +116, CSWA-165, CSWA-103, CSWA-163), near-IR imaging was +obtained using the MMIRS instrument on the MMT. Each of the +four sources was observed in the J and K bands. MMIRS provides +imaging over a field of view of 6.9 × 6.9 arc minutes with a plate +scale of 0.20 arcsec per pixel. The seeing was between 0.′′6-0.′′9 +throughout the observations. The typical 5𝜎 AB limiting magnitude +in MMIRS J and K-band images are 22.9 and 22.8, respectively. +2.4 +Lensing Magnification +Derivation of stellar mass and intrinsic luminosity of lensed systems +requires magnification correction. In Stark et al. (2013b), magni- +fication factors were presented for eleven out of sixteen sources +given in Table 1 and typically range between 𝜇=5 and 10. Three +out of the five remaining sources have a published lens model. We +adopted magnifications for CSWA-38 and CSWA-39 from Koester +et al. (2010) and CSWA-11 from Leethochawalit et al. (2016). +For the two remaining sources (CSWA-13 & CSWA-16), we +follow a similar approach to Hezaveh et al. (2013). In brief, we +assumed a symmetric Gaussian light distribution for the lensed +source. We also tested the impact of adding a second Gaussian +component to the source. The foreground lens is modeled as a +Singular Isothermal Ellipsoid (SIE). Multiple lenses are allowed in +the modeling procedure. To obtain the best fit model, we perform +a Markov Chain Monte Carlo (MCMC) analysis to minimize 𝜒2 +in the image plane. In the case of CSWA-16, the observed data +are better fit after introducing a second Gaussian component to the +background source. The magnification factor is then calculated as +the ratio of the lensed to unlensed flux. We derive a magnification +of 𝜇 = 3.9 ± 0.3 for CSWA-16 and 𝜇 = 1.9 ± 0.2 for CSWA-13. +2.5 +Stellar Population Synthesis Modeling +Thirteen of the galaxies shown in Figure 1 have the necessary optical +and near-IR imaging to derive physical properties from broadband +SED fitting. For these systems, we infer the stellar mass, specific +star formation rate and dust attenuation using the Bayesian galaxy +SED modeling and interpreting tool BEAGLE tool (version 0.20.3; +Chevallard & Charlot 2016). BEAGLE is based on the photoioniza- +tion models of star-forming galaxies in Gutkin et al. (2016), com- +bining the latest version of the Bruzual & Charlot (2003) stellar pop- +ulation synthesis models with the photoionization code CLOUDY +(Ferland et al. 2013). +We fit the broadband photometric fluxes as well as CIII] equiv- +alent widths. When relative fluxing between rest-UV and optical +emission lines is possible, we include all emission lines in the fit- +ting procedure. The models assume constant star formation where +the maximum stellar age is allowed to vary freely between 5 Myr to +the Universe age at the given redshift. We use Chabrier (2003) initial +mass function and the Calzetti et al. (2000) extinction curve. The +metallicity is allowed to vary in the range of -2.2≤log(Z/Z)⊙≤0.25 +assuming equivalent stellar and nebular metallicity (Z★=Z𝐼 𝑆𝑀). +The redshift of all objects is fixed to their spectroscopic redshift +given in Table 1. The ionization parameter (US; here defined as +the ratio of ionizing-photon to gas densities at the edge of the +Strömgren sphere) is varied in the range of -4.0≤𝑈S≤-1.0, and the +dust-to-metal mass ratio spanned within the range of 𝜉𝑑=0.1-0.5. +We adopt models with hydrogen density (nH=100 cm−3) and C/O +abundance of 0.5 of solar value [(C/O)⊙ ≈0.44]. Finally, the prior +on the V-band dust attenuation optical depths ( ˆ𝜏𝑉 ) is taken as an +exponential distribution after fixing the fraction of attenuation op- +tical depth arising from the ambient ISM (𝜇) to be 0.4. We note +that our assumption of constant star formation may underestimate +the stellar mass by as high as 0.5 dex when the galaxy is dominated +by a young stellar population, but this would not affect the primary +conclusions of this paper. We discuss the main results of this SED +fitting in §3.2. +3 +RESULTS +All sixteen sources presented in this paper have optical spectra cov- +ering CIII] to quantify equivalent widths. We report these values +(or 3𝜎 upper limits) in Table 2. Of the sixteen sources, six galaxies +have near-IR spectra enabling rest optical line flux ratios (Table 3). +MNRAS 000, 1–20 (2022) + +8 +Mainali et al. +1800 +2000 +2200 +2400 +2600 +2800 +3000 +−1 +0 +1 +2 +3 +0 +Relative Fλ +CIII] +FeII +Mg II +CSWA−141 +1900 +1905 +1910 +1915 +CIII] +1200 +1400 +1600 +1800 +2000 +−1 +0 +1 +2 +3 +4 +0 +Lyα +CIII] +CIV +HeII +SiIV +SiII +CII +OI +CSWA−13 +1890 +1900 +1910 +1920 +CIII] +1200 +1400 +1600 +1800 +2000 +−1 +0 +1 +2 +3 +0 +Relative Fλ +CIII] +OICII +Al II +FeII +CSWA−139 +1890 +1900 +1910 +1920 +CIII] +1400 +1600 +1800 +2000 +−1 +0 +1 +2 +3 +4 +0 +CIII] +CIV Fe II +OI CII +CSWA−2 +1900 +1905 +1910 +1915 +CIII] +1200 +1400 +1600 +1800 +2000 +−1 +1 +3 +5 +Relative Fλ +CIII] +Lyα +CIV Fe II Al II +Al III +CSWA−39 +1900 +1905 +1910 +1915 +CIII] +1200 +1400 +1600 +1800 +2000 +−1 +0 +1 +2 +3 +4 +0 +Lyα +CIII] +CIV +SiIV +SiIV +SiII +Fe II Al II +Al III +OICII +CSWA−38 +1900 +1905 +1910 +1915 +CIII] +1400 +1500 +1600 +1700 +1800 +1900 +2000 +−1 +1 +3 +5 +Relative Fλ +CIII] +CIV +Al II +SiIV +CSWA−19 +1900 +1905 +1910 +1915 +CIII] +1400 +1600 +1800 +2000 +−1 +0 +1 +2 +3 +4 +0 +Fe II Al II +Al III +CIII] +CIV +SiII +SiIV +OI CII +CSWA−128 +1890 +1900 +1910 +1920 +CIII] +1400 +1500 +1600 +1700 +1800 +1900 +2000 +Rest Wavelength(Å) +−1 +0 +1 +2 +3 +0 +Relative Fλ +CIII] +SiIV +SiIICIV +Fe II +Al II +Al III +CSWA−103 +1900 +1905 +1910 +1915 +CIII] +1200 +1400 +1600 +1800 +2000 +Rest Wavelength(Å) +−1 +0 +1 +2 +3 +4 +0 +Lyα +CIII] +CIV +SiIV +OI CII +CSWA−164 +1890 +1900 +1910 +1920 +CIII] +Figure 2. Rest-UV spectra of gravitationally lensed galaxies presented in Table 1 with CIII] detections. The upper left side of each image contains the +CASSOWARY-ID. The dotted dashed line below and above the UV continuum represents absorption and emission features identified in the spectra. The upper +right of each panel shows zoom in spectral coverage near CIII]𝜆𝜆1907,1909. The vertical dashed lines in the inset show the location of CIII]𝜆𝜆1907,1909 +doublet. The CIII] doublet remain unresolved in the MMT/BCS spectra of CSWA-13 and CSWA-139. +MNRAS 000, 1–20 (2022) + +9 +4850 +4855 +4860 +4865 +4870 +4875 +0 +1 +2 +3 +4 +Flux(10−17erg−1s−1cm−2Å−1) +Hβ +CSWA−141 +4980 +4990 +5000 +5010 +5020 +5030 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +[OIII]λ5007 +6550 +6555 +6560 +6565 +6570 +6575 +6580 +0 +2 +4 +6 +8 +10 +Hα +4855 +4860 +4865 +4870 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +Flux(10−18erg−1s−1cm−2Å−1) +Hβ +CSWA−163 +5000 +5005 +5010 +5015 +0 +2 +4 +6 +8 +10 +[OIII]λ5007 +6550 +6560 +6570 +6580 +6590 +0 +1 +2 +3 +4 +5 +6 +Hα +[NII] +4855 +4860 +4865 +4870 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +Flux(10−18erg−1s−1cm−2Å−1) +Hβ +CSWA−165 +5000 +5005 +5010 +5015 +0 +2 +4 +6 +8 +[OIII]λ5007 +6550 +6560 +6570 +6580 +6590 +0 +1 +2 +3 +4 +5 +6 +7 +[NII] +Hα +3720 +3725 +3730 +3735 +3740 +0 +2 +4 +6 +8 +10 +Flux(10−18erg−1s−1cm−2Å−1) +[OII]λλ3727,3729 +CSWA−164 +5000 +5005 +5010 +5015 +0 +2 +4 +6 +8 +10 +[OIII]λ5007 +6550 +6560 +6570 +6580 +6590 +0 +2 +4 +6 +8 +10 +Hα +3720 +3725 +3730 +3735 +3740 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +Flux(10−18erg−1s−1cm−2Å−1) +[OII]λλ3727,3729 +CSWA−11 +4990 +5000 +5010 +5020 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +[OIII]λ5007 +6550 +6560 +6570 +6580 +6590 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +Hα +4840 +4850 +4860 +4870 +4880 +Rest Wavelength(Å) +3.5 +4.0 +4.5 +5.0 +5.5 +6.0 +6.5 +7.0 +Flux(10−18erg−1s−1cm−2Å−1) +Hβ +CSWA−128 +4980 +4990 +5000 +5010 +5020 +5030 +Rest Wavelength(Å) +0 +5 +10 +15 +20 +[OIII]λ5007 +6520 +6540 +6560 +6580 +6600 +Rest Wavelength(Å) +0 +2 +4 +6 +8 +10 +12 +Hα +[NII] +[NII] +Figure 3. Optical emission lines in six gravitationally lensed galaxies discussed in this paper. Each row shows optical emission lines from a single source. The +object ID is given in the leftmost panel of each row. The black line represents observed flux whereas blue line shows gaussian fit to the line profile calculated +using IDL routine MPFITPEAK. The region affected by skylines is shown as a grey swath. +MNRAS 000, 1–20 (2022) + +10 +Mainali et al. +fν(µJy) + + + + + +1 +10 +100 +1000 +CSWA−141 +EWCIII]=4.6 Å +sSFR=31.2 Gyr−1 + + + + + + + + + +CSWA−13 +EWCIII]=4.4 Å +sSFR=43.1 Gyr−1 + + + + + + + + + +CSWA−139 +EWCIII]=3.4 Å +sSFR=2.9 Gyr−1 + + + + + + + + + +CSWA−2 +EWCIII]=3.1 Å +sSFR=19.9 Gyr−1 + + + + + +1 +10 +100 +1000 +CSWA−39 +EWCIII]=1.1 Å +sSFR=11.7 Gyr−1 + + + + + + + + + +CSWA−19 +EWCIII]=0.7 Å +sSFR=0.5 Gyr−1 + + + + + + + + + +CSWA−128 +EWCIII]=0.6 Å +sSFR=1.0 Gyr−1 + + + + + + + + + +CSWA−103 +EWCIII]=0.5 Å +sSFR=0.7 Gyr−1 + + + + + +1 +10 +100 +1000 +CSWA−163 +EWCIII]<3.1 Å +sSFR=1.8 Gyr−1 +0.5 +1.0 +1.5 +2.0 +0.0 +λobs (µm) + + + + +CSWA−40 +EWCIII]<1.7 Å +sSFR=2.1 Gyr−1 +0.5 +1.0 +1.5 +2.0 +0.0 +λobs (µm) + + + + +CSWA−165 +EWCIII]<1.9 Å +sSFR=3.9 Gyr−1 +0.5 +1.0 +1.5 +2.0 +0.0 +λobs (µm) + + + + +CSWA−11 +EWCIII]<1.4 Å +sSFR=7.4 Gyr−1 +0.5 +1.0 +1.5 +2.0 +0.0 +λobs (µm) +1 +10 +100 +1000 +CSWA−116 +EWCIII]<1.1 Å +sSFR=1.6 Gyr−1 +Figure 4. SEDs of galaxies in the sample. The black circle represents broad band photometry data, blue line represents best fit population synthesis model to +the observed data (see §2.5) and green square shows synthetic broad band flux from the best fit model. The lower right of each panel shows object ID, sSFR +and CIII] equivalent widths. +Object +log (M★/M⊙) +sSFR +ˆ𝜏𝑉 +(Gyr−1) +CSWA-141 +8.6+0.2 +−0.3 +31.2+60.8 +−16.3 +0.17+0.18 +−0.12 +CSWA-13 +9.8+0.3 +−0.3 +43.1+56.6 +−28.7 +0.53+0.13 +−0.27 +CSWA-139 +10.3+0.3 +−0.3 +2.9+14.3 +−2.0 +0.77+0.41 +−0.33 +CSWA-2 +9.1+0.3 +−0.3 +19.9+26.1 +−10.4 +0.96+0.31 +−0.27 +CSWA-39 +9.9+0.3 +−0.4 +11.7+13.8 +−8.1 +0.96+0.24 +−0.31 +CSWA-128 +9.9+0.1 +−0.1 +1.0+0.4 +−0.3 +0.13+0.06 +−0.07 +CSWA-19 +10.5+0.1 +−0.1 +0.5+0.4 +−0.1 +1.09+0.21 +−0.16 +CSWA-103 +10.4+0.1 +−0.2 +0.7+1.1 +−0.3 +0.48+0.31 +−0.23 +CSWA-163 +9.9+0.1 +−0.1 +1.8+0.9 +−0.9 +0.67+0.09 +−0.13 +CSWA-40 +10.8+0.2 +−0.2 +2.1+3.3 +−1.3 +0.43+0.29 +−0.25 +CSWA-165 +10.0+0.2 +−0.2 +3.9+3.0 +−1.9 +0.62+0.12 +−0.13 +CSWA-11 +10.0+0.4 +−0.3 +7.4+14.0 +−5.5 +0.28+0.31 +−0.20 +CSWA-116 +9.4+0.2 +−0.2 +1.3+2.4 +−0.7 +0.27+0.34 +−0.18 +Table 6. Physical properties inferred from BEAGLE fitting for subset of +CASSOWARY galaxies with optical and near-IR photometry. From left to +right, the columns give the object name, C III] equivalent widths, magnifica- +tion corrected stellar mass, specific star formation rates and V-band optical +depth. +Ten sources have multi-wavelength photometry with SED infor- +mation enabling stellar mass and sSFR measurements. Below we +briefly comment on individual galaxy properties where sources are +ordered by descending CIII] equivalent width. +3.1 +Notes on Individual Sources +CSWA-141 is an extreme equivalent width optical line emitting +galaxy at 𝑧 = 1.425 with an integrated apparent magnitude of +𝑟 = 20.7. The Magellan/FIRE spectrum reported in Stark et al. +(2013a) shows a large number of rest-frame optical emission +lines, including the temperature sensitive [OIII]𝜆4363 auroral line +and the density sensitive [SII]𝜆𝜆6717,6731 and [OII]𝜆𝜆3727,3730 +lines (see Figure 3). We have since obtained deep Keck/ESI and +LBT/MODS optical spectra and optical and near-IR imaging, pro- +viding constraints on the rest-UV metal lines and the SED. +The optical to near-infrared SED of CSWA-141 (Figure 4) im- +plies a very large specific star formation rate (sSFR=31+61 +−16 Gyr−1). +After correcting for magnification due to lensing (𝜇=5.5), the stellar +mass and star formation rate of the best fitting model are 3.98×108 +M⊙ and 12+24 +−7 M⊙ yr−1, respectively (Table 6). The flux in the +medium-band J2 MOSFIRE filter (covering 1.117 to 1.246 𝜇m) is +significantly in excess of that in adjacent filters, as expected given the +MNRAS 000, 1–20 (2022) + +11 +Line +𝜆rest +𝜆obs +Fline +EW +(Å) +(Å) +FCIII]1909 +(Å) +Keck/ESI +[CIII] +1906.73 +4624.32 +1.02(0.10) +2.3(1.3) +CIII] +1908.68 +4628.84 +1.00 +2.3(1.4) +Fe II* +2626.64 +6370.24 +0.22(0.07) +0.9(0.5) +Mg II +2796.36 +6783.42 +1.30(0.07) +9.7(6.8) +2803.53 +6800.79 +0.65(0.04) +4.8(2.6) +[OII] +3727.10 +9039.02 +5.10(0.04) +26.3(12.4) +3729.86 +9045.68 +6.62(0.09) +39.2(19.9) +[NeIII] +3870.16 +9385.28 +4.79(0.23) +19.5(13.8) +LBT/MODS +Line +𝜆rest +𝜆obs +Fline +EW +(Å) +(Å) +FCIII]1908 +(Å) +[CIII] +1908 +4622.13 +1.00 +3.5(1.5) +He II +1640.52 +3974.16 +< 0.08 +< 0.7 +CIV +1549 +3758.75 +< 0.11 +< 0.8 +OIII] +1660.81 +4027.93 +0.09(0.02) +0.3(0.2) +1666.15 +4040.15 +0.23(0.03) +0.7(0.2) +Si III] +1882.98 +4566.25 +0.24(0.03) +0.7(0.1) +Si III] +1892.03 +4588.16 +0.11(0.02) +0.3(0.1) +Table 7. Rest-UV emission line measurements of CSWA-141. Emission line +fluxes are presented relative to the CIII]𝜆1909 line flux for the Keck/ESI +data, while the line fluxes are presented relative to unresolved combined +CIII] flux for LBT/MODS data. The upper limits are 3𝜎. +contamination by extremely strong [OIII] and H𝛽 lines. We use the +J2 flux excess to calculate the equivalent width from [OIII] and H𝛽, +following the methodology adopted at higher redshift (e.g.,Stark +et al. 2013b; Smit et al. 2015). This approach yields a rest-frame +equivalent width of W[OIII]+H𝛽 =730 Å, consistent with the very +young stellar populations (32 Myr for constant star formation) im- +plied by the population synthesis modeling. While the optical line +EW is significantly in excess of what is seen in typical star forming +galaxies at 𝑧 ≃ 2 (e.g.,Boyett et al. 2022), it is nearly identical to the +average [OIII]+H𝛽 EW at 𝑧 ≃ 7 − 8, as implied by flux excesses in +Spitzer/IRAC bandpasses (Labbé et al. 2013; Smit et al. 2015; De +Barros et al. 2017; Endsley et al. 2020). The continuum brightness +of CSWA-141 enables a unique and detailed view of this population. +The ESI spectrum covers 4100-10000 Å, revealing promi- +nent emission from [CIII]𝜆1907, CIII]𝜆1909, Fe II★𝜆2626, Mg +II𝜆𝜆2797,2804, [OII]𝜆𝜆3726,3729, [Ne IIII]𝜆3869, and H𝛿 (Ta- +ble 7). The [CIII], CIII] doublet is easily resolved by ESI (Figure 2) +with a total rest-frame equivalent width of WCIII]=4.6Å, the largest +of the sixteen galaxies considered in this paper. Nebular Mg II emis- +sion also exhibits a very large rest-frame equivalent width (WMgII += 15.0 Å), as is common in lower mass galaxies (e.g.,Erb et al. +2012; Guseva et al. 2019). The MODS spectrum provides better +blue sensitivity than ESI, yielding detection of OIII]𝜆1661,1666 +and Si III]𝜆𝜆1883,1892. The CIII] doublet is also detected, but it +is unresolved at the resolution of MODS (Figure 5). The summed +equivalent widths of the OIII] and Si III] doublet (1.0 Å and 1.0 Å, +respectively) are considerably lower than CIII] (see Table 7). The +high ionization lines He II𝜆1640 and CIV𝜆𝜆1548,1550 are not de- +tected, implying rest-frame equivalent widths below 0.3 and 0.5 Å +(at 3𝜎), respectively. For emission lines detected by both ESI and +MODS, we will adopt whichever instrument provides the higher +S/N EW measurement for our subsequent analysis and discussion. +The rest-frame optical emission lines detected in the FIRE +spectrum provide an array of constraints on the nebular gas +physical conditions. The detection of [OIII]𝜆4363 in the FIRE +spectrum enables a measure of the nebular electron temperature +(Te = 1.5 ± 0.1 × 104 K ) and the oxygen abundance via the direct +T𝑒 method. Following the process discussed in §2.2.3, we find that +12 + log(O/H) = 7.95 ± 0.08, implying a gas-phase metallicity of +0.18 Z⊙. Our measurement is very similar to Sanders et al. (2016b) +who reported oxygen abundance (12 + log(O/H)) of CSWA-141 +based on our line flux measurements given in Table 4. The derived +metallicity is also consistent with the metallicities derived from the +N2 and O3N2 indices with the calibration presented in Bian et al. +(2018) (12 + log(O/H) < 8.0). +The O32 (6.6) and R23 indices (11.4) point to a large ioniza- +tion parameter and gas excitation. The exact values depend on the +input ionizing spectrum. Photoionization modeling using BEAGLE +resulted in a large ionization parameter of log 𝑈𝑠 = -2.1±0.1, which +is broadly consistent with O32 vs ionization parameter relationships +in the literature (e.g., Sanders et al. 2016a; Berg et al. 2019). The +photoionization modeling further suggested a high ionizing photon +production efficiency of log (𝜉ion/Hz erg−1) = 25.5±0.1. This is +higher than the canonical value typically assumed for galaxy-driven +reionization model (Robertson et al. 2010) but consistent with other +strong CIII] emitters in the literature (e.g., Nakajima et al. 2018). +While the measured O32 and R23 are rare among more massive star- +forming galaxies at 𝑧 ≃ 2, they are consistent with the O32-sSFR +and O32-R23 trends that are observed at high redshift (e.g., Sanders +et al. 2016a; Strom et al. 2016). +The electron densities inferred from the flux ratios of the [OII] +and [SII] doublets using PyNeb (160+76 +−74 cm−3 and 350+294 +−206 cm−3, +respectively) are consistent with the median density of more massive +star forming galaxies at 𝑧 ≃ 2 (250 cm−3; e.g., Sanders et al. 2016a). +In contrast, the resolved [CIII], CIII] doublet suggests gas at very +high density (16500+12100 +−7800 cm−3). Such an offset between densities +derived from CIII] and those inferred from [OII], [SII] have been +seen in other galaxies at high redshift (e.g., James et al. 2014). We +will come back to discuss this in more detail in §4. +Finally, we note that the MODS and FIRE spectra reveal emis- +sion lines at 3827, 15304, 15612, 15763, 20663 Å which appear +nearly spatially coincident with CSWA-141 but are not associated +with the 𝑧 = 1.425 galaxy (see Figure 5). We identify these as Ly𝛼, +H𝛽, [OIII]𝜆𝜆4959,5007, and H𝛼 in a second fainter gravitationally +lensed source at 𝑧 = 2.148. This higher redshift galaxy is unre- +solved from the 𝑧 = 1.425 source in existing ground-based optical +and near infrared images. Given that the H𝛼 flux of the 𝑧 = 1.425 +galaxy is 7.4× larger than the 𝑧 = 2.148 source, we expect that +the newly-discovered higher redshift source contributes negligibly +(at the 5% level) to the broadband flux and the rest-UV continuum +in the MODS and ESI spectra. Higher resolution imaging will be +required to disentangle the two sources. +CSWA-13 is a bright galaxy at 𝑧 = 1.87 that was first confirmed +in Stark et al. (2013a) through the detection of Ly𝛼 emission and nu- +merous interstellar absorption lines in an MMT blue channel spec- +trum. CIII] emission is confidently detected (WCIII]=4.4±0.9 Å) in +the discovery spectrum. He II is also detected (WHeII=4.3 ± 0.9 Å) +with a broad FWHM (2430 km s−1) that is indicative of a stellar +wind origin. We do not detect the OIII] doublet, implying individual +components with equivalent widths less than 0.8 Å. While this is +among the strongest CIII] emitters in our sample, the redshift places +the strong rest-optical lines in regions of poor atmospheric transmis- +sion. We have obtained multi-wavelength imaging in the optical and +near-IR (Figure 4). The SED reveals a large sSFR (43.1 Gyr−1), lit- +MNRAS 000, 1–20 (2022) + +12 +Mainali et al. +tle dust attenuation ( ˆ𝜏𝑉 =0.53), and a magnification-corrected stellar +mass of log (M★/M⊙) = 9.8. +CSWA-139 was confirmed to have a redshift of 𝑧 = 2.54 in +Stark et al. (2013a) based on the presence of Ly𝛼 absorption and in- +terstellar metal absorption lines in an MMT spectrum. The spectrum +also shows emission from the [CIII],CIII]𝜆𝜆1907,1909 doublet with +a total equivalent width of WCIII] = 3.4 ± 2.6Å. Here we present +new optical and near-IR imaging from the LBT and MMT. The SED +is best fit with an sSFR of 2.9 Gyr−1, ˆ𝜏𝑉 =0.77, and a stellar mass +of log (M★/M⊙) = 10.3 after magnification correction. +CSWA-2 (SDSS J1038+4849) was first reported in Belokurov +et al. (2009), and the source redshift (𝑧 = 2.20) was subsequently +confirmed in Jones et al. (2013) through detection of rest-optical +emission lines. The lens reconstruction described in Jones et al. +(2013) shows that CSWA-2 is a merger of two systems with a stel- +lar mass ratio (6 ± 3):1. log (M★/M⊙) = 9.1+0.2 +−0.1 and one of the +largest sSFR (19.9 Gyr−1). The oxygen abundance 12+log(O/H) +of the system as calculated by using N2 index is 8.25 (∼0.4 Z⊙). +The Balmer decrement ratio (H𝛼/H𝛽=3.47) suggests little nebu- +lar extinction whereas O3 of 1.80 imply relatively larger excita- +tion from ionized gas. Using the metallicity calibration of Bian +et al. (2018), we estimate the oxygen abundance 12+log(O/H) of +the system using the O3 index as 8.4 (∼0.5 Z⊙) In this paper, we +present new optical spectroscopy of this system obtained with ESI. +The spectrum is dominated by continuum emission from the lower +mass source (denoted J1038 North in Jones et al. (2013) which +is considerably brighter in the optical. The spectrum shows emis- +sion from [CIII],CIII]𝜆𝜆1907,1909 with a total equivalent width of +WCIII]=3.1 ± 1.8 Å. +CSWA-39 (SDSS J1527+0652), a bright (𝑟 = 20.5) 𝑧 = 2.759 +galaxy was first identified as part of the SDSS Giant Arcs Sur- +vey (SGAS; Hennawi et al. 2008) and was spectroscopically con- +firmed by Koester et al. (2010) through detection of Ly𝛼 emission +and interstellar absorption lines. We have obtained an ESI opti- +cal spectrum and multi-color optical imaging. Both components of +the [CIII], CIII] doublet are detected in the spectrum, with a total +S/N=16.1 for the summed doublet flux. The rest-frame equivalent +width (WCIII]=1.1 Å) is typical of similarly luminous galaxies at +this redshift (e.g., Shapley et al. 2003; Du et al. 2017). We also +detect Ly𝛼 emission with a moderate rest-frame equivalent width +(WLy𝛼=11.8±6.2Å). No other nebular UV lines are detected in the +ESI spectrum. The upper limit on the OIII]𝜆𝜆1661,1666 compo- +nents imply equivalent widths below 1 Å, consistent with the OIII] +emission strengths in the Shapley et al. (2003) composite of 𝑧 ≃ 3 +galaxies with similar Ly𝛼 equivalent widths. +CSWA-38 (SDSS J1226+2152) was confirmed to lie at 𝑧 = +2.923 by detection of Ly𝛼 and metal absorption lines in (Koester +et al. 2010). Like CSWA-39, this source was first identified in +Sloan Giant Arcs survey. Here we present deep ESI spectroscopy +and imaging. The optical spectrum reveals a 4.1𝜎 detection of +the CIII]𝜆1909 component, but the [CIII]𝜆1907 component is situ- +ated on a skyline, precluding a useful limit. The rest-frame equiv- +alent width of the CIII]𝜆1909 component (WCIII]𝜆1909=0.4 Å) is +comparable to CSWA-38 and CSWA-19. Ly𝛼 emission is weak +(WLy𝛼=0.4 Å), and no other nebular UV lines are detected. +CSWA-19 (SDSS J0900+2234) was first confirmed in (Diehl +et al. 2009) at 𝑧 = 2.03 via detection of Ly𝛼 emission and several +metal absorption features in a spectrum from the dual imaging spec- +trograph (DIS) on the Astrophysical Research Consortium (ARC) +3.5 meter telescope at the Apache Point Observatory. We have since +obtained a deep ESI spectrum and MMT near-infrared imaging of +this source. The combined optical and near-infrared SED is best- +fit by a model with a (magnification-corrected) stellar mass of log +(M★/M⊙) = 10.5, a specific star formation rate of 0.5 Gyr−1, and +V-band attenuation optical depth of ˆ𝜏𝑉 =1.09. The ESI spectrum +of the source shows weak detections of [CIII], CIII] 𝜆𝜆1907, 1909 +with an integrated S/N=8.6 across both components of the doublet. +The total rest-frame equivalent width (WCIII]=0.7 Å) is among the +lowest in our sample. No other nebular rest-UV lines are detected, +as Ly𝛼 is situated to the blue of the ESI coverage. +CSWA-128 (SDSS J1958+5950) is a bright (r=20.7) z=2.22 +galaxy that was spectroscopically confirmed in Stark et al. (2013a) +through detection of rest-optical emission lines in an LBT/LUCI +near-infrared spectrum and interstellar metal absorption lines in +an MMT optical spectrum. We have since obtained optical and +near-infrared imaging and a deep ESI optical spectrum. The +magnification-corrected SED (Figure 4) implies a stellar mass of log +(M★/M⊙) = 9.9+0.3 +−0.3 and an sSFR of 1.0 Gyr−1. The ESI spectrum +reveals a faint 4.8𝜎 detection of [CIII], CIII] emission at the sys- +temic redshift (𝑧 = 2.225) defined by the rest-optical lines, implying +a rest-frame equivalent width of WCIII]=0.7 Å for the doublet. No +other nebular lines are detected in the rest-UV. +The flux ratios of rest-optical lines (Table 4) constrain the gas +physical conditions, providing a framework to understand the weak +UV nebular line emission. We infer the gas-phase oxygen abun- +dance using the R23, O32 and O3 calibration presented in Bian +et al. (2018). The three indices suggest metallicities of 12+log O/H += 8.2 (O32), 12+log O/H=8.4 (R23) and 12+log O/H=8.5 (O3). As +discussed in Sanders et al. (2020), O32 metallicity calibration in +Bian et al. (2018) may provide a better estimate of oxygen abun- +dance for high redshift galaxy. This suggests that the metallicity of +the ionized gas of CSWA-128 is ∼0.3-0.4 Z⊙. The values of O32 +(3.3) and R23 (7.0) are a factor of 2.0 and 1.6 smaller than that of +the strong CIII] emitter CSWA-141, consistent with expectations +for nebular gas with a lower ionization parameter and excitation. +In contrast, the electron density implied by the [SII]𝜆𝜆6717,6731 +doublet (200 cm−3) is similar to that found in both strong CIII] +emitters such as CSWA-141 and typical 𝑧 ≃ 2−3 galaxies (Sanders +et al. 2016a). +CSWA-103 (SDSS J0145-0455) is a 𝑧 = 1.96 galaxy that was +confirmed in Stark et al. (2013a) through detection of metal absorp- +tion lines and weak Ly𝛼 emission in an MMT blue channel spec- +trum. We have since obtained a moderate resolution Keck/ESI spec- +trum and optical and near-infrared imaging with LBT and MMT, +respectively. The broadband SED (Figure 4) is best fit by a stel- +lar synthesis model with a stellar mass (magnification corrected) +of log (M★/M⊙) = 10.4, sSFR=0.7 Gyr−1, and ˆ𝜏𝑉 =0.48. The ESI +spectrum constrains rest-frame wavelengths 1350-3425 Å. Positive +emission is detected from both components of the [CIII], CIII] dou- +blet, implying a total rest-frame equivalent width of 0.5 Å. No other +nebular emission lines are observed in the ESI spectrum. +CSWA-164 (SDSS J0232-0323) was spectroscopically con- +firmed in Stark et al. (2013a) based on the presence of Ly𝛼 emission +and interstellar absorption lines in an MMT blue channel spectrum. +Stark et al. (2013a) also presented detection of [OII], [OIII]𝜆5007, +and H𝛼 in a Magellan/FIRE near-infrared spectrum of CSWA-164, +revealing a systemic nebular redshift of 𝑧 = 2.512. We have since +obtained a deep moderate resolution optical spectrum with ESI +and optical broadband imaging. The ESI spectrum reveals the Ly𝛼 +emission (W𝐿𝑦𝛼 = 2.0 Å) detected previously together with weak +emission (S/N=4.1) from the [CIII],CIII]𝜆𝜆1907,1909 doublet. This +corresponds to a total CIII],CIII] equivalent width of just 0.4 Å, the +smallest measured value in our sample. +MNRAS 000, 1–20 (2022) + +13 +0.38 +0.40 +0.42 +0.44 +0.46 +0.48 +λobs(µm) +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +Relative Fλ +Lyα (z=2.148) +CIII]1908 (z=1.425) +Si III]1883 (z=1.425) +OIII]1666 (z=1.425) +1.54 +1.56 +1.58 +1.60 +λobs(µm) +0 +2 +4 +6 +8 +Hα (z=1.425) +[OIII]λ4959 (z=2.147) +Hβ (z=2.147) +[OIII]λ5007 (z=2.147) +Figure 5. Optical and NIR spectra of CSWA-141. A secondary source (CSWA-141b) is identified in the Optical+NIR spectra (see §3) (Left:) Ly𝛼 emission at +𝑧 = 2.148 from CSWA-141b in the LBT/MODS spectrum alongside [SiIII]𝜆1883 and CIII]𝜆1908 from CSWA-141 at 𝑧 = 1.425. (Right:) Rest optical lines +([OIII]𝜆𝜆4959,5007, H𝛽) from CSWA-141b at 𝑧 = 2.147 observed in the FIRE spectrum alongside the H𝛼 emission line from CSWA-141. +The FIRE spectrum provides insight into the ionized gas phys- +ical conditions of CSWA-164. Unfortunately both H𝛽 and [NII] are +obscured by skylines, precluding a robust determination of the oxy- +gen abundance through standard strong line calibrations. We can +however estimate oxygen abundance using O32 metallicity calibra- +tions from Bian et al. (2018). We find that O32=0.7 corresponds +to the oxygen abundance of 12+log O/H=8.6. Thus the ionized gas +appear to be reasonably metal rich in CSWA-164. The value of +ionization-sensitive line ratios (O32 = 0.7) is among the lowest in +our sample. In contrast to the metallicity and ionization parameter, +the electron density derived from the [OII] doublet (165 cm−3) is +consistent with the range spanned by other galaxies in our sample. +CSWA-40 (SDSS J0952+3434) is a 𝑧 = 2.190 galaxy identified +through the Sloan Bright Arcs Survey and spectroscopically con- +firmed by Kubo et al. (2010) using the DIS on the ARC 3.5 meter +and the RC Spectrograph on the Mayall 4 meter telescope at Kitt +Peak National Observatory. The spectra reveal Ly𝛼 in absorption +along with several other metal absorption lines. We have obtained a +moderate resolution optical spectrum and imaging with Keck/ESI. +The continuum S/N of the CSWA-40 ESI spectrum is lower than +other systems. This is the only ESI spectrum that does not reveal +detection of the [CIII], CIII] doublet, implying a rest-frame equiv- +alent width below 1.6 Å for the sum of both components. No other +nebular emission lines are observed in the spectrum. +CSWA-163 (SDSS J2158+0257) was spectroscopically con- +firmed in Stark et al. (2013a) based on identification of metal ab- +sorption lines and Ly𝛼 absorption in an MMT blue channel spec- +trum. A Magellan/FIRE near-infrared spectrum was also obtained +in that paper, revealing a systemic nebular redshift of 𝑧 = 2.079 +based on detection of [OII], H𝛾, H𝛽, [OIII], H𝛼, and [NII]. We +have obtained new optical and near-infrared imaging of this source, +allowing constraints to be placed on the broadband SED (Figure 4). +The data are best fit by stellar synthesis models with stellar mass +log (M★/𝑀⊙) = 9.9+0.1 +−0.1 after magnification correction, V-band at- +tenuation optical depth of ˆ𝜏𝑉 =0.67, and an sSFR of 1.8 Gyr−1, +suggesting CSWA-163 is a relatively massive galaxy with a fairly +evolved stellar population. Perhaps not surprisingly given the low +sSFR and lack of Ly𝛼 emission, the MMT blue channel spectrum +does not show any CIII] emission at the systemic redshift. The 3𝜎 +flux upper limit suggests that the rest-frame equivalent width of the +double must be lower than 3.1 Å. +The FIRE spectrum provides useful constraints on the ionized +gas of CSWA-163. The oxygen abundance can be derived from O32 +and O3 calibration from Bian et al. (2018). Both suggest moderately +enriched gas: 12+log O/H=8.5 (O32) and12+log O/H=8.4 (O3) im- +plying a nebular oxygen abundance of 0.4-0.5 Z⊙. The ionization- +sensitive line ratios (O32=1.1, O3=4.3) are consistent with a rel- +atively low ionization parameter and moderate gas-excitation. The +electron density inferred from [OII] is 144 cm−3, consistent with +the other systems studied in this paper. +CSWA-16 (SDSS J1111+5308) was confirmed to have a red- +shift of 𝑧 = 1.95 based on the presence of numerous metal absorp- +tion lines in an MMT blue channel spectrum (Stark et al. 2013a). +The discovery spectrum shows no emission from the blended [CIII], +CIII] doublet. The 3𝜎 upper limit on the total flux from the doublet +requires the rest-frame equivalent width to be smaller than 2.3 Å. +We have obtained multi-band optical imaging with LBT, allowing +more robust constraints to be placed on the apparent magnitude +(r=21.8) and the magnification-corrected UV absolute magnitude +(MUV=−20.8). +CSWA-165 (SDSS J0105+0144) is a 𝑧 = 2.13 galaxy that +was first confirmed in Stark et al. (2013b) through detection of +strong metal absorption lines and weak Ly𝛼 emission in an MMT +blue channel spectrum. We have since obtained a Magellan/FIRE +near-infrared spectrum and optical and near-infrared imaging from +LBT and MMT respectively. The FIRE spectrum reveals detection +of [OII], H𝛽, [OIII]𝜆5007, H𝛼, and [NII], indicating a systemic +redshift of 𝑧 = 2.128. The MMT shows no emission from the +[CIII], CIII] doublet at the systemic redshift. The 3𝜎 upper limit +on the flux of the doublet indicates that the total CIII] equivalent +width must be lower than 1.3 Å. The broadband SED is best-fit by +a synthesis model with stellar mass of log(M★/M⊙) = 10.0, sSFR +of 3.9 Gyr−1, and ˆ𝜏𝑉 =0.62. +The gas-phase metallicity can be inferred from O32, R23, and +O3 strong line calibrations. All three indicate metal rich ionized +gas: 12+log O/H = 8.4 (O32) 8.6 (R23), 8.6 (O3), consistent with +a gas-phase metallicity in the range 0.5-0.8 Z⊙. The ionization- +sensitive ratios (O32=0.6, O3=2.1) suggest an ionization parameter +that is lower than average among 𝑧 ≃ 2 − 3 galaxies. In contrast, +MNRAS 000, 1–20 (2022) + +14 +Mainali et al. +the electron density derived from the [OII] doublet flux ratio (220 +cm−3) is similar to that found in other systems at high redshift. +CSWA-11 (SDSS J0800+0812) was confirmed at 𝑧 = 1.41 via +detection of metal absorption lines and [OII] emission in MMT +blue and red channel spectra (Stark et al. 2013a). The CIII] dou- +blet is not detected in either the blue or red channel MMT spectra, +implying a rest-frame equivalent width below 0.9 Å at 3𝜎. We +have obtained multi-wavelength imaging and near-infrared spec- +troscopy. The magnification-corrected SED suggests a stellar mass +of log(M★/M⊙) = 10.0+0.4 +−0.3, an sSFR of 7.4 Gyr−1, and V-band +attenuation optical depth of ˆ𝜏𝑉 =0.28. The FIRE spectrum reveals +detections of [OII], [OIII]𝜆5007, and H𝛼, but strong skylines ob- +scure detections of H𝛽, [OIII]𝜆4959 and [NII]𝜆6586. Using the +theoretically-expected flux ratio of [OIII]𝜆5007/[OIII]𝜆4959, we +infer that this system has O32 = 0.92, relatively low for our sam- +ple. Using the O32 calibration, we estimate metallicity of 12+log +O/H=8.5. The electron density implied by the [OII] doublet flux +ratio is 469+416 +−238 cm−3, consistent with the range spanned by other +galaxies in our sample. +CSWA-116 (SDSS J0143+1607) is a 𝑧 = 1.50 galaxy con- +firmed in Stark et al. (2013a) through detection of rest-UV metal +absorption lines and [OII] in MMT blue and red channel spectra. +We do not detect the CIII] doublet in the MMT spectra, indicating +that the rest-frame equivalent width is below 0.7 Å at 3𝜎. We have +obtained optical and near-infrared imaging of CSWA-116, provid- +ing constraints on the broadband SED. The data are best fit by a +stellar model with log(M★/M⊙) = 9.4, an sSFR of 1.3 Gyr−1, and +V-band attenuation optical depth of ˆ𝜏𝑉 =0.27. +3.2 +Physical Properties of CASSOWARY galaxy sample +The data obtained for this paper provide new constraints on the +ionized gas properties and the stellar populations of lensed galaxies +at 𝑧 ≃ 1 − 3 identified by the CASSOWARY selection in SDSS. +Here we briefly describe what these data reveal about the aver- +age properties in this sample, providing a concise summary of the +source-by-source description presented in §3.1. Following correc- +tion for magnification, the rest-frame UV absolute magnitudes are +found to range between MUV=−20.2 and MUV=−23.0, with a me- +dian value (MUV=−21.9) that is roughly three times the value of +L★ +UV at 𝑧 ≃ 2 (e.g., Reddy & Steidel 2009). Both optical and near- +infrared imaging exist for 11 of the 16 galaxies considered in this +paper, allowing the stellar content to be characterized through SED +fitting. The median stellar mass and sSFR of this subset is 1.3×1010 +M⊙ and 2.1 Gyr−1, respectively. The latter is similar to the average +sSFR of 𝑧 ≃ 2 − 3 galaxies (e.g., Reddy & Steidel 2009). +Rest-optical line measurements exist for seven of the CAS- +SOWARY galaxies shown in Figure 1. The median gas-phase oxy- +gen abundance derived from the rest-optical line ratios is 12+log +O/H = 8.33, i.e., ionized gas metallicity of 0.4 Z⊙. The ionization- +sensitive ratio O32 ranges between 0.7 and 6.7 with a median value +of O32=1.1. While this is slightly lower than the median O32 in the +KBSS and MOSDEF surveys, it is well within the range spanned +by galaxies in these samples (e.g., Sanders et al. 2016a; Strom et al. +2016; Steidel et al. 2016). The Balmer decrements range between +H𝛼/H𝛽=3.47 and 4.97. The median electron density derived from +the [OII] or [SII] doublet flux ratios (198 cm−3) is close to the aver- +age electron density of 𝑧 ≃ 2.3 galaxies from the MOSDEF survey +(Sanders et al. 2016a). +All sixteen galaxies in our sample have constraints on rest-UV +line emission. Most sources show very weak [CIII], CIII] emission. +The median equivalent width for the summed doublet is 1 Å, similar +to that seen in composite spectra of 𝑧 ≃ 3 LBGs (Shapley et al. 2003; +Llerena et al. 2021). The two strongest [CIII], CIII] emitters (CSWA +141, CSWA -13) have rest-frame equivalent widths of 4.6 Å and +4.4 Å, respectively. The rest-UV spectrum of CSWA-141 also shows +prominent nebular emission from OIII], Si III] and Mg II. While +these lines are absent in CSWA-13, its spectrum does reveal broad +He II emission, indicative of a significant Wolf Rayet population. +No high ionization nebular lines are detected in our sample. +Our sample allows to compare and contrast ISM conditions ex- +pected in strong and weak CIII] emitters. A typical CIII] equivalent +widths of star-forming galaxies at 𝑧 ∼ 2−3 is ∼1.7 Å (Shapley et al. +2003; Du et al. 2017). From here on, we refer to those galaxies with +CIII] equivalent widths > 2× typically seen at 𝑧 ∼ 2−3 (≳ 3.5 Å) as +strong CIII] emitters, whereas objects with CIII] equivalent widths +below this threshold are described as weak CIII] emitters. Together +with galaxies presented in this paper, we compile sources from the +literature having constraints from both CIII] equivalent widths and +optical spectra. The majority of the literature objects are lower red- +shifts galaxies (Giavalisco et al. 1996; Leitherer et al. 2011; Berg +et al. 2016, 2019; Senchyna et al. 2017, 2019; Ravindranath et al. +2020), while majority of sample at 𝑧 > 1 are comprised of gravita- +tionally lensed systems (Mainali et al. 2020; de Barros et al. 2016; +Stark et al. 2014; Vanzella et al. 2017; Berg et al. 2018; Bayliss +et al. 2014; Vanzella et al. 2016; James et al. 2014; Erb et al. 2010; +Christensen et al. 2012; Rigby et al. 2021; Quider et al. 2009; Hain- +line et al. 2009; Pettini et al. 2000; Teplitz et al. 2000; Jones et al. +2013). We present a compilation of 𝑧 > 1 sources in Table 8. +In Figure 6, we plot empirical relationships between CIII] +equivalent width and oxygen abundance (left panel), and CIII] +equivalent width and O32 (right panel). The oxygen abundance +of the strong CIII] emitters are mostly measured using direct metal- +licity measurements, while strong optical line calibrations are used +for the weaker CIII] emitters (see Table 8). As can be seen in the +Figure 6, the gas-phase metallicity of the strong CIII] emitters is +consistently below 12+log(O/H)=8.0, suggesting metallicities be- +low 20% Z⊙. In contrast, most of the weaker CIII] emitters imply +higher metallicities than this value. This result is consistent with pre- +vious investigations in the literature (e.g., Rigby et al. 2015; Jaskot +& Ravindranath 2016; Maseda et al. 2017; Nakajima et al. 2018; +Schaerer et al. 2018; Senchyna et al. 2019; Ravindranath et al. 2020; +Du et al. 2020; Tang et al. 2021). The right panel of Figure 6 shows +that the O32 values of the stronger CIII] emitters (≳ 3.5 Å) are on +an average six times larger than the those of the weaker CIII] emit- +ters. The median O32 value of the weaker CIII] emitters are similar +to typical galaxies at 𝑧 ∼ 2 − 3 (O32=1.3,Sanders et al. 2016a). A +variety of factors can influence the O32 value of a galaxy. The ele- +vated values seen in the strongest of CIII] emitters tend to be found +in galaxies dominated by the light of a very young stellar popula- +tion (Tang et al. 2021; Sanders et al. 2020), as expected in galaxies +undergoing a burst of star formation. Overall these empirical rela- +tionships support a physical picture where galaxies with metal poor +gas and young stellar populations are able to power strong CIII] +emission (e.g. Stark et al. 2014; Rigby et al. 2015; Senchyna et al. +2017). The scatter seen in the CIII] EW at a given metallicity or +O32 value may stem from differences in ISM conditions (relative +carbon abundances (C/O), ionization parameters) and stellar age +and metallicity. +The compilation of strong CIII] emitters further provides in- +formation on the global spectral properties expected from typical +reionization era systems. In Figure 7, we show strong CIII] emit- +ters (denoted by red square) and weak CIII] emitters (denoted by +blue square) in log([OIII]/H𝛽) vs sSFR (left panel) and log(O32) +MNRAS 000, 1–20 (2022) + +15 +0.1 +1.0 +10.0 +EWCIII] (Å) +7.0 +7.5 +8.0 +8.5 +9.0 +12+log(O/H) +This work +Mainali+2020 +Ravindranath+2020 +Stark+2014 +James+2014 +Erb+2010 +Stark+2015 +deBarros+2014 +Christensen+2012 +Bayliss+2014 +Vanzella+2016/17 +Rigby+2015/21 +Berg+2016/19 +Leitherer+2011 +Giavalisco+1996 +Quider+2009 +Pettini+2000 +Berg+2018 +Senchyna+2017/19 +1 +10 +EWCIII] (Å) +1 +10 +O32 +Figure 6. (Left:) Empirical relationship between oxygen abundance (12+log(O/H)) and rest frame CIII] equivalent width (EWCIII]). (Right:) Empirical +relationship between the line ratio of [OIII]𝜆𝜆4959,5007 to [OII]𝜆𝜆3727,3729 (i.e. O32) and rest-frame CIII] EW (EWCIII]). The red symbol represents bright +lensed galaxies presented in this paper, while other data points are compilation from the literature. +Figure 7. The strong (blue) and weak (red) CIII] emitters (see §3.2) in O3 vs sSFR (left) and O32 vs R23 (right) plots. Star forming galaxies at 𝑧 ∼ 2.3 from +KBSS survey (Strom et al. 2016) are shown in cyan circle whereas MOSDEF survey (Sanders et al. 2016a) are shown in violet triangle. Local galaxies from +SDSS survey are shown in grey. Galaxies with properties similar to those at z>6 tend to have strongest C III] emission. +vs log(R23) (right panel) plots. We compare them to typical line +ratios expected at 𝑧 ∼ 2 using dataset from KBSS survey (Steidel +et al. 2014; Strom et al. 2016) and MOSDEF survey (Sanders et al. +2016a), as well as at 𝑧 ∼ 0 (local SDSS galaxies). The strong CIII] +emitting galaxies appears to be distinct from local SDSS galaxies +as well as typical galaxies at 𝑧 ∼ 2 in both the plots. However, the +position of weaker CIII] emitters on both the diagrams is similar to +typical galaxies at 𝑧 ∼ 2. Taken together, this further demonstrates +that strong CIII] emitters show highly ionized gas conditions from +a large sSFR systems. Assuming these strong CIII] emitters repre- +sentative of a typical reionization era systems, we might expect a +similar ISM conditions in galaxies at 𝑧 > 6. +4 +DISCUSSION +In this paper, we present spectra of some of the brightest-known +gravitationally-lensed galaxies at 𝑧 ≃ 2−3, discovered over the foot- +print of SDSS. Included in this sample are CSWA-13 and CSWA- +141, two exceptionally bright systems with sSFRs (> 20 Gyr−1) +that are similar to those of the reionization-era. Their spectra reveal +rest-frame CIII] equivalent widths more than twice what is typical +at 𝑧 ≃ 2 − 3 (e.g., Shapley et al. 2003; Du et al. 2018; Llerena et al. +2021). In this section, we explore the ionized gas conditions and +the properties of the outflowing gas, taking advantage of emission +and absorption lines that are often too faint to be detected in indi- +vidual high redshift galaxies with similarly intense emission lines. +MNRAS 000, 1–20 (2022) + +1og([OIII]25008 / Hβ) +0.5 +0.0 +-0.5 +Strong CIIIl emitters +Weak CIIIl emitters + KBSS z~2.3 +SDSS z~0 +-2 +-1 +0 +2 +1 +log(sSFR /Gyr-1)1.5 +Strong CIIIl emitters +Weak CIIIl emitters +1.0 +KBSS z~2.3 +MOSDEF z~2.3 +log(O32) +0.5 +■SDSS z~0 +0.0 +-0.5 +.1.0 +-0.5 +0.0 +0.5 +1.0 +log(R23)16 +Mainali et al. +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +EWFeII λ2374 (Å) +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +EWFeII λ2382 (Å) +CSWA−141 +optically thin +optically thick +Erb+2012 (Composite) +Figure 8. A comparison between equivalent widths of Fe II 𝜆2374 and +Fe II 𝜆2382. The red square represents CSWA-141 data point whereas black +circles are composite data points presented in Erb et al. 2012. The two +dashed black lines represent optically thin and optically thick cases. This +reflects that Fe II is not optically thick in CSWA-141 and therefore has a +lower column density c.f. black points +Our analysis will primarily focus on CSWA-141, as the redshift of +CSWA-13 places the strong rest-optical lines in regions of low at- +mospheric transmission. For CSWA 141, the rest-optical lines are +similar in equivalent width to those found in the reionization era +(e.g., De Barros et al. 2017; Endsley et al. 2020; Boyett et al. 2022), +classifying this galaxy as an EELG and revealing a stellar population +dominated by a recent burst or upturn in star formation. +The gas properties in such intense line emitting galaxies have +been the subject of a number of spectroscopic investigations in +recent years. These studies demonstrate that the nebular gas is gen- +erally under extreme ionization conditions in EELGs (Tang et al. +2018), with the ionization parameter reaching its largest values in the +galaxies powered by the youngest stellar populations (or the largest +equivalent width rest-optical nebular lines). The gas in CSWA-141 +is consistent with this picture, showing a large O32 ratio (6.7) as +expected given its elevated sSFR (31.2 Gyr−1) and [OIII]+H𝛽 EW +(730 Å). Its large ionization parameter implied by the photoion- +isaiton models (log U = -2.1) suggests a large photon density is +impingent on the ionised gas. This can be driven be a variety of fac- +tors, including efficient ionizing photon production (e.g., Chevallard +et al. 2018; Tang et al. 2021) and a compact configuration of ion- +ized gas around the sources of ionizing radiation. The latter is the +norm for galaxies dominated by very young stellar clusters (e.g., +Whitmore et al. 2011; Hannon et al. 2019; Chen et al. 2023), and +thus may be expected in EELGs like CSWA-141. +Further insight into the gas conditions of EELGs is made possi- +ble by detection of three density-sensitive emission lines in CSWA- +141. As we discussed in §3.1, the [CIII], CIII] doublet implies +very high gas densities (16500+12100 +−7800 cm−3), perhaps again reflect- +ing a very compact or concentrated gas geometry surrounding the +extremely young star clusters that power EELGs. Although the un- +certainty in CIII] density is currently large, such high densities are +routinely seen in 𝑧 ≃ 2 − 4 galaxies with spectrally-resolved CIII] +measurements (e.g., Christensen et al. 2012; James et al. 2014, 2018; +CSWA-141 +EWMgII = 14.5Å +F2797 +F2803 = 2.0 ± 0.2 +Figure 9. Mg II 2797,2803 line profile in CSWA-141. The black curve +represents continuum subtracted flux level while the green solid line is +gaussian fit to the observed data. Both the Mg II doublet are well fitted by a +single component gaussian. Mg II 2797 is clearly stronger than Mg II 2803 +line, suggesting a Mg II doublet intensity ratio (𝐹2797/𝐹2803) of 2.0±0.2. +The doublet ratio is consistent with the intrinsic recombination value (2.0) +indicating minimal scattering by low-ionization ISM along the line of sight. +Based on the observed Mg II doublet ratio, CSWA-141 has implied escape +fraction of 𝑓esc(LyC) = 27±4%. +Bayliss et al. 2014; Acharyya et al. 2019) and are also starting to be +seen in the first handful of 𝑧 ∼> 7 galaxies with CIII] doublet mea- +surements (Stark et al. 2017; Jiang et al. 2021). As such, the high +C III] density is less likely due to a statistical fluctuation, although +a larger sample should confirm this. In most of the cases, the CIII] +density is also significantly in excess of that inferred from lower- +ionization species. The same trend is apparent in CSWA-141, with +the CIII] density being nearly two orders of magnitude higher than +those derived from [SII] and [OII]. This is consistent with a picture +(e.g., Kewley et al. 2019; Acharyya et al. 2019; Berg et al. 2021) +dictated by the ionization structure of the nebulae, with the lower +ionization rest-optical lines (i.e., [OII] and [SII]) probing primarily +the outer layers which are preferentially dominated by lower density +gas. The higher ionization lines (like CIII]) probe the inner regions +of the nebula, where densities are expected to be higher. Variations +in the critical density of the ions will additionally contribute to CIII] +probing higher density gas than [OII] (e.g., James et al. 2018). A key +question is whether very young EELGs like CSWA-141 (and many +of the 𝑧 > 7 galaxies) might have a large fraction of their ionized +gas in very dense clumps, as is expected at the earliest evolution- +ary phases following the formation of star clusters (e.g., Kim et al. +2018; Rigby & Rieke 2004). Currently samples with CIII] densities +tend to be those that have at least moderately large CIII] EW, gener- +ally indicative of a relatively young stellar population. Larger CIII] +density samples are required to test whether the presence of very +large densities is at all sensitive to the luminosity-weighted stellar +population age. +CSWA 141 also provides a unique window on the kinematics +and covering fraction of the outflowing gas in EELGs, a population +which becomes commonplace at 𝑧 > 6. As it is this outflowing +gas which regulates the escape of ionising radiation, systems like +MNRAS 000, 1–20 (2022) + +4 +3 +itive +Rel +2792 +2794 +2796 +2798 +2800 +2802 +2804 +2806 +Wavelenqth (A)17 +CSWA 141 offer potential for understanding the likely contribu- +tion of EELGs to reionisation. At low redshift, (Jaskot et al. 2017; +Chisholm et al. 2017) find that the most extreme [OIII] emitting +galaxies (the Green Peas) tend to have low outflow velocities and +suggest that this is consistent with models of suppressed superwinds, +where catastrophic cooling prevents the development of large scale +outflows (e.g., Silich et al. 2007; Silich & Tenorio-Tagle 2017; Gray +et al. 2019). The low ionization absorption lines in the CSWA 141 +spectra are all blueshifted with respect to the systemic redshift, in- +dicating the presence of outflows. In the ESI spectrum, we detect +Fe II and Mg II absorption lines, while the MODS spectrum probes +slightly bluer wavelengths, allowing detection of Al II𝜆1670. The +average velocity of low ionization outflowing gas in CSWA 141 is +76 km s−1. This is slightly lower than outflow velocities of 100-300 +km s−1 that are commonly observed in galaxies at 𝑧 ∼ 1 − 3 (e.g., +Shapley et al. 2003; Weiner et al. 2009; Steidel et al. 2010; Jones +et al. 2012). However given the low stellar mass of CSWA-141, the +measurement is consistent with expectations from known trends be- +tween galaxy mass and outflow velocity (e.g., Martin 2005; Weiner +et al. 2009; Erb et al. 2012; Chisholm et al. 2016). +The strength of the absorption lines in CSWA 141 provide +insight into the opacity of neutral gas along the line of sight to the +young star clusters which dominate the light. The Fe II 𝜆2374 and +Fe II 𝜆2382 absorption lines are very weak with equivalent widths +of 0.5 Å and 1.5 Å, respectively. Jones et al. (2018) measured a +column density N(Fe II) = 1.5+0.7 +−0.2 × 1014 cm−2, which is among +the lowest of the sample. In Figure 8, we compare these equivalent +widths with those measured from composite spectra of more typical +star forming galaxies at 1 < 𝑧 < 2 (Erb et al. 2012). As is clear in +the figure, most star forming galaxies at these redshifts show similar +Fe II 𝜆2374 and Fe II 𝜆2382 equivalent widths, as expected for +optically thick neutral gas. In contrast, the Fe II 𝜆2374 absorption in +CSWA-141 is significantly weaker than Fe II 𝜆2382. With an Fe II +𝜆2374 EW that is roughly three times weaker than that found in the +𝑧 ≃ 1 − 2 composites, the lines are much closer to expectations for +optically thin neutral gas. We additionally note that the Fe II 𝜆2382 +line is susceptible to emission filling (e.g., Erb et al. 2012) which +tends to weaken the observed Fe II 𝜆2382 equivalent widths. This +is particularly likely to be the case for EELGs like CSWA-141. +In such a scenario, the line ratio would move even closer to that +expected for optically thin conditions, implying a low covering frac- +tion and potentially low column density of neutral gas in the outflow. +Further indications that CSWA 141 has a low column density +of neutral gas comes from the resonant Mg II𝜆𝜆 2797,2803 emis- +sion line. Both components of the doublet are confidently detected +(S/N>10) in emission with total equivalent widths of 14.5 Å (Fig- +ure 9). This is not only one of the highest measured Mg II EWs at +z>1, but it is also one of the brightest Mg II emission lines, making +detailed (and resolved) study of the line uniquely possible. Recent +studies have pointed out that the flux ratio of the doublet is strongly +sensitive to the neutral gas column density in the galaxy. As such +it is thought to correlate closely with the ionizing photon escape +fraction (Henry et al. 2018; Chisholm et al. 2020; Xu et al. 2022; +Seive et al. 2022; Xu et al. 2023), perhaps providing one of the best +indirect indicators of photon leakage. At low HI column densities +(<1017.2 cm−2), galaxies become optically thin to the resonant Mg +II line photons (Chisholm et al. 2020). This leads to strong nebu- +lar Mg II emission, and it drives the doublet ratio (R=F2797/F2803) +to its intrinsic value of 𝑅 = 2. If the line photons are resonantly +scattered by Mg+ ions in the neutral gas along the line of sight, the +doublet ratio will decrease, asymptoting to a value of R=1 if the gas +is optically thick to Mg II photons (see Chisholm et al. 2020 for a +detailed discussion). +The measured Mg II doublet ratio in CSWA-141 is R=2.0±0.2, +consistent with the intrinsic value produced in the HII regions. This +suggests that optically thin channels along the line of sight to the +young star clusters are powering the nebular emission. Both compo- +nents of the doublet are well-fit by single Gaussians, suggesting that +the line profile is not significantly impacted by resonant scattering. +The very large EW of the line also points to minimal attenuation of +line photons. We note that the Mg II profile does show very weak +blue-shifted absorption (see Figure 9), suggesting the presence of +some neutral gas along the line of sight, but this gas must be either +optically thin or clumpy with low density channels to result in the +observed line profile. +Given the derived oxygen abundance of CSWA-141 (see §3.1) +and nominal assumptions on the Mg/O ratio (Chisholm et al. 2020), +this can be converted to an estimate of the hydrogen column den- +sity (See equation 14 of Chisholm et al. 2020). Given the measured +doublet ratio is consistent with the intrinsic value, CSWA-141 is for- +mally consistent with a negligible hydrogen column density. Within +the measurement errors of the flux ratio, we find a 1𝜎 upper limit on +the HI column density of 3.8×1016 cm−2. This value is well below +the HI column density at which galaxies become optically thin to +LyC radiation (<1017.2 cm−2), suggesting that CSWA-141 may be +a likely candidate for LyC leakage. While more realistic geometries +(i.e., clumpy gas) would alter the derived column densities, the ob- +served line profile requires there to be low density channels along +the line of sight where resonant line photons (and potentially LyC +emission) are transmitted (Gazagnes et al. 2020; Saldana-Lopez +et al. 2022). Because of the extreme brightness of CSWA-141, it +presents a unique opportunity to spatially resolve the absorbing gas +in an extreme line emitter that is very similar in its properties to +those systems at 𝑧 > 6. An upcoming HST UVIS grism observa- +tions (GO-16710, PI: Mainali) will provide more direct constraints +on the escape of ionizing radiation from the galaxy. +5 +SUMMARY +We present new spectroscopic and photometric observations of six- +teen bright gravitationally lensed galaxies originally identified in +SDSS via the CASSOWARY program. Observations were con- +ducted using LBT, Keck, MMT and Magellan. Included in this +sample is the 𝑧 = 1.42 galaxy CSWA-141, one of the brightest +known EELGs at high redshift, with an [OIII]+H𝛽 EW (730 Å) +nearly identical to the average value seen at 𝑧 ≃ 7 − 8. In this +paper, we focus on the rest-UV spectral properties of the sample, +leveraging high quality Keck/ESI data. Owing to the brightness of +our targets (𝑔 ≃ 19-21), we are able to detect rest-UV metal line +emission in the Keck spectra down to very low EW values. While +most systems have weak line emission (median CIII] EW =1.7 Å), +CSWA 141 shows relatively strong emission (CIII] EW 4.6 Å) to- +gether with detections of a variety of UV lines (OIII], Si III], Fe +II★, Mg II). +We compare the properties of the strong (∼> 3.5 Å) and weak +(∼< 3.5 Å) CIII] emitters in our sample and in the literature. We +find that the stronger CIII] emitters have larger sSFR and lower gas- +phase oxygen abundances. We find that the strong CIII] emitters +can be easily separated by their rest-optical line ratios, with larger +values of O32 at roughly fixed R23. Overall, these results suggest +that CIII] tends to be strong in galaxies dominated by young stellar +populations with low metallicity and extreme ionization conditions. +MNRAS 000, 1–20 (2022) + +18 +Mainali et al. +Object +EWCIII] +R23 +O32 +O3 +Electron Density +12 + log (O/H) +Reference +() +(cm−3) +CSWA-141 +4.6±1.9 +11.4±1.0 +6.6±1.0 +7.4±0.2 +160+76 +−74 +𝑎, 350+294 +−206 +𝑏, 16500+12100 +−7800 +𝑐 +7.95±0.08𝑑 +This work +CSWA-2 +3.1±1.6 +. . . +. . . +5.2±2.1 +. . . +8.4±0.2𝑔 +This work, 16 +CSWA-128 +0.7±0.1 +7.0±1.2 +3.3±0.8 +4.0±1.1 +198+85 +−76 +𝑏 +8.2±0.2𝑒, 8.4±0.2 𝑓 , 8.5±0.2𝑔 +This work +CSWA-164 +0.4±0.1 +. . . +0.7±0.2 +. . . +165+65 +−46 +𝑎 +8.6±0.2𝑒 +This work +CSWA-163 +< 3.1 +10.9±1.1 +1.1±0.1 +4.3±0.6 +144+45 +−33 +𝑎 +8.5±0.2𝑒, 8.4±0.2𝑔 +This work +CSWA-165 +< 1.9 +7.1±1.3 +0.6±0.1 +2.1±0.4 +221+75 +−64 +𝑎 +8.4±0.2𝑒, 8.6±0.2 𝑓 , 8.6±0.2𝑔 +This work +CSWA-11 +< 1.4 +. . . +0.8±0.2 +. . . +469+120 +−156 +𝑎 +8.5±0.2𝑒 +This work +RXCJ0232-588 +21.7 +6.0 +9.4 +4.1 +80𝑎 +7.61 𝑑 +1 +Ion2 +18 +. . . +> 15 +14.7 +. . . +8.07ℎ +2 +860_359 +12.4 +< 9.2 +> 6.91 +6.0 +. . . +< 8.1 𝑓 +3 +ID14 +11.8 +< 11.7 +> 10 +7.6 +. . . +< 7.8𝑑 +4 +SL2S0217 +11.7 +. . . +. . . +3.1 +300𝑐 +7.5𝑑 +5 +SGAS J1050+0017 +11 +11.4 +9.7 +7.9 +2-3×100𝑎 +> 8.1𝑑 +6 +ID11 +11 +< 11.8 +> 10 +8.4 +. . . +7.7𝑑 +7 +CSWA-20 +9.1 +7.7 +5.6 +4.9 +276𝑎, 17100𝑏 +7.82𝑑 +8 +BX418 +7.1 +< 9.2 +> 11.6 +6.4 +. . . +7.8𝑑 +9 +A1689 31.1 +7 +7.8 +8.2 +4.7 +330𝑎, 2900𝑐 +7.76𝑑 +10 +MACS 0451-1.1 +6.7 +< 5.9 +> 8.4 +3.9 +. . . +< 8.0 𝑓 +3 +SDSS J1723+3411 +4.0 +8.6 +5.5 +5.4 +47𝑎, 1950𝑐 +8.4 𝑓 +11 +MACS 0451-3.1 +2.4 +. . . +> 2.0 +. . . +. . . +. . . +3 +Cosmic Horseshoe +0.9 +5.5 +1.31 +2.4 +840-6900𝑏 +8.65 𝑓 +12,13 +MS 1512-cB58 +0.8 +7.9 +1.36 +3.6 +. . . +8.47 𝑓 +14,15 +𝑎Derived from [OII] doublet, 𝑏Derived from [SII] doublet, 𝑐Derived from CIII] doublet. +𝑑Direct (T𝑒) method, 𝑒O32 method, 𝑓 R23 method, 𝑔O3 method, +ℎ Using HII-CHI-mistry code (Perez-Montero 2014) +1Mainali et al. (2020),2de Barros et al. (2016),3 Stark et al. (2014),4Vanzella et al. (2017),5Berg et al. (2018),6Bayliss et al. (2014),7Vanzella et al. +(2016),8James et al. (2014), 9Erb et al. (2010),10Christensen et al. (2012), 11Rigby et al. (2021), 12Quider et al. (2009), 13Hainline et al. (2009), 14Pettini +et al. (2000), 15Teplitz et al. (2000), 16Jones et al. (2013) +Table 8. Rest-optical emission line properties of galaxies at high redshift with CIII] emission constraints. The upper half shows data from this paper whereas +lower half shows measurements from the literature. +This is consistent with trends found in observations at low and high +redshift (e.g., Rigby et al. 2015; Senchyna et al. 2017, 2019; Maseda +et al. 2017; Nakajima et al. 2018; Schaerer et al. 2018; Du et al. 2020; +Ravindranath et al. 2020; Tang et al. 2021) and in photoionization +models (e.g., Jaskot & Ravindranath 2016; Nakajima et al. 2018). +The brightness of CSWA-141 enables a detailed investigation +of an EELG with properties similar to that which become common +at 𝑧 > 6. This galaxy is characterized by low stellar mass (4.0×108 +M⊙), large sSFR (31.2 Gyr−1), low gas-phase metallicity (12+log +O/H=7.95) and relatively highly ionized gas (O32=6.7) and has +likely undergone a recent upturn or burst of star formation. We +find that the electron density traced by the CIII] doublet (1.65×104 +cm−3) is higher than that traced by [OII] and [SII] doublet (160 +and 350 cm−3, respectively), a discrepancy that is also found in +other systems (e.g., James et al. 2014; Acharyya et al. 2019). While +this is likely to reflect the ionization structure of the HII regions +powering the lines (Kewley et al. 2019), it may also indicate that +CSWA-141 contains a significant fraction of its ionized gas in very +dense clumps, as is expected in the earliest stages following the +formation of star clusters (e.g. Kim et al. 2018). +The spectra of CSWA-141 provide several probes of the neutral +gas opacity in the galaxy, including both low ionization absorption +lines and the resolved Mg II doublet. The Fe II𝜆𝜆2374, 2382 ab- +sorption lines indicate the presence of outflowing gas with average +velocity of 76 km s−1. The lines are much weaker than in typical star +forming galaxies at 𝑧 ≃ 1 − 2, implying a low covering fraction and +potentially low column density of neutral gas in the outflow. The res- +onant Mg II𝜆𝜆 2797,2803 emission line supports this picture. The +Mg II doublet ratio in CSWA-141 ( R= F2797/F2803) is 2.0±0.2, con- +sistent with the intrinsic value produced in the HII regions. When +combined with the very large EW of Mg II and the near-Gaussian +profiles of the doublet components, this suggests minimal resonant +scattering, consistent with a very low column density of neutral +hydrogen. These indirect indicators suggest CSWA-141 may be a +likely candidate for LyC leakage. +ACKNOWLEDGMENTS +We would like to thank Ryan Endsley for helping with MMT ob- +servations of some of the sources presented in this paper. We also +thank Stephane Charlot and Jacopo Charlot for making the BEA- +GLE population synthesis tool available to us for this paper. +DPS acknowledges support from the National Science Founda- +tion through the grant AST-2109066. TJ acknowledges support from +the National Science Foundation through the grant AST-2108515. +RSE acknowledges funding from the European Research Council +(ERC) under the European Union’s Horizon 2020 research and in- +novation 0programme (grant agreement No 669253). Y.H. acknowl- +edges support from the National Sciences and Engineering Council +of Canada grant RGPIN-2020-05102, the Fonds de recherche du +Québec grant 2022-NC-301305, and the Canada Research Chairs +Program. +Observations presented in this paper were obtained from the +MNRAS 000, 1–20 (2022) + +19 +Keck Observatory, which was made possible by the generous fi- +nancial support of the W. M. Keck Foundation. The material +is based upon work supported by NASA under award number +80GSFC21M0002. The authors acknowledge the very significant +cultural role that the summit of Mauna Kea has always had within +the indigenous Hawaiian community. We are most fortunate to have +the opportunity to conduct observations from this mountain. Some +of the observations reported here were obtained at the MMT Obser- +vatory, a joint facility of the University of Arizona and the Smith- +sonian Institution. This paper includes data gathered with the 6.5 +meter Magellan Telescopes located at Las Campanas Observatory, +Chile. Some of the data presented in this paper were obtained using +the Large Binocular Telescope (LBT). The LBT is an international +collaboration among institutions in the United States, Italy and Ger- +many. The LBT Corporation partners are: The University of Ari- +zona on behalf of the Arizona university system; Istituto Nazionale +di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, rep- +resenting the Max Planck Society, the Astrophysical Institute Pots- +dam, and Heidelberg University; The Ohio State University; The +Research Corporation, on behalf of The University of Notre Dame, +University of Minnesota and University of Virginia. +DATA AVAILABILITY +The data underlying this article will be shared on reasonable request +to the corresponding author. +REFERENCES +Acharyya A., et al., 2019, MNRAS, 488, 5862 +Bayliss M. B., Rigby J. R., Sharon K., Wuyts E., Florian M., Gladders M. D., +Johnson T., Oguri M., 2014, ApJ, 790, 144 +Belokurov V., et al., 2007, ApJ, 671, L9 +Belokurov V., Evans N. W., Hewett P. C., Moiseev A., McMahon R. G., +Sanchez S. F., King L. J., 2009, MNRAS, 392, 104 +Berg D. A., Skillman E. D., Henry R. B. C., Erb D. K., Carigi L., 2016, ApJ, +827, 126 +Berg D. A., Erb D. K., Auger M. W., Pettini M., Brammer G. B., 2018, ApJ, +859, 164 +Berg D. A., Erb D. K., Henry R. B. C., Skillman E. D., McQuinn K. B. W., +2019, ApJ, 874, 93 +Berg D. A., Chisholm J., Erb D. K., Skillman E. D., Pogge R. W., Olivier +G. M., 2021, ApJ, 922, 170 +Berg D. A., et al., 2022, ApJS, 261, 31 +Bian F., et al., 2010, ApJ, 725, 1877 +Bian F., Kewley L. J., Dopita M. A., 2018, ApJ, 859, 175 +Bouwens R. J., et al., 2014, ApJ, 793, 115 +Bouwens R. J., et al., 2015, ApJ, 803, 34 +Bouwens R. J., et al., 2021, AJ, 162, 47 +Boyett K. N. K., Stark D. P., Bunker A. J., Tang M., Maseda M. V., 2022, +MNRAS, 513, 4451 +Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 +Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., Storchi- +Bergmann T., 2000, ApJ, 533, 682 +Chabrier G., 2003, PASP, 115, 763 +Chen Z., Stark D. P., Endsley R., Topping M., Whitler L., Charlot S., 2023, +MNRAS, 518, 5607 +Chevallard J., Charlot S., 2016, MNRAS, 462, 1415 +Chevallard J., et al., 2018, MNRAS, 480, 2593 +Chisholm J., Tremonti C. A., Leitherer C., Chen Y., Wofford A., 2016, +MNRAS, 457, 3133 +Chisholm J., Orlitová I., Schaerer D., Verhamme A., Worseck G., Izotov +Y. I., Thuan T. X., Guseva N. G., 2017, A&A, 605, A67 +Chisholm J., Prochaska J. X., Schaerer D., Gazagnes S., Henry A., 2020, +MNRAS, 498, 2554 +Christensen L., et al., 2012, MNRAS, 427, 1953 +Curtis-Lake E., et al., 2016, MNRAS, 457, 440 +De Barros S., et al., 2017, A&A, 608, A123 +Diehl H. T., et al., 2009, ApJ, 707, 686 +Du X., Shapley A. E., Martin C. L., Coil A. L., 2017, ApJ, 838, 63 +Du X., et al., 2018, preprint, (arXiv:1803.05912) +Du X., Shapley A. E., Tang M., Stark D. P., Martin C. L., Mobasher B., +Topping M. W., Chevallard J., 2020, ApJ, 890, 65 +Endsley R., Stark D. P., Chevallard J., Charlot S., 2020, MNRAS, +Erb D. K., Pettini M., Shapley A. E., Steidel C. C., Law D. R., Reddy N. A., +2010, ApJ, 719, 1168 +Erb D. K., Quider A. M., Henry A. L., Martin C. L., 2012, ApJ, 759, 26 +Ferland G. J., et al., 2013, Rev. Mex. Astron. Astrofis., 49, 137 +Finkelstein S. L., et al., 2014, Submitted to ApJ, arxiv:1410.5439, +Gazagnes S., Chisholm J., Schaerer D., Verhamme A., Izotov Y., 2020, +A&A, 639, A85 +Giavalisco M., Koratkar A., Calzetti D., 1996, ApJ, 466, 831 +González V., Bouwens R., Illingworth G., Labbé I., Oesch P., Franx M., +Magee D., 2014, ApJ, 781, 34 +Gray W. J., Oey M. S., Silich S., Scannapieco E., 2019, ApJ, 887, 161 +Grazian A., et al., 2015, A&A, 575, A96 +Guseva N. G., Izotov Y. I., Fricke K. J., Henkel C., 2019, A&A, 624, A21 +Gutkin J., Charlot S., Bruzual G., 2016, MNRAS, 462, 1757 +Hainline K. N., Shapley A. E., Kornei K. A., Pettini M., Buckley-Geer E., +Allam S. S., Tucker D. L., 2009, ApJ, 701, 52 +Hannon S., et al., 2019, MNRAS, 490, 4648 +Hennawi J. F., et al., 2008, AJ, 135, 664 +Henry A., Berg D. A., Scarlata C., Verhamme A., Erb D., 2018, ApJ, 855, +96 +Hezaveh Y. D., et al., 2013, ApJ, 767, 132 +Hutchison T. A., et al., 2019, arXiv e-prints, p. arXiv:1905.08812 +Ishigaki M., Kawamata R., Ouchi M., Oguri M., Shimasaku K., Ono Y., +2018, ApJ, 854, 73 +Izotov Y. I., Stasińska G., Meynet G., Guseva N. G., Thuan T. X., 2006, +A&A, 448, 955 +Izotov Y. I., Chisholm J., Worseck G., Guseva N. G., Schaerer D., Prochaska +J. X., 2022, MNRAS, 515, 2864 +James B. L., et al., 2014, MNRAS, 440, 1794 +James B. L., Auger M., Pettini M., Stark D. P., Belokurov V., Carniani S., +2018, MNRAS, 476, 1726 +Jaskot A. E., Ravindranath S., 2016, ApJ, 833, 136 +Jaskot A. E., Oey M. S., Scarlata C., Dowd T., 2017, ApJ, 851, L9 +Jiang L., et al., 2021, Nature Astronomy, 5, 256 +Jones T., Stark D. P., Ellis R. S., 2012, ApJ, 751, 51 +Jones T., Ellis R. S., Richard J., Jullo E., 2013, ApJ, 765, 48 +Jones T., Stark D. P., Ellis R. S., 2018, ApJ, 863, 191 +Kewley L. J., Nicholls D. C., Sutherland R., Rigby J. R., Acharya A., Dopita +M. A., Bayliss M. B., 2019, ApJ, 880, 16 +Kim J.-h., et al., 2018, MNRAS, 474, 4232 +Koester B. P., Gladders M. D., Hennawi J. F., Sharon K., Wuyts E., Rigby +J. R., Bayliss M. B., Dahle H., 2010, ApJ, 723, L73 +Kubo J. M., et al., 2010, ApJ, 724, L137 +Labbé I., et al., 2013, ApJ, 777, L19 +Laporte N., Nakajima K., Ellis R. S., Zitrin A., Stark D. P., Mainali R., +Roberts-Borsani G. W., 2017, ApJ, 851, 40 +Leethochawalit N., Jones T. A., Ellis R. S., Stark D. P., Richard J., Zitrin A., +Auger M., 2016, ApJ, 820, 84 +Leitherer C., Tremonti C. A., Heckman T. M., Calzetti D., 2011, AJ, 141, +37 +Livermore R. C., Finkelstein S. L., Lotz J. M., 2017, ApJ, 835, 113 +Llerena M., et al., 2021, arXiv e-prints, p. arXiv:2107.00660 +Luridiana V., Morisset C., Shaw R. A., 2015, A&A, 573, A42 +Mainali R., Kollmeier J. A., Stark D. P., Simcoe R. A., Walth G., Newman +A. B., Miller D. R., 2017, ApJ, 836, L14 +Mainali R., et al., 2018, MNRAS, 479, 1180 +Mainali R., et al., 2020, MNRAS, 494, 719 +MNRAS 000, 1–20 (2022) + +20 +Mainali et al. +Mainali R., et al., 2022, ApJ, 940, 160 +Martin C. L., 2005, ApJ, 621, 227 +Maseda M. V., et al., 2017, preprint, (arXiv:1710.06432) +McLean I. S., et al., 2012, in Society of Photo-Optical Instrumentation +Engineers (SPIE) Conference Series. , doi:10.1117/12.924794 +McLure R. J., et al., 2013, MNRAS, 432, 2696 +Nakajima K., et al., 2018, A&A, 612, A94 +Osterbrock D. E., Ferland G. J., 2006, Astrophysics of gaseous nebulae and +active galactic nuclei +Parsa S., Dunlop J. S., McLure R. J., Mortlock A., 2016, MNRAS, 456, +3194 +Peng C. Y., Ho L. C., Impey C. D., Rix H.-W., 2002, AJ, 124, 266 +Pettini M., Steidel C. C., Adelberger K. L., Dickinson M., Giavalisco M., +2000, ApJ, 528, 96 +Pogge R. W., et al., 2010, in Ground-based and Airborne Instrumentation +for Astronomy III. p. 77350A, doi:10.1117/12.857215 +Quider A. M., Pettini M., Shapley A. E., Steidel C. C., 2009, MNRAS, 398, +1263 +Ravindranath S., Monroe T., Jaskot A., Ferguson H. C., Tumlinson J., 2020, +ApJ, 896, 170 +Reddy N. A., Steidel C. C., 2009, ApJ, 692, 778 +Rigby J. R., Rieke G. H., 2004, ApJ, 606, 237 +Rigby J. R., Bayliss M. B., Gladders M. D., Sharon K., Wuyts E., Dahle H., +Johnson T., Peña-Guerrero M., 2015, ApJ, 814, L6 +Rigby J. R., et al., 2021, ApJ, 908, 154 +Roberts-Borsani G. W., et al., 2015, preprint, (arXiv:1506.00854) +Robertson B. E., Ellis R. S., Dunlop J. S., McLure R. J., Stark D. P., 2010, +Nature, 468, 49 +Rogers A. B., McLure R. J., Dunlop J. S., 2013, MNRAS, 429, 2456 +Saldana-Lopez A., et al., 2022, A&A, 663, A59 +Salmon B., et al., 2015, ApJ, 799, 183 +Sanders R. L., et al., 2016a, ApJ, 816, 23 +Sanders R. L., et al., 2016b, ApJ, 825, L23 +Sanders R. L., et al., 2020, MNRAS, 491, 1427 +Schaerer D., Izotov Y. I., Nakajima K., Worseck G., Chisholm J., Verhamme +A., Thuan T. X., de Barros S., 2018, A&A, 616, L14 +Schaerer D., et al., 2022, A&A, 658, L11 +Schmidt K. B., et al., 2021, A&A, 654, A80 +Seive T., Chisholm J., Leclercq F., Zeimann G., 2022, MNRAS, 515, 5556 +Senchyna P., et al., 2017, MNRAS, 472, 2608 +Senchyna P., Stark D. P., Chevallard J., Charlot S., Jones T., Vidal-García +A., 2019, MNRAS, 488, 3492 +Shapley A. E., Steidel C. C., Pettini M., Adelberger K. L., 2003, ApJ, 588, +65 +Sheinis A. I., Bolte M., Epps H. W., Kibrick R. I., Miller J. S., Radovan +M. V., Bigelow B. C., Sutin B. M., 2002, PASP, 114, 851 +Silich S., Tenorio-Tagle G., 2017, MNRAS, 465, 1375 +Silich S., Tenorio-Tagle G., Muñoz-Tuñón C., 2007, ApJ, 669, 952 +Simcoe R. A., et al., 2008, in Ground-based and Airborne Instrumentation +for Astronomy II. p. 70140U, doi:10.1117/12.790414 +Smit R., et al., 2014, ApJ, 784, 58 +Smit R., et al., 2015, ApJ, 801, 122 +Stark D. P., 2016, ARA&A, 54, 761 +Stark D. P., et al., 2013a, MNRAS, 436, 1040 +Stark D. P., Schenker M. A., Ellis R., Robertson B., McLure R., Dunlop J., +2013b, ApJ, 763, 129 +Stark D. P., et al., 2014, MNRAS, 445, 3200 +Stark D. P., et al., 2015a, Submitted to MNRAS, arxiv:1504.06881, +Stark D. P., et al., 2015b, MNRAS, 450, 1846 +Stark D. P., et al., 2017, MNRAS, 464, 469 +Steidel C. C., Erb D. K., Shapley A. E., Pettini M., Reddy N., Bogosavljević +M., Rudie G. C., Rakic O., 2010, ApJ, 717, 289 +Steidel C. C., et al., 2014, ApJ, 795, 165 +Steidel C. C., Strom A. L., Pettini M., Rudie G. C., Reddy N. A., Trainor +R. F., 2016, ApJ, 826, 159 +Strom A. L., Steidel C. C., Rudie G. C., Trainor R. F., Pettini M., Reddy +N. A., 2016, preprint, (arXiv:1608.02587) +Tang M., Stark D., Chevallard J., Charlot S., 2018, arXiv e-prints, +Tang M., Stark D. P., Chevallard J., Charlot S., Endsley R., Congiu E., 2021, +MNRAS, 501, 3238 +Teplitz H. I., et al., 2000, ApJ, 533, L65 +Topping M. W., Shapley A. E., Stark D. P., Endsley R., Robertson B., Greene +J. E., Furlanetto S. R., Tang M., 2021, ApJ, 917, L36 +Vanzella E., et al., 2016, ApJ, 821, L27 +Vanzella E., et al., 2017, preprint, (arXiv:1703.02044) +Weiner B. J., et al., 2009, ApJ, 692, 187 +Whitmore B. C., et al., 2011, ApJ, 729, 78 +Xu X., et al., 2022, ApJ, 933, 202 +Xu X., et al., 2023, arXiv e-prints, p. arXiv:2301.04087 +de Barros S., et al., 2016, A&A, 585, A51 +This paper has been typeset from a TEX/LATEX file prepared by the author. +MNRAS 000, 1–20 (2022) + diff --git a/MdFIT4oBgHgl3EQfcCt7/content/tmp_files/load_file.txt b/MdFIT4oBgHgl3EQfcCt7/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e35f348a5bc67d28adfd4c2fc8238acc61222681 --- /dev/null +++ b/MdFIT4oBgHgl3EQfcCt7/content/tmp_files/load_file.txt @@ -0,0 +1,3528 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf,len=3527 +page_content='MNRAS 000, 1–20 (2022) Preprint 27 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Spectroscopy of CASSOWARY gravitationally-lensed galaxies in SDSS: characterisation of an extremely bright reionization-era analog at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='42 Ramesh Mainali1,2,3★, Daniel P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark2, Tucker Jones4†, Richard S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ellis5, Yashar D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Hezaveh6,7, & Jane R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rigby1 1 Observational Cosmology Lab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' NASA Goddard Space Flight Center,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Greenbelt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MD 20771,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' USA 2 Steward Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' University of Arizona,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 933 N Cherry Ave,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Tucson,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' AZ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' USA 3Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Catholic University of America,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Washington,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' DC 20064,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' USA 4 Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' University of California Davis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 1 Shields Avenue,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Davis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CA 95616,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' USA 5 Department of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' University College London,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Gower Street,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' London,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' WC1E 6BT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' UK 6Center for Computational Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Flatiron Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 162 Fifth Avenue,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' New York,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' NY 10010,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' USA 7Département de Physique,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Université de Montréal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Montreal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Quebec,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Canada H3T 1J4 Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' in original form ZZZ ABSTRACT We present new observations of sixteen bright (𝑟 = 19 − 21) gravitationally lensed galaxies at 𝑧 ≃ 1−3 selected from the CASSOWARY survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Included in our sample is the 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='42 galaxy CSWA-141, one of the brightest known reionization-era analogs at high redshift (g=20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5), with a large sSFR (31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Gyr−1) and an [OIII]+H𝛽 equivalent width (EW[OIII]+H𝛽=730 Å) that is nearly identical to the average value expected at 𝑧 ≃ 7 − 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In this paper, we investigate the rest-frame UV nebular line emission in our sample with the goal of understanding the factors that regulate strong CIII] emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Whereas most of the sources in our sample show weak UV line emission, we find elevated CIII] in the spectrum of CSWA-141 (EWCIII]=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Å) together with detections of other prominent emission lines (OIII], Si III], Fe II★, Mg II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We compare the rest-optical line properties of high redshift galaxies with strong and weak CIII] emission, and find that systems with the strongest UV line emission tend to have young stellar populations and nebular gas that is moderately metal-poor and highly ionized, consistent with trends seen at low and high redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The brightness of CSWA-141 enables detailed investigation of the extreme emission line galaxies which become common at 𝑧 > 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We find that gas traced by the CIII] doublet likely probes higher densities than that traced by [OII] and [SII].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Characterisation of the spectrally resolved Mg II emission line and several low ionization absorption lines suggests neutral gas around the young stars is likely optically thin, potentially facilitating the escape of ionizing radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Key words: galaxies: evolution - galaxies: formation - galaxies: high-redshift 1 INTRODUCTION Over the last decade, much progress has been made in our under- standing of galaxies in the first billion years of cosmic time (for a review, see Stark 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Deep infrared imaging has uncovered thou- sands of photometrically-selected star forming systems thought to lie in the redshift range 6 < 𝑧 < 9 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McLure et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Finkel- stein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Bouwens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Livermore et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ishigaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018), providing a census of UV-selected galaxies throughout the reionization era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectral energy distributions (SEDs) point toward a population undergoing rapid stellar mass ★ E-mail: ramesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='mainali@nasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='gov growth with blue UV continuum spectral slopes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Bouwens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014), low stellar masses and large specific star formation rates (Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' González et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Grazian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Salmon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Curtis-Lake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In the last five years, our first constraints on the nebular emis- sion properties of galaxies at these early epochs have emerged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Spitzer/IRAC photometry suggests that nearly half of the UV- selected galaxies at 𝑧 ≃ 7 have extremely large [OIII]+H𝛽 equiv- alent widths (EWs) (Labbé et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Smit et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Roberts-Borsani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' De Barros et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Endsley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020), indicating that very recent (∼< 50 Myr) activity powers the UV and optical luminosity, as expected for galaxies undergoing rapidly rising star formation histories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Roughly 20% of the popula- © 2022 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11264v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='GA] 26 Jan 2023 2 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' tion have yet more intense rest-optical nebular emission ([OIII]+H𝛽 EW > 1000 Å), indicating an extremely young stellar population (<10 Myr) is dominating the light, as expected for systems that have undergone a recent burst of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Since such extreme emis- sion line galaxies (EELGs) are very rare at lower redshifts (Boyett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022), we lack a detailed understanding of the gas and ionizing agents in typical reionziation-era systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ground-based near-infrared spectrographs offer a path toward progress at the highest redshifts, providing access to the rest-frame ultraviolet where a suite of valuable diagnostic lines are situ- ated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The first deep spectra have revealed strong nebular emission from high ionization metal species ([CIII],CIII]𝜆𝜆1907,1909 Å, OIII]𝜆𝜆1660,1666 Å, CIV𝜆𝜆1548,1550 Å), a significant departure from what is commonly seen at lower redshifts (Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015b,a, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Laporte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Hutchison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Topping et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The detection of these lines reveals gas under extreme ionization conditions and points to a population of intense ionizing agents, potentially AGN in some cases (Laporte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018) and low metallic- ity massive stars in others (Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The detection of CIV𝜆𝜆1548,1550 Å and [CIII],CIII]𝜆𝜆1907,1909 Å may further indicate a higher fraction of ionizing photons escape from a galaxy(Schaerer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While the equivalent width distribution in the total population is still subject to limited statistics (Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018), it appears that both the gas and ionizing sources at 𝑧 ∼> 6 are often significantly different from that in galaxies at 𝑧 ≃ 2 − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The presence of strong rest-UV nebular emission in a subset of 𝑧 ∼> 6 galaxies bodes well for future studies of the reionization era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For the next-generation 25-30m ground based optical/infrared ob- servatories (which are limited to constraints on the rest-frame UV at 𝑧 > 6), these lines may provide the only way in which early galaxies can be studied spectroscopically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While typically fainter than the strong lines in the rest-optical, the suite of emission lines in the far-UV provide unique diagnostic power of the ionizing spectrum and gas physical conditions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='e, density, temperature, ionization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Meanwhile in the near-UV, the resonant nature of the nebular Mg II emission line makes it an ideal probe of the neutral gas opacity in early galaxies, potentially providing an indirect indicator of LyC leakage at 𝑧 ∼> 6 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Henry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Izotov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Seive et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The advantage of Mg II relative to Ly𝛼 is that it is not obscured by the neutral IGM at very high redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' To ensure that the faint rest-UV spectra provide reliable phys- ical diagnostics from these future facilities, it is important that we understand the gas conditions and stellar populations which support prominent UV line emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' With current facilities, this is most eas- ily done at lower redshifts where rest-frame optical emission lines which constrain the gas-phase metallicity and ionization parameter are observable with ground-based facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Over the last few years, a wide range of observations have been conducted with the goal of better understanding the physics regulating rest-UV emission line spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' These studies have demonstrated that prominent CIII] ap- pears to be a fairly ubiquitous feature in the rest-UV spectra of dwarf star forming galaxies (Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Christensen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Schmidt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Llerena et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022), reflecting the large electron temperatures associated with metal poor gas and the hard ionizing spectrum of young, low metallicity massive stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Here we seek to build on this progress, improving our un- derstanding of the connection between UV line emission and the physical properties of the massive stars and ionized gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Over the last decade, we have utilized a wide range of ground-based facilities (LBT, Keck, Magellan) to obtain deep spectra and imaging of some of the brightest known (g=19-21) 𝑧 ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 − 3 gravitationally lensed galaxies within Sloan Digital Sky Survey (SDSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This sample con- tains galaxies with a range of physical properties, including two of the brightest known systems with the large specific star formation rates (and extreme emission lines) that are typical in the reioniza- tion era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Central to this observational campaign are newly-acquired optical spectra from the Echellette Spectrograph and Imager (ESI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Sheinis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2002) on the Keck II telescope (see Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018 for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectra provide moderate resolution (R= 6300) rest-UV spectra, enabling a unique exploration of the na- ture of the massive stars and the physical conditions of the ionized gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We supplement the Keck observations (9 galaxies) with optical spectra from LBT (1 galaxy) and MMT (6 galaxies), near-infrared spectra from Magellan, and new optical and near-infrared imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The large continuum brightness of the SDSS lensed galaxies offers several distinct advantages with respect to the much fainter low mass galaxies that are typical of cluster fields imaged by HST (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Christensen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' First, it enables improved constraints on the ionized gas phys- ical conditions (metallicity, density, ionization parameter) through detection of the full suite of rest-optical strong emission lines as well as occasionally allowing detection of multiple temperature and density-sensitive lines, providing a more comprehensive view of the conditions in the gas and the most important factors regulating the rest-UV line spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Second, the large continuum S/N in the rest- UV spectra makes it possible to detect very weak rest-UV nebular lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This enables the rest-UV lines to be characterized in indi- vidual galaxies for a wide range of gas conditions, not only in the most extreme and metal-poor systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This will provide a valuable control sample for our analysis, offering insight into what factors are most important in regulating rest-UV emission line spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This insight will be critical in assessing the feasibility of detecting and characterizing lines in the rest-frame far and near-UV with future facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In this paper, we will focus primarily on CIII] emission, comparing measured line strengths to other empirical and model- based quantities (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', gas-phase metallicity, optical line ratios with the goal of understanding the factors regulating the CIII] strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We present the new imaging and spectra and discuss population synthesis modeling of broadband SEDs in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In §3, we provide our results on individual galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We discuss implications of our spectra of a reionization-era analog in §4 and summarize our findings in §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Throughout the paper, we adopt a Λ-dominated, flat universe with ΩΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7, Ω𝑀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 and H0 = 70 km s−1 Mpc−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' All mag- nitudes in this paper are quoted in the AB system and equivalent widths (EW) are given in rest-frame, unless stated otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2 OBSERVATIONS AND ANALYSIS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Sample Selection The galaxies studied in this paper were originally identified using a search algorithm that identifies blue arcs surrounding red early type galaxies in Sloan Digital Sky Survey (SDSS) imaging as part of the Cambridge And Sloan Survey Of Wide ARcs on the skY (CASSOWARY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Belokurov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2007, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The most recent catalog of CASSOWARY lensed galaxies was presented in Stark MNRAS 000, 1–20 (2022) 3 Object RA DEC 𝑧𝑠𝑝𝑒𝑐 mAB Dates Rest-UV Coverage texp PA MUV 𝜇 Instrument (Å) (ksec) (deg) CSWA-165 01:05:19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='65 +01:44:56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='127 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 12 Dec 2012 1020-2560 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4𝑎 MMT/BCS CSWA-116 01:43:50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 +16:07:39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='499 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 29 Sep 2011 1280-3200 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 105 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7𝑎 MMT/BCS CSWA-103 01:45:04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='18 04:55:42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='959 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 8-10 Nov 2012 1350-3425 25 115 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7𝑎 Keck/ESI CSWA-164 02:32:49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='97 03:23:29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='512 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 8-10 Nov 2012 1140-2880 28 158 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8𝑎 Keck/ESI CSWA-11 08:00:12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='37 +08:12:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='409 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 24 March 2012 1330-3280 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 60 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9𝑐 MMT/BCS CSWA-139 08:07:31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='51 +44:10:48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='536 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 23 Mar 2012 905-2260 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 80 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8𝑎 MMT/BCS CSWA-141 08:46:47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='53 +04:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 8 Nov 2012 1655-4180 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 190 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5𝑎 Keck/ESI .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 11 Nov 2015 1440-2140 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 190 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' LBT/MODS CSWA-19 09:00:02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='64 +22:34:04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='032 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 9-10 Nov 2012 1320-3330 20 86 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5𝑎 Keck/ESI CSWA-40 09:52:40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='22 +34:34:46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='189 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 5-6 Mar 2013 1255-3175 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 70 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑎 Keck/ESI CSWA-2 10:38:43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='58 +48:49:17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='196 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 5 Mar 2013 1250-3125 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 17 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4𝑎 Keck/ESI CSWA-16 11:11:03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='68 +53:08:54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='945 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 24 Mar 2012 1085-2715 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 267 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9𝑑 MMT/BCS CSWA-38 12:26:51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='69 +21:52:25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='925 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 6 Mar 2013 1020-2580 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 130 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 40𝑏 Keck/ESI CSWA-13 12:37:36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='20 +55:33:42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='864 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 24 Mar 2012 1120-2790 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 320 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9𝑑 MMT/BCS CSWA-39 15:27:45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 +06:52:33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='762 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 5-6 Mar 2013 1065-2695 18 105 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 15𝑏 Keck/ESI CSWA-128 19:58:35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='65 +59:50:53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='225 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 8-10 Nov 2012 1240-3140 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 60 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 10𝑐 Keck/ESI CSWA-163 21:58:43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='68 +02:57:30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='081 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 30 Sep 2011 1035-2600 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 20 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5𝑎 MMT/BCS 𝑎Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a), 𝑏Koester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2010), 𝑐Leethochawalit et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016), 𝑑This work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Summary of rest-frame UV observations of our bright gravitationally lensed CASSOWARY galaxy sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' New ultra-deep moderate resolution optical spectra have been obtained for nine of these sources using ESI on Keck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also include an additional seven sources from Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) with high quality MMT blue channel spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' From left to right, we present the object ID in the CASSOWARY catalog, the RA and DEC, the spectroscopic redshift, apparent magnitude, the date the optical spectra were obtained, the rest-UV wavelength coverage provided by the optical spectra, the exposure time and position angle of the optical spectra, the absolute magnitude of the arc in the rest-UV, the magnification factor provided by gravitational lensing, and the optical spectrograph utilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Further details are presented in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) following a large spectroscopic campaign aimed at obtaining redshifts of the source and lens galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The catalog of galaxies released in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) contains more than 50 gravitationally-lensed galaxies in SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Optical magnitudes of this sample are in the range 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 < 𝑟 < 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Here we present the results from a large observational invest- ment targeting sixteen of these bright lensed sources with Keck, Magellan, LBT, and MMT (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Object identifiers from the CASSOWARY survey are abbreviated as “CSWA" in the table and subsequent discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A mosaic of the galaxies considered in this paper is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In the following subsections, we describe the imaging and spectral datasets that we have obtained for this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The galaxies considered here were selected from the larger sample of Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) based on the brightness of the continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also preferentially targeted sources at redshifts which place rest-optical lines in regions of significant atmospheric transmission in the near-IR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Spectroscopy 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Optical Spectroscopy We have acquired deep Keck/ESI optical spectra of nine galaxies from the Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) sample (see Table 1 for details), en- abling robust constraints to be placed on the strength of nebular UV metal line emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The positioning of the ESI slit on the lensed galaxies is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectra were obtained in two observing runs between November 2012 and March 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectra cover observed wavelengths between 4000 to 10100 Å, pro- viding rest-frame spectral coverage that typically ranges between 1300 and 2000 Å (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A slit width of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′75 was used, pro- viding a resolving power of R=6300 (FWHM=48 km s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The data were reduced using the ESIRedux code written by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Prochaska.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Sky subtraction is performed following the bias subtraction and flat fielding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 1D spectra are then extracted using a boxcar aper- ture matched to the spatial extent of the arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' When multiple lensed images appear on the slit, the traces are extracted separately and then combined to maximize the S/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The continuum is generally well detected, with S/N ≃ 10 per resolution element at 6200 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Example spectra are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A full description of the ESI observations and spectral reduction is presented in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' One source in the ESI sample, CSWA-141, was also observed with the Multi Object Double Spectrograph (MODS, Pogge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010) on the LBT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MODS provides bluer wavelength coverage than ESI, allowing constraints to be placed on emission from CIV, OIII], and He II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We used a long slit of width 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′8 with the 400 lines/mm grating, providing spectral resolution of ∼ 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also include seven other galaxies from Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) for which the MMT Blue Channel Spectrograph (BCS) discovery spectra have sufficient continuum S/N to characterize the rest-UV metal emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The MMT BCS data were obtained with the 300 lines/mm grating, providing total spectral coverage of ∼ 5300 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For the slit width of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′0 used in the observations, the typical spectral resolution is ∼ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' More details of the MMT observations are provided in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In total, the Keck, LBT, and MMT data provides rest-UV spec- tra for 16 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Our aim is to characterize CIII] emission fea- ture, typically the strongest rest-UV emission line, along with other rest-UV emission features in the whole sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Using redshift pre- sented in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018) for Keck/ESI data and Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) for MMT data, we first searched for CIII] emission in indi- vidual galaxy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The line is spectrally resolved in the Keck spectra, whereas it remained unresolved in the MMT spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For the resolved CIII] doublet, we measured emission line fluxes and associated errors (for error spectrum) in individual components by directly integrating the flux levels within ±1 Å of individual line MNRAS 000, 1–20 (2022) 4 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-141 CSWA-2 CSWA-40 CSWA-19 CSWA-128 CSWA-165 CSWA-13 CSWA-164 CSWA-163 CSWA-11 CSWA-128 CSWA-16 CSWA-139 CSWA-38 CSWA-39 CSWA-165 CSWA-116 CSWA-103 CSWA-141 CSWA-2 CSWA-19 CSWA-13 CSWA-164 CSWA-163 CSWA-11 CSWA-128 CSWA-16 CSWA-139 CSWA-38 CSWA-39 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Color images of sixteen gravitationally lensed galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The name of each sources is presented at the top of each image, along with the slit position used for the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For seven galaxies (CSWA-141, CSWA-13, CSWA-139, CSWA-116, CSWA-16, CSWA-165, CSWA-164) the color images are created from g,r and i band images from LBT/MODS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The color images for four galaxies (CSWA-11,CSWA-163,CSWA-128,CSWA-103) are made with g,r and i bands images from LBT/LBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Three color images (CSWA-38, CSWA-39, CSWA-40) are made using Keck/ESI images in V,R and I bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For other two galaxies (CSWA-2, CSWA-19), color images are created using archival HST images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' North is up and east is to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Each postage stamp is 25” × 25” in size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The orientation and centroid of the ESI or MMT slit is overlaid in each image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' centers (rest-frame).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' When the line is unresolved, we computed total CIII] emission line fluxes and associated line flux errors di- rectly from the flux spectra and error spectra, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' If the line remained undetected at 3𝜎 level, we calculated upper limits by integrating error spectrum from 1905 Å to 1912 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The emission line equivalent width is then computed by dividing the line fluxes (or upper limits) by median continuum level measured on either side of the CIII] line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We then searched for any other rest-UV emission features in the spectra and characterized them when detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Our sample includes 10 galaxies with CIII] detection where the equiva- lent widths range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Å (see Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We will come back to interpret the CIII] equivalent widths in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2, comparing the line strengths to optical line ratios and gas physical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Near-Infrared Spectroscopy Near-infrared (NIR) spectra supplement the optical spectra de- scribed above, providing constraints on the metallicity, ionization parameter, and electron density of the ionized gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Near-infrared spectroscopic analysis is limited to the subset of sources from Ta- ble 1 which are located at redshifts placing strong rest-optical emis- sion lines in spectral windows in which atmospheric transmission is near-unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' One of the sources in our sample (CSWA-2) was tar- MNRAS 000, 1–20 (2022) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Object EW (Å) Ly𝛼 [CIII]𝜆1907 CIII]𝜆1909 CIII]𝜆1908𝑎 CSWA-141 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9) CSWA-13 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9) CSWA-139 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6) CSWA-2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6) CSWA-39 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8(6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2) CSWA-19 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) CSWA-38 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) CSWA-128 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) CSWA-103 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) CSWA-164 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) CSWA-163 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 CSWA-16 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 CSWA-165 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 CSWA-40 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 CSWA-11 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 CSWA-116 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 𝑎 Total CIII] doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Equivalent width measurements of rest-UV emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The numbers within parentheses represent uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The upper limits are 3𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Object Dates texp PA Observatory/ (ksec) (deg) Instrument CSWA-165 2014 June 22 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 120 Magellen/FIRE CSWA-164 2015 Nov 03 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 58 Magellen/FIRE CSWA-11 2015 Nov 04 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 10 Magellen/FIRE CSWA-141 2012 Feb 15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 280 Magellen/FIRE CSWA-128 2012 Nov 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 190 LBT/LUCI CSWA-163 2014 June 22 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 90 Magellen/FIRE Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Details of near-infrared spectroscopic observations obtained for this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' From left to right, the columns denote the object ID, observation dates, exposure time, position angle of slit, and the observatory and instrument used to acquire near-IR spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Further details are provided in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' geted with Keck near-infrared spectroscopy in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In observing runs between November 2012 and November 2015, we have obtained near-infrared spectroscopic observations of five additional sources (CSWA-141, CSWA-164, CSWA-165, CSWA- 163, CSWA-11) using the Folded-port InfraRed Echellette (FIRE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Simcoe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2008) on the Magellan Baade Telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We used FIRE in its echelle mode, providing continuous spectral coverage spanning 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='82-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='51 𝜇m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We adopted a slit width of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′75, delivering a spectral resolution of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 in the J band, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 in the H band and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 in the K band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Spectroscopic data reduction was performed using standard routines in the FIREHOSE data reduction pipeline1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' One additional galaxy (CSWA-128) was observed on 2012 Nov 7 with the LUCI near-IR spectrograph on the Large Binocular Telescope (LBT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We used the N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 camera and 200_H+K grating in longslit mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We first observed the lensed source with the HKSpec filter centered at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='93 microns, providing spectral coverage from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='50 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='30 𝜇m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also observed CSWA-128 with the zJSpec filter centered at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 microns, providing spectral coverage between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='95 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='40𝜇m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A slit width of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′0 was used, resulting in a spectral resolution of 16 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Spectroscopic data reduction was performed using standard IDL long slit reduction packages (see Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010 for 1 wikis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='mit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='edu/confluence/display/FIRE/FIRE+Data+Reduction details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We summarize details of near-infrared spectroscopy of CASSOWARY galaxies in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Example spectra are shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Emission line fluxes in the NIR spectra are measured using the IDL routine MPFITPEAK which computes line fluxes after fitting a gaussian model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In cases where the emission lines are partially affected by a skyline, we mask the contaminated region before fit- ting the emission line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Additionally, if one of the components of [OIII]𝜆𝜆4959,5007 is strongly affected by an emission line, we as- sume the theoretical line ratio of [OIII]𝜆5007/[OIII]𝜆4959=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='98 (Storey & Zeippen 2000) in calculating the total [OIII] line flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We calculate the impact of dust on the nebular lines using the Balmer decrement flux ratio of H𝛼/H𝛽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The observed line ratio is compared to the line ratio expected in absence of dust (H𝛼/H𝛽=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='86;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Osterbrock & Ferland 2006) for case B recombination assuming T𝑒=10,000 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In the two cases where the Balmer line ratios are not available, we use the stellar reddening inferred from the broadband data to estimate the nebular attenuation (see §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We note that using stellar reddening for nebular attenuation correction doesn’t impact our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We assume that the nebular gas attenuation is similar to the stellar continuum attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We presented the observed and dust-corrected emission line measurements in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For one object (CSWA-141) where auroral [OIII]𝜆4363 line is detected, we calculated electron temperature using PyNeb (ver- sion 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Luridiana et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015) using emission line flux ratio of OIII]𝜆4363/[OIII]𝜆5007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For our calculations, we adopted the de- fault PyNeb atomic data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We assumed electron density of 250 cm−3, which is typical to 𝑧 ∼ 2 galaxies (Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' How- ever, we note that our assumed electron density value has negligible effect on the derived electron temperature in the low density regime (<103 cm−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Since we don’t have T𝑒([OII]) sensitive emission line measurements, we followed the relation given by Izotov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2006) for low metallicity to estimate the electron temperature in the O+2 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We use our electron temperature measurements to infer the direct oxygen abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We only use O+/H+ and O+2/H+ to com- pute oxygen abundance since the ionization states higher than O+2 contributes significantly low at less than 1 per cent (Izotov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' O+/H+ and O+2/H+ are calculated from PyNeb using our T𝑒([OIII], T𝑒([OII], 𝑛𝑒 and emission line fluxes of [OII], H𝛽 and [OIII].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We use PyNeb to calculate the electron density using the flux ratio of the [OII], [SII], and [CIII], CIII] doublets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The typical error in measurements is then calculated using the errors in emis- sion line fluxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' When an electron temperature measurement is not available, we assumed electron temperature of 10,000K following Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016a) to adopt temperature dependent effective col- lision strengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Adopting electron temperature of 7000K (15000K) instead would overestimate (underestimate) electron density by 15- 20% which is effectively lower than density error from our line flux measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 Imaging Each of the CASSOWARY galaxies was discovered in SDSS imag- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In many cases, the photometric constraints from SDSS are unreliable owing to blending with neighbors and low S/N detec- tion of diffuse emission associated with the arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained deeper optical multi-band imaging for each of the galaxies discussed in this paper using cameras on the LBT and Keck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In order to better characterize the stellar populations, we have also obtained near-IR imaging sampling across the Balmer break for a subset of our tar- gets using the LBT, MMT and Keck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In the following subsections, MNRAS 000, 1–20 (2022) 6 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Line 𝜆rest(Å) 𝜆obs (Å) F(𝜆)/F(5007) I(𝜆)/I(5007) CSWA-141 [OII] 3727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 9039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='060 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='088 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='003 [OII] 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='92 9045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='075 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='110 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='006 [NeIII] 3869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 9384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='054 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='075 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='023 H𝛿 4102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='90 9950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='030 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='039 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='005 H𝛾 4341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='58 10529.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='063 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='076 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='004 [OIII] 4365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='31 10586.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='019 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='023 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='002 H𝛽 4862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='55 11792.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='135 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='003 [OIII] 4960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 12029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='338 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='342 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='004 [OIII] 5008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 12146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='000 [SIII] 6310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='48 15304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='007 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='005 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='001 [NII] 6549.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='84 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='004 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='002 H𝛼 6564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 15920.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='529 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='386 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='002 [SII] 6717.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='96 16292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='017 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='013 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='001 [SII] 6732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='34 16327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='016 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='012 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='001 CSWA-165 [OII] 3727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 11657.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='56 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11 [OII] 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='92 11665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='63 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='14 [NeIII] 3869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='23 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='38 H𝛽 4862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='55 15208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='49 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 [OIII] 5008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 15665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 H𝛼 6564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 20532.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09 [NII] 6585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28 20597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='55 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='34 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 CSWA-163 [OII] 3727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 11482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='53 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 [OII] 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='92 11491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 [NeIII] 3869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07 H𝛾 4341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='58 13375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 H𝛽 4862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='55 14981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='22 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 [OIII] 4960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 15282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 [OIII] 5008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 15429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 H𝛼 6564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 20225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='67 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 [NII] 6585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28 20289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 CSWA-128 [OII] 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 12019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11 [NeIII] 3869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 12476.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='14 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 H𝛽 4862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='55 15681.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 [OIII] 4960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 15997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 [OIII] 5008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 16151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 [NII] 6549.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='84 21121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 H𝛼 6564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 21170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='96 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='71 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 [NII] 6585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28 21237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 [SII] 6717.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='96 21664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='01 [SII] 6732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='34 21711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 CSWA-164 [OII] 3727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 13090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='52 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='80 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='17 [OII] 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='92 13100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='64 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='99 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07 [OIII] 5008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 17590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 H𝛼 6564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 23064.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='91 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='34 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 CSWA-11 [OII] 3727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 8979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='67 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='85 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='16 [OII] 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='92 8986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='83 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11 [NeIII] 3869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='66 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='43 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='53 [OIII] 5008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 12068.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 H𝛼 6564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 15816.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='89 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='05 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rest-optical emission line measurements of six bright lensed Cassowary galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Measurements are from Magellan/FIRE (CSWA-141, CSWA-165, CSWA-163, CSWA-164, CSWA-11) and LBT/LUCI (CSWA- 128).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Line flux measurements are quoted relative to [OIII]𝜆5007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We adopt [OIII]𝜆5007 as a reference line due to its high S/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Three-sigma upper limits are reported for emission lines that are not detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Object Observatory / Filters Dates texp Instrument Observed (sec) CSWA-165 LBT/MODS g 2014 Jan 27 720 LBT/MODS r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2014 Jan 27 360 MMT/MMIRS J 2015 Sep 30 900 MMT/MMIRS K 2015 Sep 30 1200 CSWA-116 LBT/MODS g 2014 Jan 27 720 LBT/MODS r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2014 Jan 27 360 MMT/MMIRS J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='K 2015 Oct 01 600 CSWA-103 LBT/LBC g 2015 Nov 15 600 LBT/LBC r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' i 2015 Nov 15 300 MMT/MMIRS J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='K 2015 Oct 01 600 CSWA-164 LBT/MODS g 2014 Jan 27 720 LBT/MODS r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2014 Jan 27 360 CSWA-11 LBT/LBC g 2015 Nov 15 600 LBT/LBC r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2015 Nov 15 300 Keck/ MOSFIRE K𝑠 2015 Nov 30 300 CSWA-139 LBT/MODS g 2014 Jan 27 720 LBT/MODS r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2014 Jan 27 360 MMT/MMIRS H 2017 Jan 11 900 CSWA-141 LBT/ MODS g 2014 Jan 27 720 LBT/ MODS r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2014 Jan 27 360 Keck/ MOSFIRE K𝑠 2014 Apr 11 300 Keck/ MOSFIRE Y 2015 Nov 30 300 Keck/ MOSFIRE J2 2015 Nov 30 300 CSWA-40 Keck/ESI V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I 2013 Mar 06 200 CSWA-16 LBT/MODS g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' r 2014 Jan 27 360 CSWA-38 Keck/ESI V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I 2013 Mar 06 200 CSWA-13 LBT/MODS g 2014 Jan 27 720 LBT/MODS r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' z 2014 Jan 27 360 LBT/LUCI K𝑠 2014 Apr 13 1200 CSWA-39 Keck/ESI V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I 2013 Mar 06 200 CSWA-128 LBT/LBC g 2015 Nov 15 600 LBT/LBC r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' i 2015 Nov 15 300 Keck/ MOSFIRE K𝑠 2014 Apr 11 300 CSWA-163 LBT/LBC g 2015 Nov 15 600 LBT/LBC r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' i 2015 Nov 15 300 MMT/MMIRS J 2015 Sep 30 900 MMT/MMIRS K 2015 Sep 30 1200 Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' New optical and near-infrared imaging of CASSOWARY lensed galaxies obtained with Keck, LBT, and MMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' From left to right, columns denote the object ID, observatory and instrument, filters utilized, dates of observations, and exposure time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' we describe the optical and near-infrared imaging observations and analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Details of the new imaging observations are summarized in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Optical imaging We secured images of seven galaxies from Table 1 using the Multi Object Double Spectrograph (MODS, Pogge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010) on LBT in January 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The dual channel mode of MODS provides images in two separate filters simultaneously over a field of view of 6 × 6 arc minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We used the blue and red channel to obtain g, r, and z-band images for CSWA-13, CSWA-16, CSWA-116, CSWA- 139, CSWA-141, CSWA-164 and CSWA-165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Each arc was first observed in the g and r-band for 360 seconds and then in the g and z-band for an additional 360 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For one source (CSWA 16), we obtained imaging only in the g and r-bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The sky was partly covered by clouds throughout the MODS observations and the seeing varied between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Optical images of three MNRAS 000, 1–20 (2022) 7 other galaxies (CSWA-39, CSWA-38, CSWA-40) were taken with ESI on Keck, providing a field of view of 2×3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 arc minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' These three sources were observed with V, R and I filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' There was some cloud during the observations, and the seeing was between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′8 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For the two other sources in Table 1, CSWA-2 and CSWA-19, we make use of archival HST images (program 11974, PI: Allam).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We summarize the details of the imaging observations in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The optical images were reduced using standard routines for flat fielding and image combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 5𝜎 typical limiting magni- tude in the g, r and z bands of MODS images are 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5, 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 and 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Similarly, for the ESI images the typical 5𝜎 limiting magnitude in V, R and I bands are 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7, 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 and 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For the archival HST images, the typical 5𝜎 limiting magnitudes in F450W, F606W, and F814W filters are 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3, 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 and 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Each image was flux calibrated using stars that are isolated and well detected in SDSS imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The mosaic in Figure 1 shows the multi-color optical imaging obtained for each source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Before performing photometry on the lensed galaxies, we mod- eled the foreground lens using GALFIT (Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2002) and subtracted its contribution to the lensed source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' To calculate the ab- solute magnitude for the galaxies in our sample, we first measured the integrated flux in the g-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' After applying the appropriate magnification corrections (see §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4), we arrive at the absolute UV magnitudes shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The values span MUV = −23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 to MUV = −20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4, corresponding to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8-9 L★ UV at 𝑧 ≃ 2 − 3 (Reddy & Steidel 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Parsa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Near-infrared imaging We obtained near-infrared images of CSWA-141, CSWA-11 and CSWA-128 in the Ks-band using the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE, McLean et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012) on Keck I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Conditions were photometric with seeing of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We obtained 10 dithered frames having 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1×6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 arc minute field of view, each with exposure time of 30 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 5𝜎 AB limiting magnitude in the MOSFIRE Ks-band images is 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' With the goal of constraining the equivalent width of [OIII] and H-beta emission, we observed CSWA-141 with the MOSFIRE J2 medium band filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The filter spans 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 𝜇m, covering H-beta and [OIII].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We secured a Ks-band image of CSWA-13 using the LUCI near-IR Spectrograph on the LBT when the seeing was 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We utilized the N3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='75 camera providing 4×4 arc minutes of field of view with a plate scale of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='12 arcseconds per pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The near-IR imaging reduction was performed using standard IDL routines designed to flat field, sky-subtract and stack the dithered frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Finally, we used isolated and unsaturated stars that are in the 2MASS catalog to flux calibrate the images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 5𝜎 AB limiting magnitude in the LUCI Ks-band image is 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For another four galaxies (CSWA- 116, CSWA-165, CSWA-103, CSWA-163), near-IR imaging was obtained using the MMIRS instrument on the MMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Each of the four sources was observed in the J and K bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MMIRS provides imaging over a field of view of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 × 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 arc minutes with a plate scale of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='20 arcsec per pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The seeing was between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′6-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='′′9 throughout the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The typical 5𝜎 AB limiting magnitude in MMIRS J and K-band images are 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 and 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Lensing Magnification Derivation of stellar mass and intrinsic luminosity of lensed systems requires magnification correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013b), magni- fication factors were presented for eleven out of sixteen sources given in Table 1 and typically range between 𝜇=5 and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Three out of the five remaining sources have a published lens model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We adopted magnifications for CSWA-38 and CSWA-39 from Koester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2010) and CSWA-11 from Leethochawalit et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For the two remaining sources (CSWA-13 & CSWA-16), we follow a similar approach to Hezaveh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In brief, we assumed a symmetric Gaussian light distribution for the lensed source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also tested the impact of adding a second Gaussian component to the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The foreground lens is modeled as a Singular Isothermal Ellipsoid (SIE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Multiple lenses are allowed in the modeling procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' To obtain the best fit model, we perform a Markov Chain Monte Carlo (MCMC) analysis to minimize 𝜒2 in the image plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In the case of CSWA-16, the observed data are better fit after introducing a second Gaussian component to the background source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The magnification factor is then calculated as the ratio of the lensed to unlensed flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We derive a magnification of 𝜇 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 for CSWA-16 and 𝜇 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 for CSWA-13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Stellar Population Synthesis Modeling Thirteen of the galaxies shown in Figure 1 have the necessary optical and near-IR imaging to derive physical properties from broadband SED fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For these systems, we infer the stellar mass, specific star formation rate and dust attenuation using the Bayesian galaxy SED modeling and interpreting tool BEAGLE tool (version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Chevallard & Charlot 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' BEAGLE is based on the photoioniza- tion models of star-forming galaxies in Gutkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016), com- bining the latest version of the Bruzual & Charlot (2003) stellar pop- ulation synthesis models with the photoionization code CLOUDY (Ferland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We fit the broadband photometric fluxes as well as CIII] equiv- alent widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' When relative fluxing between rest-UV and optical emission lines is possible, we include all emission lines in the fit- ting procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The models assume constant star formation where the maximum stellar age is allowed to vary freely between 5 Myr to the Universe age at the given redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We use Chabrier (2003) initial mass function and the Calzetti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2000) extinction curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The metallicity is allowed to vary in the range of -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2≤log(Z/Z)⊙≤0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 assuming equivalent stellar and nebular metallicity (Z★=Z𝐼 𝑆𝑀).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The redshift of all objects is fixed to their spectroscopic redshift given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ionization parameter (US;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' here defined as the ratio of ionizing-photon to gas densities at the edge of the Strömgren sphere) is varied in the range of -4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0≤𝑈S≤-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0, and the dust-to-metal mass ratio spanned within the range of 𝜉𝑑=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We adopt models with hydrogen density (nH=100 cm−3) and C/O abundance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 of solar value [(C/O)⊙ ≈0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Finally, the prior on the V-band dust attenuation optical depths ( ˆ𝜏𝑉 ) is taken as an exponential distribution after fixing the fraction of attenuation op- tical depth arising from the ambient ISM (𝜇) to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We note that our assumption of constant star formation may underestimate the stellar mass by as high as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 dex when the galaxy is dominated by a young stellar population, but this would not affect the primary conclusions of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We discuss the main results of this SED fitting in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 3 RESULTS All sixteen sources presented in this paper have optical spectra cov- ering CIII] to quantify equivalent widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We report these values (or 3𝜎 upper limits) in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Of the sixteen sources, six galaxies have near-IR spectra enabling rest optical line flux ratios (Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022) 8 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Relative Fλ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='FeII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Mg II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−141 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1905 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Lyα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='HeII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='OI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1890 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1920 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Relative Fλ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='OICII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='FeII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−139 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1890 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1920 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV Fe II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='OI CII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1905 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Relative Fλ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Lyα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV Fe II Al II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1905 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Lyα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Fe II Al II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='OICII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1905 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Relative Fλ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1905 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Fe II Al II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='OI CII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1890 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1920 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Rest Wavelength(Å) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Relative Fλ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIICIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Fe II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Al III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−103 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1905 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Rest Wavelength(Å) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Lyα ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='SiIV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='OI CII ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CSWA−164 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1890 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1910 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1920 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='CIII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rest-UV spectra of gravitationally lensed galaxies presented in Table 1 with CIII] detections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The upper left side of each image contains the CASSOWARY-ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The dotted dashed line below and above the UV continuum represents absorption and emission features identified in the spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The upper right of each panel shows zoom in spectral coverage near CIII]𝜆𝜆1907,1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The vertical dashed lines in the inset show the location of CIII]𝜆𝜆1907,1909 doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The CIII] doublet remain unresolved in the MMT/BCS spectra of CSWA-13 and CSWA-139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022) 9 4850 4855 4860 4865 4870 4875 0 1 2 3 4 Flux(10−17erg−1s−1cm−2Å−1) Hβ CSWA−141 4980 4990 5000 5010 5020 5030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 [OIII]λ5007 6550 6555 6560 6565 6570 6575 6580 0 2 4 6 8 10 Hα 4855 4860 4865 4870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Flux(10−18erg−1s−1cm−2Å−1) Hβ CSWA−163 5000 5005 5010 5015 0 2 4 6 8 10 [OIII]λ5007 6550 6560 6570 6580 6590 0 1 2 3 4 5 6 Hα [NII] 4855 4860 4865 4870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Flux(10−18erg−1s−1cm−2Å−1) Hβ CSWA−165 5000 5005 5010 5015 0 2 4 6 8 [OIII]λ5007 6550 6560 6570 6580 6590 0 1 2 3 4 5 6 7 [NII] Hα 3720 3725 3730 3735 3740 0 2 4 6 8 10 Flux(10−18erg−1s−1cm−2Å−1) [OII]λλ3727,3729 CSWA−164 5000 5005 5010 5015 0 2 4 6 8 10 [OIII]λ5007 6550 6560 6570 6580 6590 0 2 4 6 8 10 Hα 3720 3725 3730 3735 3740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Flux(10−18erg−1s−1cm−2Å−1) [OII]λλ3727,3729 CSWA−11 4990 5000 5010 5020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 [OIII]λ5007 6550 6560 6570 6580 6590 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Hα 4840 4850 4860 4870 4880 Rest Wavelength(Å) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Flux(10−18erg−1s−1cm−2Å−1) Hβ CSWA−128 4980 4990 5000 5010 5020 5030 Rest Wavelength(Å) 0 5 10 15 20 [OIII]λ5007 6520 6540 6560 6580 6600 Rest Wavelength(Å) 0 2 4 6 8 10 12 Hα [NII] [NII] Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Optical emission lines in six gravitationally lensed galaxies discussed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Each row shows optical emission lines from a single source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The object ID is given in the leftmost panel of each row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The black line represents observed flux whereas blue line shows gaussian fit to the line profile calculated using IDL routine MPFITPEAK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The region affected by skylines is shown as a grey swath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022) 10 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' fν(µJy) 1 10 100 1000 CSWA−141 EWCIII]=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Å sSFR=31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Gyr−1 CSWA−13 EWCIII]=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å sSFR=43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Gyr−1 CSWA−139 EWCIII]=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å sSFR=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Gyr−1 CSWA−2 EWCIII]=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Å sSFR=19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Gyr−1 1 10 100 1000 CSWA−39 EWCIII]=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Å sSFR=11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Gyr−1 CSWA−19 EWCIII]=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å sSFR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Gyr−1 CSWA−128 EWCIII]=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Å sSFR=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Gyr−1 CSWA−103 EWCIII]=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å sSFR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Gyr−1 1 10 100 1000 CSWA−163 EWCIII]<3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Å sSFR=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 Gyr−1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 λobs (µm) CSWA−40 EWCIII]<1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å sSFR=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Gyr−1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 λobs (µm) CSWA−165 EWCIII]<1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Å sSFR=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Gyr−1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 λobs (µm) CSWA−11 EWCIII]<1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å sSFR=7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Gyr−1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 λobs (µm) 1 10 100 1000 CSWA−116 EWCIII]<1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Å sSFR=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Gyr−1 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' SEDs of galaxies in the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The black circle represents broad band photometry data, blue line represents best fit population synthesis model to the observed data (see §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5) and green square shows synthetic broad band flux from the best fit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The lower right of each panel shows object ID, sSFR and CIII] equivalent widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Object log (M★/M⊙) sSFR ˆ𝜏𝑉 (Gyr−1) CSWA-141 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2+60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 −16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='17+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='18 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='12 CSWA-13 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1+56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 −28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='53+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 CSWA-139 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='77+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='41 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='33 CSWA-2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='96+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='31 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27 CSWA-39 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7+13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='96+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='24 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='31 CSWA-128 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07 CSWA-19 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='21 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='16 CSWA-103 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='48+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='31 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='23 CSWA-163 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='67+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 CSWA-40 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='43+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='29 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 CSWA-165 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='62+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='12 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 CSWA-11 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4+14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='31 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='20 CSWA-116 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='34 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='18 Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Physical properties inferred from BEAGLE fitting for subset of CASSOWARY galaxies with optical and near-IR photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' From left to right, the columns give the object name, C III] equivalent widths, magnifica- tion corrected stellar mass, specific star formation rates and V-band optical depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ten sources have multi-wavelength photometry with SED infor- mation enabling stellar mass and sSFR measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Below we briefly comment on individual galaxy properties where sources are ordered by descending CIII] equivalent width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Notes on Individual Sources CSWA-141 is an extreme equivalent width optical line emitting galaxy at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425 with an integrated apparent magnitude of 𝑟 = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Magellan/FIRE spectrum reported in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) shows a large number of rest-frame optical emission lines, including the temperature sensitive [OIII]𝜆4363 auroral line and the density sensitive [SII]𝜆𝜆6717,6731 and [OII]𝜆𝜆3727,3730 lines (see Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have since obtained deep Keck/ESI and LBT/MODS optical spectra and optical and near-IR imaging, pro- viding constraints on the rest-UV metal lines and the SED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The optical to near-infrared SED of CSWA-141 (Figure 4) im- plies a very large specific star formation rate (sSFR=31+61 −16 Gyr−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' After correcting for magnification due to lensing (𝜇=5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5), the stellar mass and star formation rate of the best fitting model are 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='98×108 M⊙ and 12+24 −7 M⊙ yr−1, respectively (Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The flux in the medium-band J2 MOSFIRE filter (covering 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='117 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='246 𝜇m) is significantly in excess of that in adjacent filters, as expected given the MNRAS 000, 1–20 (2022) 11 Line 𝜆rest 𝜆obs Fline EW (Å) (Å) FCIII]1909 (Å) Keck/ESI [CIII] 1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='73 4624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='10) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3) CIII] 1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='68 4628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='84 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4) Fe II* 2626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='64 6370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='22(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5) Mg II 2796.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='36 6783.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='42 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='30(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7(6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8) 2803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='53 6800.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='65(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6) [OII] 3727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='10 9039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='10(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04) 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4) 3729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='86 9045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='68 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='62(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09) 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2(19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9) [NeIII] 3870.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='16 9385.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='79(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='23) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5(13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8) LBT/MODS Line 𝜆rest 𝜆obs Fline EW (Å) (Å) FCIII]1908 (Å) [CIII] 1908 4622.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5) He II 1640.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='52 3974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='16 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 CIV 1549 3758.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='75 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 OIII] 1660.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='81 4027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2) 1666.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='15 4040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='23(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2) Si III] 1882.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='98 4566.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='24(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) Si III] 1892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 4588.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='11(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rest-UV emission line measurements of CSWA-141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Emission line fluxes are presented relative to the CIII]𝜆1909 line flux for the Keck/ESI data, while the line fluxes are presented relative to unresolved combined CIII] flux for LBT/MODS data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The upper limits are 3𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' contamination by extremely strong [OIII] and H𝛽 lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We use the J2 flux excess to calculate the equivalent width from [OIII] and H𝛽, following the methodology adopted at higher redshift (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=',Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Smit et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This approach yields a rest-frame equivalent width of W[OIII]+H𝛽 =730 Å, consistent with the very young stellar populations (32 Myr for constant star formation) im- plied by the population synthesis modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While the optical line EW is significantly in excess of what is seen in typical star forming galaxies at 𝑧 ≃ 2 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=',Boyett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022), it is nearly identical to the average [OIII]+H𝛽 EW at 𝑧 ≃ 7 − 8, as implied by flux excesses in Spitzer/IRAC bandpasses (Labbé et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Smit et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' De Barros et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Endsley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The continuum brightness of CSWA-141 enables a unique and detailed view of this population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectrum covers 4100-10000 Å, revealing promi- nent emission from [CIII]𝜆1907, CIII]𝜆1909, Fe II★𝜆2626, Mg II𝜆𝜆2797,2804, [OII]𝜆𝜆3726,3729, [Ne IIII]𝜆3869, and H𝛿 (Ta- ble 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The [CIII], CIII] doublet is easily resolved by ESI (Figure 2) with a total rest-frame equivalent width of WCIII]=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6Å, the largest of the sixteen galaxies considered in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Nebular Mg II emis- sion also exhibits a very large rest-frame equivalent width (WMgII = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Å), as is common in lower mass galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=',Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Guseva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The MODS spectrum provides better blue sensitivity than ESI, yielding detection of OIII]𝜆1661,1666 and Si III]𝜆𝜆1883,1892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The CIII] doublet is also detected, but it is unresolved at the resolution of MODS (Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The summed equivalent widths of the OIII] and Si III] doublet (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Å and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Å, respectively) are considerably lower than CIII] (see Table 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The high ionization lines He II𝜆1640 and CIV𝜆𝜆1548,1550 are not de- tected, implying rest-frame equivalent widths below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å (at 3𝜎), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For emission lines detected by both ESI and MODS, we will adopt whichever instrument provides the higher S/N EW measurement for our subsequent analysis and discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The rest-frame optical emission lines detected in the FIRE spectrum provide an array of constraints on the nebular gas physical conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The detection of [OIII]𝜆4363 in the FIRE spectrum enables a measure of the nebular electron temperature (Te = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 × 104 K ) and the oxygen abundance via the direct T𝑒 method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Following the process discussed in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3, we find that 12 + log(O/H) = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='95 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08, implying a gas-phase metallicity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='18 Z⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Our measurement is very similar to Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016b) who reported oxygen abundance (12 + log(O/H)) of CSWA-141 based on our line flux measurements given in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The derived metallicity is also consistent with the metallicities derived from the N2 and O3N2 indices with the calibration presented in Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018) (12 + log(O/H) < 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The O32 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6) and R23 indices (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4) point to a large ioniza- tion parameter and gas excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The exact values depend on the input ionizing spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Photoionization modeling using BEAGLE resulted in a large ionization parameter of log 𝑈𝑠 = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1, which is broadly consistent with O32 vs ionization parameter relationships in the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The photoionization modeling further suggested a high ionizing photon production efficiency of log (𝜉ion/Hz erg−1) = 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is higher than the canonical value typically assumed for galaxy-driven reionization model (Robertson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010) but consistent with other strong CIII] emitters in the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Nakajima et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While the measured O32 and R23 are rare among more massive star- forming galaxies at 𝑧 ≃ 2, they are consistent with the O32-sSFR and O32-R23 trends that are observed at high redshift (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The electron densities inferred from the flux ratios of the [OII] and [SII] doublets using PyNeb (160+76 −74 cm−3 and 350+294 −206 cm−3, respectively) are consistent with the median density of more massive star forming galaxies at 𝑧 ≃ 2 (250 cm−3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In contrast, the resolved [CIII], CIII] doublet suggests gas at very high density (16500+12100 −7800 cm−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Such an offset between densities derived from CIII] and those inferred from [OII], [SII] have been seen in other galaxies at high redshift (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We will come back to discuss this in more detail in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Finally, we note that the MODS and FIRE spectra reveal emis- sion lines at 3827, 15304, 15612, 15763, 20663 Å which appear nearly spatially coincident with CSWA-141 but are not associated with the 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425 galaxy (see Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We identify these as Ly𝛼, H𝛽, [OIII]𝜆𝜆4959,5007, and H𝛼 in a second fainter gravitationally lensed source at 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This higher redshift galaxy is unre- solved from the 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425 source in existing ground-based optical and near infrared images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Given that the H𝛼 flux of the 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425 galaxy is 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4× larger than the 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='148 source, we expect that the newly-discovered higher redshift source contributes negligibly (at the 5% level) to the broadband flux and the rest-UV continuum in the MODS and ESI spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Higher resolution imaging will be required to disentangle the two sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-13 is a bright galaxy at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='87 that was first confirmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) through the detection of Ly𝛼 emission and nu- merous interstellar absorption lines in an MMT blue channel spec- trum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CIII] emission is confidently detected (WCIII]=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Å) in the discovery spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' He II is also detected (WHeII=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Å) with a broad FWHM (2430 km s−1) that is indicative of a stellar wind origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We do not detect the OIII] doublet, implying individual components with equivalent widths less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While this is among the strongest CIII] emitters in our sample, the redshift places the strong rest-optical lines in regions of poor atmospheric transmis- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained multi-wavelength imaging in the optical and near-IR (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The SED reveals a large sSFR (43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Gyr−1), lit- MNRAS 000, 1–20 (2022) 12 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' tle dust attenuation ( ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='53), and a magnification-corrected stellar mass of log (M★/M⊙) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-139 was confirmed to have a redshift of 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='54 in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) based on the presence of Ly𝛼 absorption and in- terstellar metal absorption lines in an MMT spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectrum also shows emission from the [CIII],CIII]𝜆𝜆1907,1909 doublet with a total equivalent width of WCIII] = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Here we present new optical and near-IR imaging from the LBT and MMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The SED is best fit with an sSFR of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Gyr−1, ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='77, and a stellar mass of log (M★/M⊙) = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 after magnification correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-2 (SDSS J1038+4849) was first reported in Belokurov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2009), and the source redshift (𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='20) was subsequently confirmed in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013) through detection of rest-optical emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The lens reconstruction described in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013) shows that CSWA-2 is a merger of two systems with a stel- lar mass ratio (6 ± 3):1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' log (M★/M⊙) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 and one of the largest sSFR (19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Gyr−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The oxygen abundance 12+log(O/H) of the system as calculated by using N2 index is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='25 (∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Z⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Balmer decrement ratio (H𝛼/H𝛽=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='47) suggests little nebu- lar extinction whereas O3 of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='80 imply relatively larger excita- tion from ionized gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Using the metallicity calibration of Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018), we estimate the oxygen abundance 12+log(O/H) of the system using the O3 index as 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 (∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Z⊙) In this paper, we present new optical spectroscopy of this system obtained with ESI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectrum is dominated by continuum emission from the lower mass source (denoted J1038 North in Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013) which is considerably brighter in the optical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectrum shows emis- sion from [CIII],CIII]𝜆𝜆1907,1909 with a total equivalent width of WCIII]=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-39 (SDSS J1527+0652), a bright (𝑟 = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5) 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='759 galaxy was first identified as part of the SDSS Giant Arcs Sur- vey (SGAS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Hennawi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2008) and was spectroscopically con- firmed by Koester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2010) through detection of Ly𝛼 emission and interstellar absorption lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained an ESI opti- cal spectrum and multi-color optical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Both components of the [CIII], CIII] doublet are detected in the spectrum, with a total S/N=16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 for the summed doublet flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The rest-frame equivalent width (WCIII]=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Å) is typical of similarly luminous galaxies at this redshift (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also detect Ly𝛼 emission with a moderate rest-frame equivalent width (WLy𝛼=11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8±6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2Å).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' No other nebular UV lines are detected in the ESI spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The upper limit on the OIII]𝜆𝜆1661,1666 compo- nents imply equivalent widths below 1 Å, consistent with the OIII] emission strengths in the Shapley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2003) composite of 𝑧 ≃ 3 galaxies with similar Ly𝛼 equivalent widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-38 (SDSS J1226+2152) was confirmed to lie at 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='923 by detection of Ly𝛼 and metal absorption lines in (Koester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Like CSWA-39, this source was first identified in Sloan Giant Arcs survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Here we present deep ESI spectroscopy and imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The optical spectrum reveals a 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1𝜎 detection of the CIII]𝜆1909 component, but the [CIII]𝜆1907 component is situ- ated on a skyline, precluding a useful limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The rest-frame equiv- alent width of the CIII]𝜆1909 component (WCIII]𝜆1909=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å) is comparable to CSWA-38 and CSWA-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ly𝛼 emission is weak (WLy𝛼=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å), and no other nebular UV lines are detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-19 (SDSS J0900+2234) was first confirmed in (Diehl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2009) at 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='03 via detection of Ly𝛼 emission and several metal absorption features in a spectrum from the dual imaging spec- trograph (DIS) on the Astrophysical Research Consortium (ARC) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 meter telescope at the Apache Point Observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have since obtained a deep ESI spectrum and MMT near-infrared imaging of this source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The combined optical and near-infrared SED is best- fit by a model with a (magnification-corrected) stellar mass of log (M★/M⊙) = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5, a specific star formation rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Gyr−1, and V-band attenuation optical depth of ˆ𝜏𝑉 =1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectrum of the source shows weak detections of [CIII], CIII] 𝜆𝜆1907, 1909 with an integrated S/N=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 across both components of the doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The total rest-frame equivalent width (WCIII]=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å) is among the lowest in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' No other nebular rest-UV lines are detected, as Ly𝛼 is situated to the blue of the ESI coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-128 (SDSS J1958+5950) is a bright (r=20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7) z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='22 galaxy that was spectroscopically confirmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) through detection of rest-optical emission lines in an LBT/LUCI near-infrared spectrum and interstellar metal absorption lines in an MMT optical spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have since obtained optical and near-infrared imaging and a deep ESI optical spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The magnification-corrected SED (Figure 4) implies a stellar mass of log (M★/M⊙) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 and an sSFR of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Gyr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectrum reveals a faint 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8𝜎 detection of [CIII], CIII] emission at the sys- temic redshift (𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='225) defined by the rest-optical lines, implying a rest-frame equivalent width of WCIII]=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å for the doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' No other nebular lines are detected in the rest-UV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The flux ratios of rest-optical lines (Table 4) constrain the gas physical conditions, providing a framework to understand the weak UV nebular line emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We infer the gas-phase oxygen abun- dance using the R23, O32 and O3 calibration presented in Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The three indices suggest metallicities of 12+log O/H = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 (O32), 12+log O/H=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 (R23) and 12+log O/H=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 (O3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As discussed in Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2020), O32 metallicity calibration in Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018) may provide a better estimate of oxygen abun- dance for high redshift galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This suggests that the metallicity of the ionized gas of CSWA-128 is ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Z⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The values of O32 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3) and R23 (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0) are a factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 smaller than that of the strong CIII] emitter CSWA-141, consistent with expectations for nebular gas with a lower ionization parameter and excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In contrast, the electron density implied by the [SII]𝜆𝜆6717,6731 doublet (200 cm−3) is similar to that found in both strong CIII] emitters such as CSWA-141 and typical 𝑧 ≃ 2−3 galaxies (Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-103 (SDSS J0145-0455) is a 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='96 galaxy that was confirmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) through detection of metal absorp- tion lines and weak Ly𝛼 emission in an MMT blue channel spec- trum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have since obtained a moderate resolution Keck/ESI spec- trum and optical and near-infrared imaging with LBT and MMT, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The broadband SED (Figure 4) is best fit by a stel- lar synthesis model with a stellar mass (magnification corrected) of log (M★/M⊙) = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4, sSFR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Gyr−1, and ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectrum constrains rest-frame wavelengths 1350-3425 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Positive emission is detected from both components of the [CIII], CIII] dou- blet, implying a total rest-frame equivalent width of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' No other nebular emission lines are observed in the ESI spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-164 (SDSS J0232-0323) was spectroscopically con- firmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) based on the presence of Ly𝛼 emission and interstellar absorption lines in an MMT blue channel spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) also presented detection of [OII], [OIII]𝜆5007, and H𝛼 in a Magellan/FIRE near-infrared spectrum of CSWA-164, revealing a systemic nebular redshift of 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have since obtained a deep moderate resolution optical spectrum with ESI and optical broadband imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ESI spectrum reveals the Ly𝛼 emission (W𝐿𝑦𝛼 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Å) detected previously together with weak emission (S/N=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) from the [CIII],CIII]𝜆𝜆1907,1909 doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This corresponds to a total CIII],CIII] equivalent width of just 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å, the smallest measured value in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022) 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='48 λobs(µm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 Relative Fλ Lyα (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='148) CIII]1908 (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425) Si III]1883 (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425) OIII]1666 (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='54 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='56 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='58 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='60 λobs(µm) 0 2 4 6 8 Hα (z=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425) [OIII]λ4959 (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='147) Hβ (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='147) [OIII]λ5007 (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='147) Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Optical and NIR spectra of CSWA-141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A secondary source (CSWA-141b) is identified in the Optical+NIR spectra (see §3) (Left:) Ly𝛼 emission at 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='148 from CSWA-141b in the LBT/MODS spectrum alongside [SiIII]𝜆1883 and CIII]𝜆1908 from CSWA-141 at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (Right:) Rest optical lines ([OIII]𝜆𝜆4959,5007, H𝛽) from CSWA-141b at 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='147 observed in the FIRE spectrum alongside the H𝛼 emission line from CSWA-141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The FIRE spectrum provides insight into the ionized gas phys- ical conditions of CSWA-164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Unfortunately both H𝛽 and [NII] are obscured by skylines, precluding a robust determination of the oxy- gen abundance through standard strong line calibrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We can however estimate oxygen abundance using O32 metallicity calibra- tions from Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We find that O32=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 corresponds to the oxygen abundance of 12+log O/H=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Thus the ionized gas appear to be reasonably metal rich in CSWA-164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The value of ionization-sensitive line ratios (O32 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7) is among the lowest in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In contrast to the metallicity and ionization parameter, the electron density derived from the [OII] doublet (165 cm−3) is consistent with the range spanned by other galaxies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-40 (SDSS J0952+3434) is a 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='190 galaxy identified through the Sloan Bright Arcs Survey and spectroscopically con- firmed by Kubo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2010) using the DIS on the ARC 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 meter and the RC Spectrograph on the Mayall 4 meter telescope at Kitt Peak National Observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectra reveal Ly𝛼 in absorption along with several other metal absorption lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained a moderate resolution optical spectrum and imaging with Keck/ESI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The continuum S/N of the CSWA-40 ESI spectrum is lower than other systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is the only ESI spectrum that does not reveal detection of the [CIII], CIII] doublet, implying a rest-frame equiv- alent width below 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Å for the sum of both components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' No other nebular emission lines are observed in the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-163 (SDSS J2158+0257) was spectroscopically con- firmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) based on identification of metal ab- sorption lines and Ly𝛼 absorption in an MMT blue channel spec- trum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A Magellan/FIRE near-infrared spectrum was also obtained in that paper, revealing a systemic nebular redshift of 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='079 based on detection of [OII], H𝛾, H𝛽, [OIII], H𝛼, and [NII].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained new optical and near-infrared imaging of this source, allowing constraints to be placed on the broadband SED (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The data are best fit by stellar synthesis models with stellar mass log (M★/𝑀⊙) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 after magnification correction, V-band at- tenuation optical depth of ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='67, and an sSFR of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 Gyr−1, suggesting CSWA-163 is a relatively massive galaxy with a fairly evolved stellar population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Perhaps not surprisingly given the low sSFR and lack of Ly𝛼 emission, the MMT blue channel spectrum does not show any CIII] emission at the systemic redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 3𝜎 flux upper limit suggests that the rest-frame equivalent width of the double must be lower than 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The FIRE spectrum provides useful constraints on the ionized gas of CSWA-163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The oxygen abundance can be derived from O32 and O3 calibration from Bian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Both suggest moderately enriched gas: 12+log O/H=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 (O32) and12+log O/H=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 (O3) im- plying a nebular oxygen abundance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Z⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ionization- sensitive line ratios (O32=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1, O3=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3) are consistent with a rel- atively low ionization parameter and moderate gas-excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The electron density inferred from [OII] is 144 cm−3, consistent with the other systems studied in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-16 (SDSS J1111+5308) was confirmed to have a red- shift of 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='95 based on the presence of numerous metal absorp- tion lines in an MMT blue channel spectrum (Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The discovery spectrum shows no emission from the blended [CIII], CIII] doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 3𝜎 upper limit on the total flux from the doublet requires the rest-frame equivalent width to be smaller than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained multi-band optical imaging with LBT, allowing more robust constraints to be placed on the apparent magnitude (r=21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8) and the magnification-corrected UV absolute magnitude (MUV=−20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-165 (SDSS J0105+0144) is a 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='13 galaxy that was first confirmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013b) through detection of strong metal absorption lines and weak Ly𝛼 emission in an MMT blue channel spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have since obtained a Magellan/FIRE near-infrared spectrum and optical and near-infrared imaging from LBT and MMT respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The FIRE spectrum reveals detection of [OII], H𝛽, [OIII]𝜆5007, H𝛼, and [NII], indicating a systemic redshift of 𝑧 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The MMT shows no emission from the [CIII], CIII] doublet at the systemic redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The 3𝜎 upper limit on the flux of the doublet indicates that the total CIII] equivalent width must be lower than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The broadband SED is best-fit by a synthesis model with stellar mass of log(M★/M⊙) = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0, sSFR of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Gyr−1, and ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The gas-phase metallicity can be inferred from O32, R23, and O3 strong line calibrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' All three indicate metal rich ionized gas: 12+log O/H = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 (O32) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 (R23), 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 (O3), consistent with a gas-phase metallicity in the range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 Z⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ionization- sensitive ratios (O32=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6, O3=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) suggest an ionization parameter that is lower than average among 𝑧 ≃ 2 − 3 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In contrast, MNRAS 000, 1–20 (2022) 14 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' the electron density derived from the [OII] doublet flux ratio (220 cm−3) is similar to that found in other systems at high redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-11 (SDSS J0800+0812) was confirmed at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='41 via detection of metal absorption lines and [OII] emission in MMT blue and red channel spectra (Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The CIII] dou- blet is not detected in either the blue or red channel MMT spectra, implying a rest-frame equivalent width below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 Å at 3𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained multi-wavelength imaging and near-infrared spec- troscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The magnification-corrected SED suggests a stellar mass of log(M★/M⊙) = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3, an sSFR of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Gyr−1, and V-band attenuation optical depth of ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The FIRE spectrum reveals detections of [OII], [OIII]𝜆5007, and H𝛼, but strong skylines ob- scure detections of H𝛽, [OIII]𝜆4959 and [NII]𝜆6586.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Using the theoretically-expected flux ratio of [OIII]𝜆5007/[OIII]𝜆4959, we infer that this system has O32 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='92, relatively low for our sam- ple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Using the O32 calibration, we estimate metallicity of 12+log O/H=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The electron density implied by the [OII] doublet flux ratio is 469+416 −238 cm−3, consistent with the range spanned by other galaxies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-116 (SDSS J0143+1607) is a 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='50 galaxy con- firmed in Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013a) through detection of rest-UV metal absorption lines and [OII] in MMT blue and red channel spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We do not detect the CIII] doublet in the MMT spectra, indicating that the rest-frame equivalent width is below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å at 3𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We have obtained optical and near-infrared imaging of CSWA-116, provid- ing constraints on the broadband SED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The data are best fit by a stellar model with log(M★/M⊙) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4, an sSFR of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 Gyr−1, and V-band attenuation optical depth of ˆ𝜏𝑉 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Physical Properties of CASSOWARY galaxy sample The data obtained for this paper provide new constraints on the ionized gas properties and the stellar populations of lensed galaxies at 𝑧 ≃ 1 − 3 identified by the CASSOWARY selection in SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Here we briefly describe what these data reveal about the aver- age properties in this sample, providing a concise summary of the source-by-source description presented in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Following correc- tion for magnification, the rest-frame UV absolute magnitudes are found to range between MUV=−20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 and MUV=−23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0, with a me- dian value (MUV=−21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9) that is roughly three times the value of L★ UV at 𝑧 ≃ 2 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Reddy & Steidel 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Both optical and near- infrared imaging exist for 11 of the 16 galaxies considered in this paper, allowing the stellar content to be characterized through SED fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The median stellar mass and sSFR of this subset is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3×1010 M⊙ and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 Gyr−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The latter is similar to the average sSFR of 𝑧 ≃ 2 − 3 galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Reddy & Steidel 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rest-optical line measurements exist for seven of the CAS- SOWARY galaxies shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The median gas-phase oxy- gen abundance derived from the rest-optical line ratios is 12+log O/H = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='33, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', ionized gas metallicity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Z⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ionization- sensitive ratio O32 ranges between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 with a median value of O32=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While this is slightly lower than the median O32 in the KBSS and MOSDEF surveys, it is well within the range spanned by galaxies in these samples (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Steidel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Balmer decrements range between H𝛼/H𝛽=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='47 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The median electron density derived from the [OII] or [SII] doublet flux ratios (198 cm−3) is close to the aver- age electron density of 𝑧 ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 galaxies from the MOSDEF survey (Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' All sixteen galaxies in our sample have constraints on rest-UV line emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Most sources show very weak [CIII], CIII] emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The median equivalent width for the summed doublet is 1 Å, similar to that seen in composite spectra of 𝑧 ≃ 3 LBGs (Shapley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Llerena et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The two strongest [CIII], CIII] emitters (CSWA 141, CSWA -13) have rest-frame equivalent widths of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Å and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 Å, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The rest-UV spectrum of CSWA-141 also shows prominent nebular emission from OIII], Si III] and Mg II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While these lines are absent in CSWA-13, its spectrum does reveal broad He II emission, indicative of a significant Wolf Rayet population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' No high ionization nebular lines are detected in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Our sample allows to compare and contrast ISM conditions ex- pected in strong and weak CIII] emitters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A typical CIII] equivalent widths of star-forming galaxies at 𝑧 ∼ 2−3 is ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å (Shapley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' From here on, we refer to those galaxies with CIII] equivalent widths > 2× typically seen at 𝑧 ∼ 2−3 (≳ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å) as strong CIII] emitters, whereas objects with CIII] equivalent widths below this threshold are described as weak CIII] emitters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Together with galaxies presented in this paper, we compile sources from the literature having constraints from both CIII] equivalent widths and optical spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The majority of the literature objects are lower red- shifts galaxies (Giavalisco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Leitherer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ravindranath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020), while majority of sample at 𝑧 > 1 are comprised of gravita- tionally lensed systems (Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' de Barros et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Bayliss et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Christensen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Quider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Hain- line et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Pettini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Teplitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We present a compilation of 𝑧 > 1 sources in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In Figure 6, we plot empirical relationships between CIII] equivalent width and oxygen abundance (left panel), and CIII] equivalent width and O32 (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The oxygen abundance of the strong CIII] emitters are mostly measured using direct metal- licity measurements, while strong optical line calibrations are used for the weaker CIII] emitters (see Table 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As can be seen in the Figure 6, the gas-phase metallicity of the strong CIII] emitters is consistently below 12+log(O/H)=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0, suggesting metallicities be- low 20% Z⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In contrast, most of the weaker CIII] emitters imply higher metallicities than this value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This result is consistent with pre- vious investigations in the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Jaskot & Ravindranath 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Maseda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Nakajima et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Schaerer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ravindranath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The right panel of Figure 6 shows that the O32 values of the stronger CIII] emitters (≳ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å) are on an average six times larger than the those of the weaker CIII] emit- ters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The median O32 value of the weaker CIII] emitters are similar to typical galaxies at 𝑧 ∼ 2 − 3 (O32=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3,Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A variety of factors can influence the O32 value of a galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The ele- vated values seen in the strongest of CIII] emitters tend to be found in galaxies dominated by the light of a very young stellar popula- tion (Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020), as expected in galaxies undergoing a burst of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Overall these empirical rela- tionships support a physical picture where galaxies with metal poor gas and young stellar populations are able to power strong CIII] emission (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The scatter seen in the CIII] EW at a given metallicity or O32 value may stem from differences in ISM conditions (relative carbon abundances (C/O), ionization parameters) and stellar age and metallicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The compilation of strong CIII] emitters further provides in- formation on the global spectral properties expected from typical reionization era systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In Figure 7, we show strong CIII] emit- ters (denoted by red square) and weak CIII] emitters (denoted by blue square) in log([OIII]/H𝛽) vs sSFR (left panel) and log(O32) MNRAS 000, 1–20 (2022) 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 EWCIII] (Å) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 12+log(O/H) This work Mainali+2020 Ravindranath+2020 Stark+2014 James+2014 Erb+2010 Stark+2015 deBarros+2014 Christensen+2012 Bayliss+2014 Vanzella+2016/17 Rigby+2015/21 Berg+2016/19 Leitherer+2011 Giavalisco+1996 Quider+2009 Pettini+2000 Berg+2018 Senchyna+2017/19 1 10 EWCIII] (Å) 1 10 O32 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (Left:) Empirical relationship between oxygen abundance (12+log(O/H)) and rest frame CIII] equivalent width (EWCIII]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (Right:) Empirical relationship between the line ratio of [OIII]𝜆𝜆4959,5007 to [OII]𝜆𝜆3727,3729 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' O32) and rest-frame CIII] EW (EWCIII]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The red symbol represents bright lensed galaxies presented in this paper, while other data points are compilation from the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The strong (blue) and weak (red) CIII] emitters (see §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2) in O3 vs sSFR (left) and O32 vs R23 (right) plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Star forming galaxies at 𝑧 ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 from KBSS survey (Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016) are shown in cyan circle whereas MOSDEF survey (Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a) are shown in violet triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Local galaxies from SDSS survey are shown in grey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Galaxies with properties similar to those at z>6 tend to have strongest C III] emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' vs log(R23) (right panel) plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We compare them to typical line ratios expected at 𝑧 ∼ 2 using dataset from KBSS survey (Steidel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016) and MOSDEF survey (Sanders et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016a), as well as at 𝑧 ∼ 0 (local SDSS galaxies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The strong CIII] emitting galaxies appears to be distinct from local SDSS galaxies as well as typical galaxies at 𝑧 ∼ 2 in both the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' However, the position of weaker CIII] emitters on both the diagrams is similar to typical galaxies at 𝑧 ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Taken together, this further demonstrates that strong CIII] emitters show highly ionized gas conditions from a large sSFR systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Assuming these strong CIII] emitters repre- sentative of a typical reionization era systems, we might expect a similar ISM conditions in galaxies at 𝑧 > 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 4 DISCUSSION In this paper, we present spectra of some of the brightest-known gravitationally-lensed galaxies at 𝑧 ≃ 2−3, discovered over the foot- print of SDSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Included in this sample are CSWA-13 and CSWA- 141, two exceptionally bright systems with sSFRs (> 20 Gyr−1) that are similar to those of the reionization-era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Their spectra reveal rest-frame CIII] equivalent widths more than twice what is typical at 𝑧 ≃ 2 − 3 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Llerena et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In this section, we explore the ionized gas conditions and the properties of the outflowing gas, taking advantage of emission and absorption lines that are often too faint to be detected in indi- vidual high redshift galaxies with similarly intense emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022) 1og([OIII]25008 / Hβ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Strong CIIIl emitters Weak CIIIl emitters KBSS z~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 SDSS z~0 2 1 0 2 1 log(sSFR /Gyr-1)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Strong CIIIl emitters Weak CIIIl emitters 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 KBSS z~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 MOSDEF z~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 log(O32) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 ■SDSS z~0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 log(R23)16 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 EWFeII λ2374 (Å) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 EWFeII λ2382 (Å) CSWA−141 optically thin optically thick Erb+2012 (Composite) Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A comparison between equivalent widths of Fe II 𝜆2374 and Fe II 𝜆2382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The red square represents CSWA-141 data point whereas black circles are composite data points presented in Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The two dashed black lines represent optically thin and optically thick cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This reflects that Fe II is not optically thick in CSWA-141 and therefore has a lower column density c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' black points Our analysis will primarily focus on CSWA-141, as the redshift of CSWA-13 places the strong rest-optical lines in regions of low at- mospheric transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' For CSWA 141, the rest-optical lines are similar in equivalent width to those found in the reionization era (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', De Barros et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Endsley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Boyett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022), classifying this galaxy as an EELG and revealing a stellar population dominated by a recent burst or upturn in star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The gas properties in such intense line emitting galaxies have been the subject of a number of spectroscopic investigations in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' These studies demonstrate that the nebular gas is gen- erally under extreme ionization conditions in EELGs (Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018), with the ionization parameter reaching its largest values in the galaxies powered by the youngest stellar populations (or the largest equivalent width rest-optical nebular lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The gas in CSWA-141 is consistent with this picture, showing a large O32 ratio (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7) as expected given its elevated sSFR (31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Gyr−1) and [OIII]+H𝛽 EW (730 Å).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Its large ionization parameter implied by the photoion- isaiton models (log U = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) suggests a large photon density is impingent on the ionised gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This can be driven be a variety of fac- tors, including efficient ionizing photon production (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chevallard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021) and a compact configuration of ion- ized gas around the sources of ionizing radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The latter is the norm for galaxies dominated by very young stellar clusters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Whitmore et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Hannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2023), and thus may be expected in EELGs like CSWA-141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Further insight into the gas conditions of EELGs is made possi- ble by detection of three density-sensitive emission lines in CSWA- 141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As we discussed in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1, the [CIII], CIII] doublet implies very high gas densities (16500+12100 −7800 cm−3), perhaps again reflect- ing a very compact or concentrated gas geometry surrounding the extremely young star clusters that power EELGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Although the un- certainty in CIII] density is currently large, such high densities are routinely seen in 𝑧 ≃ 2 − 4 galaxies with spectrally-resolved CIII] measurements (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Christensen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA-141 EWMgII = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5Å F2797 F2803 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mg II 2797,2803 line profile in CSWA-141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The black curve represents continuum subtracted flux level while the green solid line is gaussian fit to the observed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Both the Mg II doublet are well fitted by a single component gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mg II 2797 is clearly stronger than Mg II 2803 line, suggesting a Mg II doublet intensity ratio (𝐹2797/𝐹2803) of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The doublet ratio is consistent with the intrinsic recombination value (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0) indicating minimal scattering by low-ionization ISM along the line of sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Based on the observed Mg II doublet ratio, CSWA-141 has implied escape fraction of 𝑓esc(LyC) = 27±4%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Bayliss et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Acharyya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019) and are also starting to be seen in the first handful of 𝑧 ∼> 7 galaxies with CIII] doublet mea- surements (Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As such, the high C III] density is less likely due to a statistical fluctuation, although a larger sample should confirm this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In most of the cases, the CIII] density is also significantly in excess of that inferred from lower- ionization species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The same trend is apparent in CSWA-141, with the CIII] density being nearly two orders of magnitude higher than those derived from [SII] and [OII].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is consistent with a picture (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kewley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Acharyya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021) dictated by the ionization structure of the nebulae, with the lower ionization rest-optical lines (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', [OII] and [SII]) probing primarily the outer layers which are preferentially dominated by lower density gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The higher ionization lines (like CIII]) probe the inner regions of the nebula, where densities are expected to be higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Variations in the critical density of the ions will additionally contribute to CIII] probing higher density gas than [OII] (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A key question is whether very young EELGs like CSWA-141 (and many of the 𝑧 > 7 galaxies) might have a large fraction of their ionized gas in very dense clumps, as is expected at the earliest evolution- ary phases following the formation of star clusters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rigby & Rieke 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Currently samples with CIII] densities tend to be those that have at least moderately large CIII] EW, gener- ally indicative of a relatively young stellar population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Larger CIII] density samples are required to test whether the presence of very large densities is at all sensitive to the luminosity-weighted stellar population age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' CSWA 141 also provides a unique window on the kinematics and covering fraction of the outflowing gas in EELGs, a population which becomes commonplace at 𝑧 > 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As it is this outflowing gas which regulates the escape of ionising radiation, systems like MNRAS 000, 1–20 (2022) 4 3 itive Rel 2792 2794 2796 2798 2800 2802 2804 2806 Wavelenqth (A)17 CSWA 141 offer potential for understanding the likely contribu- tion of EELGs to reionisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' At low redshift, (Jaskot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017) find that the most extreme [OIII] emitting galaxies (the Green Peas) tend to have low outflow velocities and suggest that this is consistent with models of suppressed superwinds, where catastrophic cooling prevents the development of large scale outflows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Silich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Silich & Tenorio-Tagle 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Gray et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The low ionization absorption lines in the CSWA 141 spectra are all blueshifted with respect to the systemic redshift, in- dicating the presence of outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In the ESI spectrum, we detect Fe II and Mg II absorption lines, while the MODS spectrum probes slightly bluer wavelengths, allowing detection of Al II𝜆1670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The average velocity of low ionization outflowing gas in CSWA 141 is 76 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is slightly lower than outflow velocities of 100-300 km s−1 that are commonly observed in galaxies at 𝑧 ∼ 1 − 3 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Weiner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Steidel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' However given the low stellar mass of CSWA-141, the measurement is consistent with expectations from known trends be- tween galaxy mass and outflow velocity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Martin 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Weiner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The strength of the absorption lines in CSWA 141 provide insight into the opacity of neutral gas along the line of sight to the young star clusters which dominate the light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Fe II 𝜆2374 and Fe II 𝜆2382 absorption lines are very weak with equivalent widths of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018) measured a column density N(Fe II) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 × 1014 cm−2, which is among the lowest of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In Figure 8, we compare these equivalent widths with those measured from composite spectra of more typical star forming galaxies at 1 < 𝑧 < 2 (Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As is clear in the figure, most star forming galaxies at these redshifts show similar Fe II 𝜆2374 and Fe II 𝜆2382 equivalent widths, as expected for optically thick neutral gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In contrast, the Fe II 𝜆2374 absorption in CSWA-141 is significantly weaker than Fe II 𝜆2382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' With an Fe II 𝜆2374 EW that is roughly three times weaker than that found in the 𝑧 ≃ 1 − 2 composites, the lines are much closer to expectations for optically thin neutral gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We additionally note that the Fe II 𝜆2382 line is susceptible to emission filling (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2012) which tends to weaken the observed Fe II 𝜆2382 equivalent widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is particularly likely to be the case for EELGs like CSWA-141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In such a scenario, the line ratio would move even closer to that expected for optically thin conditions, implying a low covering frac- tion and potentially low column density of neutral gas in the outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Further indications that CSWA 141 has a low column density of neutral gas comes from the resonant Mg II𝜆𝜆 2797,2803 emis- sion line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Both components of the doublet are confidently detected (S/N>10) in emission with total equivalent widths of 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å (Fig- ure 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is not only one of the highest measured Mg II EWs at z>1, but it is also one of the brightest Mg II emission lines, making detailed (and resolved) study of the line uniquely possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Recent studies have pointed out that the flux ratio of the doublet is strongly sensitive to the neutral gas column density in the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' As such it is thought to correlate closely with the ionizing photon escape fraction (Henry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Seive et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2023), perhaps providing one of the best indirect indicators of photon leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' At low HI column densities (<1017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 cm−2), galaxies become optically thin to the resonant Mg II line photons (Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This leads to strong nebu- lar Mg II emission, and it drives the doublet ratio (R=F2797/F2803) to its intrinsic value of 𝑅 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' If the line photons are resonantly scattered by Mg+ ions in the neutral gas along the line of sight, the doublet ratio will decrease, asymptoting to a value of R=1 if the gas is optically thick to Mg II photons (see Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020 for a detailed discussion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The measured Mg II doublet ratio in CSWA-141 is R=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2, consistent with the intrinsic value produced in the HII regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This suggests that optically thin channels along the line of sight to the young star clusters are powering the nebular emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Both compo- nents of the doublet are well-fit by single Gaussians, suggesting that the line profile is not significantly impacted by resonant scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The very large EW of the line also points to minimal attenuation of line photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We note that the Mg II profile does show very weak blue-shifted absorption (see Figure 9), suggesting the presence of some neutral gas along the line of sight, but this gas must be either optically thin or clumpy with low density channels to result in the observed line profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Given the derived oxygen abundance of CSWA-141 (see §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1) and nominal assumptions on the Mg/O ratio (Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020), this can be converted to an estimate of the hydrogen column den- sity (See equation 14 of Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Given the measured doublet ratio is consistent with the intrinsic value, CSWA-141 is for- mally consistent with a negligible hydrogen column density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Within the measurement errors of the flux ratio, we find a 1𝜎 upper limit on the HI column density of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8×1016 cm−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This value is well below the HI column density at which galaxies become optically thin to LyC radiation (<1017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 cm−2), suggesting that CSWA-141 may be a likely candidate for LyC leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While more realistic geometries (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', clumpy gas) would alter the derived column densities, the ob- served line profile requires there to be low density channels along the line of sight where resonant line photons (and potentially LyC emission) are transmitted (Gazagnes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Saldana-Lopez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Because of the extreme brightness of CSWA-141, it presents a unique opportunity to spatially resolve the absorbing gas in an extreme line emitter that is very similar in its properties to those systems at 𝑧 > 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' An upcoming HST UVIS grism observa- tions (GO-16710, PI: Mainali) will provide more direct constraints on the escape of ionizing radiation from the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 5 SUMMARY We present new spectroscopic and photometric observations of six- teen bright gravitationally lensed galaxies originally identified in SDSS via the CASSOWARY program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Observations were con- ducted using LBT, Keck, MMT and Magellan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Included in this sample is the 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='42 galaxy CSWA-141, one of the brightest known EELGs at high redshift, with an [OIII]+H𝛽 EW (730 Å) nearly identical to the average value seen at 𝑧 ≃ 7 − 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' In this paper, we focus on the rest-UV spectral properties of the sample, leveraging high quality Keck/ESI data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Owing to the brightness of our targets (𝑔 ≃ 19-21), we are able to detect rest-UV metal line emission in the Keck spectra down to very low EW values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While most systems have weak line emission (median CIII] EW =1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 Å), CSWA 141 shows relatively strong emission (CIII] EW 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 Å) to- gether with detections of a variety of UV lines (OIII], Si III], Fe II★, Mg II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We compare the properties of the strong (∼> 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å) and weak (∼< 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 Å) CIII] emitters in our sample and in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We find that the stronger CIII] emitters have larger sSFR and lower gas- phase oxygen abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We find that the strong CIII] emitters can be easily separated by their rest-optical line ratios, with larger values of O32 at roughly fixed R23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Overall, these results suggest that CIII] tends to be strong in galaxies dominated by young stellar populations with low metallicity and extreme ionization conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022) 18 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Object EWCIII] R23 O32 O3 Electron Density 12 + log (O/H) Reference () (cm−3) CSWA-141 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 160+76 −74 𝑎, 350+294 −206 𝑏, 16500+12100 −7800 𝑐 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='95±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08𝑑 This work CSWA-2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑔 This work, 16 CSWA-128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 198+85 −76 𝑏 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑒, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 𝑓 , 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑔 This work CSWA-164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 165+65 −46 𝑎 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑒 This work CSWA-163 < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 144+45 −33 𝑎 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑒, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑔 This work CSWA-165 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 221+75 −64 𝑎 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑒, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 𝑓 , 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑔 This work CSWA-11 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 469+120 −156 𝑎 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2𝑒 This work RXCJ0232-588 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 80𝑎 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='61 𝑑 1 Ion2 18 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' > 15 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='07ℎ 2 860_359 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 < 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 > 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='91 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 𝑓 3 ID14 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 < 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 > 10 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8𝑑 4 SL2S0217 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 300𝑐 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5𝑑 5 SGAS J1050+0017 11 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 2-3×100𝑎 > 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1𝑑 6 ID11 11 < 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 > 10 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7𝑑 7 CSWA-20 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 276𝑎, 17100𝑏 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='82𝑑 8 BX418 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 < 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 > 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8𝑑 9 A1689 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 330𝑎, 2900𝑐 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='76𝑑 10 MACS 0451-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7 < 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 > 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' < 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 𝑓 3 SDSS J1723+3411 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 47𝑎, 1950𝑐 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 𝑓 11 MACS 0451-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 3 Cosmic Horseshoe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='31 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='4 840-6900𝑏 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='65 𝑓 12,13 MS 1512-cB58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='36 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='47 𝑓 14,15 𝑎Derived from [OII] doublet, 𝑏Derived from [SII] doublet, 𝑐Derived from CIII] doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 𝑑Direct (T𝑒) method, 𝑒O32 method, 𝑓 R23 method, 𝑔O3 method, ℎ Using HII-CHI-mistry code (Perez-Montero 2014) 1Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2020),2de Barros et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016),3 Stark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2014),4Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2017),5Berg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2018),6Bayliss et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2014),7Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2016),8James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2014), 9Erb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2010),10Christensen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2012), 11Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2021), 12Quider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2009), 13Hainline et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2009), 14Pettini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2000), 15Teplitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2000), 16Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' (2013) Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Rest-optical emission line properties of galaxies at high redshift with CIII] emission constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The upper half shows data from this paper whereas lower half shows measurements from the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This is consistent with trends found in observations at low and high redshift (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Maseda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Nakajima et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Schaerer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Ravindranath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2021) and in photoionization models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Jaskot & Ravindranath 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Nakajima et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The brightness of CSWA-141 enables a detailed investigation of an EELG with properties similar to that which become common at 𝑧 > 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This galaxy is characterized by low stellar mass (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0×108 M⊙), large sSFR (31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2 Gyr−1), low gas-phase metallicity (12+log O/H=7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='95) and relatively highly ionized gas (O32=6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='7) and has likely undergone a recent upturn or burst of star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We find that the electron density traced by the CIII] doublet (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='65×104 cm−3) is higher than that traced by [OII] and [SII] doublet (160 and 350 cm−3, respectively), a discrepancy that is also found in other systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Acharyya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' While this is likely to reflect the ionization structure of the HII regions powering the lines (Kewley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2019), it may also indicate that CSWA-141 contains a significant fraction of its ionized gas in very dense clumps, as is expected in the earliest stages following the formation of star clusters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The spectra of CSWA-141 provide several probes of the neutral gas opacity in the galaxy, including both low ionization absorption lines and the resolved Mg II doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Fe II𝜆𝜆2374, 2382 ab- sorption lines indicate the presence of outflowing gas with average velocity of 76 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The lines are much weaker than in typical star forming galaxies at 𝑧 ≃ 1 − 2, implying a low covering fraction and potentially low column density of neutral gas in the outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The res- onant Mg II𝜆𝜆 2797,2803 emission line supports this picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Mg II doublet ratio in CSWA-141 ( R= F2797/F2803) is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='2, con- sistent with the intrinsic value produced in the HII regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' When combined with the very large EW of Mg II and the near-Gaussian profiles of the doublet components, this suggests minimal resonant scattering, consistent with a very low column density of neutral hydrogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' These indirect indicators suggest CSWA-141 may be a likely candidate for LyC leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' ACKNOWLEDGMENTS We would like to thank Ryan Endsley for helping with MMT ob- servations of some of the sources presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We also thank Stephane Charlot and Jacopo Charlot for making the BEA- GLE population synthesis tool available to us for this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' DPS acknowledges support from the National Science Founda- tion through the grant AST-2109066.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' TJ acknowledges support from the National Science Foundation through the grant AST-2108515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' RSE acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and in- novation 0programme (grant agreement No 669253).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' acknowl- edges support from the National Sciences and Engineering Council of Canada grant RGPIN-2020-05102, the Fonds de recherche du Québec grant 2022-NC-301305, and the Canada Research Chairs Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Observations presented in this paper were obtained from the MNRAS 000, 1–20 (2022) 19 Keck Observatory, which was made possible by the generous fi- nancial support of the W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Keck Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The material is based upon work supported by NASA under award number 80GSFC21M0002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The authors acknowledge the very significant cultural role that the summit of Mauna Kea has always had within the indigenous Hawaiian community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' We are most fortunate to have the opportunity to conduct observations from this mountain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Some of the observations reported here were obtained at the MMT Obser- vatory, a joint facility of the University of Arizona and the Smith- sonian Institution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' This paper includes data gathered with the 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Some of the data presented in this paper were obtained using the Large Binocular Telescope (LBT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The LBT is an international collaboration among institutions in the United States, Italy and Ger- many.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The LBT Corporation partners are: The University of Ari- zona on behalf of the Arizona university system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Istituto Nazionale di Astrofisica, Italy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' LBT Beteiligungsgesellschaft, Germany, rep- resenting the Max Planck Society, the Astrophysical Institute Pots- dam, and Heidelberg University;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Ohio State University;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' DATA AVAILABILITY The data underlying this article will be shared on reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' REFERENCES Acharyya A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, MNRAS, 488, 5862 Bayliss M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rigby J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sharon K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Wuyts E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Florian M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Gladders M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Johnson T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Oguri M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, ApJ, 790, 144 Belokurov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2007, ApJ, 671, L9 Belokurov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Evans N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Hewett P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Moiseev A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McMahon R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sanchez S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', King L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2009, MNRAS, 392, 104 Berg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Skillman E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Henry R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Carigi L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, ApJ, 827, 126 Berg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Auger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Brammer G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, ApJ, 859, 164 Berg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Henry R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Skillman E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McQuinn K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, ApJ, 874, 93 Berg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Skillman E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pogge R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Olivier G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, ApJ, 922, 170 Berg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, ApJS, 261, 31 Bian F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, ApJ, 725, 1877 Bian F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kewley L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dopita M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, ApJ, 859, 175 Bouwens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, ApJ, 793, 115 Bouwens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, ApJ, 803, 34 Bouwens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, AJ, 162, 47 Boyett K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bunker A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Maseda M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, MNRAS, 513, 4451 Bruzual G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2003, MNRAS, 344, 1000 Calzetti D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Armus L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bohlin R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kinney A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Koornneef J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Storchi- Bergmann T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2000, ApJ, 533, 682 Chabrier G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2003, PASP, 115, 763 Chen Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Endsley R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Topping M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Whitler L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2023, MNRAS, 518, 5607 Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, MNRAS, 462, 1415 Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, MNRAS, 480, 2593 Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tremonti C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Leitherer C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chen Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Wofford A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, MNRAS, 457, 3133 Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Orlitová I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Verhamme A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Worseck G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Izotov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Thuan T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Guseva N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, A&A, 605, A67 Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Prochaska J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Gazagnes S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Henry A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, MNRAS, 498, 2554 Christensen L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2012, MNRAS, 427, 1953 Curtis-Lake E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, MNRAS, 457, 440 De Barros S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, A&A, 608, A123 Diehl H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2009, ApJ, 707, 686 Du X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Martin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Coil A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, ApJ, 838, 63 Du X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, preprint, (arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='05912) Du X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Martin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Mobasher B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Topping M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, ApJ, 890, 65 Endsley R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, MNRAS, Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Law D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Reddy N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, ApJ, 719, 1168 Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Quider A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Henry A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Martin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2012, ApJ, 759, 26 Ferland G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Astrofis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 49, 137 Finkelstein S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, Submitted to ApJ, arxiv:1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='5439, Gazagnes S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Verhamme A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Izotov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, A&A, 639, A85 Giavalisco M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Koratkar A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Calzetti D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 1996, ApJ, 466, 831 González V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bouwens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Illingworth G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Labbé I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Oesch P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Franx M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Magee D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, ApJ, 781, 34 Gray W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Oey M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Silich S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Scannapieco E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, ApJ, 887, 161 Grazian A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, A&A, 575, A96 Guseva N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Izotov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Fricke K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Henkel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, A&A, 624, A21 Gutkin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bruzual G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, MNRAS, 462, 1757 Hainline K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kornei K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Buckley-Geer E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Allam S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tucker D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2009, ApJ, 701, 52 Hannon S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, MNRAS, 490, 4648 Hennawi J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2008, AJ, 135, 664 Henry A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Berg D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Scarlata C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Verhamme A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, ApJ, 855, 96 Hezaveh Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013, ApJ, 767, 132 Hutchison T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='08812 Ishigaki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kawamata R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ouchi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Oguri M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shimasaku K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ono Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, ApJ, 854, 73 Izotov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stasińska G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Meynet G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Guseva N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Thuan T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2006, A&A, 448, 955 Izotov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Worseck G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Guseva N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Prochaska J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, MNRAS, 515, 2864 James B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, MNRAS, 440, 1794 James B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Auger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Belokurov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Carniani S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, MNRAS, 476, 1726 Jaskot A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ravindranath S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, ApJ, 833, 136 Jaskot A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Oey M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Scarlata C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dowd T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, ApJ, 851, L9 Jiang L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, Nature Astronomy, 5, 256 Jones T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2012, ApJ, 751, 51 Jones T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Richard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Jullo E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013, ApJ, 765, 48 Jones T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, ApJ, 863, 191 Kewley L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Nicholls D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sutherland R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rigby J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Acharya A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dopita M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bayliss M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, ApJ, 880, 16 Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='-h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, MNRAS, 474, 4232 Koester B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Gladders M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Hennawi J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sharon K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Wuyts E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rigby J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bayliss M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dahle H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, ApJ, 723, L73 Kubo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, ApJ, 724, L137 Labbé I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013, ApJ, 777, L19 Laporte N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Nakajima K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Zitrin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Mainali R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Roberts-Borsani G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, ApJ, 851, 40 Leethochawalit N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Jones T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Richard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Zitrin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Auger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, ApJ, 820, 84 Leitherer C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tremonti C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Heckman T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Calzetti D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2011, AJ, 141, 37 Livermore R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Finkelstein S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Lotz J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, ApJ, 835, 113 Llerena M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00660 Luridiana V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Morisset C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shaw R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, A&A, 573, A42 Mainali R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kollmeier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Simcoe R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Walth G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Newman A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Miller D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, ApJ, 836, L14 Mainali R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, MNRAS, 479, 1180 Mainali R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, MNRAS, 494, 719 MNRAS 000, 1–20 (2022) 20 Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Mainali R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, ApJ, 940, 160 Martin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2005, ApJ, 621, 227 Maseda M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, preprint, (arXiv:1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06432) McLean I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' , doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='924794 McLure R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013, MNRAS, 432, 2696 Nakajima K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, A&A, 612, A94 Osterbrock D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ferland G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2006, Astrophysics of gaseous nebulae and active galactic nuclei Parsa S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dunlop J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McLure R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Mortlock A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, MNRAS, 456, 3194 Peng C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ho L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Impey C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rix H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2002, AJ, 124, 266 Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Adelberger K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dickinson M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Giavalisco M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2000, ApJ, 528, 96 Pogge R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, in Ground-based and Airborne Instrumentation for Astronomy III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 77350A, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='857215 Quider A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2009, MNRAS, 398, 1263 Ravindranath S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Monroe T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Jaskot A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ferguson H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tumlinson J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, ApJ, 896, 170 Reddy N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2009, ApJ, 692, 778 Rigby J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rieke G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2004, ApJ, 606, 237 Rigby J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bayliss M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Gladders M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sharon K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Wuyts E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dahle H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Johnson T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Peña-Guerrero M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, ApJ, 814, L6 Rigby J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, ApJ, 908, 154 Roberts-Borsani G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, preprint, (arXiv:1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='00854) Robertson B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dunlop J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McLure R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, Nature, 468, 49 Rogers A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McLure R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dunlop J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013, MNRAS, 429, 2456 Saldana-Lopez A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, A&A, 663, A59 Salmon B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, ApJ, 799, 183 Sanders R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016a, ApJ, 816, 23 Sanders R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016b, ApJ, 825, L23 Sanders R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2020, MNRAS, 491, 1427 Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Izotov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Nakajima K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Worseck G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Verhamme A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Thuan T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', de Barros S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, A&A, 616, L14 Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, A&A, 658, L11 Schmidt K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, A&A, 654, A80 Seive T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chisholm J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Leclercq F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Zeimann G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, MNRAS, 515, 5556 Senchyna P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, MNRAS, 472, 2608 Senchyna P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Jones T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Vidal-García A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2019, MNRAS, 488, 3492 Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Adelberger K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2003, ApJ, 588, 65 Sheinis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bolte M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Epps H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Kibrick R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Miller J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Radovan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bigelow B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Sutin B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2002, PASP, 114, 851 Silich S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tenorio-Tagle G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, MNRAS, 465, 1375 Silich S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tenorio-Tagle G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Muñoz-Tuñón C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2007, ApJ, 669, 952 Simcoe R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2008, in Ground-based and Airborne Instrumentation for Astronomy II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' 70140U, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='790414 Smit R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, ApJ, 784, 58 Smit R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015, ApJ, 801, 122 Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, ARA&A, 54, 761 Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013a, MNRAS, 436, 1040 Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Schenker M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Ellis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Robertson B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', McLure R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Dunlop J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2013b, ApJ, 763, 129 Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, MNRAS, 445, 3200 Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015a, Submitted to MNRAS, arxiv:1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='06881, Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2015b, MNRAS, 450, 1846 Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, MNRAS, 464, 469 Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Erb D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Reddy N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Bogosavljević M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rudie G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rakic O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2010, ApJ, 717, 289 Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2014, ApJ, 795, 165 Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Strom A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rudie G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Reddy N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Trainor R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, ApJ, 826, 159 Strom A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Steidel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Rudie G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Trainor R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Pettini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Reddy N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, preprint, (arXiv:1608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02587) Tang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2018, arXiv e-prints, Tang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Chevallard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Charlot S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Endsley R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Congiu E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, MNRAS, 501, 3238 Teplitz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2000, ApJ, 533, L65 Topping M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Shapley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Stark D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Endsley R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Robertson B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Greene J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Furlanetto S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', Tang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2021, ApJ, 917, L36 Vanzella E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, ApJ, 821, L27 Vanzella E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2017, preprint, (arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='02044) Weiner B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2009, ApJ, 692, 187 Whitmore B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2011, ApJ, 729, 78 Xu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2022, ApJ, 933, 202 Xu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2023, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content='04087 de Barros S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=', 2016, A&A, 585, A51 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} +page_content=' MNRAS 000, 1–20 (2022)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf'} diff --git a/NNAzT4oBgHgl3EQfzP4S/content/tmp_files/2301.01764v1.pdf.txt b/NNAzT4oBgHgl3EQfzP4S/content/tmp_files/2301.01764v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..924a82ec7ef88f87b0f5dc9ce7165e82de323f71 --- /dev/null +++ b/NNAzT4oBgHgl3EQfzP4S/content/tmp_files/2301.01764v1.pdf.txt @@ -0,0 +1,759 @@ +UniHD at TSAR-2022 Shared Task: +Is Compute All We Need for Lexical Simplification? +Dennis Aumiller and Michael Gertz +Institute of Computer Science +Heidelberg University +{aumiller, gertz}@informatik.uni-heidelberg.de +Abstract +Previous state-of-the-art models for lexical +simplification consist of complex pipelines +with several components, each of which re- +quires deep technical knowledge and fine- +tuned interaction to achieve its full potential. +As an alternative, we describe a frustratingly +simple pipeline based on prompted GPT-3 re- +sponses, beating competing approaches by a +wide margin in settings with few training in- +stances. +Our best-performing submission to +the English language track of the TSAR-2022 +shared task consists of an “ensemble” of six +different prompt templates with varying con- +text levels. As a late-breaking result, we fur- +ther detail a language transfer technique that +allows simplification in languages other than +English. +Applied to the Spanish and Por- +tuguese subset, we achieve state-of-the-art re- +sults with only minor modification to the orig- +inal prompts. Aside from detailing the imple- +mentation and setup, we spend the remainder +of this work discussing the particularities of +prompting and implications for future work. +Code for the experiments is available online.1 +1 +Introduction +With recent advancements in Machine Learning +(ML) research coming largely from increasing +compute budgets, Richard Sutton coined the idea +of a “bitter lesson”, wherein more computational +power will ultimately supersede a hand-crafted +solution (Sutton, 2019). More recently, increas- +ing compute power on a general purpose archi- +tecture has also shown to be wildly successful in +the Natural Language Processing (NLP) commu- +nity (Vaswani et al., 2017; Wei et al., 2022). In +particular, emergent capabilities in very large lan- +guage models (vLLMs) have made it possible to +approach a variety of tasks wherein only few (if +any) samples are labeled, and no further fine-tuning +1https://github.com/dennlinger/ +TSAR-2022-Shared-Task +on task-specific data is required at all. +In stark contrast to the complex pipelines in modern +lexical simplification systems (Ferrés et al., 2017; +Qiang et al., 2020; Štajner et al., 2022), we present +a simplistic approach utilizing few-shot prompts +based on a vLLM with basic instructions on sim- +plification, which returns frustratingly good results +considering the overall complexity of the approach, +which utilizes a grand total of four hand-labeled in- +stances. We present our results on the TSAR-2022 +shared task (Saggion et al., 2022), which evaluates +lexical simplification systems in three available lan- +guages (English, Spanish and Portuguese), with +ten labeled instances and around 350 unlabeled +test samples provided per language. For the En- +glish subset, official results rank our model as the +best-performing submission, indicating that this ap- +proach may be another instance of the bitter lesson. +While the initial findings are indeed promising, we +want to carefully evaluate erroneous instances on +the test set to analyze potential pitfalls, and further +detail some of our experiences in hand-crafting +prompts. We also acknowledge the technical chal- +lenges in reproducing (and deploying) systems +based on vLLMs, especially given that suitable +models exceed traditional computing budgets. +2 +Prompt-based Lexical Simplification +With the public release of the GPT-3 language +model (Brown et al., 2020), OpenAI has started the +run on a series of now-available vLLMs for general- +purpose text generation (Thoppilan et al., 2022; +BigScience, 2022; Zhang et al., 2022). Across +these models, a general trend in scaling beyond a +particular parameter size can be observed, while +keeping the underlying architectural design close to +existing smaller models. Through exhibiting zero- +shot transfer capabilities, such models have also +become more attractive for lower-resourced tasks; +oftentimes, models are able to answer questions +formulated in natural language with somewhat sen- +arXiv:2301.01764v1 [cs.CL] 4 Jan 2023 + +sible results. Particular template patterns (so-called +prompts) are frequently used to guide models to- +wards predicting a particularly desirable output or +answer format, without requiring a dedicated train- +ing on labeled examples. +Utilizing this paradigm shift, we experimented +with different prompts issued to OpenAI’s largest +available model, text-davinici-002, which to- +tals 176B parameters. Our first approach uses a +singular prompt template in a zero-shot setting to +obtain predictions for the shared task; we further +improve upon these results by combining predic- +tions from different prompt templates later on. +2.1 +Run 1: Zero-shot Prediction +Upon inspecting the provided trial data, we noted +that the simplification operations required a vastly +different contextualization within the provided sam- +ple sentence. +Whereas some instances can be +solved with pure synonym look-ups (e.g., “com- +pulsory” and “mandatory”), others require a more +nuanced look at the context sentence (e.g., replac- +ing “disguised” with “dressed”). To avoid bias- +ing system predictions by providing samples as +a prompt template, we provide a baseline that is +entirely based on a single zero-shot query; it pro- +vides the context sentence and identifies the com- +plex word, asking the model for ten simplified syn- +onyms of the complex word in the given context. +Given that no additional knowledge is provided +to the model, the zero-shot contextual query also +provides a reasonable lower-bound for the task set- +ting. A secondary advantage of minimal provided +context in zero-shot settings is the reduced com- +putational cost, which will be discussed in more +detail in Section 3.4. +2.2 +Filtering Predictions +Model suggestions are returned as free-form text +predictions, generally in the form of comma- +separated lists or enumerations. This requires the +additional step of parsing the output prediction into +the more structured ranked predictions required for +the shared task, which varies between the mod- +els used. In our experience, no clear pattern can +be expected from the model and seems to be non- +deterministic even with set template structures. We +additionally employ a list of simple filters to en- +sure the quality of predictions, as detailed in Ap- +pendix C. The resulting model suggestions are con- +sidered in ranked order, and no prediction confi- +dence scores or similar information was used to +re-rank single-prompt predictions. +2.3 +Run 2: Ensemble Predictions +Upon inspecting the results from the first run, +we noticed that in some instances, predictions +were almost fully discarded due to filtering. Si- +multaneously, we had already previously encoun- +tered strong variability in system generations when +changing the prompt template or altering the con- +text setting. To this extent, an ensemble of pre- +dictions from multiple different prompt templates +was utilized to broaden the spectrum of possible +generations, as well as ensuring that a minimum +number of suggestions survives the filtering step. +2.3.1 +Prompt Variations +The exact prompts are detailed in Table 3. Utilized +variations can be grouped into with context (the +context sentence is provided), or without context +(synonyms are generated from the complex word +alone). Simultaneously, different prompts also con- +tain between zero and two examples taken from the +trial data, including their expected outputs. This +can be interpreted as a few-shot setting in which +the model is demonstrated on what correct answers +may look like for the particular task. We further +vary the generation temperature, where a higher +value increases the likelihood of a more creative +(but not always correct) prediction, enabling a more +diverse candidate set. +2.3.2 +Combining Predictions +For each of the six prompts p, we ask the model +to suggest ten alternative simplified expressions +Sp and filter them with the exact same rules as the +single prompt system in Run 1. In order to combine +and re-rank suggestions s, we assign a combination +score V to each distinct prediction s ∈ � +p Sp: +V (s) = +� +p +max(5.5 − 0.5 · rankSp(s), 0), +(1) +where rankSp(s) is the ranked position of sugges- +tion s in the resulting ranking from prompt p. If +s /∈ Sp, we set rankSp(s) = ∞. The scaling pa- +rameters are chosen arbitrarily and can be adjusted +to account for the expected number of suggestions +per prompt. We estimate that the biggest perfor- +mance improvement is coming simply from pro- +viding enough predictions post filtering. As a sec- +ondary gain, we see more consistent behavior in +the top-most prediction slots, boosting especially +the @1 performance of the ensemble. + +Acc@k@Top1 +MAP@k +Potential@k +Run +ACC@1 k = 1 +k = 2 +k = 3 +k = 3 +k = 5 k = 10 k = 3 +k = 5 k = 10 +Ensemble (Ours) +0.8096 +0.4289 0.6112 0.6863 0.5834 0.4491 0.2812 0.9624 0.9812 0.9946 +Single (Ours) +0.7721 +0.4262 0.5335 0.5710 0.5090 0.3653 0.2092 0.8900 0.9302 0.9436 +MANTIS-1 +0.6568 +0.319 0.4504 0.5388 +0.473 0.3599 0.2193 0.8766 0.9463 0.9785 +UoM&MMU-1 +0.6353 +0.2895 0.4530 0.5308 0.4244 0.3173 0.1951 0.8739 0.9115 0.9490 +LSBert +0.5978 +0.3029 0.4450 0.5308 0.4079 0.2957 0.1755 0.8230 0.8766 0.9463 +TUNER +0.3404 +0.1420 0.1689 0.1823 0.1706 0.1087 0.0546 0.4343 0.4450 0.4450 +Table 1: Results on the English language test set of the TSAR-2022 shared task, ranked by ACC@1 scores. +Listed are our own results (Ensemble and Single), the two best-performing competing systems (MANTIS and +UoM&MMU), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)). +3 +Results and Limitations +3.1 +Results for English +For the official runs, we initially only submitted +predictions for the English subset; an excerpt of the +results can be seen in Table 1. While the zero-shot +single prompt run has consistently better results on +most metrics, it does not outperform all systems +for large candidate sets; e.g., Potential@10 is lower +than that of competing approaches, including the +LSBert baseline. We attribute this to the previously +mentioned issue of filtering predictions, and can +see a consequent improvement especially for larger +k by using the proposed ensemble method. Here, +the Potential@10 scores indicate that at least one +viable prediction is present in all but three samples. +3.2 +Results for Spanish and Portuguese +Given the surprisingly good results on the English +subset, we decided to extend our experiments to +the Spanish and Portuguese tracks as well. Trans- +ferring the prompts to Spanish or Portuguese is sur- +prisingly simple. We alter the prompt to: “Given +the above context, list ten alternative Spanish +words for ‘complex_word’ that are easier to un- +derstand.” (bold highlight indicates change). +Without this adaption, returned suggestions gen- +erally tend to be in English, which could be an +attractive opportunity to mine cross-lingual sim- +plifications in future work. By adding the output +language explicitly, we ensure that the suggestions +match the expected results. For Portuguese, the +prompt can be adapted accordingly. +We find that our system also outperforms all com- +peting submitted approaches in the shared task; +result comparisons can be found in Table 4 and 5 +in the Appendix, respectively. Notably, predictions +for Portuguese perform slightly better, which goes +against intuition, given that Spanish is usually a +highly represented language in multilingual cor- +pora. We suspect that a more literal wording of +synonyms in Portuguese, compared to multi-word +expressions in Spanish, could be the cause. +3.3 +Error Analysis +As is common for sequence-to-sequence tasks, +crafting an approach centered around a LM requires +consideration of the particular challenges arising. +We detail some of the errors we have encountered +in our predictions that are unlikely to appear in +more stringently designed pipelines. Instances for +particular failure cases can be found in Table 2. +Unstable Prompts +One of the primary chal- +lenges, particularly for zero-shot prompt settings, is +the unreasonable variance observed in results based +on even just slightly altered prompt templates. For +example, when removing the explicit mention of +Context:, Question: and Answer: in the prompt +template, the model is frequently predicting fewer +than the ten requested answers. Practical limita- +tions in our computational budget also mean that +we have no guarantee that these prompts are yield- +ing the best possible results; given the variability, +multiple runs should be compared for a thorough +pattern of a “best” prompt. +Lack of Context +Instances with longer (or sub- +tly enforced) context cues show issues where these +hints are not properly recognized. In Table 2, we +can see the model changing the term “collision” +to a particular mode of transportation, such as +“car crash”, while an explicit context clue is given +through the word “flight” in the original sentence. +Enforcing Language +While the transfer to Span- +ish and Portuguese is largely successful, the +model’s capabilities seem to be still limited in +maintaining the language throughout all samples. + +Error Type +Context (complex word in bold) +Model Predictions +Lack of Context #7-8 Despite the fog, other flights are reported +to have landed safely leading up to the collision. +car crash, train wreck, ... +Hallucinations +The larva grows to about 120-130 mm, +and pupates in an underground chamber. +Transforms into a pupa, ... +Language +[...] propiciado la decadencia de la Revolución francesa. decline, deterioration, ... +Table 2: Instances of observed failure classes in our system’s predictions. +For instances with particularly rare complex terms, +the predictions are sometimes still in English, de- +spite the specific prompt request to return Span- +ish/Portuguese results. +Hallucinations +The necessity for post-filtering +of suggestions stems largely from the spontaneous +occurrence of hallucinations in responses. While +hallucinations in vLLMs are less about invalid vo- +cabulary terms, we observe instances where unnec- +essary multi-word suggestions were chosen over +a simple synonymous single-word expression, or +random inflections (such as the infinitive form with +an additional “to”) were generated. +Similar to the issues with language enforcing, this +occurs more frequently with particularly complex +words; in this sense, the system conversely fails +at instances that are most in need of simplifica- +tion. However, we note that some of the generated +multi-word expressions are actually more helpful +for understanding, even though the generations are +not precisely matching expected outputs. +3.4 +Computational Limitations +Running a vLLM in practice, even for inference- +only settings, is non-trivial and requires compute +resources that are far beyond many public institu- +tion’s hardware budget. For the largest models with +publicly available checkpoints2, a total of around +325GB GPU memory is required, assuming ef- +ficient storage in bfloat16 or similar precision +levels. The common alternative is to obtain pre- +dictions through a (generally paid) API, as was +the case in this work. Especially for the ensemble +model, which issues six individual requests to the +API per sample, this can further bloat the net cost +of a single prediction. To give context of the total +cost, we incurred a total charge of slightly over $7 +for computing predictions across the entire test set +of 373 English samples, which comes out to about +2At the time of writing, this would be the 176B Bloom +model (BigScience, 2022), which has a similar parameter +count to OpenAI’s davinci-002 model. +1000 tokens per sample, or around $0.02 at the cur- +rent OpenAI pricing scheme.3 For the Spanish sub- +set and language-dependent prompt development, +the total cost came to about $10, primarily due +to longer sample contexts. Costs for Portuguese +processing were around $6.50. While the singu- +lar prompt approach is cheaper at around 1/6 of +the total cost, even then a continuously deployed +model has to be supplied with a large enough bud- +get. Aside from monetary concerns, environmental +impacts are also to be considered for larger-scale +deployments of this kind (Lacoste et al., 2019). +4 +Conclusion and Future Work +Utilizing prompted responses from vLLMs seems +to be a promising direction for lexical simplifica- +tion; particularly in the constrained setting with +pre-identified complex words the model performs +exceptionally well, even when presented with a +severely restricted budget of labeled training data. +While the approach also offers promising directions +for multi- and cross-lingual approaches, obtaining +state-of-the-art results in other languages, we are +presented with a prohibitive amount of computa- +tion per sample instance. It would therefore be an +interesting addition to deal with resource-constraint +systems, putting the prediction power into a slightly +different perspective. Finally, we are reminded of +the unstable nature of neural LMs; given similar +inputs, quality can vary greatly between samples, +including a complete breakdown in performance. +For future work, we are considering approaches +to generate static resources from vLLMs (Schick +and Schütze, 2021), which may require only a one- +time commitment to spending on datasets, which +can then used as training data for cheaper systems. +Exploration of prompt tuning approaches for auto- +mated search of suitable prompt templates would +also greatly accelerate the development process of +domain-specific applications (Lester et al., 2021). +3https://openai.com/api/pricing/, +last accessed: +2022-10-01 + +References +Workshop BigScience. 2022. +BLOOM (revision +4ab0472). +Tom Brown, Benjamin Mann, Nick Ryder, Melanie +Subbiah, +Jared +D +Kaplan, +Prafulla +Dhariwal, +Arvind Neelakantan, Pranav Shyam, Girish Sastry, +Amanda Askell, Sandhini Agarwal, Ariel Herbert- +Voss, Gretchen Krueger, Tom Henighan, Rewon +Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, +Clemens Winter, Chris Hesse, Mark Chen, Eric +Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, +Jack Clark, Christopher Berner, Sam McCandlish, +Alec Radford, Ilya Sutskever, and Dario Amodei. +2020. Language models are few-shot learners. In +Advances in Neural Information Processing Systems, +volume 33, pages 1877–1901. Curran Associates, +Inc. +Daniel +Ferrés, +Horacio +Saggion, +and +Xavier +Gómez Guinovart. 2017. +An adaptable lexical +simplification architecture for major Ibero-Romance +languages. In Proceedings of the First Workshop on +Building Linguistically Generalizable NLP Systems, +pages 40–47, Copenhagen, Denmark. Association +for Computational Linguistics. +Alexandre +Lacoste, +Alexandra +Luccioni, +Victor +Schmidt, and Thomas Dandres. 2019. Quantifying +the carbon emissions of machine learning. CoRR, +abs/1910.09700. +Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. +The power of scale for parameter-efficient prompt +tuning. In Proceedings of the 2021 Conference on +Empirical Methods in Natural Language Processing, +pages 3045–3059, Online and Punta Cana, Domini- +can Republic. Association for Computational Lin- +guistics. +Jipeng Qiang, Yun Li, Zhu Yi, Yunhao Yuan, and Xin- +dong Wu. 2020. +Lexical simplification with pre- +trained encoders. +Thirty-Fourth AAAI Conference +on Artificial Intelligence, page 8649–8656. +Horacio +Saggion, +Sanja +Štajner, +Daniel +Ferrés, +Kim Cheng Sheang, Matthew Shardlow, Kai North, +and Marcos Zampieri. 2022. Findings of the tsar- +2022 shared task on multilingual lexical simplifica- +tion. In Proceedings of TSAR workshop held in con- +junction with EMNLP 2022. +Timo Schick and Hinrich Schütze. 2021. Generating +datasets with pretrained language models. In Pro- +ceedings of the 2021 Conference on Empirical Meth- +ods in Natural Language Processing, pages 6943– +6951, Online and Punta Cana, Dominican Republic. +Association for Computational Linguistics. +Richard Sutton. 2019. The bitter lesson. Incomplete +Ideas (blog), 13:12. +Romal Thoppilan, Daniel De Freitas, Jamie Hall, +Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze +Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, +YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, +Amin Ghafouri, Marcelo Menegali, Yanping Huang, +Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao +Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, +Maarten Bosma, Yanqi Zhou, Chung-Ching Chang, +Igor Krivokon, Will Rusch, Marc Pickett, Kath- +leen S. Meier-Hellstern, Meredith Ringel Morris, +Tulsee Doshi, Renelito Delos Santos, Toju Duke, +Johnny Soraker, Ben Zevenbergen, Vinodkumar +Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen +Olson, Alejandra Molina, Erin Hoffman-John, Josh +Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, +Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, +Aaron Cohen, Rachel Bernstein, Ray Kurzweil, +Blaise Aguera-Arcas, Claire Cui, Marian Croak, +Ed H. Chi, and Quoc Le. 2022. +Lamda: +Lan- +guage models for dialog applications. +CoRR, +abs/2201.08239. +Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob +Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz +Kaiser, and Illia Polosukhin. 2017. Attention is all +you need. In Advances in Neural Information Pro- +cessing Systems 30: Annual Conference on Neural +Information Processing Systems 2017, December 4- +9, 2017, Long Beach, CA, USA, pages 5998–6008. +Sanja Štajner, Daniel Ferrés, Matthew Shardlow, Kai +North, Marcos Zampieri, and Horacio Saggion. +2022. +Lexical simplification benchmarks for En- +glish, Portuguese, and Spanish. Frontiers in Artifi- +cial Intelligence, 5. +Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf- +fel, Barret Zoph, Sebastian Borgeaud, Dani Yo- +gatama, Maarten Bosma, Denny Zhou, Donald Met- +zler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, +Percy Liang, Jeff Dean, and William Fedus. 2022. +Emergent abilities of large language models. CoRR, +abs/2206.07682. +Susan Zhang, Stephen Roller, Naman Goyal, Mikel +Artetxe, Moya Chen, Shuohui Chen, Christopher +Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, +Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus- +ter, Daniel Simig, Punit Singh Koura, Anjali Srid- +har, Tianlu Wang, and Luke Zettlemoyer. 2022. +OPT: open pre-trained transformer language models. +CoRR, abs/2205.01068. + +A +Prompt Templates +Table 3 provides the exact prompt templates used +in the submission. Notably, the zero-shot with con- +text prompt is included twice, but with different +generation temperatures; with this we increase the +likelihood of strong candidates being retained. For +few-shot prompts, we have taken samples from the +previously published trial set for the respective lan- +guage. In instances where less than 10 distinctly +different suggestions were provided by annotators, +we manually extended the list of examples to match +exactly ten results based on our own judgment. For +instances with more provided suggestions, we limit +ourselves to the ten most frequently occurring ones. +The reason for this is that GPT-3 otherwise tended +to return an inconsistent number of suggestions in +our preliminary testing. The exact prompts for the +Spanish and Portuguese runs can be found in our +repository. +B +Hyperparameters +We use the OpenAI Python package4 version +0.23.0 for our experiments. For generation, the +function openai.Completion.create() is used, +where most hyperparameters remain fixed across +all prompts. We explicitly list those hyperparame- +ters below that differ from their respective default +values. +1. model="text-davinci-002", which is the +latest and biggest available model for text +completion. +2. max_tokens=256, to ensure sufficient room +for generated outputs. In practice, most com- +pletions are vastly below the limit. +3. frequency_penalty=0.5, +as +well +as +presence_penalty=0.3, +which +jointly +penalize present tokens and token repetitions. +The values are well below the maximum +(values can range from -2 to 2), since +individual subword tokens might indeed be +present several times across multiple (valid) +predictions. A more detailed computation can +be found in the documentation of OpenAI.5 +Outside of the repetition penalties, the most influen- +tial parameter choice for generation is the sampling +4https://github.com/openai/openai-python +5https://beta.openai.com/docs/api-reference/ +parameter-details +temperature. We generally take a more measured +approach than the default (temperature=1.0), but +vary temperature across our ensemble prompts to +ensure a more diverse result set overall. We list +the used temperatures in Table 3. Zero-shot with +context is used twice in the ensemble, once with +a more conservative temperature, and once with a +more “creative” (higher) temperature. For the sin- +gular prompt run, we use the conservative zero-shot +with context variant. +C +Post-Filtering Operations +Given the uncertain nature of predictions by a lan- +guage model, we employ a series of post-filtering +steps to ensure high quality outputs. This includes +stripping newlines/spaces/punctuation (\n :;.?!), +lower-casing, removing infinitive forms (in some +instances, we observed predictions in the form of +“to deploy” instead of simply “deploy”), as well as +removing identity predictions (e.g., the prediction +being the same as the original complex word) and +deduplicating suggestions. Additionally, we no- +ticed that for some instances, generated synonyms +resemble more of a “description” rather than truly +synonymous expressions (example: “people that +are crazy” as a suggestion for “maniacs”). Given +the nature of provided data, we removed extreme +multi-word expressions (for English, any sugges- +tion with more than two words, for Spanish and +Portuguese more than three words in a single ex- +pression). + +Prompt Type +Template +Zero-shot /w context +Context: {context_sentence}\n +temperature: +Question: Given the above context, list ten alternatives for +0.3 (conservative), +“{complex_word}” that are easier to understand.\n +0.8 (creative) +Answer: +Single-shot /w context +Context: A local witness said a separate group of attackers +temperature: 0.5 +disguisedin burqas — the head-to-toe robes worn by conservative +Afghan women — then tried to storm the compound.\n +Question: Given the above context, list ten alternative words +for “disguised” that are easier to understand.\n +Answer:\n1. concealed\n2. dressed\n3. hidden\n4. camouflaged\n +5. changed\n6. covered\n7. masked\n8. unrecognizable\n +9. converted\n10. impersonated\n\n +Context: {context_sentence}\n +Question: Given the above context, list ten alternatives for +“{complex_word}” that are easier to understand.\n +Answer: +Two-shot /w context +Context: That prompted the military to deploy its largest +temperature: 0.5 +warship, the BRP Gregorio del Pilar, which was recently +acquired from the United States.\n +Question: Given the above context, list ten alternative words +for “deploy” that are easier to understand.\n +Answer:\n1. send\n2. post\n3. use\n4. position\n5. send out\n +6. employ\n7. extend\n8. launch\n9. let loose\n10. organize\n\n +Context: The daily death toll in Syria has declined as the +number of observers has risen, but few experts expect the +U.N. plan to succeed in its entirety.\n +Question: Given the above context, list ten alternative words +for “observers” that are easier to understand.\n +Answer:\n1. watchers\n2. spectators\n3. audience\n4. viewers\n +5. witnesses\n6. patrons\n7. followers\n8. detectives\n +9. reporters\n10. onlookers\n\n +Context: {context_sentence}\n +Question: Given the above context, list ten alternatives for +“{complex_word}” that are easier to understand.\n +Answer: +Zero-shot w/o context +Give me ten simplified synonyms for the following word: +temperature: 0.7 +{complex_word} +Single-shot w/o context Question: Find ten easier words for “compulsory”.\n +temperature: 0.6 +Answer:\n1. mandatory\n2. required\n3. essential\n4. forced\n +5. important\n6. necessary\n7. obligatory\n8. unavoidable\n +9. binding\n10. prescribed\n\n +Question: Find ten easier words for “{complex_word}”.\n +Answer: +Table 3: The English prompt templates used for querying the OpenAI model, including associated generation +temperatures. Only written out “\n” symbols indicate newlines, visible line breaks are inserted for better legibility. +Only top-most prompt template with conservative temperature was used in the single prompt (Run 1), as well as in +the ensemble run (Run 2). All other prompts were only included in the ensemble submission. + +Acc@k@Top1 +MAP@k +Potential@k +Run +ACC@1 k = 1 +k = 2 +k = 3 +k = 3 +k = 5 k = 10 k = 3 +k = 5 k = 10 +Ensemble (Ours) +0.6521 +0.3505 0.5108 0.5788 0.4281 0.3239 0.1967 0.8206 0.8885 0.9402 +Single (Ours) +0.5706 +0.3070 0.3967 0.4510 0.3526 0.2449 0.1376 0.6902 0.7146 0.7445 +PresiUniv-1 +0.3695 +0.2038 0.2771 0.3288 0.2145 0.1499 0.0832 0.5842 0.6467 0.7255 +UoM&MMU-3 +0.3668 +0.1603 0.2282 0.269 +0.2128 0.1506 0.0899 0.5326 0.6005 0.6929 +LSBert +0.2880 +0.0951 0.1440 0.1820 0.1868 0.1346 0.0795 0.4945 0.6114 0.7472 +TUNER +0.1195 +0.0625 0.0788 0.0842 0.0575 0.0356 0.0184 +0.144 0.1467 0.1494 +Table 4: Results on the Spanish language test set of the TSAR-2022 shared task, ranked by ACC@1 scores. +Listed are our own results (Ensemble and Single), the two best-performing competing systems (PresiUniv and +UoM&MMU), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)). +Acc@k@Top1 +MAP@k +Potential@k +Run +ACC@1 k = 1 +k = 2 +k = 3 +k = 3 +k = 5 k = 10 k = 3 +k = 5 k = 10 +Ensemble (Ours) +0.7700 +0.4358 0.5347 0.6229 0.5014 0.3620 0.2167 0.9171 0.9491 0.9786 +Single (Ours) +0.6363 +0.3716 0.4625 0.5160 0.4105 0.2889 0.1615 0.7860 0.8181 0.8422 +GMU-WLV-1 +0.4812 +0.2540 0.3716 0.3957 0.2816 0.1966 0.1153 0.6871 0.7566 0.8395 +Cental-1 +0.3689 +0.1737 0.2433 0.2673 0.1983 0.1344 0.0766 +0.524 0.5641 0.6096 +LSBert +0.3262 +0.1577 0.2326 0.286 +0.1904 0.1313 0.0775 0.4946 0.5802 0.6737 +TUNER +0.2219 +0.1336 0.1604 0.1604 0.1005 0.0623 0.0311 0.2673 0.2673 0.2673 +Table 5: Results on the Portuguese language test set of the TSAR-2022 shared task, ranked by ACC@1 scores. +Listed are our own results (Ensemble and Single), the two best-performing competing systems (GMU-WLV and +Cental), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)). + diff --git a/NNAzT4oBgHgl3EQfzP4S/content/tmp_files/load_file.txt b/NNAzT4oBgHgl3EQfzP4S/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ebad1bcd50405dbe4f366f8363c80cb3dbe66b17 --- /dev/null +++ b/NNAzT4oBgHgl3EQfzP4S/content/tmp_files/load_file.txt @@ -0,0 +1,523 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf,len=522 +page_content='UniHD at TSAR-2022 Shared Task: Is Compute All We Need for Lexical Simplification?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Dennis Aumiller and Michael Gertz Institute of Computer Science Heidelberg University {aumiller, gertz}@informatik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='uni-heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='de Abstract Previous state-of-the-art models for lexical simplification consist of complex pipelines with several components, each of which re- quires deep technical knowledge and fine- tuned interaction to achieve its full potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' As an alternative, we describe a frustratingly simple pipeline based on prompted GPT-3 re- sponses, beating competing approaches by a wide margin in settings with few training in- stances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Our best-performing submission to the English language track of the TSAR-2022 shared task consists of an “ensemble” of six different prompt templates with varying con- text levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' As a late-breaking result, we fur- ther detail a language transfer technique that allows simplification in languages other than English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Applied to the Spanish and Por- tuguese subset, we achieve state-of-the-art re- sults with only minor modification to the orig- inal prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Aside from detailing the imple- mentation and setup, we spend the remainder of this work discussing the particularities of prompting and implications for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Code for the experiments is available online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1 1 Introduction With recent advancements in Machine Learning (ML) research coming largely from increasing compute budgets, Richard Sutton coined the idea of a “bitter lesson”, wherein more computational power will ultimately supersede a hand-crafted solution (Sutton, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' More recently, increas- ing compute power on a general purpose archi- tecture has also shown to be wildly successful in the Natural Language Processing (NLP) commu- nity (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Wei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In particular, emergent capabilities in very large lan- guage models (vLLMs) have made it possible to approach a variety of tasks wherein only few (if any) samples are labeled, and no further fine-tuning 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='com/dennlinger/ TSAR-2022-Shared-Task on task-specific data is required at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In stark contrast to the complex pipelines in modern lexical simplification systems (Ferrés et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Qiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Štajner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2022), we present a simplistic approach utilizing few-shot prompts based on a vLLM with basic instructions on sim- plification, which returns frustratingly good results considering the overall complexity of the approach, which utilizes a grand total of four hand-labeled in- stances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We present our results on the TSAR-2022 shared task (Saggion et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2022), which evaluates lexical simplification systems in three available lan- guages (English, Spanish and Portuguese), with ten labeled instances and around 350 unlabeled test samples provided per language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For the En- glish subset, official results rank our model as the best-performing submission, indicating that this ap- proach may be another instance of the bitter lesson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' While the initial findings are indeed promising, we want to carefully evaluate erroneous instances on the test set to analyze potential pitfalls, and further detail some of our experiences in hand-crafting prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We also acknowledge the technical chal- lenges in reproducing (and deploying) systems based on vLLMs, especially given that suitable models exceed traditional computing budgets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2 Prompt-based Lexical Simplification With the public release of the GPT-3 language model (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2020), OpenAI has started the run on a series of now-available vLLMs for general- purpose text generation (Thoppilan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' BigScience, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Across these models, a general trend in scaling beyond a particular parameter size can be observed, while keeping the underlying architectural design close to existing smaller models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Through exhibiting zero- shot transfer capabilities, such models have also become more attractive for lower-resourced tasks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' oftentimes, models are able to answer questions formulated in natural language with somewhat sen- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='01764v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='CL] 4 Jan 2023 sible results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Particular template patterns (so-called prompts) are frequently used to guide models to- wards predicting a particularly desirable output or answer format, without requiring a dedicated train- ing on labeled examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Utilizing this paradigm shift, we experimented with different prompts issued to OpenAI’s largest available model, text-davinici-002, which to- tals 176B parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Our first approach uses a singular prompt template in a zero-shot setting to obtain predictions for the shared task;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' we further improve upon these results by combining predic- tions from different prompt templates later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1 Run 1: Zero-shot Prediction Upon inspecting the provided trial data, we noted that the simplification operations required a vastly different contextualization within the provided sam- ple sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Whereas some instances can be solved with pure synonym look-ups (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', “com- pulsory” and “mandatory”), others require a more nuanced look at the context sentence (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', replac- ing “disguised” with “dressed”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' To avoid bias- ing system predictions by providing samples as a prompt template, we provide a baseline that is entirely based on a single zero-shot query;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' it pro- vides the context sentence and identifies the com- plex word, asking the model for ten simplified syn- onyms of the complex word in the given context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Given that no additional knowledge is provided to the model, the zero-shot contextual query also provides a reasonable lower-bound for the task set- ting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' A secondary advantage of minimal provided context in zero-shot settings is the reduced com- putational cost, which will be discussed in more detail in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2 Filtering Predictions Model suggestions are returned as free-form text predictions, generally in the form of comma- separated lists or enumerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' This requires the additional step of parsing the output prediction into the more structured ranked predictions required for the shared task, which varies between the mod- els used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In our experience, no clear pattern can be expected from the model and seems to be non- deterministic even with set template structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We additionally employ a list of simple filters to en- sure the quality of predictions, as detailed in Ap- pendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The resulting model suggestions are con- sidered in ranked order, and no prediction confi- dence scores or similar information was used to re-rank single-prompt predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3 Run 2: Ensemble Predictions Upon inspecting the results from the first run, we noticed that in some instances, predictions were almost fully discarded due to filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Si- multaneously, we had already previously encoun- tered strong variability in system generations when changing the prompt template or altering the con- text setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' To this extent, an ensemble of pre- dictions from multiple different prompt templates was utilized to broaden the spectrum of possible generations, as well as ensuring that a minimum number of suggestions survives the filtering step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1 Prompt Variations The exact prompts are detailed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Utilized variations can be grouped into with context (the context sentence is provided), or without context (synonyms are generated from the complex word alone).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Simultaneously, different prompts also con- tain between zero and two examples taken from the trial data, including their expected outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' This can be interpreted as a few-shot setting in which the model is demonstrated on what correct answers may look like for the particular task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We further vary the generation temperature, where a higher value increases the likelihood of a more creative (but not always correct) prediction, enabling a more diverse candidate set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2 Combining Predictions For each of the six prompts p, we ask the model to suggest ten alternative simplified expressions Sp and filter them with the exact same rules as the single prompt system in Run 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In order to combine and re-rank suggestions s, we assign a combination score V to each distinct prediction s ∈ � p Sp: V (s) = � p max(5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5 · rankSp(s), 0), (1) where rankSp(s) is the ranked position of sugges- tion s in the resulting ranking from prompt p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' If s /∈ Sp, we set rankSp(s) = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The scaling pa- rameters are chosen arbitrarily and can be adjusted to account for the expected number of suggestions per prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We estimate that the biggest perfor- mance improvement is coming simply from pro- viding enough predictions post filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' As a sec- ondary gain, we see more consistent behavior in the top-most prediction slots, boosting especially the @1 performance of the ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Acc@k@Top1 MAP@k Potential@k Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10 Ensemble (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8096 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4289 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6863 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4491 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9946 Single (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7721 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4262 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5335 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5090 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3653 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9302 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9436 MANTIS-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6568 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='319 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5388 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='473 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3599 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2193 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9463 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9785 UoM&MMU-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6353 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2895 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4530 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5308 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4244 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3173 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8739 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9490 LSBert 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4450 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5308 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4079 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1755 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8230 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9463 TUNER 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3404 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1420 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1689 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1087 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4343 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4450 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4450 Table 1: Results on the English language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Listed are our own results (Ensemble and Single), the two best-performing competing systems (MANTIS and UoM&MMU), as well as provided baselines (LSBert (Qiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2020) and TUNER (Ferrés et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2017)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 3 Results and Limitations 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1 Results for English For the official runs, we initially only submitted predictions for the English subset;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' an excerpt of the results can be seen in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' While the zero-shot single prompt run has consistently better results on most metrics, it does not outperform all systems for large candidate sets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', Potential@10 is lower than that of competing approaches, including the LSBert baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We attribute this to the previously mentioned issue of filtering predictions, and can see a consequent improvement especially for larger k by using the proposed ensemble method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Here, the Potential@10 scores indicate that at least one viable prediction is present in all but three samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2 Results for Spanish and Portuguese Given the surprisingly good results on the English subset, we decided to extend our experiments to the Spanish and Portuguese tracks as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Trans- ferring the prompts to Spanish or Portuguese is sur- prisingly simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We alter the prompt to: “Given the above context, list ten alternative Spanish words for ‘complex_word’ that are easier to un- derstand.” (bold highlight indicates change).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Without this adaption, returned suggestions gen- erally tend to be in English, which could be an attractive opportunity to mine cross-lingual sim- plifications in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' By adding the output language explicitly, we ensure that the suggestions match the expected results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For Portuguese, the prompt can be adapted accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We find that our system also outperforms all com- peting submitted approaches in the shared task;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' result comparisons can be found in Table 4 and 5 in the Appendix, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Notably, predictions for Portuguese perform slightly better, which goes against intuition, given that Spanish is usually a highly represented language in multilingual cor- pora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We suspect that a more literal wording of synonyms in Portuguese, compared to multi-word expressions in Spanish, could be the cause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3 Error Analysis As is common for sequence-to-sequence tasks, crafting an approach centered around a LM requires consideration of the particular challenges arising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We detail some of the errors we have encountered in our predictions that are unlikely to appear in more stringently designed pipelines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Instances for particular failure cases can be found in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Unstable Prompts One of the primary chal- lenges, particularly for zero-shot prompt settings, is the unreasonable variance observed in results based on even just slightly altered prompt templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For example, when removing the explicit mention of Context:, Question: and Answer: in the prompt template, the model is frequently predicting fewer than the ten requested answers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Practical limita- tions in our computational budget also mean that we have no guarantee that these prompts are yield- ing the best possible results;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' given the variability, multiple runs should be compared for a thorough pattern of a “best” prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Lack of Context Instances with longer (or sub- tly enforced) context cues show issues where these hints are not properly recognized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Table 2, we can see the model changing the term “collision” to a particular mode of transportation, such as “car crash”, while an explicit context clue is given through the word “flight” in the original sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Enforcing Language While the transfer to Span- ish and Portuguese is largely successful, the model’s capabilities seem to be still limited in maintaining the language throughout all samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Error Type Context (complex word in bold) Model Predictions Lack of Context #7-8 Despite the fog, other flights are reported to have landed safely leading up to the collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' car crash, train wreck, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Hallucinations The larva grows to about 120-130 mm, and pupates in an underground chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Transforms into a pupa, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Language [.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='] propiciado la decadencia de la Revolución francesa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' decline, deterioration, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Table 2: Instances of observed failure classes in our system’s predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For instances with particularly rare complex terms, the predictions are sometimes still in English, de- spite the specific prompt request to return Span- ish/Portuguese results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Hallucinations The necessity for post-filtering of suggestions stems largely from the spontaneous occurrence of hallucinations in responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' While hallucinations in vLLMs are less about invalid vo- cabulary terms, we observe instances where unnec- essary multi-word suggestions were chosen over a simple synonymous single-word expression, or random inflections (such as the infinitive form with an additional “to”) were generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Similar to the issues with language enforcing, this occurs more frequently with particularly complex words;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' in this sense, the system conversely fails at instances that are most in need of simplifica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' However, we note that some of the generated multi-word expressions are actually more helpful for understanding, even though the generations are not precisely matching expected outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4 Computational Limitations Running a vLLM in practice, even for inference- only settings, is non-trivial and requires compute resources that are far beyond many public institu- tion’s hardware budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For the largest models with publicly available checkpoints2, a total of around 325GB GPU memory is required, assuming ef- ficient storage in bfloat16 or similar precision levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The common alternative is to obtain pre- dictions through a (generally paid) API, as was the case in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Especially for the ensemble model, which issues six individual requests to the API per sample, this can further bloat the net cost of a single prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' To give context of the total cost, we incurred a total charge of slightly over $7 for computing predictions across the entire test set of 373 English samples, which comes out to about 2At the time of writing, this would be the 176B Bloom model (BigScience, 2022), which has a similar parameter count to OpenAI’s davinci-002 model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 1000 tokens per sample, or around $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='02 at the cur- rent OpenAI pricing scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3 For the Spanish sub- set and language-dependent prompt development, the total cost came to about $10, primarily due to longer sample contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Costs for Portuguese processing were around $6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' While the singu- lar prompt approach is cheaper at around 1/6 of the total cost, even then a continuously deployed model has to be supplied with a large enough bud- get.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Aside from monetary concerns, environmental impacts are also to be considered for larger-scale deployments of this kind (Lacoste et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 4 Conclusion and Future Work Utilizing prompted responses from vLLMs seems to be a promising direction for lexical simplifica- tion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' particularly in the constrained setting with pre-identified complex words the model performs exceptionally well, even when presented with a severely restricted budget of labeled training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' While the approach also offers promising directions for multi- and cross-lingual approaches, obtaining state-of-the-art results in other languages, we are presented with a prohibitive amount of computa- tion per sample instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' It would therefore be an interesting addition to deal with resource-constraint systems, putting the prediction power into a slightly different perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Finally, we are reminded of the unstable nature of neural LMs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' given similar inputs, quality can vary greatly between samples, including a complete breakdown in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For future work, we are considering approaches to generate static resources from vLLMs (Schick and Schütze, 2021), which may require only a one- time commitment to spending on datasets, which can then used as training data for cheaper systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Exploration of prompt tuning approaches for auto- mated search of suitable prompt templates would also greatly accelerate the development process of domain-specific applications (Lester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 3https://openai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='com/api/pricing/, last accessed: 2022-10-01 References Workshop BigScience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' BLOOM (revision 4ab0472).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert- Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Language models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Daniel Ferrés, Horacio Saggion, and Xavier Gómez Guinovart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' An adaptable lexical simplification architecture for major Ibero-Romance languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems, pages 40–47, Copenhagen, Denmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Quantifying the carbon emissions of machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' CoRR, abs/1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='09700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Brian Lester, Rami Al-Rfou, and Noah Constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The power of scale for parameter-efficient prompt tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3045–3059, Online and Punta Cana, Domini- can Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Jipeng Qiang, Yun Li, Zhu Yi, Yunhao Yuan, and Xin- dong Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Lexical simplification with pre- trained encoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Thirty-Fourth AAAI Conference on Artificial Intelligence, page 8649–8656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Horacio Saggion, Sanja Štajner, Daniel Ferrés, Kim Cheng Sheang, Matthew Shardlow, Kai North, and Marcos Zampieri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Findings of the tsar- 2022 shared task on multilingual lexical simplifica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Proceedings of TSAR workshop held in con- junction with EMNLP 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Timo Schick and Hinrich Schütze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Generating datasets with pretrained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Pro- ceedings of the 2021 Conference on Empirical Meth- ods in Natural Language Processing, pages 6943– 6951, Online and Punta Cana, Dominican Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Richard Sutton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The bitter lesson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Incomplete Ideas (blog), 13:12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kath- leen S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Chi, and Quoc Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Lamda: Lan- guage models for dialog applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' CoRR, abs/2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='08239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Gomez, Lukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In Advances in Neural Information Pro- cessing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4- 9, 2017, Long Beach, CA, USA, pages 5998–6008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Sanja Štajner, Daniel Ferrés, Matthew Shardlow, Kai North, Marcos Zampieri, and Horacio Saggion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Lexical simplification benchmarks for En- glish, Portuguese, and Spanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Frontiers in Artifi- cial Intelligence, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf- fel, Barret Zoph, Sebastian Borgeaud, Dani Yo- gatama, Maarten Bosma, Denny Zhou, Donald Met- zler, Ed H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Emergent abilities of large language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' CoRR, abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='07682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus- ter, Daniel Simig, Punit Singh Koura, Anjali Srid- har, Tianlu Wang, and Luke Zettlemoyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' OPT: open pre-trained transformer language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' CoRR, abs/2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='01068.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' A Prompt Templates Table 3 provides the exact prompt templates used in the submission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Notably, the zero-shot with con- text prompt is included twice, but with different generation temperatures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' with this we increase the likelihood of strong candidates being retained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For few-shot prompts, we have taken samples from the previously published trial set for the respective lan- guage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In instances where less than 10 distinctly different suggestions were provided by annotators, we manually extended the list of examples to match exactly ten results based on our own judgment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For instances with more provided suggestions, we limit ourselves to the ten most frequently occurring ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The reason for this is that GPT-3 otherwise tended to return an inconsistent number of suggestions in our preliminary testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The exact prompts for the Spanish and Portuguese runs can be found in our repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' B Hyperparameters We use the OpenAI Python package4 version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0 for our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For generation, the function openai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='Completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='create() is used, where most hyperparameters remain fixed across all prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We explicitly list those hyperparame- ters below that differ from their respective default values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' model="text-davinci-002", which is the latest and biggest available model for text completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' max_tokens=256, to ensure sufficient room for generated outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' In practice, most com- pletions are vastly below the limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' frequency_penalty=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5, as well as presence_penalty=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3, which jointly penalize present tokens and token repetitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' The values are well below the maximum (values can range from -2 to 2), since individual subword tokens might indeed be present several times across multiple (valid) predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' A more detailed computation can be found in the documentation of OpenAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5 Outside of the repetition penalties, the most influen- tial parameter choice for generation is the sampling 4https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='com/openai/openai-python 5https://beta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='openai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='com/docs/api-reference/ parameter-details temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We generally take a more measured approach than the default (temperature=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0), but vary temperature across our ensemble prompts to ensure a more diverse result set overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' We list the used temperatures in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Zero-shot with context is used twice in the ensemble, once with a more conservative temperature, and once with a more “creative” (higher) temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' For the sin- gular prompt run, we use the conservative zero-shot with context variant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' C Post-Filtering Operations Given the uncertain nature of predictions by a lan- guage model, we employ a series of post-filtering steps to ensure high quality outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' This includes stripping newlines/spaces/punctuation (\\n :;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='.?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' ), lower-casing, removing infinitive forms (in some instances, we observed predictions in the form of “to deploy” instead of simply “deploy”), as well as removing identity predictions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', the prediction being the same as the original complex word) and deduplicating suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Additionally, we no- ticed that for some instances, generated synonyms resemble more of a “description” rather than truly synonymous expressions (example: “people that are crazy” as a suggestion for “maniacs”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Given the nature of provided data, we removed extreme multi-word expressions (for English, any sugges- tion with more than two words, for Spanish and Portuguese more than three words in a single ex- pression).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Prompt Type Template Zero-shot /w context Context: {context_sentence}\\n temperature: Question: Given the above context, list ten alternatives for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3 (conservative), “{complex_word}” that are easier to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8 (creative) Answer: Single-shot /w context Context: A local witness said a separate group of attackers temperature: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5 disguisedin burqas — the head-to-toe robes worn by conservative Afghan women — then tried to storm the compound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Question: Given the above context, list ten alternative words for “disguised” that are easier to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Answer:\\n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' concealed\\n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' dressed\\n3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' hidden\\n4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' camouflaged\\n 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' changed\\n6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' covered\\n7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' masked\\n8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' unrecognizable\\n 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' converted\\n10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' impersonated\\n\\n Context: {context_sentence}\\n Question: Given the above context, list ten alternatives for “{complex_word}” that are easier to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Answer: Two-shot /w context Context: That prompted the military to deploy its largest temperature: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5 warship, the BRP Gregorio del Pilar, which was recently acquired from the United States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Question: Given the above context, list ten alternative words for “deploy” that are easier to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Answer:\\n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' send\\n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' post\\n3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' use\\n4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' position\\n5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' send out\\n 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' employ\\n7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' extend\\n8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' launch\\n9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' let loose\\n10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' organize\\n\\n Context: The daily death toll in Syria has declined as the number of observers has risen, but few experts expect the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' plan to succeed in its entirety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Question: Given the above context, list ten alternative words for “observers” that are easier to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Answer:\\n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' watchers\\n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' spectators\\n3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' audience\\n4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' viewers\\n 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' witnesses\\n6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' patrons\\n7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' followers\\n8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' detectives\\n 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' reporters\\n10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' onlookers\\n\\n Context: {context_sentence}\\n Question: Given the above context, list ten alternatives for “{complex_word}” that are easier to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Answer: Zero-shot w/o context Give me ten simplified synonyms for the following word: temperature: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7 {complex_word} Single-shot w/o context Question: Find ten easier words for “compulsory”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n temperature: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6 Answer:\\n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' mandatory\\n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' required\\n3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' essential\\n4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' forced\\n 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' important\\n6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' necessary\\n7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' obligatory\\n8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' unavoidable\\n 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' binding\\n10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' prescribed\\n\\n Question: Find ten easier words for “{complex_word}”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='\\n Answer: Table 3: The English prompt templates used for querying the OpenAI model, including associated generation temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Only written out “\\n” symbols indicate newlines, visible line breaks are inserted for better legibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Only top-most prompt template with conservative temperature was used in the single prompt (Run 1), as well as in the ensemble run (Run 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' All other prompts were only included in the ensemble submission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Acc@k@Top1 MAP@k Potential@k Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10 Ensemble (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6521 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5788 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4281 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3239 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8206 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9402 Single (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4510 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3526 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2449 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7146 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7445 PresiUniv-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3695 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2771 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3288 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2145 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1499 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0832 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7255 UoM&MMU-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2282 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='269 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1506 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6929 LSBert 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1440 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1346 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0795 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6114 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7472 TUNER 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0788 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0575 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0356 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='144 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1494 Table 4: Results on the Spanish language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Listed are our own results (Ensemble and Single), the two best-performing competing systems (PresiUniv and UoM&MMU), as well as provided baselines (LSBert (Qiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2020) and TUNER (Ferrés et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2017)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Acc@k@Top1 MAP@k Potential@k Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10 Ensemble (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4358 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3620 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2167 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9171 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9491 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='9786 Single (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6363 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3716 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1615 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8181 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8422 GMU-WLV-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3716 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='7566 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='8395 Cental-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3689 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1737 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2433 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2673 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1983 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6096 LSBert 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='3262 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1577 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='286 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1313 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='4946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='5802 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='6737 TUNER 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2219 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='1005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0623 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='0311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2673 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2673 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content='2673 Table 5: Results on the Portuguese language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=' Listed are our own results (Ensemble and Single), the two best-performing competing systems (GMU-WLV and Cental), as well as provided baselines (LSBert (Qiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2020) and TUNER (Ferrés et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} +page_content=', 2017)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NNAzT4oBgHgl3EQfzP4S/content/2301.01764v1.pdf'} diff --git a/PNAyT4oBgHgl3EQf7fod/content/2301.00838v1.pdf b/PNAyT4oBgHgl3EQf7fod/content/2301.00838v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0ef71d7c8f9e87e4e9dc049c8c09e5224cc8fac4 --- /dev/null +++ b/PNAyT4oBgHgl3EQf7fod/content/2301.00838v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38a2677855ffdf227257d142409a03e9d5009fe4094e9da03ee4f4d4430ae117 +size 264860 diff --git a/PNAyT4oBgHgl3EQf7fod/vector_store/index.faiss b/PNAyT4oBgHgl3EQf7fod/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..684ec3a83b0ad874fd9b246e6d943d42628555cf --- /dev/null +++ b/PNAyT4oBgHgl3EQf7fod/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:67cba9c4054f69ad87e1fad0995cc38a6c971701241c56140f203c6d134f42c8 +size 3473453 diff --git a/PNAyT4oBgHgl3EQf7fod/vector_store/index.pkl b/PNAyT4oBgHgl3EQf7fod/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4c6e351324c083d6591014d152641f4d1d8bba38 --- /dev/null +++ b/PNAyT4oBgHgl3EQf7fod/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5fe432daca2ed44555103b58f60d329d64838269ab64093ab0c95ef83ed5202c +size 122931 diff --git a/QdA0T4oBgHgl3EQfDf80/vector_store/index.faiss b/QdA0T4oBgHgl3EQfDf80/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..efeb7e7a4ff696ed50d68702a3267048088476bb --- /dev/null +++ b/QdA0T4oBgHgl3EQfDf80/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bbf70619a45b4bf5132e7bbaf0a1052ff5865de3d178ccfdc8103fc312d32e7c +size 9961517 diff --git a/SdE2T4oBgHgl3EQfswgq/content/tmp_files/2301.04062v1.pdf.txt b/SdE2T4oBgHgl3EQfswgq/content/tmp_files/2301.04062v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a077848cf709f582aaaaf66edcd5fcfaff600219 --- /dev/null +++ b/SdE2T4oBgHgl3EQfswgq/content/tmp_files/2301.04062v1.pdf.txt @@ -0,0 +1,3058 @@ +MNRAS 000, 1–19 (2022) +Preprint 11 January 2023 +Compiled using MNRAS LATEX style file v3.0 +A deep radius valley revealed by Kepler short cadence observations +Cynthia S. K. Ho★ and Vincent Van Eylen +Mullard Space Science Laboratory, University College London, Dorking RH5 6NT, UK +Accepted 2022 December 19. Received 2022 December 2; in original form 2022 October 17 +ABSTRACT +The characteristics of the radius valley, i.e., an observed lack of planets between 1.5-2 Earth radii at periods shorter than about +100 days, provide insights into the formation and evolution of close-in planets. We present a novel view of the radius valley +by refitting the transits of 431 planets using Kepler 1-minute short cadence observations, the vast majority of which have not +been previously analysed in this way. In some cases, the updated planetary parameters differ significantly from previous studies, +resulting in a deeper radius valley than previously observed. This suggests that planets are likely to have a more homogeneous +core composition at formation. Furthermore, using support-vector machines, we find that the radius valley location strongly +depends on orbital period and stellar mass and weakly depends on stellar age, with 𝜕 log �𝑅𝑝,valley +�/𝜕 log 𝑃 = −0.096+0.023 +−0.027, +𝜕 log �𝑅𝑝,valley +�/𝜕 log 𝑀★ = 0.231+0.053 +−0.064, and 𝜕 log �𝑅𝑝,valley +�/𝜕 log (age) = 0.033+0.017 +−0.025. These findings favour thermally-driven +mass loss models such as photoevaporation and core-powered mass loss, with a slight preference for the latter scenario. Finally, +this work highlights the value of transit observations with short photometric cadence to precisely determine planet radii, and we +provide an updated list of precisely and homogeneously determined parameters for the planets in our sample. +Key words: planets and satellites: composition – planets and satellites: formation – planets and satellites: fundamental parameters +1 INTRODUCTION +The ‘radius valley’, also known as the ‘radius gap’, is the relative +paucity of planets with sizes between about 1.5 and 2 Earth radii +at orbital periods less than about 100 days. This phenomenon has +been predicted theoretically due to the heavy radiation these close-in +planets receive from their host star (e.g. Owen & Wu 2013; Lopez & +Fortney 2013) and was subsequently seen observationally (e.g. Fulton +et al. 2017; Van Eylen et al. 2018; Fulton & Petigura 2018). Several +theories have been suggested to explain the physical origin of the +radius valley. On one hand, thermally-driven mass loss scenarios have +been proposed, which include photoevaporation (e.g. Owen & Wu +2013; Lopez & Fortney 2013; Owen & Wu 2017) and core-powered +mass loss (e.g. Ginzburg et al. 2018; Gupta & Schlichting 2019, 2020) +models. In these scenarios, the valley separates planets that have lost +their atmosphere from those that have retained it. Alternatively, late +gas-poor formation, where planets below the valley have formed +atmosphere-free, may also be able to explain the origin of the valley +(e.g. Lee et al. 2014; Lee & Chiang 2016; Lopez & Rice 2018; +Cloutier & Menou 2020). +Observed characteristics of the radius valley can therefore reveal +the properties of these close-in planets and their formation history. +For example, in photoevaporation models, the location of the radius +valley and its slope as a function of orbital period depend on the +planetary composition and photoevaporation physics (Owen & Wu +2017; Mordasini 2020). The valley’s location and relative emptiness +can therefore be used to infer the composition of planets surrounding +it and their relative homogeneity (e.g. Van Eylen et al. 2018). Planets +★ E-mail: sze.ho.20@ucl.ac.uk +located inside the radius valley may have a different composition or +could be undergoing the final stages of atmospheric loss by thermally- +driven mechanisms and hence may be important targets for further +studies (e.g. Owen & Wu 2017; Gupta & Schlichting 2019; Petigura +2020). The valley’s location as a function of orbital period can be +used to distinguish between thermal mass-loss models, which exhibit +a negative slope as a function of orbital period, and late gas-poor +formation models which have the opposite slope (e.g. Van Eylen +et al. 2019; Cloutier & Menou 2020; Van Eylen et al. 2021). Within +thermal mass-loss models, photoevaporation and core-powered mass +loss models predict a different dependence of the valley’s location +on stellar mass and age (e.g. Rogers et al. 2021). +Observationally, these valley characteristics have been challeng- +ing to reliably ascertain. A deficit of planets with sizes around 1.5-2 +Earth radii (𝑅⊕) was first observed by Fulton et al. (2017) in a sam- +ple of 2025 planets, with stellar radii determined spectroscopically +as part of the California-Kepler survey (CKS). These planets were +about a factor of two rarer than planets both smaller and larger. +Independently, Van Eylen et al. (2018) (V18 hereafter) analysed a +subset of this sample (117 planets), incorporating higher-precision +stellar parameters using asteroseismology and refitting transit light +curves to achieve a median uncertainty on planet sizes of 3.3%. This +study revealed the valley’s slope as a function of orbital period for +the first time, and suggested the radius valley may be very deep or +even entirely empty.The tension between the valley’s views of Fulton +et al. (2017) and V18 was further exacerbated when the precision +of stellar parameters of the former study were further improved by +Fulton & Petigura (2018) (F18 hereafter). Despite improving stellar +uncertainties from 11% to 3% by incorporating Gaia parallaxes, the +valley remained partially filled in, with its depth largely unchanged. +© 2022 The Authors +arXiv:2301.04062v1 [astro-ph.EP] 10 Jan 2023 + +2 +Ho & Van Eylen +Petigura (2020) investigated the discrepancy in the valley’s depth +between V18 and F18 and concluded it is unlikely to be caused by +differing sample sizes or differing values or uncertainties in stellar +radii. The study argued that the 6.9% dispersion in planetary radii +is instead primarily caused by a discrepancy in the ratio of planet +to stellar radii (𝑅𝑝/𝑅★)) determined from the transit fits. F18 used +radius ratios from Mullally et al. (2015), which fitted Kepler 30- +minute ’long cadence’ observations, whereas V18 used Kepler 1- +minute ’short cadence’ observations, also used for orbital eccentricity +determination and described in Van Eylen & Albrecht (2015) and Van +Eylen et al. (2019). +Here, we seek to refit planet transits for the full subset of F18 +for which short cadence observations are available. This increases +the sample of planets relevant for the radius valley for which short +cadence transit fits are used from 60 in V18 to 431 here. Furthermore, +we will apply the methods to determine the valley’s location and +slope used by V18, notably the use of support vector machines, to +this larger sample, and we expand to other dimensions such as stellar +mass and age. +In Section 2, we describe the sample and methodology used to +analyse the radius valley. In Section 3, we present the results of this +analysis, such as revised planetary sizes, the depth of the valley, and +its dependence on parameters such as the orbital period and stellar +mass and age. These findings are compared to other observational +studies and theoretical models in Section 4. Finally, we provide con- +clusions in Section 5. +2 METHODS +2.1 Sample selection +We use the sample of planets for which stellar parameters are avail- +able from F18 as a starting point. To focus on the radius valley, we +limit the sample to planets with radii 1 ≤ 𝑅𝑝/𝑅⊕ ≤ 4 and orbital +periods 1 ≤ 𝑃/days ≤ 100, resulting in a sample of 1272 planets (for +comparison, applying the same period and radius cuts to the sample +studied by V18 leaves 74 planets). As Kepler 1-minute short cadence +observations may yield superior precision (Petigura 2020), we fur- +ther limit our sample to those planets for which at least 6 months of +Kepler short cadence data are available. +To avoid issues with transit fitting related to transit timing varia- +tions (TTVs), we also remove planets with known TTVs based on the +catalogue by Holczer et al. (2016). We further exclude KOI-1576.03, +as we find that the short cadence data suggested an orbital period dif- +ferent to the one recorded in the archive. Furthermore, we exclude any +planets that are classified as potential false positives in Petigura et al. +(2017). The results in a total sample size of 431 planets, 60 of which +have parameters previously analysed by V18 and 371 which have not +(a further 14 planets in V18 have TTVs and are not reanalysed here). +2.2 Data reduction +The 1-minute Kepler short cadence Pre-search Data Conditioning +SAP (PDCSAP, Stumpe et al. 2012; Smith et al. 2012) light curves +of these targets are downloaded from the NASA Mikulski Archive +for Space Telescopes (MAST) database using the lightkurve +package (Lightkurve Collaboration et al. 2018), which incorporates +astroquery (Ginsburg et al. 2019) and astropy (Astropy Collab- +oration et al. 2013, 2018) dependencies. We only retain data within +0.2 days before the estimated ingress and after the estimated egress of +the transits of the planets of interest, using the transit durations and +mid-times in Mullally et al. (2015) as the expected transit locations. +For multi-planet systems, we only retain transits of planets that are +within our sample. We remove data outliers that lie beyond 6𝜎 from +the median after masking the transits. We then flatten the transits by +dividing the data points with the slope obtained by performing linear +regression on the data points immediately before ingress and after +egress, to remove long-term systematic trends present in the transits. +We then again remove data outliers with 𝜎 = 5 to further clean the +data. +2.3 Stellar multiplicity +Around 46% of solar-type stars have at least one stellar companion +(Raghavan et al. 2010). When a planet orbits a single star, the transit +depth 𝛿 is approximately given by +𝛿 = Δ𝐹 +𝐹tot +≈ +𝑅2𝑝 +𝑅2 +★ +(1) +where 𝐹tot is the total stellar flux, Δ𝐹 is the change in stellar flux, and +𝑅𝑝 and 𝑅★ are the planetary and stellar radius respectively. However, +in a multi-stellar system, the total flux is the sum of fluxes of all stars +in the system, but the change in flux during transit is only relative to +the star(s) which the planet transits (Furlan et al. 2017). Therefore +it is important to take into account the effect of nearby stars on the +light curve flux. +Furlan et al. (2017) compiled a catalogue of Kepler Objects of +Interest (KOI) observations with adaptive optics, speckle interfer- +ometry, lucky imaging, and imaging from space with the Hubble +Space Telescope. The typical point spread function (PSF) widths +and sensitivities (Δ𝑚) are different for every observation method, +target and bandpass, hence whether stellar companions are detected +is dependent on the above factors. For example, Furlan et al. (2017) +were able to detect a median Δ𝑚 ∼ 8mag with Keck in the K band at +a separation of ∼0.5”, but only at ∼2.5” at Lick in the J or H bands. +About 30% of KOIs observed in Furlan et al. (2017) have at least one +companion detected within 4” (Furlan et al. 2017), and given a mean +distance of 616pc for the 431 planets in our sample computed from +distances reported in Mathur et al. (2017), corresponds to ∼2464AU. +Here, we adopt the ‘radius correction factor’ (RCF), given in Furlan +et al. (2017) as +RCF = +𝑅𝑝,corr +𝑅𝑝,uncorr +(2) +and multiply the normalised Kepler light curve fluxes by RCF2, and +subtract +� +RCF2 − 1 +� +to re-normalise, to obtain the corrected light +curve reflecting the transit of one planet orbiting around one star. +137 of the 431 planets in our sample (32%) have RCF measurements +from Furlan et al. (2017). +2.4 Transit fitting +We use the exoplanet package (Foreman-Mackey et al. 2021) to +generate a transit light curve model with quadratic stellar limb dark- +ening, and then run a Hamiltonian Monte Carlo (HMC) algorithm +implemented in PyMC3 (Salvatier et al. 2016) to perform fitting and +determine orbital parameter posteriors. We also implement a Gaus- +sian Process (GP) model (Rasmussen & Williams 2006) to account +for correlated noise in the light curves. However, for Kepler-65 and +Kepler-21 A, we do not fit for a GP model due to convergence +constraints. The parameters fitted for each planet are orbital period +(𝑃), transit mid-time (𝑡0), ratio between planetary and stellar radii +MNRAS 000, 1–19 (2022) + +Deep radius valley with Kepler short cadence +3 +(𝑅𝑝/𝑅★), impact parameter (𝑏), eccentricity (𝑒), argument of peri- +apsis (𝜔), and stellar density (𝜌★). For each light curve, we further +include two quadratic stellar limb darkening parameters (𝑢0 and 𝑢1) +for the host star, with bounds 0 < 𝑢0, 𝑢1 < 1 and implemented with +the Kipping (2013) reparameterisation in exoplanet, the transit jit- +ter (𝜎lc), and two parameters describing the GP contribution (𝜎gp, +𝜌gp). +We initialise the HMC chains by using values presented in the +Kepler Q1-16 dataset (Mullally et al. 2015) for 𝑃, 𝑡0, 𝑅𝑝/𝑅★, and 𝑏. +We set the system to begin with near-circular orbits, with 𝑒 = 0.01 and +𝜔 = 0.01 rad. We take initial stellar densities from Fulton & Petigura +(2018). We use the Exoplanet Characterization ToolKit (ExoCTK) +(Bourque et al. 2021) to estimate the initial 𝑢0 and 𝑢1, which takes +the stellar temperature, surface gravity, and metallicity, which we +use values from the Kepler Q1-16 dataset (Mullally et al. 2015), as +inputs. +We apply Gaussian priors to 𝑃, 𝑡0, 𝑢0, 𝑢1, and 𝜌★, using the initial +guesses as the mean, and 𝜎𝑃 = 2 × 10−5 days, 𝜎𝑡0 = 10−3 days, +𝜎𝑢 = 0.2, and the 𝜌★ uncertainty from Fulton & Petigura (2018) if +available, and Mullally et al. (2015) otherwise. A beta distribution +prior according to Van Eylen et al. (2019) is placed on 𝑒, which is +PDF(𝑒, 𝛼, 𝛽) ∝ 𝑒𝛼(1 − 𝑒)𝛽 +(3) +with 𝛼 = 1.58 and 𝛽 = 4.4 for system with only one transiting planet, +and 𝛼 = 1.52 and 𝛽 = 29 for a multi-transiting-planet system. +3 RESULTS +3.1 Revised planet parameters +We report the updated orbital periods (𝑃), planetary-to-stellar-radii +ratio (𝑅𝑝/𝑅★), planetary radii (𝑅𝑝), the number of transits in the +fitted light curve (𝑁tr), and their uncertainties of the 431 planets fitted +in this sample in Table 1. The full list of parameters are provided in +Appendix A. We convert our 𝑅𝑝/𝑅★ to 𝑅𝑝 using the updated stellar +parameters available: values used in V18 from asteroseismology (i.e. +taken from Huber et al. 2013; Silva Aguirre et al. 2015; Lundkvist +et al. 2016) if the planets are included in the V18 samples, and F18 +otherwise. Full homogeneity is lost by using stellar radii from two +sources. To investigate the consequences of this, we compute the +difference, 𝛿𝑅𝑝, between the planetary radii obtained by converting +𝑅𝑝/𝑅★ to 𝑅𝑝 using 𝑅★ from F18 and V18, and found the mean +𝛿, ¯𝛿 = 0.03 ± 0.11, hence 𝛿 = 0 (no difference) is well within +1𝜎, and we conclude that there is no substantial drawbacks of using +multiple sources. This sample of 431 planets with updated parameters +is plotted on the radius-orbital period plot as shown in Figure 1. +We present the typical uncertainties of 𝑅𝑝/𝑅★ and 𝑅𝑝 of planets +fitted in this work, compared with F18 and V18 in Table 2. For our +newly fitted results, we find that 𝑅𝑝/𝑅★ has a mean uncertainty of +4.76%, and a median uncertainty of 3.44%. This is smaller when +compared to the mean and median uncertainties of 8.73% and 4.07% +respectively for the F18 sample. For 𝑅𝑝, we find a mean and median +uncertainty of 6.09% and 4.70% in our work, again smaller compared +to 10.00% and 5.22% for F18. However, they are larger than that of +V18, possibly due to V18 analysing brighter stars, hence the light +curves are less noisy. This can be seen by comparing the mean +photometric flux error of the transit light curves fitted: 1007 parts +per million (ppm) for this work, and 271 ppm for V18. +We select the planets in F18 that are in common with the planets in +our sample, and examine the change in 𝑅𝑝. We find that 217 planets +have a larger 𝑅𝑝 after refitting, and smaller for 214 planets. Of the +planets whose sizes have increased, the mean change is 9.79%, and +Figure 1. Radius-period plot of all 431 planets refitted in this work. The +black dotted lines indicate the upper and lower boundaries of the radius +valley defined in V18. +8.69% for planets with reduced sizes. Considering all 431 planets, +our new results change 𝑅𝑝 by a mean and median of only 0.62% +and 0.02% respectively, indicating that our refitting results do not +systematically alter the planet sizes. We observe that 120 planets +(28%) have a revised 𝑅𝑝 > 2𝜎 away from their corresponding values +from F18, and 62 planets (14%) > 3𝜎 away. +3.2 Radius valley dependence on orbital period +To obtain the most precise planetary sample, we apply the following +conservative cuts to our sample for subsequent analyses in the rest of +this paper: +(i) Precision on 𝑅𝑝: We exclude planets with a planet radius +precision 𝜎𝑅𝑝 > 10%. +(ii) Radius correction factor (RCF): We exclude planets with an +RCF > 5%, as reported in Furlan et al. (2017). RCFs may themselves +be uncertain due to observational challenges in detecting nearby stel- +lar companions and measuring their brightness (Furlan et al. 2017). +Of the 137 planets with RCF measurements from Furlan et al. (2017), +18 (13%) have RCF > 5%. The remaining 294 planets do not have +RCF measurements currently available. +(iii) Number of transits: We exclude planets with fewer than 3 +transits in the Kepler short cadence data to limit the risk that corre- +lated noise during an individual transit strongly affects the resulting +fit. +After implementing these filters, 375 planets remain in our sample +which we will use throughout the remainder of this work. +We first use this sample to investigate the location of the radius val- +ley as a function of orbital period. Following the procedure outlined +in Van Eylen et al. (2018), we calculate the position of the radius +valley by determining the hyperplane of maximum separation. We +perform this with a linear support-vector machine (SVM). To ini- +tialise our model, we initially classify our sample into two groups, +‘above’ and ‘below’ the radius valley on the radius-orbital period +plane, by applying a Gaussian Mixture Model with two components +in the 𝑅𝑝-𝑃 plane. Since the orders of magnitude of 𝑅𝑝 and 𝑃 are +different, we divide 𝑃 by 5 before applying the above clustering al- +gorithm to allow the model to separate the planetary population into +MNRAS 000, 1–19 (2022) + +4 +HO +D +0 +D +3 +TO +DT +D +! +HO +D +TO +O +2 +R +D +O +D +勇 +DI +D +D +D +3 +10 +30 +100 +P (days)4 +Ho & Van Eylen +Table 1. Table showing estimates of the orbital periods (𝑃), planetary-to-stellar-radii ratio (𝑅𝑝/𝑅★), planetary radii (𝑅𝑝), the number of transits in the fitted +light curve (𝑁tr) of 431 planets refitted in this work. The source of 𝑅★ to convert 𝑅𝑝/𝑅★ to 𝑅𝑝 is listed in the References column: (1) Fulton & Petigura +(2018), (2) Van Eylen et al. (2018).‘Flag’ refers to whether the planet passes the filter checks and is included in the smaller subset for further analyses (1 for +True and 0 for False). The complete list of parameters are provided in Appendix A. Only the first 10 planets are shown here; the full table is available online in +a machine-readable format. +KOI +Kepler name +𝑃 (days) +𝑅𝑝/𝑅★ +𝑅𝑝 (𝑅⊕) +𝑅★ Source +𝑁tr +Flag +K00041.01 +Kepler-100 c +12.815893 ± 0.000008 +0.0138 ± 0.0002 +2.28+0.03 +−0.03 +(2) +93 +1 +K00041.02 +Kepler-100 b +6.887062 ± 0.000007 +0.0082 ± 0.0001 +1.36+0.03 +−0.03 +(2) +173 +1 +K00041.03 +Kepler-100 d +35.333093 ± 0.000019 +0.0104 ± 0.0002 +1.71+0.04 +−0.04 +(2) +35 +1 +K00046.02 +Kepler-101 c +6.029792 ± 0.000020 +0.0073 ± 0.0007 +1.32+0.14 +−0.14 +(1) +50 +0 +K00049.01 +Kepler-461 b +8.313784 ± 0.000015 +0.0287 ± 0.0010 +4.03+0.17 +−0.17 +(1) +34 +1 +K00069.01 +Kepler-93 b +4.726739 ± 0.000001 +0.0151 ± 0.0001 +1.50+0.04 +−0.04 +(2) +275 +1 +K00070.01 +Kepler-20 A c +10.854089 ± 0.000003 +0.0290 ± 0.0002 +2.79+0.07 +−0.07 +(1) +116 +1 +K00070.02 +Kepler-20 A b +3.696115 ± 0.000001 +0.0182 ± 0.0002 +1.75+0.05 +−0.04 +(1) +336 +1 +K00070.03 +Kepler-20 A d +77.611598 ± 0.000019 +0.0263 ± 0.0003 +2.52+0.07 +−0.07 +(1) +15 +1 +K00070.05 +Kepler-20 A f +19.577627 ± 0.000020 +0.0091 ± 0.0004 +0.88+0.04 +−0.04 +(1) +62 +1 +... +... +... +... +... +... +... +... +Table 2. Mean and median values radii determined in this work, F18, and +V18. Values are listed as percentages (%). +Parameter +This work +F18 +V18 +Sample Size +431 +1901 +117 +𝑅𝑝/𝑅★ +Mean +4.76 +8.73 +3.20 +Median +3.44 +4.07 +2.44 +𝑅★ +Mean +3.23 +3.17 +2.49 +Median +2.78 +2.74 +2.20 +𝑅𝑝 +Mean +6.09 +10.00 +3.96 +Median +4.70 +5.22 +3.36 +two groups above and below the radius valley. Otherwise, the pop- +ulation would be clustered in a way dominated by the difference in +period. Following Van Eylen et al. (2018) and David et al. (2021), +we select an SVM penalty parameter of 𝐶 = 10 for the hyperplane, +to minimise misclassification of data points above or below the ra- +dius valley, but still allow the hyperplane location to be determined +by a sufficient number of data points. To determine accurate uncer- +tainties on the location of the valley, we then perform a bootstrap +by generating 1000 new sample sets on which we repeat the above +procedure. Each bootstrap sample is generated by generating a new +sample of the same size from the original sample, allowing replace- +ment. Each bootstrapped sample is then categorised into two groups +with a Gaussian Mixture Model, and the SVM procedure is repeated. +Reporting the median value and taking the 16th and 84th percentiles +as the upper and lower uncertainties, we find +log10 +�𝑅𝑝/𝑅⊕ +� = 𝑚 log10 (𝑃/days) + 𝑐 +(4) +with 𝑚 = −0.11±0.02, and 𝑐 = 0.37+0.02 +−0.03. The location of the radius +valley is plotted in Fig. 2. +We also implement the method adopted by Petigura et al. (2022), +which involves computing the planet density in the radius-period +plane with a Gaussian kernel density estimate (KDE), and fitting the +planet radius at the KDE minima between log10 (𝑃/days) = 0.5−1.5 +(i.e. 𝑃 ≈ 3.16 − 31.6 days) and log10 +�𝑅𝑝/𝑅⊕ +� = 0.15 − 0.35 (i.e. +𝑅𝑝 ≈ 1.41 − 2.24𝑅⊕) according to equation 4, and performing +bootstrap with 1000 sample sets to find the uncertainties. The result +is illustrated in Figure 2. We use a KDE bandwidth of 0.467 in +log10 𝑃 and 0.075 in log10 𝑅𝑝, which is based on the bandwidth used +by Petigura et al. (2022), but scaled up linearly based on the ratios +between the two sample sizes. We note that this method fits a narrower +period range compared to the SVM method, which fits for the full +𝑃 = 1 − 100 days. With this method, we obtain 𝑚 = −0.12+0.03 +−0.05 +and 𝑐 = 0.37+0.05 +−0.03. We find this value to be slightly steeper than that +determined with the SVM, however the two values are well within +1𝜎 of each other. Here, we do not correct for detection completeness, +and we note that this method is highly sensitive to the choice of the +KDE bandwidth, and using a bandwidth five times larger results with +a slope approximately twice as steep. +Some studies have opted to study the radius valley location as a +function of incident flux 𝑆, in addition to, or instead of, 𝑃 (e.g. Rogers +et al. 2021; Petigura et al. 2022). We calculate 𝑆 according to the +formula +𝑆 = +𝐿★ +4𝜋𝑎2 +(5) +where 𝐿★ is the host star’s luminosity. 𝐿★ can itself be calculated +using +𝐿★ = 4𝜋𝑅2 +★𝜎sb𝑇4 +eff +(6) +where 𝑅★ is the stellar radius, 𝜎sb is the Stefan-Boltzmann constant, +and 𝑇eff is the effective temperature of the star. Finally, 𝑎 is the orbital +semi-major axis, which is given by +� 𝑎 +𝑅★ +�3 += 𝐺𝑃2𝜌★ +3𝜋 +(1 + 𝑒 sin 𝜔)3 +�1 − 𝑒2�1.5 +(7) +according to Kepler’s third law of planetary motion (e.g. Van Eylen & +Albrecht 2015; Petigura 2020). Here, 𝐺 is the gravitational constant, +𝑃 is the orbital period, 𝜌★ is the stellar density, 𝑒 and 𝜔 are the orbital +eccentricity and argument of periapsis respectively. As before, we +obtain the stellar properties (𝑅★, 𝜌★, 𝑇eff) from V18 when available, +and from F18 otherwise. 𝑃, 𝑒, and 𝜔 are obtained from the transit +fitting results of this work. Fitting the valley with the SVM, we obtain +MNRAS 000, 1–19 (2022) + +Deep radius valley with Kepler short cadence +5 +Table 3. Dependencies of the radius valley in 𝑛 dimensions (𝑚𝑖), given by the equation log10 +�𝑅𝑝/𝑅⊕ +� = �𝑛 +𝑖=1 𝑚𝑖 𝑥𝑖, with different parameter combinations +𝑥𝑖. The methods used to obtain the equation of the radius valley hyperplanes are also given, where SVM and KDE stand for the support-vector machine and +fitting the minima of the kernel density estimates respectively. +Dimensions +log10 (𝑃/days) +log10 +�𝑆/𝑆⊕ +� +log10 +�𝑀/𝑀⊙ +� +log10 (Age/Gyr) +[Fe/H] +Intercept +Method +2 +−0.11+0.02 +−0.02 +0.37+0.02 +−0.03 +SVM +−0.12+0.03 +−0.05 +0.37+0.05 +−0.03 +KDE +0.07+0.02 +−0.01 +0.11+0.03 +−0.04 +SVM +0.23+0.09 +−0.08 +0.27+0.01 +−0.01 +SVM +0.02+0.01 +−0.02 +0.26+0.01 +−0.01 +SVM +0.06+0.06 +−0.08 +0.26+0.01 +−0.01 +SVM +3 +−0.09+0.02 +−0.03 +0.21+0.06 +−0.07 +0.35+0.02 +−0.03 +SVM +0.07+0.02 +−0.02 +−0.01+0.07 +−0.09 +0.11+0.04 +−0.05 +SVM +−0.10+0.02 +−0.02 +0.03+0.02 +−0.03 +0.34+0.03 +−0.02 +SVM +−0.10+0.03 +−0.03 +0.03+0.03 +−0.04 +0.36+0.02 +−0.03 +SVM +4 +−0.096+0.023 +−0.027 +0.231+0.053 +−0.064 +0.033+0.017 +−0.025 +0.339+0.026 +−0.018 +SVM +Figure 2. Left: Radius valley location determined with the support-vector machine (SVM), with 𝑚 = −0.11 ± 0.02, and 𝑐 = 0.36+0.02 +−0.03, indicated by the black +solid line. The dashed lines represent the median boundaries passing through the supporting vectors determining the position of the solid line. We define the area +between the two lines as the radius valley region. The green and blue points show planets above and below the radius valley respectively. The grey shaded regions +represent the ±1𝜎 uncertainties of the lines determined using the bootstrap method. The red dotted lines show the plot divided into multiple orbital-period +dependent bins, which is then used for plotting the adjusted histogram in Fig. 4. Right: Radius valley position determined by fitting a line through the region +where the kernel density estimate is minimum. With this method, we obtain 𝑚 = −0.12+0.03 +−0.05, and 𝑐 = 0.37+0.0 +−0.03, indicated by the black solid line with ±1𝜎 +uncertainty shaded in grey. +log10 𝑅𝑝/𝑅⊕ = 𝑚 log10 𝑆/𝑆⊕ + 𝑐 +(8) +with 𝑚 = 0.07+0.02 +−0.01, and 𝑐 = 0.11+0.03 +−0.04. The location of the radius +valley in terms of 𝑆 is shown in Figure 3. +3.3 Depth of the radius valley +We investigate the depth of the radius valley. As we find the position +of the radius valley is dependent on orbital period, we divide the +radius valley into multiple tilted bins (as shown in Fig. 2 left) and +plot an adjusted histogram in logarithmic scale. We shift planets +along the slope of the radius valley obtained with the SVM method +in Section 3.2, i.e. 𝑚 = −0.11, and plot a histogram of ‘expected’ +planetary radii at an orbital period of 10 days, shown in Fig. 4. We +choose to fit the histogram with a Gaussian Mixture Model of two +clusters, as opposed to a Gaussian kernel density estimate, as the +former is independent of the sizes and locations of the histogram +bins, as well as the Gaussian bandwidth. Also, with the Gaussian +Mixture Model, we are able to force the planets to fall into two +groups only, matching the bimodal distribution of small planets. +MNRAS 000, 1–19 (2022) + +4 +3 +2 +3 +10 +30 +100 +P (days)Relative density +YD +2 +1 +3 +TOI +R +2 +R +3 +10 +30 +100 +P (days)6 +Ho & Van Eylen +Figure 3. Same as Figure 2 left, but as a function of incident flux 𝑆 instead +of orbital period 𝑃. +Figure 4. Histogram of planet radii, adjusted to equivalent radii at 𝑃 = 10 +days, according to the radius valley slope calculated in Section 3.2 with the +SVM. Note that completeness corrections are not performed. Here, 𝐸avg = +2.98+0.60 +−0.47. +Here, we propose the metric 𝐸, defined as +𝐸SN = 𝑁sub-Neptune,peak/𝑁valley +(9) +and +𝐸SE = 𝑁super-Earth,peak/𝑁valley +(10) +to compare the number of planets inside the valley and the peak num- +ber outside the valley. A higher 𝐸 indicates a deeper radius valley. +𝑁sub-Neptune,peak and 𝑁super-Earth,peak are the number of planets at +the sub-Neptune and super-Earth Gaussian peaks respectively, and +𝑁valley is the number of planets at the lowest point between the two +Gaussian peaks. As 𝑁sub-Neptune, peak, 𝑁super-Earth, peak, and 𝑁valley +are determined directly from the curve resulting from the Gaussian +Mixture Model, this 𝐸 metric is also independent of the histogram +bin sizes or locations. To calculate the uncertainties of 𝐸, we again +perform a bootstrap with 1000 sample sets, where each bootstrap +Figure 5. Plot of planetary radius against mass of host star. The solid line +shows the location of the radius valley determined with the SVM, with slope +𝑚 = 0.23+0.09 +−0.08, and 𝑐 = 0.27 ± 0.01. The dashed lines show the boundaries +of the radius valley, given by the same 𝑚, and 𝑐upper = 0.33 ± 0.01, 𝑐lower = +0.22 ± 0.01. The shaded regions depict the ±1𝜎 uncertainties of the lines +determined with bootstrapping. +sample is generated by generating a new sample of the same size +from the original, allowing replacements. We also replace the ra- +dius of each selected planet by randomly drawing from a normal +distribution with the reported planet radius as the mean, and the +uncertainties on the radius as the variance. We report the median +of this bootstrap distribution as our results, and the 84th and 16th +percentiles as our ±1𝜎 uncertainties. We test this metric on known +planetary samples on F18 and V18, which we know the difference +in the radius valley depth, and find that their corresponding 𝐸 value +differ, hence demonstrating the reliability of such metric. The dif- +ference in the depth of the radius valley is further discussed in Sec- +tion 4.3. We find that for our new short cadence results, the ratios are +𝐸SN = 3.59+0.77 +−0.62 and 𝐸SE = 2.40+0.61 +−0.41. Averaging the two numbers +gives us 𝐸avg = 2.98+0.60 +−0.47. +3.4 Radius valley dependence on stellar mass +We investigate the radius valley location as a function of stellar +mass. We first implement a 2-dimensional SVM, using the same +method as in Section 3.2. The result is shown in Figure 5. We find +d log 𝑅𝑝/d log 𝑀★ = 0.23+0.09 +−0.08, and the intercept 𝑐 = 0.27 ± 0.01. +Rogers et al. (2021) suggested the degeneracy between the photo- +evaporation and core-powered mass loss scenarios could be broken +with an analysis of the radius valley in 3 dimensions. Hence, we +implement an SVM in 3 dimensions: planet radius 𝑅𝑝, orbital period +𝑃, and mass of the host star 𝑀★, to fit the radius valley in the form +of a plane. We perform bootstrapping with 1000 sample sets as per +previous. We obtain the relation +log10 +�𝑅𝑝/𝑅⊕ +� = 𝐴 log10 (𝑃/days) + 𝐵 log10 +�𝑀★/𝑀⊙ +� + 𝐶 +(11) +with 𝐴 = −0.09+0.02 +−0.03, 𝐵 = 0.21+0.06 +−0.07, 𝐶 = 0.35+0.02 +−0.02. An illustration +of the SVM plane is shown in Figure 6. +We also investigate the radius valley location in the 𝑅𝑝–𝑆–𝑀★ +space. Figure 6 right shows the radius valley location in this space. +MNRAS 000, 1–19 (2022) + +4 +甲 +TH +3 +® +R +2 +R +88 +由 +申 +1000 +100 +10 +1 +S (S)70 +60 +S +f planet +50 +40 +Number of +30 +20 +N +10 +0 +1 +2 +3 +4 +5 +6 +Rp at P= 10 days (R)4 +3 +2 +0.7 +1.0 +1.4 +M* (Mo)Deep radius valley with Kepler short cadence +7 +Figure 6. Plot of planet radius against orbital period and mass of host star (left), and planet radius against incident flux and stellar mass (right). The grey plane +shows the radius valley location determined with the SVM in 3 dimensions, with the ±1𝜎 uncertainties shown in pink. The uncertainties on individual planet +parameters are not displayed in the interest of clarity. +We find +log10 +�𝑅𝑝/𝑅⊕ +� = 𝐴 log10 +�𝑆/𝑆⊕ +� + 𝐵 log10 +�𝑀★/𝑀⊙ +� + 𝐶 +(12) +with 𝐴 = 0.07 ± 0.02, 𝐵 = −0.01+0.07 +−0.09, and 𝐶 = 0.11+0.04 +−0.05. +3.5 Radius valley dependence on stellar age +We investigate the location of the radius valley as a function of stellar +age. We obtain the stellar ages from F18. Kepler-174 does not have +stellar age data from this source, hence we omit Kepler-174 b and +Kepler-174 c in our analysis with stellar age. +Fitting the valley with the SVM, we obtain +log10 +�𝑅𝑝/𝑅⊕ +� = 𝑚 log10 (Age/Gyr) + 𝑐 +(13) +with 𝑚 = 0.02+0.01 +−0.02, 𝑐 = 0.26+0.01 +−0.01, showing no significant corre- +lation with the radius valley location in 2-dimensional space. The +result is displayed in Figure 7 (left panel). +We further investigate whether the radius valley depth may be a +function of stellar age. To do so we generate histograms, similar to +Figure 4, split into different stellar age subsamples. Figure 8 (left +panel) shows that for older stars, the radius valley location shifts to +higher 𝑅𝑝, and the radius valley becomes shallower. The change in +the 𝐸 metric is reported in Table 4. These findings suggest that the +radius valley has a dependence on the age of the host stars. +We further plot the radius valley in 𝑅𝑝–𝑃–age space, and fit the +valley with the SVM, as shown in Figure 9 (left panel). We find +log10 +�𝑅𝑝/𝑅⊕ +� = 𝐴 log10 (𝑃/days) + 𝐵 log10 (Age/Gyr) + 𝐶 +(14) +with 𝐴 = −0.10 ± 0.02, 𝐵 = 0.03+0.02 +−0.03, and 𝐶 = 0.34+0.03 +−0.02. +We can also combine 𝑅𝑝, 𝑃, 𝑀★, and stellar age, and determine +the radius valley with a 4-dimensional SVM, as shown in Figure 10. +The resulting equation representing the radius valley is in the form +of a 4-dimensional hyperplane +log10 +�𝑅𝑝/𝑅⊕ +� = 𝐴 log10 (𝑃/days) + 𝐵 log10 +�𝑀★/𝑀⊙ +� ++ 𝐶 log10 (Age/Gyr) + 𝐷 +(15) +Table 4. 𝐸 values of the radius valley for different ages of the host stars. +𝐸avg = (𝐸SN + 𝐸SE)/2. +log10 (Age/yr) +Age (Gyr) +𝑁planets +𝐸SN +𝐸SE +𝐸avg +< 9.25 +< 1.78 +53 +4.93 +3.64 +4.28 +9.25 − 9.5 +1.78 − 3.16 +95 +4.69 +3.08 +3.89 +9.5 − 9.75 +3.16 − 5.62 +114 +3.22 +3.32 +3.27 +> 9.75 +> 5.62 +111 +2.21 +4.40 +3.30 +with 𝐴 = −0.096+0.023 +−0.027, 𝐵 = 0.231+0.053 +−0.064, 𝐶 = 0.033+0.017 +−0.025, 𝐷 = +0.339+0.026 +−0.018. These results imply there is strong evidence the radius +valley location is dependent on 𝑃 and 𝑀★, and weak evidence for its +dependence on stellar age (> 1𝜎). These values are also consistent +within 1𝜎 with their corresponding dependencies in two and three +dimensions (see Table 3). +3.6 Radius valley dependence on stellar metallicity +We perform a similar analysis in terms of the stellar metallicity. As +for age, we obtain the stellar metallicity from V18 if available, and +F18 otherwise. We find +log10 +�𝑅𝑝/𝑅⊕ +� = 𝑚[Fe/H] + 𝑐 +(16) +with 𝑚 = 0.06+0.06 +−0.08, 𝑐 = 0.26+0.01 +−0.01, again displaying no significant +correlation with the radius valley location in 2-dimensional space. +We divide the planet population into two groups, based on the +median [Fe/H] = 0.06. The adjusted histograms in Figure 8 (right +panel) show that the super-Earth peak is lower for metal-poor stars. +The 𝐸 values are reported in Table 5. +We perform a similar SVM analysis in 𝑅𝑝–𝑃–[Fe/H] space (shown +in Figure 9 right panel), and find +log10 +�𝑅𝑝/𝑅⊕ +� = 𝐴 log10 (𝑃/days) + 𝐵[Fe/H] + 𝐶 +(17) +with 𝐴 = −0.10 ± 0.03, 𝐵 = 0.03+0.03 +−0.04, and 𝐶 = 0.36+0.02 +−0.03. These +MNRAS 000, 1–19 (2022) + +Sub-Neptunes +Super-Earths +4 +Rp (R) +2 +1 +1.4 +1 +3 +1.0 +10 +30 +0.7 +100 +P (days) +M* (Mo)Sub-Neptunes +Super-Earths +4 +Rp (R) +2 +1 +1.4 +1000 +100 +1.0 +10 +0.7 +S (S) +1 +M* (Mo)8 +Ho & Van Eylen +Figure 7. Same as Figure 5, but for stellar age (left, 𝑚 = 0.01+0.01 +−0.02, 𝑐 = 0.26+0.01 +−0.01), and stellar metallicity [Fe/H] (right, 𝑚 = 0.06+0.06 +−0.08, 𝑐 = 0.26+0.01 +−0.01). +Figure 8. Same as Figure 4, but separated into different stellar ages (left), and metallicities (right). Here, 𝑇 = log10 (Age/yr). The histograms are normalised +such that the relative density of the sub-Neptune peak equals to unity. +Table 5. 𝐸 values of the radius valley for different stellar metallicities. 𝐸avg = +(𝐸SN + 𝐸SE)/2. +[Fe/H] +𝑁planets +𝐸SN +𝐸SE +𝐸avg +< 0.06 +181 +4.10 +2.20 +3.15 +≥ 0.06 +194 +3.28 +2.78 +3.03 +values imply that we find no evidence that the radius valley location +depends on stellar metallicity. +4 DISCUSSION +4.1 𝑅𝑝-𝑃 relation suggests a thermally-driven mass loss model +As presented in Section 3.2, we observe the radius valley scales +as 𝑚 = d log 𝑅𝑝/d log 𝑃 = −0.11 ± 0.02. This negative period- +dependence is a robust finding which remains roughly similar even +when other parameters are included in the fit (see Table 3). +Different theoretical mechanisms to create the radius valley result +in a different slope as a function of orbital period. For example, +Lopez & Rice (2018) predicted that if the rocky planets are core +remnants of sub-Neptunes with evaporated atmospheres, the radius +valley location should decrease with increasing orbital period, with +𝑚 = −0.09, whereas if those rocky planets were formed after disk +dissipation (i.e., late gas-poor formation), the radius valley location +tends to larger planetary radii at longer orbital periods, with 𝑚 = +0.11. Similarly, Owen & Wu (2017) predicted a negative period- +radius valley slope for a photoevaporation model, with −0.25 ≤ +𝑚 ≤ −0.16 depending on the photoevaporation efficiency. If the +radius valley is thermally driven but powered by the core rather than +photoevaporation, the slope would be similarly negative, with e.g., +Gupta & Schlichting (2019) predicting that 𝑚 ≈ −0.11 in this case. +Theoretically predicted slopes for different formation mechanisms +are summarised in Table 6. +Our observed negative slope is consistent with thermally driven +mass-loss models but inconsistent with late gas-poor formation mod- +els. We can also compare our observed slope with other observational +MNRAS 000, 1–19 (2022) + +4 +3 +2 +=0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +Fe/H/(dex)1.6 +T<9.25 +1.4 +9.25 ≤T<9.5 +9.5 ≤ T< 9.75 +Relative density +1.2 +T≥ 9.75 +1.0 +0.8 +0.6 +0.4 +0.2 +0.0 +3 +4 +2 +5 +6 +Rp at P= +:10 days (R@)1.4 +[Fe/H] < 0.06 +[Fe/H] ≥ 0.06 +1.2 +Relative density +1.0 +0.8 +0.6 +0.4 +0.2 +0.0 +2 +3 +4 +5 +6 +Rp at P= lO days (R)4 +3 +④ +R +p +R +1.0 +3.0 +10.0 +Age (Gyr)Deep radius valley with Kepler short cadence +9 +Figure 9. Same as Figure 6, but in 𝑅𝑝–𝑃–age space (left) and 𝑅𝑝–𝑃–[Fe/H] space (right). +Table 6. Slope of the radius valley on the radius-period plane from various sources. +Source +𝑚 = d log 𝑅𝑝/d log 𝑃 +Stellar type +Observations +This work +−0.11+0.02 +−0.02 +FGK +Van Eylen et al. (2018) +−0.09+0.02 +−0.04 +FGK +Martinez et al. (2019) +−0.11+0.02 +−0.02 +FGK +MacDonald (2019) +−0.319+0.088 +−0.116 +FGK +Cloutier & Menou (2020) +0.058+0.022 +−0.022 +M +Van Eylen et al. (2021) +−0.11+0.05 +−0.04 +M +Petigura et al. (2022) +−0.11+0.02 +−0.02 +FGKM +Luque & Pallé (2022) +−0.02+0.05 +−0.05 +M +Source +𝑚 = d log 𝑅𝑝/d log 𝑃 +Model +Theory +Owen & Wu (2017) +−0.25 ≤ 𝑚 ≤ −0.16 +Photoevaporation +Lopez & Rice (2018) +-0.09 +Photoevaporation +0.11 +Gas-poor formation +Gupta & Schlichting (2019) +−0.11 +Core-powered mass loss +Rogers et al. (2021) +−0.16 +Photoevaporation +−0.11 +Core-powered mass loss +studies (see again Table 6). The period-radius slope was first observed +by Van Eylen et al. (2018), who used the SVM approach that we +adopted here and who found 𝑚 = −0.09+0.02 +−0.04. A different approach +was followed by Martinez et al. (2019), who divided their planetary +sample into 10 bins with equal number of planets, determined the +minimum radius in each bin, and fitted a linear relationship to obtain +equation 4. These two approaches led to a consistent result, with +𝑚 = −0.11±0.02. MacDonald (2019) adopted machine learning ap- +proaches, and report 𝑚 = −0.319+0.088 +−0.116. The above studies all focus +on samples of FGK stars, where various approaches to model the +valley’s location appear to result in negative slopes with consistent +magnitude, matching thermally-driven atmospheric loss models. +For smaller and cooler (M type) stars, Cloutier & Menou (2020) +found a positive slope (𝑚 = 0.058 ± 0.022) using a method similar +to Martinez et al. (2019), suggesting for these stars the valley may be +the result of gas-poor formation rather than being thermally driven. +Van Eylen et al. (2021) used the SVM approach to measure the +M dwarf valley and found a negative slope instead, of −0.11+0.05 +−0.04. +Luque & Pallé (2022) used the gapfit package (Loyd et al. 2020) +and found 𝑚 = −0.02±0.05. A recent study by Petigura et al. (2022) +also included M type stars in addition to FGK stars, and they found +𝑚 = −0.11 ± 0.02 for this sample. Our sample does not include M +type stars but does span a mass range from about 0.6 to 1.4 𝑀★. +To investigate whether the slope of 𝑚 changes with stellar mass +within our sample, we split our planetary sample into two groups: +𝑀★ ≥ 1𝑀⊙, and 𝑀★ < 1𝑀⊙. We determine the 𝑅𝑝 − 𝑃 relation +separately for these two groups with the same methods as above. +We find for 𝑀★ ≥ 1𝑀⊙, 𝑚 = −0.07+0.02 +−0.04 and 𝑐 = 0.35+0.03 +−0.02; for +MNRAS 000, 1–19 (2022) + +Sub-Neptunes +Super-Earths +4 +Rp (R) +2 +1 +1 +3 +10 +30 +0.3 1.0 3.010.0 +100 +P (days) +Age (Gyr)Sub-Neptunes +Super-Earths +4 +Rp (R) +2 +1 +0.5 +¥3 +1 +0 +10 +30 +-0.5 +100 +P (days) +[Fe/H]10 +Ho & Van Eylen +Figure 10. Radius valley location in terms of orbital period, stellar mass, +and stellar age. The colour bar represents the age of the planetary host stars, +and planes of different colours indicate the radius valley location for different +stellar ages. +𝑀★ < 1𝑀⊙, 𝑚 = −0.11+0.02 +−0.07 and 𝑐 = 0.35+0.05 +−0.02. These results are +shown in Figure 11. The two values are in agreement within 1𝜎, +suggesting that within our sample the radius valley location as a +function of orbital period is inconsistent with the gas-poor formation +scenario. +We can also look at the slope of the valley as a function of incident +flux (𝑆) rather than orbital period. By Kepler’s third law (as shown in +equation 7), planets at longer orbital periods are located further away +from the planet, thus the incident flux 𝑆 is lower for planets with +larger star-planet distances as shown in equation 5. Hence, we expect +for a thermally-driven planetary mass loss scenario, the radius valley +location tends to larger planetary radii for higher 𝑆. We observe this +positive relationship in this work, in agreement with other previous +observations as shown in Table 7, and consistent with thermally- +driven mass loss models which is also shown in radius-period space. +4.2 𝑅𝑝-𝑀★ relation supports a thermally-driven mass loss +model +As presented in Section 3.4, we find that in two dimensions, 𝑚 = +d log 𝑅𝑝/d log 𝑀★ = 0.23+0.09 +−0.08. +A stellar mass dependence has been predicted by radius valley +models. Both thermally driven mass-loss models predict a similar +dependence of the valley on stellar mass. For example, Rogers et al. +(2021) predicted 𝑚 = 0.29 and 𝑚 = 0.32 for photoevaporation +(Owen & Wu 2017) and core-powered mass loss models (Gupta & +Schlichting 2019, 2020) respectively. Our results are consistent with +both sets of models within 1𝜎. +A stellar mass dependence was observed by Berger et al. (2020), +who find 𝑚 = 0.26+0.21 +−0.16 by fitting the minima of the 2-dimensional +KDE in 𝑅𝑝 − 𝑀★ space. A recent study by Petigura et al. (2022), +similarly following a binning approach and incorporating data from +Data Release 2 (DR2) of the California-Kepler Survey (CKS) for +cooler stars, estimated 𝑚 = 0.18+0.08 +−0.07. It is therefore reassuring to +see that despite the different method adopted here, the slope derived +in this work is consistent with both of these studies within 1𝜎. For +lower mass stars, Luque & Pallé (2022) found 𝑚 = 0.08 ± 0.12; this +may be inconsistent with our results at 1𝜎, however the stellar mass +range they studied is significantly lower than that in our sample with +no overlaps. The results are summarised in Table 8. +When extending our analysis to 3 dimensions as a function of +𝑃 and 𝑀★, we obtain 𝐴 = �𝜕 log 𝑅𝑝/𝜕 log 𝑃� +𝑀★ = −0.09+0.02 +−0.03, +𝐵 = �𝜕 log 𝑅𝑝/𝜕 log 𝑀★ +� +𝑃 = 0.21+0.06 +−0.08 from determining the radius +valley location in the 𝑅𝑝–𝑃–𝑀★ space. Note that this is different to +the total derivative d log 𝑅𝑝/d log 𝑀★ in two dimensions (shown in +Table 3). Based on the models of photoevaporation (Owen & Wu +2017; Owen & Adams 2019; Mordasini 2020) and core-powered +mass loss (Gupta & Schlichting 2019, 2020), Van Eylen et al. (2021) +predicted 𝐵 = 0.19 for a photoevaporation model, and 𝐵 = 0.33 +for a core-powered mass-loss model. Our resulting posterior distri- +bution of 𝐴 and 𝐵 determined from the bootstrapping presented in +Section 3.4, as shown in Figure 12, is consistent with both the pho- +toevaporation and core-powered mass loss cases at 2𝜎, hence we +are unable to distinguish between the two models in this particular +parameter space. +Rogers et al. (2021) proposed an analysis of the radius valley in +𝑅𝑝–𝑆–𝑀★ space that could distinguish between the two different +thermally-driven mass-loss mechanisms. Using theoretical models, +they predicted the radius valley scales as a function of 𝑆 and 𝑀★ +as equation 11, with 𝐴 = �𝜕 log 𝑅𝑝/𝜕 log 𝑆� +𝑀★ ≃ 0.12 and 𝐵 = +�𝜕 log 𝑅𝑝/𝜕 log 𝑀★ +� +𝑆 ≃ −0.17 for a photoevaporation model, and +𝐴 ≃ 0.08 and 𝐵 ≃ 0.00 for a core-powered mass loss model. Again, +we plot the posterior distributions of 𝐴 and 𝐵 as shown in Figure 13, +and observe that our results are consistent with the core-powered +mass loss case well within 1𝜎. For the photoevaporation scenario, +our values overlap with the theoretical predictions at the edge of the +2𝜎 confidence interval. Rogers et al. (2021) also measured the planet +density of the California-Kepler Survey (CKS, Fulton & Petigura +2018), and the Gaia-Kepler Survey (GKS, Berger et al. 2020), in +𝑅𝑝–𝑆–𝑀★ space. They found for the CKS data, 𝐴 = 0.13+0.03 +−0.05, 𝐵 = +−0.21+0.33 +−0.39, and for the GKS data, 𝐴 = 0.10+0.03 +−0.02, 𝐵 = −0.03+0.10 +−0.12. +Our results are in agreement with both the CKS and GKS values, +and our measurements have smaller uncertainties. +There are some caveats to this comparison between our observation +results and theoretical models. Firstly, the thermally-driven mass loss +models predict the slope of the bottom of the valley (Van Eylen +et al. 2018; Rogers et al. 2021), whereas our SVM finds the slope +for the middle of the radius valley. Some studies have suggested +a different planet size dependence with orbital period for super- +Earths and sub-Neptunes (e.g. Petigura et al. 2022), hence these two +slopes may not be equal. Since the radius valley is not completely +empty, the bottom of the radius valley is not clearly defined, and +there would be challenges locating and fitting the bottom of the +radius valley. As a result, our observed values may not be fully +comparable with theoretical model values. Furthermore, the method +of extracting the radius valley is prone to transit biases, which we +do not correct for in this work. Rogers et al. (2021) showed that +even when modelling synthetic transit surveys based on evolving +planets with theoretical models, the resulting posteriors may not be +fully consistent with the theoretically predicted slope. Further work, +such as generating synthetic surveys from both photoevaporation and +core-powered mass loss models based on conditions similar to that +of our sample in a method similar to that performed in Rogers et al. +(2021), and fitting the valley with the same method as in this work, or +analysing more planets around stars in a larger mass range, is required +to compare our observations to theoretical models in a homogeneous +way. +MNRAS 000, 1–19 (2022) + +Sub-Neptunes +Super-Earths +Valley at O.1 Gyr +Valley at 1 Gyr +10 +Valley at 10 Gyr +4 +Age (Gyr) +3 +2 +d +R +1 +1 +1.4 +1 +¥3 +0.3 +1.0 +10 +30 +0.7 +100 +P (days) +M* (Mo)Deep radius valley with Kepler short cadence +11 +Figure 11. Radius valley position for planets with host star mass 𝑀★ < 1𝑀⊙ (left), and 𝑀★ ≥ 1𝑀⊙ (right). For 𝑀★ < 1𝑀⊙, 𝑚 = −0.11+0.02 +−0.07 and 𝑐 = 0.35+0.05 +−0.02; +for 𝑀★ ≥ 1𝑀⊙, 𝑚 = −0.07+0.02 +−0.04 and 𝑐 = 0.35+0.03 +−0.02. The green and blue points show planets above and below the radius valley respectively. The grey shaded +region represents the ±1𝜎 uncertainty in the radius valley position determined with bootstrapping. +Table 7. Same as Table 6, but for the radius valley slope on the radius-incident-flux plane. +Source +𝑚 = d log 𝑅𝑝/d log 𝑆 +Stellar type +Observations +This work +0.07+0.02 +−0.01 +FGK +Martinez et al. (2019) +0.12 ± 0.02 +FGK +Cloutier & Menou (2020) +−0.060 ± 0.025 +M +Petigura et al. (2022) +0.06 ± 0.01 +FGKM +Luque & Pallé (2022) +0.02 ± 0.02 +M +Table 8. Same as Table 6, but for the radius valley slope on the radius-stellar-mass plane. +Source +𝑚 = d log 𝑅𝑝/d log 𝑀★ +Stellar type +Observations +This work +0.23+0.09 +−0.08 +FGK +Berger et al. (2020) +0.26+0.21 +−0.16 +FGKM +Petigura et al. (2022) +0.18+0.08 +−0.07 +FGKM +Luque & Pallé (2022) +0.08+0.12 +−0.12 +M +Source +𝑚 = d log 𝑅𝑝/d log 𝑀★ +Model +Theory +Gupta & Schlichting (2020) +0.33 +Core-powered mass loss +Rogers et al. (2021) +0.29 +Photoevaporation +0.32 +Core-powered mass loss +4.3 Deeper radius valley suggests a homogeneous initial +planetary core composition +We now turn to the depth of the radius valley. Using the previously +defined depth metric (𝐸, equations 9 and 10), we find a valley depth +of 𝐸avg = 2.98+0.60 +−0.47 (see Section 3.3). We can compare this depth +to the valley observed by F18. Shifting the planets along the slope +calculated in Section 3.2, and applying the same metric to their +filtered sample of 907 planets, we calculate 𝐸SN = 1.99+0.26 +−0.23, 𝐸SE = +2.28+0.31 +−0.27, giving 𝐸avg = 2.14+0.26 +−0.21 for that sample. For V18, we +shift the planets according to the slope obtained in their study, i.e. +𝑚 = −0.09+0.02 +−0.04, and we find 𝐸SN = 7.11+4.70 +−2.49, 𝐸SE = 4.75+3.42 +−1.70, +giving 𝐸avg = 6.05+3.87 +−2.14. These values imply that compared to F18, +we observe a deeper radius valley. On the other hand, the radius +valley appears less deep than observed by V18 for a smaller sample. +This finding is visualised in Figure 14, which shows the adjusted +histograms of the sample studied here next to the F18 and the V18 +samples. +To investigate the reason for observing a deeper valley than F18, we +compare the 211 planets common in both our sample and the filtered +sample of F18. To investigate the role of transit fitting, we convert +MNRAS 000, 1–19 (2022) + +M*<1Mo +4 +TO +TO +0 +T +3 +DT +.4 +④ +TOI +R +2 +R +五 +中 +中中 +T +1 +下中 +3 +10 +30 +100 +P (days)M*≥1Mo +4 +TOITOI +O +TOI +T +TOI +Φ +3 +0 +TO +D +中 +(田y) +TOD. +2 +R +!! +1 +3 +10 +30 +100 +P (days)12 +Ho & Van Eylen +Figure 12. Posterior distributions of the radius valley location dependence +with respect to orbital period at constant stellar mass �𝜕 log 𝑅𝑝/𝜕 log 𝑃� +𝑀★, +and stellar mass at constant orbital period �𝜕 log 𝑅𝑝/𝜕 log 𝑀★ +� +𝑃. The dark +and light-coloured shades represent the 1𝜎 and 2𝜎 uncertainties respectively. +The theoretical models of photoevaporation and core-powered mass loss are +taken from Van Eylen et al. (2021). +Figure 13. Same as Figure 12, but for �𝜕 log 𝑅𝑝/𝜕 log 𝑆� +𝑀★ +and +�𝜕 log 𝑅𝑝/𝜕 log 𝑀★ +� +𝑆. +all our 𝑅𝑝/𝑅★ into 𝑅𝑝 using 𝑅★ from F18 (even when V18 values +are available). The results are shown in Figure 15, which compares +the same planets with the same stellar parameters but different transit +fitting. We observe that in this case, the 𝑅𝑝 of 56 (27%) and 24 (11%) +planets change by > 2𝜎 and > 3𝜎 respectively, compared to the +values reported in F18. We find for this common planetary sample, +for our planetary parameters, 𝐸SN = 3.63+1.02 +−0.70, 𝐸SE = 2.95+0.86 +−0.63, +giving 𝐸avg = 3.29+0.91 +−0.59, whereas for parameters from F18, 𝐸SN = +2.40+0.59 +−0.47, 𝐸SE = 1.93+0.49 +−0.39, giving 𝐸avg = 2.18+0.49 +−0.42. These findings +suggest that our updated transit fittings are directly responsible for +deepening (although not fully emptying) the radius valley. +A deeper radius valley is associated with a more homogeneous +planet core composition. For example, in photoevaporation models +the radius valley position is dependent on the mass of the planet core +(𝑀𝑐), and the density of a 1𝑀⊕ core of a particular core composition +(𝜌𝑀⊕), as +𝑅valley ∝ 𝜌−1/3 +𝑀⊕ 𝑀1/4 +𝑐 +. +(18) +Hence, if 𝑅valley is known, and the planets’ mean masses are known, +the planetary core compositions could be deduced (Owen & Wu +2017). +Using the above relation, if the planetary cores were icy at forma- +tion, the radius valley would be located at a higher planetary radius +than if the cores were rocky/terrestrial at formation. Hence, if the +planetary cores are of mixed composition, a superposition of the two +models would be predicted, and we would expect the radius valley +to be smeared and less distinct, as each type of planet would have +its own ‘radius valley’ at a different location (Owen & Wu 2017). +Our deep radius valley found in this work implies the opposite case, +where the planetary cores are more similar in composition. In this +scenario, planets inside the valley may have a different (e.g. icy) +composition. +Owen & Wu (2017) compared their models to observations, and +found that the planet compositions are more likely to be Earth-like +(i.e. rocky), but that the apparent shallowness of the valley suggested +a wide distribution of iron fractions ( 𝑓Fe) in their cores, as planets +with a single value iron fraction ( 𝑓Fe = 0.5) produces a deeper +valley compared to planets with a uniform distribution ( 𝑓Fe ∈ [0, 1]). +Comparing our finding of a deeper valley to models in Owen & Wu +(2017) would indicate that the planet compositions are more likely +to have similar iron fractions with a narrower spread. +Similarly, in the core-powered mass loss model, the location of the +radius valley scales as +𝑅valley ∝ 𝜌−4/9 +𝑐 +(19) +where 𝜌𝑐 is the planet core density (Gupta & Schlichting 2019). +The same reasoning as the photoevaporation case then applies: given +the larger 𝜌𝑐 for icy cores, planets with homogeneous icy cores +will produce a radius valley at a larger planetary radii compared +to rocky/terrestrial cores, implying that the radius valley would be +smeared if planetary cores are of inhomogeneous compositions. Our +deep radius valley supports the opposite case, i.e., a similar planetary +core composition. +Figure 16 shows the stellar parameter distributions for the planet +host stars in the three planet samples, and the mean and median +values are listed in Table 9. We notice a similar stellar parameter +range between this work and F18, however the stars in V18 are +brighter, have a larger mean radius and mass, and higher effective +temperature. This is likely due to V18 selecting stars which display +strong asteroseismic signals, which usually are brighter and larger +stars. This observation may indicate that the radius valley of such +stars are emptier, however the details are left for future studies. +Despite our new results revealing that the radius valley deepens by +refitting planets with 1-minute short cadence light curves, it is still +uncertain whether the difference between results from this work and +F18 is solely due to the cadence in transit data used, as different meth- +ods are used in the transit fitting process. Mullally et al. (2015) fitted +planets using the method described in Rowe et al. (2014), which first +fits a multi-planet transit model to the light curves, with fixed limb +darkening parameters from Claret & Bloemen (2011), and subse- +quently fitting for each planet in a system independently by removing +photometric contributions of other planets based on the parameters +from the multi-planet fit. In our work, we fit planets in multi-planet +systems simultaneously, such that each system shares the same stellar +parameters including limb-darkening parameters and stellar density. +MNRAS 000, 1–19 (2022) + +0.4 +0.3 +0.2 +0.1 +Photoevaporation +Core-powered mass loss +0 +This Work +-0.2 +-0.15 +-0.1 +-0.05 +0 +0.05 +0.1 +(alog Rp/alog P)m,Photoevaporation +0.2 +Core-powered mass loss +This Work +0.1 +0 +-0.1 +-0.2 +0 +0.05 +0.1 +0.15 +0.2 +alog Rp/alog S)mDeep radius valley with Kepler short cadence +13 +Figure 14. Histogram of planet radii, adjusted to 𝑃 = 10 days for the planetary population in this work (left, identical to Figure 4), F18 (centre), and V18 +(right). Planets in this work and F18 are shifted according to the slope defined in Section 3.2 with the SVM (i.e. −0.11+0.02 +−0.02), whereas planets in V18 are shifted +according to the slope found in V18 (i.e. 𝑚 = −0.09+0.02 +−0.04). The 𝐸 metrics defining the average peak-to-valley ratio are 2.98+0.60 +−0.47, 2.14+0.26 +−0.21, and 6.05+3.87 +−2.14 +respectively. +Figure 15. Left: Radius-period plot of the 211 planets common to this work (blue) and F18 (red), using the same stellar radii to calculate planetary radii. Right: +Same as Figure 14, but the planetary population is filtered to the 211 common planets in both samples. Planets in both samples are adjusted to equivalent radii +at 𝑃 = 10 days according to the slope calculated in Section 3.2 with the SVM. The red and blue histograms are produced with the parameters obtained from F18 +and this work respectively. The histograms and fitting with the Gaussian Mixture Model show that the observed valley is deeper in this work. +Mullally et al. (2015) assumed a circular orbit when performing the +transit fits. On the contrary, we leave orbital eccentricity 𝑒 as a free +parameter, and place a prior on 𝑒 based on the expected distribution +from Van Eylen et al. (2019) and the stellar density 𝜌★ from F18. +However, most of the planets in our sample have near-circular orbits, +with over 85% of planets having 𝑒 < 0.1. Therefore planetary orbital +eccentricity is not sufficient to explain the difference between the +two results. The possible presence of TTVs also do not contribute +to the discrepancy as planets with known TTVs are excluded in our +like-for-like planet comparisons. In fact, when fitting transits using +identical methods, precisions in 𝑅𝑝/𝑅★ obtained from fitting transit +light curves of shorter cadences has been found to substantially im- +prove, compared to 30-minute cadence light curves (Camero, Ho & +Van Eylen, in prep.). We therefore expect the photometry cadence to +contribute significantly to the difference in the views of the radius val- +ley. Further work, such as refitting the long cadence data of the same +planet population with identical transit fitting methods, is needed to +further investigate the effect of light curve cadence on planet param- +eter estimates and the radius valley. We leave such considerations for +future studies. +4.4 Radius valley relation with stellar age consistent with +core-powered mass loss model +In Section 3.5, we present a positive relationship between the radius +valley location and stellar age. Photoevaporation is predicted to occur +in the first 100 Myr of the planet’s formation (Owen & Wu 2017), well +before observations are able to detect the evolution signals, whereas +MNRAS 000, 1–19 (2022) + +70 +This work +60 +S +Number of planet +50 +40 +30 +20 +10 +0 +2 +¥456 +1 +3 F18 +80 +70 +Number of planets +60 +50 +40 +30 +20 +10 +0 +2 +3 +456 +1 +Rp at P= 10 days (R)V18 +14- +12 +S +Number of planets +10 +8 +6 +4 +2 +0 +1 +2 +3 +456 +Rp at P= 10 days (R)F18 +This work +4 +ICE +士 +亞 +HDO +HOH +3 +TO +T +H +市 +币 +西 +中 +中 +薄 +H +生奇 +CDI +F +F +由HO +由 +2 +10 +中 +Φ +T0 +西 +中 +1 +T +0 +TEHO +中 +HH +TOIT +T0 +TTI +中 +中 +Ho0 +HO由 +HO +HO +中 +中 +中中 +He +I +1 +3 +10 +30 +L +100 +P (days)35 +F18 +This work +30 +S +Number of planets +25 +20 +15 +10 +5 +0 +1 +2 +3 +4 +5 +6 +Rp at P= 10 days (R)14 +Ho & Van Eylen +Figure 16. Distribution of host stars parameters in our work, compared with F18 and V18. The properties shown here, from top left to bottom right, are stellar +radius 𝑅★, mass 𝑀★, Kepler magnitude Ksmag, and effective temperature 𝑇eff. For systems with multiple transiting planets, stars are counted multiple times. +Table 9. Average values of stellar properties of the host stars in the planetary sample used in this work, compared with F18 and V18. ¯𝑥 and ˜𝑥 represent the mean +and median values of the parameter 𝑥 respectively. +Sample +¯𝑅★ (𝑅⊙) +˜𝑅★ (𝑅⊙) +¯ +𝑀★ (𝑀⊙) +˜ +𝑀★ (𝑀⊙) +¯ +Ksmag +˜ +Ksmag +¯ +𝑇eff (K) +˜ +𝑇eff (K) +This work +1.08 +0.99 +0.98 +0.95 +12.27 +12.31 +5587 +5630 +F18 +1.23 +1.19 +1.04 +1.03 +11.72 +11.97 +5788 +5860 +V18 +1.50 +1.45 +1.14 +1.14 +11.49 +11.57 +5980 +5952 +core-powered mass loss occurs throughout the main-sequence life- +time of the stars, on Gyr timescales (Ginzburg et al. 2016; Gupta & +Schlichting 2019, 2020). Hence, in the photoevaporation case, the +radius valley is expected to be located at a constant radius. On the +other hand, in the core-powered mass loss case, the radius valley +shifts to higher planet radii for older systems, as the atmospheres of +planets with more massive cores are stripped off later in the evolution +process than their less massive counterparts (e.g. David et al. 2021; +Rogers & Owen 2021). +Our results reveal a weak positive radius valley dependence on +the stellar age, which is consistent with the core-powered mass loss +scenario, as is the observed radius valley dependence on stellar mass +as discussed in Section 4.2. However, a small age dependence does +not preclude photoevaporation, since even in this scenario a subset of +planets may still lose their atmospheres and evolve at Gyr timescales +(David et al. 2021; Rogers et al. 2021), and we are unable to observe +stars younger than 100 Myr and hence cannot rule out the possibility +of a dominant photoevaporation effect on planets at the early stages +of the stars’ lifetime. Also, stellar age measurements are highly un- +certain; the mean percentage uncertainty in stellar age for our sample +is 54%, hence there is also a probability that some stars are younger +than observed. +Table 10 lists the 50 planets located inside the radius valley in our +sample. To do so, we here defined the new radius valley region as +the area bounded by the two lines passing through the supporting +vectors in the 4D SVM model in Section 3.5, given by equation 15 +with 𝐴 = −0.096, 𝐵 = 0.231, 𝐶 = 0.033, 𝐷lower = 0.272 for the +lower line, and 𝐷upper = 0.405 for the upper line. These planets +are potentially interesting for future characterisation study as their +MNRAS 000, 1–19 (2022) + +1.6 +F18 +1.4 +V18 +This work +1.2 +Density +1.0 +0.8 +D +0.6 +0.4 +0.2 +0.0 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +R(Ro)F18 +3.0 +V18 +This work +2.5 +Density +2.0 +1.5 +D +1.0 +0.5 +0.0 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +M* (Mo)0.7. +F18 +V18 +0.6 +This work +0.5 +Density +0.4 +0.3 +0.2 +0.1 +0.0 +8 +10 +12 +14 +16 +Ksmag1e-4 +16 +F18 +14 +V18 +This work +12 +Density +10 +8 +6 +4 +2 +0 +4500 +5000 +5500 +6000 +6500 +7000 +Teff ( +(K)Deep radius valley with Kepler short cadence +15 +Figure 17. Metallicity and mass of the host stars used in this work. The grey +dotted line [Fe/H] = 0.06 shows the cut-off between stars of low and high +metallicity as defined in this work. We note a lack of stars with low metallicity +and large stellar mass. +atmospheres and interiors may provide additional insights regarding +formation and evolution mechanisms. +4.5 Radius valley depth varies with stellar metallicity +In Section 3.6, we show a higher average 𝐸 value (i.e. a deeper radius +valley) for planets around metal-poor stars. This seems to contradict +the suggestion that the radius valley is deeper for planets around +metal-rich stars (Owen & Murray-Clay 2018). However, we note +from Figure 17, that in our sample, the metal-rich host stars span a +wider range of stellar masses, due to lack of metal-poor stars with +large radii. As from Section 3.4 we observe that the radius valley +depends on stellar mass as well, the superposition of the radius +valley for different stellar masses potentially smears the gap, making +the radius valley appear shallower. +The degeneracy between stellar mass and metallicity is not fully +resolved, hence we are unable to determine the sole effect of stellar +metallicity on the radius valley in this work. We therefore consider +the results related to metallicity to be inconclusive and in need of +further future study. +5 CONCLUSION +In summary, we performed transit light curve fitting on 431 plan- +ets using Kepler 1-minute short cadence data, the vast majority of +which have not been previously analysed homogeneously using short +cadence observations. In this paper, we presented their revised plan- +etary parameters, which in some cases differ substantially from those +previously reported. These differences are unrelated to stellar param- +eters but may be related to the details of the transit fitting approach +or the shorter observing cadence, the effects of which should be +disentangled in future studies. +By statistically analysing the small close-in planets in our sam- +ple, we observed a radius valley which is deeper than that reported +in several other studies, although not entirely empty. The valley’s +depth likely implies a homogeneous initial planetary core composi- +tion where the planets are similar in composition at formation, and +likely to have similar iron fractions. We provide a table of those plan- +ets that appear to be inside the valley, as they may warrant further +study. +The radius valley has a strong dependence on planetary orbital pe- +riod and the mass of the host star. It also displays a weak dependence +on the stellar age. We compared several possible radius valley models +using support vector machines. We determined that the radius valley +can best be described in four dimensions using the formula +𝑅𝑝,valley ∝ 𝑃𝐴𝑀𝐵 +★ (age)𝐶 +(20) +with 𝐴 = −0.096+0.023 +−0.027, 𝐵 = 0.231+0.053 +−0.064, and 𝐶 = 0.033+0.017 +−0.025. +Comparing our radius valley dependencies with theoretical mod- +els, we found that in 𝑅𝑝–𝑆–𝑀★ space, our posterior distributions +are most consistent with core-powered mass loss, where they agree +within less than 1𝜎. The models are also consistent with photoevap- +oration scenarios at ≈ 2𝜎. We did not find a significant dependence +of the radius valley on stellar metallicity. +With the Transiting Exoplanet Survey Satellite (TESS, e.g. Ricker +et al. 2015) now in its extended mission, and the upcoming launch of +the PLAnetary Transits and Oscillations of stars (PLATO) mission +(e.g. Rauer et al. 2014), such future planetary studies could drastically +increase the number of planets with radii measurements and hence +provide an even more detailed view of the radius valley. This work +highlights the impact of careful transit fitting using short, 1-minute +cadence observations to obtain precise planetary radii. This will +likely be of key importance to derive precise planetary radii using +transit observations from ongoing and future missions, which will +ultimately allow us to better understand the formation and evolution +of small close-in planets. +ACKNOWLEDGEMENTS +C.S.K.H. would like to thank the Science and Technology Facilities +Council (STFC) for funding support through a PhD studentship. We +would like to thank Erik Petigura, James Rogers, and James Owen +for insightful discussions. We also thank the anonymous reviewer for +taking their time to review the paper, and for their valuable sugges- +tions which have improved the manuscript. +DATA AVAILABILITY +The Kepler 1-minute short cadence light curves are available for +download on the NASA Mikulski Archive for Space Telescopes +(MAST) database1. The parameter estimates from HMC posteriors +are provided in the Appendix tables. +REFERENCES +Astropy Collaboration et al., 2013, A&A, 558, A33 +Astropy Collaboration et al., 2018, AJ, 156, 123 +Berger T. A., Huber D., Gaidos E., van Saders J. L., Weiss L. M., 2020, AJ, +160, 108 +Bourque M., et al., 2021, The Exoplanet Characterization Toolkit (ExoCTK), +doi:10.5281/zenodo.4556063, https://doi.org/10.5281/zenodo. +4556063 +Claret A., Bloemen S., 2011, A&A, 529, A75 +Cloutier R., Menou K., 2020, AJ, 159, 211 +David T. J., et al., 2021, AJ, 161, 265 +1 https://archive.stsci.edu +MNRAS 000, 1–19 (2022) + +0.4 +0.2 +Fe/H] +0.0 +-0.2 +-0.4 +-0.6 +0.6 +0.8 +1.0 +1.2 +1.4 +M* (Mo)16 +Ho & Van Eylen +Table 10. List of planets inside the radius valley as defined by this work. The coordinates (RA and Dec) are taken from Kepler Q1-17 Data Release 25 catalogue +(Thompson et al. 2018), except for K02533.03, where data is taken from Kepler Q1-16 catalogue (Mullally et al. 2015). +KOI +Kepler name +𝑃 (days) +𝑡0 (BJD-2454833) +𝑅𝑝/𝑅★ +𝑅𝑝 (𝑅⊕) +RA (deg) +Dec (deg) +K00049.01 +Kepler-461 b +8.313784 ± 0.000015 +175.9915 ± 0.0008 +0.0287 ± 0.0010 +4.03+0.17 +−0.17 +292.24902 +46.164822 +K00070.03 +Kepler-20 A d +77.611598 ± 0.000019 +164.7274 ± 0.0005 +0.0263 ± 0.0003 +2.52+0.07 +−0.07 +287.698 +42.338718 +K00092.01 +KOI-92.01 +65.704594 ± 0.000018 +137.4419 ± 0.0005 +0.0263 ± 0.0006 +3.02+0.11 +−0.11 +283.37482 +43.788219 +K00094.02 +Kepler-89 A c +10.423684 ± 0.000005 +138.0092 ± 0.0005 +0.0266 ± 0.0006 +3.97+0.13 +−0.13 +297.33307 +41.891121 +K00105.01 +Kepler-463 b +8.981015 ± 0.000002 +136.6493 ± 0.0005 +0.0313 ± 0.0004 +3.65+0.11 +−0.10 +298.93704 +44.85791 +K00107.01 +Kepler-464 b +7.256964 ± 0.000011 +134.0232 ± 0.0007 +0.0198 ± 0.0004 +3.46+0.11 +−0.11 +294.83517 +48.982361 +K00108.01 +Kepler-103 b +15.965333 ± 0.000013 +142.1780 ± 0.0006 +0.0221 ± 0.0002 +3.49+0.04 +−0.04 +288.98456 +40.064529 +K00111.03 +Kepler-104 A d +51.755294 ± 0.000018 +271.0894 ± 0.0005 +0.0232 ± 0.0003 +2.66+0.07 +−0.07 +287.60461 +42.166779 +K00122.01 +Kepler-95 b +11.523073 ± 0.000005 +131.9686 ± 0.0004 +0.0205 ± 0.0002 +3.24+0.10 +−0.10 +284.48245 +44.398041 +K00157.02 +Kepler-11 d +22.687159 ± 0.000014 +148.4549 ± 0.0006 +0.0282 ± 0.0006 +3.34+0.11 +−0.10 +297.11511 +41.909142 +K00174.01 +Kepler-482 b +56.354185 ± 0.000019 +144.8366 ± 0.0007 +0.0339 ± 0.0013 +2.92+0.14 +−0.14 +296.82291 +48.107552 +K00238.01 +Kepler-123 b +17.232309 ± 0.000018 +135.0923 ± 0.0008 +0.0223 ± 0.0006 +3.21+0.13 +−0.13 +296.99863 +42.78196 +K00285.01 +Kepler-92 b +13.748833 ± 0.000015 +179.2788 ± 0.0007 +0.0198 ± 0.0003 +3.71+0.06 +−0.06 +289.08606 +41.562958 +K00317.01 +Kepler-521 b +22.208119 ± 0.000015 +206.3592 ± 0.0006 +0.0207 ± 0.0003 +3.69+0.11 +−0.11 +298.81638 +43.998039 +K00351.03 +Kepler-90 d +59.737034 ± 0.000020 +158.9612 ± 0.0009 +0.0217 ± 0.0006 +2.80+0.11 +−0.11 +284.4335 +49.305161 +K00351.04 +Kepler-90 e +91.940461 ± 0.000020 +134.2987 ± 0.0010 +0.0198 ± 0.0007 +2.56+0.11 +−0.11 +284.4335 +49.305161 +K00386.01 +Kepler-146 b +31.158789 ± 0.000019 +173.9038 ± 0.0009 +0.0297 ± 0.0007 +3.30+0.12 +−0.12 +294.11075 +38.710232 +K00386.02 +Kepler-146 c +76.732517 ± 0.000020 +200.6716 ± 0.0010 +0.0258 ± 0.0013 +2.87+0.16 +−0.16 +294.11075 +38.710232 +K00408.01 +Kepler-150 c +7.381981 ± 0.000007 +173.0729 ± 0.0008 +0.0355 ± 0.0005 +3.34+0.12 +−0.12 +288.2341 +40.520901 +K00416.01 +Kepler-152 b +18.207957 ± 0.000015 +185.8427 ± 0.0006 +0.0383 ± 0.0006 +3.12+0.10 +−0.09 +286.86548 +41.989079 +K00435.05 +Kepler-154 c +62.302788 ± 0.000020 +179.0982 ± 0.0010 +0.0266 ± 0.0010 +3.04+0.15 +−0.15 +289.78052 +49.89653 +K00509.02 +Kepler-171 c +11.463477 ± 0.000013 +137.3859 ± 0.0008 +0.0328 ± 0.0008 +3.30+0.15 +−0.14 +296.77191 +41.755539 +K00510.04 +Kepler-172 e +35.118523 ± 0.000020 +152.1229 ± 0.0010 +0.0248 ± 0.0021 +2.82+0.26 +−0.26 +283.36841 +41.821861 +K00555.02 +Kepler-598 c +86.494779 ± 0.000020 +181.8831 ± 0.0009 +0.0272 ± 0.0008 +2.51+0.10 +−0.10 +293.12341 +40.934769 +K00665.01 +Kepler-207 d +5.868083 ± 0.000009 +170.3244 ± 0.0009 +0.0202 ± 0.0004 +3.69+0.11 +−0.11 +290.03052 +42.16605 +K00707.02 +Kepler-33 f +41.028059 ± 0.000019 +172.5788 ± 0.0009 +0.0207 ± 0.0004 +3.64+0.13 +−0.13 +289.07755 +46.005219 +K00707.03 +Kepler-33 e +31.784774 ± 0.000020 +135.8721 ± 0.0009 +0.0188 ± 0.0005 +3.30+0.12 +−0.12 +289.07755 +46.005219 +K00708.01 +Kepler-216 c +17.406653 ± 0.000017 +171.0063 ± 0.0008 +0.0230 ± 0.0006 +3.88+0.14 +−0.14 +293.72806 +46.12915 +K00711.01 +Kepler-218 c +44.699505 ± 0.000020 +174.8232 ± 0.0008 +0.0272 ± 0.0007 +3.07+0.11 +−0.11 +295.41281 +46.266472 +K00800.02 +Kepler-234 c +7.212030 ± 0.000017 +172.8172 ± 0.0009 +0.0283 ± 0.0012 +3.61+0.28 +−0.26 +291.65353 +38.494659 +K00834.02 +Kepler-238 d +13.233546 ± 0.000019 +140.3211 ± 0.0010 +0.0197 ± 0.0005 +3.37+0.19 +−0.18 +287.89713 +40.637821 +K00834.05 +Kepler-238 f +50.447315 ± 0.000020 +178.4929 ± 0.0010 +0.0203 ± 0.0009 +3.48+0.23 +−0.22 +287.89713 +40.637821 +K00881.01 +Kepler-712 b +21.022471 ± 0.000017 +207.6765 ± 0.0007 +0.0391 ± 0.0008 +3.14+0.18 +−0.17 +294.90973 +42.935261 +K00907.04 +Kepler-251 e +99.640965 ± 0.000021 +198.6899 ± 0.0009 +0.0320 ± 0.0017 +2.82+0.19 +−0.19 +296.56622 +44.105862 +K00921.02 +Kepler-253 d +18.119898 ± 0.000018 +182.6165 ± 0.0008 +0.0346 ± 0.0011 +3.01+0.16 +−0.15 +291.84198 +44.858089 +K00934.01 +Kepler-254 b +5.826654 ± 0.000006 +173.0110 ± 0.0009 +0.0368 ± 0.0011 +3.62+0.26 +−0.24 +288.1647 +45.816509 +K00941.01 +Kepler-257 c +6.581482 ± 0.000009 +174.7876 ± 0.0009 +0.0429 ± 0.0009 +3.75+0.15 +−0.15 +297.31598 +46.023258 +K00954.02 +Kepler-259 c +36.924954 ± 0.000019 +174.2245 ± 0.0010 +0.0291 ± 0.0017 +2.85+0.19 +−0.19 +288.21194 +46.615002 +K01001.01 +Kepler-264 b +40.806846 ± 0.000020 +155.7126 ± 0.0009 +0.0159 ± 0.0003 +3.39+0.12 +−0.12 +292.04462 +37.37624 +K01198.01 +Kepler-275 c +16.088329 ± 0.000018 +139.4928 ± 0.0010 +0.0232 ± 0.0011 +3.55+0.31 +−0.29 +292.47971 +38.514919 +K01215.02 +Kepler-277 c +33.006310 ± 0.000020 +145.3914 ± 0.0010 +0.0161 ± 0.0008 +3.04+0.17 +−0.17 +286.58316 +39.077202 +K01270.01 +Kepler-57 b +5.729326 ± 0.000005 +138.5598 ± 0.0009 +0.0356 ± 0.0024 +3.16+0.24 +−0.24 +293.6413 +44.65704 +K01486.02 +Kepler-302 b +30.183689 ± 0.000018 +146.6480 ± 0.0009 +0.0286 ± 0.0011 +3.27+0.21 +−0.20 +294.31699 +43.629341 +K01563.04 +Kepler-305 d +16.738655 ± 0.000019 +359.4178 ± 0.0009 +0.0338 ± 0.0022 +2.84+0.22 +−0.22 +299.22433 +40.343182 +K01598.01 +Kepler-310 c +56.476167 ± 0.000019 +143.8052 ± 0.0008 +0.0301 ± 0.0007 +2.75+0.10 +−0.10 +288.83936 +46.98674 +K02051.01 +Kepler-355 c +25.762459 ± 0.000020 +147.7050 ± 0.0009 +0.0230 ± 0.0010 +2.95+0.18 +−0.17 +285.79947 +42.811779 +K02390.01 +Kepler-1219 b +16.104672 ± 0.000020 +135.0156 ± 0.0010 +0.0120 ± 0.0011 +3.51+0.46 +−0.46 +297.21579 +47.378521 +K02414.02 +Kepler-384 c +45.348527 ± 0.000020 +142.2527 ± 0.0010 +0.0157 ± 0.0012 +2.78+0.22 +−0.22 +286.02612 +44.782871 +K02533.03 +KOI-2533.03 +26.115290 ± 0.000019 +145.5642 ± 0.0010 +0.0122 ± 0.0011 +4.01+0.38 +−0.38 +286.71564 +48.645279 +K02639.01 +KOI-2639.01 +25.108060 ± 0.000020 +146.4407 ± 0.0010 +0.0191 ± 0.0083 +3.69+1.63 +−1.62 +285.36517 +49.201561 +MNRAS 000, 1–19 (2022) + +Deep radius valley with Kepler short cadence +17 +Foreman-Mackey D., et al., 2021, The Journal of Open Source Software, 6, +3285 +Fulton B. J., Petigura E. A., 2018, AJ, 156, 264 +Fulton B. J., et al., 2017, AJ, 154, 109 +Furlan E., et al., 2017, AJ, 153, 71 +Ginsburg A., et al., 2019, AJ, 157, 98 +Ginzburg S., Schlichting H. E., Sari R., 2016, ApJ, 825, 29 +Ginzburg S., Schlichting H. E., Sari R., 2018, MNRAS, 476, 759 +Gupta A., Schlichting H. E., 2019, MNRAS, 487, 24 +Gupta A., Schlichting H. E., 2020, MNRAS, 493, 792 +Holczer T., et al., 2016, ApJS, 225, 9 +Huber D., et al., 2013, ApJ, 767, 127 +Kipping D. M., 2013, MNRAS, 435, 2152 +Lee E. J., Chiang E., 2016, ApJ, 817, 90 +Lee E. J., Chiang E., Ormel C. W., 2014, ApJ, 797, 95 +Lightkurve Collaboration et al., 2018, Lightkurve: Kepler and TESS +time series analysis in Python, Astrophysics Source Code Library +(ascl:1812.013) +Lopez E. D., Fortney J. J., 2013, ApJ, 776, 2 +Lopez E. D., Rice K., 2018, MNRAS, 479, 5303 +Loyd R. O. P., Shkolnik E. L., Schneider A. C., Richey-Yowell T., Barman +T. S., Peacock S., Pagano I., 2020, ApJ, 890, 23 +Lundkvist M. S., et al., 2016, Nature Communications, 7, 11201 +Luque R., Pallé E., 2022, Science, 377, 1211 +MacDonald M. G., 2019, MNRAS, 487, 5062 +Martinez C. F., Cunha K., Ghezzi L., Smith V. V., 2019, ApJ, 875, 29 +Mathur S., et al., 2017, ApJS, 229, 30 +Mordasini C., 2020, A&A, 638, A52 +Mullally F., et al., 2015, ApJS, 217, 31 +Owen J. E., Adams F. C., 2019, MNRAS, 490, 15 +Owen J. E., Murray-Clay R., 2018, MNRAS, 480, 2206 +Owen J. E., Wu Y., 2013, ApJ, 775, 105 +Owen J. E., Wu Y., 2017, ApJ, 847, 29 +Petigura E. A., 2020, AJ, 160, 89 +Petigura E. A., et al., 2017, AJ, 154, 107 +Petigura E. A., et al., 2022, AJ, 163, 179 +Raghavan D., et al., 2010, ApJS, 190, 1 +Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for Machine +Learning. The MIT Press +Rauer H., et al., 2014, Experimental Astronomy, 38, 249 +Ricker G. R., et al., 2015, Journal of Astronomical Telescopes, Instruments, +and Systems, 1, 014003 +Rogers J. G., Owen J. E., 2021, MNRAS, 503, 1526 +Rogers J. G., Gupta A., Owen J. E., Schlichting H. E., 2021, MNRAS, 508, +5886 +Rowe J. F., et al., 2014, ApJ, 784, 45 +Salvatier J., Wiecki T. V., Fonnesbeck C., 2016, PeerJ Computer Science, 2, +e55 +Silva Aguirre V., et al., 2015, MNRAS, 452, 2127 +Smith J. C., et al., 2012, PASP, 124, 1000 +Stumpe M. C., et al., 2012, PASP, 124, 985 +Thompson S. E., et al., 2018, ApJS, 235, 38 +Van Eylen V., Albrecht S., 2015, ApJ, 808, 126 +Van Eylen V., Agentoft C., Lundkvist M. S., Kjeldsen H., Owen J. E., Fulton +B. J., Petigura E., Snellen I., 2018, MNRAS, 479, 4786 +Van Eylen V., et al., 2019, AJ, 157, 61 +Van Eylen V., et al., 2021, MNRAS, 507, 2154 +APPENDIX A: EXTRA MATERIAL +MNRAS 000, 1–19 (2022) + +18 +Ho & Van Eylen +Table A1. Host star parameters of planets fitted in this work. 𝑅★, 𝑀★, 𝑇eff, [Fe/H], Ksmag are taken from the following sources: 1: Fulton & Petigura (2018), 2: Van Eylen et al. (2018). Stellar ages are taken from +Fulton & Petigura (2018). Radius correction factors (RCFs) are taken from Furlan et al. (2017); we take RCF = 1.0000 where there are no measurements in Furlan et al. (2017). +𝜌★, 𝑢0, 𝑢1 are resulting parameters from the transit fitting. Only the first 10 host stars are shown here; the full table is available online in a machine-readable format. +KOI +𝑅★ (𝑅⊙) (1) +𝑀★ (𝑀⊙) (1) +𝑇eff (K) (1) +[Fe/H] (dex) (1) +Ksmag (1) +𝑅★ (𝑅⊙) (2) +𝑀★ (𝑀⊙) (2) +𝑇eff (K) (2) +[Fe/H] (dex) (2) +Ksmag (2) +Age (Gyr) +RCF +𝜌∗ (g cm−3) +𝑢0 +𝑢1 +41 +1.53+0.03 +−0.03 +1.10+0.07 +−0.03 +5854+60 +−60 +0.10 ± 0.04 +9.768 +1.51+0.01 +−0.01 +1.11+0.02 +−0.02 +5903+53 +−66 +0.10 ± 0.09 +11.197 +6.92+1.91 +−0.80 +1.0083 +0.313 ± 0.015 +0.46 ± 0.08 +0.17 ± 0.11 +46 +1.66+0.05 +−0.04 +1.24+0.03 +−0.09 +5661+60 +−60 +0.39 ± 0.04 +12.011 +N/A +N/A +N/A +N/A +N/A +5.25+0.73 +−1.69 +1.0000 +0.279 ± 0.025 +0.52 ± 0.18 +0.27 ± 0.16 +49 +1.29+0.03 +−0.03 +0.95+0.03 +−0.03 +5779+60 +−60 +−0.06 ± 0.04 +11.917 +N/A +N/A +N/A +N/A +N/A +10.47+1.21 +−1.21 +1.0000 +0.441 ± 0.021 +0.34 ± 0.12 +0.25 ± 0.13 +69 +0.94+0.02 +−0.02 +0.87+0.03 +−0.03 +5594+60 +−60 +−0.09 ± 0.04 +8.37 +0.91+0.02 +−0.02 +0.89+0.07 +−0.07 +5669+75 +−75 +−0.18 ± 0.10 +9.931 +9.12+2.94 +−2.10 +1.0000 +1.044 ± 0.055 +0.44 ± 0.04 +0.16 ± 0.06 +70 +0.88+0.02 +−0.02 +0.94+0.02 +−0.03 +5508+60 +−60 +0.11 ± 0.04 +10.871 +N/A +N/A +N/A +N/A +N/A +3.09+1.99 +−1.57 +1.0054 +1.391 ± 0.052 +0.45 ± 0.04 +0.24 ± 0.07 +72 +1.08+0.03 +−0.03 +0.87+0.02 +−0.01 +5599+60 +−60 +−0.11 ± 0.04 +9.496 +1.07+0.01 +−0.01 +0.92+0.01 +−0.02 +5678+55 +−49 +−0.10 ± 0.06 +10.961 +12.88+1.48 +−0.89 +1.0005 +0.690 ± 0.019 +0.38 ± 0.10 +0.24 ± 0.13 +82 +0.72+0.02 +−0.02 +0.80+0.01 +−0.02 +4909+60 +−60 +0.11 ± 0.04 +9.351 +N/A +N/A +N/A +N/A +N/A +1.07+0.89 +−1.58 +1.0000 +2.039 ± 0.055 +0.62 ± 0.06 +0.09 ± 0.07 +85 +1.44+0.03 +−0.03 +1.25+0.01 +−0.03 +6220+60 +−60 +0.13 ± 0.04 +9.806 +1.40+0.01 +−0.01 +1.20+0.03 +−0.03 +6193+43 +−52 +0.15 ± 0.08 +11.018 +2.95+0.34 +−0.41 +1.0001 +0.428 ± 0.019 +0.33 ± 0.06 +0.25 ± 0.07 +92 +1.06+0.02 +−0.02 +1.08+0.03 +−0.05 +5923+60 +−60 +0.09 ± 0.04 +10.3 +1.05+0.03 +−0.03 +1.08+0.11 +−0.11 +5952+119 +−119 +0.02 ± 0.15 +11.667 +2.34+1.35 +−1.40 +1.0000 +0.894 ± 0.049 +0.41 ± 0.12 +0.26 ± 0.13 +94 +1.37+0.03 +−0.03 +1.18+0.03 +−0.02 +6181+60 +−60 +0.07 ± 0.04 +10.926 +N/A +N/A +N/A +N/A +N/A +3.47+0.64 +−0.56 +1.0000 +0.462 ± 0.021 +0.33 ± 0.11 +0.37 ± 0.16 +... +... +... +... +... +... +... +... +... +... +... +... +... +... +... +Table A2. Planetary parameters from transit fits performed in this work. 𝑃, 𝑡0, 𝑅𝑝/𝑅★, 𝑏, 𝑒, 𝜔 are obtained directly from fitting, 𝑎/𝑅★ and 𝑆 are indirectly calculated. The 𝑅𝑝/𝑅★ values from 1: Fulton & Petigura +(2018) and 2: Van Eylen et al. (2018) are also included for comparison. Only the first 10 planets are shown here; the full table is available online in a machine-readable format. +KOI +Kepler name +𝑃 (days) +𝑡0 (BJD-2454833) +𝑅𝑝/𝑅★ +𝑅𝑝/𝑅★ (1) +𝑅𝑝/𝑅★ (2) +𝑏 +𝑒 +𝜔 (◦) +𝑎/𝑅∗ +𝑆 (𝑆⊕) +K00041.01 +Kepler-100 c +12.815893 ± 0.000008 +122.9476 ± 0.0005 +0.0138 ± 0.0002 +0.0140+0.0001 +−0.0006 +0.0134+0.0001 +−0.0001 +0.39 ± 0.13 +0.06 ± 0.04 +30 ± 96 +14.36 ± 1.20 +245.37 ± 20.59 +K00041.02 +Kepler-100 b +6.887062 ± 0.000007 +133.1781 ± 0.0008 +0.0082 ± 0.0001 +0.0081+0.0013 +−0.0002 +0.0079+0.0004 +−0.0002 +0.63 ± 0.05 +0.05 ± 0.04 +3 ± 107 +9.26 ± 0.88 +590.40 ± 56.33 +K00041.03 +Kepler-100 d +35.333093 ± 0.000019 +153.9835 ± 0.0009 +0.0104 ± 0.0002 +0.0092+0.0023 +−0.0003 +0.0092+0.0004 +−0.0002 +0.81 ± 0.02 +0.05 ± 0.04 +1 ± 104 +27.50 ± 2.51 +66.87 ± 6.13 +K00046.02 +Kepler-101 c +6.029792 ± 0.000020 +132.4816 ± 0.0010 +0.0073 ± 0.0007 +0.0069+0.0003 +−0.0005 +N/A +0.41 ± 0.21 +0.05 ± 0.04 +−0 ± 103 +8.13 ± 0.77 +646.80 ± 61.97 +K00049.01 +Kepler-461 b +8.313784 ± 0.000015 +175.9915 ± 0.0008 +0.0287 ± 0.0010 +0.0259+0.0003 +−0.0003 +N/A +0.75 ± 0.11 +0.23 ± 0.13 +77 ± 77 +14.75 ± 2.22 +213.71 ± 32.30 +K00069.01 +Kepler-93 b +4.726739 ± 0.000001 +134.9265 ± 0.0001 +0.0151 ± 0.0001 +0.0159+0.0002 +−0.0008 +0.0149+0.0001 +−0.0001 +0.23 ± 0.13 +0.20 ± 0.09 +105 ± 58 +13.06 ± 1.39 +252.14 ± 27.04 +K00070.01 +Kepler-20 A c +10.854089 ± 0.000003 +138.6082 ± 0.0002 +0.0290 ± 0.0002 +0.0300+0.0018 +−0.0006 +N/A +0.18 ± 0.11 +0.09 ± 0.03 +86 ± 39 +22.49 ± 0.80 +75.81 ± 2.80 +K00070.02 +Kepler-20 A b +3.696115 ± 0.000001 +134.5021 ± 0.0002 +0.0182 ± 0.0002 +0.0209+0.0014 +−0.0023 +N/A +0.49 ± 0.08 +0.05 ± 0.04 +26 ± 101 +10.24 ± 0.83 +365.46 ± 29.71 +K00070.03 +Kepler-20 A d +77.611598 ± 0.000019 +164.7274 ± 0.0005 +0.0263 ± 0.0003 +0.0259+0.0005 +−0.0003 +N/A +0.36 ± 0.13 +0.06 ± 0.04 +33 ± 96 +78.67 ± 6.41 +6.20 ± 0.51 +K00070.05 +Kepler-20 A f +19.577627 ± 0.000020 +135.2063 ± 0.0009 +0.0091 ± 0.0004 +0.0098+0.0004 +−0.0003 +N/A +0.65 ± 0.06 +0.05 ± 0.04 +7 ± 104 +30.66 ± 2.84 +40.78 ± 3.81 +... +... +... +... +... +... +... +... +... +... +MNRAS 000, 1–19 (2022) + +Deep radius valley with Kepler short cadence +19 +Table A3. Transit jitter and GP parameters from transit fitting of planetary +systems in this work. Only the first 10 systems are shown here; the full table +is available online in a machine-readable format. +KOI +log 𝜎lc +log 𝜎gp +log 𝜌gp +41 +−8.4379 ± 0.0016 +−9.5822 ± 0.0105 +−4.5121 ± 0.0335 +46 +−7.1119 ± 0.0037 +−9.1794 ± 0.1025 +−4.3449 ± 0.2492 +49 +−7.3268 ± 0.0044 +−8.8595 ± 0.0680 +−1.2568 ± 0.1547 +69 +−8.9861 ± 0.0019 +−10.1248 ± 0.0133 +−4.8968 ± 0.0382 +70 +−7.7689 ± 0.0012 +−9.4665 ± 0.0150 +−3.7110 ± 0.0415 +72 +−8.4175 ± 0.0053 +−9.6473 ± 0.0392 +−4.0440 ± 0.1139 +82 +−8.1671 ± 0.0018 +−8.6193 ± 0.0116 +−3.2278 ± 0.0240 +85 +0.0000 ± 0.0000 +0.0000 ± 0.0000 +0.0000 ± 0.0000 +92 +−8.1505 ± 0.0062 +−9.8036 ± 0.0880 +−3.9919 ± 0.2448 +94 +−7.8819 ± 0.0017 +−9.8028 ± 0.0308 +−2.9898 ± 0.1183 +... +... +... +... +This paper has been typeset from a TEX/LATEX file prepared by the author. +MNRAS 000, 1–19 (2022) + diff --git a/SdE2T4oBgHgl3EQfswgq/content/tmp_files/load_file.txt b/SdE2T4oBgHgl3EQfswgq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..587f8ef97fcb9c8f4131ff659a9c080a66a6b46f --- /dev/null +++ b/SdE2T4oBgHgl3EQfswgq/content/tmp_files/load_file.txt @@ -0,0 +1,2894 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf,len=2893 +page_content='MNRAS 000, 1–19 (2022) Preprint 11 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 A deep radius valley revealed by Kepler short cadence observations Cynthia S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Ho★ and Vincent Van Eylen Mullard Space Science Laboratory, University College London, Dorking RH5 6NT, UK Accepted 2022 December 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Received 2022 December 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' in original form 2022 October 17 ABSTRACT The characteristics of the radius valley, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', an observed lack of planets between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5-2 Earth radii at periods shorter than about 100 days, provide insights into the formation and evolution of close-in planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We present a novel view of the radius valley by refitting the transits of 431 planets using Kepler 1-minute short cadence observations, the vast majority of which have not been previously analysed in this way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In some cases, the updated planetary parameters differ significantly from previous studies, resulting in a deeper radius valley than previously observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This suggests that planets are likely to have a more homogeneous core composition at formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Furthermore, using support-vector machines, we find that the radius valley location strongly depends on orbital period and stellar mass and weakly depends on stellar age, with 𝜕 log �𝑅𝑝,valley �/𝜕 log 𝑃 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='096+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='023 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='027, 𝜕 log �𝑅𝑝,valley �/𝜕 log 𝑀★ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='231+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='053 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='064, and 𝜕 log �𝑅𝑝,valley �/𝜕 log (age) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='033+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='017 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These findings favour thermally-driven mass loss models such as photoevaporation and core-powered mass loss, with a slight preference for the latter scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Finally, this work highlights the value of transit observations with short photometric cadence to precisely determine planet radii, and we provide an updated list of precisely and homogeneously determined parameters for the planets in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Key words: planets and satellites: composition – planets and satellites: formation – planets and satellites: fundamental parameters 1 INTRODUCTION The ‘radius valley’, also known as the ‘radius gap’, is the relative paucity of planets with sizes between about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 and 2 Earth radii at orbital periods less than about 100 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This phenomenon has been predicted theoretically due to the heavy radiation these close-in planets receive from their host star (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Owen & Wu 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Lopez & Fortney 2013) and was subsequently seen observationally (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Fulton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Fulton & Petigura 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Several theories have been suggested to explain the physical origin of the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' On one hand, thermally-driven mass loss scenarios have been proposed, which include photoevaporation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Owen & Wu 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Lopez & Fortney 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Owen & Wu 2017) and core-powered mass loss (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Ginzburg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Gupta & Schlichting 2019, 2020) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In these scenarios, the valley separates planets that have lost their atmosphere from those that have retained it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Alternatively, late gas-poor formation, where planets below the valley have formed atmosphere-free, may also be able to explain the origin of the valley (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Lee & Chiang 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Lopez & Rice 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Cloutier & Menou 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Observed characteristics of the radius valley can therefore reveal the properties of these close-in planets and their formation history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For example, in photoevaporation models, the location of the radius valley and its slope as a function of orbital period depend on the planetary composition and photoevaporation physics (Owen & Wu 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Mordasini 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The valley’s location and relative emptiness can therefore be used to infer the composition of planets surrounding it and their relative homogeneity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Planets ★ E-mail: sze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='ho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20@ucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='uk located inside the radius valley may have a different composition or could be undergoing the final stages of atmospheric loss by thermally- driven mechanisms and hence may be important targets for further studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Owen & Wu 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Gupta & Schlichting 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Petigura 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The valley’s location as a function of orbital period can be used to distinguish between thermal mass-loss models, which exhibit a negative slope as a function of orbital period, and late gas-poor formation models which have the opposite slope (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Cloutier & Menou 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Within thermal mass-loss models, photoevaporation and core-powered mass loss models predict a different dependence of the valley’s location on stellar mass and age (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Observationally, these valley characteristics have been challeng- ing to reliably ascertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A deficit of planets with sizes around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5-2 Earth radii (𝑅⊕) was first observed by Fulton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017) in a sam- ple of 2025 planets, with stellar radii determined spectroscopically as part of the California-Kepler survey (CKS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These planets were about a factor of two rarer than planets both smaller and larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Independently, Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018) (V18 hereafter) analysed a subset of this sample (117 planets), incorporating higher-precision stellar parameters using asteroseismology and refitting transit light curves to achieve a median uncertainty on planet sizes of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This study revealed the valley’s slope as a function of orbital period for the first time, and suggested the radius valley may be very deep or even entirely empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='The tension between the valley’s views of Fulton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017) and V18 was further exacerbated when the precision of stellar parameters of the former study were further improved by Fulton & Petigura (2018) (F18 hereafter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Despite improving stellar uncertainties from 11% to 3% by incorporating Gaia parallaxes, the valley remained partially filled in, with its depth largely unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' © 2022 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04062v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='EP] 10 Jan 2023 2 Ho & Van Eylen Petigura (2020) investigated the discrepancy in the valley’s depth between V18 and F18 and concluded it is unlikely to be caused by differing sample sizes or differing values or uncertainties in stellar radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The study argued that the 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9% dispersion in planetary radii is instead primarily caused by a discrepancy in the ratio of planet to stellar radii (𝑅𝑝/𝑅★)) determined from the transit fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' F18 used radius ratios from Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2015), which fitted Kepler 30- minute ’long cadence’ observations, whereas V18 used Kepler 1- minute ’short cadence’ observations, also used for orbital eccentricity determination and described in Van Eylen & Albrecht (2015) and Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, we seek to refit planet transits for the full subset of F18 for which short cadence observations are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This increases the sample of planets relevant for the radius valley for which short cadence transit fits are used from 60 in V18 to 431 here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Furthermore, we will apply the methods to determine the valley’s location and slope used by V18, notably the use of support vector machines, to this larger sample, and we expand to other dimensions such as stellar mass and age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In Section 2, we describe the sample and methodology used to analyse the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In Section 3, we present the results of this analysis, such as revised planetary sizes, the depth of the valley, and its dependence on parameters such as the orbital period and stellar mass and age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These findings are compared to other observational studies and theoretical models in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Finally, we provide con- clusions in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2 METHODS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 Sample selection We use the sample of planets for which stellar parameters are avail- able from F18 as a starting point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To focus on the radius valley, we limit the sample to planets with radii 1 ≤ 𝑅𝑝/𝑅⊕ ≤ 4 and orbital periods 1 ≤ 𝑃/days ≤ 100, resulting in a sample of 1272 planets (for comparison, applying the same period and radius cuts to the sample studied by V18 leaves 74 planets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As Kepler 1-minute short cadence observations may yield superior precision (Petigura 2020), we fur- ther limit our sample to those planets for which at least 6 months of Kepler short cadence data are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To avoid issues with transit fitting related to transit timing varia- tions (TTVs), we also remove planets with known TTVs based on the catalogue by Holczer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We further exclude KOI-1576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, as we find that the short cadence data suggested an orbital period dif- ferent to the one recorded in the archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Furthermore, we exclude any planets that are classified as potential false positives in Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The results in a total sample size of 431 planets, 60 of which have parameters previously analysed by V18 and 371 which have not (a further 14 planets in V18 have TTVs and are not reanalysed here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 Data reduction The 1-minute Kepler short cadence Pre-search Data Conditioning SAP (PDCSAP, Stumpe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2012) light curves of these targets are downloaded from the NASA Mikulski Archive for Space Telescopes (MAST) database using the lightkurve package (Lightkurve Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2018), which incorporates astroquery (Ginsburg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2019) and astropy (Astropy Collab- oration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2013, 2018) dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We only retain data within 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 days before the estimated ingress and after the estimated egress of the transits of the planets of interest, using the transit durations and mid-times in Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2015) as the expected transit locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For multi-planet systems, we only retain transits of planets that are within our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We remove data outliers that lie beyond 6𝜎 from the median after masking the transits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We then flatten the transits by dividing the data points with the slope obtained by performing linear regression on the data points immediately before ingress and after egress, to remove long-term systematic trends present in the transits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We then again remove data outliers with 𝜎 = 5 to further clean the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 Stellar multiplicity Around 46% of solar-type stars have at least one stellar companion (Raghavan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' When a planet orbits a single star, the transit depth 𝛿 is approximately given by 𝛿 = Δ𝐹 𝐹tot ≈ 𝑅2𝑝 𝑅2 ★ (1) where 𝐹tot is the total stellar flux, Δ𝐹 is the change in stellar flux, and 𝑅𝑝 and 𝑅★ are the planetary and stellar radius respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' However, in a multi-stellar system, the total flux is the sum of fluxes of all stars in the system, but the change in flux during transit is only relative to the star(s) which the planet transits (Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Therefore it is important to take into account the effect of nearby stars on the light curve flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017) compiled a catalogue of Kepler Objects of Interest (KOI) observations with adaptive optics, speckle interfer- ometry, lucky imaging, and imaging from space with the Hubble Space Telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The typical point spread function (PSF) widths and sensitivities (Δ𝑚) are different for every observation method, target and bandpass, hence whether stellar companions are detected is dependent on the above factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For example, Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017) were able to detect a median Δ𝑚 ∼ 8mag with Keck in the K band at a separation of ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5”, but only at ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5” at Lick in the J or H bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' About 30% of KOIs observed in Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017) have at least one companion detected within 4” (Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2017), and given a mean distance of 616pc for the 431 planets in our sample computed from distances reported in Mathur et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017), corresponds to ∼2464AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, we adopt the ‘radius correction factor’ (RCF), given in Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017) as RCF = 𝑅𝑝,corr 𝑅𝑝,uncorr (2) and multiply the normalised Kepler light curve fluxes by RCF2, and subtract � RCF2 − 1 � to re-normalise, to obtain the corrected light curve reflecting the transit of one planet orbiting around one star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 137 of the 431 planets in our sample (32%) have RCF measurements from Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 Transit fitting We use the exoplanet package (Foreman-Mackey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021) to generate a transit light curve model with quadratic stellar limb dark- ening, and then run a Hamiltonian Monte Carlo (HMC) algorithm implemented in PyMC3 (Salvatier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2016) to perform fitting and determine orbital parameter posteriors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We also implement a Gaus- sian Process (GP) model (Rasmussen & Williams 2006) to account for correlated noise in the light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' However, for Kepler-65 and Kepler-21 A, we do not fit for a GP model due to convergence constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The parameters fitted for each planet are orbital period (𝑃), transit mid-time (𝑡0), ratio between planetary and stellar radii MNRAS 000, 1–19 (2022) Deep radius valley with Kepler short cadence 3 (𝑅𝑝/𝑅★), impact parameter (𝑏), eccentricity (𝑒), argument of peri- apsis (𝜔), and stellar density (𝜌★).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For each light curve, we further include two quadratic stellar limb darkening parameters (𝑢0 and 𝑢1) for the host star, with bounds 0 < 𝑢0, 𝑢1 < 1 and implemented with the Kipping (2013) reparameterisation in exoplanet, the transit jit- ter (𝜎lc), and two parameters describing the GP contribution (𝜎gp, 𝜌gp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We initialise the HMC chains by using values presented in the Kepler Q1-16 dataset (Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2015) for 𝑃, 𝑡0, 𝑅𝑝/𝑅★, and 𝑏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We set the system to begin with near-circular orbits, with 𝑒 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 and 𝜔 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We take initial stellar densities from Fulton & Petigura (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We use the Exoplanet Characterization ToolKit (ExoCTK) (Bourque et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021) to estimate the initial 𝑢0 and 𝑢1, which takes the stellar temperature, surface gravity, and metallicity, which we use values from the Kepler Q1-16 dataset (Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2015), as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We apply Gaussian priors to 𝑃, 𝑡0, 𝑢0, 𝑢1, and 𝜌★, using the initial guesses as the mean, and 𝜎𝑃 = 2 × 10−5 days, 𝜎𝑡0 = 10−3 days, 𝜎𝑢 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2, and the 𝜌★ uncertainty from Fulton & Petigura (2018) if available, and Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2015) otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A beta distribution prior according to Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019) is placed on 𝑒, which is PDF(𝑒, 𝛼, 𝛽) ∝ 𝑒𝛼(1 − 𝑒)𝛽 (3) with 𝛼 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='58 and 𝛽 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 for system with only one transiting planet, and 𝛼 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='52 and 𝛽 = 29 for a multi-transiting-planet system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 3 RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 Revised planet parameters We report the updated orbital periods (𝑃), planetary-to-stellar-radii ratio (𝑅𝑝/𝑅★), planetary radii (𝑅𝑝), the number of transits in the fitted light curve (𝑁tr), and their uncertainties of the 431 planets fitted in this sample in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The full list of parameters are provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We convert our 𝑅𝑝/𝑅★ to 𝑅𝑝 using the updated stellar parameters available: values used in V18 from asteroseismology (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' taken from Huber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Silva Aguirre et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Lundkvist et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2016) if the planets are included in the V18 samples, and F18 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Full homogeneity is lost by using stellar radii from two sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To investigate the consequences of this, we compute the difference, 𝛿𝑅𝑝, between the planetary radii obtained by converting 𝑅𝑝/𝑅★ to 𝑅𝑝 using 𝑅★ from F18 and V18, and found the mean 𝛿, ¯𝛿 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11, hence 𝛿 = 0 (no difference) is well within 1𝜎, and we conclude that there is no substantial drawbacks of using multiple sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This sample of 431 planets with updated parameters is plotted on the radius-orbital period plot as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We present the typical uncertainties of 𝑅𝑝/𝑅★ and 𝑅𝑝 of planets fitted in this work, compared with F18 and V18 in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For our newly fitted results, we find that 𝑅𝑝/𝑅★ has a mean uncertainty of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='76%, and a median uncertainty of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='44%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This is smaller when compared to the mean and median uncertainties of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='73% and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07% respectively for the F18 sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For 𝑅𝑝, we find a mean and median uncertainty of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09% and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70% in our work, again smaller compared to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='00% and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22% for F18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' However, they are larger than that of V18, possibly due to V18 analysing brighter stars, hence the light curves are less noisy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This can be seen by comparing the mean photometric flux error of the transit light curves fitted: 1007 parts per million (ppm) for this work, and 271 ppm for V18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We select the planets in F18 that are in common with the planets in our sample, and examine the change in 𝑅𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find that 217 planets have a larger 𝑅𝑝 after refitting, and smaller for 214 planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Of the planets whose sizes have increased, the mean change is 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='79%, and Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Radius-period plot of all 431 planets refitted in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The black dotted lines indicate the upper and lower boundaries of the radius valley defined in V18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='69% for planets with reduced sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Considering all 431 planets, our new results change 𝑅𝑝 by a mean and median of only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62% and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02% respectively, indicating that our refitting results do not systematically alter the planet sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We observe that 120 planets (28%) have a revised 𝑅𝑝 > 2𝜎 away from their corresponding values from F18, and 62 planets (14%) > 3𝜎 away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 Radius valley dependence on orbital period To obtain the most precise planetary sample, we apply the following conservative cuts to our sample for subsequent analyses in the rest of this paper: (i) Precision on 𝑅𝑝: We exclude planets with a planet radius precision 𝜎𝑅𝑝 > 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (ii) Radius correction factor (RCF): We exclude planets with an RCF > 5%, as reported in Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' RCFs may themselves be uncertain due to observational challenges in detecting nearby stel- lar companions and measuring their brightness (Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Of the 137 planets with RCF measurements from Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017), 18 (13%) have RCF > 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The remaining 294 planets do not have RCF measurements currently available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (iii) Number of transits: We exclude planets with fewer than 3 transits in the Kepler short cadence data to limit the risk that corre- lated noise during an individual transit strongly affects the resulting fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' After implementing these filters, 375 planets remain in our sample which we will use throughout the remainder of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We first use this sample to investigate the location of the radius val- ley as a function of orbital period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Following the procedure outlined in Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018), we calculate the position of the radius valley by determining the hyperplane of maximum separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We perform this with a linear support-vector machine (SVM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To ini- tialise our model, we initially classify our sample into two groups, ‘above’ and ‘below’ the radius valley on the radius-orbital period plane, by applying a Gaussian Mixture Model with two components in the 𝑅𝑝-𝑃 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Since the orders of magnitude of 𝑅𝑝 and 𝑃 are different, we divide 𝑃 by 5 before applying the above clustering al- gorithm to allow the model to separate the planetary population into MNRAS 000, 1–19 (2022) 4 HO D 0 D 3 TO DT D !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' HO D TO O 2 R D O D 勇 DI D D D 3 10 30 100 P (days)4 Ho & Van Eylen Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table showing estimates of the orbital periods (𝑃), planetary-to-stellar-radii ratio (𝑅𝑝/𝑅★), planetary radii (𝑅𝑝), the number of transits in the fitted light curve (𝑁tr) of 431 planets refitted in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The source of 𝑅★ to convert 𝑅𝑝/𝑅★ to 𝑅𝑝 is listed in the References column: (1) Fulton & Petigura (2018), (2) Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='‘Flag’ refers to whether the planet passes the filter checks and is included in the smaller subset for further analyses (1 for True and 0 for False).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The complete list of parameters are provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Only the first 10 planets are shown here;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' the full table is available online in a machine-readable format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' KOI Kepler name 𝑃 (days) 𝑅𝑝/𝑅★ 𝑅𝑝 (𝑅⊕) 𝑅★ Source 𝑁tr Flag K00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-100 c 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='815893 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0138 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='28+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 (2) 93 1 K00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-100 b 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='887062 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0082 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 (2) 173 1 K00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-100 d 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='333093 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0104 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='71+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 (2) 35 1 K00046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-101 c 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='029792 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0073 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='32+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 (1) 50 0 K00049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-461 b 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='313784 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0287 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 (1) 34 1 K00069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-93 b 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='726739 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0151 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='50+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 (2) 275 1 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-20 A c 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='854089 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0290 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='79+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 (1) 116 1 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-20 A b 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='696115 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0182 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 (1) 336 1 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-20 A d 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='611598 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0263 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='52+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 (1) 15 1 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 Kepler-20 A f 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='577627 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0091 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='88+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 (1) 62 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Mean and median values radii determined in this work, F18, and V18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Values are listed as percentages (%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Parameter This work F18 V18 Sample Size 431 1901 117 𝑅𝑝/𝑅★ Mean 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='76 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='73 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 Median 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='44 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='44 𝑅★ Mean 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49 Median 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='74 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 𝑅𝑝 Mean 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='00 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='96 Median 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36 two groups above and below the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Otherwise, the pop- ulation would be clustered in a way dominated by the difference in period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Following Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018) and David et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021), we select an SVM penalty parameter of 𝐶 = 10 for the hyperplane, to minimise misclassification of data points above or below the ra- dius valley, but still allow the hyperplane location to be determined by a sufficient number of data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To determine accurate uncer- tainties on the location of the valley, we then perform a bootstrap by generating 1000 new sample sets on which we repeat the above procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Each bootstrap sample is generated by generating a new sample of the same size from the original sample, allowing replace- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Each bootstrapped sample is then categorised into two groups with a Gaussian Mixture Model, and the SVM procedure is repeated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Reporting the median value and taking the 16th and 84th percentiles as the upper and lower uncertainties, we find log10 �𝑅𝑝/𝑅⊕ � = 𝑚 log10 (𝑃/days) + 𝑐 (4) with 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The location of the radius valley is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We also implement the method adopted by Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022), which involves computing the planet density in the radius-period plane with a Gaussian kernel density estimate (KDE), and fitting the planet radius at the KDE minima between log10 (𝑃/days) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑃 ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 − 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 days) and log10 �𝑅𝑝/𝑅⊕ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑅𝑝 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24𝑅⊕) according to equation 4, and performing bootstrap with 1000 sample sets to find the uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The result is illustrated in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We use a KDE bandwidth of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='467 in log10 𝑃 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='075 in log10 𝑅𝑝, which is based on the bandwidth used by Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022), but scaled up linearly based on the ratios between the two sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We note that this method fits a narrower period range compared to the SVM method, which fits for the full 𝑃 = 1 − 100 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' With this method, we obtain 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find this value to be slightly steeper than that determined with the SVM, however the two values are well within 1𝜎 of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, we do not correct for detection completeness, and we note that this method is highly sensitive to the choice of the KDE bandwidth, and using a bandwidth five times larger results with a slope approximately twice as steep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Some studies have opted to study the radius valley location as a function of incident flux 𝑆, in addition to, or instead of, 𝑃 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We calculate 𝑆 according to the formula 𝑆 = 𝐿★ 4𝜋𝑎2 (5) where 𝐿★ is the host star’s luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝐿★ can itself be calculated using 𝐿★ = 4𝜋𝑅2 ★𝜎sb𝑇4 eff (6) where 𝑅★ is the stellar radius, 𝜎sb is the Stefan-Boltzmann constant, and 𝑇eff is the effective temperature of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Finally, 𝑎 is the orbital semi-major axis, which is given by � 𝑎 𝑅★ �3 = 𝐺𝑃2𝜌★ 3𝜋 (1 + 𝑒 sin 𝜔)3 �1 − 𝑒2�1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 (7) according to Kepler’s third law of planetary motion (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Van Eylen & Albrecht 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Petigura 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, 𝐺 is the gravitational constant, 𝑃 is the orbital period, 𝜌★ is the stellar density, 𝑒 and 𝜔 are the orbital eccentricity and argument of periapsis respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As before, we obtain the stellar properties (𝑅★, 𝜌★, 𝑇eff) from V18 when available, and from F18 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑃, 𝑒, and 𝜔 are obtained from the transit fitting results of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Fitting the valley with the SVM, we obtain MNRAS 000, 1–19 (2022) Deep radius valley with Kepler short cadence 5 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Dependencies of the radius valley in 𝑛 dimensions (𝑚𝑖), given by the equation log10 �𝑅𝑝/𝑅⊕ � = �𝑛 𝑖=1 𝑚𝑖 𝑥𝑖, with different parameter combinations 𝑥𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The methods used to obtain the equation of the radius valley hyperplanes are also given, where SVM and KDE stand for the support-vector machine and fitting the minima of the kernel density estimates respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Dimensions log10 (𝑃/days) log10 �𝑆/𝑆⊕ � log10 �𝑀/𝑀⊙ � log10 (Age/Gyr) [Fe/H] Intercept Method 2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 SVM −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 KDE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 SVM 3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 SVM −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 SVM −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 SVM 4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='096+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='023 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='231+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='053 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='033+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='017 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='339+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='026 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='018 SVM Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Left: Radius valley location determined with the support-vector machine (SVM), with 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, indicated by the black solid line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The dashed lines represent the median boundaries passing through the supporting vectors determining the position of the solid line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We define the area between the two lines as the radius valley region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The green and blue points show planets above and below the radius valley respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The grey shaded regions represent the ±1𝜎 uncertainties of the lines determined using the bootstrap method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The red dotted lines show the plot divided into multiple orbital-period dependent bins, which is then used for plotting the adjusted histogram in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Right: Radius valley position determined by fitting a line through the region where the kernel density estimate is minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' With this method, we obtain 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05, and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, indicated by the black solid line with ±1𝜎 uncertainty shaded in grey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' log10 𝑅𝑝/𝑅⊕ = 𝑚 log10 𝑆/𝑆⊕ + 𝑐 (8) with 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01, and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The location of the radius valley in terms of 𝑆 is shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 Depth of the radius valley We investigate the depth of the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As we find the position of the radius valley is dependent on orbital period, we divide the radius valley into multiple tilted bins (as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2 left) and plot an adjusted histogram in logarithmic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We shift planets along the slope of the radius valley obtained with the SVM method in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11, and plot a histogram of ‘expected’ planetary radii at an orbital period of 10 days, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We choose to fit the histogram with a Gaussian Mixture Model of two clusters, as opposed to a Gaussian kernel density estimate, as the former is independent of the sizes and locations of the histogram bins, as well as the Gaussian bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Also, with the Gaussian Mixture Model, we are able to force the planets to fall into two groups only, matching the bimodal distribution of small planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MNRAS 000, 1–19 (2022) 4 3 2 3 10 30 100 P (days)Relative density YD 2 1 3 TOI R 2 R 3 10 30 100 P (days)6 Ho & Van Eylen Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Figure 2 left, but as a function of incident flux 𝑆 instead of orbital period 𝑃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Histogram of planet radii, adjusted to equivalent radii at 𝑃 = 10 days, according to the radius valley slope calculated in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 with the SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Note that completeness corrections are not performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, 𝐸avg = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, we propose the metric 𝐸, defined as 𝐸SN = 𝑁sub-Neptune,peak/𝑁valley (9) and 𝐸SE = 𝑁super-Earth,peak/𝑁valley (10) to compare the number of planets inside the valley and the peak num- ber outside the valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A higher 𝐸 indicates a deeper radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑁sub-Neptune,peak and 𝑁super-Earth,peak are the number of planets at the sub-Neptune and super-Earth Gaussian peaks respectively, and 𝑁valley is the number of planets at the lowest point between the two Gaussian peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As 𝑁sub-Neptune, peak, 𝑁super-Earth, peak, and 𝑁valley are determined directly from the curve resulting from the Gaussian Mixture Model, this 𝐸 metric is also independent of the histogram bin sizes or locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To calculate the uncertainties of 𝐸, we again perform a bootstrap with 1000 sample sets, where each bootstrap Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Plot of planetary radius against mass of host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The solid line shows the location of the radius valley determined with the SVM, with slope 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08, and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The dashed lines show the boundaries of the radius valley, given by the same 𝑚, and 𝑐upper = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01, 𝑐lower = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The shaded regions depict the ±1𝜎 uncertainties of the lines determined with bootstrapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' sample is generated by generating a new sample of the same size from the original, allowing replacements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We also replace the ra- dius of each selected planet by randomly drawing from a normal distribution with the reported planet radius as the mean, and the uncertainties on the radius as the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We report the median of this bootstrap distribution as our results, and the 84th and 16th percentiles as our ±1𝜎 uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We test this metric on known planetary samples on F18 and V18, which we know the difference in the radius valley depth, and find that their corresponding 𝐸 value differ, hence demonstrating the reliability of such metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The dif- ference in the depth of the radius valley is further discussed in Sec- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find that for our new short cadence results, the ratios are 𝐸SN = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='59+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='77 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62 and 𝐸SE = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='61 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Averaging the two numbers gives us 𝐸avg = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 Radius valley dependence on stellar mass We investigate the radius valley location as a function of stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We first implement a 2-dimensional SVM, using the same method as in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The result is shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find d log 𝑅𝑝/d log 𝑀★ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08, and the intercept 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) suggested the degeneracy between the photo- evaporation and core-powered mass loss scenarios could be broken with an analysis of the radius valley in 3 dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Hence, we implement an SVM in 3 dimensions: planet radius 𝑅𝑝, orbital period 𝑃, and mass of the host star 𝑀★, to fit the radius valley in the form of a plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We perform bootstrapping with 1000 sample sets as per previous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We obtain the relation log10 �𝑅𝑝/𝑅⊕ � = 𝐴 log10 (𝑃/days) + 𝐵 log10 �𝑀★/𝑀⊙ � + 𝐶 (11) with 𝐴 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07, 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' An illustration of the SVM plane is shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We also investigate the radius valley location in the 𝑅𝑝–𝑆–𝑀★ space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 6 right shows the radius valley location in this space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MNRAS 000, 1–19 (2022) 4 甲 TH 3 ® R 2 R 88 由 申 1000 100 10 1 S (S)70 60 S f planet 50 40 Number of 30 20 N 10 0 1 2 3 4 5 6 Rp at P= 10 days (R)4 3 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 M* (Mo)Deep radius valley with Kepler short cadence 7 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Plot of planet radius against orbital period and mass of host star (left), and planet radius against incident flux and stellar mass (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The grey plane shows the radius valley location determined with the SVM in 3 dimensions, with the ±1𝜎 uncertainties shown in pink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The uncertainties on individual planet parameters are not displayed in the interest of clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find log10 �𝑅𝑝/𝑅⊕ � = 𝐴 log10 �𝑆/𝑆⊕ � + 𝐵 log10 �𝑀★/𝑀⊙ � + 𝐶 (12) with 𝐴 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, 𝐵 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09, and 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 Radius valley dependence on stellar age We investigate the location of the radius valley as a function of stellar age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We obtain the stellar ages from F18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Kepler-174 does not have stellar age data from this source, hence we omit Kepler-174 b and Kepler-174 c in our analysis with stellar age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Fitting the valley with the SVM, we obtain log10 �𝑅𝑝/𝑅⊕ � = 𝑚 log10 (Age/Gyr) + 𝑐 (13) with 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01, showing no significant corre- lation with the radius valley location in 2-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The result is displayed in Figure 7 (left panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We further investigate whether the radius valley depth may be a function of stellar age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To do so we generate histograms, similar to Figure 4, split into different stellar age subsamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 8 (left panel) shows that for older stars, the radius valley location shifts to higher 𝑅𝑝, and the radius valley becomes shallower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The change in the 𝐸 metric is reported in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These findings suggest that the radius valley has a dependence on the age of the host stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We further plot the radius valley in 𝑅𝑝–𝑃–age space, and fit the valley with the SVM, as shown in Figure 9 (left panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find log10 �𝑅𝑝/𝑅⊕ � = 𝐴 log10 (𝑃/days) + 𝐵 log10 (Age/Gyr) + 𝐶 (14) with 𝐴 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, and 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We can also combine 𝑅𝑝, 𝑃, 𝑀★, and stellar age, and determine the radius valley with a 4-dimensional SVM, as shown in Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The resulting equation representing the radius valley is in the form of a 4-dimensional hyperplane log10 �𝑅𝑝/𝑅⊕ � = 𝐴 log10 (𝑃/days) + 𝐵 log10 �𝑀★/𝑀⊙ � + 𝐶 log10 (Age/Gyr) + 𝐷 (15) Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝐸 values of the radius valley for different ages of the host stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝐸avg = (𝐸SN + 𝐸SE)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' log10 (Age/yr) Age (Gyr) 𝑁planets 𝐸SN 𝐸SE 𝐸avg < 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78 53 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='93 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='64 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='28 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 − 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78 − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 95 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='69 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 − 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62 114 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='32 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27 > 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75 > 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62 111 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30 with 𝐴 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='096+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='023 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='027, 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='231+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='053 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='064, 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='033+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='017 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='025, 𝐷 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='339+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='026 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These results imply there is strong evidence the radius valley location is dependent on 𝑃 and 𝑀★, and weak evidence for its dependence on stellar age (> 1𝜎).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These values are also consistent within 1𝜎 with their corresponding dependencies in two and three dimensions (see Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 Radius valley dependence on stellar metallicity We perform a similar analysis in terms of the stellar metallicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As for age, we obtain the stellar metallicity from V18 if available, and F18 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find log10 �𝑅𝑝/𝑅⊕ � = 𝑚[Fe/H] + 𝑐 (16) with 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08, 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01, again displaying no significant correlation with the radius valley location in 2-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We divide the planet population into two groups, based on the median [Fe/H] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The adjusted histograms in Figure 8 (right panel) show that the super-Earth peak is lower for metal-poor stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The 𝐸 values are reported in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We perform a similar SVM analysis in 𝑅𝑝–𝑃–[Fe/H] space (shown in Figure 9 right panel), and find log10 �𝑅𝑝/𝑅⊕ � = 𝐴 log10 (𝑃/days) + 𝐵[Fe/H] + 𝐶 (17) with 𝐴 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04, and 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These MNRAS 000, 1–19 (2022) Sub-Neptunes Super-Earths 4 Rp (R) 2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 1 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 10 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7 100 P (days) M* (Mo)Sub-Neptunes Super-Earths 4 Rp (R) 2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 1000 100 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7 S (S) 1 M* (Mo)8 Ho & Van Eylen Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Figure 5, but for stellar age (left, 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01), and stellar metallicity [Fe/H] (right, 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08, 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Figure 4, but separated into different stellar ages (left), and metallicities (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Here, 𝑇 = log10 (Age/yr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The histograms are normalised such that the relative density of the sub-Neptune peak equals to unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝐸 values of the radius valley for different stellar metallicities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝐸avg = (𝐸SN + 𝐸SE)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' [Fe/H] 𝑁planets 𝐸SN 𝐸SE 𝐸avg < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 181 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 194 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='28 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 values imply that we find no evidence that the radius valley location depends on stellar metallicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4 DISCUSSION 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 𝑅𝑝-𝑃 relation suggests a thermally-driven mass loss model As presented in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2, we observe the radius valley scales as 𝑚 = d log 𝑅𝑝/d log 𝑃 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This negative period- dependence is a robust finding which remains roughly similar even when other parameters are included in the fit (see Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Different theoretical mechanisms to create the radius valley result in a different slope as a function of orbital period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For example, Lopez & Rice (2018) predicted that if the rocky planets are core remnants of sub-Neptunes with evaporated atmospheres, the radius valley location should decrease with increasing orbital period, with 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09, whereas if those rocky planets were formed after disk dissipation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', late gas-poor formation), the radius valley location tends to larger planetary radii at longer orbital periods, with 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Similarly, Owen & Wu (2017) predicted a negative period- radius valley slope for a photoevaporation model, with −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 ≤ 𝑚 ≤ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 depending on the photoevaporation efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' If the radius valley is thermally driven but powered by the core rather than photoevaporation, the slope would be similarly negative, with e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Gupta & Schlichting (2019) predicting that 𝑚 ≈ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Theoretically predicted slopes for different formation mechanisms are summarised in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our observed negative slope is consistent with thermally driven mass-loss models but inconsistent with late gas-poor formation mod- els.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We can also compare our observed slope with other observational MNRAS 000, 1–19 (2022) 4 3 2 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 Fe/H/(dex)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 T<9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 ≤T<9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 ≤ T< 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75 Relative density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 T≥ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 3 4 2 5 6 Rp at P= :10 days (R@)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 [Fe/H] < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 [Fe/H] ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 Relative density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 2 3 4 5 6 Rp at P= lO days (R)4 3 ④ R p R 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 Age (Gyr)Deep radius valley with Kepler short cadence 9 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Figure 6, but in 𝑅𝑝–𝑃–age space (left) and 𝑅𝑝–𝑃–[Fe/H] space (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Slope of the radius valley on the radius-period plane from various sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Source 𝑚 = d log 𝑅𝑝/d log 𝑃 Stellar type Observations This work −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 FGK Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 FGK Martinez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 FGK MacDonald (2019) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='319+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='088 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='116 FGK Cloutier & Menou (2020) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='058+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='022 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='022 M Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 M Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 FGKM Luque & Pallé (2022) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 M Source 𝑚 = d log 𝑅𝑝/d log 𝑃 Model Theory Owen & Wu (2017) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 ≤ 𝑚 ≤ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 Photoevaporation Lopez & Rice (2018) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 Photoevaporation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 Gas-poor formation Gupta & Schlichting (2019) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 Core-powered mass loss Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 Photoevaporation −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 Core-powered mass loss studies (see again Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The period-radius slope was first observed by Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018), who used the SVM approach that we adopted here and who found 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A different approach was followed by Martinez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019), who divided their planetary sample into 10 bins with equal number of planets, determined the minimum radius in each bin, and fitted a linear relationship to obtain equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These two approaches led to a consistent result, with 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MacDonald (2019) adopted machine learning ap- proaches, and report 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='319+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='088 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The above studies all focus on samples of FGK stars, where various approaches to model the valley’s location appear to result in negative slopes with consistent magnitude, matching thermally-driven atmospheric loss models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For smaller and cooler (M type) stars, Cloutier & Menou (2020) found a positive slope (𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='058 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='022) using a method similar to Martinez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019), suggesting for these stars the valley may be the result of gas-poor formation rather than being thermally driven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) used the SVM approach to measure the M dwarf valley and found a negative slope instead, of −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Luque & Pallé (2022) used the gapfit package (Loyd et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2020) and found 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A recent study by Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022) also included M type stars in addition to FGK stars, and they found 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 for this sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our sample does not include M type stars but does span a mass range from about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 𝑀★.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To investigate whether the slope of 𝑚 changes with stellar mass within our sample, we split our planetary sample into two groups: 𝑀★ ≥ 1𝑀⊙, and 𝑀★ < 1𝑀⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We determine the 𝑅𝑝 − 𝑃 relation separately for these two groups with the same methods as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find for 𝑀★ ≥ 1𝑀⊙, 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' for MNRAS 000, 1–19 (2022) Sub-Neptunes Super-Earths 4 Rp (R) 2 1 1 3 10 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 100 P (days) Age (Gyr)Sub-Neptunes Super-Earths 4 Rp (R) 2 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 ¥3 1 0 10 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 100 P (days) [Fe/H]10 Ho & Van Eylen Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Radius valley location in terms of orbital period, stellar mass, and stellar age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The colour bar represents the age of the planetary host stars, and planes of different colours indicate the radius valley location for different stellar ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑀★ < 1𝑀⊙, 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These results are shown in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The two values are in agreement within 1𝜎, suggesting that within our sample the radius valley location as a function of orbital period is inconsistent with the gas-poor formation scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We can also look at the slope of the valley as a function of incident flux (𝑆) rather than orbital period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' By Kepler’s third law (as shown in equation 7), planets at longer orbital periods are located further away from the planet, thus the incident flux 𝑆 is lower for planets with larger star-planet distances as shown in equation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Hence, we expect for a thermally-driven planetary mass loss scenario, the radius valley location tends to larger planetary radii for higher 𝑆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We observe this positive relationship in this work, in agreement with other previous observations as shown in Table 7, and consistent with thermally- driven mass loss models which is also shown in radius-period space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 𝑅𝑝-𝑀★ relation supports a thermally-driven mass loss model As presented in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4, we find that in two dimensions, 𝑚 = d log 𝑅𝑝/d log 𝑀★ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A stellar mass dependence has been predicted by radius valley models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Both thermally driven mass-loss models predict a similar dependence of the valley on stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For example, Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) predicted 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='29 and 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='32 for photoevaporation (Owen & Wu 2017) and core-powered mass loss models (Gupta & Schlichting 2019, 2020) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our results are consistent with both sets of models within 1𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A stellar mass dependence was observed by Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2020), who find 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 by fitting the minima of the 2-dimensional KDE in 𝑅𝑝 − 𝑀★ space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A recent study by Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022), similarly following a binning approach and incorporating data from Data Release 2 (DR2) of the California-Kepler Survey (CKS) for cooler stars, estimated 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' It is therefore reassuring to see that despite the different method adopted here, the slope derived in this work is consistent with both of these studies within 1𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For lower mass stars, Luque & Pallé (2022) found 𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' this may be inconsistent with our results at 1𝜎, however the stellar mass range they studied is significantly lower than that in our sample with no overlaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The results are summarised in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' When extending our analysis to 3 dimensions as a function of 𝑃 and 𝑀★, we obtain 𝐴 = �𝜕 log 𝑅𝑝/𝜕 log 𝑃� 𝑀★ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, 𝐵 = �𝜕 log 𝑅𝑝/𝜕 log 𝑀★ � 𝑃 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 from determining the radius valley location in the 𝑅𝑝–𝑃–𝑀★ space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Note that this is different to the total derivative d log 𝑅𝑝/d log 𝑀★ in two dimensions (shown in Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Based on the models of photoevaporation (Owen & Wu 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Owen & Adams 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Mordasini 2020) and core-powered mass loss (Gupta & Schlichting 2019, 2020), Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) predicted 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 for a photoevaporation model, and 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 for a core-powered mass-loss model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our resulting posterior distri- bution of 𝐴 and 𝐵 determined from the bootstrapping presented in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4, as shown in Figure 12, is consistent with both the pho- toevaporation and core-powered mass loss cases at 2𝜎, hence we are unable to distinguish between the two models in this particular parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) proposed an analysis of the radius valley in 𝑅𝑝–𝑆–𝑀★ space that could distinguish between the two different thermally-driven mass-loss mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Using theoretical models, they predicted the radius valley scales as a function of 𝑆 and 𝑀★ as equation 11, with 𝐴 = �𝜕 log 𝑅𝑝/𝜕 log 𝑆� 𝑀★ ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 and 𝐵 = �𝜕 log 𝑅𝑝/𝜕 log 𝑀★ � 𝑆 ≃ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 for a photoevaporation model, and 𝐴 ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 and 𝐵 ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='00 for a core-powered mass loss model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Again, we plot the posterior distributions of 𝐴 and 𝐵 as shown in Figure 13, and observe that our results are consistent with the core-powered mass loss case well within 1𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For the photoevaporation scenario, our values overlap with the theoretical predictions at the edge of the 2𝜎 confidence interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) also measured the planet density of the California-Kepler Survey (CKS, Fulton & Petigura 2018), and the Gaia-Kepler Survey (GKS, Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2020), in 𝑅𝑝–𝑆–𝑀★ space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' They found for the CKS data, 𝐴 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05, 𝐵 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='39, and for the GKS data, 𝐴 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02, 𝐵 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our results are in agreement with both the CKS and GKS values, and our measurements have smaller uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' There are some caveats to this comparison between our observation results and theoretical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Firstly, the thermally-driven mass loss models predict the slope of the bottom of the valley (Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021), whereas our SVM finds the slope for the middle of the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Some studies have suggested a different planet size dependence with orbital period for super- Earths and sub-Neptunes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2022), hence these two slopes may not be equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Since the radius valley is not completely empty, the bottom of the radius valley is not clearly defined, and there would be challenges locating and fitting the bottom of the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As a result, our observed values may not be fully comparable with theoretical model values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Furthermore, the method of extracting the radius valley is prone to transit biases, which we do not correct for in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) showed that even when modelling synthetic transit surveys based on evolving planets with theoretical models, the resulting posteriors may not be fully consistent with the theoretically predicted slope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Further work, such as generating synthetic surveys from both photoevaporation and core-powered mass loss models based on conditions similar to that of our sample in a method similar to that performed in Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021), and fitting the valley with the same method as in this work, or analysing more planets around stars in a larger mass range, is required to compare our observations to theoretical models in a homogeneous way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MNRAS 000, 1–19 (2022) Sub-Neptunes Super-Earths Valley at O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 Gyr Valley at 1 Gyr 10 Valley at 10 Gyr 4 Age (Gyr) 3 2 d R 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 1 ¥3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 10 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7 100 P (days) M* (Mo)Deep radius valley with Kepler short cadence 11 Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Radius valley position for planets with host star mass 𝑀★ < 1𝑀⊙ (left), and 𝑀★ ≥ 1𝑀⊙ (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For 𝑀★ < 1𝑀⊙, 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' for 𝑀★ ≥ 1𝑀⊙, 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 and 𝑐 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The green and blue points show planets above and below the radius valley respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The grey shaded region represents the ±1𝜎 uncertainty in the radius valley position determined with bootstrapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Table 6, but for the radius valley slope on the radius-incident-flux plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Source 𝑚 = d log 𝑅𝑝/d log 𝑆 Stellar type Observations This work 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 FGK Martinez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 FGK Cloutier & Menou (2020) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='060 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='025 M Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 FGKM Luque & Pallé (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 M Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Table 6, but for the radius valley slope on the radius-stellar-mass plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Source 𝑚 = d log 𝑅𝑝/d log 𝑀★ Stellar type Observations This work 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 FGK Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2020) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 FGKM Petigura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 FGKM Luque & Pallé (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 M Source 𝑚 = d log 𝑅𝑝/d log 𝑀★ Model Theory Gupta & Schlichting (2020) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 Core-powered mass loss Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='29 Photoevaporation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='32 Core-powered mass loss 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 Deeper radius valley suggests a homogeneous initial planetary core composition We now turn to the depth of the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Using the previously defined depth metric (𝐸, equations 9 and 10), we find a valley depth of 𝐸avg = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47 (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We can compare this depth to the valley observed by F18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Shifting the planets along the slope calculated in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2, and applying the same metric to their filtered sample of 907 planets, we calculate 𝐸SN = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='99+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23, 𝐸SE = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='28+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='31 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27, giving 𝐸avg = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 for that sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For V18, we shift the planets according to the slope obtained in their study, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04, and we find 𝐸SN = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49, 𝐸SE = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='42 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70, giving 𝐸avg = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='87 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These values imply that compared to F18, we observe a deeper radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' On the other hand, the radius valley appears less deep than observed by V18 for a smaller sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This finding is visualised in Figure 14, which shows the adjusted histograms of the sample studied here next to the F18 and the V18 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To investigate the reason for observing a deeper valley than F18, we compare the 211 planets common in both our sample and the filtered sample of F18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To investigate the role of transit fitting, we convert MNRAS 000, 1–19 (2022) M*<1Mo 4 TO TO 0 T 3 DT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 ④ TOI R 2 R 五 中 中中 T 1 下中 3 10 30 100 P (days)M*≥1Mo 4 TOITOI O TOI T TOI Φ 3 0 TO D 中 (田y) TOD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2 R !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 1 3 10 30 100 P (days)12 Ho & Van Eylen Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Posterior distributions of the radius valley location dependence with respect to orbital period at constant stellar mass �𝜕 log 𝑅𝑝/𝜕 log 𝑃� 𝑀★, and stellar mass at constant orbital period �𝜕 log 𝑅𝑝/𝜕 log 𝑀★ � 𝑃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The dark and light-coloured shades represent the 1𝜎 and 2𝜎 uncertainties respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The theoretical models of photoevaporation and core-powered mass loss are taken from Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Same as Figure 12, but for �𝜕 log 𝑅𝑝/𝜕 log 𝑆� 𝑀★ and �𝜕 log 𝑅𝑝/𝜕 log 𝑀★ � 𝑆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' all our 𝑅𝑝/𝑅★ into 𝑅𝑝 using 𝑅★ from F18 (even when V18 values are available).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The results are shown in Figure 15, which compares the same planets with the same stellar parameters but different transit fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We observe that in this case, the 𝑅𝑝 of 56 (27%) and 24 (11%) planets change by > 2𝜎 and > 3𝜎 respectively, compared to the values reported in F18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We find for this common planetary sample, for our planetary parameters, 𝐸SN = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='63+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70, 𝐸SE = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='95+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='86 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='63, giving 𝐸avg = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='29+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='91 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='59, whereas for parameters from F18, 𝐸SN = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='59 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47, 𝐸SE = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='93+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='39, giving 𝐸avg = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These findings suggest that our updated transit fittings are directly responsible for deepening (although not fully emptying) the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A deeper radius valley is associated with a more homogeneous planet core composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For example, in photoevaporation models the radius valley position is dependent on the mass of the planet core (𝑀𝑐), and the density of a 1𝑀⊕ core of a particular core composition (𝜌𝑀⊕), as 𝑅valley ∝ 𝜌−1/3 𝑀⊕ 𝑀1/4 𝑐 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (18) Hence, if 𝑅valley is known, and the planets’ mean masses are known, the planetary core compositions could be deduced (Owen & Wu 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Using the above relation, if the planetary cores were icy at forma- tion, the radius valley would be located at a higher planetary radius than if the cores were rocky/terrestrial at formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Hence, if the planetary cores are of mixed composition, a superposition of the two models would be predicted, and we would expect the radius valley to be smeared and less distinct, as each type of planet would have its own ‘radius valley’ at a different location (Owen & Wu 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our deep radius valley found in this work implies the opposite case, where the planetary cores are more similar in composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In this scenario, planets inside the valley may have a different (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' icy) composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Owen & Wu (2017) compared their models to observations, and found that the planet compositions are more likely to be Earth-like (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' rocky), but that the apparent shallowness of the valley suggested a wide distribution of iron fractions ( 𝑓Fe) in their cores, as planets with a single value iron fraction ( 𝑓Fe = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5) produces a deeper valley compared to planets with a uniform distribution ( 𝑓Fe ∈ [0, 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Comparing our finding of a deeper valley to models in Owen & Wu (2017) would indicate that the planet compositions are more likely to have similar iron fractions with a narrower spread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Similarly, in the core-powered mass loss model, the location of the radius valley scales as 𝑅valley ∝ 𝜌−4/9 𝑐 (19) where 𝜌𝑐 is the planet core density (Gupta & Schlichting 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The same reasoning as the photoevaporation case then applies: given the larger 𝜌𝑐 for icy cores, planets with homogeneous icy cores will produce a radius valley at a larger planetary radii compared to rocky/terrestrial cores, implying that the radius valley would be smeared if planetary cores are of inhomogeneous compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our deep radius valley supports the opposite case, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', a similar planetary core composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 16 shows the stellar parameter distributions for the planet host stars in the three planet samples, and the mean and median values are listed in Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We notice a similar stellar parameter range between this work and F18, however the stars in V18 are brighter, have a larger mean radius and mass, and higher effective temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This is likely due to V18 selecting stars which display strong asteroseismic signals, which usually are brighter and larger stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This observation may indicate that the radius valley of such stars are emptier, however the details are left for future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Despite our new results revealing that the radius valley deepens by refitting planets with 1-minute short cadence light curves, it is still uncertain whether the difference between results from this work and F18 is solely due to the cadence in transit data used, as different meth- ods are used in the transit fitting process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2015) fitted planets using the method described in Rowe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2014), which first fits a multi-planet transit model to the light curves, with fixed limb darkening parameters from Claret & Bloemen (2011), and subse- quently fitting for each planet in a system independently by removing photometric contributions of other planets based on the parameters from the multi-planet fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In our work, we fit planets in multi-planet systems simultaneously, such that each system shares the same stellar parameters including limb-darkening parameters and stellar density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MNRAS 000, 1–19 (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 Photoevaporation Core-powered mass loss 0 This Work 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 (alog Rp/alog P)m,Photoevaporation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 Core-powered mass loss This Work 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 alog Rp/alog S)mDeep radius valley with Kepler short cadence 13 Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Histogram of planet radii, adjusted to 𝑃 = 10 days for the planetary population in this work (left, identical to Figure 4), F18 (centre), and V18 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Planets in this work and F18 are shifted according to the slope defined in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 with the SVM (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02), whereas planets in V18 are shifted according to the slope found in V18 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑚 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The 𝐸 metrics defining the average peak-to-valley ratio are 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21, and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='87 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Left: Radius-period plot of the 211 planets common to this work (blue) and F18 (red), using the same stellar radii to calculate planetary radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Right: Same as Figure 14, but the planetary population is filtered to the 211 common planets in both samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Planets in both samples are adjusted to equivalent radii at 𝑃 = 10 days according to the slope calculated in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 with the SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The red and blue histograms are produced with the parameters obtained from F18 and this work respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The histograms and fitting with the Gaussian Mixture Model show that the observed valley is deeper in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2015) assumed a circular orbit when performing the transit fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' On the contrary, we leave orbital eccentricity 𝑒 as a free parameter, and place a prior on 𝑒 based on the expected distribution from Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2019) and the stellar density 𝜌★ from F18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' However, most of the planets in our sample have near-circular orbits, with over 85% of planets having 𝑒 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Therefore planetary orbital eccentricity is not sufficient to explain the difference between the two results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The possible presence of TTVs also do not contribute to the discrepancy as planets with known TTVs are excluded in our like-for-like planet comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In fact, when fitting transits using identical methods, precisions in 𝑅𝑝/𝑅★ obtained from fitting transit light curves of shorter cadences has been found to substantially im- prove, compared to 30-minute cadence light curves (Camero, Ho & Van Eylen, in prep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We therefore expect the photometry cadence to contribute significantly to the difference in the views of the radius val- ley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Further work, such as refitting the long cadence data of the same planet population with identical transit fitting methods, is needed to further investigate the effect of light curve cadence on planet param- eter estimates and the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We leave such considerations for future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 Radius valley relation with stellar age consistent with core-powered mass loss model In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5, we present a positive relationship between the radius valley location and stellar age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Photoevaporation is predicted to occur in the first 100 Myr of the planet’s formation (Owen & Wu 2017),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' well before observations are able to detect the evolution signals,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' whereas MNRAS 000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 1–19 (2022) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='This work ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Number of planet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='¥456 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 F18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Number of planets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='456 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Rp at P= 10 days (R)V18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Number of planets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='456 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Rp at P= 10 days (R)F18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='This work ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='ICE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='士 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='亞 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='HDO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='HOH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='TO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='H ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='市 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='币 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='西 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='薄 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='H ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='生奇 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='CDI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='由HO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='由 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Φ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='T0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='西 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='TEHO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='HH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='TOIT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='T0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='TTI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Ho0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='HO由 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='HO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='HO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='中中 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='He ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='L ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='P (days)35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='F18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='This work ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Number of planets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Rp at P= 10 days (R)14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Ho & Van Eylen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='Figure 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Distribution of host stars parameters in our work, compared with F18 and V18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The properties shown here, from top left to bottom right, are stellar radius 𝑅★, mass 𝑀★, Kepler magnitude Ksmag, and effective temperature 𝑇eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' For systems with multiple transiting planets, stars are counted multiple times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Average values of stellar properties of the host stars in the planetary sample used in this work, compared with F18 and V18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' ¯𝑥 and ˜𝑥 represent the mean and median values of the parameter 𝑥 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Sample ¯𝑅★ (𝑅⊙) ˜𝑅★ (𝑅⊙) ¯ 𝑀★ (𝑀⊙) ˜ 𝑀★ (𝑀⊙) ¯ Ksmag ˜ Ksmag ¯ 𝑇eff (K) ˜ 𝑇eff (K) This work 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='95 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='31 5587 5630 F18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='72 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='97 5788 5860 V18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='57 5980 5952 core-powered mass loss occurs throughout the main-sequence life- time of the stars, on Gyr timescales (Ginzburg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Gupta & Schlichting 2019, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Hence, in the photoevaporation case, the radius valley is expected to be located at a constant radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' On the other hand, in the core-powered mass loss case, the radius valley shifts to higher planet radii for older systems, as the atmospheres of planets with more massive cores are stripped off later in the evolution process than their less massive counterparts (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' David et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers & Owen 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Our results reveal a weak positive radius valley dependence on the stellar age, which is consistent with the core-powered mass loss scenario, as is the observed radius valley dependence on stellar mass as discussed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' However, a small age dependence does not preclude photoevaporation, since even in this scenario a subset of planets may still lose their atmospheres and evolve at Gyr timescales (David et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rogers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2021), and we are unable to observe stars younger than 100 Myr and hence cannot rule out the possibility of a dominant photoevaporation effect on planets at the early stages of the stars’ lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Also, stellar age measurements are highly un- certain;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' the mean percentage uncertainty in stellar age for our sample is 54%, hence there is also a probability that some stars are younger than observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table 10 lists the 50 planets located inside the radius valley in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' To do so, we here defined the new radius valley region as the area bounded by the two lines passing through the supporting vectors in the 4D SVM model in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5, given by equation 15 with 𝐴 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='096, 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='231, 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='033, 𝐷lower = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='272 for the lower line, and 𝐷upper = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='405 for the upper line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These planets are potentially interesting for future characterisation study as their MNRAS 000, 1–19 (2022) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 F18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 V18 This work 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 Density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8 D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 R(Ro)F18 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 V18 This work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 Density 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 D 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 M* (Mo)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' F18 V18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 This work 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 8 10 12 14 16 Ksmag1e-4 16 F18 14 V18 This work 12 Density 10 8 6 4 2 0 4500 5000 5500 6000 6500 7000 Teff ( (K)Deep radius valley with Kepler short cadence 15 Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Metallicity and mass of the host stars used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The grey dotted line [Fe/H] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 shows the cut-off between stars of low and high metallicity as defined in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We note a lack of stars with low metallicity and large stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' atmospheres and interiors may provide additional insights regarding formation and evolution mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5 Radius valley depth varies with stellar metallicity In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6, we show a higher average 𝐸 value (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' a deeper radius valley) for planets around metal-poor stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This seems to contradict the suggestion that the radius valley is deeper for planets around metal-rich stars (Owen & Murray-Clay 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' However, we note from Figure 17, that in our sample, the metal-rich host stars span a wider range of stellar masses, due to lack of metal-poor stars with large radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' As from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 we observe that the radius valley depends on stellar mass as well, the superposition of the radius valley for different stellar masses potentially smears the gap, making the radius valley appear shallower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The degeneracy between stellar mass and metallicity is not fully resolved, hence we are unable to determine the sole effect of stellar metallicity on the radius valley in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We therefore consider the results related to metallicity to be inconclusive and in need of further future study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 5 CONCLUSION In summary, we performed transit light curve fitting on 431 plan- ets using Kepler 1-minute short cadence data, the vast majority of which have not been previously analysed homogeneously using short cadence observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' In this paper, we presented their revised plan- etary parameters, which in some cases differ substantially from those previously reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' These differences are unrelated to stellar param- eters but may be related to the details of the transit fitting approach or the shorter observing cadence, the effects of which should be disentangled in future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' By statistically analysing the small close-in planets in our sam- ple, we observed a radius valley which is deeper than that reported in several other studies, although not entirely empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The valley’s depth likely implies a homogeneous initial planetary core composi- tion where the planets are similar in composition at formation, and likely to have similar iron fractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We provide a table of those plan- ets that appear to be inside the valley, as they may warrant further study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The radius valley has a strong dependence on planetary orbital pe- riod and the mass of the host star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' It also displays a weak dependence on the stellar age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We compared several possible radius valley models using support vector machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We determined that the radius valley can best be described in four dimensions using the formula 𝑅𝑝,valley ∝ 𝑃𝐴𝑀𝐵 ★ (age)𝐶 (20) with 𝐴 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='096+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='023 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='027, 𝐵 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='231+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='053 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='064, and 𝐶 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='033+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='017 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Comparing our radius valley dependencies with theoretical mod- els, we found that in 𝑅𝑝–𝑆–𝑀★ space, our posterior distributions are most consistent with core-powered mass loss, where they agree within less than 1𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The models are also consistent with photoevap- oration scenarios at ≈ 2𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We did not find a significant dependence of the radius valley on stellar metallicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' With the Transiting Exoplanet Survey Satellite (TESS, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Ricker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2015) now in its extended mission, and the upcoming launch of the PLAnetary Transits and Oscillations of stars (PLATO) mission (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Rauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2014), such future planetary studies could drastically increase the number of planets with radii measurements and hence provide an even more detailed view of the radius valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This work highlights the impact of careful transit fitting using short, 1-minute cadence observations to obtain precise planetary radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This will likely be of key importance to derive precise planetary radii using transit observations from ongoing and future missions, which will ultimately allow us to better understand the formation and evolution of small close-in planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' ACKNOWLEDGEMENTS C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' would like to thank the Science and Technology Facilities Council (STFC) for funding support through a PhD studentship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We would like to thank Erik Petigura, James Rogers, and James Owen for insightful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' We also thank the anonymous reviewer for taking their time to review the paper, and for their valuable sugges- tions which have improved the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' DATA AVAILABILITY The Kepler 1-minute short cadence light curves are available for download on the NASA Mikulski Archive for Space Telescopes (MAST) database1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The parameter estimates from HMC posteriors are provided in the Appendix tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' REFERENCES Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2013, A&A, 558, A33 Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, AJ, 156, 123 Berger T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Huber D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Gaidos E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', van Saders J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Weiss L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2020, AJ, 160, 108 Bourque M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2021, The Exoplanet Characterization Toolkit (ExoCTK), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4556063, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 4556063 Claret A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Bloemen S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2011, A&A, 529, A75 Cloutier R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Menou K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2020, AJ, 159, 211 David T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2021, AJ, 161, 265 1 https://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='stsci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='edu MNRAS 000, 1–19 (2022) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 Fe/H] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4 M* (Mo)16 Ho & Van Eylen Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' List of planets inside the radius valley as defined by this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The coordinates (RA and Dec) are taken from Kepler Q1-17 Data Release 25 catalogue (Thompson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2018), except for K02533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03, where data is taken from Kepler Q1-16 catalogue (Mullally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' KOI Kepler name 𝑃 (days) 𝑡0 (BJD-2454833) 𝑅𝑝/𝑅★ 𝑅𝑝 (𝑅⊕) RA (deg) Dec (deg) K00049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-461 b 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='313784 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000015 175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9915 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0287 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24902 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='164822 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-20 A d 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='611598 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7274 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0263 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='52+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='698 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='338718 K00092.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 KOI-92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='704594 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000018 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4419 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0263 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37482 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='788219 K00094.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-89 A c 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='423684 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000005 138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0092 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0266 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='97+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33307 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='891121 K00105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-463 b 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='981015 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000002 136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6493 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0313 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='65+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='93704 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='85791 K00107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-464 b 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='256964 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000011 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0232 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0198 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='46+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='83517 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='982361 K00108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-103 b 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='965333 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000013 142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1780 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0221 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98456 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='064529 K00111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-104 A d 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='755294 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000018 271.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0894 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0232 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='66+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='60461 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='166779 K00122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-95 b 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='523073 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000005 131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9686 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0205 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='48245 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='398041 K00157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-11 d 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='687159 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000014 148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4549 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0282 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11511 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='909142 K00174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-482 b 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='354185 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8366 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0339 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0013 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='92+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='82291 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='107552 K00238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-123 b 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='232309 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000018 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0923 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0223 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='99863 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78196 K00285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-92 b 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='748833 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000015 179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2788 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0198 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='71+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08606 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='562958 K00317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-521 b 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='208119 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000015 206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3592 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0207 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='69+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='81638 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='998039 K00351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-90 d 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='737034 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9612 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0217 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4335 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='305161 K00351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 Kepler-90 e 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='940461 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2987 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0198 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='56+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4335 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='305161 K00386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-146 b 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='158789 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9038 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0297 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11075 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='710232 K00386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-146 c 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='732517 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6716 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0258 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0013 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='87+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11075 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='710232 K00408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-150 c 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='381981 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000007 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0729 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0355 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2341 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='520901 K00416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-152 b 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='207957 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000015 185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8427 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0383 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='86548 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='989079 K00435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 Kepler-154 c 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='302788 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0982 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0266 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78052 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89653 K00509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-171 c 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='463477 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000013 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3859 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0328 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='77191 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='755539 K00510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 Kepler-172 e 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='118523 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1229 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0248 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0021 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='82+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36841 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='821861 K00555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-598 c 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='494779 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8831 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0272 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='51+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12341 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='934769 K00665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-207 d 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='868083 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000009 170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3244 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0202 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='69+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03052 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16605 K00707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-33 f 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='028059 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5788 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0207 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='64+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07755 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='005219 K00707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-33 e 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='784774 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8721 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0188 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07755 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='005219 K00708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-216 c 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='406653 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000017 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0063 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0230 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='88+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='72806 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12915 K00711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-218 c 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='699505 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8232 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0272 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41281 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='266472 K00800.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-234 c 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='212030 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000017 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8172 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0283 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0012 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='61+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='28 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='65353 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='494659 K00834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-238 d 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='233546 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3211 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0197 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89713 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='637821 K00834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 Kepler-238 f 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='447315 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4929 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0203 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='48+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89713 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='637821 K00881.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-712 b 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='022471 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000017 207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6765 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0391 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='90973 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='935261 K00907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 Kepler-251 e 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='640965 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000021 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6899 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0320 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0017 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='82+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='56622 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='105862 K00921.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-253 d 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='119898 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000018 182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6165 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0346 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0011 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='84198 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='858089 K00934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-254 b 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='826654 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000006 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0110 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0368 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0011 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24 288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1647 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='816509 K00941.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-257 c 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='581482 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000009 174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7876 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0429 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='31598 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='023258 K00954.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-259 c 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='924954 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2245 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0291 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0017 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='85+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='19 288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21194 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='615002 K01001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-264 b 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='806846 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7126 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0159 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='39+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04462 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37624 K01198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-275 c 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='088329 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000018 139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4928 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0232 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0011 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='55+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='31 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='29 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47971 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='514919 K01215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-277 c 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='006310 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3914 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0161 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='58316 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='077202 K01270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-57 b 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='729326 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000005 138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5598 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0356 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0024 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6413 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='65704 K01486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-302 b 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='183689 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000018 146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6480 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0286 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0011 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='31699 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='629341 K01563.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 Kepler-305 d 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='738655 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4178 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0338 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0022 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='84+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22433 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='343182 K01598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-310 c 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='476167 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8052 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0301 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='83936 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='98674 K02051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-355 c 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='762459 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7050 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0230 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='95+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='79947 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='811779 K02390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-1219 b 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='104672 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0156 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0120 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0011 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='51+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='46 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='46 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21579 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='378521 K02414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-384 c 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='348527 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2527 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0157 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0012 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02612 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='782871 K02533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 KOI-2533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='115290 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5642 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0122 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0011 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='38 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='38 286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='71564 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='645279 K02639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 KOI-2639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='108060 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4407 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0191 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0083 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='69+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='63 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62 285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36517 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='201561 MNRAS 000, 1–19 (2022) Deep radius valley with Kepler short cadence 17 Foreman-Mackey D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2021, The Journal of Open Source Software, 6, 3285 Fulton B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Petigura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, AJ, 156, 264 Fulton B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2017, AJ, 154, 109 Furlan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2017, AJ, 153, 71 Ginsburg A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2019, AJ, 157, 98 Ginzburg S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Schlichting H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Sari R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2016, ApJ, 825, 29 Ginzburg S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Schlichting H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Sari R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, MNRAS, 476, 759 Gupta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Schlichting H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2019, MNRAS, 487, 24 Gupta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Schlichting H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2020, MNRAS, 493, 792 Holczer T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2016, ApJS, 225, 9 Huber D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2013, ApJ, 767, 127 Kipping D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2013, MNRAS, 435, 2152 Lee E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Chiang E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2016, ApJ, 817, 90 Lee E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Chiang E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Ormel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2014, ApJ, 797, 95 Lightkurve Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library (ascl:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='013) Lopez E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Fortney J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2013, ApJ, 776, 2 Lopez E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Rice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, MNRAS, 479, 5303 Loyd R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Shkolnik E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Schneider A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Richey-Yowell T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Barman T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Peacock S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Pagano I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2020, ApJ, 890, 23 Lundkvist M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2016, Nature Communications, 7, 11201 Luque R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Pallé E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2022, Science, 377, 1211 MacDonald M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2019, MNRAS, 487, 5062 Martinez C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Cunha K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Ghezzi L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Smith V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2019, ApJ, 875, 29 Mathur S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2017, ApJS, 229, 30 Mordasini C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2020, A&A, 638, A52 Mullally F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2015, ApJS, 217, 31 Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Adams F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2019, MNRAS, 490, 15 Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Murray-Clay R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, MNRAS, 480, 2206 Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Wu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2013, ApJ, 775, 105 Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Wu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2017, ApJ, 847, 29 Petigura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2020, AJ, 160, 89 Petigura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2017, AJ, 154, 107 Petigura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2022, AJ, 163, 179 Raghavan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2010, ApJS, 190, 1 Rasmussen C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Williams C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2006, Gaussian Processes for Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The MIT Press Rauer H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2014, Experimental Astronomy, 38, 249 Ricker G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003 Rogers J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2021, MNRAS, 503, 1526 Rogers J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Gupta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Schlichting H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2021, MNRAS, 508, 5886 Rowe J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2014, ApJ, 784, 45 Salvatier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Wiecki T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Fonnesbeck C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2016, PeerJ Computer Science, 2, e55 Silva Aguirre V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2015, MNRAS, 452, 2127 Smith J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2012, PASP, 124, 1000 Stumpe M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2012, PASP, 124, 985 Thompson S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, ApJS, 235, 38 Van Eylen V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Albrecht S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2015, ApJ, 808, 126 Van Eylen V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Agentoft C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Lundkvist M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Kjeldsen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Owen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Fulton B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Petigura E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', Snellen I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2018, MNRAS, 479, 4786 Van Eylen V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2019, AJ, 157, 61 Van Eylen V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=', 2021, MNRAS, 507, 2154 APPENDIX A: EXTRA MATERIAL MNRAS 000, 1–19 (2022) 18 Ho & Van Eylen Table A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Host star parameters of planets fitted in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑅★, 𝑀★, 𝑇eff, [Fe/H], Ksmag are taken from the following sources: 1: Fulton & Petigura (2018), 2: Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Stellar ages are taken from Fulton & Petigura (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Radius correction factors (RCFs) are taken from Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' we take RCF = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 where there are no measurements in Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝜌★, 𝑢0, 𝑢1 are resulting parameters from the transit fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Only the first 10 host stars are shown here;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' the full table is available online in a machine-readable format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' KOI 𝑅★ (𝑅⊙) (1) 𝑀★ (𝑀⊙) (1) 𝑇eff (K) (1) [Fe/H] (dex) (1) Ksmag (1) 𝑅★ (𝑅⊙) (2) 𝑀★ (𝑀⊙) (2) 𝑇eff (K) (2) [Fe/H] (dex) (2) Ksmag (2) Age (Gyr) RCF 𝜌∗ (g cm−3) 𝑢0 𝑢1 41 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='53+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 5854+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='768 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='51+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 5903+53 −66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='197 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='92+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='91 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='313 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='17 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 46 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='66+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 5661+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='39 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='011 N/A N/A N/A N/A N/A 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='73 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='69 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='279 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='52 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='27 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='29+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='95+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 5779+60 −60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='917 N/A N/A N/A N/A N/A 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='441 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='94+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='87+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 5594+60 −60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='91+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 5669+75 −75 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='931 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='94 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='044 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='44 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='88+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='94+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 5508+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='871 N/A N/A N/A N/A N/A 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='99 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='57 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0054 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='391 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='052 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='45 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 72 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='87+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 5599+60 −60 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='496 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='92+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 5678+55 −49 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='961 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='88+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='48 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='690 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='38 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='72+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 4909+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='351 N/A N/A N/A N/A N/A 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='89 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='58 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='039 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='62 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 85 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='44+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 6220+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='806 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 6193+43 −52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='018 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='95+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='428 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 92 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 5923+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 5952+119 −119 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='15 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='667 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='34+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='35 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='894 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='049 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 94 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 6181+60 −60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='926 N/A N/A N/A N/A N/A 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='47+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='64 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='56 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='462 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='16 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Table A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Planetary parameters from transit fits performed in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' 𝑃, 𝑡0, 𝑅𝑝/𝑅★, 𝑏, 𝑒, 𝜔 are obtained directly from fitting, 𝑎/𝑅★ and 𝑆 are indirectly calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' The 𝑅𝑝/𝑅★ values from 1: Fulton & Petigura (2018) and 2: Van Eylen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' (2018) are also included for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Only the first 10 planets are shown here;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' the full table is available online in a machine-readable format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' KOI Kepler name 𝑃 (days) 𝑡0 (BJD-2454833) 𝑅𝑝/𝑅★ 𝑅𝑝/𝑅★ (1) 𝑅𝑝/𝑅★ (2) 𝑏 𝑒 𝜔 (◦) 𝑎/𝑅∗ 𝑆 (𝑆⊕) K00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-100 c 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='815893 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000008 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9476 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0138 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0140+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0134+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='39 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 30 ± 96 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='37 ± 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='59 K00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-100 b 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='887062 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000007 133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1781 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0082 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0081+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0013 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0079+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='63 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 3 ± 107 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='26 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='88 590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='40 ± 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='33 K00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-100 d 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='333093 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9835 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0104 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0092+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0023 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0092+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='81 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 1 ± 104 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='50 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='51 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='87 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 K00046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-101 c 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='029792 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4816 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0073 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0069+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 N/A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 −0 ± 103 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='77 646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80 ± 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='97 K00049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-461 b 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='313784 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000015 175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9915 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0287 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0259+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 N/A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 77 ± 77 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='75 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='22 213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='71 ± 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='30 K00069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-93 b 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='726739 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000001 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9265 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0151 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0159+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0149+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 105 ± 58 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='39 252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='14 ± 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='01 Kepler-20 A c 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='854089 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000003 138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6082 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0290 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0300+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0018 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0006 N/A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 86 ± 39 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='81 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='80 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='02 Kepler-20 A b 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='696115 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000001 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5021 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0182 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0209+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0014 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0023 N/A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='49 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 26 ± 101 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='83 365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='46 ± 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='71 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='03 Kepler-20 A d 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='611598 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000019 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7274 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0263 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0259+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0005 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 N/A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='36 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 33 ± 96 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='67 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='51 K00070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 Kepler-20 A f 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='577627 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='000020 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2063 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0091 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0098+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0003 N/A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='65 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='04 7 ± 104 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='66 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='84 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='78 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='81 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MNRAS 000, 1–19 (2022) Deep radius valley with Kepler short cadence 19 Table A3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Transit jitter and GP parameters from transit fitting of planetary systems in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' Only the first 10 systems are shown here;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' the full table is available online in a machine-readable format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' KOI log 𝜎lc log 𝜎gp log 𝜌gp 41 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4379 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0016 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5822 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0105 −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='5121 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0335 46 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1119 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0037 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1794 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1025 −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3449 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2492 49 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='3268 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0044 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8595 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0680 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2568 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1547 69 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9861 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0019 −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1248 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0133 −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8968 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0382 70 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7689 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0012 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4665 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0150 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='7110 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0415 72 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='4175 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0053 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6473 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0392 −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0440 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1139 82 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1671 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0018 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='6193 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0116 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2278 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0240 85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0000 92 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1505 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0062 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8036 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0880 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9919 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='2448 94 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8819 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0017 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='8028 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='0308 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='9898 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='1183 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} +page_content=' MNRAS 000, 1–19 (2022)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE2T4oBgHgl3EQfswgq/content/2301.04062v1.pdf'} diff --git a/T9E5T4oBgHgl3EQfAg7p/content/tmp_files/2301.05380v1.pdf.txt b/T9E5T4oBgHgl3EQfAg7p/content/tmp_files/2301.05380v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..36c991ea96494a493654ecd4d743417a4dffd04c --- /dev/null +++ b/T9E5T4oBgHgl3EQfAg7p/content/tmp_files/2301.05380v1.pdf.txt @@ -0,0 +1,1215 @@ +Prompting Neural Machine Translation with Translation Memories +Abudurexiti Reheman1, Tao Zhou1, Yingfeng Luo1, Di Yang2, Tong Xiao1,2, Jingbo Zhu1,2* +1School of Computer Science and Engineering, Northeastern University, Shenyang, China +2NiuTrans Research, Shenyang, China +rexiti neu@outlook.com, zhoutao neu@outlook.com, luoyingfengmail@163.com, +yangdi@niutrans.com, {xiaotong, zhujingbo}@mail.neu.edu.cn +Abstract +Improving machine translation (MT) systems with translation +memories (TMs) is of great interest to practitioners in the MT +community. However, previous approaches require either a +significant update of the model architecture and/or additional +training efforts to make the models well-behaved when TMs +are taken as additional input. In this paper, we present a sim- +ple but effective method to introduce TMs into neural ma- +chine translation (NMT) systems. Specifically, we treat TMs +as prompts to the NMT model at test time, but leave the train- +ing process unchanged. The result is a slight update of an ex- +isting NMT system, which can be implemented in a few hours +by anyone who is familiar with NMT. Experimental results +on several datasets demonstrate that our system significantly +outperforms strong baselines. +Introduction +Integrating TM is one of the commonly used techniques to +improve real-world MT systems. In TM-assisted MT sys- +tems, it is often assumed that there is a database in which +high-quality bilingual sentence pairs are stored. When trans- +lating an input sentence, the most (or top-K) similar sen- +tence pair, which is retrieved from TM, is used to optimize +the translation. From the perspective of practical application, +this approach is particularly useful for MT, especially when +sentences are highly repetitive, such as in translating tech- +nical manuals, legal provisions, etc. Previous works show +that translation quality can be significantly improved when +a well-matched TM sentence pair is provided both in Sta- +tistical Machine Translation (SMT) (Ma et al. 2011; Wang, +Zong, and Su 2013; Li, Way, and Liu 2014) and Neural Ma- +chine Translation (NMT) (Gu et al. 2018; Khandelwal et al. +2020). +However, there are two major problems with this type of +work in real-world applications. First, it is difficult to find +such a TM dataset in most cases, especially when users can +not share their TM data with the public for some reason. +Second, previous approaches often require model changes, +including training the model with TM (Bult´e and Tezcan +2019; Hossain, Ghazvininejad, and Zettlemoyer 2020; Xu, +*Corresponding author. +Copyright © 2023, Association for the Advancement of Artificial +Intelligence (www.aaai.org). All rights reserved. +Encoder +Decoder +𝑥1 +𝑡𝑚 ··· 𝑥𝑚 +𝑡𝑚 𝑥1 +··· 𝑥𝑛 + 𝑦1 +𝑡𝑚··· 𝑦𝑘 +𝑡𝑚 𝑦1 ··· 𝑦𝑙 +𝑦1 +𝑡𝑚··· 𝑦𝑘 +𝑡𝑚 𝑦1 ··· 𝑦𝑙 +Force decoding +Figure 1: Structure of the proposed method. The source and +target sentences of TM are concatenated with the input sen- +tence and hypothesis in a specific concatenation template, +respectively. The tokens in the target TM together with the +concatenation template are generated in a forced manner. +The lengths of the source and target TM together with the +concatenation templates are m and k, and the lengths of the +input sentence and hypothesis are n and l, respectively. +Crego, and Senellart 2020), changing the NMT model ar- +chitecture for TM integration (Gu et al. 2018; Bapna and +Firat 2019; Xia et al. 2019; He et al. 2021), and introducing +additional modules (Zhang et al. 2018; He et al. 2019; Khan- +delwal et al. 2020). In this case, it is difficult to incorporate +TM into the NMT system even if TM data is provided, since +TM incorporation can not be accomplished on a generic de- +coder, and a deeply customized decoder is needed. +Here, we address this problem by using few-shot learning +(Wang et al. 2021b), which enables the system to quickly +adapt to a small number of samples. The recent prevalence +of prompt-based approaches (Brown et al. 2020), which +transfer the original task into a generation task by design- +ing an appropriate template without modifying the language +model, gives us some inspiration that the retrieved TM can +prompt the translation of the input sentence without modify- +ing the NMT model. +Based on this idea, we propose a simple approach to +quickly adapt the NMT model in the few-shot TM scenario. +Specifically, we treat TMs as prompts to the NMT model +during the decoding process, with very small changes to the +decoder. Our method can cover the advantages of conven- +tional TM augmented methods and bring some new ideas, +such as incorporating users’ local historical translation data +into NMT. +arXiv:2301.05380v1 [cs.CL] 13 Jan 2023 + +In order to prompt the translation with the retrieved TM, +we design several templates to concatenate the source TM +with the input sentence and feed the concatenated sentence +into the model encoder. On the decoder side, we generate +the target TM and the concatenation template in a forced +way first, then let the model generate the other parts au- +tomatically. Regarding TM granularity, our method works +well on sentence-level and fragment-level TM by design- +ing appropriate templates. Experimental results on several +datasets show that our method can further improve the trans- +lation quality on strong NMT models, and with comparable +performance with the state-of-the-art. +Background +NMT Decoding +Suppose x = {x1, ..., xn} is the source sentence, and NMT +translates it into the corresponding target sentence y = +{y1, ..., ym} by using a trained NMT model. In practice, it +turns the decoding into a searching problem, and a beam +searcher is adopted to get the target sentence with the high- +est generation probability. Generally, an NMT model gener- +ates in an auto-regressive way. Therefore, the generation of +each token relies on the source sentence and the generated +prefix of the target sentence. The generation of the whole tar- +get sentence can be formulated as a conditional probability +P(y|x) described below: +P(y|x) = +m +� +i=0 +P(yi|x, y Sie gab der Polizei einen voll@@ st¨andigen Bericht ¨uber den Vorfall . {Hypothesis} +Comma +En/input +She gave the police a full account of the incident , She gave us a full account of the traffic accident . +De/input + Sie gab der Polizei einen voll@@ st¨andigen Bericht ¨uber den Vorfall , {Hypothesis} +Semicolon +En/input +She gave the police a full account of the incident ; She gave us a full account of the traffic accident . +De/input + Sie gab der Polizei einen voll@@ st¨andigen Bericht ¨uber den Vorfall ; {Hypothesis} +Conjunction +En/input +She gave the police a full account of the incident . And , She gave us a full account of the traffic accident . +De/input + Sie gab der Polizei einen voll@@ st¨andigen Bericht ¨uber den Vorfall . Und , {Hypothesis} +Parenthesis +En/input +( She gave the police a full account of the incident . ) She gave us a full account of the traffic accident . +De/input + ( Sie gab der Polizei einen voll@@ st¨andigen Bericht ¨uber den Vorfall . ) {Hypothesis} +Fragment Level TMs +Parenthesis +En/input +( She gave ) ( a full account of the ) She gave us a full account of the traffic accident . +De/input + ( Sie gab ) ( einen voll@@ st¨andigen Bericht ¨uber den ) {Hypothesis} +Table 1: An example of model input in our proposed method. Here, Directly, Comma, Semicolon, Conjunction, and Parenthesis +denote our designed templates for concatenation, and En/input and De/input denote the input of the encoder and the decoder, +respectively. The token denotes the begin-of-sentence tag, and {Hypothesis} denotes the automatically generated part +of the target sentence. Red tokens denote the concatenation templates. +Input Sentence: She gave us a full account of the traffic accident . +Source TM: +She gave the police a full account of the incident . +Target TM: +Sie gab der Polizei einen voll@@ ständigen Bericht über den Vorfall . +Figure 2: An example of obtaining fragments for fragment-level TMs. For a given bilingual TM, common fragments between +the input sentence and the source TM are acquired first, then the words in the target TM that align with the words in the common +fragments are extracted. Common fragments and their corresponding fragments in Target TM are tagged by the same color box, +and the lines denote word alignments. +alignment between the source and target TM is given in Fig- +ure 2, and its corresponding fragment-level TM is given in +Table 1. +Specifically, for a given input sentence x and a retrieved +bilingual TM ⟨xtm, ytm⟩, we acquire the encoder and de- +coder input for the NMT model in the following steps: +(a) Perform the longest common subsequence matching +algorithm to x and xtm, and obtain the longest common sub- +sequence Ps = {w1, w2, ..., wm}. +(b) Use word alignment tools to xtm and ytm, and get +the aligned subsequence Pt = {w′ +1, w′ +2, ..., w′ +n}, which is +corresponding to Ps, from ytm. +(c) Group the words, which appear continuously in xtm, +from Ps in their original order to form source TM fragments +P ′ +s = {f1, f2, ..., fi}. +(d) Group the words, which appear continuously in ytm, +from Pt in the order of the correspondence with P ′ +s to form +target TM fragments P ′ +t = {f ′ +1, f ′ +2, ..., f ′ +j}. +(e) Concatenate each fragment in P ′ +s and P ′ +t with a spe- +cific template to form fragment-level TM, and directly con- +catenate them with input sentence and hypothesis as is done +in sentence-level TM. +As for the concatenation template, we enclose each frag- +ment in parenthesis to maintain its semantic integrity. In +practice, we remove the fragments that consist of a single +stop word and remove the punctuation at two sides of a frag- +ment. +Retrieving Similar TMs +To retrieve the most similar bilingual TM for the input sen- +tence, we use a word-level fuzzy matching strategy and re- +move punctuations and numbers from the sentence. Instead +of retrieving from the whole TM database, we first employ +the search engine library Apache Lucene (Bialecki, Muir, +and Ingersoll 2012) to retrieve the top 500 similar bilingual +sentences from TM. Then we rerank them by adopting Fuzzy + +Match Score (FMS) to obtain the most similar TM sentence +pair. FMS is a length normalized Levenshtein Distance (Li +and Liu 2007), known as Edit Distance: +FMS(x, xtm) = 1 − +LD(x, xtm) +max(|x|, |xtm|) +(2) +where LD(·, ·) denotes the word level Levenshtein Distance, +and | · | denotes word level length of a sentence. +Experiments +In order to verify the validity of our proposed method, we +conducted several experiments on TM specialized transla- +tion task and domain adaptation task, respectively. We also +put our approach into practice on a commercial NMT system +to assess its usability in the practical setting. In the end, we +investigated the impact of the NMT model, TM similarity, +and input sentence length on translation quality. +Datasets and Models +For TM specialized translation tasks, we evaluated our +method on two datasets: 1) DGT-TM, the entire body +of European legislation in 22 European languages, on +German-English in both directions (En-De and De-En) and +2) United Nations Parallel Corpus (UNPC), consisting of +United Nations General Assembly Resolutions with transla- +tions in the six official languages, on English-Chinese (En- +Zh), Russian-Chinese (Ru-Zh) and French-Chinese (Fr-Zh). +These two datasets are relatively easy to retrieve TM sen- +tences with a high degree of similarity. For the test set and +TM database, we cleaned the above corpora first, then ran- +domly selected 3,000 sentence pairs for the test dataset, +whereas the remaining corpora were utilized as the TM +database. +In addition, we performed an experiment using a home- +made English-Chinese dataset (denoted as H-m in Table 2) +of 3401 sentences. Each test sentence has one bilingual TM +sentence whose source side is similar to the test sentence. +The statistics of these TM databases and the TM similarity +ratios of retrieved TMs in FMS metric are shown in Table 2. +In the domain adaptation task, following Khandelwal +et al. (2020), we used the multi-domain datasets from Aha- +roni and Goldberg (2020), which contains German-English +bilingual datasets in five different domains: Medical, Law, +IT, Koran, and Subtitles, respectively. We treated the train- +ing data in each domain as our TM database. +After cleaning the above corpora and splitting them into a +test set and TM database, we retrieved the most similar TM +for each test sentence from the TM database in an offline +way and applied BPE (Sennrich, Haddow, and Birch 2016) +to the test sets and TM with the BPE-codes provided by the +pre-trained NMT models. To obtain the alignment informa- +tion for the tokens in the TM source and target sentence, we +trained a word aligner – Mask-Align – as proposed in Chen, +Sun, and Liu (2021), and constructed corresponding frag- +ment level TMs. The TM data scale and the TM similarity +ratios of retrieved TMs in FMS metric are given in Table 3. +As for the pre-trained NMT model, we applied Face- +book’s WMT19 De-En, En-De model (Ng et al. 2019) and +Corpus +Lang +TM +scale +TM FMS ratio +[0, +0.2) +[0.2, +0.4) +[0.4, +0.6) +[0.6, +0.8) +[0.8, +1.0) +DGT +-TM +En-De +3.1M +3% +27% +19% +21% +31% +De-En +3.1M +4% +30% +18% +22% +26% +UNPC +En-Zh +3.9M +2% +44% +22% +11% +22% +Fr-Zh +11.5M +2% +45% +18% +11% +23% +Ru-Zh +11.2M +8% +46% +16% +9% +20% +H-m +En-Zh +- +18% +30% +35% +23% +7% +Table 2: Sentence numbers in the TM databases and the sim- +ilarity ratios of the retrieved TM. +Domain +TM +scale +TM FMS ratio +[0, +0.2) +[0.2, +0.4) +[0.4, +0.6) +[0.6, +0.8) +[0.8, +1.0) +Medical +248K +7% +23% +20% +17% +33% +Law +467K +8% +31% +18% +14% +28% +IT +223K +14% +18% +28% +26% +14% +Koran +18K +2% +26% +33% +28% +11% +Subtitles +500K +3% +27% +43% +23% +4% +Table 3: Sentence numbers in the TM database in each do- +main and the similarity ratios of the retrieved TM. +NiuTrans’ WMT20 En-Zh model (Zhang et al. 2020) as our +base model. All of these models are very competitive that +they trained on more than 20 million training data and 10 +million extra back-translated data. +Main Experiment +Our main experiment involves the TM specialized transla- +tion task, the domain adaptation task, and the implementa- +tion on commercial NMT system. +TM Specialized translation. +In this experiment, we de- +coded the DGT-TM En-De and De-En test sets using face- +book’s WMT19 En-De and De-En models (Ng et al. 2019), +respectively. Besides, we decoded the UNPC En-Zh test set +and the homemade En-Zh test set with NiuTrans’ WMT20 +En-Zh model (Zhang et al. 2020). For the Mask-Align model +training, we used WMT20 En-Zh training data for the En-Zh +aligner and DGT-TM’s TM database for En-De and De-En +aligner. From the experimental results in Table 4, we have +the following observations. +First, in sentence-level TM, the BLEU score on DGT-TM +De-En, En-De, and homemade En-Zh test sets increased sig- +nificantly, with maximum BLEU score increases of 8.63, +5.74, and 7.74 points, respectively. Meanwhile, the transla- +tion improved slightly on the UNPC En-Zh test set in di- +rectly, semicolon, and parenthesis concatenations. Second, +in fragment-level TM, the BLEU score increased by about +1 to 2 points or even decreased, compared to the baseline +(without TM). The main reason for this is that the NMT +model is trained on sentence-level training data rather than +sentence pieces. In addition, it is also affected by the perfor- +mance of the word aligner, which may provide error align- + +ment information. +Corpus +DGT-TM +UNPC +H-m +Lang +De-En +En-De +En-Zh +En-Zh +W/o TM +45.40 +39.03 +41.42 +46.43 +Sentence TM +Directly +53.74 +44.32 +41.70 +52.97 +Comma +52.44 +43.03 +41.33 +51.85 +Semico +53.42 +44.54 +42.31 +52.89 +Conjunc +53.65 +44.00 +41.15 +54.17 +Parenth +54.03 +44.77 +41.90 +53.87 +Fragment TM +47.21 +41.65 +39.85 +47.67 +Table 4: Experimental results on the DGT-TM En-De, De- +En, UNPC En-Zh, and the homemade En-Zh test sets. +Domain Adaptation. +Following the kNN-MT (Khandel- +wal et al. 2020) and its optimized counterparts, we con- +ducted the domain adaptation experiment and compared our +method with kNN-MT. We applied Facebook’s WMT19 De- +En model (Ng et al. 2019) for decoding. Experimental re- +sults are given in Table 5. +From the table, we can find that our method improves the +translation in all domains except Subtitles, with maximum +BLEU score improvements of 2.54, 3.05, 4.64 in IT, Law, +and Medical domains, respectively, whereas in Koran the +result is only 0.42 BLEU score higher. The fragment-level +TM method has the same tendency as the above experiment, +which is slightly higher only in IT and Medical domain than +the baseline. Besides, the improvement of our method is less +than kNN-MT in every domain. The original design of our +approach leads to this result. Our method retrieves the most +similar single TM and leverages the knowledge it contains +to improve the translation. How to leverage the knowledge +provided by TM is fully dependent on the NMT model itself. +While kNN-MT introduces an extra module to incorporate +the information explicitly from multiple similar context vec- +tors. +The main advantage of our method over kNN-MT is that +our method performs the retrieval based on string similarity, +and there is no need to store the context vectors, which saves +a lot of storage space. At the same time, kNN-MT searches +the context vectors in each beam in every timestep, which +is much slower than the vanilla NMT. However, our method +searches the TM only once and generates two sentences (tar- +get TM and the hypothesis) in the way of a vanilla NMT. +This will make our method much faster than kNN-MT. +Implementation on Commercial NMT System. +We im- +plemented our proposed method on a commercial NMT sys- +tem – NiuTrans Enterprise – to evaluate our method’s ap- +plicability in the real-world environment. We experimented +on UNPC En-Zh, Fr-Zh, and Ru-Zh, without modifying the +NMT model, even not aware of what kind of NMT model +is used. The word aligners for fragment-level TM on Fr-Zh +and Ru-Zh are trained on Fr-Zh and Ru-Zh TM databases, +respectively. Experimental results in Table 6 show that the +maximum improvement of sentence-level TM on En-Zh, Fr- +Zh, and Ru-Zh are 2.94, 3.55, 3.06 BLEU points, respec- +Domains +IT +Koran +Law +Medical Subtitles +kNN-MT +45.82 +19.45 +61.78 +54.35 +31.73 +W/o TM +38.09 +17.11 +45.92 +41.14 +29.45 +Sentence TM +Directly +40.19 +17.20 +48.78 +45.29 +28.18 +Comma +39.20 +16.46 +47.42 +43.47 +25.09 +Semico +39.74 +17.09 +48.91 +44.93 +26.44 +Conjunc +40.13 +17.03 +48.97 +45.13 +27.68 +Parenth +40.63 +17.53 +48.31 +45.78 +29.03 +Fragment TM +39.38 +16.49 +45.58 +43.31 +28.24 +Table 5: Experimental results on multi-domain datasets. +tively, and the fragment-level TM approach still get lower +BLEU scores than the baseline. The NMT models used +in this experiment have been trained on much more high- +quality training data than other models used in the above ex- +periments. The experimental results demonstrate that even +strong commercial NMT systems can be further improved +when similar TMs provided and that the sentence-level TM +approach can be applied in real-world situations where sim- +ilar TMs for input sentences are available. +Lang +En-Zh +Fr-Zh +Ru-Zh +W/o TM +41.59 +29.83 +35.62 +Sentence TM +Directly +44.18 +33.10 +37.94 +Comma +43.85 +31.63 +37.36 +Semico +44.48 +33.38 +37.89 +Conjunc +44.16 +33.04 +37.97 +Parenth +44.53 +33.05 +38.68 +Fragment TM +38.74 +27.78 +32.65 +Table 6: Experimental results on a commercial NMT system. +NMT Model’s Effect on Translation +In our proposed method, the generation of each token in the +target sentence relies on source TM, input sentence, target +TM and the generated part of target sentence, and the tar- +get TM is generated in a forced way. Therefore, the trans- +lation depends on the translation ability of the NMT model, +“strong” models improve greater, and “weak” models im- +prove less or even get worse results. In order to investi- +gate to what extent the results depend on the NMT model’s +“strength”, we conducted a series of experiments on the +UNPC En-Zh test set (see Table 2) with different NMT mod- +els. We measure the translation ability of a model in terms +of the training data scale and the model architecture. So, we +trained several NMT models using WMT20 En-Zh training +data, from the perspectives of training data scale and model +architecture. +Training Data Scale. +The training data of WMT20 En-Zh +has 20 million bilingual sentences. We uniformly split them +into four parts after shuffling, then trained four NMT models +with different data scales, in which the first model is trained +on the first 5 million datasets, the second model is trained + +on the first and second 5 million datasets, and so on. All of +the models are transformer big models proposed in Vaswani +et al. (2017). The experimental results are given in Table 7. +Models +b5M +b10M +b15M +b20M +ba20M bb20M +W/o TM +41.11 +41.40 +42.53 +43.19 +41.47 +42.53 +Directly +41.77 +42.45 +44.27 +44.26 +41.87 +43.75 +Comma +41.29 +41.88 +43.79 +43.99 +41.18 +43.36 +Semico +42.27 +42.45 +44.64 +45.13 +42.12 +44.28 +Conjunc +41.48 +42.04 +43.87 +44.33 +41.54 +43.09 +Parenth +41.68 +42.63 +44.49 +44.53 +41.93 +43.85 +Max ∆ +1.16 +1.23 +2.11 +1.94 +0.65 +1.75 +Table 7: Experimental results on UNPC En-Zh test set with +different NMT models, including four transformer big mod- +els trained on 5 million, 10 million, 15 million, and 20 mil- +lion training data (denoted as b5M, b10M, b15M, b20M, +respectively), and a transformer base and a bigger model +trained on 20 million training data (denoted as ba20M and +bb20M, respectively), max ∆ denotes the maximum im- +provement comparing to decoding without TM. +Model Architecture. +In this experiment, we investigate +the impact of the model architecture on our proposed +method. We chose WMT20 En-Zh dataset with 20 million +bilingual sentences in the above experiment and trained the +transformer base, big and bigger models, respectively. Their +attention heads, hidden sizes, and filter sizes are (8, 512, +2048), (16, 1024, 4096), and (24, 1536, 6144), respectively. +From the experimental results in Table 7, we have the obser- +vations below. +For the same model architecture, with the increase of +training data scale, the translation ability of the model is get- +ting stronger, and the BELU improvement of our method is +also higher compared with the baseline, as the maximum +BLEU score improvement of the models b15M and b20M +are higher than that of b5M and b10M. In addition, for the +models trained on the same training data, the ba20M model +is “weaker” than the b20M and bb20M models, and the max- +imum BLEU score improvement is also lower than the latter +two models. We can find a similar phenomenon if we look +back to Table 4 and Table 6. The dataset for UNPC En-Zh +is the same in these two experiments, and the NMT model +of the commercial NMT system is much “strong” than the +NMT model used in table 4, and the maximum improvement +of the former is an 2.94 BLEU points, whereas the latter’s is +0.89 BLEU points. From these results, we conclude that the +sentence-level TM approach of our method can further im- +prove strong baselines, and the “stronger” the NMT model, +the greater the improvement will be. +TM Similarity +As our method obtain useful information from a single TM +sentence pair, the translation result is influenced by the simi- +larity of the retrieved TM. TMs with high similarity provide +more useful information for the translation, while less simi- +lar ones may introduce noise to decoding. In this experiment, +[0.1,0.2) +[0.2,0.3) +[0.3,0.4) +[0.4,0.5) +[0.5,0.6) +[0.6,0.7) +[0.7,0.8) +[0.8,0.9) +[0.9,1.0] +Similarity range of TM +35 +40 +45 +50 +55 +BLEU score +directly +comma +semicolon +conjunction +parenthesis +w/o TM +Figure 3: BLEU scores on different similarity ranges. +we explore the similarity threshold that a TM can help or +not. We decoded the UNPC En-Zh test set using NiuTrans’ +WMT20 En-Zh model (Zhang et al. 2020). Specifically, the +test set is divided into various portions based on the similar- +ity score, and each portion of the test set is decoded individ- +ually both with the sentence-level TM approach and baseline +(without TM). +From the experimental results in Figure 3, we can find +that the BLEU scores of our method are lower than the base- +line when the similarity score is lower than 0.6; when it is +between 0.6 and 0.8, some of our concatenation methods +perform better than the baseline with a marginal advantage; +when it is higher than 0.8, all of the concatenation meth- +ods outperform the baseline significantly, with a maximum +improvement of 7.09 and 6.11 BLEU points, respectively. +Therefore, the FMS threshold for sentence-level TM of the +NiuTrans WMT20 En-Zh model is 0.8. +The threshold is determined by the “strength” of the NMT +model that “strong” models are more robust to obtaining +useful information and avoiding noises introduced by less +similar TMs. Thus, “strong” models have lower FMS thresh- +olds. In practice, the threshold can be used to decide whether +to apply TM for decoding. +Sentence Length +In this section, we investigate the impact of input sentence +length on translation. To avoid the TM similarity influencing +the experimental results, we used the test set itself as the re- +trieved TM, which means that the TMs are 100% similar to +the input sentences. We split the test set into groups accord- +ing to the length of the input sentence, and uniformly chose +170 sentences from each group as the test set (the minimum +sentence number of the original groups is 171). The experi- +mental results are given in Figure 4. +From the experimental results, we can find a sharp ten- +dency that the performance of our proposed method de- +creases and eventually be comparable to the baseline as the +sentence length increases. The performance of the baseline, + +[0,10) +[10,20) +[20,30) +[30,40) +[40,50) +[50,60) +[60,-) +Input sentence length +40 +50 +60 +70 +80 +BLEU score +directly +comma +semicolon +conjunction +parenthesis +w/o TM +Figure 4: input sentence length impact on BLEU. +however, tends to be steady. This is also determined by the +initial design of our method. For an input sentence, we em- +ploy an NMT model that has been trained on a sentence- +level dataset. As we concatenate the source TM with the +input sentence before feeding them into the NMT model, +the length of the input for the model encoder will be dou- +bled. In this way, the whole sentence length of a lengthy sen- +tence and its corresponding TM will deviate from the train- +ing model’s sentence length distribution. This is the main +cause of our method’s performance in the figure degrading +on lengthy sentences. Therefore, our method can not han- +dle long sentences well even though a highly similar sen- +tence is retrieved. After calculation, we find that the average +sentence length of the UNPC En-Zh test set and homemade +En-Zh test set in Table 4 are 29.58 and 10.99. This is why +the latter can improve the translation more significantly than +the former even though there are fewer sentences with high +similarity than there are in the former. +Related Work +Many studies have been conducted in recent years to en- +hance MT quality using TMs. With the emergence of NMT, +the MT community is seeing an increasing interest in TM +research. There are mainly two research lines for TM inte- +gration into NMT: constraining the decoding process with +TM and using TM to train a more powerful NMT model. +The main idea of the first research line is to increase +the generation probability of some target words based on +the retrieved TM. Zhang et al. (2018) constrained the de- +coding process by increasing the generation possibility of +the target words which are in the aligned slices extracted +from retrieved TM. Following this work, He et al. (2019) +added positional information for words in the TM slices. +Unlike the above approaches, Li, Zhang, and Zong (2016) +and Farajian et al. (2017) embedded the retrieved TM in- +formation into the NMT model by fine-tuning the NMT +model with TMs before translating the input sentence. In- +stead of incorporating sentence level TM, the recent work – +kNN-MT – retrieved TM from dense vectors (Khandelwal +et al. 2020). First, they created a key-value datastore from +the TM database, where the key is the translation context +vector of each time step, and the value is the true target to- +ken. In the inference time, kNN-MT interpolates the gen- +eration probability of the NMT model and retrieved simi- +lar target distribution from that datastore at each time step. +Following kNN-MT, several researches optimized kNN-MT +from different perspectives. Meng et al. (2022) accelerated +the inference process by narrowing the search range, in- +stead of searching from the entire data store. By introduc- +ing a lightweight meta-k network, Zheng et al. (2021) dy- +namically determines how many neighbors should be intro- +duced. Wang et al. (2021a) further accelerated kNN-MT in- +ference by constraining search space when constructing the +data store. Instead of retrieving a single token, Martins, Mar- +inho, and Martins (2022) retrieved chunks of tokens from the +data store to speed up kNN-MT. +The second research line aims to train the generation +model to learn how to deal with the retrieved TMs. Bult´e and +Tezcan (2019) and Xu, Crego, and Senellart (2020) used a +data augmentation way to concatenate the retrieved TM with +input sentence during training. While some researches mod- +ified the NMT model architecture to better integrate TMs. +Cao and Xiong (2018) and Gu et al. (2018) introduced a +gating mechanism module to control the signal from the re- +trieved TM. Cao, Kuang, and Xiong (2020) designed an ad- +ditional transformer encoder to encode the target sentence +of retrieved TM, and integrate them through the attention +mechanism. In Xia et al. (2019), the retrieved multiple TMs +are compressed into a graph structure for speed up and space +savings and then are integrated into the model via the at- +tention mechanism. He et al. (2021) proposed a lightweight +method to incorporate the target sentence of retrieved TM in +an extra attention module. Unlike all of the above methods, +Cai et al. (2021) proposed a method to incorporate mono- +lingual TM into NMT, and the target sentence retriever and +NMT model are trained jointly. +Conclusion and Future Work +In this paper, we propose a simple but effective method to +incorporate TM into NMT decoding without modifying the +pre-trained NMT model. Specifically, we treat the retrieved +TMs as prompts for the translation of the input sentence by +concatenating the source TM with the input sentence and +generating the target token in a forced way. Experiments on +the TM specialized translation task, domain adaptation task, +and implementation on commercial MT system verify the +effectiveness of our method. Our method is easy to imple- +ment and can be applied to customize a TM-incorporated +machine translation system for TM data on the user side. +Our method in this paper suffers from TM sentences with +low similarity scores and long sentences. In the future, we +will investigate more effective methods to alleviate the draw- +backs of our methods in low similarity TM and long sen- +tence translation situations. + +Acknowledgments +This work was supported by National Key R&D Program +of China (No. 2020AAA0107904). We are very thankful to +anonymous reviewers for their comments. +References +Aharoni, R.; and Goldberg, Y. 2020. Unsupervised Domain +Clusters in Pretrained Language Models. +In Proceedings +of the 58th Annual Meeting of the Association for Com- +putational Linguistics, ACL 2020, Online, July 5-10, 2020, +7747–7763. Association for Computational Linguistics. +Bapna, A.; and Firat, O. 2019. Non-Parametric Adaptation +for Neural Machine Translation. In Proceedings of the 2019 +Conference of the North American Chapter of the Associa- +tion for Computational Linguistics: Human Language Tech- +nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June +2-7, 2019, Volume 1 (Long and Short Papers), 1921–1931. +Association for Computational Linguistics. +Bialecki, A.; Muir, R.; and Ingersoll, G. 2012. +Apache +Lucene 4. +In Proceedings of the SIGIR 2012 Workshop +on Open Source Information Retrieval, OSIR@SIGIR 2012, +Portland, Oregon, USA, 16th August 2012, 17–24. Univer- +sity of Otago, Dunedin, New Zealand. +Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; +Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, +A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, +T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, +C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; +Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, +A.; Sutskever, I.; and Amodei, D. 2020. Language Models +are Few-Shot Learners. In Advances in Neural Information +Processing Systems 33: Annual Conference on Neural Infor- +mation Processing Systems 2020, NeurIPS 2020, December +6-12, 2020, virtual. +Bult´e, B.; and Tezcan, A. 2019. Neural Fuzzy Repair: Inte- +grating Fuzzy Matches into Neural Machine Translation. In +Proceedings of the 57th Conference of the Association for +Computational Linguistics, ACL 2019, Florence, Italy, July +28- August 2, 2019, Volume 1: Long Papers, 1800–1809. As- +sociation for Computational Linguistics. +Cai, D.; Wang, Y.; Li, H.; Lam, W.; and Liu, L. 2021. Neural +Machine Translation with Monolingual Translation Mem- +ory. In Proceedings of the 59th Annual Meeting of the As- +sociation for Computational Linguistics and the 11th Inter- +national Joint Conference on Natural Language Process- +ing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual +Event, August 1-6, 2021, 7307–7318. Association for Com- +putational Linguistics. +Cao, Q.; Kuang, S.; and Xiong, D. 2020. Learning to Reuse +Translations: Guiding Neural Machine Translation with Ex- +amples. In ECAI 2020 - 24th European Conference on Arti- +ficial Intelligence, 29 August-8 September 2020, Santiago de +Compostela, Spain, August 29 - September 8, 2020 - Includ- +ing 10th Conference on Prestigious Applications of Artificial +Intelligence (PAIS 2020), volume 325 of Frontiers in Artifi- +cial Intelligence and Applications, 1982–1989. IOS Press. +Cao, Q.; and Xiong, D. 2018. +Encoding Gated Transla- +tion Memory into Neural Machine Translation. In Proceed- +ings of the 2018 Conference on Empirical Methods in Nat- +ural Language Processing, Brussels, Belgium, October 31 +- November 4, 2018, 3042–3047. Association for Computa- +tional Linguistics. +Chen, C.; Sun, M.; and Liu, Y. 2021. +Mask-Align: Self- +Supervised Neural Word Alignment. In Proceedings of the +59th Annual Meeting of the Association for Computational +Linguistics and the 11th International Joint Conference on +Natural Language Processing, ACL/IJCNLP 2021, (Volume +1: Long Papers), Virtual Event, August 1-6, 2021, 4781– +4791. Association for Computational Linguistics. +Dillon, S.; and Fraser, J. 2006. Translators and TM: An in- +vestigation of translators’ perceptions of translation memory +adoption. Mach. Transl., 20(2): 67–79. +Farajian, M. A.; Turchi, M.; Negri, M.; and Federico, M. +2017. Multi-Domain Neural Machine Translation through +Unsupervised Adaptation. +In Proceedings of the Second +Conference on Machine Translation, WMT 2017, Copen- +hagen, Denmark, September 7-8, 2017, 127–137. Associa- +tion for Computational Linguistics. +Gu, J.; Wang, Y.; Cho, K.; and Li, V. O. K. 2018. Search +Engine Guided Neural Machine Translation. In Proceedings +of the Thirty-Second AAAI Conference on Artificial Intelli- +gence, (AAAI-18), the 30th innovative Applications of Artifi- +cial Intelligence (IAAI-18), and the 8th AAAI Symposium on +Educational Advances in Artificial Intelligence (EAAI-18), +New Orleans, Louisiana, USA, February 2-7, 2018, 5133– +5140. AAAI Press. +He, Q.; Huang, G.; Cui, Q.; Li, L.; and Liu, L. 2021. Fast +and Accurate Neural Machine Translation with Translation +Memory. In Proceedings of the 59th Annual Meeting of the +Association for Computational Linguistics and the 11th In- +ternational Joint Conference on Natural Language Process- +ing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual +Event, August 1-6, 2021, 3170–3180. Association for Com- +putational Linguistics. +He, Q.; Huang, G.; Liu, L.; and Li, L. 2019. Word Posi- +tion Aware Translation Memory for Neural Machine Trans- +lation. In Natural Language Processing and Chinese Com- +puting - 8th CCF International Conference, NLPCC 2019, +Dunhuang, China, October 9-14, 2019, Proceedings, Part I, +volume 11838 of Lecture Notes in Computer Science, 367– +379. Springer. +Hossain, N.; Ghazvininejad, M.; and Zettlemoyer, L. 2020. +Simple and Effective Retrieve-Edit-Rerank Text Generation. +In Proceedings of the 58th Annual Meeting of the Associa- +tion for Computational Linguistics, ACL 2020, Online, July +5-10, 2020, 2532–2538. Association for Computational Lin- +guistics. +Khandelwal, U.; Fan, A.; Jurafsky, D.; Zettlemoyer, L.; and +Lewis, M. 2020. +Nearest Neighbor Machine Translation. +CoRR, abs/2010.00710. +Li, L.; Way, A.; and Liu, Q. 2014. A discriminative frame- +work of integrating translation memory features into SMT. +In Proceedings of the 11th Conference of the Association + +for Machine Translation in the Americas: MT Researchers +Track, AMTA 2014, Vancouver, Canada, October 22-26, +2014, 249–260. Association for Machine Translation in the +Americas. +Li, X.; Zhang, J.; and Zong, C. 2016. +One Sentence +One Model for Neural Machine Translation. +CoRR, +abs/1609.06490. +Li, Y.; and Liu, B. 2007. A Normalized Levenshtein Dis- +tance Metric. IEEE Trans. Pattern Anal. Mach. Intell., 29(6): +1091–1095. +Ma, Y.; He, Y.; Way, A.; and van Genabith, J. 2011. Consis- +tent Translation using Discriminative Learning - A Transla- +tion Memory-inspired Approach. In The 49th Annual Meet- +ing of the Association for Computational Linguistics: Hu- +man Language Technologies, Proceedings of the Confer- +ence, 19-24 June, 2011, Portland, Oregon, USA, 1239–1248. +The Association for Computer Linguistics. +Martins, P. H.; Marinho, Z.; and Martins, A. F. T. +2022. Chunk-based Nearest Neighbor Machine Translation. +CoRR, abs/2205.12230. +Meng, Y.; Li, X.; Zheng, X.; Wu, F.; Sun, X.; Zhang, T.; and +Li, J. 2022. Fast Nearest Neighbor Machine Translation. In +Findings of the Association for Computational Linguistics: +ACL 2022, Dublin, Ireland, May 22-27, 2022, 555–565. As- +sociation for Computational Linguistics. +Ng, N.; Yee, K.; Baevski, A.; Ott, M.; Auli, M.; and Edunov, +S. 2019. Facebook FAIR’s WMT19 News Translation Task +Submission. In Proceedings of the Fourth Conference on +Machine Translation, WMT 2019, Florence, Italy, August 1- +2, 2019 - Volume 2: Shared Task Papers, Day 1, 314–319. +Association for Computational Linguistics. +Sennrich, R.; Haddow, B.; and Birch, A. 2016. Neural Ma- +chine Translation of Rare Words with Subword Units. In +Proceedings of the 54th Annual Meeting of the Associa- +tion for Computational Linguistics, ACL 2016, August 7-12, +2016, Berlin, Germany, Volume 1: Long Papers. The Asso- +ciation for Computer Linguistics. +Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, +L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At- +tention is All you Need. In Advances in Neural Information +Processing Systems 30: Annual Conference on Neural In- +formation Processing Systems 2017, December 4-9, 2017, +Long Beach, CA, USA, 5998–6008. +Wang, K.; Zong, C.; and Su, K. 2013. Integrating Transla- +tion Memory into Phrase-Based Machine Translation during +Decoding. In Proceedings of the 51st Annual Meeting of the +Association for Computational Linguistics, ACL 2013, 4-9 +August 2013, Sofia, Bulgaria, Volume 1: Long Papers, 11– +21. The Association for Computer Linguistics. +Wang, S.; Li, J.; Meng, Y.; Ouyang, R.; Wang, G.; Li, X.; +Zhang, T.; and Zong, S. 2021a. Faster Nearest Neighbor +Machine Translation. CoRR, abs/2112.08152. +Wang, Y.; Yao, Q.; Kwok, J. T.; and Ni, L. M. 2021b. Gener- +alizing from a Few Examples: A Survey on Few-shot Learn- +ing. ACM Comput. Surv., 53(3): 63:1–63:34. +Xia, M.; Huang, G.; Liu, L.; and Shi, S. 2019. Graph Based +Translation Memory for Neural Machine Translation. +In +The Thirty-Third AAAI Conference on Artificial Intelligence, +AAAI 2019, The Thirty-First Innovative Applications of Ar- +tificial Intelligence Conference, IAAI 2019, The Ninth AAAI +Symposium on Educational Advances in Artificial Intelli- +gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - +February 1, 2019, 7297–7304. AAAI Press. +Xu, J.; Crego, J. M.; and Senellart, J. 2020. Boosting Neural +Machine Translation with Similar Translations. In Proceed- +ings of the 58th Annual Meeting of the Association for Com- +putational Linguistics, ACL 2020, Online, July 5-10, 2020, +1580–1590. Association for Computational Linguistics. +Zhang, J.; Utiyama, M.; Sumita, E.; Neubig, G.; and Naka- +mura, S. 2018. Guiding Neural Machine Translation with +Retrieved Translation Pieces. In Proceedings of the 2018 +Conference of the North American Chapter of the Associa- +tion for Computational Linguistics: Human Language Tech- +nologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, +June 1-6, 2018, Volume 1 (Long Papers), 1325–1335. Asso- +ciation for Computational Linguistics. +Zhang, Y.; Wang, Z.; Cao, R.; Wei, B.; Shan, W.; Zhou, +S.; Reheman, A.; Zhou, T.; Zeng, X.; Wang, L.; Mu, Y.; +Zhang, J.; Liu, X.; Zhou, X.; Li, Y.; Li, B.; Xiao, T.; and +Zhu, J. 2020. The NiuTrans Machine Translation Systems +for WMT20. In Proceedings of the Fifth Conference on Ma- +chine Translation, WMT@EMNLP 2020, Online, November +19-20, 2020, 338–345. Association for Computational Lin- +guistics. +Zheng, X.; Zhang, Z.; Guo, J.; Huang, S.; Chen, B.; Luo, +W.; and Chen, J. 2021. +Adaptive Nearest Neighbor Ma- +chine Translation. In Proceedings of the 59th Annual Meet- +ing of the Association for Computational Linguistics and the +11th International Joint Conference on Natural Language +Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), +Virtual Event, August 1-6, 2021, 368–374. Association for +Computational Linguistics. + diff --git a/T9E5T4oBgHgl3EQfAg7p/content/tmp_files/load_file.txt b/T9E5T4oBgHgl3EQfAg7p/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c75edc6a74a0e4aec62d55b9137891d704a3d937 --- /dev/null +++ b/T9E5T4oBgHgl3EQfAg7p/content/tmp_files/load_file.txt @@ -0,0 +1,961 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf,len=960 +page_content='Prompting Neural Machine Translation with Translation Memories Abudurexiti Reheman1, Tao Zhou1, Yingfeng Luo1, Di Yang2, Tong Xiao1,2, Jingbo Zhu1,2* 1School of Computer Science and Engineering, Northeastern University, Shenyang, China 2NiuTrans Research, Shenyang, China rexiti neu@outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='com, zhoutao neu@outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='com, luoyingfengmail@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='com, yangdi@niutrans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='com, {xiaotong, zhujingbo}@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='neu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='cn Abstract Improving machine translation (MT) systems with translation memories (TMs) is of great interest to practitioners in the MT community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' However, previous approaches require either a significant update of the model architecture and/or additional training efforts to make the models well-behaved when TMs are taken as additional input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' In this paper, we present a sim- ple but effective method to introduce TMs into neural ma- chine translation (NMT) systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Specifically, we treat TMs as prompts to the NMT model at test time, but leave the train- ing process unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' The result is a slight update of an ex- isting NMT system, which can be implemented in a few hours by anyone who is familiar with NMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Experimental results on several datasets demonstrate that our system significantly outperforms strong baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Introduction Integrating TM is one of the commonly used techniques to improve real-world MT systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' In TM-assisted MT sys- tems, it is often assumed that there is a database in which high-quality bilingual sentence pairs are stored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' When trans- lating an input sentence, the most (or top-K) similar sen- tence pair, which is retrieved from TM, is used to optimize the translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' From the perspective of practical application, this approach is particularly useful for MT, especially when sentences are highly repetitive, such as in translating tech- nical manuals, legal provisions, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Previous works show that translation quality can be significantly improved when a well-matched TM sentence pair is provided both in Sta- tistical Machine Translation (SMT) (Ma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Wang, Zong, and Su 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Li, Way, and Liu 2014) and Neural Ma- chine Translation (NMT) (Gu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Khandelwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' However, there are two major problems with this type of work in real-world applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' First, it is difficult to find such a TM dataset in most cases, especially when users can not share their TM data with the public for some reason.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Second, previous approaches often require model changes, including training the model with TM (Bult´e and Tezcan 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Hossain, Ghazvininejad, and Zettlemoyer 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Xu, Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Encoder Decoder 𝑥1 𝑡𝑚 ··· 𝑥𝑚 𝑡𝑚 𝑥1 ··· 𝑥𝑛 𝑦1 𝑡𝑚··· 𝑦𝑘 𝑡𝑚 𝑦1 ··· 𝑦𝑙 𝑦1 𝑡𝑚··· 𝑦𝑘 𝑡𝑚 𝑦1 ··· 𝑦𝑙 Force decoding Figure 1: Structure of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' The source and target sentences of TM are concatenated with the input sen- tence and hypothesis in a specific concatenation template, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' The tokens in the target TM together with the concatenation template are generated in a forced manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' The lengths of the source and target TM together with the concatenation templates are m and k, and the lengths of the input sentence and hypothesis are n and l, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Crego, and Senellart 2020), changing the NMT model ar- chitecture for TM integration (Gu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Bapna and Firat 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Xia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2021), and introducing additional modules (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Khan- delwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' In this case, it is difficult to incorporate TM into the NMT system even if TM data is provided, since TM incorporation can not be accomplished on a generic de- coder, and a deeply customized decoder is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Here, we address this problem by using few-shot learning (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2021b), which enables the system to quickly adapt to a small number of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' The recent prevalence of prompt-based approaches (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' 2020), which transfer the original task into a generation task by design- ing an appropriate template without modifying the language model, gives us some inspiration that the retrieved TM can prompt the translation of the input sentence without modify- ing the NMT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Based on this idea, we propose a simple approach to quickly adapt the NMT model in the few-shot TM scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Specifically, we treat TMs as prompts to the NMT model during the decoding process, with very small changes to the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Our method can cover the advantages of conven- tional TM augmented methods and bring some new ideas, such as incorporating users’ local historical translation data into NMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='05380v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='CL] 13 Jan 2023 In order to prompt the translation with the retrieved TM, we design several templates to concatenate the source TM with the input sentence and feed the concatenated sentence into the model encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' On the decoder side, we generate the target TM and the concatenation template in a forced way first, then let the model generate the other parts au- tomatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Regarding TM granularity, our method works well on sentence-level and fragment-level TM by design- ing appropriate templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Experimental results on several datasets show that our method can further improve the trans- lation quality on strong NMT models, and with comparable performance with the state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Background NMT Decoding Suppose x = {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=', xn} is the source sentence, and NMT translates it into the corresponding target sentence y = {y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=', ym} by using a trained NMT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' In practice, it turns the decoding into a searching problem, and a beam searcher is adopted to get the target sentence with the high- est generation probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Generally, an NMT model gener- ates in an auto-regressive way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' Therefore, the generation of each token relies on the source sentence and the generated prefix of the target sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfAg7p/content/2301.05380v1.pdf'} +page_content=' The generation of the whole tar- get sentence can be formulated as a conditional probability P(y|x) described below: P(y|x) = m � i=0 P(yi|x, y zL, adding the objective function cut into the original formulation would create an +optimal face almost as high-dimensional as the original LP relaxation polyhedron under the mild +assumption that the LP relaxation of (1) contains a point x′ with c⊤x′ > zD. Consequently, adding +the objective function cut would often yield a formulation with a large optimal face. This, in turn, +can cause not only performance variability [26], but also serious computational issues especially in +early stages of the branch and cut in terms of branching [27], as well as cutting plane generation. +3.1 +An alternative approach +In Section 2.2, we observed that valid inequalities for the DW relaxation can be generated while +solving the pricing subproblems, and adding these valid inequalities into the natural LP relaxation +can at most yield DW bound zD. We next show that relatively few of these cutting planes can +readily recover zD. Specifically, assume at iteration t of DW decomposition, the restricted LP we +solve is of the form +zt +D = min c⊤x +s.t. xI(j) = +� +v∈ ˆV j +vλj +v + +� +r∈ ˆRj +rµj +r, +j ∈ J, +(πj) +Ax ≥ b, +(β) +� +v∈ ˆV j +λj +v = 1, +j ∈ J, +(θj) +λj ≥ 0, µj ≥ 0, +j ∈ J. +(6) +Let (π1,t, . . . , πq,t, βt, θt +1, . . . , θt +q) denote the optimal values of dual variables (π1, . . . , πq, β, θ1, . . . , θq) +for the restricted LP at iteration t. We then have the following result for the valid inequalities +derived at the last iteration of DW decomposition. +6 + +Theorem 2. Assume DW decomposition terminates in T iterations. Then, +zD = min c⊤x +(7a) +s.t. (πj,T )⊤xI(j) ≥ Dj(πj,T ), +j ∈ J, +(7b) +Ax ≥ b. +(7c) +Proof. The “≥” direction is implied by the definition of zD as inequality (7b) is valid for conv(Qj) +for j ∈ J. We next show the “≤” direction. Based on LP duality of (6) at iteration T and the +termination condition of DW decomposition, the following equalities hold: +1. zD = b⊤βT + �q +j=1 θT +j ; +2. ci = A⊤ +i βT + � +j:i∈I(j) πj,T +i +, i = 1, . . . , n. +Note that at the last iteration T, the DW pricing subproblems are bounded. Let (vj,T )q +j=1 denote +the solutions of the DW pricing subproblems at iteration T. Note that the reduced costs associated +with points (vj,T )q +j=1 are nonnegative at iteration T of DW decomposition, i.e., (πj,T )⊤vj,T − θT +j = +Dj(πj,T ) − θT +j ≥ 0 for j ∈ J. Therefore, for each solution x satisfying (7b) and (7c), we have the +following inequality: +c⊤x = +n +� +i=1 +cixi = +n +� +i=1 +� +xiA⊤ +i βT + +� +j:i∈I(j) +xiπj,T +i +� += (βT ) +���� +≥0 +⊤ Ax +���� +≥b ++ +q +� +j=1 +(πj,T )⊤xI(j) +� +�� +� +≥Dj(πj,T ) +≥ b⊤βT + +q +� +j=1 +Dj(πj,T ) ≥ b⊤βT + +q +� +j=1 +θT +j = zD. +(8) +We call inequalities (7b) last-iteration DW cuts. Theorem 2 shows that q last-iteration DW +cuts together with linking constraints recover the DW bound zD. We remark that the last-iteration +DW cuts are not necessarily all nontrivial. It is possible that πj,T = 0 for some j ∈ J, which implies +that the convexification of the j-th block has no impact on improving the dual bound. +It is worth emphasizing that (7) is not a valid formulation for the MIP (1) even if we add +integrality constraints x ∈ X to it. One should use last-iteration DW cuts as cutting planes and +add them to the original formulation (1) to obtain a valid formulation whose LP relaxation bound +is precisely zD. Also note that Theorem 2 does not imply that last-iteration DW cuts dominate +other cutting planes of the form (5) that can be generated at intermediate iterations τ < T, in the +sense that intermediate-iteration DW cuts may still cut off fractional points that do not violate +any of the last-iteration DW cuts. +3.2 +Dual Degeneracy and LP Optimal Face +When comparing the strength of different collections of cutting planes or different formulations, +very often the LP relaxation bound is used as the sole criterion. However, the effectiveness of two +formulations in branch and cut may differ significantly even if they have the same or very similar +LP relaxation bounds. A particular measure that should also be taken into account is the dual +degeneracy level of the LP relaxation of the formulation [27]. A dual basic solution of an LP is +called dual degenerate if at least one of the dual basic variable is set to 0 in that solution. Next, we +formally define the degeneracy level of a dual basic solution of an LP (given in inequality form). +7 + +Definition 1. Consider an LP with n variables and m inequality constraints, and let α be a basic +feasible dual solution. We define the degeneracy level of α to be n − ∥α∥0. +A highly dual degenerate LP relaxation is associated with many alternative LP basic primal +optimal solutions, which usually corresponds to a large optimal face. The following result shows +how the size of the optimal face, in particular, its dimension, is related to the degeneracy level of +a dual basic optimal solution. +Proposition 3. Assume α∗ ∈ Rm ++ is a dual basic optimal solution of an LP with n variables and +m inequality constraints. Then, the optimal face of the LP has dimension at most n − ∥α∗∥0. Fur- +thermore, if α∗ is the unique dual optimal solution, then the optimal face of the LP has dimension +exactly n − ∥α∗∥0. +Proof. Assume the LP is of the form min{c⊤x : Gx ≥ h}. Let F denote the optimal face of the +LP, i.e., +F = {x : Gx ≥ h, c⊤x ≤ h⊤α∗}. +(9) +Let (gk)⊤ denote the k-th row of G. +By complementary slackness of LP, (gk)⊤x = hk for all +x ∈ F for all k with α∗ +k > 0. Since α∗ is a dual basic optimal solution, {(gk, hk)}k:α∗ +k>0 are linearly +independent. Otherwise, there exists β ∈ Rm \ {0} such that βk = 0 for all k with α∗ +k = 0 and +� +k:α∗ +k>0 βk(gk, hk) = 0. Note that α∗ + ϵβ and α∗ − ϵβ are then both dual optimal solutions of the +LP for small enough positive ϵ, which contradicts the fact that α∗ is a dual basic optimal solution. +Therefore, dim(F) ≤ n − rank({gk}k:α∗ +k>0) = n − rank({(gk, hk)}k:α∗ +k>0) = n − ∥α∗∥0. Here, the +first inequality follows from [25, Theorem 3.17], the second equality follows from the consistency +of the linear system {(gk)⊤x = hk}k:α∗ +k>0, and the third equality follows from linear independence +of {(gk, hk)}k:α∗ +k>0. +If α∗ is the unique dual optimal solution, by strict complementary slackness of LP [28], there +exists an optimal solution x∗ ∈ F of the LP, such that (gk)⊤x∗ > hk for all k with α∗ +k = 0. It implies +that {(gk)⊤x = hk}k:α∗ +k>0 and c⊤x = h⊤α∗ are exactly all the implicit equalities that hold in the +inequality description (9) of F. By LP duality, c⊤x = h⊤α∗ is implied by {(gk)⊤x = hk}k:α∗ +k>0. +Therefore, by [25, Theorem 3.17], dim(F) = n − rank({gk}k:α∗ +k>0) = n − ∥α∗∥0. +We remark that Proposition 3 does not extend to dual nonbasic optimal solutions, moreover, +the ℓ0-norm of dual nonbasic optimal solutions can be greater than n. Note that the dual optimal +solution is unique when the primal solution is nondegenerate. For the primal degenerate case, +even if there exists a unique dual basic optimal solution, it is possible that the dimension of the +optimal face of the LP is strictly less than the degeneracy level of that dual basic optimal solution. +See Example 2 in Appendix C for an example where the unique dual basic optimal solution has a +strictly positive dual degeneracy level but the primal optimal solution is still unique. +Under some mild assumptions, Proposition 3 implies the dimension of the optimal face of the +LP (7). +Proposition 4. Assume the LP (7) has a unique dual optimal solution. Then, the optimal face +of (7) has dimension n − q − ∥βT ∥0. +Proof. Note that the proof of Theorem 2 implies that (1, . . . , 1, βT ) is a dual optimal solution of +(7). The result then follows from Proposition 3. +Proposition 4 also implies that if the dual optimal solution is unique, then none of the DW +last-iteration cuts can be redundant. If this is not the case, the dimension of the optimal face +8 + +after adding the last iteration cuts depends on the number of cuts that are active. Note that when +applying the last-iteration DW cuts in practice, we would add them to the original formulation +(1), resulting in an LP optimal face whose size can be even smaller due to constraints xI(j) ∈ P j, +j ∈ J. +4 +Bound Computation and Cut Generation via Lagrangian Re- +laxation +Lagrangian relaxation [29] is an alternative approach for computing the DW bound zD. In La- +grangian relaxation, separate auxiliary variables are created for each block and these auxiliary +variables are related to the original variables using additional (copying) constraints. The copying +constraints together with the linking constraints Ax ≥ b are then dualized into the objective to +obtain a Lagrangian relaxation of (2). More precisely, one writes +zD = min c⊤x +(10a) +s.t. yj ∈ conv(Qj), +j ∈ J, +(10b) +yj = xI(j), +j ∈ J, +(πj) +(10c) +Ax ≥ b. +(β) +(10d) +After dualizing constraints (10c) and (10d) using variables π and β ≥ 0, one obtains the following +Lagrangian relaxation: +z(π, β) = min c⊤x + +q +� +j=1 +(πj)⊤(yj − xI(j)) + β⊤(b − Ax), +s.t. yj ∈ Qj, +j ∈ J. +(11) +Note that when the index sets {I(j)}q +j=1 are nonoverlapping, (10) and (11) can be simplified by +properly removing the copying constraints and the associated dual variables π. +In general, it follows from Lagrangian duality [30] that the largest Lagrangian relaxation bound +matches zD, i.e., +zD = max +β≥0,π z(π, β). +(12) +Note that x is unconstrained in (11) and therefore z(π, β) = −∞ unless the coefficients of the x +variables in the objective function are zero, i.e., +ci − +� +j:i∈I(j) +πj +i − β⊤Ai = 0 +for all i ∈ {1, . . . , n}, +where Ai denotes the i-th column of A. Consequently, (12) can also be written as +zD = max z(π, β) +(13a) +s.t. +� +j:i∈I(j) +πj +i + β⊤Ai = ci, +i = 1, . . . , n, +(13b) +β ≥ 0. +(13c) +Problem (13) is called the Lagrangian dual problem. For (π, β) satisfying (13b) and (13c), it holds +that +z(π, β) = +q +� +j=1 +Dj(πj) + b⊤β, +9 + +Figure 3: Comparison of the Cutting Plane Method (Left) and the Level Method (Right) on Solving +the Lagrangian Dual Problem +0 +200 +400 +600 +800 +1000 +No. of Iterations +1000 +800 +600 +400 +200 +0 +Relative Gap (%) +cutting plane method UB +cutting plane method LB +0 +200 +400 +600 +800 +1000 +No. of Iterations +1000 +800 +600 +400 +200 +0 +Relative Gap (%) +level method UB +level method LB +where Dj : R|I(j)| → R ∪ {−∞} is a piecewise linear concave function of the form +Dj(πj) = min{(πj)⊤v : v ∈ Qj}. +(14) +Therefore, (13) is a nonsmooth convex optimization problem with a separable objective function. It +is worth emphasizing that the pricing problem (4) in DW decomposition has exactly the same form +as (14). The function values and supergradients of the concave function Dj(·) can be evaluated by +solving (14) [29] (an optimal solution of (14) is a supergradient of Dj(·) at πj). This alternative +way of viewing DW bound zD as the optimal value of the Lagrangian dual problem allows us +to use various convex optimization methods for computing DW bound zD. +For example, DW +decomposition is equivalent to applying the classical cutting plane method [31] to solve (13). Since +the description of Qj involves integer variables in general, functions Dj(·) are often piecewise +linear concave with exponentially many pieces. In that case, convex optimization methods with +some stabilization techniques (e.g., the level method [32]) often outperform the cutting plane +method, and the difference can be significant. Figure 3 is a representative example of the difference +in performance between the cutting plane method and the level method for the DW bound zD +(averaged over a set of multiple knapsack assignment problem instances that are used in Section +6). Details about our implementation of the level method are presented in Appendix B. +4.1 +Dantzig-Wolfe Fenchel Cuts +The cutting planes we derived in Section 2.2 belong to a more general class of cutting planes +called Fenchel cuts [15]. Fenchel cuts are cutting planes that can be derived from a subsystem of +constraints (including integrality constraints) of a given MIP formulation. Let the feasible region +corresponding to such a subsystem is given by +Q = {x ∈ Rn : Gx ≥ g, x ∈ X}. +Given a direction µ ∈ Rn, a Fenchel cut (associated with Q in direction µ) is given by µ⊤x ≥ f(µ), +where f(µ) = minx{µ⊤x : x ∈ Q}. In other words, an inequality is a Fenchel cut (associated with +Q) if and only if it is valid and have the tightest possible right-hand side for Q. +In particular, the j-th inequality in (5) is a Fenchel cut associated with the subsystem defined +by Q = {x ∈ Rn : GjxI(j) ≥ gj, xI(j) ∈ Xj}. We call such a Fenchel cut associated with a +particular block of the DW reformulation a Dantzig-Wolfe Fenchel cut. +10 + +Definition 2. We call an inequality a Dantzig-Wolfe Fenchel (DWF) cut for (1) if it is of the form +(πj)⊤xI(j) ≥ Dj(πj) +(15) +for some j ∈ {1, . . . , q}, where Dj(·) is defined in (4). +We have shown in Section 3 that DWF cuts associated with the last iteration of DW decompo- +sition can recover DW bound zD and applying these DWF cuts rather than the objective function +cut for enforcing DW bound yields root node relaxations with lower dual degeneracy. Another +advantage of using DW cuts is regarding the dimension of the cuts, which is often used as a mea- +sure of the strength of the cutting plane. A higher dimension of the associated face means that +the cutting plane is closer to being facet-defining and irredundant, and therefore stronger in some +sense. Let S denote the feasible region of the original problem (1). We next present a relationship +between the dimension of a DWF cut in conv(S) and its restriction in conv(Qj). +Definition 3. We say that MIP (1) has block relative feasibility if for each j ∈ {1, . . . , q} and +y ∈ Qj there exists x ∈ S such that xI(j) = y, i.e., projxI(j)(S) = Qj for j ∈ J. +The block relative feasibility assumption holds for a broad class of MIP problems. For example, +for two-stage stochastic integer programs, relatively complete recourse [33] implies block relative +feasibility if each block is defined by first-stage and second-stage constraints associated with a +particular scenario. +Proposition 5. Assume problem (1) has block relative feasibility. If (πj)⊤y ≥ Dj(πj) defines a +d-dimensional face of conv(Qj) for some j ∈ {1, . . . , q}, then (15) defines a face of conv(S) of +dimension at least d. +Proof. Since (πj)⊤y ≥ Dj(πj) defines a d-dimensional face of conv(Qj), there exists d + 1 affinely +independent points {yk}d+1 +k=1 ⊆ Qj. By the block relative feasibility assumption, there exist points +{xk}d+1 +k=1 ⊆ S such that xk +I(j) = yk. Points {xk}d+1 +k=1 are affinely independent from each other by +affine independence of {yk}d+1 +k=1. The conclusion then follows from the fact that {xk}d+1 +k=1 are all on +the face associated with (15) in conv(S). +Proposition 5 indicates that DWF cuts whose restrictions in the space of xI(j) correspond +to high-dimensional faces of conv(Qj) are likely to define high-dimensional faces in conv(S). It +motivates the idea of strengthening some DWF cuts to obtain higher-dimensional DWF cuts, which +will be discussed in Section 5. In contrast to DWF cuts that potentially define high-dimensional +faces of conv(S), the objective function cut c⊤x ≥ zD usually corresponds to an empty face of +conv(S) unless zD = z∗. Even if zD = z∗, the face associated with the objective function cut may +still be low-dimensional unless the problem has many alternative optimal primal solutions. +4.2 +Cut Generation From the Lagrangian Dual +As discussed earlier, solving the Lagrangian dual problem can be computationally more efficient +than the standard DW decomposition. During the solution of the Lagrangian dual problem, DWF +cuts similar to (5) can also be generated every time we evaluate the function values of Dj(·). +The following result demonstrates the strength of DWF cuts generated from the evaluation of the +Lagrangian dual function at any point (π, β) with z(π, β) > −∞. +11 + +Proposition 6. Let (π, β) be Lagrangian dual multipliers for (11) satisfying constraints (13b) and +(13c). Then, +z(π, β) ≤ min c⊤x +s.t. (πj)⊤xI(j) ≥ Dj(πj), +j ∈ J, +Ax ≥ b. +(16) +Proof. Consider any x ∈ Rn feasible to the right-hand side LP of (16). Since ci = � +j:i∈I(j) πj +i + +β⊤Ai for i = 1, . . . , n by (13b), we have +c⊤x = +n +� +i=1 +� +j:i∈I(j) +πj +i xi + β⊤Ax = +q +� +j=1 +(πj)⊤xI(j) +� +�� +� +≥Dj +� +πj� ++ β +���� +≥0 +⊤ Ax +���� +≥b +≥ +p +� +j=1 +Dj(πj) + b⊤β(τ) = z(π, β). +Note that, unlike Theorem 2, Proposition 6 does not depend how the dual multiplier is obtained. +If one can solve the Lagrangian dual problem to optimality, then Proposition 6 implies that one +can recover DW bound using DWF cuts associated with an optimal solution of the Lagrangian +dual problem. +Corollary 7. Let (¯π, ¯β) be an optimal solution of (13). Then, +zD = min c⊤x +s.t. (¯πj)⊤xI(j) ≥ Dj(¯πj), +j ∈ J, +Ax ≥ b. +(17) +Results similiar to Propostion 4 can be derived for the optimal face of the LP (17) that utilizes +DWF cuts associated with an optimal Lagrangian dual solution. +Even if the Lagrangian dual +problem is not solved to optimality, Proposition 6 still guarantees that DWF cuts can provide +strength at least as strong as the best Lagrangian dual bound by generating DWF cuts associated +with the dual solution that provides the strongest bound obtained so far. Besides, there may be +values for adding DWF cuts obtained at different dual multipliers. See Example 1 in Appendix C +showing that DWF cuts can potentially provide stronger dual bounds than the best Lagrangian +dual bound. +5 +Generating a Stronger Relaxation +In this section we describe how to strengthen the DWF cuts to obtain a stronger relaxation. The +strengthened cutting planes are still DWF cuts valid for blocks Qj, and therefore do not lead to +better bounds than zD. However, these strengthened cutting planes may potentially make more +constraints active in the LP relaxation, and therefore can help reduce the dual degeneracy level of +the formulation and improve the branch-and-cut performance. Moreover, the strengthened cutting +planes are more likely to define high-dimensional faces of the original problem, as they define +higher-dimensional faces of the block polyhedra conv(Qj). +12 + +Figure 4: Disjunctive Coefficient Strengthening for Three Cases +xi +0 +1 +xi +0 +1 +r +xi +0 +1 +x0 +x1 +5.1 +Disjunctive Coefficient Strengthening +We first describe a disjunctive coefficient strengthening technique for binary variables [34] that +strengthens the coefficients of a valid inequality one at a time. Given a valid inequality a⊤x ≥ f +for the set Q, let Q= := {x ∈ Q : a⊤x = f}. For a binary variable xi, its coefficient ai in the cut +can be strengthened if one of the following two cases hold: (i) xi = 0 for all x ∈ Q=, or, (ii) xi = 1 +for all x ∈ Q=. If there are points x0, x1 ∈ Q= such that x0 +i = 0 and x1 +i = 1, then this approach +does not improve (i.e., decrease) the coefficient of the variable. Figure 4 shows an example of all +three cases. +Note that if we solve +¯f = min{a⊤x : x ∈ Q, xi = 1} +(18) +and observe that ¯f > f, then we can strengthen the original inequality a⊤x ≥ f to be a⊤x ≥ +f + ( ¯f − f)xi using the disjunction +Q = {x ∈ Q : xi = 0} ∪ {x ∈ Q : xi = 1}. +Similarly, if we solve +¯f = min{a⊤x : x ∈ Q, xi = 0}, +(19) +and observe that ¯f > f, then we can strengthen the original inequality a⊤x ≥ f to be a⊤x ≥ +f + ( ¯f − f)(1 − xi). If either problem (18) or (19) is infeasible, then one can simply fix variable xi +to 0 or 1, respectively. It is easy to verify that the original inequality is implied by the strengthened +inequality together with the bound constraint xi ≥ 0 or xi ≤ 1. Therefore, if the original inequality +is active in the LP relaxation, then one round of coefficient strengthening (if applicable) would +potentially make a bound constraint active in the LP relaxation and reduce the dual degeneracy +level. Note that this approach does not increase the size of the formulation. +For strengthening a DWF cut obtained from a block j, we set Q = Qj and apply coefficient +strengthening sequentially to all coefficients of binary variables. In practice, we keep a set L of +points that are known to be elements of Q=, generated from previous solutions of (14), (18) and +(19). If there are x0, x1 ∈ L such that x0 +i = 0 and x1 +i = 1, then without solving (18) or (19) we +conclude that disjunctive strengthening cannot be applied to the i-th coefficient. +5.2 +Strengthening via Tilting +We next describe a tilting technique introduced in [35, 36] that starts with a valid inequality and +iteratively tilts it to obtain a facet-defining inequality. Let a⊤x ≥ f be a valid inequality for Q +and assume that it is not facet-defining. Also assume that conv(Q) is full dimensional and there +is a set Q′ ⊆ Q such that all points x ∈ Q′ satisfy a⊤x = f. The algorithm first generates a point +13 + +¯x ∈ Q \ Q′ that satisfies a⊤¯x > f, and a vector (v, w) such that v⊤x = w for all x ∈ Q′ ∪ {¯x}. The +algorithm then does the following: +1. If v⊤x ≥ w is valid for Q, then the algorithm outputs ¯x. Otherwise the algorithm computes +the largest λ+ ∈ R+ such that (a + λ+v)⊤x ≥ f + λ+w is valid for Q and outputs this +inequality together with a point ¯x+ ∈ Q \ Q′ satisfying (a + λ+v)⊤¯x+ = f + λ+w; +2. If v⊤x ≤ w is valid for Q, then the algorithm outputs ¯x. Otherwise the algorithm computes +the largest λ− ∈ R+ such that (a − λ−v)⊤x ≥ f − λ−w is valid for Q and outputs this +inequality together with a point ¯x− ∈ Q \ Q′ satisfying (a − λ−v)⊤¯x− ≥ f − λ−w. +Note that when conv(Q) is full dimensional, both v⊤x ≥ w and v⊤x ≤ w cannot be valid and +consequently we obtain two (possibly identical) valid inequalities whose conic combination implies +the original inequality a⊤x ≥ f. Moreover, each one of the these inequalities has one more known +feasible point on its associated face than a⊤x ≥ f. In [36], the authors show that recursively tilting +one of the two obtained valid inequalities leads to a facet-defining inequality for conv(Q). +In our context, we apply the tilting idea with the following modifications. For a DWF cut +associated with block j, we set Q to be Qj, and instead of picking one of the two tilted inequalities +for the subsequent tilting iteration, we apply tilting to both. By doing so, we create a binary tree +where the root node corresponds to the original DWF cut and the remaining nodes correspond to +DWF cuts obtained by tilting the inequalities associated with their parent nodes. For any such +tree, cuts associated with the leaf nodes imply the original DWF cut associated with the root node. +We call the collection of inequalities associated with the leaf nodes of a depth-d tree depth-d tilted +DWF cuts. Using a depth-d tree means replacing one DWF cut with up to 2d DWF cuts, which +can be computationally expensive if d is large. Therefore, it is often beneficial to choose a relatively +small value for d. Note that this process does not improve the DW bound but can potentially help +reduce the dimension of the LP optimal face as more constraints are likely to become active at the +optimal face. +To improve computational performance, we keep track of the feasible points for block j ∈ J +that we encounter during the overall algorithm and store them in a set ˆQj ⊆ Qj. Using this set of +points reduces the number of oracle calls needed in the following two ways. First, we can check if +any point in ˆQj satisfies the condition for ¯x and use it for choosing (v, w), thus avoiding an extra +call to the optimization oracle. In addition, when computing λ+, we use ˆQj to obtain the following +upper bound on it: +λ+ := +min +x∈Qj:v⊤x 0.05%, then switch to the strengthened formulation STR.” +Instances that can be solved using the original MIP formulation before we finish computing zD +are dropped from the training set and the test set as there is no algorithmic decision of interest +to make in that situation. This leaves us a training set with 62 instances and a test set with 242 +instances. +Next we compare a hybrid implementation with default Gurobi. To further simplify the imple- +mentation, we replace the parallelization of branch and bound and Lagrangian dual by a simulated +parallelization. Such a simulated hybrid implementation is described below: +Step 1. +(a) Using 1 thread, solve the Lagrangian dual problem using the level method. Store the +solution time tD. +(b) Using 3 threads, run a standard MIP solver using the original MIP formulation with +timelimit tD. +Step 2. If the MIP is solved to optimality in Step 1, then stop. +Else if (zD − zLB)/zUB > 0.05%, then restart the MIP solver using all 4 thread with the +strengthened formulation STR and the upper bound (primal solution) obtained from the +MIP solver in Step 1(b). +Else, allocate all 4 threads to the MIP solver for continuing with the original formulation. +In Table 5 we summarize results obtained by directly solving the original formulation (‘MIP’), +directly generating and solving the strengthened formulation (‘STR’), and applying our simulated +hybrid implementation (‘HYB’). For each method, we report the number of instances solved within +the timelimit of 10 minutes, the ending optimality gap and average time spent on solving the +problem including cut generating time for STR and HYB in seconds. Note that STR is likely to +outperform MIP on the test instances because the DW bound is already significantly stronger than +the LP relaxation bound on those instances. We observe that both STR and HYB outperform +MIP on the test instances while HYB slightly outperforms MIP in terms of solution time. This is +20 + +because HYB avoids solving the more expensive STR formulation in some cases when the bound +provided by STR is not significantly stronger than MIP. Another interesting observation is that +HYB solves exactly all instances that can be solved by either MIP or STR, including two instances +that cannot be solved by STR but can be solved by MIP, demonstrating the value of having the +flexibility of switching between different formulations. We believe this hybrid version would be +relatively easy to implement by modern MIP solvers. +8 +Conclusions +We investigated methods for generating and strengthening cutting planes that are derivable from +DW reformulation to accelerate branch and cut for MIPs with block structures. Numerical exper- +iments have shown that adding these cutting planes is effective in cases when the DW bound is +strong. We also proposed ways to incorporate our methodology into a MIP solver when multiple +threads are available. +Empirically, we observed that if many of the cutting planes are added into the formulation, +then the LP solution at each branching node can be significantly slowed down. A potential fix is to +consider cut selection within our cut generation approach. One may also consider some adaptive +tilting schemes rather than tilting each inequality to the same depth. We also observed that the +Lagrangian dual problem often has nonunique optimal solutions. +It is therefore interesting to +investigate whether using alternative dual solutions can lead to stronger cutting planes. +References +[1] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Re- +search, vol. 8, no. 1, pp. 101–111, 1960. +[2] M. E. L¨ubbecke and U. T. Zimmermann, “Engine routing and scheduling at industrial in-plant +railroads,” Transportation Science, vol. 37, no. 2, pp. 183–197, 2003. +[3] J. Rios and K. Ross, “Massively parallel Dantzig-Wolfe decomposition applied to traffic flow +scheduling,” Journal of Aerospace Computing, Information, and Communication, vol. 7, no. 1, +pp. 32–45, 2010. +[4] M. F. Anjos, A. Lodi, and M. Tanneau, “A decentralized framework for the optimal coordi- +nation of distributed energy resources,” IEEE Transactions on Power Systems, vol. 34, no. 1, +pp. 349–359, 2018. +[5] K. J. Singh, A. B. Philpott, and R. K. Wood, “Dantzig-Wolfe decomposition for solving mul- +tistage stochastic capacity-planning problems,” Operations Research, vol. 57, no. 5, pp. 1271– +1286, 2009. +[6] F. Vanderbeck, “On Dantzig-Wolfe decomposition in integer programming and ways to per- +form branching in a branch-and-price algorithm,” Operations Research, vol. 48, no. 1, pp. 111– +128, 2000. +[7] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance, “Branch- +and-price: +Column generation for solving huge integer programs,” Operations Research, +vol. 46, no. 3, pp. 316–329, 1998. +21 + +[8] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck, “A generic exact solver for vehicle +routing and related problems,” Mathematical Programming, vol. 183, pp. 483–523, Sep 2020. +[9] M. J¨unger and S. Thienel, “The abacus system for branch-and-cut-and-price algorithms in +integer programming and combinatorial optimization,” Software: Practice and Experience, +vol. 30, no. 11, pp. 1325–1352, 2000. +[10] J. Puchinger, P. J. Stuckey, M. Wallace, and S. Brand, “From high-level model to branch-and- +price solution in g12,” in International Conference on Integration of Artificial Intelligence (AI) +and Operations Research (OR) Techniques in Constraint Programming, pp. 218–232, Springer, +2008. +[11] G. Gamrath and M. E. L¨ubbecke, “Experiments with a generic dantzig-wolfe decomposition +for integer programs,” in International Symposium on Experimental Algorithms, pp. 239–252, +Springer, 2010. +[12] M. V. Galati, T. K. Ralphs, and J. Wang, “Computational experience with generic decompo- +sition using the dip framework,” Proceedings of RAMP, vol. 2012, 2012. +[13] R. Sadykov and F. Vanderbeck, BaPCod-a generic branch-and-price code. PhD thesis, Inria +Bordeaux Sud-Ouest, 2021. +[14] A. Lodi, “Mixed integer programming computation,” in 50 years of integer programming 1958- +2008, pp. 619–645, Springer, Berlin, Heidelberg, 2010. +[15] E. A. Boyd, “Fenchel cutting planes for integer programs,” Operations Research, vol. 42, no. 1, +pp. 53–64, 1994. +[16] M. Bodur, S. Ahmed, N. Boland, and G. L. Nemhauser, “Decomposition of loosely coupled +integer programs: A multiobjective perspective,” Mathematical Programming, pp. 1–51, 2022. +[17] S. Ahmed, “Two-stage stochastic integer programming: A brief introduction,” Wiley encyclo- +pedia of operations research and management science, pp. 1–10, 2010. +[18] M. Bartlett, A. M. Frisch, Y. Hamadi, I. Miguel, S. A. Tarim, and C. Unsworth, “The tempo- +ral knapsack problem and its solution,” in International Conference on Integration of Artifi- +cial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, +pp. 34–48, Springer, 2005. +[19] R. R. Meyer, “On the existence of optimal solutions to integer and mixed-integer programming +problems,” Mathematical Programming, vol. 7, no. 1, pp. 223–235, 1974. +[20] G. Belov and G. Scheithauer, “A branch-and-cut-and-price algorithm for one-dimensional +stock cutting and two-dimensional two-stage cutting,” European Journal of Operational Re- +search, vol. 171, no. 1, pp. 85–106, 2006. +[21] R. Fukasawa, H. Longo, J. Lysgaard, M. P. d. Arag˜ao, M. Reis, E. Uchoa, and R. F. Werneck, +“Robust branch-and-cut-and-price for the capacitated vehicle routing problem,” Mathematical +Programming, vol. 106, no. 3, pp. 491–511, 2006. +[22] M. Savelsbergh, “A branch-and-price algorithm for the generalized assignment problem,” Op- +erations Research, vol. 45, no. 6, pp. 831–841, 1997. +22 + +[23] A. Ceselli and G. Righini, “A branch-and-price algorithm for the capacitated p-median prob- +lem,” Networks: An International Journal, vol. 45, no. 3, pp. 125–142, 2005. +[24] A. Caprara, F. Furini, and E. Malaguti, “Uncommon Dantzig-Wolfe reformulation for the +temporal knapsack problem,” INFORMS Journal on Computing, vol. 25, no. 3, pp. 560–571, +2013. +[25] M. Conforti, G. Cornu´ejols, and G. Zambelli, Integer programming, vol. 271. Springer, 2014. +[26] A. Lodi and A. Tramontani, “Performance variability in mixed-integer programming,” in +Theory Driven by Influential Applications, pp. 1–12, INFORMS, 2013. +[27] G. Gamrath, T. Berthold, and D. Salvagnin, “An exploratory computational analysis of dual +degeneracy in mixed-integer programming,” EURO Journal on Computational Optimization, +vol. 8, no. 3-4, pp. 241–261, 2020. +[28] A. J. Goldman and A. W. Tucker, “Theory of linear programming,” in Linear Inequalities and +Related Systems, pp. 53–98, Princeton University Press, 1956. +[29] M. L. Fisher, “The Lagrangian relaxation method for solving integer programming problems,” +Management Science, vol. 27, no. 1, pp. 1–18, 1981. +[30] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization, vol. 55. John +Wiley & Sons, 1999. +[31] J. E. Kelley, Jr, “The cutting-plane method for solving convex programs,” Journal of the +Society for Industrial and Applied Mathematics, vol. 8, no. 4, pp. 703–712, 1960. +[32] C. Lemar´echal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle methods,” Mathe- +matical Programming, vol. 69, no. 1, pp. 111–147, 1995. +[33] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming: Modeling +and Theory. SIAM, 2021. +[34] K. Andersen and Y. Pochet, “Coefficient strengthening: a tool for reformulating mixed-integer +programs,” Mathematical Programming, vol. 122, no. 1, pp. 121–154, 2010. +[35] D. Espinoza, R. Fukasawa, and M. Goycoolea, “Lifting, tilting and fractional programming +revisited,” Operations Research Letters, vol. 38, no. 6, pp. 559–563, 2010. +[36] V. Chv´atal, W. Cook, and D. Espinoza, “Local cuts for mixed-integer programming,” Math- +ematical Programming Computation, vol. 5, no. 2, pp. 171–200, 2013. +[37] S. Kataoka and T. Yamada, “Upper and lower bounding procedures for the multiple knapsack +assignment problem,” European Journal of Operational Research, vol. 237, no. 2, pp. 440–447, +2014. +[38] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022. +[39] T. Berthold, M. Francobaldi, and G. Hendel, “Learning to use local cuts,” arXiv e-prints, +pp. arXiv–2206, 2022. +[40] P. Bonami, A. Lodi, and G. Zarpellon, “A classifier to decide on the linearization of mixed- +integer quadratic problems in CPLEX,” Operations Research, 2022. +23 + +[41] F. Di Pasquale, “A new Lagrangian approach to the multiple knapsack assignment problem,” +Master’s thesis, University of Pisa, 2021. +24 + +A +Dantzig-Wolfe Decomposition +Algorithm 1 Standard Dantzig-Wolfe Decomposition +1: Initialize: +ˆV j ← a subset of extreme points of conv(Qj), j = 1, 2, . . . , p +ˆRj ← a subset of extreme rays of conv(Qj), j = 1, 2, . . . , p +t ← 0 +2: t ← t + 1, solve +zt +D = min c⊤x +s.t. xI(j) = +� +v∈ ˆ +V j +vλj +v + +� +r∈ ˆ +Rj +rµj +r, +j ∈ J, +(πj) +Ax ≥ b, +(β) +� +v∈ ˆV j +λj +v = 1, +j ∈ J, +(θj) +λj ≥ 0, µj ≥ 0, +j ∈ J +(20) +(assume { ˆV j}q +j=1 and { ˆRj}q +j=1 are initialized such that (20) is always feasible) +3: let (π1, . . . , πq, θ1, . . . , θq) denote the values of optimal dual variables for (20) +4: for j = 1, 2, . . . , q do +5: +solve the following pricing problem: +Dj(πj) := min{(πj)⊤v : v ∈ conv(Qj)} = min{(πj)⊤v : v ∈ Qj}. +(21) +6: +if the pricing problem (21) is bounded then +7: +let vj denote an optimal solution +8: +ζj ← (πj)⊤vj − θj +9: +if ζj < 0 then +10: +ˆV j ← ˆV j ∪ {vj} +11: +end if +12: +else +13: +ζj ← −∞ +14: +let rj denote an extreme ray of conv(Qj) with (πj)⊤rj < 0 +15: +ˆRj ← ˆRj ∪ {rj} +16: +end if +17: +if ζj ≥ 0 for all j ∈ J then +18: +return zD = zt +D +19: +else +20: +go to step 2 +21: +end if +22: end for +B +The Level Method for the Lagrangian Dual Problem +The level method adds on top of the cutting plane method a regularization step that requires +solving a convex quadratic program to find a promising candidate multiplier (π, β) = (¯π, ¯β) to +explore while staying close to the previous multiplier that is already explored. A pseudocode of +the level method is given in Algorithm 2. For generating the upper bound ¯z, we give the original +formulation to the solver. We pick the second feasible solution ¯x found by the solver (often much +better than the first feasible solution) and set ¯z = c⊤¯x. Constraint (22d) is important in early +iterations of the algorithm to ensure that problem (13) is bounded, but becomes redundant when +UB< ¯z in later iterations of the algorithm. Within the level method, LB and UB store the best +lower and upper bounds of zD found by the algorithm. If we set the termination condition to be +25 + +Algorithm 2 The Level Method for Solving (13) +1: Initialize: +ˆV j ← ∅, ˆRj ← ∅, j = 1, 2, . . . , p +¯z ← an upper bound of zD +LB ← −∞, UB ← ∞, t ← 0 +2: Main Loop: t ← t + 1, solve: +UB ← max +q +� +j=1 +θj + b⊤β +(22a) +s.t. θj ≤ v⊤πj, +v ∈ ˆV j, j ∈ J, +(22b) +r⊤πj ≥ 0, +r ∈ ˆRj, j ∈ J, +(22c) +q +� +j=1 +θj + b⊤β ≤ ¯z, +(22d) +� +j:i∈I(j) +πj +i + β⊤Ai = ci, +i = 1, . . . , n, +(22e) +β ≥ 0. +(22f) +(22g) +3: if LB = −∞ then +4: +(¯π, ¯β) ← optimal value of (π, β) in (22) +5: else +6: +solve: +min +��� +π − ¯π, β − ¯β +���2 +2 +s.t. +q +� +j=1 +θj + b⊤β ≥ 0.7 · UB + 0.3 · LB +(22b) − (22f) +(23) +7: +(¯π, ¯β) ← optimal value of (π, β) in (23) +8: end if +9: for j = 1, 2, . . . , q do +10: +solve (14) for πj = ¯πj +11: +if (14) is bounded then +12: +let vj denote an optimal solution +13: +ˆV j ← ˆV j ∪ {vj} +14: +else +15: +let rj denote an extreme ray of conv(Qj) with (πj)⊤rj < 0 +16: +ˆRj ← ˆRj ∪ {rj} +17: +end if +18: end for +19: LB ← max +� +LB, �q +j=1 Dj(¯πj) + b⊤ ¯β +� +20: if UB-LB is small enough then +21: +return LB +22: else +23: +go to step 2 +24: end if +UB-LB=0, then the algorithm returns the exact DW bound zD. To avoid some numerical issues, +when implementing the level method we terminate the algorithm if difference between LB and UB +is within 10−6 relative tolerance, or if the solver fails to solve the quadratic master problem (23). +We observe that the second case rarely happens but can sometimes lead to a Lagrangian dual +bound weaker than the natrual LP relaxation bound since we do not solve the Lagranigan dual +problem to optimality. +26 + +C +Examples +Example 1. Consider the following MIP: +z∗ = min x1 + x2 + 2x3 + 2x4 +s.t. x2 + x4 ≥ 3, +3x1 + x2 + 3x3 + x4 ≥ −12, +0.5 ≤ xi ≤ 2.5, xi ∈ Z, i = 1, 2, 3, 4. +Define I1 = {1, 2}, I2 = {3, 4}, Qj = {y ∈ Z2 : 0.5 ≤ y1 ≤ 2.5, 0.5 ≤ y2 ≤ 2.5} for j ∈ {1, 2} and +the linking constraints Ax ≥ b to be +� 0 +1 +3 +1 +� � x1 +x2 +� ++ +� 0 +1 +3 +1 +� � x3 +x4 +� +≥ +� 3 +12 +� +. +In this example the MIP has symmetric blocks but asymmetric objective coefficients. The LP relax- +ation of the problem gives the lower bound 7. Let π(1) = (1, 1/4, 2, 5/4)⊤, β(1) = (3/4, 0)⊤, π(2) = +(2/11, 8/11, 13/11, 19/11)⊤, β(2) = (0, 3/11)⊤. Note that the dual multipliers +� +π(τ), β(τ) +� +τ∈{1,2} +satisfy the assumptions in Proposition 6. The best dual bound is given by +max +τ∈{1,2} z +� +π(τ), β(τ) +� += max{27/4, 78/11} = 78/11. +Adding DWF cuts associated with π(1) and adding DWF cuts associated with π(2) into the LP +relaxation of the original formulation yield bounds 125/16 and 149/19, respectively. These bounds +are stronger than the corresponding Lagrangian relaxation bounds 27/4 and 78/11. On the other +hand, the LP +min c⊤x +s.t. +� +πj(τ) +�⊤xI(j) ≥ Dj +� +πj(τ) +� +, +j ∈ J, τ = 1, 2, +Ax ≥ b +has the optimal objective value equal to 8, which happens to be z∗ in this example. +Example 2. Consider the following primal and dual LP pair: +(Primal) : min x1 − x2 +s.t. x1 + x2 ≥ 1, +x2 ≥ 1, +−x2 ≥ −1; +(Dual) : max α1 + α2 − α3 +s.t. α1 += 1, +α1 + α2 − α3 = −1, +α ≥ 0. +In this example, the primal LP has a unique optimal solution x = (0, 1)⊤. Therefore, the dimension +of the optimal face is 0. Also, the problem has a unique dual basic solution α = (1, 0, 2)⊤, whose +0-norm is 2, which is strictly less than n minus the dimension of the optimal face. However, note +that all dual solutions of the form α = (1, λ, 2 + λ)⊤ with λ ≥ 0 are optimal for the dual LP, i.e., +the problem has nonunique dual optimal solutions. +27 + +D +MKAP and Test Instances +In MKAP, there are a finite number of items, knapsacks and item classes. Each item belongs to +exactly one item class. The decision maker has to pack a subset of items into knapsacks, subject +to constraints that only items belonging to the same item class with a total weight no larger than +the capacity of the knapsack can be packed into the same knapsack, with the aim of maximizing +the total profit of the packed items. Specifically, let N, M and K denote the index sets of items, +knapsacks and item classes, respectively. For j ∈ N, let pj denote the profit of item j and wj +denote the weight of item j. For i ∈ M, let Ci denote the capacity of knapsack i. For k ∈ K, +let Sk denote the set of items that belong to item class k, i.e., {Sk}k∈K is a partition of N. We +use variables x ∈ {0, 1}M+N to represent the packing decisions, where xij = 1 if and only if item +j is packed into knapsack i. Variables y ∈ {0, 1}M+K represent the assignment decisions, where +yik = 1 if and only if knapsack i is used to pack items from item class k. MKAP can then be +formulated as the following integer program (we flip the sign of the objective function to formulate +it as a minimization problem): +min − +� +i∈M +� +j∈N +pjxij +(24a) +s.t. +� +j∈Sk +wjxij ≤ Ciyik, +i ∈ M, k ∈ K, +(24b) +� +i∈M +xij ≤ 1, +j ∈ N, +(24c) +� +k∈K +yik ≤ 1, +i ∈ M, +(24d) +x ∈ {0, 1}M×N, y ∈ {0, 1}M×K. +(24e) +It has been observed in [41] that applying Lagrangian relaxation to (24) with constraints (24c) +and (24d) dualized can lead to a dual bound potentially much stronger than the LP relaxation +bound. By equivalence between DW decomposition and Lagrangian relaxation, this observation +also applies to DW decomposition. Specifically, we define |M| × |K| blocks in our DW decom- +position, where for each i ∈ M and k ∈ K block Qi,k is defined by a knapsack constraint +� +j∈Sk wjxij ≤ Ciyik together with constraints forcing (xij)j∈Sk and yik to be binary. +We generate the instances following the scheme of [37] but using different instance sizes. We +consider instances with |K| ∈ {2, 5, 10, 25}, |M| ∈ {10, 20, 30, 40} and |N| ∈ {50, 100, 200, 300}. +For each combination (|K|, |M|, |N|) of the parameters, we generate three types (uncorrelated, +weakly correlated, strongly correlated) of MKAP instances with 10 instances generated using 10 +different random seeds for each type. We refer readers to [37] for a more detailed description of +the instance generation procedure. It is worth mentioning that the item classes {Sk}k∈K all have +equal sizes |N|/|K| for our test instances. +E +Time Spent on Obtaining Different Formulations +Since both OBJ and DWF can be obtained directly after solving the Lagrangian dual problem, +we only report in Table 6 the total time spent on applying strengthening and different levels of +tilting for STR and DdT with d ∈ {1, . . . , 6}. Bold rows correspond to I2 instances and other rows +correspond to I1 \ I2 instances. +28 + +Table 6: Comparison of Time Spent on Obtaining Different Formulations +(|K|, |M|, |N|) +Generation Time Excluding Lagrangian Dual Time (s) +STR +D1T +D2T +D3T +D4T +D5T +D6T +( 2,20, 50) +0.1 +0.3 +0.5 +1.1 +2.1 +3.7 +6.0 +( 2,30, 50) +0.1 +0.2 +0.3 +0.6 +0.9 +1.0 +1.2 +( 2,40, 50) +0.1 +0.2 +0.1 +0.2 +0.2 +0.2 +0.2 +( 5,10, 50) +0.0 +0.1 +0.4 +0.8 +1.6 +2.6 +3.6 +( 5,20, 50) +0.1 +0.2 +0.5 +0.9 +1.3 +1.5 +1.6 +( 5,30, 50) +0.1 +0.2 +0.3 +0.5 +0.5 +0.5 +0.5 +( 5,40, 50) +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +(10,10, 50) +0.0 +0.2 +0.4 +0.8 +1.1 +1.2 +1.2 +(10,10,100) +0.1 +0.3 +1.0 +2.2 +4.5 +8.7 +15.7 +(10,10,200) +0.3 +0.9 +2.2 +5.0 +10.3 +20.9 +42.4 +(10,10,300) +0.9 +2.9 +7.0 +15.2 +30.5 +60.0 +118.7 +(10,20, 50) +0.1 +0.2 +0.4 +0.6 +0.7 +0.7 +0.7 +(10,30, 50) +0.1 +0.2 +0.3 +0.3 +0.3 +0.3 +0.3 +(10,40, 50) +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +(10,40,100) +0.3 +0.9 +2.0 +3.8 +5.5 +6.6 +6.9 +(25,10, 50) +0.0 +0.2 +0.3 +0.3 +0.3 +0.3 +0.3 +(25,10,100) +0.0 +0.4 +1.1 +2.1 +2.8 +2.8 +2.8 +(25,10,200) +0.1 +0.7 +2.1 +4.9 +10.3 +20.2 +38.7 +(25,10,300) +0.1 +0.9 +3.0 +7.2 +15.5 +31.7 +63.5 +(25,20, 50) +0.1 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +(25,20,100) +0.1 +0.6 +1.6 +2.6 +3.1 +3.1 +3.1 +(25,20,200) +0.2 +1.3 +4.0 +9.0 +17.7 +32.1 +53.9 +(25,20,300) +0.4 +2.0 +5.8 +13.5 +28.1 +56.1 +109.5 +(25,30, 50) +0.1 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +(25,30,100) +0.2 +0.8 +1.7 +2.4 +2.5 +2.5 +2.5 +(25,30,200) +0.4 +1.9 +5.4 +11.8 +21.9 +36.1 +51.1 +(25,30,300) +0.8 +3.1 +8.3 +19.3 +39.7 +77.9 +148.1 +(25,40, 50) +0.1 +0.1 +0.0 +0.0 +0.0 +0.0 +0.0 +(25,40,100) +0.2 +0.8 +1.5 +1.9 +2.0 +2.0 +2.0 +At each row, the averages of 30 instances are reported. +F +Number of Cutting Planes Generated Using Different Formu- +lations +In Table 7, we report the number of cutting planes generated by Gurobi within 10 minutes for +formulations MIP, OBJ, DWF, STR, D3T and D6T averaged over the (25, 20, 300) MKAP +instances. +G +Branch-and-Cut Results for I1 \ I2 instances +In Tables 8 and 9 we report branch-and-cut results for I1\I2 instances. We observe that the original +MIP formulation is very competitive on these instances, whose performance is often better than +DWF and even STR. This can be explained by the fact that although the natrual LP relaxation +is weak (rL is large), Gurobi can close much of the gap by presolve and cutting planes at the root +node (rR is small). +29 + +Table 7: Average Number of Cutting Planes Generated by Gurobi +MIP +OBJ +DWF +STR +D3T +D6T +Gomory +132.1 +41.5 +10.4 +17.9 +0.4 +0.0 +Lift-and-project +5.3 +1.7 +0.6 +0.6 +0.0 +0.0 +Cover +616.1 +176.5 +121.5 +173.3 +16.3 +0.0 +Clique +362.3 +248.5 +148.3 +266.4 +108.3 +0.0 +MIR +90.2 +24.6 +9.7 +13.2 +3.1 +0.0 +StrongCG +94.3 +49.8 +12.7 +21.9 +2.4 +0.0 +Flow cover +228.8 +61.6 +18.5 +3.1 +0.0 +0.0 +Zero half +34.9 +13.9 +2.0 +0.4 +0.0 +0.0 +RLT +19.7 +0.8 +1.4 +0.7 +0.0 +0.0 +Relax-and-lift +10.0 +0.0 +0.1 +0.0 +0.0 +0.0 +Table 8: Comparison of Branch-and-Cut Performance on I1 \ I2 Instances +(|K|, |M|, |N|) +Number of Solved +Average B&C Time (s) +MIP +OBJ +DWF +STR +D3T +D6T +MIP +OBJ +DWF +STR +D3T +D6T +( 2,20, 50) +30/30 +23/30 +30/30 +30/30 +30/30 +30/30 +2 +≥202 +7 +5 +4 +4 +( 2,30, 50) +30/30 +29/30 +30/30 +30/30 +30/30 +30/30 +0 +≥ 25 +0 +0 +0 +0 +( 2,40, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +( 5,10, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +4 +62 +7 +4 +2 +1 +( 5,20, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +1 +42 +4 +2 +1 +0 +( 5,30, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +19 +0 +0 +0 +0 +( 5,40, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +(10,10, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +1 +0 +0 +0 +0 +(10,20, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +16 +0 +0 +0 +0 +(10,30, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +1 +0 +0 +0 +0 +(10,40, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +(10,40,100) +30/30 +1/30 +29/30 +30/30 +30/30 +30/30 +40 +≥600 +≥103 +72 +15 +12 +(25,10, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +(25,20, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +(25,20,100) +30/30 +20/30 +30/30 +30/30 +30/30 +30/30 +1 +≥204 +0 +0 +0 +0 +(25,30, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +(25,30,100) +30/30 +10/30 +30/30 +30/30 +30/30 +30/30 +5 +≥432 +1 +1 +0 +0 +(25,30,200) +16/30 +1/30 +10/30 +15/30 +23/30 +26/30 +≥377 +≥600 +≥475 +≥402 +≥255 +≥143 +(25,40, 50) +30/30 +30/30 +30/30 +30/30 +30/30 +30/30 +0 +0 +0 +0 +0 +0 +(25,40,100) +30/30 +9/30 +30/30 +30/30 +30/30 +30/30 +2 +≥464 +1 +1 +0 +0 +At each row, the averages of 30 instances are reported. +Table 9: Comparison of Branch-and-Cut Performance on I1 \ I2 Instances (Cont’d) +(|K|, |M|, |N|) +Average Optimality Gap (%) +Average Number of Nodes +MIP +OBJ +DWF +STR +D3T +D6T +MIP +OBJ +DWF +STR +D3T +D6T +( 2,20, 50) +0.00 +0.06 +0.00 +0.00 +0.00 +0.00 +3439 +≥755510 +28880 +16808 +16826 +7963 +( 2,30, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +89 +≥177782 +341 +796 +188 +131 +( 2,40, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1 +1 +1 +1 +1 +1 +( 5,10, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +12677 +669382 +62160 +23721 +5498 +1509 +( 5,20, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1865 +334795 +20703 +9992 +929 +614 +( 5,30, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +275 +151202 +161 +61 +17 +18 +( 5,40, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1 +1 +1 +1 +1 +1 +(10,10, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1077 +3227 +39 +51 +1 +1 +(10,20, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +344 +46614 +803 +379 +14 +14 +(10,30, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +131 +3045 +372 +129 +1 +1 +(10,40, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1 +1 +1 +1 +1 +1 +(10,40,100) +0.00 +0.14 +0.01 +0.01 +0.00 +0.00 +23261 +≥302450 +≥137206 +82878 +11574 +9120 +(25,10, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +2 +229 +1 +1 +1 +1 +(25,20, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1 +212 +1 +1 +1 +1 +(25,20,100) +0.00 +0.03 +0.00 +0.00 +0.00 +0.00 +279 +≥202331 +1 +1 +1 +1 +(25,30, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1 +2 +1 +1 +1 +1 +(25,30,100) +0.00 +0.15 +0.00 +0.00 +0.00 +0.00 +9866 +≥185765 +1903 +1121 +1 +1 +(25,30,200) +0.12 +0.44 +0.22 +0.15 +0.07 +0.04 +≥45681 +≥341784 +≥ 67369 +≥48540 +≥20550 +≥14553 +(25,40, 50) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +1 +28 +1 +1 +1 +1 +(25,40,100) +0.00 +0.08 +0.00 +0.00 +0.00 +0.00 +450 +≥257189 +1520 +2483 +47 +47 +At each row, the averages of 30 instances are reported. +30 + diff --git a/XtFPT4oBgHgl3EQfsjWt/content/tmp_files/load_file.txt b/XtFPT4oBgHgl3EQfsjWt/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8ce42a21cf59e7e7b14335b867e2712a816d5278 --- /dev/null +++ b/XtFPT4oBgHgl3EQfsjWt/content/tmp_files/load_file.txt @@ -0,0 +1,1999 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf,len=1998 +page_content='Recovering Dantzig-Wolfe Bounds by Cutting Planes Rui Chen1, Oktay G¨unl¨uk2, Andrea Lodi1 1 Cornell Tech, Cornell University ({rui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='chen,andrea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='lodi}@cornell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='edu) 2 School of ORIE, Cornell University (ong5@cornell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='edu) January 31, 2023 Abstract Dantzig-Wolfe (DW) decomposition is a well-known technique in mixed-integer programming for decomposing and convexifying constraints to obtain potentially strong dual bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We investigate Fenchel cuts that can be derived using the DW decomposition algorithm and show that these cuts can provide the same dual bounds as DW decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We show that these cuts, in essence, decompose the objective function cut one can simply write using the DW bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Compared to the objective function cut, these Fenchel cuts lead to a formulation with lower dual degeneracy, and consequently a better computational performance under the standard branch-and-cut framework in the original space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We also discuss how to strengthen these cuts to improve the computational performance further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We test our approach on the Multiple Knapsack Assignment Problem and show that the proposed cuts are helpful in accelerating the solution time without the need to implement branch and price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 1 Introduction In this paper, we present a computationally effective approach for generating cutting planes from Dantzig-Wolfe (DW) decomposition [1] to enhance branch and cut in the space of original variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We focus on mixed-integer (linear) programs (MIPs) with the following structure: z∗ := min c⊤x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' xI(j) ∈ P j, j ∈ J := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , q}, Ax ≥ b, x ∈ X, (1) where the index set I(j) ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , n} contains the indices of the variables in “block” j ∈ J, and we use the notation xI to denote the subvector of x with indices in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The set P j = {y ∈ R|I(j)| : Gjy ≥ gj} is a polyhedral set for j ∈ J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' and X ⊆ Rn represents integrality constraints on some of the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We do not assume the index sets I(j) for j ∈ J to be disjoint, see Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' DW decomposition was originally developed for solving large-scale linear programs with loosely coupled blocks and later extended to MIPs with similar block structures to obtain strong dual bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Typically, these so-called DW bounds are stronger than the linear programming (LP) relaxation bounds as they exploit the block structure through convexification of the block con- straints using integrality information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' DW decomposition has been found to be effective in various applications, such as transportation [2], traffic scheduling [3], energy [4] and multi-stage stochastic planning [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='13149v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='OC] 30 Jan 2023 Figure 1: Constraint Matrices of MIPs With Different Types of Block Structures (Left: Loosely Coupled, Middle: Two-Stage, Right: Overlapping) G1 G2 G3 G4 A G1 G2 G3 G4 G1 G2 G3 G4 Computing the DW bound requires reformulating the MIP using the extreme points and ex- treme rays of the mixed-integer hulls of the block problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Consequently, while the DW refor- mulation approach often leads to good dual bounds, using this to solve the MIP exactly requires specialized techniques that are not readily present in off-the-shelf solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In other words, to ex- ploit DW decomposition one needs to solve the continuous relaxation of the reformulated MIP by column generation followed by an ad-hoc branching step [6], after which one has to again resort to column generation, leading to an algorithmic framework called branch and price [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' While this approach has been successfully implemented in some special cases, most notably for vehicle routing problems [8], generic branch-and-price solvers, including ABACUS [9], G12 [10], GCG [11], DIP [12], BaPCod [13], to name a few, are still in theirs infancy with respect to solving general MIPs with block structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' However, the most up-to-date (and always improving) MIP solvers are based on the branch-and-cut (or cut-and-branch) scheme [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In this paper, we aim to make a step towards bridging this gap by developing a new scheme to incorporate the dual bounds produced by DW reformulations into the standard cut-and-branch framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' More precisely, we first compute the DW reformulation bound zD of the MIP (1) at the root node and then generate cutting planes to incorporate this bound into the original formulation to solve the problem to optimality in the space of the original variables using standard MIP technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Our approach, therefore, requires column generation only at the root node and not throughout the enumeration tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Apart from our proposed approach, the only general and trivial method known so far to enforce the DW bound zD in the original MIP is to augment the formulation by adding the objective function cut, c⊤x ≥ zD, which is known (folklore) to be not only computationally ineffective but also numerically unstable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' To the best of our knowledge, however, no detailed theoretical or computational investigation has been conducted on the objective function cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Our approach, on the other hand, appears to be practical and computationally effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Paper Contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Our first contribution is to confirm the instability of the approach using the objective cut by mostly attributing it to dual degeneracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Then, we show how to overcome the limitation of the objective constraint by proposing a family of Fenchel cutting planes [15] that essentially decomposes the objective function cut leading to a formulation with lower dual degeneracy, and consequently a better computational performance under the standard branch- and-cut framework in the original space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Moreover, we propose two distinct ways of strengthening these Fenchel cuts for an additional improvement of their computational performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' As a case study, we test our approach on the Multiple Knapsack Assignment Problem and show that the proposed cuts are helpful in accelerating the solution time without the need to implement branch and price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Finally, we show how to put all these pieces together in an algorithm that, exploiting 2 a standard multi-thread computational environment, (i) runs a standard branch and cut on some threads, (ii) computes in parallel the DW dual bound in a separate thread and (iii) on the fly enhances the original MIP formulation by the Fenchel cuts associated with the DW bound if they are predicted to improve the overall solution time for solving the instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The framework is simple and general, holding the promise of being implementable in a relatively easy way in general-purpose MIP solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Paper Organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The remainder of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In Section 2, we provide some algorithmic preliminaries on DW decomposition, while in Section 3, we propose our new approach for recovering the DW bound in the original formulation by Fenchel cuts and compare it with the objective function cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In Section 4, we discuss Lagrangian relaxation as an alternative approach for computing the DW bound and generating cutting planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Some techniques for strengthening the proposed cuts are presented in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Section 6 reports our computational investigation on the Multiple Knapsack Assignment Problem, while Section 7 proposes and tests the multi-thread hybrid algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Finally, some short conclusions are drawn in Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 2 Preliminaries We assume MIP (1) is feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Throughout the paper, we call formulation (1) the original for- mulation of the MIP and call constraints Ax ≥ b (potentially empty) linking constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In the context of Dantzig-Wolfe decomposition, (1) is sometimes called the compact formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' MIPs of this form with disjoint index sets I(j) are called loosely coupled MIPs [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that we do not assume the original MIP (1) is loosely coupled and as such the supports of different blocks can have overlaps (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', in MIPs with two-stage [17] or overlapping [18] block structures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We call the LP relaxation of (1), obtained by dropping the integrality constraints x ∈ X, the natural LP relaxation, and denote its optimal objective value by zL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Throughout, we assume that all data is rational.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='1 Dantzig-Wolfe Decomposition We next reformulate (1) by replacing the constraints xI(j) ∈ P j with xI(j) ∈ conv(Qj), where Qj = {y ∈ R|I(j)| : Gjy ≥ gj, y ∈ Xj}, and Xj has the integrality constraints inherited from X for the variables xI(j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Replacing the constraints xI(j) ∈ P j with xI(j) ∈ conv(Qj) in (1), one obtains the following Dantzig-Wolfe reformulation of problem (1): z∗ := min c⊤x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' xI(j) ∈ conv(Qj), j ∈ J, Ax ≥ b, x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (2) We call the continuous relaxation of (2), obtained by relaxing the integrality constraints x ∈ X, the DW relaxation of (1), and the bound zD obtained by solving the DW relaxation the DW bound of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The DW bound zD is potentially stronger than the natural LP relaxation bound zL as P j ⊇ conv(Qj) for all j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , q}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Consequently, we have z∗ ≥ zD ≥ zL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 3 In practice, computing zD is not as straightforward as solving the continuous relaxation of (2) since polyhedra � conv(Qj) �q j=1 are not given explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' One often has to apply the so-called DW decomposition to compute zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By the Minkowski-Weyl theorem and Meyer’s theorem [19] for rational polyhedra, each conv(Qj) can be represented by its extreme points and extreme rays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For j ∈ J, let V j and Rj denote the set of extreme points and the set of extreme rays of conv(Qj), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The DW reformulation (2) can be further reformulated using (V j)j∈J and (Rj)j∈J, leading to the following extended reformulation of (2): z∗ = min c⊤x (3a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' xI(j) = � v∈V j λvv + � r∈Rj µrr, j ∈ J, (3b) � v∈V j λv = 1, j ∈ J, (3c) λ ≥ 0, µ ≥ 0 (3d) Ax ≥ b, x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (3e) The LP relaxation of (3) (obtained by dropping the integrality constraints x ∈ X, and equivalent to DW relaxation) can be solved iteratively via column generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Specifically, at each iteration, a restricted LP is solved by replacing V j and Rj with a small collection of extreme points ˆV j ⊆ V j and extreme rays ˆRj ⊆ Rj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A new extreme point or a new extreme ray is generated by solving a pricing subproblem Dj(πj) := min � (πj)⊤v : v ∈ conv(Qj) � = min � (πj)⊤v : v ∈ Qj� (4) for each block j ∈ J, where πj above is the dual solution associated with constraints (3b) in the restricted LP relaxation of (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By convention, we define Dj(πj) = −∞ if the pricing subproblem (4) is unbounded, and when this happens one can obtain an extreme ray r ∈ Rj by finding an unbounded ray of min{(πj)⊤v : v ∈ P j}, which is added to ˆRj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If, on the other hand, Dj(πj) is finite, one obtains a solution of (4) as an extreme point v ∈ V j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' This point is added to ˆV j provided that it has a negative reduced cost that is computed by subtracting the dual variable associated with the j-th constraint of (3c) from Dj(πj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The restricted LP, with augmented vertices and rays, is then solved again and this process is repeated until no such points or rays are generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The restricted LP at each iteration gives an upper bound for zD, and these upper bounds converge to zD in a finite number of iterations as |V j| and |Rj| are finite for all j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The algorithm iterates between the restricted LP master problem and pricing subproblems until the solutions of the pricing subproblems all have nonnegative reduced costs, in which case it can be shown that the optimal objective value of the restricted LP takes value zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Such an inner approximation approach for solving the LP relaxation of (3) is called DW decomposition [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Algorithm 1 in Appendix A presents a pseudocode describing the standard DW decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' When the algorithm terminates, in addition to the lower bound zD, an optimal solution to the LP relaxation of (2) is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' This solution does not necessarily satisfy the integrality constraints x ∈ X in (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If this solution is fractional, branching is necessary to obtain an optimal solution of the original problem (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The subproblems in the branch-and-bound tree can again be solved using column generation, and this procedure for finding the exact solution of (3) is called branch and price [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A notable extension of branch and price is the so-called branch-and-cut-and-price algorithm, where cutting planes that are valid for the original formulation are added to LP relaxations at branch-and-price nodes to further strengthen the formulation (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', [20, 21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 4 Figure 2: Solutions of DW Pricing Subproblems Build Both Inner (Blue, Dashed) and Outer (Red, Solid) Approximations 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='2 Inner and Outer Approximations In DW decomposition, the restricted LP at each iteration corresponds to an inner approximation of the DW reformulation (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The inner approximation is iteratively augmented by extreme points and extreme rays generated from the pricing subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' At the same time, the pricing subproblems can also be used to derive an outer approximation of (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Specifically, by definition of the pricing subproblems, for each j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , q} and πj ∈ RI(j), inequality (πj)⊤y ≥ Dj(πj) is valid for conv(Qj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, given the particular dual multipliers (πj(τ))q j=1 obtained at iteration τ of DW decomposition, the following inequalities are valid for the DW relaxation of (2): (πj(τ))⊤xI(j) ≥ Dj(πj(τ)), j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (5) Then, for each iteration t of DW decomposition, the following inequality holds: zD ≥ min c⊤x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' � πj(τ) �⊤xI(j) ≥ Dj � πj(τ) � , j ∈ J, τ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , t, xI(j) ∈ P j, j ∈ J, Ax ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The above inner approximation can be potentially stronger than the natural LP relaxation of (1) as (5) may cut off solutions that are feasible to the natural LP relaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The overall inner and outer process is depicted in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 3 Incorporating the DW Bound Into the Formulation As anticipated, it has been shown in numerous applications that the DW bound can be much stronger than the natural LP relaxation bound [22, 23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' However, directly using formulation (3) is not practical since formulation (3) has potentially exponentially many variables and requires enumerating all vertices and extreme rays of � conv(Qj) �q j=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Even when the LP relaxation of formulation (3) is solved by column generation and the DW bound zD is effectively computed, enforcing integrality of x ∈ X requires specialized branching and DW decompostion must be applied at every node, leading to the branch-and-price algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A straightforward approach for enforcing the DW bound zD in the original space is to add to the LP relaxation of (1) a cut of the form c⊤x ≥ zD, 5 which we call the objective function cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' However, it is well known that adding such an objective function cut often slows down the branch-and-cut solution process in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We first observe a basic property of the optimal face of the LP relaxation after adding the objective function cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let P be a polyhedron in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If neither c⊤x ≤ v nor c⊤x ≥ v is valid for P, then dim(P ∩ {x : c⊤x = v}) = dim(P) − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Define P + := P ∩ {x : c⊤x ≤ v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that c⊤x ≤ v is an irredundant inequality for P + because c⊤x ≤ v is not valid for P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By [25, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='26], dim(P ∩ {x : c⊤x = v}) = dim(P +) − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We next show that the affine hull of P + is equal to the affine hull of P, and thus dim(P +) = dim(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By [25, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='17], we only need to show the following two statements: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Equality c⊤x = v is not valid for P +;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If a⊤x ≤ a0 is valid for P but a⊤x = a0 is not valid for P, then a⊤x = a0 is not valid for P +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that c⊤x ≥ v is not valid for P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, there exists ˆx ∈ P such that c⊤ˆx < v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The first statement then follows from the fact that ˆx ∈ P +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Similarly, there exists ¯x ∈ P such that a⊤¯x < a0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For λ ∈ (0, 1), define xλ := (1 − λ)ˆx + λ¯x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Because a⊤¯x ≤ a0, we have xλ ∈ P + but a⊤xλ < a0 for a small enough λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The second statement then follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' When zD > zL, adding the objective function cut into the original formulation would create an optimal face almost as high-dimensional as the original LP relaxation polyhedron under the mild assumption that the LP relaxation of (1) contains a point x′ with c⊤x′ > zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Consequently, adding the objective function cut would often yield a formulation with a large optimal face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' This, in turn, can cause not only performance variability [26], but also serious computational issues especially in early stages of the branch and cut in terms of branching [27], as well as cutting plane generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='1 An alternative approach In Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='2, we observed that valid inequalities for the DW relaxation can be generated while solving the pricing subproblems, and adding these valid inequalities into the natural LP relaxation can at most yield DW bound zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We next show that relatively few of these cutting planes can readily recover zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Specifically, assume at iteration t of DW decomposition, the restricted LP we solve is of the form zt D = min c⊤x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' xI(j) = � v∈ ˆV j vλj v + � r∈ ˆRj rµj r, j ∈ J, (πj) Ax ≥ b, (β) � v∈ ˆV j λj v = 1, j ∈ J, (θj) λj ≥ 0, µj ≥ 0, j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (6) Let (π1,t, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , πq,t, βt, θt 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , θt q) denote the optimal values of dual variables (π1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , πq, β, θ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , θq) for the restricted LP at iteration t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We then have the following result for the valid inequalities derived at the last iteration of DW decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 6 Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Assume DW decomposition terminates in T iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Then, zD = min c⊤x (7a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (πj,T )⊤xI(j) ≥ Dj(πj,T ), j ∈ J, (7b) Ax ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (7c) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The “≥” direction is implied by the definition of zD as inequality (7b) is valid for conv(Qj) for j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We next show the “≤” direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Based on LP duality of (6) at iteration T and the termination condition of DW decomposition, the following equalities hold: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' zD = b⊤βT + �q j=1 θT j ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' ci = A⊤ i βT + � j:i∈I(j) πj,T i , i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that at the last iteration T, the DW pricing subproblems are bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let (vj,T )q j=1 denote the solutions of the DW pricing subproblems at iteration T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that the reduced costs associated with points (vj,T )q j=1 are nonnegative at iteration T of DW decomposition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', (πj,T )⊤vj,T − θT j = Dj(πj,T ) − θT j ≥ 0 for j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, for each solution x satisfying (7b) and (7c), we have the following inequality: c⊤x = n � i=1 cixi = n � i=1 � xiA⊤ i βT + � j:i∈I(j) xiπj,T i � = (βT ) ���� ≥0 ⊤ Ax ���� ≥b + q � j=1 (πj,T )⊤xI(j) � �� � ≥Dj(πj,T ) ≥ b⊤βT + q � j=1 Dj(πj,T ) ≥ b⊤βT + q � j=1 θT j = zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (8) We call inequalities (7b) last-iteration DW cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Theorem 2 shows that q last-iteration DW cuts together with linking constraints recover the DW bound zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We remark that the last-iteration DW cuts are not necessarily all nontrivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' It is possible that πj,T = 0 for some j ∈ J, which implies that the convexification of the j-th block has no impact on improving the dual bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' It is worth emphasizing that (7) is not a valid formulation for the MIP (1) even if we add integrality constraints x ∈ X to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' One should use last-iteration DW cuts as cutting planes and add them to the original formulation (1) to obtain a valid formulation whose LP relaxation bound is precisely zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Also note that Theorem 2 does not imply that last-iteration DW cuts dominate other cutting planes of the form (5) that can be generated at intermediate iterations τ < T, in the sense that intermediate-iteration DW cuts may still cut off fractional points that do not violate any of the last-iteration DW cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='2 Dual Degeneracy and LP Optimal Face When comparing the strength of different collections of cutting planes or different formulations, very often the LP relaxation bound is used as the sole criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' However, the effectiveness of two formulations in branch and cut may differ significantly even if they have the same or very similar LP relaxation bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A particular measure that should also be taken into account is the dual degeneracy level of the LP relaxation of the formulation [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A dual basic solution of an LP is called dual degenerate if at least one of the dual basic variable is set to 0 in that solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Next, we formally define the degeneracy level of a dual basic solution of an LP (given in inequality form).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 7 Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Consider an LP with n variables and m inequality constraints, and let α be a basic feasible dual solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We define the degeneracy level of α to be n − ∥α∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A highly dual degenerate LP relaxation is associated with many alternative LP basic primal optimal solutions, which usually corresponds to a large optimal face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The following result shows how the size of the optimal face, in particular, its dimension, is related to the degeneracy level of a dual basic optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Assume α∗ ∈ Rm + is a dual basic optimal solution of an LP with n variables and m inequality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Then, the optimal face of the LP has dimension at most n − ∥α∗∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Fur- thermore, if α∗ is the unique dual optimal solution, then the optimal face of the LP has dimension exactly n − ∥α∗∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Assume the LP is of the form min{c⊤x : Gx ≥ h}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let F denote the optimal face of the LP, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', F = {x : Gx ≥ h, c⊤x ≤ h⊤α∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (9) Let (gk)⊤ denote the k-th row of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By complementary slackness of LP, (gk)⊤x = hk for all x ∈ F for all k with α∗ k > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Since α∗ is a dual basic optimal solution, {(gk, hk)}k:α∗ k>0 are linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Otherwise, there exists β ∈ Rm \\ {0} such that βk = 0 for all k with α∗ k = 0 and � k:α∗ k>0 βk(gk, hk) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that α∗ + ϵβ and α∗ − ϵβ are then both dual optimal solutions of the LP for small enough positive ϵ, which contradicts the fact that α∗ is a dual basic optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, dim(F) ≤ n − rank({gk}k:α∗ k>0) = n − rank({(gk, hk)}k:α∗ k>0) = n − ∥α∗∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Here, the first inequality follows from [25, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='17], the second equality follows from the consistency of the linear system {(gk)⊤x = hk}k:α∗ k>0, and the third equality follows from linear independence of {(gk, hk)}k:α∗ k>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If α∗ is the unique dual optimal solution, by strict complementary slackness of LP [28], there exists an optimal solution x∗ ∈ F of the LP, such that (gk)⊤x∗ > hk for all k with α∗ k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' It implies that {(gk)⊤x = hk}k:α∗ k>0 and c⊤x = h⊤α∗ are exactly all the implicit equalities that hold in the inequality description (9) of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By LP duality, c⊤x = h⊤α∗ is implied by {(gk)⊤x = hk}k:α∗ k>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, by [25, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='17], dim(F) = n − rank({gk}k:α∗ k>0) = n − ∥α∗∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We remark that Proposition 3 does not extend to dual nonbasic optimal solutions, moreover, the ℓ0-norm of dual nonbasic optimal solutions can be greater than n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that the dual optimal solution is unique when the primal solution is nondegenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For the primal degenerate case, even if there exists a unique dual basic optimal solution, it is possible that the dimension of the optimal face of the LP is strictly less than the degeneracy level of that dual basic optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' See Example 2 in Appendix C for an example where the unique dual basic optimal solution has a strictly positive dual degeneracy level but the primal optimal solution is still unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Under some mild assumptions, Proposition 3 implies the dimension of the optimal face of the LP (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Assume the LP (7) has a unique dual optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Then, the optimal face of (7) has dimension n − q − ∥βT ∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that the proof of Theorem 2 implies that (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , 1, βT ) is a dual optimal solution of (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The result then follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proposition 4 also implies that if the dual optimal solution is unique, then none of the DW last-iteration cuts can be redundant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If this is not the case, the dimension of the optimal face 8 after adding the last iteration cuts depends on the number of cuts that are active.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that when applying the last-iteration DW cuts in practice, we would add them to the original formulation (1), resulting in an LP optimal face whose size can be even smaller due to constraints xI(j) ∈ P j, j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 4 Bound Computation and Cut Generation via Lagrangian Re- laxation Lagrangian relaxation [29] is an alternative approach for computing the DW bound zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In La- grangian relaxation, separate auxiliary variables are created for each block and these auxiliary variables are related to the original variables using additional (copying) constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The copying constraints together with the linking constraints Ax ≥ b are then dualized into the objective to obtain a Lagrangian relaxation of (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' More precisely, one writes zD = min c⊤x (10a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' yj ∈ conv(Qj), j ∈ J, (10b) yj = xI(j), j ∈ J, (πj) (10c) Ax ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (β) (10d) After dualizing constraints (10c) and (10d) using variables π and β ≥ 0, one obtains the following Lagrangian relaxation: z(π, β) = min c⊤x + q � j=1 (πj)⊤(yj − xI(j)) + β⊤(b − Ax), s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' yj ∈ Qj, j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (11) Note that when the index sets {I(j)}q j=1 are nonoverlapping, (10) and (11) can be simplified by properly removing the copying constraints and the associated dual variables π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In general, it follows from Lagrangian duality [30] that the largest Lagrangian relaxation bound matches zD, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', zD = max β≥0,π z(π, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (12) Note that x is unconstrained in (11) and therefore z(π, β) = −∞ unless the coefficients of the x variables in the objective function are zero, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', ci − � j:i∈I(j) πj i − β⊤Ai = 0 for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , n}, where Ai denotes the i-th column of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Consequently, (12) can also be written as zD = max z(π, β) (13a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' � j:i∈I(j) πj i + β⊤Ai = ci, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , n, (13b) β ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (13c) Problem (13) is called the Lagrangian dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For (π, β) satisfying (13b) and (13c), it holds that z(π, β) = q � j=1 Dj(πj) + b⊤β, 9 Figure 3: Comparison of the Cutting Plane Method (Left) and the Level Method (Right) on Solving the Lagrangian Dual Problem 0 200 400 600 800 1000 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' of Iterations 1000 800 600 400 200 0 Relative Gap (%) cutting plane method UB cutting plane method LB 0 200 400 600 800 1000 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' of Iterations 1000 800 600 400 200 0 Relative Gap (%) level method UB level method LB where Dj : R|I(j)| → R ∪ {−∞} is a piecewise linear concave function of the form Dj(πj) = min{(πj)⊤v : v ∈ Qj}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (14) Therefore, (13) is a nonsmooth convex optimization problem with a separable objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' It is worth emphasizing that the pricing problem (4) in DW decomposition has exactly the same form as (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The function values and supergradients of the concave function Dj(·) can be evaluated by solving (14) [29] (an optimal solution of (14) is a supergradient of Dj(·) at πj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' This alternative way of viewing DW bound zD as the optimal value of the Lagrangian dual problem allows us to use various convex optimization methods for computing DW bound zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For example, DW decomposition is equivalent to applying the classical cutting plane method [31] to solve (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Since the description of Qj involves integer variables in general, functions Dj(·) are often piecewise linear concave with exponentially many pieces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In that case, convex optimization methods with some stabilization techniques (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', the level method [32]) often outperform the cutting plane method, and the difference can be significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Figure 3 is a representative example of the difference in performance between the cutting plane method and the level method for the DW bound zD (averaged over a set of multiple knapsack assignment problem instances that are used in Section 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Details about our implementation of the level method are presented in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='1 Dantzig-Wolfe Fenchel Cuts The cutting planes we derived in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='2 belong to a more general class of cutting planes called Fenchel cuts [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Fenchel cuts are cutting planes that can be derived from a subsystem of constraints (including integrality constraints) of a given MIP formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let the feasible region corresponding to such a subsystem is given by Q = {x ∈ Rn : Gx ≥ g, x ∈ X}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Given a direction µ ∈ Rn, a Fenchel cut (associated with Q in direction µ) is given by µ⊤x ≥ f(µ), where f(µ) = minx{µ⊤x : x ∈ Q}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In other words, an inequality is a Fenchel cut (associated with Q) if and only if it is valid and have the tightest possible right-hand side for Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In particular, the j-th inequality in (5) is a Fenchel cut associated with the subsystem defined by Q = {x ∈ Rn : GjxI(j) ≥ gj, xI(j) ∈ Xj}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We call such a Fenchel cut associated with a particular block of the DW reformulation a Dantzig-Wolfe Fenchel cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 10 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We call an inequality a Dantzig-Wolfe Fenchel (DWF) cut for (1) if it is of the form (πj)⊤xI(j) ≥ Dj(πj) (15) for some j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , q}, where Dj(·) is defined in (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We have shown in Section 3 that DWF cuts associated with the last iteration of DW decompo- sition can recover DW bound zD and applying these DWF cuts rather than the objective function cut for enforcing DW bound yields root node relaxations with lower dual degeneracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Another advantage of using DW cuts is regarding the dimension of the cuts, which is often used as a mea- sure of the strength of the cutting plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' A higher dimension of the associated face means that the cutting plane is closer to being facet-defining and irredundant, and therefore stronger in some sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let S denote the feasible region of the original problem (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We next present a relationship between the dimension of a DWF cut in conv(S) and its restriction in conv(Qj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We say that MIP (1) has block relative feasibility if for each j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , q} and y ∈ Qj there exists x ∈ S such that xI(j) = y, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', projxI(j)(S) = Qj for j ∈ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The block relative feasibility assumption holds for a broad class of MIP problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For example, for two-stage stochastic integer programs, relatively complete recourse [33] implies block relative feasibility if each block is defined by first-stage and second-stage constraints associated with a particular scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Assume problem (1) has block relative feasibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If (πj)⊤y ≥ Dj(πj) defines a d-dimensional face of conv(Qj) for some j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , q}, then (15) defines a face of conv(S) of dimension at least d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Since (πj)⊤y ≥ Dj(πj) defines a d-dimensional face of conv(Qj), there exists d + 1 affinely independent points {yk}d+1 k=1 ⊆ Qj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By the block relative feasibility assumption, there exist points {xk}d+1 k=1 ⊆ S such that xk I(j) = yk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Points {xk}d+1 k=1 are affinely independent from each other by affine independence of {yk}d+1 k=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The conclusion then follows from the fact that {xk}d+1 k=1 are all on the face associated with (15) in conv(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Proposition 5 indicates that DWF cuts whose restrictions in the space of xI(j) correspond to high-dimensional faces of conv(Qj) are likely to define high-dimensional faces in conv(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' It motivates the idea of strengthening some DWF cuts to obtain higher-dimensional DWF cuts, which will be discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In contrast to DWF cuts that potentially define high-dimensional faces of conv(S), the objective function cut c⊤x ≥ zD usually corresponds to an empty face of conv(S) unless zD = z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Even if zD = z∗, the face associated with the objective function cut may still be low-dimensional unless the problem has many alternative optimal primal solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='2 Cut Generation From the Lagrangian Dual As discussed earlier, solving the Lagrangian dual problem can be computationally more efficient than the standard DW decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' During the solution of the Lagrangian dual problem, DWF cuts similar to (5) can also be generated every time we evaluate the function values of Dj(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The following result demonstrates the strength of DWF cuts generated from the evaluation of the Lagrangian dual function at any point (π, β) with z(π, β) > −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 11 Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let (π, β) be Lagrangian dual multipliers for (11) satisfying constraints (13b) and (13c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Then, z(π, β) ≤ min c⊤x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (πj)⊤xI(j) ≥ Dj(πj), j ∈ J, Ax ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (16) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Consider any x ∈ Rn feasible to the right-hand side LP of (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Since ci = � j:i∈I(j) πj i + β⊤Ai for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' , n by (13b), we have c⊤x = n � i=1 � j:i∈I(j) πj i xi + β⊤Ax = q � j=1 (πj)⊤xI(j) � �� � ≥Dj � πj� + β ���� ≥0 ⊤ Ax ���� ≥b ≥ p � j=1 Dj(πj) + b⊤β(τ) = z(π, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that, unlike Theorem 2, Proposition 6 does not depend how the dual multiplier is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If one can solve the Lagrangian dual problem to optimality, then Proposition 6 implies that one can recover DW bound using DWF cuts associated with an optimal solution of the Lagrangian dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Corollary 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let (¯π, ¯β) be an optimal solution of (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Then, zD = min c⊤x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (¯πj)⊤xI(j) ≥ Dj(¯πj), j ∈ J, Ax ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' (17) Results similiar to Propostion 4 can be derived for the optimal face of the LP (17) that utilizes DWF cuts associated with an optimal Lagrangian dual solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Even if the Lagrangian dual problem is not solved to optimality, Proposition 6 still guarantees that DWF cuts can provide strength at least as strong as the best Lagrangian dual bound by generating DWF cuts associated with the dual solution that provides the strongest bound obtained so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Besides, there may be values for adding DWF cuts obtained at different dual multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' See Example 1 in Appendix C showing that DWF cuts can potentially provide stronger dual bounds than the best Lagrangian dual bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 5 Generating a Stronger Relaxation In this section we describe how to strengthen the DWF cuts to obtain a stronger relaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The strengthened cutting planes are still DWF cuts valid for blocks Qj, and therefore do not lead to better bounds than zD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' However, these strengthened cutting planes may potentially make more constraints active in the LP relaxation, and therefore can help reduce the dual degeneracy level of the formulation and improve the branch-and-cut performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Moreover, the strengthened cutting planes are more likely to define high-dimensional faces of the original problem, as they define higher-dimensional faces of the block polyhedra conv(Qj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 12 Figure 4: Disjunctive Coefficient Strengthening for Three Cases xi 0 1 xi 0 1 r xi 0 1 x0 x1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='1 Disjunctive Coefficient Strengthening We first describe a disjunctive coefficient strengthening technique for binary variables [34] that strengthens the coefficients of a valid inequality one at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Given a valid inequality a⊤x ≥ f for the set Q, let Q= := {x ∈ Q : a⊤x = f}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For a binary variable xi, its coefficient ai in the cut can be strengthened if one of the following two cases hold: (i) xi = 0 for all x ∈ Q=, or, (ii) xi = 1 for all x ∈ Q=.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If there are points x0, x1 ∈ Q= such that x0 i = 0 and x1 i = 1, then this approach does not improve (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=', decrease) the coefficient of the variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Figure 4 shows an example of all three cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that if we solve ¯f = min{a⊤x : x ∈ Q, xi = 1} (18) and observe that ¯f > f, then we can strengthen the original inequality a⊤x ≥ f to be a⊤x ≥ f + ( ¯f − f)xi using the disjunction Q = {x ∈ Q : xi = 0} ∪ {x ∈ Q : xi = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Similarly, if we solve ¯f = min{a⊤x : x ∈ Q, xi = 0}, (19) and observe that ¯f > f, then we can strengthen the original inequality a⊤x ≥ f to be a⊤x ≥ f + ( ¯f − f)(1 − xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If either problem (18) or (19) is infeasible, then one can simply fix variable xi to 0 or 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' It is easy to verify that the original inequality is implied by the strengthened inequality together with the bound constraint xi ≥ 0 or xi ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, if the original inequality is active in the LP relaxation, then one round of coefficient strengthening (if applicable) would potentially make a bound constraint active in the LP relaxation and reduce the dual degeneracy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that this approach does not increase the size of the formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For strengthening a DWF cut obtained from a block j, we set Q = Qj and apply coefficient strengthening sequentially to all coefficients of binary variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In practice, we keep a set L of points that are known to be elements of Q=, generated from previous solutions of (14), (18) and (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If there are x0, x1 ∈ L such that x0 i = 0 and x1 i = 1, then without solving (18) or (19) we conclude that disjunctive strengthening cannot be applied to the i-th coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content='2 Strengthening via Tilting We next describe a tilting technique introduced in [35, 36] that starts with a valid inequality and iteratively tilts it to obtain a facet-defining inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Let a⊤x ≥ f be a valid inequality for Q and assume that it is not facet-defining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Also assume that conv(Q) is full dimensional and there is a set Q′ ⊆ Q such that all points x ∈ Q′ satisfy a⊤x = f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The algorithm first generates a point 13 ¯x ∈ Q \\ Q′ that satisfies a⊤¯x > f, and a vector (v, w) such that v⊤x = w for all x ∈ Q′ ∪ {¯x}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' The algorithm then does the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If v⊤x ≥ w is valid for Q, then the algorithm outputs ¯x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Otherwise the algorithm computes the largest λ+ ∈ R+ such that (a + λ+v)⊤x ≥ f + λ+w is valid for Q and outputs this inequality together with a point ¯x+ ∈ Q \\ Q′ satisfying (a + λ+v)⊤¯x+ = f + λ+w;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' If v⊤x ≤ w is valid for Q, then the algorithm outputs ¯x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Otherwise the algorithm computes the largest λ− ∈ R+ such that (a − λ−v)⊤x ≥ f − λ−w is valid for Q and outputs this inequality together with a point ¯x− ∈ Q \\ Q′ satisfying (a − λ−v)⊤¯x− ≥ f − λ−w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that when conv(Q) is full dimensional, both v⊤x ≥ w and v⊤x ≤ w cannot be valid and consequently we obtain two (possibly identical) valid inequalities whose conic combination implies the original inequality a⊤x ≥ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Moreover, each one of the these inequalities has one more known feasible point on its associated face than a⊤x ≥ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In [36], the authors show that recursively tilting one of the two obtained valid inequalities leads to a facet-defining inequality for conv(Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In our context, we apply the tilting idea with the following modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For a DWF cut associated with block j, we set Q to be Qj, and instead of picking one of the two tilted inequalities for the subsequent tilting iteration, we apply tilting to both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' By doing so, we create a binary tree where the root node corresponds to the original DWF cut and the remaining nodes correspond to DWF cuts obtained by tilting the inequalities associated with their parent nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' For any such tree, cuts associated with the leaf nodes imply the original DWF cut associated with the root node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' We call the collection of inequalities associated with the leaf nodes of a depth-d tree depth-d tilted DWF cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Using a depth-d tree means replacing one DWF cut with up to 2d DWF cuts, which can be computationally expensive if d is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Therefore, it is often beneficial to choose a relatively small value for d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Note that this process does not improve the DW bound but can potentially help reduce the dimension of the LP optimal face as more constraints are likely to become active at the optimal face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' To improve computational performance, we keep track of the feasible points for block j ∈ J that we encounter during the overall algorithm and store them in a set ˆQj ⊆ Qj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' Using this set of points reduces the number of oracle calls needed in the following two ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' First, we can check if any point in ˆQj satisfies the condition for ¯x and use it for choosing (v, w), thus avoiding an extra call to the optimization oracle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtFPT4oBgHgl3EQfsjWt/content/2301.13149v1.pdf'} +page_content=' In addition, when computing λ+, we use ˆQj to obtain the following upper bound on it: λ+ := min x∈Qj:v⊤x 0 be arbitrary. To prove convergence, we will show ∥Ck − C∗∥2 ≤ ε for +every k large enough. Consider the recurrence relation for Ck − C∗ established in +Lemma 5.3. We can rearrange it to read +(5.13) +(Ck+1 − C∗) = (Ck − C∗)[WkPkW −1 +k +]p + Ek. +Abbreviate WkPkW −1 +k +by P ′ +k and note that P ′ +k is no longer an orthogonal projection +but gets closer and closer to one as k → ∞. In particular, its norm approaches one + +GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS +11 +since ∥P ′ +k∥2 ≤ κ2(Wk) → 1. +To use the assumption (5.9) later on we apply the +previous equality m times and get +(5.14) +(Ck0+m − C∗) = (Ck0 − C∗) +�k0+m−1 +� +k=k0 +P ′ +k +�p ++ +k0+m−1 +� +k=k0 +Ek +�k0+m−1 +� +l=k+1 +P ′ +l +�p +. +Let K1 ∈ N be such that for all k ≥ K1 we have κ2(Wk) ≤ 2. This means using +Lemma 5.3 we can bound the second term on the right-hand side of the previous +equation by +(5.15) +����� +k0+m−1 +� +k=k0 +Ek +�k0+m−1 +� +l=k+1 +P ′ +l +������ +2 +≤ +k0+m−1 +� +k=k0 +2p(1 + 2p)∥�Ck − C∗∥ +for all k0 ≥ K1. Since Lemma 5.2 showed that �Ck → C∗ the bound above is smaller +than ε/2 · (1 − ( 1+c +2 )p) for k0 large enough, say k0 ≥ K2. +Next, consider first term on the right-hand side of (5.14). Let P ∗ +k be the orthog- +onal projection matrices from the assumption (5.9) as before. Note that P ′ +k ̸= P ∗ +k , so +we cannot apply the assumption directly. Instead, we look at the difference between +the product of P ′ +k and P ∗ +k and find +����� +k0+m−1 +� +k=k0 +P ′ +k − +k0+m−1 +� +k=k0 +P ∗ +k +����� +2 += +����� +k0+m−1 +� +k=k0 +P ∗ +k0 · · · P ∗ +k−1(P ′ +k − P ∗ +k )P ′ +k+1 · · · P ′ +k0+m−1 +����� +2 +(5.16a) +≤ +k0+m−1 +� +k=k0 +2m−1∥P ′ +k − P ∗ +k ∥2 +(5.16b) +for k0 ≥ K1 using ∥P ′ +k∥ ≤ 2 and ∥P ∗ +k ∥ ≤ 1 ≤ 2. For k0 large enough, say k0 ≥ K3, +the right-hand side of (5.16) is smaller than (1 − c)/2 by Lemma 5.5. Similarly, for k0 +large enough, say k0 ≥ K4, we have ∥�k0+m−1 +k=k0 +P ∗ +k ∥ ≤ c by assumption. Therefore, +for k0 ≥ max{K3, K4} +(5.17) +����� +k0+m−1 +� +k=k0 +P ′ +k +����� ≤ +����� +k0+m−1 +� +k=k0 +P ′ +k − +k0+m−1 +� +k=k0 +P ∗ +k +����� +2 ++ +����� +k0+m−1 +� +k=k0 +P ∗ +k +����� ≤ 1 + c +2 +. +In the previous two paragraphs we have established that asymptotically for every +m steps the norm of Ck − C∗ is first multiplied by a factor that is at most slightly +larger than c and then increased by an arbitrarily small error term. In particular for +k0 ≥ K = max{K2, K3, K4} we have +(5.18) +∥Ck0+m − C∗∥2 ≤ ∥Ck0 − C∗∥2 +�1 + c +2 +�p ++ ε/2 · +� +1 − +�1 + c +2 +�p� +. +Repeatedly applying this inequality shows that ∥Ck0+im − C∗∥2 is bounded by a +sequence (ai)i∈N which converges to ε/2. Use this observation for all k0 ∈ {K, K + +1, . . . , K + m − 1} to see that ∥Ck − C∗∥2 ≤ ε for all k large enough, as claimed. +Corollary 5.6. Let C0 ∈ R⊗pn +sym be given and update the approximations Ck ac- +cording to (GQN). Assume the steps all lie in a d-dimensional subspace spanned by + +12 +KARL WELZEL AND RAPHAEL A. HAUSER +the columns of V ∈ Rn×d, so that the iterates are of the form xk = V ¯xk + x⊥ +where V T x⊥ = 0. +Moreover, assume that ¯xk converge to ¯x∗ ∈ Rd (or equiva- +lently xk converge to x∗ = V ¯x∗ + x⊥), Wk converge to some nonsingular matrix +W∗ ∈ Rn×n and ¯sk = ¯xk+1 − ¯xk are uniformly linearly independent. Then Ck con- +verges to C∗ := Dpf(x∗) in the subspace: Ck[V ]p → C∗[V ]p as k → ∞. +Proof. We will construct a sequence of ¯Ck to which we can apply Theorem 5.4 +and then show ¯Ck = Ck[V ]p. Let ¯f : Rd → R be defined by ¯f(¯x) = f(V ¯x + x⊥) +which implies +(5.19) +Dp ¯f(¯x) = Dpf(V ¯x + x⊥)[V ]p. +Additionally, let the weight matrices ¯ +Wk be defined by ¯ +Wk = (V T W −T +k +W −1 +k +V )−1/2. +The operation B �→ B1/2 maps a symmetric positive semidefinite matrix B to the +unique symmetric semidefinite matrix H such that HT H = B, and is continuous +(see [17, Section 7.2]). Here, we know that V T W −T +k +W −1 +k +V is positive definite (V +is full-rank), so ¯ +Wk is also positive definite. Since the construction of ¯ +Wk depends +continuously on Wk, the newly constructed weight matrices converge to a positive +definite matrix ¯ +W∗ given by the same formula applied to W∗. That means if we now +define ¯C0 = C0[V ]p and apply (GQN) using ¯f, ¯xk and ¯ +Wk, the resulting sequence +¯Ck will converge to Dp ¯f(¯x∗) by Theorem 5.4. +Clearly, the limit point Dp ¯f(¯x∗) = Dpf(x∗)[V ]p is already correct, it just remains +to show that Ck[V ]p = ¯Ck for all k. By construction of ¯ +Wk we get +(5.20) +¯ +W −T +k +¯ +W −1 +k +¯sk = V T W −T +k +W −1 +k +V ¯sk = V T W −T +k +W −1 +k +sk +where sk = V ¯sk are steps in Rn. Theorem 4.1 (c) shows that Ck+1 = Ck + Psym(A ⊗ +W −T W −1sk) for some (p − 1)-tensor A ∈ R⊗p−1n +sym +, where A is chosen such that +Ck+1[sk] = Dp−1f(xk+1) − Dp−1f(xk). This implies +Ck+1[V ]p = Ck[V ]p + Psym(A ⊗ W −T W −1sk)[V ]p +(5.21a) += Ck[V ]p + Psym(A[V ]p−1 ⊗ V T W −T W −1sk) +(5.21b) += Ck[V ]p + Psym(A[V ]p−1 ⊗ ¯ +W −T +k +¯ +W −1 +k +¯sk) +(5.21c) +and Ck+1[V ]p[¯sk] = Dp−1 ¯f(¯xk+1) − Dp−1 ¯f(¯xk). Again by Theorem 4.1 (c) ¯Ck and +Ck[V ]p are updated in the same way, so inductively they define the same sequence. +This concludes the proof. +5.4. Generalized Dennis–Mor´e condition. Dennis and Mor´e [8] showed that +if optimization methods choose their iterates using xk+1 = xk − B−1 +k ∇f(xk) and +converge to x∗ then this convergence is Q-superlinear if and only if +(5.22) +lim +k→∞ +∥(Bk − ∇2f(x∗))sk∥F +∥sk∥2 += 0. +This equation is called the Dennis–Mor´e condition and is weaker than convergence of +Bk to ∇2f(x∗). Instead, it suffices when Bk converges in the step directions. +We are not concerned with convergence rates for any particular optimization +method in this paper, but it seems natural to ask whether the approximations Ck +satisfy a generalized Dennis–Mor´e condition +(5.23) +lim +k→∞ +∥(Ck − Dpf(x∗))[sk]∥F +∥sk∥2 += 0 +when they are updated according to (GQN). + +GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS +13 +Theorem 5.7. Let C0 ∈ R⊗pn +sym be given and update the approximations Ck ac- +cording to (GQN) where the function has a Lipschitz continuous pth derivative Dpf. +Assume xk converge to x∗ ∈ Rn and Wk converge to some nonsingular matrix +W∗ ∈ Rn×n fast enough such that +(5.24) +� +k≥0 +∥xk − x∗∥2 < ∞ +and +� +k≥0 +∥Wk − W∗∥2 < ∞. +Then the generalized Dennis–Mor´e condition (5.23) holds. +Proof. As in the proof of Theorem 5.4 we assume W∗ = I without loss of gen- +erality. +Since the condition number is locally Lipschitz continuous around I, the +assumption � +k≥0∥Wk − I∥2 < ∞ also implies Cκ := � +k≥0(κ2(Wk) − 1) < ∞. +As a first step we need to use the bounded deterioration principle to show that +∥Ck − C∗∥2 stays bounded. For this we again consider the m-step recursive formula +established in (5.14): +(5.25) +(Cm − C∗) = (C0 − C∗) +�m−1 +� +k=0 +P ′ +k +�p ++ +m−1 +� +k=0 +Ek +� m−1 +� +l=k+1 +P ′ +l +�p +where P ′ +k = WkPkW −1 +k +and Ek is defined in Lemma 5.3. Clearly, +(5.26) +ln +������ +m−1 +� +k=0 +P ′ +k +����� +2 +� +≤ +m−1 +� +k=0 +ln(∥P ′ +k∥2) ≤ +m−1 +� +k=0 +ln(κ2(Wk)) ≤ +m−1 +� +k=0 +(κ2(Wk) − 1) ≤ Cκ +is uniformly bounded for all m, which means the same is true for ∥�m−1 +k=0 P ′ +k∥2 itself. +Therefore, +(5.27) +∥Cm − C∗∥2 ≤ exp(Cκ)p +� +∥C0 − C∗∥2 + +m−1 +� +k=0 +∥Ek∥2 +� +. +Because Dpf is Lipschitz continuous and κ2(Wk) stays bounded, Lemmas 5.2 and 5.3 +show that there is a constant CE < ∞ such that +(5.28) +∥Ek∥2 ≤ CE/2(∥xk − x∗∥ + ∥xk+1 − x∗∥). +This implies �m−1 +k=0 ∥Ek∥2 ≤ CE +�m +k=0∥xk − x∗∥2 is uniformly bounded for all m and +therefore ∥Cm − C∗∥2 is as well. +The next step is crucial for this proof and similar to the proof of Theorem 8.2.2 +in [9]. We note that in the Frobenius norm for any tensor T ∈ R⊗pn and any nonzero +vector v ∈ Rn we have +(5.29) +∥T∥2 +F = +����T +�vvT +vT v +����� +2 +F ++ +����T +� +I − vvT +vT v +����� +2 +F += ∥T[v]∥2 +F +∥v∥2 +2 ++ +����T +� +I − vvT +vT v +����� +2 +F +because the matrices in brackets are orthogonal projections. We can apply this to the + +14 +KARL WELZEL AND RAPHAEL A. HAUSER +case where I − vvT /(vT v) is Pk to get +∥(Ck − C∗)[Wk]p[Pk]p∥ +2 +F +(5.30a) +≤ ∥(Ck − C∗)[Wk]p[Pk]∥2 +F +(5.30b) += ∥(Ck − C∗)[Wk]p∥2 +F − +��(Ck − C∗)[Wk]p� +W −1 +k +sk +���2 +F +∥W −1 +k +sk∥2 +2 +(5.30c) += ∥(Ck − C∗)[Wk]p∥2 +F − +���(Ck − C∗)[sk][Wk]p−1��� +2 +F +∥W −1 +k +sk∥2 +2 +(5.30d) +≤ ∥(Ck − C∗)[Wk]p∥2 +F − ∥(Ck − C∗)[sk]∥2 +F +∥sk∥2 +2 +∥W −1 +k ∥−2p +2 +. +(5.30e) +Adding Ek[Wk]p into the Frobenius norm on the left-hand side gives +∥(Ck+1 − C∗)[Wk]p∥2 +F = ∥(Ck − C∗)[Wk]p[Pk]p + Ek[Wk]∥2 +F +(5.31a) += ∥(Ck − C∗)[Wk]p[Pk]p∥2 +F + ∥Ek[Wk]p∥2 +F. +(5.31b) +The inner product term ⟨(Ck − C∗)[Wk]p[Pk]p, Ek[Wk]p⟩F is missing in (5.31b) +because it is zero. To show that, note that we can rewrite (5.7) from the proof of +Lemma 5.3 as +(5.32) +(�Ck − Ek − C∗)[Wk]p = (�Ck − C∗)[Wk]p[Pk]p. +Using the equivalence between Theorem 4.1 (d) and (c) the error tensor can be written +explicitly as −Ek = Psym(A ⊗ W −T +k +W −1 +k +sk) for some (p − 1)-tensor A and +(5.33) +Ek[Wk]p = −Psym(A[Wk]p−1 ⊗ W −1 +k +sk). +In other words, Ek[Wk]p can be expressed as a sum of outer products between W −1 +k +sk +and some (p−1)-tensor. Any inner product of such a tensor with (Ck − C∗)[Wk]p[Pk]p +must be zero as Pk maps W −1 +k +sk to zero. +Combining (5.30) and (5.31) and rearranging gives +∥(Ck − C∗)[sk]∥2 +F +∥sk∥2 +2 +≤ ∥W −1 +k +∥2p +2 +� +∥(Ck − C∗)[Wk]p∥2 +F +− ∥(Ck+1 − C∗)[Wk]p∥2 +F + ∥Ek[Wk]p∥2 +F +� +(5.34a) +≤ ∥(Ck − C∗)∥2 +Fκ2(Wk)2p − ∥(Ck+1 − C∗)∥2 +F + ∥Ek∥2 +Fκ2(Wk)2p +(5.34b) +Lastly, we wish to sum up both sides of the previous inequality over all k ≥ 0 and +show that the right-hand side stays bounded. This immediately gives the claim. A +few technicalities are needed. We already showed that Ck − C∗ stays bounded, so let +C∆ < ∞ be a constant such that ∥Ck−C∗∥F ≤ C∆ for all k ∈ N. As established above, +� +k≥0(κ2(Wk) − 1) < ∞. This also implies that � +k≥0 +� +κ2(Wk)2p − 1 +� += Cκ,2p < ∞ +for some constant Cκ,2p since κ2(Wk)2p − 1 ≤ 4p(κ2(Wk) − 1) for κ2(Wk) small +enough. + +GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS +15 +Consider the Ck − C∗ terms on the right-hand side of (5.34) first: +m−1 +� +k=0 +� +∥(Ck − C∗)∥2 +F κ2(Wk)2p − ∥(Ck+1 − C∗)∥2 +F +� +(5.35a) += ∥C0 − C∗∥2 +F κ2(W0)2p +� +�� +� +constant ++ +m−1 +� +k=1 +� +κ2(Wk)2p − 1 +� +� +�� +� +=Cκ,2p +∥Ck − C∗∥2 +F +� +�� +� +≤C2 +∆ +− ∥Cm − C∗∥2 +F +� +�� +� +≥0 +(5.35b) +is uniformly bounded for all m. +The same is true for the Ek term. +Because the +Frobenius norm and the 2-norm for p-tensors are both norms on finite-dimensional +vector spaces they are equivalent. +Moreover, κ2(Wk) stays bounded, so for some +constant C +m−1 +� +k=0 +∥Ek∥2 +F κ2(Wk)2p ≤ C +m−1 +� +k=0 +∥Ek∥2 +2 ≤ C +�m−1 +� +k=0 +∥Ek∥2 +�2 +(5.36a) +holds, and the term is uniformly bounded. Therefore, +(5.37) +� +k≥0 +∥(Ck − C∗)[sk]∥2 +F +∥sk∥2 +2 +< ∞ +and +∥(Ck − C∗)[sk]∥F +∥sk∥2 +→ 0 as k → ∞ +as claimed. +6. Numerical experiments. While the previous sections investigated the the- +oretical properties of the generalized quasi-Newton updates, we now turn to numerical +experiments to understand how quickly convergence of the approximations sets in and +how the algorithm behaves for different kinds of iterates. This is not supposed to be +a comprehensive treatment of the numerical performance of the algorithm, but rather +give an idea of its general behaviour by considering a small toy problem. +The implementation was done in Python using NumPy [15] and uses the explicit +formula in Theorem 4.1 (b) at its core: +(6.1) +Ck+1 = Ck + +p +� +j=1 +(−1)j�p +j +�� +vT +k sk +�−jPsym +�� +⊗jvk +� +⊗ (Ck[sk] − Dk)[sk]j−1� +where vk = W −T +k +W −1 +k +sk and Dk = Dp−1f(xk+1) − Dp−1f(xk). +This makes it +particularly easy to implement the analogues of (PSB) (where vk = sk) and (DFP) +(where vk = (∇f(xk+1) − ∇f(xk))/∥sk∥2). To increase legibility and since these two +choices produce roughly similar approximations, only the PSB variant will be shown +below. +We chose to use the two-dimensional Rosenbrock function f(x, y) = (1 − x)2 + +100(y − x2)2 as our objective function because it is a simple, yet widely used test +function with nonconstant third derivative +(6.2) +D3f(x, y) = +�� +−2400x +−400 +−400 +0 +� +� +−400 +0 +0 +0 +�� +. +The iterates xk are generated by different minimization algorithms starting at (0, 0) +and converging to the global minimum of f at x∗ = (1, 1). Lastly, the initial approx- +imation C0 is just the zero 3-tensor in the following. + +16 +KARL WELZEL AND RAPHAEL A. HAUSER +0 +10 +20 +30 +40 +Iteration k +10−14 +10−12 +10−10 +10−8 +10−6 +10−4 +10−2 +100 +∥Ck − D3f(xk)∥F /∥D3f(xk)∥F +∥xk − x∗∥2/∥x∗∥2 +Fig. 6.1. Convergence of iterates and approximations for nonlinear CG +6.1. Numerical limitations. In the first experiment, a nonlinear CG method2 +was used to minimize the Rosenbrock function. +Although nonlinear CG methods +with restarts can achieve superlinear local convergence, this implementation does not +include restarts, and we observe roughly linear convergence of xk to x∗ in Figure 6.1. +The relative error of each Ck is not measured with respect to C∗ = D3f(1, 1) here +but instead with respect to the true third derivative at each iterate D3f(xk), since +this is the more relevant metric in practice. From the convergence theorems in the +previous section we expect that this quantity will also converge to zero, since both +Ck and D3f(xk) converge to C∗. +Unfortunately, although at first this seems to be true and the two error curves +roughly coincide, from iteration 27 onwards the error in Ck increases quite consid- +erably. +The issue, as it turns out, stems from rounding errors in finite precision +arithmetic, which we did not consider in the theory. Specifically the computation of +Dk becomes more ill-conditioned the smaller the step sk is. +In each iteration, the current approximation Ck moves closer to the integrated +derivative �Ck, so we cannot expect Ck to approximate D3f(xk) better than �Ck. Of +course, the only part of �Ck which is used is its component in the direction of sk, i.e. +Dk/∥sk∥2. In exact arithmetic the proof of Lemma 5.2 also shows that +(6.3) +Dk +∥sk∥2 += �Ck[s→ +k ] = D3f(xk)[s→ +k ] + ∆Dk +with +∥∆Dk∥2 ≤ L +2 ∥sk∥2 +where s→ +k is the normed step sk/∥sk∥2, i.e. the unit norm vector pointing in the same +direction as sk, and L is the (local) Lipschitz constant of Dpf. +Now, let �Dk be the computed Dk = Dp−1f(xk+1)−Dp−1f(xk) under the influence +of rounding errors. +As Higham [16, p. +9] explains, if we subtract two numbers +2scipy.optimize.minimize(method="CG") in SciPy version 1.9.3, implementing the Polak– +Ribi`ere variant of nonlinear CG [24, p. 122] + +GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS +17 +0 +10 +20 +30 +40 +Iteration k +10−14 +10−12 +10−10 +10−8 +10−6 +10−4 +10−2 +100 +∥Ck − D3f(xk)∥F /∥D3f(xk)∥F +∥xk − x∗∥2/∥x∗∥2 +max{∥sk−1∥2, εmach/∥sk−1∥2} +√εmach +Fig. 6.2. Convergence of iterates and approximations for nonlinear CG (extended) +ˆa = a(1 + ∆a) and ˆb = b(1 + ∆b) from each other, and assume the relative errors ∆a +and ∆b are bounded by δ, the absolute error in the result is bounded by +(6.4) +|−a∆a + b∆b| ≤ δ(|a| + |b|). +The a and b in our case are the entries of Dp−1f(xk+1) and Dp−1f(xk). They are +computed with the exact formulas, but stored in finite precision, so the best possible +error bound δ is the machine precision εmach ≈ 10−16. This gives +(6.5) +�Dk +∥sk∥2 += +Dk +∥sk∥2 ++ ∆�Dk = D3f(xk)[s→ +k ] + ∆Dk + ∆�Dk +where ∥∆�Dk∥F ≤ +√ +2εmach +� +∥Dp−1f(xk+1)∥F + ∥Dp−1f(xk)∥F +� +/∥sk∥2. +Equation (6.5) shows that there are two sources of error, one from using the +secant equation and one from calculating Dk. The former is proportional to ∥sk∥2 +whereas the latter is proportional to 1/∥sk∥2. +This leads to the V-shaped graph +in Figure 6.1. If we assume that Dp−1f, Dpf and L have roughly the same scale, +we can estimate that the lowest possible relative error in �Dk/∥sk∥2 (compared to +D3f(xk)[sk/∥sk∥2]) is √εmach and is achieved when ∥sk∥2 ≈ √εmach. This analysis +is analogous to one for numerical differentiation schemes where the same lower bound +is derived, see for example [25, Section 5.7]. One notable exception to the rule occurs +when Dp−1f(x∗) = 0. In that case ∥∆�Dk∥F stays close to machine precision and +the approximations get better and better as sk converges to 0. This is one of the +reasons that regular quasi-Newton methods (p = 2) work very well for optimization +algorithms as they converge to stationary points. +In Figure 6.2 one can see that indeed the best relative error achieved is roughly +√εmach and that the maximum of ∥sk−1∥2 and εmach/∥sk−1∥2 is a pretty good proxy +for a lower bound on the error. + +18 +KARL WELZEL AND RAPHAEL A. HAUSER +0 +2 +4 +6 +8 +10 +12 +14 +16 +Iteration k +10−14 +10−12 +10−10 +10−8 +10−6 +10−4 +10−2 +100 +∥Ck − D3f(xk)∥F /∥D3f(xk)∥F +∥(Ck − D3f(xk))[s→ +k ]∥F /∥D3f(xk)∥F +∥xk − x∗∥2/∥x∗∥2 +max{∥sk−1∥2, εmach/∥sk−1∥2} +√εmach +Fig. 6.3. Convergence of iterates and approximations for exact trust region +Note that these numerical issues cannot be overcome with a different imple- +mentation but are inherent in this approach of extracting third-order information +from successive evaluations of second-order derivatives, since computing Dk is an +ill-conditioned problem. A practical way to avoid losing accuracy in the last few it- +erations would be to employ a heuristic that skips updating Ck when the expected +size of errors ∆�Dk exceeds the size of the update or simply when ∥sk∥2 becomes too +small. +6.2. Convergence in a subspace. In the second experiment, we used a trust +region approach with exact Hessian evaluations to generate the iterates.3 +As pre- +dicted by the theory for these methods, we observe local quadratic convergence to the +minimizer (and much fewer iterations in general). The dotted line shows that there +are very few iterations in which accurate information about the third derivatives can +be obtained, but even then the relative error in Ck is several orders of magnitude +larger than the lower bound. +A key difference in the two experiments is how the directions of the steps are +distributed. Figure 6.4 plots the angle of each sk with the x-axis, normalized between +0° and 180° so that opposite directions coincide. Whereas the steps generated by +the nonlinear CG algorithm cover multiple well-separated directions during the main +part of the algorithm, the steps generated by the trust region method tend to fall into +a one-dimensional subspace, especially towards the end when convergence happens. +This directly explains why the relative Frobenius error stays high and even increases +towards the end in the second experiment: All the information we can extract from +the (averaged) true derivative �Ck is its evaluation in the direction sk and since most +of the steps point in the same direction at the end, the information about the other +3scipy.optimize.minimize(method="trust-exact") in SciPy version 1.9.3, see [6, pp. 169–200] +for more details. Only the successful iterations were used. + +GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS +19 +0 +20 +40 +Iteration k +0° +20° +40° +60° +80° +100° +120° +140° +160° +180° +Angle of sk with x-axis +0 +5 +10 +15 +Iteration k +Nonlinear CG +Exact trust region +Rosenbrock valley +subspace at (1, 1) +Fig. 6.4. Subspaces of the steps for nonlinear CG and exact trust region +directions gets more and more outdated. +In addition to the relative Frobenius norm, we also included (a relative version of) +the Dennis–Mor´e measure from subsection 5.4 in Figure 6.3. This one measures the +error in Ck only in the direction of the step sk. Now, one might expect that when the +approximation is updated in one specific direction and the Dennis–Mor´e error only +measures how good the approximation is in this one direction, the error must track +the lower bound derived in the previous subsection quite well. Indeed, this is the +case when the steps all lie exactly in one subspace as we could verify with manually +generated iterates. For the exact trust region method however the step directions vary +by about 1° in successive iterations at the end, which can be seen in Figure 6.4. Let +s→ +k = λ1s→ +k−1 + λ2uk where uk is chosen such that s→ +k−1 and uk form an orthonormal +basis of R2, then λ2 +1 + λ2 +2 = 1 and by multilinearity of Ck, +(6.6) +Ck[s→ +k ] = λ1Ck[s→ +k−1] + λ2Ck[uk]. +Therefore, in each of the last few iterations the approximation in direction s→ +k +is +a linear combination of the very accurate information in direction s→ +k−1 and very +inaccurate information in direction uk. In particular, if the angle with the x-axis varies +by about 1° we get that λ2 ≈ sin(1◦) ≈ 10−2. Combining this with the knowledge that +the relative overall error in Ck is on the order of 1, we expect that the Dennis–Mor´e +measure will hover around 10−2. This agrees very well with the graph in Figure 6.3 and +shows that it is important for this method to gather accurate derivative information +in all directions. +7. Conclusion. We have seen in this paper that quasi-Newton updates described +as least-change updates admit fairly straightforward generalizations to higher-order +derivatives. Moreover, they have a closed form solution with a certain low-rank struc- +ture to it, generalizing the rank-two characterization of regular quasi-Newton updates. + +20 +KARL WELZEL AND RAPHAEL A. HAUSER +The theoretical results suggest that, as long as the directions of the steps span the +space and stay well separated, the generated approximations converge to the true +derivative in the limit and under suitably fast convergence of the iterates they even +converge (in a subspace) if these assumptions are violated. This is however not the +behaviour we see in experiments, since the problem of computing the difference be- +tween Hessian evaluations becomes more and more ill-conditioned as the difference +between consecutive iterates becomes smaller. These numerical limitations lead to a +loss in accuracy: If the Hessians are computed with relative error δ we cannot expect +the errors in the generated approximations to go below +√ +δ. Our experiments show +that, as long as the directions of the steps stay well separated, the method indeed +generates accurate approximations up to the numerical limit. If the directions tend to +fall into a subspace, the derivative information in directions orthogonal to it quickly +gets outdated and can impact approximations as long as they do not all fall exactly +into the subspace. +REFERENCES +[1] F. Biglari, M. A. Hassan, and W. J. Leong, New quasi-Newton methods via higher order +tensor models, Journal of Computational and Applied Mathematics, 235 (2011), pp. 2412– +2422, https://doi.org/10.1016/j.cam.2010.10.041. +[2] E. G. Birgin, J. L. Gardenghi, J. M. Mart´ınez, S. A. Santos, and P. L. Toint, Worst-case +evaluation complexity for unconstrained nonlinear optimization using high-order regular- +ized models, Mathematical Programming, 163 (2017), pp. 359–368, https://doi.org/10. +1007/s10107-016-1065-8. +[3] C. +G. +Broyden, +A +class +of +methods +for +solving +nonlinear +simultaneous +equations, +Mathematics +of +Computation, +19 +(1965), +pp. +577–593, +https://doi.org/10.1090/ +S0025-5718-1965-0198670-6. +[4] C. G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms 1. Gen- +eral Considerations, IMA Journal of Applied Mathematics, 6 (1970), pp. 76–90, https:// +doi.org/10.1093/imamat/6.1.76. +[5] C. Cartis, N. I. M. Gould, and P. L. Toint, Sharp worst-case evaluation complexity +bounds for arbitrary-order nonconvex optimization with inexpensive constraints, Nov. 2018, +https://doi.org/10.48550/arXiv.1811.01220. +[6] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, Society for Industrial +and Applied Mathematics, Jan. 2000, https://doi.org/10.1137/1.9780898719857. +[7] W. Davidon, VARIABLE METRIC METHOD FOR MINIMIZATION, Tech. Report ANL- +5990, 4252678, Argonne National Laboratory, Lemont, Illinois, May 1959, https://doi.org/ +10.2172/4252678. +[8] J. E. Dennis and J. J. Mor´e, A characterization of superlinear convergence and its application +to quasi-Newton methods, Mathematics of Computation, 28 (1974), pp. 549–560, https:// +doi.org/10.1090/S0025-5718-1974-0343581-1. +[9] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and +Nonlinear Equations, Society for Industrial and Applied Mathematics, Jan. 1996, https:// +doi.org/10.1137/1.9781611971200. +[10] S. Enshaei, M. Farid, W. J. Leong, and S. M. H. Ardestani, Higher order curvature +information and its application in a modified diagonal Secant method, Optimization, 67 +(2018), pp. 2229–2246, https://doi.org/10.1080/02331934.2018.1527840. +[11] R. Fletcher, A new approach to variable metric algorithms, The Computer Journal, 13 (1970), +pp. 317–322, https://doi.org/10.1093/comjnl/13.3.317. +[12] R. Fletcher and M. J. D. Powell, A Rapidly Convergent Descent Method for Minimization, +The Computer Journal, 6 (1963), pp. 163–168, https://doi.org/10.1093/comjnl/6.2.163. +[13] D. +Goldfarb, +A +family +of +variable-metric +methods +derived +by +variational +means, +Mathematics +of +Computation, +24 +(1970), +pp. +23–26, +https://doi.org/10.1090/ +S0025-5718-1970-0258249-6. +[14] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, vol. 42 of Springer Series +in Computational Mathematics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, +https://doi.org/10.1007/978-3-642-28027-6. +[15] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna- + +GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS +21 +peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, +M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R´ıo, M. Wiebe, P. Pe- +terson, P. G´erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, +C. Gohlke, and T. E. Oliphant, Array programming with NumPy, Nature, 585 (2020), +pp. 357–362, https://doi.org/10.1038/s41586-020-2649-2. +[16] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and +Applied Mathematics, second ed., Jan. 2002, https://doi.org/10.1137/1.9780898718027. +[17] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1 ed., Dec. +1985, https://doi.org/10.1017/CBO9780511810817. +[18] J. M. Mart´ınez and M. Raydan, Separable cubic modeling and a trust-region strategy for +unconstrained minimization with impact in global optimization, Journal of Global Opti- +mization, 63 (2015), pp. 319–342, https://doi.org/10.1007/s10898-015-0278-3. +[19] J. J. Mor´e and J. A. Trangenstein, On the Global Convergence of Broyden’s Method, Math- +ematics of Computation, 30 (1976), p. 523, https://doi.org/10.2307/2005323. +[20] Y. Nesterov, Introductory Lectures on Convex Optimization, vol. 87 of Applied Optimization, +Springer US, Boston, MA, 2004, https://doi.org/10.1007/978-1-4419-8853-9. +[21] Y. +Nesterov, +Implementable +tensor +methods +in +unconstrained +convex +optimization, +Mathematical +Programming, +186 +(2021), +pp. +157–183, +https://doi.org/10.1007/ +s10107-019-01449-1. +[22] Y. Nesterov, Superfast Second-Order Methods for Unconstrained Convex Optimization, Jour- +nal of Optimization Theory and Applications, 191 (2021), pp. 1–30, https://doi.org/10. +1007/s10957-021-01930-y. +[23] Y. Nesterov and B. Polyak, Cubic regularization of Newton method and its global perfor- +mance, Mathematical Programming, 108 (2006), pp. 177–205, https://doi.org/10.1007/ +s10107-006-0706-8. +[24] J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research +and Financial Engineering, Springer, New York, 2nd ed ed., 2006, https://doi.org/10.1007/ +978-0-387-40065-5. +[25] W. H. Press, ed., Numerical recipes: the art of scientific computing, Cambridge University +Press, Cambridge, UK ; New York, 3rd ed ed., 2007. +[26] R. B. Schnabel and T.-T. Chow, Tensor Methods for Unconstrained Optimization Using +Second Derivatives, SIAM Journal on Optimization, 1 (1991), pp. 293–315, https://doi. +org/10.1137/0801020. +[27] D. +F. +Shanno, +Conditioning +of +quasi-Newton +methods +for +function +minimization, +Mathematics +of +Computation, +24 +(1970), +pp. +647–656, +https://doi.org/10.1090/ +S0025-5718-1970-0274029-X. +[28] Y. Shi and P. Pan, Higher Order Iteration Schemes for Unconstrained Optimization, American +Journal of Operations Research, 01 (2011), p. 73, https://doi.org/10.4236/ajor.2011.13011. +[29] Z. Wei, G. Li, and L. Qi, New quasi-Newton methods for unconstrained optimization problems, +Applied Mathematics and Computation, 175 (2006), pp. 1156–1188, https://doi.org/10. +1016/j.amc.2005.08.027. + diff --git a/ZdFJT4oBgHgl3EQf7i0F/content/tmp_files/load_file.txt b/ZdFJT4oBgHgl3EQf7i0F/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..75cc8e49b894ba867307bbe9287737f6d34e893e --- /dev/null +++ b/ZdFJT4oBgHgl3EQf7i0F/content/tmp_files/load_file.txt @@ -0,0 +1,937 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf,len=936 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='11678v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='OC] 27 Jan 2023 GENERALIZING QUASI-NEWTON UPDATES TO HIGHER-ORDER DERIVATIVE TENSORS∗ KARL WELZEL† AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER† Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' At the heart of all quasi-Newton methods is an update rule that enables us to gradu- ally improve the Hessian approximation using the already available gradient evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Theoretical results show that the global performance of optimization algorithms can be improved with higher- order derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This motivates an investigation of generalizations of quasi-Newton update rules to obtain for example third derivatives (which are tensors) from Hessian evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Our generalization is based on the observation that quasi-Newton updates are least-change updates satisfying the secant equation, with different methods using different norms to measure the size of the change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We present a full characterization for least-change updates in weighted Frobenius norms (satisfying an analogue of the secant equation) for derivatives of arbitrary order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, we establish convergence of the approximations to the true derivative under standard assumptions and explore the quality of the generated approximations in numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' quasi-Newton methods, tensors, approximate derivatives, higher-order optimiza- tion MSC codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 90C53, 65D25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Consider a nonconvex unconstrained optimization problem for a function f : Rn → R (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) min x∈Rn f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Recent work on worst-case global convergence rates discovered that the more de- rivatives are provided at each iteration the fewer iterations are required to find an approximate minimizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Birgin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [2] showed that if the function is p times con- tinuously differentiable with a Lipschitz continuous pth derivative and an oracle to compute the first p derivatives at any point is provided, then an algorithm exists that finds a point with ∥∇f(x)∥ ≤ ε in at most O(ε−(p+1)/p) oracle calls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This result generalized the known cases for p = 1 [20] and p = 2 [23] and was later extended by Cartis, Gould and Toint [5], who also proved that this bound is sharp for algorithms that minimize regularized Taylor models in each step such as the one used in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' These new insights (although largely theoretical as yet) motivate us to consider ways of estimating higher-order derivatives from lower-order ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A solid starting point for formulas that estimate pth derivatives from (p − 1)st are quasi-Newton update formulas, which estimate second derivatives from first derivatives (p = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The corresponding optimization methods use these Hessian approximations to build approximate Taylor models, which enable rapid convergence to the minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Note that this paper only considers the updating formulas and their properties without proposing a method that uses them (for optimization or otherwise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This method-agnostic approach enables anyone wishing to incorporate approximate higher- order derivatives into their algorithm to adapt the general results to their needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Pre- vious papers concerned with approximate derivatives and higher-order models are ei- ther using higher-order Taylor expansions to derive better conventional quasi-Newton ∗This work is supported by the Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA) †Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United King- dom (welzel@maths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='ox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='uk, hauser@maths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='ox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1 2 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER methods or use approximate derivatives in a higher-order optimization scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As part of the first group, Wei, Li and Qi [29] considered a modification of the secant equation, so that the new approximate second-order Taylor expansion interpolates the function at the previous iterate, and show that this update predicts the curvature information at the new iterate better, at least when evaluated in the direction of the previous step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Their work was extended by Biglari, Hassan and Leong [1], who used a fourth-order Taylor expansion to derive an even better modification, and by Enshaei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [10], who applied the same idea to diagonal Hessian approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' One of the very early papers on approximate higher-order models for optimization is [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In it, Schnabel and Chow constructed a fourth-order model that interpolates the last few function and gradient values at every iteration and imposed a simple low-rank structure on the third- and fourth-order tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This makes it possible to efficiently minimize the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A different approach was taken by Shi and Pan [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' They developed a predictor–corrector approach for the descent trajectory defined by Newton’s method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' First a predictor is determined using linesearch along the New- ton direction, then a quadratic curve ϕ: R → Rn is computed that interpolates the iterate, the predictor and their gradients (thereby approximating the descent trajec- tory), and lastly the function is minimized along this curve to obtain the next iterate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' They showed that an implementation of this idea using the approximate Newton direc- tions generated by quasi-Newton methods is able to outperform regular quasi-Newton methods in numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Mart´ınez and Raydan [18] combined a third-order model with a trust-region approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The third-order term is restricted to be a cer- tain sum of n rank-one tensors which allows them to solve the model minimization subproblem by minimizing n independent cubic polynomials in one dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Their approach to computing this diagonal third-order term is similar to ours in that they choose one which is closest to the difference of the previous two Hessian evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Most recently, Nesterov [22, 21] considered specialized algorithms for unconstrained convex optimization based on a third-order Taylor expansion with a fourth-order reg- ularization term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' He mentions that an explicit calculation of the third derivative can be avoided since his algorithms only need the gradients of the model to solve the subproblem, and the contribution of the tensor term to the gradients can either be calculated through automatic differentiation or approximated with a finite-difference formula using only first derivatives of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Our paper will be structured as follows: After introducing the tensor notation we use in section 2, we will derive the tensor analogues of quasi-Newton updates in section 3 and give a full characterization of these updates in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The char- acterization includes an explicit formula and a useful recursive relationship between successive approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, we will show that these updates exhibit a cer- tain low-rank structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Section 5 contains results on the convergence of the approx- imations to the exact derivative in the limit under certain conditions on the steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Lastly, in section 6 we present limited numerical experiments to verify the behaviour predicted by the theory and discuss numerical limitations of this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A p-tensor T of dimensions n1 × · · · × np is a multilinear map Rn1 × · · · × Rnp → R, so that its evaluation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) T[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp], si ∈ Rni is linear in each component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We denote the space of such p-tensors by Rn1⊗···⊗np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If n1 = · · · = np = n the space is denoted R⊗pn and T[s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , s] is abbreviated as T[s]p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The notation also allows to apply the tensor to q < p vectors, which then results GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 3 in a (p − q)-tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, we define the application of matrices W1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , Wp of appropriate dimensions to a tensor by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2) � T[W1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , Wp] � [s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp] = T[W1s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , Wpsp].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The outer product of a p1-tensor T1 with a p2-tensor T2 is defined as (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3) (T1 ⊗ T2)[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp1+p2] = T1[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp1] · T2[sp1+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp1+p2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In particular, tensors of the form T = v1 ⊗ · · · ⊗ vp for vectors v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , vp ∈ Rn, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' those where T[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp] = �n i=1 vT i si, are called elementary or rank-one tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If all vectors are the same (v1 = · · · = vp = v), we abbreviate the notation above to ⊗pv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' (Note that this notation is slightly inconsistent since 1-tensors should be row vectors, but are represented by standard column vectors to simplify the notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is why v[W ] = W T v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=') For any T ∈ R⊗pn and any permutation σ ∈ Sp, let σ(T) ∈ R⊗pn be defined by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4) σ(T)[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp] = T[sσ(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sσ(p)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If σ(T) = T for all σ ∈ Sp, then T is called symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The space of all symmetric p-tensors is denoted R⊗pn sym .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The projection of R⊗pn onto R⊗pn sym is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5) Psym(T) = 1 p!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' � σ∈Sp σ(T), see [14, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='76].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Just like matrices, tensors are fully characterized by their actions on basis vec- tors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This can be used to represent a p-tensor T ∈ R⊗pn as a p-dimensional array (ti1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=',ip)1≤ij≤n,1≤j≤p where (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6) ti1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=',ip = T[ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , eip] and T = n � i1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=',ip=1 ti1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=',ipei1 ⊗ · · · ⊗ eip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' There is a Frobenius inner product and a corresponding norm on these p-dimensional arrays and by extension on R⊗pn, which we will denote by ⟨T1, T2⟩F and ∥T∥F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Note that ⟨T, s1 ⊗ · · · ⊗ sp⟩F = T[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Another norm is the one induced by the 2-norm on Rn (Hackbusch [14] calls it the injective norm) which is defined by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='7) ∥T∥2 = max ∥si∥2=1, 1≤i≤p|T[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp]|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Both norms are invariant under orthogonal transformations, so that if Q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , Qp ∈ Rn×n are orthogonal matrices, then T[Q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , Qp] has the same Frobenius- and 2- norm as T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As for matrices, the 2-norm is bounded by the Frobenius norm: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='8) ∥T∥2 = max ∥si∥2=1, 1≤i≤p|⟨T, s1 ⊗ · · · ⊗ sp⟩F | ≤ ∥T∥F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In the last inequality we used Cauchy-Schwarz and the fact that ∥s1 ⊗ · · ·⊗ sp∥F = 1 if all si have unit 2-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Using this setup we can now introduce the notation for higher order derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let f : Rn → R be a smooth function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The pth total derivative of f at x ∈ Rn is denoted Dpf(x) and is recursively defined as the total derivative of Dp−1f where 4 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER D0f = f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This gives a chain of linear maps which we can regard as one multilinear map (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9) Dpf(x): Rn → (Rn → (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' (Rn → R))) = Rn × · · · × Rn � �� � p times → R making Dpf(x) a p-tensor of dimensions n×· · ·×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' By this definition the evaluation of this p-tensor Dpf(x)[s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp] is equal to the directional derivative of f at x along directions s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , sp ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For example, denoting the gradient by ∇f and the Hessian by ∇2f we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='10) D1f(x)[s1] = ∇f(x)T s1 and D2f(x)[s1, s2] = sT 1 ∇2f(x)s2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, Dpf(x) is symmetric, because partial derivatives commute (Schwarz’s the- orem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The pth-order Taylor expansion of f at x evaluated at an offset s ∈ Rn can be expressed in this notation as (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='11) Tf,p(x, s) = p � k=0 1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='Dkf(x)[s]k ≈ f(x + s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We now turn to our derivation of the generalized quasi-Newton update for higher derivatives by first introducing a few important conventional quasi- Newton methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The most well-known update rule for quasi-Newton methods is the BFGS method, which is often described as a rank-two update to the current Hessian approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' To motivate the generalization in this paper we take a different view and describe BFGS and similar methods as choosing minimal updates that satisfy the secant equation [9, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let f ∈ C2(Rn) be twice continuously differentiable function with gradient ∇f and Hessian ∇2f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Assume that we are given some sequence of points xk ∈ Rn for k ∈ N (possibly from minimizing f), the gradients ∇f(xk) at each iterate and some symmetric initial Hessian approximation B0 ∈ Rn×n sym .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Quasi- Newton methods then update Bk at each step such that the new approximation correctly predicts the change in gradients of the previous iteration, that is (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) Bk+1(xk+1 − xk) = ∇f(xk+1) − ∇f(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is called the secant equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We can write (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) more succinctly if we define sk = xk+1 − xk and let � Bk = � 1 0 ∇2f(xk + tsk) dt be the Hessian of f averaged over all points on the line from xk to xk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This gives the equivalent equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2) Bk+1sk = � Bksk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Most quasi-Newton methods then prescribe that among all possible choices of Bk+1 that are symmetric and satisfy the secant equation we take the one that is closest to Bk in some norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The simplest such rule is called the Powell-symmetric- Broyden (PSB) update and is defined as (PSB) Bk+1 = arg minB∈Rn×n sym ∥B − Bk∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Bsk = � Bksk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' It is derived from Broyden’s method [3] by adding the symmetry constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The Davidon-Fletcher-Powell (DFP) method [7, 12], even though it has been proposed before PSB, can be understood as a way to make the PSB method scale- invariant by choosing a weighted Frobenius norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let Wk = � B−1/2 k (or, in fact, any GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 5 nonsingular matrix with W −T k W −1 k sk = � Bksk) be the weight matrix, then the DFP update is given by (DFP) Bk+1 = arg minB∈Rn×n sym ∥W T k (B − Bk)Wk∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Bsk = � Bksk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If we rescale the input to f with the nonsingular matrix A, so that ¯f(x) = f(Ax), and also rescale the iterates using ¯xk = A−1xk, then the corresponding Hessian approximations of ¯f determined by the DFP method satisfy ¯ Bk = AT BkA as long as it holds for the initial choice ¯ B0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Finally, the famous BFGS method named after Broyden, Fletcher, Goldfarb and Shanno [4, 11, 13, 27], is the dual of DFP in the sense that the new approximation minimizes the difference between inverse matrices in a weighted Frobenius norm: (BFGS) Bk+1 = arg minB∈Rn×n sym ∥W −T k � B−1 − B−1 k � W −1 k ∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Bsk = � Bksk The weight matrices Wk are the same as above and in the same way they make the method scale invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For more on these updating rules, consult the textbook by Dennis and Schnabel [9, Chapter 9] Using this characterization as least-change updates allows a straightforward gen- eralization to tensors, except for the BFGS update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Since tensors lack the concept of an inverse tensor, (BFGS) cannot be used, and we will focus on (PSB) and (DFP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We now need to assume that f : Rn → R is p times continuously differentiable and that as before a sequence of points xk with a corresponding sequence of steps sk = xk+1 −xk is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We will denote the approximations to Dpf(xk) by Ck ∈ R⊗pn sym and the true pth derivative averaged over all points on the line from xk to xk+1 by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3) �Ck = � 1 0 Dpf(xk + tsk) dt ∈ R⊗pn sym .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This means that, in particular, �Ck[sk] = Dp−1f(xk+1) − Dp−1f(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The pth-order analogue of the secant equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2) is given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4) Ck+1[sk] = Dp−1f(xk+1) − Dp−1f(xk) = �Ck[sk] and the generalized quasi-Newton update formula for Ck reads (GQN) Ck+1 = arg minC∈R⊗pn sym ∥(C − Ck)[Wk]p∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' C[sk] = �Ck[sk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' It provides a sequence of approximations of the pth derivative of f based solely on evaluations of the (p − 1)st derivative at the iterates xk, given some initial approxi- mation C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Note that unlike for the DFP update we will not assume any specific choice of weight matrices, but rather consider them to be a given sequence of nonsingu- lar matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In particular, that covers the generalized PSB (Wk = I) and DFP (W −T k W −1 k sk = ∇f(xk+1) − ∇f(xk)) updates, which simplify to (PSB) and (DFP) for p = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Characterization of generalized quasi-Newton updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The following theorem provides a full characterization of the update in (GQN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let C• ∈ R⊗pn sym (the current approximation), �C ∈ R⊗pn sym (the inte- grated true derivative), a nonsingular matrix W ∈ Rn×n (the weight matrix) and a nonzero s ∈ Rn (the step) be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The following equations all have the same unique solution C+ ∈ R⊗pn sym (the new approximation): 6 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER (a) C+ = arg minC∈R⊗pn sym ∥(C − C•)[W ]p∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' C[s] = �C[s] (b) C+ = C• + �p j=1(−1)j�p j � (vT s)−jPsym �� ⊗jv � ⊗ (C• − �C)[s]j� (c) C+ = C• + Psym(A ⊗ v) for a (unique) A ∈ R⊗p−1n sym s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' C+[s] = �C[s] (d) (C+ − �C)[W ]p = (C• − �C)[W ]p� I − W −1ssT W −T sT W −T W −1s �p where v = W −T W −1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We will first prove the result for W = I and then see how that implies the full result for any nonsingular weight matrix W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The first characterization can be rewritten as (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) C+ = C• + arg minU∈R⊗pn sym ∥U∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' U[s] = (�C − C•)[s].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let Q ∈ Rn×n be an orthogonal matrix that maps e1 to some scalar multiple of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This means U[Q]p has the same Frobenius norm as U and U[Q]p[ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , eip] is fully determined by the equality constraint in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) if 1 ∈ {i1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , ip} because of symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' On the other hand, if 1 /∈ {i1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , ip} there are no constraints on the values of U[Q]p[ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , eip], so the unique choice that minimizes ∥U[Q]p∥F = ∥U∥F is clearly to set all of these values to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Therefore, there is a unique solution to the minimization problem in (a), and it is fully characterized by the fact that the update tensor U = C+ − C• is symmetric and satisfies the following two properties: U[s] = (�C − C•)[s] (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2a) U[u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , up] = 0 if all ui are orthogonal to s (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2b) We will use this as the basis to show the equivalence with all other characterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In (b) we claim that the update U has the form (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3) p � j=1 (−1)j�p j � ∥s∥−2j 2 Psym �� ⊗js � ⊗ (C• − �C)[s]j� This tensor is clearly symmetric since it is a sum of symmetric tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' To show that it satisfies property (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2a) consider p � j=1 (−1)j�p j � ∥s∥−2j 2 Psym �� ⊗js � ⊗ (C• − �C)[s]j� [s] (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4a) = p � j=1 (−1)j∥s∥−2j 2 ��p−1 j−1 � Psym �� ⊗j−1s � ⊗ (C• − �C)[s]j� ∥s∥2 2 + �p−1 j � Psym �� ⊗js � ⊗ (C• − �C)[s]j+1�� (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4b) = −Psym � (C• − �C)[s] � = (�C − C•)[s].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4c) The first equality uses the fact that each summand is the symmetric projection of an outer product of two symmetric tensors, a j-tensor and a (p − j)-tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Therefore, there are �p j � distinct ways to orient this outer product and for �p−1 j−1 � of them the vector s is applied to the j-tensor and for �p−1 j � to the (p − j)-tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A close examination of the expression on the second line shows that it is a telescoping sum where all terms except the ones with coefficients �p−1 0 � and �p−1 p � cancel out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Because �p−1 p � = 0 the GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 7 only remaining term is the negative symmetric projection of (C• − �C)[s].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Property (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2b) follows from a similar consideration to the one above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , up are all orthogonal to s, then (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5) Psym �� ⊗js � ⊗ (C• − �C)[s]j� [u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , up] = 0 for j ≥ 1 because no matter how the outer product is oriented there is always a factor of sT ui = 0 in the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For (c) we need to show that we can always write the update in the form Psym(A⊗ s) for some symmetric (p−1)-tensor A and that A is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Note that the expression for the update in (b) is already of the form Psym(A ⊗ s): p � j=1 (−1)j�p j � ∥s∥−2j 2 Psym �� ⊗js � ⊗ (C• − �C)[s]j� (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6a) = Psym \uf8eb \uf8edPsym \uf8eb \uf8ed p � j=1 (−1)j�p j � ∥s∥−2j 2 � ⊗j−1s � ⊗ (C• − �C)[s]j \uf8f6 \uf8f8 ⊗ s \uf8f6 \uf8f8 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6b) It remains to show that among all updates of the form Psym(A ⊗ s) there is only one choice of A ∈ R⊗pn sym such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2a) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Consider the linear map φ: R⊗p−1n sym → R⊗p−1n sym A �→ Psym(A ⊗ s)[s] which maps a finite-dimensional vector space to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Combining what we already showed for (b) with the observation that the update in (b) is of the desired form, this map is surjective (we can prescribe any (�C−C•)[s]) and so it must be bijective, which shows uniqueness of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Lastly, (d) claims that the update can be written as (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='7) (�C − C•) − (�C − C•) � I − ssT ∥s∥2 2 �p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Clearly, property (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2a) is satisfied because applying this tensor to s makes the second term vanish, leaving only the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, for any vector u that is orthogonal to s the matrix I − ssT ∥s∥2 2 maps u to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This means applying the tensor above to u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , up, all of which are orthogonal to s, will give zero because both terms cancel out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is property (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Now that the equivalence has been established for W = I, we consider the general case where W ∈ Rn×n is any nonsingular matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The minimization in (a) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='8) C+ = arg minC∈R⊗pn sym ∥(C − C•)[W ]p∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' C[s] = �C[s] can be rewritten using D• = C•[W ]p, �D = �C[W ]p, D+ = C+[W ]p and r = W −1s as (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9) D+ = arg minD∈R⊗pn sym ∥D − D•∥F s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' D[r] = �D[r].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Applying the existing characterizations and the fact that C+ = D+[W −1]p we get the claim after some algebraic manipulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 8 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER Note that although the theorem assumes �C ∈ R⊗pn and W ∈ Rn×n to be given the resulting C+ only depends on �C[s] ∈ R⊗p−1n sym and W −T W −1s ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This makes the method applicable even when no pth derivatives exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, the equivalence between (a) and (c) shows that there is a one-to-one correspondence between updates that exhibit a certain low-rank structure Psym(A⊗v), where v is any vector which is not orthogonal to s, and those updates that are minimal in some weighted Frobenius norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If we apply this result to the matrix case (p = 2) both A and v are 1-tensors, so that Psym(A ⊗ v) is the symmetric projection of a rank-one matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Any minimal update (such as PSB or DFP) is therefore a symmetric matrix of rank at most two and any update matrix of type vwT + wvT is minimal in a certain weighted Frobenius norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence of approximate derivates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Now that we know how the up- dates look like, we want to show that the approximate pth derivatives converge to the true derivative under certain assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This means that, even though we previ- ously pointed out that the update is applicable when no pth derivatives are available, we will assume in this section that f is p-times continuously differentiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The main tool of this section is the characterization Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1 (d) which, when applied to (GQN), becomes (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) (Ck+1 − �Ck)[Wk]p = (Ck − �Ck)[Wk]p[Pk]p where Pk = I − W −1 k sksT k W −T k sT k W −T k W −1 k sk Note that Pk is the orthogonal projection onto the orthogonal complement of W −1 k sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence for pth-order polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' When Wk and �Ck are con- stant, convergence is quite straightforward to show, and we do not need to assume convergence of the iterates xk: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let C0 ∈ R⊗pn sym be given and update the approximations Ck ac- cording to (GQN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Assume Dpf(x) = C∗ everywhere (which makes f a pth order polynomial) and Wk = W∗ for every k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' After n steps sk such that W −1 ∗ sk are orthogonal, we have Cn = C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Under the assumptions of the theorem, repeated application of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) gives (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2) (Cn − C∗)[W∗]p = (C0 − C∗)[W∗]p �n−1 � k=0 Pk �p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Because W −1 0 s0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , W −1 n−1sn−1 are orthogonal and Pk are orthogonal projections on their orthogonal complements, �n−1 k=0 Pk = 0, so that (Cn − C∗)[W∗]p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This implies Cn = C∗ because W∗ is nonsingular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Bounded deterioration property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For a convergence results for general functions f we first need to establish two lemmas that will help us when xk → x∗ and Wk → W∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The first one shows that �Ck converges to the pth derivative at x∗, which we denote by C∗ = Dpf(x∗), and the second one gives a bound on the error term that we incur if we replace �Ck by C∗ in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Combining the two gives what Dennis and Schnabel [9] call the bounded deterioration principle in that Ck+1 can only be slightly worse than Ck at approximating C∗ as long as xk and xk+1 are close enough to x∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1The symmetric rank-one (SR1) update fits the latter description with v = w, but the corre- sponding weight matrix depends on the current Hessian approximation, so it does not generalize to higher orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 9 Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For xk → x∗ we have �Ck → C∗ as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, if Dpf is Lipschitz continuous with constant L, then (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3) ∥�Ck − C∗∥2 ≤ L 2 (∥xk − x∗∥2 + ∥xk+1 − x∗∥2) for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' By definition in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3) we have ∥�Ck − C∗∥2 = ∥ � 1 0 Dpf(xk + tsk) dt − Dpf(x∗)∥2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4a) ≤ � 1 0 ∥Dpf(xk + tsk) − Dpf(x∗)∥2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4b) Since Dpf is continuous the right-hand side will become arbitrarily small as xk and xk+1 converge to x∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This shows �Ck → C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If we additionally assume Lipschitz continuity of Dpf, we can bound the integrand in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4b): ∥�Ck − C∗∥2 ≤ � 1 0 L∥xk + tsk − x∗∥2 dt (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5a) ≤ L � 1 0 (1 − t)∥xk − x∗∥2 + t∥xk − x∗∥2 dt (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5b) = L 2 (∥xk − x∗∥2 + ∥xk+1 − x∗∥2) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5c) This gives the second claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If we define the error tensor Ek by (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6) (Ck+1 − C∗)[Wk]p = (Ck − C∗)[Wk]p[Pk]p + Ek[Wk]p then ∥Ek∥2 ≤ (1 + κ2(Wk)p)∥�Ck − C∗∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Subtracting (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6) gives (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='7) (�Ck − C∗)[Wk]p = (�Ck − C∗)[Wk]p[Pk]p + Ek[Wk]p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Multiply both sides by W −1 k from all sides and rearrange to find ∥Ek∥2 = ∥(�Ck − C∗) − (�Ck − C∗)[Wk]p[Pk]p[W −1 k ]p∥2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='8a) ≤ � 1 + ∥WkPkW −1 k ∥p 2 � ∥�Ck − C∗∥2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='8b) ≤ (1 + κ2(Wk)p)∥�Ck − C∗∥2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='8c) as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In the last step we used ∥Pk∥2 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence for weakly orthogonal steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Since the updates only de- termine Ck[sk] in each step, we can never hope to recover the true pth derivative if (asymptotically) all steps lie in a low-dimensional subspace of Rn, so we must assume a weak orthogonality condition on the steps, namely (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9) ����� k0+m−1 � k=k0 � I − W −1 ∗ sksT k W −T ∗ sT k W −T ∗ W −1 ∗ sk ������ 2 ≤ c < 1 10 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER for some fixed m ∈ N, c ∈ R≥0 and all k0 ∈ N large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Here, W∗ = limk→∞ Wk which we assume to be nonsingular as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As Mor´e and Trangenstein [19] showed, this assumption is equivalent to uniform linear independence of the scaled steps W −1 ∗ sk which is in turn equivalent to the standard assumption of uniform linear independence of the steps sk themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This leads to the following convergence theorem: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let C0 ∈ R⊗pn sym be given and update the approximations Ck accord- ing to (GQN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Assume xk converge to x∗ ∈ Rn, Wk converge to some nonsingular matrix W∗ ∈ Rn×n and the steps are uniformly linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Then Ck con- verges to C∗ := Dpf(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We need a technical lemma for this result, which shows that the projection ma- trices Pk get closer and closer to the projection matrices that appear in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9), which we will abbreviate with P ∗ k = I − W −1 ∗ sksT k W −T ∗ sT k W −T ∗ W −1 ∗ sk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let the nonsingular matrices Wk ∈ Rn×n converge to the nonsingu- lar matrix W∗ ∈ Rn×n then (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='10) ∥Pk − P ∗ k ∥2 → 0 and ∥W −1 ∗ WkPkW −1 k W∗ − P ∗ k ∥2 → 0 holds for any sequence of steps (sk)k∈N as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Without loss of generality we can assume that the steps are scaled such that ∥W −1 ∗ sk∥2 = 1 for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' That means (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='11) ∥W −1 k sk − W −1 ∗ sk∥2 ≤ ∥W −1 k W∗ − I∥2 � �� � →0 ∥W −1 ∗ sk∥2 � �� � =1 → 0 as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Since Pk projects onto the subspace that is orthogonal to W −1 k sk and P ∗ k projects onto the subspace that is orthogonal to W −1 ∗ sk, the difference between the two projection matrices converges to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is the first claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For the second one we find that (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='12) W −1 ∗ WkPkW −1 k W∗ − P ∗ k = (W −1 ∗ Wk − I) � �� � →0 Pk W −1 k W∗ � �� � →I + (Pk − P ∗ k ) � �� � →0 W −1 k W∗ � �� � →I +P ∗ k (W −1 k W∗ − I) � �� � →0 converges to 0 since the norms of Pk and P ∗ k are at most one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' It suffices to consider the case when W∗ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Otherwise, let ¯f(x) = f(W∗x), ¯xk = W −1 ∗ xk, ¯x∗ = W −1 ∗ x∗, ¯ Wk = W −1 ∗ Wk and ¯C0 = C0[W∗]p and update ¯Ck according to the adapted (GQN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' By construction, we then have Ck = ¯Ck[W −1 ∗ ]p so that ¯Ck → Dp ¯f(¯x∗) implies Ck → Dpf(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let ε > 0 be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' To prove convergence, we will show ∥Ck − C∗∥2 ≤ ε for every k large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Consider the recurrence relation for Ck − C∗ established in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We can rearrange it to read (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='13) (Ck+1 − C∗) = (Ck − C∗)[WkPkW −1 k ]p + Ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Abbreviate WkPkW −1 k by P ′ k and note that P ′ k is no longer an orthogonal projection but gets closer and closer to one as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In particular, its norm approaches one GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 11 since ∥P ′ k∥2 ≤ κ2(Wk) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' To use the assumption (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9) later on we apply the previous equality m times and get (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='14) (Ck0+m − C∗) = (Ck0 − C∗) �k0+m−1 � k=k0 P ′ k �p + k0+m−1 � k=k0 Ek �k0+m−1 � l=k+1 P ′ l �p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let K1 ∈ N be such that for all k ≥ K1 we have κ2(Wk) ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This means using Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3 we can bound the second term on the right-hand side of the previous equation by (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='15) ����� k0+m−1 � k=k0 Ek �k0+m−1 � l=k+1 P ′ l ������ 2 ≤ k0+m−1 � k=k0 2p(1 + 2p)∥�Ck − C∗∥ for all k0 ≥ K1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Since Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2 showed that �Ck → C∗ the bound above is smaller than ε/2 · (1 − ( 1+c 2 )p) for k0 large enough, say k0 ≥ K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Next, consider first term on the right-hand side of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let P ∗ k be the orthog- onal projection matrices from the assumption (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9) as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Note that P ′ k ̸= P ∗ k , so we cannot apply the assumption directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Instead, we look at the difference between the product of P ′ k and P ∗ k and find ����� k0+m−1 � k=k0 P ′ k − k0+m−1 � k=k0 P ∗ k ����� 2 = ����� k0+m−1 � k=k0 P ∗ k0 · · · P ∗ k−1(P ′ k − P ∗ k )P ′ k+1 · · · P ′ k0+m−1 ����� 2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='16a) ≤ k0+m−1 � k=k0 2m−1∥P ′ k − P ∗ k ∥2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='16b) for k0 ≥ K1 using ∥P ′ k∥ ≤ 2 and ∥P ∗ k ∥ ≤ 1 ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For k0 large enough, say k0 ≥ K3, the right-hand side of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='16) is smaller than (1 − c)/2 by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Similarly, for k0 large enough, say k0 ≥ K4, we have ∥�k0+m−1 k=k0 P ∗ k ∥ ≤ c by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Therefore, for k0 ≥ max{K3, K4} (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='17) ����� k0+m−1 � k=k0 P ′ k ����� ≤ ����� k0+m−1 � k=k0 P ′ k − k0+m−1 � k=k0 P ∗ k ����� 2 + ����� k0+m−1 � k=k0 P ∗ k ����� ≤ 1 + c 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In the previous two paragraphs we have established that asymptotically for every m steps the norm of Ck − C∗ is first multiplied by a factor that is at most slightly larger than c and then increased by an arbitrarily small error term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In particular for k0 ≥ K = max{K2, K3, K4} we have (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='18) ∥Ck0+m − C∗∥2 ≤ ∥Ck0 − C∗∥2 �1 + c 2 �p + ε/2 · � 1 − �1 + c 2 �p� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Repeatedly applying this inequality shows that ∥Ck0+im − C∗∥2 is bounded by a sequence (ai)i∈N which converges to ε/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Use this observation for all k0 ∈ {K, K + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' , K + m − 1} to see that ∥Ck − C∗∥2 ≤ ε for all k large enough, as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let C0 ∈ R⊗pn sym be given and update the approximations Ck ac- cording to (GQN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Assume the steps all lie in a d-dimensional subspace spanned by 12 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER the columns of V ∈ Rn×d, so that the iterates are of the form xk = V ¯xk + x⊥ where V T x⊥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, assume that ¯xk converge to ¯x∗ ∈ Rd (or equiva- lently xk converge to x∗ = V ¯x∗ + x⊥), Wk converge to some nonsingular matrix W∗ ∈ Rn×n and ¯sk = ¯xk+1 − ¯xk are uniformly linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Then Ck con- verges to C∗ := Dpf(x∗) in the subspace: Ck[V ]p → C∗[V ]p as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We will construct a sequence of ¯Ck to which we can apply Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4 and then show ¯Ck = Ck[V ]p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let ¯f : Rd → R be defined by ¯f(¯x) = f(V ¯x + x⊥) which implies (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='19) Dp ¯f(¯x) = Dpf(V ¯x + x⊥)[V ]p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Additionally, let the weight matrices ¯ Wk be defined by ¯ Wk = (V T W −T k W −1 k V )−1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The operation B �→ B1/2 maps a symmetric positive semidefinite matrix B to the unique symmetric semidefinite matrix H such that HT H = B, and is continuous (see [17, Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Here, we know that V T W −T k W −1 k V is positive definite (V is full-rank), so ¯ Wk is also positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Since the construction of ¯ Wk depends continuously on Wk, the newly constructed weight matrices converge to a positive definite matrix ¯ W∗ given by the same formula applied to W∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' That means if we now define ¯C0 = C0[V ]p and apply (GQN) using ¯f, ¯xk and ¯ Wk, the resulting sequence ¯Ck will converge to Dp ¯f(¯x∗) by Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Clearly, the limit point Dp ¯f(¯x∗) = Dpf(x∗)[V ]p is already correct, it just remains to show that Ck[V ]p = ¯Ck for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' By construction of ¯ Wk we get (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='20) ¯ W −T k ¯ W −1 k ¯sk = V T W −T k W −1 k V ¯sk = V T W −T k W −1 k sk where sk = V ¯sk are steps in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1 (c) shows that Ck+1 = Ck + Psym(A ⊗ W −T W −1sk) for some (p − 1)-tensor A ∈ R⊗p−1n sym , where A is chosen such that Ck+1[sk] = Dp−1f(xk+1) − Dp−1f(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This implies Ck+1[V ]p = Ck[V ]p + Psym(A ⊗ W −T W −1sk)[V ]p (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='21a) = Ck[V ]p + Psym(A[V ]p−1 ⊗ V T W −T W −1sk) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='21b) = Ck[V ]p + Psym(A[V ]p−1 ⊗ ¯ W −T k ¯ W −1 k ¯sk) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='21c) and Ck+1[V ]p[¯sk] = Dp−1 ¯f(¯xk+1) − Dp−1 ¯f(¯xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Again by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1 (c) ¯Ck and Ck[V ]p are updated in the same way, so inductively they define the same sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Generalized Dennis–Mor´e condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Dennis and Mor´e [8] showed that if optimization methods choose their iterates using xk+1 = xk − B−1 k ∇f(xk) and converge to x∗ then this convergence is Q-superlinear if and only if (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='22) lim k→∞ ∥(Bk − ∇2f(x∗))sk∥F ∥sk∥2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This equation is called the Dennis–Mor´e condition and is weaker than convergence of Bk to ∇2f(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Instead, it suffices when Bk converges in the step directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We are not concerned with convergence rates for any particular optimization method in this paper, but it seems natural to ask whether the approximations Ck satisfy a generalized Dennis–Mor´e condition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='23) lim k→∞ ∥(Ck − Dpf(x∗))[sk]∥F ∥sk∥2 = 0 when they are updated according to (GQN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 13 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let C0 ∈ R⊗pn sym be given and update the approximations Ck ac- cording to (GQN) where the function has a Lipschitz continuous pth derivative Dpf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Assume xk converge to x∗ ∈ Rn and Wk converge to some nonsingular matrix W∗ ∈ Rn×n fast enough such that (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='24) � k≥0 ∥xk − x∗∥2 < ∞ and � k≥0 ∥Wk − W∗∥2 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Then the generalized Dennis–Mor´e condition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='23) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As in the proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4 we assume W∗ = I without loss of gen- erality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Since the condition number is locally Lipschitz continuous around I, the assumption � k≥0∥Wk − I∥2 < ∞ also implies Cκ := � k≥0(κ2(Wk) − 1) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As a first step we need to use the bounded deterioration principle to show that ∥Ck − C∗∥2 stays bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For this we again consider the m-step recursive formula established in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='14): (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='25) (Cm − C∗) = (C0 − C∗) �m−1 � k=0 P ′ k �p + m−1 � k=0 Ek � m−1 � l=k+1 P ′ l �p where P ′ k = WkPkW −1 k and Ek is defined in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Clearly, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='26) ln ������ m−1 � k=0 P ′ k ����� 2 � ≤ m−1 � k=0 ln(∥P ′ k∥2) ≤ m−1 � k=0 ln(κ2(Wk)) ≤ m−1 � k=0 (κ2(Wk) − 1) ≤ Cκ is uniformly bounded for all m, which means the same is true for ∥�m−1 k=0 P ′ k∥2 itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Therefore, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='27) ∥Cm − C∗∥2 ≤ exp(Cκ)p � ∥C0 − C∗∥2 + m−1 � k=0 ∥Ek∥2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Because Dpf is Lipschitz continuous and κ2(Wk) stays bounded, Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3 show that there is a constant CE < ∞ such that (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='28) ∥Ek∥2 ≤ CE/2(∥xk − x∗∥ + ∥xk+1 − x∗∥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This implies �m−1 k=0 ∥Ek∥2 ≤ CE �m k=0∥xk − x∗∥2 is uniformly bounded for all m and therefore ∥Cm − C∗∥2 is as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The next step is crucial for this proof and similar to the proof of Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2 in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We note that in the Frobenius norm for any tensor T ∈ R⊗pn and any nonzero vector v ∈ Rn we have (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='29) ∥T∥2 F = ����T �vvT vT v ����� 2 F + ����T � I − vvT vT v ����� 2 F = ∥T[v]∥2 F ∥v∥2 2 + ����T � I − vvT vT v ����� 2 F because the matrices in brackets are orthogonal projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We can apply this to the 14 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER case where I − vvT /(vT v) is Pk to get ∥(Ck − C∗)[Wk]p[Pk]p∥ 2 F (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='30a) ≤ ∥(Ck − C∗)[Wk]p[Pk]∥2 F (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='30b) = ∥(Ck − C∗)[Wk]p∥2 F − ��(Ck − C∗)[Wk]p� W −1 k sk ���2 F ∥W −1 k sk∥2 2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='30c) = ∥(Ck − C∗)[Wk]p∥2 F − ���(Ck − C∗)[sk][Wk]p−1��� 2 F ∥W −1 k sk∥2 2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='30d) ≤ ∥(Ck − C∗)[Wk]p∥2 F − ∥(Ck − C∗)[sk]∥2 F ∥sk∥2 2 ∥W −1 k ∥−2p 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='30e) Adding Ek[Wk]p into the Frobenius norm on the left-hand side gives ∥(Ck+1 − C∗)[Wk]p∥2 F = ∥(Ck − C∗)[Wk]p[Pk]p + Ek[Wk]∥2 F (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='31a) = ∥(Ck − C∗)[Wk]p[Pk]p∥2 F + ∥Ek[Wk]p∥2 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='31b) The inner product term ⟨(Ck − C∗)[Wk]p[Pk]p, Ek[Wk]p⟩F is missing in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='31b) because it is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' To show that, note that we can rewrite (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='7) from the proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3 as (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='32) (�Ck − Ek − C∗)[Wk]p = (�Ck − C∗)[Wk]p[Pk]p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Using the equivalence between Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1 (d) and (c) the error tensor can be written explicitly as −Ek = Psym(A ⊗ W −T k W −1 k sk) for some (p − 1)-tensor A and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='33) Ek[Wk]p = −Psym(A[Wk]p−1 ⊗ W −1 k sk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In other words, Ek[Wk]p can be expressed as a sum of outer products between W −1 k sk and some (p−1)-tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Any inner product of such a tensor with (Ck − C∗)[Wk]p[Pk]p must be zero as Pk maps W −1 k sk to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Combining (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='30) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='31) and rearranging gives ∥(Ck − C∗)[sk]∥2 F ∥sk∥2 2 ≤ ∥W −1 k ∥2p 2 � ∥(Ck − C∗)[Wk]p∥2 F − ∥(Ck+1 − C∗)[Wk]p∥2 F + ∥Ek[Wk]p∥2 F � (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='34a) ≤ ∥(Ck − C∗)∥2 Fκ2(Wk)2p − ∥(Ck+1 − C∗)∥2 F + ∥Ek∥2 Fκ2(Wk)2p (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='34b) Lastly, we wish to sum up both sides of the previous inequality over all k ≥ 0 and show that the right-hand side stays bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This immediately gives the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A few technicalities are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We already showed that Ck − C∗ stays bounded, so let C∆ < ∞ be a constant such that ∥Ck−C∗∥F ≤ C∆ for all k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As established above, � k≥0(κ2(Wk) − 1) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This also implies that � k≥0 � κ2(Wk)2p − 1 � = Cκ,2p < ∞ for some constant Cκ,2p since κ2(Wk)2p − 1 ≤ 4p(κ2(Wk) − 1) for κ2(Wk) small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 15 Consider the Ck − C∗ terms on the right-hand side of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='34) first: m−1 � k=0 � ∥(Ck − C∗)∥2 F κ2(Wk)2p − ∥(Ck+1 − C∗)∥2 F � (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='35a) = ∥C0 − C∗∥2 F κ2(W0)2p � �� � constant + m−1 � k=1 � κ2(Wk)2p − 1 � � �� � =Cκ,2p ∥Ck − C∗∥2 F � �� � ≤C2 ∆ − ∥Cm − C∗∥2 F � �� � ≥0 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='35b) is uniformly bounded for all m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The same is true for the Ek term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Because the Frobenius norm and the 2-norm for p-tensors are both norms on finite-dimensional vector spaces they are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, κ2(Wk) stays bounded, so for some constant C m−1 � k=0 ∥Ek∥2 F κ2(Wk)2p ≤ C m−1 � k=0 ∥Ek∥2 2 ≤ C �m−1 � k=0 ∥Ek∥2 �2 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='36a) holds, and the term is uniformly bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Therefore, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='37) � k≥0 ∥(Ck − C∗)[sk]∥2 F ∥sk∥2 2 < ∞ and ∥(Ck − C∗)[sk]∥F ∥sk∥2 → 0 as k → ∞ as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' While the previous sections investigated the the- oretical properties of the generalized quasi-Newton updates, we now turn to numerical experiments to understand how quickly convergence of the approximations sets in and how the algorithm behaves for different kinds of iterates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is not supposed to be a comprehensive treatment of the numerical performance of the algorithm, but rather give an idea of its general behaviour by considering a small toy problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The implementation was done in Python using NumPy [15] and uses the explicit formula in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1 (b) at its core: (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1) Ck+1 = Ck + p � j=1 (−1)j�p j �� vT k sk �−jPsym �� ⊗jvk � ⊗ (Ck[sk] − Dk)[sk]j−1� where vk = W −T k W −1 k sk and Dk = Dp−1f(xk+1) − Dp−1f(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This makes it particularly easy to implement the analogues of (PSB) (where vk = sk) and (DFP) (where vk = (∇f(xk+1) − ∇f(xk))/∥sk∥2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' To increase legibility and since these two choices produce roughly similar approximations, only the PSB variant will be shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We chose to use the two-dimensional Rosenbrock function f(x, y) = (1 − x)2 + 100(y − x2)2 as our objective function because it is a simple, yet widely used test function with nonconstant third derivative (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2) D3f(x, y) = �� −2400x −400 −400 0 � � −400 0 0 0 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The iterates xk are generated by different minimization algorithms starting at (0, 0) and converging to the global minimum of f at x∗ = (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Lastly, the initial approx- imation C0 is just the zero 3-tensor in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 16 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER 0 10 20 30 40 Iteration k 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 ∥Ck − D3f(xk)∥F /∥D3f(xk)∥F ∥xk − x∗∥2/∥x∗∥2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence of iterates and approximations for nonlinear CG 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Numerical limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In the first experiment, a nonlinear CG method2 was used to minimize the Rosenbrock function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Although nonlinear CG methods with restarts can achieve superlinear local convergence, this implementation does not include restarts, and we observe roughly linear convergence of xk to x∗ in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The relative error of each Ck is not measured with respect to C∗ = D3f(1, 1) here but instead with respect to the true third derivative at each iterate D3f(xk), since this is the more relevant metric in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' From the convergence theorems in the previous section we expect that this quantity will also converge to zero, since both Ck and D3f(xk) converge to C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Unfortunately, although at first this seems to be true and the two error curves roughly coincide, from iteration 27 onwards the error in Ck increases quite consid- erably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The issue, as it turns out, stems from rounding errors in finite precision arithmetic, which we did not consider in the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Specifically the computation of Dk becomes more ill-conditioned the smaller the step sk is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In each iteration, the current approximation Ck moves closer to the integrated derivative �Ck, so we cannot expect Ck to approximate D3f(xk) better than �Ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Of course, the only part of �Ck which is used is its component in the direction of sk, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Dk/∥sk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In exact arithmetic the proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2 also shows that (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3) Dk ∥sk∥2 = �Ck[s→ k ] = D3f(xk)[s→ k ] + ∆Dk with ∥∆Dk∥2 ≤ L 2 ∥sk∥2 where s→ k is the normed step sk/∥sk∥2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' the unit norm vector pointing in the same direction as sk, and L is the (local) Lipschitz constant of Dpf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Now, let �Dk be the computed Dk = Dp−1f(xk+1)−Dp−1f(xk) under the influence of rounding errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' As Higham [16, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 9] explains, if we subtract two numbers 2scipy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='minimize(method="CG") in SciPy version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3, implementing the Polak– Ribi`ere variant of nonlinear CG [24, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 122] GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 17 0 10 20 30 40 Iteration k 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 ∥Ck − D3f(xk)∥F /∥D3f(xk)∥F ∥xk − x∗∥2/∥x∗∥2 max{∥sk−1∥2, εmach/∥sk−1∥2} √εmach Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence of iterates and approximations for nonlinear CG (extended) ˆa = a(1 + ∆a) and ˆb = b(1 + ∆b) from each other, and assume the relative errors ∆a and ∆b are bounded by δ, the absolute error in the result is bounded by (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4) |−a∆a + b∆b| ≤ δ(|a| + |b|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The a and b in our case are the entries of Dp−1f(xk+1) and Dp−1f(xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' They are computed with the exact formulas, but stored in finite precision, so the best possible error bound δ is the machine precision εmach ≈ 10−16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This gives (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5) �Dk ∥sk∥2 = Dk ∥sk∥2 + ∆�Dk = D3f(xk)[s→ k ] + ∆Dk + ∆�Dk where ∥∆�Dk∥F ≤ √ 2εmach � ∥Dp−1f(xk+1)∥F + ∥Dp−1f(xk)∥F � /∥sk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Equation (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='5) shows that there are two sources of error, one from using the secant equation and one from calculating Dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The former is proportional to ∥sk∥2 whereas the latter is proportional to 1/∥sk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This leads to the V-shaped graph in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If we assume that Dp−1f, Dpf and L have roughly the same scale, we can estimate that the lowest possible relative error in �Dk/∥sk∥2 (compared to D3f(xk)[sk/∥sk∥2]) is √εmach and is achieved when ∥sk∥2 ≈ √εmach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This analysis is analogous to one for numerical differentiation schemes where the same lower bound is derived, see for example [25, Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' One notable exception to the rule occurs when Dp−1f(x∗) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In that case ∥∆�Dk∥F stays close to machine precision and the approximations get better and better as sk converges to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is one of the reasons that regular quasi-Newton methods (p = 2) work very well for optimization algorithms as they converge to stationary points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2 one can see that indeed the best relative error achieved is roughly √εmach and that the maximum of ∥sk−1∥2 and εmach/∥sk−1∥2 is a pretty good proxy for a lower bound on the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 18 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER 0 2 4 6 8 10 12 14 16 Iteration k 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 ∥Ck − D3f(xk)∥F /∥D3f(xk)∥F ∥(Ck − D3f(xk))[s→ k ]∥F /∥D3f(xk)∥F ∥xk − x∗∥2/∥x∗∥2 max{∥sk−1∥2, εmach/∥sk−1∥2} √εmach Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence of iterates and approximations for exact trust region Note that these numerical issues cannot be overcome with a different imple- mentation but are inherent in this approach of extracting third-order information from successive evaluations of second-order derivatives, since computing Dk is an ill-conditioned problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A practical way to avoid losing accuracy in the last few it- erations would be to employ a heuristic that skips updating Ck when the expected size of errors ∆�Dk exceeds the size of the update or simply when ∥sk∥2 becomes too small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Convergence in a subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In the second experiment, we used a trust region approach with exact Hessian evaluations to generate the iterates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3 As pre- dicted by the theory for these methods, we observe local quadratic convergence to the minimizer (and much fewer iterations in general).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' The dotted line shows that there are very few iterations in which accurate information about the third derivatives can be obtained, but even then the relative error in Ck is several orders of magnitude larger than the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A key difference in the two experiments is how the directions of the steps are distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4 plots the angle of each sk with the x-axis, normalized between 0° and 180° so that opposite directions coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Whereas the steps generated by the nonlinear CG algorithm cover multiple well-separated directions during the main part of the algorithm, the steps generated by the trust region method tend to fall into a one-dimensional subspace, especially towards the end when convergence happens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This directly explains why the relative Frobenius error stays high and even increases towards the end in the second experiment: All the information we can extract from the (averaged) true derivative �Ck is its evaluation in the direction sk and since most of the steps point in the same direction at the end, the information about the other 3scipy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='minimize(method="trust-exact") in SciPy version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3, see [6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 169–200] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Only the successful iterations were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 19 0 20 40 Iteration k 0° 20° 40° 60° 80° 100° 120° 140° 160° 180° Angle of sk with x-axis 0 5 10 15 Iteration k Nonlinear CG Exact trust region Rosenbrock valley subspace at (1, 1) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Subspaces of the steps for nonlinear CG and exact trust region directions gets more and more outdated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In addition to the relative Frobenius norm, we also included (a relative version of) the Dennis–Mor´e measure from subsection 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4 in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This one measures the error in Ck only in the direction of the step sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Now, one might expect that when the approximation is updated in one specific direction and the Dennis–Mor´e error only measures how good the approximation is in this one direction, the error must track the lower bound derived in the previous subsection quite well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Indeed, this is the case when the steps all lie exactly in one subspace as we could verify with manually generated iterates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' For the exact trust region method however the step directions vary by about 1° in successive iterations at the end, which can be seen in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Let s→ k = λ1s→ k−1 + λ2uk where uk is chosen such that s→ k−1 and uk form an orthonormal basis of R2, then λ2 1 + λ2 2 = 1 and by multilinearity of Ck, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='6) Ck[s→ k ] = λ1Ck[s→ k−1] + λ2Ck[uk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Therefore, in each of the last few iterations the approximation in direction s→ k is a linear combination of the very accurate information in direction s→ k−1 and very inaccurate information in direction uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' In particular, if the angle with the x-axis varies by about 1° we get that λ2 ≈ sin(1◦) ≈ 10−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Combining this with the knowledge that the relative overall error in Ck is on the order of 1, we expect that the Dennis–Mor´e measure will hover around 10−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This agrees very well with the graph in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3 and shows that it is important for this method to gather accurate derivative information in all directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' We have seen in this paper that quasi-Newton updates described as least-change updates admit fairly straightforward generalizations to higher-order derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Moreover, they have a closed form solution with a certain low-rank struc- ture to it, generalizing the rank-two characterization of regular quasi-Newton updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 20 KARL WELZEL AND RAPHAEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' HAUSER The theoretical results suggest that, as long as the directions of the steps span the space and stay well separated, the generated approximations converge to the true derivative in the limit and under suitably fast convergence of the iterates they even converge (in a subspace) if these assumptions are violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' This is however not the behaviour we see in experiments, since the problem of computing the difference be- tween Hessian evaluations becomes more and more ill-conditioned as the difference between consecutive iterates becomes smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' These numerical limitations lead to a loss in accuracy: If the Hessians are computed with relative error δ we cannot expect the errors in the generated approximations to go below √ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Our experiments show that, as long as the directions of the steps stay well separated, the method indeed generates accurate approximations up to the numerical limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' If the directions tend to fall into a subspace, the derivative information in directions orthogonal to it quickly gets outdated and can impact approximations as long as they do not all fall exactly into the subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' REFERENCES [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Biglari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Hassan, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Leong, New quasi-Newton methods via higher order tensor models, Journal of Computational and Applied Mathematics, 235 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 2412– 2422, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='cam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [2] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Birgin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Gardenghi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Mart´ınez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Santos, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Toint, Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regular- ized models, Mathematical Programming, 163 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 359–368, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1007/s10107-016-1065-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation, 19 (1965), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 577–593, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1090/ S0025-5718-1965-0198670-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Broyden, The Convergence of a Class of Double-rank Minimization Algorithms 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Gen- eral Considerations, IMA Journal of Applied Mathematics, 6 (1970), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 76–90, https:// doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1093/imamat/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Cartis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Gould, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Toint, Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 2018, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='01220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Conn, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Gould, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Toint, Trust Region Methods, Society for Industrial and Applied Mathematics, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 2000, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1137/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9780898719857.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [7] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Davidon, VARIABLE METRIC METHOD FOR MINIMIZATION, Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Report ANL- 5990, 4252678, Argonne National Laboratory, Lemont, Illinois, May 1959, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2172/4252678.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Dennis and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Mor´e, A characterization of superlinear convergence and its application to quasi-Newton methods, Mathematics of Computation, 28 (1974), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 549–560, https:// doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1090/S0025-5718-1974-0343581-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Dennis and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Society for Industrial and Applied Mathematics, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1996, https:// doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1137/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9781611971200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Enshaei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Farid, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Leong, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Ardestani, Higher order curvature information and its application in a modified diagonal Secant method, Optimization, 67 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 2229–2246, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1080/02331934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1527840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Fletcher, A new approach to variable metric algorithms, The Computer Journal, 13 (1970), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 317–322, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1093/comjnl/13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Fletcher and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Powell, A Rapidly Convergent Descent Method for Minimization, The Computer Journal, 6 (1963), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 163–168, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1093/comjnl/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Goldfarb, A family of variable-metric methods derived by variational means, Mathematics of Computation, 24 (1970), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 23–26, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1090/ S0025-5718-1970-0258249-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [14] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Hackbusch, Tensor Spaces and Numerical Tensor Calculus, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 42 of Springer Series in Computational Mathematics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1007/978-3-642-28027-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Harris, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Millman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' van der Walt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Gommers, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Virtanen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Courna- GENERALIZING QUASI-NEWTON UPDATES TO HIGHER ORDERS 21 peau, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Wieser, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Taylor, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Berg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Kern, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Picus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Hoyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' van Kerkwijk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Brett, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Haldane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' del R´ıo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Wiebe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Pe- terson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' G´erard-Marchant, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Sheppard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Reddy, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Weckesser, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Abbasi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Gohlke, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Oliphant, Array programming with NumPy, Nature, 585 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 357–362, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1038/s41586-020-2649-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, second ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=', Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 2002, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1137/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='9780898718027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Horn and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Johnson, Matrix Analysis, Cambridge University Press, 1 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=', Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1985, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1017/CBO9780511810817.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Mart´ınez and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Raydan, Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization, Journal of Global Opti- mization, 63 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 319–342, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1007/s10898-015-0278-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Mor´e and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Trangenstein, On the Global Convergence of Broyden’s Method, Math- ematics of Computation, 30 (1976), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 523, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2307/2005323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Nesterov, Introductory Lectures on Convex Optimization, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 87 of Applied Optimization, Springer US, Boston, MA, 2004, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1007/978-1-4419-8853-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Nesterov, Implementable tensor methods in unconstrained convex optimization, Mathematical Programming, 186 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 157–183, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1007/ s10107-019-01449-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Nesterov, Superfast Second-Order Methods for Unconstrained Convex Optimization, Jour- nal of Optimization Theory and Applications, 191 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1–30, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1007/s10957-021-01930-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Nesterov and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Polyak, Cubic regularization of Newton method and its global perfor- mance, Mathematical Programming, 108 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 177–205, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1007/ s10107-006-0706-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Nocedal and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Wright, Numerical optimization, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2nd ed ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=', 2006, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1007/ 978-0-387-40065-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [25] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Press, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=', Numerical recipes: the art of scientific computing, Cambridge University Press, Cambridge, UK ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' New York, 3rd ed ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Schnabel and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Chow, Tensor Methods for Unconstrained Optimization Using Second Derivatives, SIAM Journal on Optimization, 1 (1991), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 293–315, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1137/0801020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, 24 (1970), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 647–656, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='1090/ S0025-5718-1970-0274029-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Shi and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Pan, Higher Order Iteration Schemes for Unconstrained Optimization, American Journal of Operations Research, 01 (2011), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 73, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='4236/ajor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='13011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' [29] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Wei, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Li, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' Qi, New quasi-Newton methods for unconstrained optimization problems, Applied Mathematics and Computation, 175 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1156–1188, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content=' 1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='amc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} +page_content='027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFJT4oBgHgl3EQf7i0F/content/2301.11678v1.pdf'} diff --git a/aNE1T4oBgHgl3EQfcwSy/content/2301.03188v1.pdf b/aNE1T4oBgHgl3EQfcwSy/content/2301.03188v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..cce281bbb41688e274e0e6f566b33549b85aaa0d --- /dev/null +++ b/aNE1T4oBgHgl3EQfcwSy/content/2301.03188v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:59e5441bfce96c1c1863914296a582dc13535b8ac637178fabac29ad8c0e9cd9 +size 655362 diff --git a/aNE1T4oBgHgl3EQfcwSy/vector_store/index.faiss b/aNE1T4oBgHgl3EQfcwSy/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..ae5e28cbd15637d7ea5f6f93182123228ca3f227 --- /dev/null +++ b/aNE1T4oBgHgl3EQfcwSy/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:409c5b126e29af2bee930e668da5d1200933c64e72978c805afece35288df703 +size 3670061 diff --git a/b9AyT4oBgHgl3EQfXPer/content/2301.00180v1.pdf b/b9AyT4oBgHgl3EQfXPer/content/2301.00180v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f1867c67c9b07b292e36d0f04d352d84132a1b6f --- /dev/null +++ b/b9AyT4oBgHgl3EQfXPer/content/2301.00180v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:80860c1ef143c285c1f9cb8f5f52b950f9d4ded8fdad1836bd42b083a88d09b1 +size 131925 diff --git a/b9AyT4oBgHgl3EQfXPer/vector_store/index.faiss b/b9AyT4oBgHgl3EQfXPer/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..59077e9d7dc12f6b9be3fb796f5d3d5e2f12eee4 --- /dev/null +++ b/b9AyT4oBgHgl3EQfXPer/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d023436dea9ba7f9301c9e9bab7d8cae16879cbd254a4b72e35fcacf4ab95a0 +size 1376301 diff --git a/b9AyT4oBgHgl3EQfXPer/vector_store/index.pkl b/b9AyT4oBgHgl3EQfXPer/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8cb3060c6f8df0a95131072218ce697658b940f3 --- /dev/null +++ b/b9AyT4oBgHgl3EQfXPer/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ad4638c675ece19ab43300e429b1c7512a39bfe58f9678939e32025cf791a96 +size 43889 diff --git a/b9E0T4oBgHgl3EQfWQBc/content/2301.02275v1.pdf b/b9E0T4oBgHgl3EQfWQBc/content/2301.02275v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2a2576e37658c5f585911e6ce0f21b88bf9354ce --- /dev/null +++ b/b9E0T4oBgHgl3EQfWQBc/content/2301.02275v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9ff283502bea38134120bfbb06cbe68542d94cd622635eb5e1239e93131e1610 +size 477986 diff --git a/b9E0T4oBgHgl3EQfWQBc/vector_store/index.faiss b/b9E0T4oBgHgl3EQfWQBc/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..72e58c7f8803f1fffb2263570363ff1f7f80c650 --- /dev/null +++ b/b9E0T4oBgHgl3EQfWQBc/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8dcca9b1208612f175ca096bff5a83711dbd5ba0a9c563413897799709a79ff9 +size 3735597 diff --git a/b9E0T4oBgHgl3EQfWQBc/vector_store/index.pkl b/b9E0T4oBgHgl3EQfWQBc/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..968225349b5aed50874adaeba721e72509b0e754 --- /dev/null +++ b/b9E0T4oBgHgl3EQfWQBc/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0087fb3303ef0d73d680c09f017d9ebd29d5ad1d5c69815a4da4fb821e89ded9 +size 143495 diff --git a/bNAyT4oBgHgl3EQfwPk2/content/2301.00644v1.pdf b/bNAyT4oBgHgl3EQfwPk2/content/2301.00644v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..5b001746c0de12cb43ebf8a518f0050ff17a5bd1 --- /dev/null +++ b/bNAyT4oBgHgl3EQfwPk2/content/2301.00644v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:50b287e125c495f289c0fe4a85eeab5e21c531510f7ce85e5c64dcbe8289da64 +size 304846 diff --git a/bNAyT4oBgHgl3EQfwPk2/vector_store/index.faiss b/bNAyT4oBgHgl3EQfwPk2/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..40c240d18eae2c083dbf10f05290a15d1adb655e --- /dev/null +++ b/bNAyT4oBgHgl3EQfwPk2/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b638b0b12bb0c02390f4735da3b367e01a1f81dde20ab4e22e9288d1dd0c45dc +size 393261 diff --git a/bNAyT4oBgHgl3EQfwPk2/vector_store/index.pkl b/bNAyT4oBgHgl3EQfwPk2/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9da9d5de753cd38f43f77c20f18dd303c7127303 --- /dev/null +++ b/bNAyT4oBgHgl3EQfwPk2/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0c00bb6e161e9f44dee5e956cfd54ee138567b3c03d28afd9abd9e7b8814aaf8 +size 17356 diff --git a/btE3T4oBgHgl3EQfdgrZ/content/tmp_files/2301.04536v1.pdf.txt b/btE3T4oBgHgl3EQfdgrZ/content/tmp_files/2301.04536v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..0faf9c75d5e0002775735aefcf8d0f464a24fb12 --- /dev/null +++ b/btE3T4oBgHgl3EQfdgrZ/content/tmp_files/2301.04536v1.pdf.txt @@ -0,0 +1,1032 @@ +Full control of the libration potential in rotational levitodynamics +J. A. Zielińska,1, ∗ F. van der Laan,1 A. Norrman,1, 2 R. Reimann,1, 3 L. Novotny,1 and M. Frimmer1 +1Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland +2Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland +3Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE +Control of the potential energy and free evolution lie at the heart of levitodynamics as key re- +quirements for sensing, wave function expansion, and mechanical squeezing protocols. +Here, we +experimentally demonstrate full control over the optical potential governing the librational degrees +of freedom of a levitated anisotropic nanoparticle. This control is achieved by introducing the degree +of polarization as a new tool for rotational levitodynamics. We demonstrate the free rotation of a +levitated anisotropic scatterer around its short axis and and we use the rotational degrees of freedom +to probe the local spin of a strongly focused laser beam. +Introduction.— +Levitodynamics is the science of con- +trolling the motion of levitated mesoscopic objects [1]. +The field has received growing attention in the last +decade as a platform for force, torque, and electric field +sensing [2]. Next to the translational degrees of freedom, +the rotational dynamics of levitated anisotropic bodies +offer particularly promising opportunities. More specifi- +cally, new functionalities demonstrated for optically levi- +tated rotors include controllable diffusion [3], gyroscopic +stabilization [4], spinning with GHz rotation rates [5–8], +and the realization of rotational “washboard potentials” +by carefully trading off conservative and non-conservative +torques in elliptically polarized fields [3, 9]. +A particularly enticing prospect is to harness levitated +rotors as ultra-sensitive torque sensors [7], in applica- +tions ranging from photonic torque microscopy [10–15], +to seismology [16, 17] and space-based alignment proce- +dures [18]. Another use case are tests of quantum co- +herence at macroscopic scales [19, 20]. With librational +degrees of freedom currently on track to reach the quan- +tum regime [21–24], control over the depth and inversion +of the potential will enable the generation of large delo- +calized orientational states [25, 26] and the preparation +of mechanical squeezed states [27]. +Therefore, to realize the full promise of levitated ro- +tors, a scheme is required to release a librator from the +optical potential pinning its orientation, allowing it to +freely evolve. In this state, the system becomes an opti- +cally suspended gyroscope that is extremely sensitive to +DC torques, in full analogy to previously developed DC +force sensing schemes [28]. The open question is how to +deactivate the optical potential used to trap the levitated +object’s orientation while keeping the trapping potential +for its center-of-mass (COM) motion fully intact. +In this Letter we demonstrate full control over the con- +servative libration potential of an optically levitated par- +ticle. Our scheme makes use of the degree of polarization +of the trapping field. We experimentally realize near-zero +libration frequencies up to the point where the libration +signal vanishes, giving way to thermally driven free evo- +lution of the levitated rotor. Additionally, for particles +with cylindrical symmetry (dumbbells), we observe the +signature of the transverse spin of light locally present in +a strongly focused trapping beam. +Key concept.— +Consider an anisotropic dipolar point +scatterer of polarizability α = diag(α1, α2, α3) in the +body frame (spanned by unit vectors e1, e2, e3), with +α3 > α2 > α1, as illustrated in Fig. 1. The orientation of +the particle with respect to the lab frame is described by +the three Euler angles Φ, Θ, and Ψ (see Supplement [29]). +In a field linearly polarized along x in the lab frame, the +particle will align with its axis of largest polarizability e3 +to the polarization axis x (Φ = Θ = 0) while it can freely +rotate by any angle Ψ around its long axis e3. +Small +deviations of the long axis e3 from the polarization axis +represent libration modes, i.e., harmonic oscillator de- +grees of freedom, described by the angles Φ and Θ. +Let us now consider an unpolarized electric field, whose +field vector remains in the xy-plane. Here, the particle +will “lie flat” in the polarization plane, i.e., align with its +axis of smallest polarizability e1 along the z axis. Devia- +tions from this alignment, i.e., tilts out of the polarization +plane, again represent two libration modes described by +the angles Θ and Ψ. At the same time, the particle can +freely rotate by any angle Φ, as the field vector has no +preferred direction in the xy-plane. Accordingly, both in +a linearly and in an unpolarized field, one angular de- +gree of freedom is free. Importantly, in the unpolarized +case, the free rotation is measurable by available detec- +Figure 1. +The orientation of an anisotropic particle’s body +frame (given by e1, e2, e3) relative to the lab frame (x, y, z) is +described by the three angles Φ, Θ, and Ψ. +arXiv:2301.04536v1 [physics.optics] 11 Jan 2023 + +2 +tion schemes [21, 22] and therefore highly attractive for +torque sensing applications. In the following, we experi- +mentally investigate the dynamics of a levitated rotor as +it is transitioned from a linearly polarized to an unpolar- +ized trapping field. +Experiment.— +At the heart of our experimental +setup, illustrated in Fig. 2(a), is an optical trap with vari- +able degree of polarization (DOP), formed by focusing a +trapping beam with a lens (NA=0.8) inside a vacuum +chamber (pressure 1.5 mbar). To vary the DOP, a laser +beam (wavelength 1550 nm) is split into two components +with orthogonal linear polarization, which are then fre- +quency shifted with acousto-optic modulators (AOMs) +by ±80 MHz, respectively. The frequency-shifted polar- +ization components are subsequently recombined on a po- +larizing beamsplitter to form the trapping beam (power +450 mW), which propagates along the z direction. Spher- +ical silica nanoparticles (nominal diameter 143 nm) are +loaded into the trap with a nebulizer. The dynamics of +the trapped object are detected using forward-scattered +light. +The COM motion is recorded using a quadrant +photodiode, and the libration signal using a standard ho- +PBS +PBS +COM +99:1 ++80 MHz +AOM 2 +AOM 1 +-80 MHz +Laser +(a) +(b) +(c) +1.5 mbar +QWP +ND +PBS +HWP +LD +z +y +x +Figure 2. +(a) Simplified schematic of the experimental setup. +The two polarization components of a laser beam are sepa- +rated and each frequency-shifted by ±80 MHz, respectively, +with an acousto-optic modulator (AOM). The components’ +amplitudes Ex and Ey are varied by adjusting the driving +powers of the AOMs. +After recombining the polarization +components on a polarizing beamsplitter (PBS), the beam +is focused in a vacuum chamber with a high-NA lens to form +an optical trap with variable degree of polarization. The li- +bration signal is detected in the forward direction using a +combination of a quarter-wave plate (QWP), half-wave plate +(HWP), a neutral density filter (ND), a PBS, and a balanced +detector (LD). (b) Power spectral density (PSD) of a particle +cluster in a linearly polarized trap. (c) PSD of a dumbbell in +a linearly polarized trap. +modyne detection scheme [22]. +In this work, we focus on two distinct classes of +anisotropic particles, identified by their characteristic li- +bration spectra shown in Figs. 2(b) and (c). The first +class are “clusters”, that is, objects composed of more +than two particles, described by a fully anisotropic po- +larizability tensor (as the particle symbolically depicted +in Fig. 1). The cluster spectrum shown in Fig. 2(b) ex- +hibits two modes at 390 kHz and at 425 kHz, respec- +tively, which we associate with the libration modes de- +scribed by the angles Θ and Φ from Fig. 1. The second +class of anisotropic particles are dumbbells (cylindrically +symmetric objects composed of two spherical particles +in touching contact), characterized by a sharp libration +peak flanked by broad shoulders, as shown in Fig. 2(c). +This spectrum originates from two libration modes that +are coupled by the thermally driven spinning around the +symmetry axis [22, 30, 31]. +Degree +of +polarization.— +Having +introduced +the +spectra for linearly polarized light we now turn to fields +of variable DOP. In our setup, the tweezer field be- +fore the trapping lens reads E = (Exeiωxt, Eyeiωyt, 0)T , +where the angular frequency difference ∆ω = ωx − ωy = +2π ×160 MHz is kept constant, while the real-valued am- +plitudes Ex and Ey can be controlled with the AOMs +(see Supplement for details [29]). The instantaneous po- +larization state of the trapping beam (before focusing) is +described via the four Stokes parameters [32] +S0 = E2 +x + E2 +y, +(1a) +S1 = E2 +x − E2 +y, +(1b) +S2 = 2ExEy cos (∆ωt), +(1c) +S3 = −2ExEy sin (∆ωt). +(1d) +The DOP is defined as +P = +� +⟨S1⟩2 + ⟨S2⟩2 + ⟨S3⟩2/⟨S0⟩, +(2) +where ⟨·⟩ denotes the time average [33]. Since the op- +tical modulation frequency ∆ω is more than two orders +of magnitude larger than the librational dynamics, the +cosine and the sine terms average out and the DOP sim- +plifies to P = |s1|, where s1 = S1/S0. The upper bound, +P = 1, corresponds to fully linearly polarized light, while +the lower bound, P = 0, denotes unpolarized light. The +intermediate regime, 0 < P < 1, describes partial polar- +ization. +Results.— +Let us discuss our experimental observa- +tions for a cluster trapped in a beam with variable DOP. +In Fig. 3(a), we show in false color the power spectral +density (PSD) of the libration signal as a function of +frequency and P. For linearly polarized trapping light +(P = 1), we observe the spectrum from Fig. 2(b), with +a feature composed of two closely spaced peaks near +400 kHz. +As the DOP is reduced (P < 1), the two +peaks split and their frequencies decrease. Remarkably, + +3 +(a) +(b) +Figure 3. PSDs measured by the libration detector as a function of the DOP and the normalized Stokes parameter s1 of the +trapping beam. Each subfigure consists of 100 PSDs, where the first one (s1 = −1) corresponds to y-polarized trapping light +and the last one (s1 = 1) to x-polarized trapping light. In the case of s1 = 0 the trapping beam is effectively unpolarized +and the frequency corresponding to libration in the xy plane tends to zero. Frequencies corresponding to translational COM +motion are visible as horizontal lines in the range between 40 and 150 kHz. (a) Cluster (non-rotationally symmetric particle). +Red lines show theoretical prediction calculated from Eqs. (3a) and (3b) using only libration frequencies measured at the linear +polarization setting. (b) Dumbbell (cylindrically symmetric particle). Black solid lines are precession frequencies calculated +from the theoretical model including spinning of the dumbbell along its long axis [29], with ωs/2π (proportional to the spinning +rate) shown as dashed black line. +for unpolarized light (P = 0) the frequency of one of the +modes vanishes, while the frequency of the second mode +approaches 300 kHz. +Our experimental observations for a trapped dumbbell, +shown in Fig. 3(b), strikingly differ from that of a cluster. +The single peak at 500 kHz (surrounded by broad shoul- +ders) observed in linearly polarized light (P = 1), see +Fig. 2(c), splits in two as the DOP is reduced (P < 1). In +contrast to the cluster, the dumbbell exhibits one mode +that shifts to higher frequencies and settles at 680 kHz +for unpolarized light (P = 0), while the second mode +frequency tends towards zero, where its signal strength +vanishes. +Model.— +To understand our observations, we model +the orientational dynamics of an anisotropic dipolar scat- +terer in a field of variable DOP. Let the scatterer be +characterized by its polarizability α = diag(α1, α2, α3) +and its tensor of inertia I = diag(I1, I2, I3), which are +both diagonal in the intrinsic body frame spanned by +e1, e2, e3. We furthermore assume α1 ≤ α2 ≤ α3 and +I1 ≥ I2 ≥ I3. +We calculate the potential energy of a +fully anisotropic scatterer in a field of variable DOP as a +function of the orientation angles Φ, Θ, and Ψ and iden- +tify the global energy minimum (see Supplement [29]). +Small deviations of the orientation angles Φ, Θ, and Ψ +from their equilibrium values resemble, to first order, har- +monic oscillator degrees of freedom, whose characteristic +libration frequencies are given by +Ω1 = A1 +√ +P, +(3a) +Ω2 = A2 +� +1 + P +2 +, +(3b) +Ω3 = A3 +� +1 − P +2 +, +(3c) +respectively, where Ai += [(|αj − αk|S0)/2Ii]1/2 and +{i, j, k} are permutations of {1, 2, 3}. +Equations (3a)–(3c) indicate that we can directly con- +trol the librational potential governing the orientation of +the rotor via the DOP. Although our detection is only +sensitive to libration in the xy plane [21], the coupling +between the different libration modes [30] is responsible +for the second libration mode in the spectrum. To com- +pare our theoretical prediction with our measurement, +we plot the calculated values for the libration frequen- +cies Ω1 and Ω2 from Eqs. (3a) and (3b) as red lines in +the measurement of the trapped cluster in Fig. 3(a). The +required parameters A1 and A2 are defined by the libra- +tion frequencies extracted at P = 1. The theoretical lines +trace the observed libration frequencies remarkably well, +demonstrating that our model correctly captures the ro- +tational dynamics and providing strong support for our +initial assumption that the trapped object is a cluster +without symmetry. We stress that in a field with zero + +P +1.0 +0.5 +0.0 +0.5 +1.0P +1.0 +0.5 +0.0 +0.5 +1.04 +DOP the cluster’s libration frequency Ω1 vanishes. +In +other words, the orientation angle Φ undergoes free evo- +lution. +Let us turn our attention to the dynamics of the +trapped dumbbells. Inspection of Eqs. (3c) shows that +for an object of cylindrical symmetry A3 and therefore +also Ω3 vanish. This observation intuitively makes sense, +since such a scatterer can always freely rotate around +its long axis. However, for dumbbells, the libration fre- +quencies as a function of P, experimentally observed in +Fig. 3(b), deviate significantly from those predicted by +Eqs. (3a)–(3c). As has been pointed out before [30, 31], +the spinning of the dumbbell at a stationary rate ˙Ψ0 +around its axis of symmetry couples the libration modes +with frequencies Ω1 and Ω2 into precession modes with +frequencies ΩA and ΩB according to +(ΩA − ΩB)2 = ω2 +s + (Ω1 − Ω2)2, +(4) +with the coupling rate ωs = µ ˙Ψ0 and the inertial cou- +pling constant µ = (I1 − I3)/I1. We interpret the salient +libration features in our data in Fig. 3(b) as the preces- +sion frequencies ΩA and ΩB of the dumbbell, and fit their +functional dependence with Eq. (4), where Ω1 and Ω2 are +in turn given by Eqs. (3a) and (3b). The fit [black solid +lines in Fig. 3(b)] describes our experimental observa- +tion very well and yields a fitted coupling rate ωs, shown +as the dashed black line in Fig. 3(b) [29]. We conclude +that the rate of spinning around the long axis in our ex- +periment reaches ˙Ψ0 = 2π × 200 kHz in the regime of +unpolarized light P = 0, where we used the dumbbells +length-to-diameter ratio of L/D ≈ 1.8 [3] to estimate the +inertial coupling factor as µ ≈ 0.375. We will explain the +origin of this spinning motion in the next section. +Discussion.— +Our results in Fig. 3 demonstrate that +the DOP of the trapping field allows us to control the li- +bration frequencies of the optically levitated particle. In +particular, we stress the fact that for a cluster in a field +with vanishing DOP, the libration frequency Ω1 vanishes. +In other words, the cluster becomes a free rotor regarding +its orientation angle around the optical z axis, while its +two axes of largest moment of inertia (I2 and I3) are har- +monically trapped in the xy plane of polarization. The +situation is analogous for the dumbbell, whose long axis +is harmonically trapped with characteristic frequency ΩB +in the focal xy plane in unpolarized light, while the ori- +entation of the long axis undergoes free evolution within +this plane. Thus, the DOP allows us, for the first time, +to tune the angular motion of a levitated object from +librations of several hundered kHz all the way to free +evolution. This demonstration is the main result of this +paper. +Let us now provide an explanation for the torque that +drives the trapped dumbbell into spinning motion around +its long axis. We note that this torque must lie in the +focal plane (which is the plane the dumbbell’s long axis +is pinned to). Strongly focused fields can indeed carry +transverse spin angular momentum [35, 36], which gives +rise to a torque when transferred to a particle. In Fig. 4, +we illustrate the transverse part of the spin vector [37] in +the focal plane of a strongly focused y polarized Gaus- +sian beam. +The spin is depicted as arrows whose di- +rection (length) indicates the spin’s orientation (magni- +tude). The spin points predominantly along the positive +(negative) x direction in the range y < 0 (y > 0). To +understand how a dumbbell can be exposed to the trans- +verse spin, we consider a trap composed of not only a +y polarized beam but also of an additional strong x po- +larized beam, used for trapping the particle’s COM (the +intensity of which is illustrated as a colormap in Fig. 4). +The x polarized trapping beam aligns the particle’s long +axis along the x direction. If we displace the x polar- +ized beam along the y direction then the transverse spin +of the y polarized beam will spin the dumbbell along +its long axis, as experimentally observed. Even though +the torque along the dumbbell’s long axis is very weak, +the effect is visible since the dumbbell is free to rotate +along its long axis. We can thus explain the observed +spinning motion of the dumbbell as a signature of the +transverse spin angular momentum of light in a strongly +focused field, together with an inevitably imperfect align- +ment between the two cross-polarized beams forming our +trap with tunable DOP. Effectively the trapped dumbbell +locally senses the spin of an additional light field. Note +I(x=0,y) +negative +spin +positive +spin +Figure 4. +Illustration of the spatial mismatch between the +trapping beam components leading to a dumbbell being +trapped in a region of nonzero transverse spin. A vector plot +shows the transverse spin pattern in the xy plane generated +by y polarized strongly focused Gaussian beam [34]. Simul- +taneously, we show the dumbbell (to scale) trapped in the +intensity maximum of a stronger x polarized Gaussian beam +(contour plot) displaced by 100 nm from y = 0. Beam size +and lens parameters correspond to the experiment. On the +right we plot the intensity profile I(x = 0, y), indicating re- +gions with spin pointing in negative and positive x direction. + +5 +that, in contrast to dumbbells, clusters are not driven +into rotation along their long axis by a weak transverse +spin of light, since A3 ̸= 0 and the angle of rotation +around the long axis is restrained for P < 1 [see Eq. (3c)]. +Finally, let us comment on the limitations of our vari- +able DOP potential control scheme. +Throughout this +work, we have only considered the mean polarization of +the beams, neglecting their polarization oscillations at +the frequency ∆ω [see Eqs. (1c) and (1d)]. In analogy +to Paul traps operating at RF frequencies, the oscillat- +ing polarization will give rise to an additional potential +term [29] and a small amplitude micromotion at ∆ω. The +frequencies associated with the additional potential term +are of the order of magnitude of Bi ≈ A2 +i /∆ω [38]. In +our experiment the correction to the libration frequencies +caused by the oscillating polarization is negligible. Note +that 1/Bi limits the maximum free evolution time for a +given value of ∆ω. +Moreover, in the current implementation ∆ω is re- +stricted by the AOM bandwidth, but this limit can be +readily removed by using two laser sources with differ- +ent wavelengths (without the need for relative frequency +stabilization). +Increasing the free evolution time limit +to 1 s requires 3 nm difference between the wavelengths +of the two polarization components (assuming a cen- +ter wavelength of 1550 nm). We also note that exper- +iments involving librational potential switching [25, 27] +via DOP control can be implemented on timescales of a +few nanoseconds (only limited by AOM rise time). +Conclusions.— +We have demonstrated for the first +time the complete tunability of the librational frequencies +of optically levitated clusters of silica nanoparticles. This +tunability is accomplished by the DOP and is indepen- +dent of the COM trapping potential. Our work is impor- +tant for the development of high-performance nanoscale +gyroscopes and for the study of macroscopic rotational +quantum physics [23, 39]. Furthermore, we have exper- +imentally confirmed that symmetric rotors can serve as +a precise tool for sensing torques not only perpendicu- +lar, but also parallel to the long axis of the rotor. This +feature, together with the high control over libration de- +grees of freedom, may enable the full characterization of +three-dimensional Stokes parameters [10, 40–42]. +The authors would like to thank A. Militaru, O. +Romero-Isart, C. Gonzalez-Ballestero and all trappers in +the Photonics Laboratory for fruitful discussions. This +research was supported by the European Union’s Hori- +zon 2020 research and innovation programme under grant +agreement No. [863132] (IQLev), as well as ETH Grant +No. +ETH-47 20-2. +A.N. thanks the Jane and Aatos +Erkko Foundation (Finland) for funding. +∗ jzielinska@eth.ch +[1] C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, +R. Quidant, and O. Romero-Isart, Science 374, eabg3027 +(2021). +[2] M. Rademacher, J. Millen, and Y. L. Li, Adv. Opt. Tech- +nol. 9, 227 (2020). +[3] L. Bellando, M. Kleine, Y. Amarouchene, M. Perrin, and +Y. Louyer, Phys. Rev. Lett. 129, 023602 (2022). +[4] S. Kuhn, B. A. Stickler, A. Kosloff, F. Patolsky, K. Horn- +berger, M. Arndt, and J. Millen, Nat. Commun. 8, 1670 +(2017). +[5] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, +M. Frimmer, +D. Windey, +F. Tebbenjohanns, +and +L. Novotny, Phys. Rev. Lett. 121, 033602 (2018). +[6] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, +Q. Han, R.-M. Ma, +and T. Li, Phys. Rev. Lett. 121, +033603 (2018). +[7] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, Nat. +Nanotechnol. 15, 89 (2020). +[8] F. van der Laan, R. Reimann, A. Militaru, F. Tebbenjo- +hanns, D. Windey, M. Frimmer, and L. Novotny, Phys. +Rev. A 102, 013505 (2020). +[9] S. Kuhn, A. Kosloff, B. A. Stickler, F. Patolsky, K. Horn- +berger, M. Arndt, and J. Millen, Optica 4, 356 (2017). +[10] A. Irrera, +A. Magazzù, +P. Artoni, +S. H. Simpson, +S. Hanna, P. H. Jones, F. Priolo, P. G. Gucciardi, and +O. M. Maragò, Nano Letters 16, 4181 (2016). +[11] V. Svak, O. Brzobohatý, M. Šiler, P. Jákl, J. Kaňka, +P. Zemánek, and S. H. Simpson, Nat. Commun. 9, 5453 +(2018). +[12] Y. Arita, S. H. Simpson, P. Zemánek, and K. Dholakia, +Sci. Adv. 6, eaaz9858 (2020). +[13] Y. Liang, S. Yan, Z. Wang, B. Yao, and M. Lei, Photon. +Res. 9, 2144 (2021). +[14] Y. +Arita, +S. +H. +Simpson, +G. +D. +Bruce, +E. +M. +Wright, P. Zemánek, +and K. Dholakia, arXiv preprint +arXiv:2204.06925 (2022). +[15] Y. Hu, J. J. Kingsley-Smith, M. Nikkhou, J. A. Sabin, +F. J. Rodríguez-Fortuño, X. Xu, +and J. Millen, arXiv +preprint arXiv:2209.09759 (2022). +[16] F. Guattari, E. de Toldi, R. F. Garcia, and D. Mimoun, +in International Conference on Space Optics — ICSO +2018, Vol. 11180, International Society for Optics and +Photonics (SPIE, 2019) p. 1118080. +[17] J. Wassermann, T. Braun, M. Ripepe, F. Bernauer, +F. Guattari, +and H. Igel, J. Volcanol. Geotherm. 424, +107499 (2022). +[18] J. Jin, T. Zhang, L. Kong, and K. Ma, Sensors 18, 106 +(2018). +[19] B. A. Stickler, B. Papendell, S. Kuhn, B. Schrinski, +J. Millen, M. Arndt, and K. Hornberger, New J. Phys. +20, 122001 (2018). +[20] B. Schrinski, B. A. Stickler, +and K. Hornberger, Phys. +Rev. A 105, L021502 (2022). +[21] F. Tebbenjohanns, A. Militaru, A. Norrman, F. van der +Laan, L. Novotny, and M. Frimmer, Phys. Rev. A 105, +053504 (2022). +[22] F. van der Laan, F. Tebbenjohanns, R. Reimann, J. Vi- +jayan, L. Novotny, +and M. Frimmer, Phys. Rev. Lett. +127, 123605 (2021). +[23] J. Schäfer, H. Rudolph, K. Hornberger, and B. A. Stick- +ler, Phys. Rev. Lett. 126, 163603 (2021). +[24] A. Pontin, H. Fu, M. Toroš, T. S. Monteiro, and P. F. +Barker, arXiv:2205.10193 (2022). +[25] T. Weiss, M. Roda-Llordes, E. Torrontegui, M. As- + +pelmeyer, +and O. Romero-Isart, Phys. Rev. Lett. 127, +023601 (2021). +[26] Once the ground state is reached, we estimate that co- +herent spatial expansion by a factor of 102 is possible +even in the presence of backaction-induced heating rates +reported in [22]. +[27] J. Janszky and P. Adam, Phys. Rev. A 46, 6091 (1992). +[28] E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, +Phys. Rev. Lett. 121, 063602 (2018). +[29] See Supplemental material for the detailed description of +the experimental setup, derivation of Eqs. (3) and further +discussion of spinning along the long axis driven by the +transverse spin. +[30] T. Seberson and F. Robicheaux, Phys. Rev. A 99, 013821 +(2019). +[31] J. Bang, T. Seberson, P. Ju, J. Ahn, Z. Xu, X. Gao, +F. Robicheaux, +and T. Li, Phys. Rev. Res. 2, 043054 +(2020). +[32] J. J. Gil and R. Ossikovski, Polarized Light and the +Mueller Matrix Approach, 2nd ed. (CRC Press, 2022). +[33] A. Shevchenko, M. Roussey, A. T. Friberg, and T. Setälä, +Optica 4, 64 (2017). +[34] L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd +ed. (Cambridge University Press, 2012). +[35] J. Eismann, +L. Nicholls, +D. Roth, +M. A. Alonso, +P. Banzer, F. J. Rodríguez-Fortuño, A. V. Zayats, +F. Nori, +and K. Y. Bliokh, Nat. Photonics 15, 156 +(2021). +[36] Y. Chen, F. Wang, Z. Dong, Y. Cai, A. Norrman, J. J. +Gil, A. T. Friberg, +and T. Setälä, Phys. Rev. A 104, +013516 (2021). +[37] J. J. Gil, A. T. Friberg, A. Norrman, +and T. Setälä, +New. J. Phys. 23, 063059 (2021). +[38] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 +(2014). +[39] B. Stickler, K. Hornberger, and M. Kim, Nat. Rev. Phys. +3, 589–597 (2021). +[40] J. J. Gil, J. Eur. Opt. Soc.: Rapid Publ. 10, 15054 (2015). +[41] C. P. Blakemore, +A. D. Rider, +S. Roy, +Q. Wang, +A. Kawasaki, and G. Gratta, Phys. Rev. A 99, 023816 +(2019). +[42] M. Guo, A. Norrman, A. T. Friberg, and T. Setälä, Opt. +Lett. 47, 2566 (2022). +[43] E. W. Weisstein, From MathWorld–A Wolfram Web Re- +source . +[44] L. D. Landau and E. M. Lifshitz, Mechanics, Third Edi- +tion: Volume 1 (Course of Theoretical Physics), 3rd ed. +(Butterworth-Heinemann, 1976). +[45] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68, +013820 (2003). + +Supplemental Material +S1. VARIABLE DOP TRAPPING BEAM PREPARATION +This section describes the preparation of the variable DOP trapping beam. We provide experimental details of the +most important aspects, such as ensuring the spatial overlap of the two orthogonally-polarized components of the +tweezer beam and the calibration of the DOP in the trapping region. +The tweezer beam generation system is depicted in Fig. S1(a). Before entering the vacuum chamber, the trapping +beam, propagating along the z axis, is split into two components with equal power but orthogonal linear polarizations. +Each of these constituent beams is then frequency shifted by an AOM (y-polarized beam is shifted by −80 MHz by +AOM 1, and x-polarized beam is shifted by +80 MHz by AOM 2). Subsequently, the beams are spatially overlapped +and recombined on a polarizing beam-splitter (PBS). Both beams are first focused into their respective AOMs using +one lens before the split (f = 200 mm), and then collimated using another lens (f = 500 mm) after the recombination. +The spatial mode overlap of the two beams is optimised by maximising the visibility of interference at the difference +frequency ∆ω = 160 MHz, recorded on the auxiliary detector (PD in Fig. S1(a)). The beams are overlapped by +means of two steering mirrors, and the beam sizes are matched using a corner-cube (CC) mounted on a translation +stage. The CC allows us to adjust the path length difference between the x- and y-polarized components between +focusing (f = 200 mm) and collimating (f = 500 mm) lenses. The maximum achieved interference visibility is 85%. +The aforementioned system allows us to control the relative contributions of x- and y-polarized light to the trapping +beam via controlling the driving power of the AOMs. For example, if AOM 1 is driven at maximum power, and AOM 2 +receives no drive, the tweezer is y polarized, whereas when both AOM 1 and AOM 2 are driven so that they provide +the same diffraction efficiency, the tweezer is composed of x and y polarizations in equal measure. +In the remainder of this section we will describe the calibration of the contributions of x- and y-polarized light to +the intensity in the trapping volume, which directly determine the DOP in the trap. In order to avoid systematic +errors introduced by spatial mode mismatch of the x- and y-polarized beams, we perform this calibration using the +COM motion of the trapped particle. +The relationship between the focal intensity and the AOM driving power is determined for each beam separately +with the help of the transverse COM frequencies describing the particle motion in the focal plane along x and y +(denoted as fx and fy respectively). Let us denote the average transverse COM frequency as fav = 1 +2(fx + fy). We +use the average transverse COM frequency squared f 2 +av as a proxy for the focal intensity measurement. +The measured dependence of f 2 +av on the driving power of each AOM (together with a quadratic fit) is depicted +in Fig. S1(b). We verify the calibration by performing the scan of the degree of polarization shown in Fig. S1(c). +As desired, we find that fav remains constant when s1 is varied. Note that the average transverse COM frequency +fav does not decrease for s1 = 0 (when 50% of focal intensity is x-polarized and 50% is y-polarized), even though +the calibration is performed for each polarization component separately. This shows that the volumes of the traps +generated by the two beams overlap well and their trap depths add together to form the final trapping potential. +The DOP calibration procedure is potentially affected by the fact that in our experiment the trapping beam has a +slightly elliptical shape introduced by the AOMs. For a tweezer formed by a strongly focused circular Gaussian input +beam, fx and fy are not the same [34]. We quantify this effect using ϵ = (fx − fy)/(fx + fy). Clearly, in the case of +circular Gaussian beam, the value of |ϵ| should not depend on whether the tweezer is x- or y-polarized. Therefore, +different values of |ϵ| for x and y tweezer polarization (see Fig. S1(c) at points s1 = ±1) suggest that the beam cross +section is elliptical. +In order to quantify the effect of the trapping beam ellipticity on f 2 +av, we have simulated the focal field produced by +the trapping lens [34]. The beam waists along x and y before focusing are used as free parameters. The obtained focal +intensity cross sections along x and y for both x and y polarized tweezer light are shown in Fig. S1(d) and reproduce +well the observed values of ϵ for an x- and y-polarized tweezer (ϵ = 0.057 and ϵ = −0.116 respectively). We find that +the values of the average transverse COM frequency fav for both polarizations differs by less than 1%. Hence, we +conclude that f 2 +av offers a good focal intensity estimate in our experiment. +S2. LIBRATIONAL POTENTIALS +In this section we derive the potential governing the libration of an anisotropic particle. The potential is induced +by the electric field of the trapping beam which is propagating along z and is composed of two frequency shifted +1 + +(a) +(b) +(c) +(d) +f=200 +f=500 +PBS +PBS +HWP ++80MHz +AOM 2 +AOM 1 +-80MHz +PD +HWP +to trap +Laser +CC +z +y +x +Figure S1. +(a) Experimental diagram of the beam preparation stage. +The laser beam is split into two parts, which are +frequency-shifted by ±80 MHz (shown by violet and orange). The two parts are subsequently recombined and sent to the trap. +Abbreviations: half-wave plate (HWP), polarizing beam splitter (PBS), photo-diode (PD), corner cube (CC). (b) The average +COM transverse frequency squared f 2 +av as a function of AOM driving power for both AOMs. The data points are shown together +with quadratic fits (solid lines). (c) The power spectral density (PSD) of COM motion as a function of DOP of the trapping +beam. This subfigure consists of 100 PSDs, where the first one (s1 = −1) corresponds to y-polarized trapping light and the +last one (s1 = 1) to x-polarized trapping light. The PSD is measured by the quadrant photo detector (see Fig. 2(a), both QPD +channels are summed here). COM transverse frequencies fx and fy are visible in the 120 to 150 kHz region. (d) Simulated +intensity profiles along x and y directions for a strongly focused elliptical beam. Note that the cross-section of the focal spot +is more circular for y-polarised tweezer beam. +components (x- and y-polarized) of different amplitudes: +E = (Exeiωxt, Eyeiωyt, 0)T . +(S1) +The x and y field components acquire a phase difference that grows linearly in time in proportion to the frequency +∆ω = ωx − ωy. Since the initial phase difference is not important to the dynamics, we assume that the amplitudes +Ex and Ey are real. +We assume that both the moment of inertia and the polarizability tensor can be simultaneously diagonalized in the +principal axes reference frame of the particle. We refer to this frame of reference as “particle frame” and represent +the principal axes as (e1, e2, e3). We denote α = diag(α1, α2, α3) and I = diag(I1, I2, I3) as the static polarizability +and inertia tensors of the object in the intrinsic body frame, respectively, assuming α1 ≤ α2 ≤ α3 and I1 ≥ I2 ≥ I3. +We refer to e3 (the principal axis with the largest polarizability) as the “long axis” of the object. +In order to describe the orientation of the particle frame with respect to the laboratory frame (x, y, z), we use the +intrinsic x-convention of Euler angles denoted as φ, θ and ψ (see [43] and §35 in [44]). The Euler angles φ and θ +2 + +describe the orientation of the long axis of the rotor (the angle measured in the experiment is φ, which corresponds to +the orientation of the long axis in the xy plane). In order to transform a vector from laboratory to particle frame we +first rotate it by the angle φ around z, then by θ around e1 and finally by ψ around e3. The transformation matrix +corresponding to these three rotation operations reads [43] +R = +� +� +cos ψ cos φ − cos θ sin ψ sin φ +cos θ sin ψ cos φ + cos ψ sin φ +sin θ sin ψ +− cos θ cos ψ sin φ − sin ψ cos φ +cos θ cos ψ cos φ − sin ψ sin φ +sin θ cos ψ +sin θ sin φ +− sin θ cos φ +cos θ +� +� . +(S2) +The dipole moment induced in a trapped anisotropic particle, expressed in the laboratory frame of reference, yields: +p = R−1αRE, +(S3) +where ⃗E is also expressed in the laboratory reference frame. Since in general ⃗p and ⃗E are not parallel, the potential +energy Utot associated with the orientation of the particle (after averaging over optical frequencies) yields: +Utot = −1 +4Re (p · E∗) . +(S4) +If we consider the electric field as in Eq. (S1), the potential Utot can be written as a sum of two terms +Utot = U0 + U1 cos (∆ωt), +(S5) +with +U0 =S0 +8 +� +−(α1 + α2) + sin2 θ (1 − s1 cos 2φ) +� +α1 sin2 ψ + α2 cos2 ψ − α3 +� ++ s1 (α1 − α2) (cos θ sin 2ψ sin 2φ − cos 2ψ cos 2φ) +� +, +(S6a) +U1 = − S0 +� +1 − s2 +1 +8 +� +sin2 θ sin 2φ (α1 sin2 ψ + α2 cos2 ψ − α3) ++ (α1 − α2)(cos θ sin 2ψ cos 2φ + cos 2ψ sin 2φ) +� +, +(S6b) +where S0 and s1 = S1/S0 are defined in Eqs. (1a) and (1b). The oscillating term U1 cos(∆ωt) describes the interaction +of a dipole moment induced by the field oscillating at ωx with the field oscillating at ωy (and vice versa). +The fast oscillating term U1 cos(∆ωt) will give rise to a small amplitude micromotion at ∆ω. This “fast” micromotion +will in turn have an effect on the “slow” librational dynamics, which can be described as an additional, constant-in-time +effective potential term U ′ +1 [44, 45], yielding +U ′ +1 = +1 +2(∆ω)2 +� +i,k +A−1 +ik ∂iU1∂kU1 , +(S7) +where the indices i and k run through θ, φ and ψ and Aik are matrix elements of the quadratic form describing the +kinetic energy T, such that +T = 1 +2( ˙θ, ˙φ, ˙ψ)A( ˙θ, ˙φ, ˙ψ)T. +(S8) +The matrix A depends on the Euler angles and the inertial moment according to +A = +� +� +I1 cos2 ψ + I2 sin2 ψ +(I1 − I2) sin θ sin ψ cos ψ +0 +(I1 − I2) sin θ sin ψ cos ψ +(I1 sin2 ψ + I2 cos2 ψ) sin2 θ + I3 cos2 θ +I3 cos θ +0 +I3 cos θ +I3 +� +� . +(S9) +As an example, let us find the explicit expressions for U0 and U ′ +1 in the case of a rotor with cylindrical symmetry, +such as a dumbbell (α1 = α2, I1 = I2): +U0 = A2 +1 +4 I1(s1 cos 2φ − 1) sin2 θ , +(S10a) +U ′ +1 = A4 +1I1(1 − s2 +1) sin2 θ +8(∆ω)2 +� +I1 sin2 θ cos2 2φ + (I1 sin2 θ + I3 cos2 θ) cos2 θ sin2 2φ +� +(I1 sin2 θ + I3 cos2 θ) +, +(S10b) +3 + +where the parameter A1 = +� +(α3−α1)S0 +2I1 +is equal to the libration frequency in a linearly polarized trap. Equations (S10a) +and (S10b) indicate that the residual potential U ′ +1 is shallower than U0 by approximately a factor of (A1/∆ω)2. Note +that for our experimental parameters, we have (A1/∆ω)2 ≈ 10−5. +Let us now consider how both potential terms affect the dynamics of the orientation of the dumbbell in the xy +plane described by the angle φ. We can expect the contribution from U ′ +1 to be negligible, except when s1 ≈ 0 (the +trap is unpolarized) and U0 is independent of φ. Therefore, in this case, U ′ +1 is the dominant potential term governing +the dynamics of φ. The minima of U ′ +1 occur at φ = nπ/4 with n ∈ {1, 2, 3, 4}, which means that our symmetric rotor +will become diagonally oriented in the xy plane. +However, in our experiment we have U ′ +1 ≪ kBT, where kB is the Boltzmann constant and T is the temperature. +Therefore, even when the tweezer is unpolarized, the effect of the residual potential U ′ +1 is completely obscured by the +interaction with the environment (background gas). +S3. TORQUES AND LIBRATION FREQUENCIES FOR ASYMMETRIC ROTOR +In this section we use the potential derived in the previous section to calculate restoring torques acting on a rotor +trapped in a beam with an arbitrary DOP. We derive the libration frequencies as functions of DOP. +We denote particle-frame torque components as Ki and ki = +Ki +Ii . +The full expressions for torques due to the +time-independent potential U0 [see Eq. (S6a)] read +k1 = kN cos ψ + (kz − k3 cos θ) sin ψ +sin θ += A2 +1 +2 sin θ [(1 − s1 cos 2φ) cos θ cos ψ + s1 sin ψ sin 2φ] , +(S11a) +k2 = −kN sin ψ + (kz − k3 cos θ) cos ψ +sin θ += −A2 +2 +2 sin θ[(1 − s1 cos 2φ) cos θ sin ψ − s1 cos ψ sin 2φ] , +(S11b) +k3 = −A2 +3 +2 +� +(1 − s1 cos 2φ) sin2 θ sin ψ cos ψ + s1(cos θ cos 2ψ sin 2φ + sin 2ψ cos 2φ) +� +, +(S11c) +where k3 = −∂U0/∂ψ, kN = −∂U0/∂θ, kz = −∂U0/∂φ. Additionally we have Ai = [(|αj − αk|S0)/2Ii]1/2 where +{i, j, k} are permutations of {1, 2, 3}. +To gain an intuitive understanding, let us analyze in detail the case s1 = 1, i.e., the tweezer is linearly polarized +along x. The object is trapped in a potential minimum (along x), for which θ = φ = π +2 , and ψ is unrestrained (free). +This means that the rotor aligns itself with its long axis to the polarization axis, while it can freely spin around it. Let +us now move beyond purely linear polarization. As soon as s1 < 1, a potential minimum appears at ψ = π +2 and the +angle ψ also becomes trapped. Colloquially speaking, the rotor can now minimize its potential energy by “lying flat” +in the polarization plane. Having discussed the orientation with minimal potential energy, let us consider deviations +from that orientation and the associated dynamics, which corresponds to librational motion for small angles. To this +end, we introduce the libration angles describing the motion around the equilibrium position as Θ = θ − π +2 , Φ = φ− π +2 , +and Ψ = ψ− π +2 . Without loss of generality, it is convenient to assume a tweezer field that is predominantly x-polarized, +such that the resulting torque components can be expressed in the laboratory frame. To first order in the Euler angles, +these restoring torques acting on the angles Θ, Φ, and Ψ read +kz ≈ −s1A2 +1Φ, +(S12a) +ky ≈ −s1 + 1 +2 +A2 +2Θ, +(S12b) +kx ≈ −1 − s1 +2 +A2 +3Ψ. +(S12c) +The libration frequencies associated with these restoring torques read +Ω1 = +√ +PA1, +(S13a) +Ω2 = +� +P + 1 +2 +A2, +(S13b) +Ω3 = +� +1 − P +2 +A3. +(S13c) +In the above expressions we have replaced s1 with P so that Eqs. (S13a)–(S13c) are also valid around s1 = −1. In +the case of s1 ≈ −1 the tweezer is almost y-polarized, and the potential minimum occurs for a different particle +4 + +orientation. Therefore, the angles θ, φ and ψ librate around different equilibrium positions (denoting the potential +minimum) for different polarization states of the tweezer field. However, the libration frequencies are, to linear order, +always given by Eq. (S13). +S4. EQUATIONS OF MOTION FOR A SYMMETRIC ROTOR +In this section, we analyze the motion of a symmetric rotor (I1 = I2, α1 = α2) under restoring torques given by +Eqs. (S11a)–(S11c) and an additional small spinning torque. Since the parameter A3 vanishes for the symmetric rotor, +Eq. (S11c) implies that there is no restoring torque pointing along the object’s long axis. Therefore, for symmetric +rotors the angle ψ is free for any value of s1. +Let us now explore a scenario in which the symmetric rotor is performing a small amplitude libration around the x +axis (s1 ≈ 1) and an additional constant torque is present. We assume that the additional torque is much smaller than +the restoring torques along y and z [see Eqs. (S12a) and (S12b)]. Therefore, only the additional torque component +pointing along x will have an effect on the dynamics, causing the rotor to spin around its long axis (which points long +x). We denote the additional torque component along x as kext. Let us write the rotational equations of motion [44] +(Euler’s equations), including both the restoring torques and kext for a symmetric rotor performing small amplitude +libration around the x axis : +¨Φ = −µ ˙Θ ˙Ψ − Ω2 +1Φ, +(S14a) +¨Θ = µ ˙Ψ ˙Φ − Ω2 +2Θ, +(S14b) +¨Ψ = kext, +(S14c) +where µ = I1−I3 +I1 +. Provided that kext is larger than fluctuating (thermal) torques, the dumbbell will start to spin +consistently around its long axis. The spinning rate will increase until it reaches the friction-dependent stationary +value denoted as ˙Ψ0. Note that Eqs. (S14a) and (S14b) include coupling between angular degrees of freedom, which +is an inherent feature of rotational mechanics. Fast spinning, i.e., large ˙Ψ causes strong coupling between the Φ and +Θ libration modes which become hybrid precession modes. Similarly to Ref. [30] we use the following simple model +¨Φ = −ωs ˙Θ − Ω2 +1Φ, +(S15a) +¨Θ = ωs ˙Φ − Ω2 +2Θ, +(S15b) +where ωs = µ ˙Ψ0. We will henceforth refer to ωs as the rotational coupling rate. The eigenfunctions of Eqs. (S15a)- +(S15b) (precession modes) oscillate at eigenfrequencies ΩA and ΩB, which read +ΩA = +� +Ω2 +1 + Ω2 +2 + ω2s − +� +(Ω2 +1 + Ω2 +2 + ω2s )2 − 4Ω2 +1Ω2 +2 +√ +2 +, +(S16a) +ΩB = +� +Ω2 +1 + Ω2 +2 + ω2s + +� +(Ω2 +1 + Ω2 +2 + ω2s )2 − 4Ω2 +1Ω2 +2 +√ +2 +. +(S16b) +We notice that the precession frequencies ΩA and ΩB satisfy the following relation: +(ΩA − ΩB)2 = ω2 +s + (Ω1 − Ω2)2. +(S17) +This relation illustrates the signature of the spinning along the long axis, which can be described as an additional +splitting between the eigenfrequencies visible in the libration spectrum. We have used Eq. (S17) to reconstruct the +value of the rotational coupling ωs (as function of s1) from the measured precession mode splitting (ΩA − ΩB) and +the libration mode splitting (Ω1 −Ω2) predicted from Eqs. (S13a) and (S13b). The value of A1 used in this procedure +was measured at P = 0. The obtained rotational coupling rate is shown in Fig. 3(b) as a dashed black line. +Note that ωs depends only on the difference between observed peak frequencies in the libration spectrum. We +have calculated ωs from the data in Fig. 3(b) and used it to find the precession mode frequencies from Eqs. (S16a) +and (S16b). +We find that the resulting precession frequencies (as functions of s1) fit the behavior of the modes +observed in the libration spectrum well, which confirms the spinning hypothesis. +5 + +Lastly, we have only discussed the effect of the additional small torque on a symmetric rotor (dumbbell). We note +that non-symmetric rotors (clusters), when exposed to the same additional torque, will not spin. This is due to the +fact that for P < 1 all degrees of freedom describing cluster orientation are trapped in a potential minimum, such +that they librate and do not spin, unless the additional torque exceeds the restoring torque. +6 + diff --git a/btE3T4oBgHgl3EQfdgrZ/content/tmp_files/load_file.txt b/btE3T4oBgHgl3EQfdgrZ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6b9d0c5616556154475364f2d93c923770db7eb5 --- /dev/null +++ b/btE3T4oBgHgl3EQfdgrZ/content/tmp_files/load_file.txt @@ -0,0 +1,747 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf,len=746 +page_content='Full control of the libration potential in rotational levitodynamics J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Zielińska,1, ∗ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' van der Laan,1 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Norrman,1, 2 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Reimann,1, 3 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny,1 and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frimmer1 1Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland 2Center for Photonics Sciences, University of Eastern Finland, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Box 111, FI-80101 Joensuu, Finland 3Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE Control of the potential energy and free evolution lie at the heart of levitodynamics as key re- quirements for sensing, wave function expansion, and mechanical squeezing protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Here, we experimentally demonstrate full control over the optical potential governing the librational degrees of freedom of a levitated anisotropic nanoparticle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This control is achieved by introducing the degree of polarization as a new tool for rotational levitodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We demonstrate the free rotation of a levitated anisotropic scatterer around its short axis and and we use the rotational degrees of freedom to probe the local spin of a strongly focused laser beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— Levitodynamics is the science of con- trolling the motion of levitated mesoscopic objects [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The field has received growing attention in the last decade as a platform for force, torque, and electric field sensing [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Next to the translational degrees of freedom, the rotational dynamics of levitated anisotropic bodies offer particularly promising opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' More specifi- cally, new functionalities demonstrated for optically levi- tated rotors include controllable diffusion [3], gyroscopic stabilization [4], spinning with GHz rotation rates [5–8], and the realization of rotational “washboard potentials” by carefully trading off conservative and non-conservative torques in elliptically polarized fields [3, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A particularly enticing prospect is to harness levitated rotors as ultra-sensitive torque sensors [7], in applica- tions ranging from photonic torque microscopy [10–15], to seismology [16, 17] and space-based alignment proce- dures [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Another use case are tests of quantum co- herence at macroscopic scales [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' With librational degrees of freedom currently on track to reach the quan- tum regime [21–24], control over the depth and inversion of the potential will enable the generation of large delo- calized orientational states [25, 26] and the preparation of mechanical squeezed states [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, to realize the full promise of levitated ro- tors, a scheme is required to release a librator from the optical potential pinning its orientation, allowing it to freely evolve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In this state, the system becomes an opti- cally suspended gyroscope that is extremely sensitive to DC torques, in full analogy to previously developed DC force sensing schemes [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The open question is how to deactivate the optical potential used to trap the levitated object’s orientation while keeping the trapping potential for its center-of-mass (COM) motion fully intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In this Letter we demonstrate full control over the con- servative libration potential of an optically levitated par- ticle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Our scheme makes use of the degree of polarization of the trapping field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We experimentally realize near-zero libration frequencies up to the point where the libration signal vanishes, giving way to thermally driven free evo- lution of the levitated rotor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Additionally, for particles with cylindrical symmetry (dumbbells), we observe the signature of the transverse spin of light locally present in a strongly focused trapping beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Key concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— Consider an anisotropic dipolar point scatterer of polarizability α = diag(α1, α2, α3) in the body frame (spanned by unit vectors e1, e2, e3), with α3 > α2 > α1, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The orientation of the particle with respect to the lab frame is described by the three Euler angles Φ, Θ, and Ψ (see Supplement [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In a field linearly polarized along x in the lab frame, the particle will align with its axis of largest polarizability e3 to the polarization axis x (Φ = Θ = 0) while it can freely rotate by any angle Ψ around its long axis e3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Small deviations of the long axis e3 from the polarization axis represent libration modes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=', harmonic oscillator de- grees of freedom, described by the angles Φ and Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us now consider an unpolarized electric field, whose field vector remains in the xy-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Here, the particle will “lie flat” in the polarization plane, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=', align with its axis of smallest polarizability e1 along the z axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Devia- tions from this alignment, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=', tilts out of the polarization plane, again represent two libration modes described by the angles Θ and Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' At the same time, the particle can freely rotate by any angle Φ, as the field vector has no preferred direction in the xy-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Accordingly, both in a linearly and in an unpolarized field, one angular de- gree of freedom is free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Importantly, in the unpolarized case, the free rotation is measurable by available detec- Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The orientation of an anisotropic particle’s body frame (given by e1, e2, e3) relative to the lab frame (x, y, z) is described by the three angles Φ, Θ, and Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='04536v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='optics] 11 Jan 2023 2 tion schemes [21, 22] and therefore highly attractive for torque sensing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In the following, we experi- mentally investigate the dynamics of a levitated rotor as it is transitioned from a linearly polarized to an unpolar- ized trapping field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— At the heart of our experimental setup, illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(a), is an optical trap with vari- able degree of polarization (DOP), formed by focusing a trapping beam with a lens (NA=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='8) inside a vacuum chamber (pressure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='5 mbar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' To vary the DOP, a laser beam (wavelength 1550 nm) is split into two components with orthogonal linear polarization, which are then fre- quency shifted with acousto-optic modulators (AOMs) by ±80 MHz, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The frequency-shifted polar- ization components are subsequently recombined on a po- larizing beamsplitter to form the trapping beam (power 450 mW), which propagates along the z direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Spher- ical silica nanoparticles (nominal diameter 143 nm) are loaded into the trap with a nebulizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The dynamics of the trapped object are detected using forward-scattered light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The COM motion is recorded using a quadrant photodiode, and the libration signal using a standard ho- PBS PBS COM 99:1 +80 MHz AOM 2 AOM 1 80 MHz Laser (a) (b) (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='5 mbar QWP ND PBS HWP LD z y x Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (a) Simplified schematic of the experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The two polarization components of a laser beam are sepa- rated and each frequency-shifted by ±80 MHz, respectively, with an acousto-optic modulator (AOM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The components’ amplitudes Ex and Ey are varied by adjusting the driving powers of the AOMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' After recombining the polarization components on a polarizing beamsplitter (PBS), the beam is focused in a vacuum chamber with a high-NA lens to form an optical trap with variable degree of polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The li- bration signal is detected in the forward direction using a combination of a quarter-wave plate (QWP), half-wave plate (HWP), a neutral density filter (ND), a PBS, and a balanced detector (LD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (b) Power spectral density (PSD) of a particle cluster in a linearly polarized trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (c) PSD of a dumbbell in a linearly polarized trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' modyne detection scheme [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In this work, we focus on two distinct classes of anisotropic particles, identified by their characteristic li- bration spectra shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(b) and (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The first class are “clusters”, that is, objects composed of more than two particles, described by a fully anisotropic po- larizability tensor (as the particle symbolically depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The cluster spectrum shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(b) ex- hibits two modes at 390 kHz and at 425 kHz, respec- tively, which we associate with the libration modes de- scribed by the angles Θ and Φ from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The second class of anisotropic particles are dumbbells (cylindrically symmetric objects composed of two spherical particles in touching contact), characterized by a sharp libration peak flanked by broad shoulders, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This spectrum originates from two libration modes that are coupled by the thermally driven spinning around the symmetry axis [22, 30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Degree of polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— Having introduced the spectra for linearly polarized light we now turn to fields of variable DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In our setup, the tweezer field be- fore the trapping lens reads E = (Exeiωxt, Eyeiωyt, 0)T , where the angular frequency difference ∆ω = ωx − ωy = 2π ×160 MHz is kept constant, while the real-valued am- plitudes Ex and Ey can be controlled with the AOMs (see Supplement for details [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The instantaneous po- larization state of the trapping beam (before focusing) is described via the four Stokes parameters [32] S0 = E2 x + E2 y, (1a) S1 = E2 x − E2 y, (1b) S2 = 2ExEy cos (∆ωt), (1c) S3 = −2ExEy sin (∆ωt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (1d) The DOP is defined as P = � ⟨S1⟩2 + ⟨S2⟩2 + ⟨S3⟩2/⟨S0⟩, (2) where ⟨·⟩ denotes the time average [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Since the op- tical modulation frequency ∆ω is more than two orders of magnitude larger than the librational dynamics, the cosine and the sine terms average out and the DOP sim- plifies to P = |s1|, where s1 = S1/S0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The upper bound, P = 1, corresponds to fully linearly polarized light, while the lower bound, P = 0, denotes unpolarized light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The intermediate regime, 0 < P < 1, describes partial polar- ization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— Let us discuss our experimental observa- tions for a cluster trapped in a beam with variable DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(a), we show in false color the power spectral density (PSD) of the libration signal as a function of frequency and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' For linearly polarized trapping light (P = 1), we observe the spectrum from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(b), with a feature composed of two closely spaced peaks near 400 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' As the DOP is reduced (P < 1), the two peaks split and their frequencies decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Remarkably, 3 (a) (b) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' PSDs measured by the libration detector as a function of the DOP and the normalized Stokes parameter s1 of the trapping beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Each subfigure consists of 100 PSDs, where the first one (s1 = −1) corresponds to y-polarized trapping light and the last one (s1 = 1) to x-polarized trapping light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In the case of s1 = 0 the trapping beam is effectively unpolarized and the frequency corresponding to libration in the xy plane tends to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frequencies corresponding to translational COM motion are visible as horizontal lines in the range between 40 and 150 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (a) Cluster (non-rotationally symmetric particle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Red lines show theoretical prediction calculated from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3a) and (3b) using only libration frequencies measured at the linear polarization setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (b) Dumbbell (cylindrically symmetric particle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Black solid lines are precession frequencies calculated from the theoretical model including spinning of the dumbbell along its long axis [29], with ωs/2π (proportional to the spinning rate) shown as dashed black line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' for unpolarized light (P = 0) the frequency of one of the modes vanishes, while the frequency of the second mode approaches 300 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Our experimental observations for a trapped dumbbell, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b), strikingly differ from that of a cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The single peak at 500 kHz (surrounded by broad shoul- ders) observed in linearly polarized light (P = 1), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(c), splits in two as the DOP is reduced (P < 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In contrast to the cluster, the dumbbell exhibits one mode that shifts to higher frequencies and settles at 680 kHz for unpolarized light (P = 0), while the second mode frequency tends towards zero, where its signal strength vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— To understand our observations, we model the orientational dynamics of an anisotropic dipolar scat- terer in a field of variable DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let the scatterer be characterized by its polarizability α = diag(α1, α2, α3) and its tensor of inertia I = diag(I1, I2, I3), which are both diagonal in the intrinsic body frame spanned by e1, e2, e3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We furthermore assume α1 ≤ α2 ≤ α3 and I1 ≥ I2 ≥ I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We calculate the potential energy of a fully anisotropic scatterer in a field of variable DOP as a function of the orientation angles Φ, Θ, and Ψ and iden- tify the global energy minimum (see Supplement [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Small deviations of the orientation angles Φ, Θ, and Ψ from their equilibrium values resemble, to first order, har- monic oscillator degrees of freedom, whose characteristic libration frequencies are given by Ω1 = A1 √ P, (3a) Ω2 = A2 � 1 + P 2 , (3b) Ω3 = A3 � 1 − P 2 , (3c) respectively, where Ai = [(|αj − αk|S0)/2Ii]1/2 and {i, j, k} are permutations of {1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Equations (3a)–(3c) indicate that we can directly con- trol the librational potential governing the orientation of the rotor via the DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Although our detection is only sensitive to libration in the xy plane [21], the coupling between the different libration modes [30] is responsible for the second libration mode in the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' To com- pare our theoretical prediction with our measurement, we plot the calculated values for the libration frequen- cies Ω1 and Ω2 from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3a) and (3b) as red lines in the measurement of the trapped cluster in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The required parameters A1 and A2 are defined by the libra- tion frequencies extracted at P = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The theoretical lines trace the observed libration frequencies remarkably well, demonstrating that our model correctly captures the ro- tational dynamics and providing strong support for our initial assumption that the trapped object is a cluster without symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We stress that in a field with zero P 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='0P 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='04 DOP the cluster’s libration frequency Ω1 vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In other words, the orientation angle Φ undergoes free evo- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us turn our attention to the dynamics of the trapped dumbbells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Inspection of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3c) shows that for an object of cylindrical symmetry A3 and therefore also Ω3 vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This observation intuitively makes sense, since such a scatterer can always freely rotate around its long axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' However, for dumbbells, the libration fre- quencies as a function of P, experimentally observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b), deviate significantly from those predicted by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3a)–(3c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' As has been pointed out before [30, 31], the spinning of the dumbbell at a stationary rate ˙Ψ0 around its axis of symmetry couples the libration modes with frequencies Ω1 and Ω2 into precession modes with frequencies ΩA and ΩB according to (ΩA − ΩB)2 = ω2 s + (Ω1 − Ω2)2, (4) with the coupling rate ωs = µ ˙Ψ0 and the inertial cou- pling constant µ = (I1 − I3)/I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We interpret the salient libration features in our data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b) as the preces- sion frequencies ΩA and ΩB of the dumbbell, and fit their functional dependence with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (4), where Ω1 and Ω2 are in turn given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3a) and (3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The fit [black solid lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b)] describes our experimental observa- tion very well and yields a fitted coupling rate ωs, shown as the dashed black line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b) [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We conclude that the rate of spinning around the long axis in our ex- periment reaches ˙Ψ0 = 2π × 200 kHz in the regime of unpolarized light P = 0, where we used the dumbbells length-to-diameter ratio of L/D ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='8 [3] to estimate the inertial coupling factor as µ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We will explain the origin of this spinning motion in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— Our results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3 demonstrate that the DOP of the trapping field allows us to control the li- bration frequencies of the optically levitated particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In particular, we stress the fact that for a cluster in a field with vanishing DOP, the libration frequency Ω1 vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In other words, the cluster becomes a free rotor regarding its orientation angle around the optical z axis, while its two axes of largest moment of inertia (I2 and I3) are har- monically trapped in the xy plane of polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The situation is analogous for the dumbbell, whose long axis is harmonically trapped with characteristic frequency ΩB in the focal xy plane in unpolarized light, while the ori- entation of the long axis undergoes free evolution within this plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Thus, the DOP allows us, for the first time, to tune the angular motion of a levitated object from librations of several hundered kHz all the way to free evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This demonstration is the main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us now provide an explanation for the torque that drives the trapped dumbbell into spinning motion around its long axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We note that this torque must lie in the focal plane (which is the plane the dumbbell’s long axis is pinned to).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Strongly focused fields can indeed carry transverse spin angular momentum [35, 36], which gives rise to a torque when transferred to a particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 4, we illustrate the transverse part of the spin vector [37] in the focal plane of a strongly focused y polarized Gaus- sian beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The spin is depicted as arrows whose di- rection (length) indicates the spin’s orientation (magni- tude).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The spin points predominantly along the positive (negative) x direction in the range y < 0 (y > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' To understand how a dumbbell can be exposed to the trans- verse spin, we consider a trap composed of not only a y polarized beam but also of an additional strong x po- larized beam, used for trapping the particle’s COM (the intensity of which is illustrated as a colormap in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The x polarized trapping beam aligns the particle’s long axis along the x direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' If we displace the x polar- ized beam along the y direction then the transverse spin of the y polarized beam will spin the dumbbell along its long axis, as experimentally observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Even though the torque along the dumbbell’s long axis is very weak, the effect is visible since the dumbbell is free to rotate along its long axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We can thus explain the observed spinning motion of the dumbbell as a signature of the transverse spin angular momentum of light in a strongly focused field, together with an inevitably imperfect align- ment between the two cross-polarized beams forming our trap with tunable DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Effectively the trapped dumbbell locally senses the spin of an additional light field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note I(x=0,y) negative spin positive spin Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Illustration of the spatial mismatch between the trapping beam components leading to a dumbbell being trapped in a region of nonzero transverse spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A vector plot shows the transverse spin pattern in the xy plane generated by y polarized strongly focused Gaussian beam [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Simul- taneously, we show the dumbbell (to scale) trapped in the intensity maximum of a stronger x polarized Gaussian beam (contour plot) displaced by 100 nm from y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Beam size and lens parameters correspond to the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' On the right we plot the intensity profile I(x = 0, y), indicating re- gions with spin pointing in negative and positive x direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 5 that, in contrast to dumbbells, clusters are not driven into rotation along their long axis by a weak transverse spin of light, since A3 ̸= 0 and the angle of rotation around the long axis is restrained for P < 1 [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3c)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Finally, let us comment on the limitations of our vari- able DOP potential control scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Throughout this work, we have only considered the mean polarization of the beams, neglecting their polarization oscillations at the frequency ∆ω [see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (1c) and (1d)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In analogy to Paul traps operating at RF frequencies, the oscillat- ing polarization will give rise to an additional potential term [29] and a small amplitude micromotion at ∆ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The frequencies associated with the additional potential term are of the order of magnitude of Bi ≈ A2 i /∆ω [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In our experiment the correction to the libration frequencies caused by the oscillating polarization is negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note that 1/Bi limits the maximum free evolution time for a given value of ∆ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Moreover, in the current implementation ∆ω is re- stricted by the AOM bandwidth, but this limit can be readily removed by using two laser sources with differ- ent wavelengths (without the need for relative frequency stabilization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Increasing the free evolution time limit to 1 s requires 3 nm difference between the wavelengths of the two polarization components (assuming a cen- ter wavelength of 1550 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We also note that exper- iments involving librational potential switching [25, 27] via DOP control can be implemented on timescales of a few nanoseconds (only limited by AOM rise time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='— We have demonstrated for the first time the complete tunability of the librational frequencies of optically levitated clusters of silica nanoparticles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This tunability is accomplished by the DOP and is indepen- dent of the COM trapping potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Our work is impor- tant for the development of high-performance nanoscale gyroscopes and for the study of macroscopic rotational quantum physics [23, 39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Furthermore, we have exper- imentally confirmed that symmetric rotors can serve as a precise tool for sensing torques not only perpendicu- lar, but also parallel to the long axis of the rotor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This feature, together with the high control over libration de- grees of freedom, may enable the full characterization of three-dimensional Stokes parameters [10, 40–42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The authors would like to thank A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Militaru, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Romero-Isart, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gonzalez-Ballestero and all trappers in the Photonics Laboratory for fruitful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This research was supported by the European Union’s Hori- zon 2020 research and innovation programme under grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [863132] (IQLev), as well as ETH Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' ETH-47 20-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' thanks the Jane and Aatos Erkko Foundation (Finland) for funding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' ∗ jzielinska@eth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='ch [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gonzalez-Ballestero, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Aspelmeyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Quidant, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Romero-Isart, Science 374, eabg3027 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rademacher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Millen, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Li, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Tech- nol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 9, 227 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bellando, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kleine, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Amarouchene, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Perrin, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Louyer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 129, 023602 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kuhn, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Stickler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kosloff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Patolsky, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Horn- berger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Arndt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Millen, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 8, 1670 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Reimann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Doderer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hebestreit, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Diehl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frimmer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Windey, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Tebbenjohanns, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 121, 033602 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ahn, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Deng, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hoang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Han, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ma, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Li, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 121, 033603 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ahn, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ju, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gao, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Li, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 15, 89 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [8] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' van der Laan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Reimann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Militaru, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Tebbenjo- hanns, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Windey, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frimmer, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 102, 013505 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kuhn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kosloff, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Stickler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Patolsky, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Horn- berger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Arndt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Millen, Optica 4, 356 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Irrera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Magazzù, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Artoni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Simpson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hanna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Jones, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Priolo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gucciardi, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Maragò, Nano Letters 16, 4181 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [11] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Svak, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Brzobohatý, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Šiler, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Jákl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kaňka, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Zemánek, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Simpson, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 9, 5453 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Arita, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Simpson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Zemánek, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Dholakia, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 6, eaaz9858 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Liang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Yan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Yao, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lei, Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 9, 2144 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Arita, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Simpson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bruce, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Wright, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Zemánek, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Dholakia, arXiv preprint arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='06925 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [15] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kingsley-Smith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Nikkhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Sabin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rodríguez-Fortuño, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Xu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Millen, arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='09759 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Guattari, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' de Toldi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Garcia, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Mimoun, in International Conference on Space Optics — ICSO 2018, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 11180, International Society for Optics and Photonics (SPIE, 2019) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 1118080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Wassermann, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Braun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ripepe, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bernauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Guattari, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Igel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Volcanol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Geotherm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 424, 107499 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Jin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kong, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ma, Sensors 18, 106 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [19] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Stickler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Papendell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kuhn, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Schrinski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Millen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Arndt, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hornberger, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 20, 122001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [20] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Schrinski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Stickler, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hornberger, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 105, L021502 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Tebbenjohanns, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Militaru, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Norrman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' van der Laan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frimmer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 105, 053504 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [22] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' van der Laan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Tebbenjohanns, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Reimann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Vi- jayan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frimmer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 127, 123605 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Schäfer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rudolph, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hornberger, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Stick- ler, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 126, 163603 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Pontin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Fu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Toroš, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Monteiro, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Barker, arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='10193 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [25] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Weiss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Roda-Llordes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Torrontegui, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' As- pelmeyer, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Romero-Isart, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 127, 023601 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [26] Once the ground state is reached, we estimate that co- herent spatial expansion by a factor of 102 is possible even in the presence of backaction-induced heating rates reported in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Janszky and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Adam, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 46, 6091 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [28] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hebestreit, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Frimmer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Reimann, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 121, 063602 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [29] See Supplemental material for the detailed description of the experimental setup, derivation of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (3) and further discussion of spinning along the long axis driven by the transverse spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [30] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Seberson and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Robicheaux, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 99, 013821 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [31] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Seberson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ju, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ahn, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Xu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gao, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Robicheaux, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Li, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2, 043054 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gil and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Ossikovski, Polarized Light and the Mueller Matrix Approach, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (CRC Press, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Shevchenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Roussey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Friberg, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Setälä, Optica 4, 64 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [34] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Novotny and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hecht, Principles of Nano-Optics, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (Cambridge University Press, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Eismann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Nicholls, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Roth, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Alonso, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Banzer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rodríguez-Fortuño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Zayats, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Nori, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Bliokh, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Photonics 15, 156 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [36] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Chen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Dong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Cai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Norrman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Friberg, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Setälä, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 104, 013516 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [37] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Friberg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Norrman, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Setälä, New.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 23, 063059 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [38] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Goldman and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Dalibard, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' X 4, 031027 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [39] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Stickler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hornberger, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kim, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3, 589–597 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gil, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' : Rapid Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 10, 15054 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [41] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Blakemore, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rider, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Roy, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Kawasaki, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gratta, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 99, 023816 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Guo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Norrman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Friberg, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Setälä, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 47, 2566 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [43] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Weisstein, From MathWorld–A Wolfram Web Re- source .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [44] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Landau and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Lifshitz, Mechanics, Third Edi- tion: Volume 1 (Course of Theoretical Physics), 3rd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (Butterworth-Heinemann, 1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [45] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rahav, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Gilary, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Fishman, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' A 68, 013820 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Supplemental Material S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' VARIABLE DOP TRAPPING BEAM PREPARATION This section describes the preparation of the variable DOP trapping beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We provide experimental details of the most important aspects, such as ensuring the spatial overlap of the two orthogonally-polarized components of the tweezer beam and the calibration of the DOP in the trapping region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The tweezer beam generation system is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Before entering the vacuum chamber, the trapping beam, propagating along the z axis, is split into two components with equal power but orthogonal linear polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Each of these constituent beams is then frequency shifted by an AOM (y-polarized beam is shifted by −80 MHz by AOM 1, and x-polarized beam is shifted by +80 MHz by AOM 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Subsequently, the beams are spatially overlapped and recombined on a polarizing beam-splitter (PBS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Both beams are first focused into their respective AOMs using one lens before the split (f = 200 mm), and then collimated using another lens (f = 500 mm) after the recombination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The spatial mode overlap of the two beams is optimised by maximising the visibility of interference at the difference frequency ∆ω = 160 MHz, recorded on the auxiliary detector (PD in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S1(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The beams are overlapped by means of two steering mirrors, and the beam sizes are matched using a corner-cube (CC) mounted on a translation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The CC allows us to adjust the path length difference between the x- and y-polarized components between focusing (f = 200 mm) and collimating (f = 500 mm) lenses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The maximum achieved interference visibility is 85%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The aforementioned system allows us to control the relative contributions of x- and y-polarized light to the trapping beam via controlling the driving power of the AOMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' For example, if AOM 1 is driven at maximum power, and AOM 2 receives no drive, the tweezer is y polarized, whereas when both AOM 1 and AOM 2 are driven so that they provide the same diffraction efficiency, the tweezer is composed of x and y polarizations in equal measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In the remainder of this section we will describe the calibration of the contributions of x- and y-polarized light to the intensity in the trapping volume, which directly determine the DOP in the trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In order to avoid systematic errors introduced by spatial mode mismatch of the x- and y-polarized beams, we perform this calibration using the COM motion of the trapped particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The relationship between the focal intensity and the AOM driving power is determined for each beam separately with the help of the transverse COM frequencies describing the particle motion in the focal plane along x and y (denoted as fx and fy respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us denote the average transverse COM frequency as fav = 1 2(fx + fy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We use the average transverse COM frequency squared f 2 av as a proxy for the focal intensity measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The measured dependence of f 2 av on the driving power of each AOM (together with a quadratic fit) is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We verify the calibration by performing the scan of the degree of polarization shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' As desired, we find that fav remains constant when s1 is varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note that the average transverse COM frequency fav does not decrease for s1 = 0 (when 50% of focal intensity is x-polarized and 50% is y-polarized), even though the calibration is performed for each polarization component separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This shows that the volumes of the traps generated by the two beams overlap well and their trap depths add together to form the final trapping potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The DOP calibration procedure is potentially affected by the fact that in our experiment the trapping beam has a slightly elliptical shape introduced by the AOMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' For a tweezer formed by a strongly focused circular Gaussian input beam, fx and fy are not the same [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We quantify this effect using ϵ = (fx − fy)/(fx + fy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Clearly, in the case of circular Gaussian beam, the value of |ϵ| should not depend on whether the tweezer is x- or y-polarized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, different values of |ϵ| for x and y tweezer polarization (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S1(c) at points s1 = ±1) suggest that the beam cross section is elliptical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In order to quantify the effect of the trapping beam ellipticity on f 2 av, we have simulated the focal field produced by the trapping lens [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The beam waists along x and y before focusing are used as free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The obtained focal intensity cross sections along x and y for both x and y polarized tweezer light are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S1(d) and reproduce well the observed values of ϵ for an x- and y-polarized tweezer (ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='057 and ϵ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='116 respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We find that the values of the average transverse COM frequency fav for both polarizations differs by less than 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Hence, we conclude that f 2 av offers a good focal intensity estimate in our experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' LIBRATIONAL POTENTIALS In this section we derive the potential governing the libration of an anisotropic particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The potential is induced by the electric field of the trapping beam which is propagating along z and is composed of two frequency shifted 1 (a) (b) (c) (d) f=200 f=500 PBS PBS HWP +80MHz AOM 2 AOM 1 80MHz PD HWP to trap Laser CC z y x Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (a) Experimental diagram of the beam preparation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The laser beam is split into two parts, which are frequency-shifted by ±80 MHz (shown by violet and orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The two parts are subsequently recombined and sent to the trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Abbreviations: half-wave plate (HWP), polarizing beam splitter (PBS), photo-diode (PD), corner cube (CC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (b) The average COM transverse frequency squared f 2 av as a function of AOM driving power for both AOMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The data points are shown together with quadratic fits (solid lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (c) The power spectral density (PSD) of COM motion as a function of DOP of the trapping beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This subfigure consists of 100 PSDs, where the first one (s1 = −1) corresponds to y-polarized trapping light and the last one (s1 = 1) to x-polarized trapping light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The PSD is measured by the quadrant photo detector (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 2(a), both QPD channels are summed here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' COM transverse frequencies fx and fy are visible in the 120 to 150 kHz region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (d) Simulated intensity profiles along x and y directions for a strongly focused elliptical beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note that the cross-section of the focal spot is more circular for y-polarised tweezer beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' components (x- and y-polarized) of different amplitudes: E = (Exeiωxt, Eyeiωyt, 0)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S1) The x and y field components acquire a phase difference that grows linearly in time in proportion to the frequency ∆ω = ωx − ωy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Since the initial phase difference is not important to the dynamics, we assume that the amplitudes Ex and Ey are real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We assume that both the moment of inertia and the polarizability tensor can be simultaneously diagonalized in the principal axes reference frame of the particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We refer to this frame of reference as “particle frame” and represent the principal axes as (e1, e2, e3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We denote α = diag(α1, α2, α3) and I = diag(I1, I2, I3) as the static polarizability and inertia tensors of the object in the intrinsic body frame, respectively, assuming α1 ≤ α2 ≤ α3 and I1 ≥ I2 ≥ I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We refer to e3 (the principal axis with the largest polarizability) as the “long axis” of the object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In order to describe the orientation of the particle frame with respect to the laboratory frame (x, y, z), we use the intrinsic x-convention of Euler angles denoted as φ, θ and ψ (see [43] and §35 in [44]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The Euler angles φ and θ 2 describe the orientation of the long axis of the rotor (the angle measured in the experiment is φ, which corresponds to the orientation of the long axis in the xy plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In order to transform a vector from laboratory to particle frame we first rotate it by the angle φ around z, then by θ around e1 and finally by ψ around e3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The transformation matrix corresponding to these three rotation operations reads [43] R = � � cos ψ cos φ − cos θ sin ψ sin φ cos θ sin ψ cos φ + cos ψ sin φ sin θ sin ψ − cos θ cos ψ sin φ − sin ψ cos φ cos θ cos ψ cos φ − sin ψ sin φ sin θ cos ψ sin θ sin φ − sin θ cos φ cos θ � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S2) The dipole moment induced in a trapped anisotropic particle, expressed in the laboratory frame of reference, yields: p = R−1αRE, (S3) where ⃗E is also expressed in the laboratory reference frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Since in general ⃗p and ⃗E are not parallel, the potential energy Utot associated with the orientation of the particle (after averaging over optical frequencies) yields: Utot = −1 4Re (p · E∗) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S4) If we consider the electric field as in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S1), the potential Utot can be written as a sum of two terms Utot = U0 + U1 cos (∆ωt), (S5) with U0 =S0 8 � −(α1 + α2) + sin2 θ (1 − s1 cos 2φ) � α1 sin2 ψ + α2 cos2 ψ − α3 � + s1 (α1 − α2) (cos θ sin 2ψ sin 2φ − cos 2ψ cos 2φ) � , (S6a) U1 = − S0 � 1 − s2 1 8 � sin2 θ sin 2φ (α1 sin2 ψ + α2 cos2 ψ − α3) + (α1 − α2)(cos θ sin 2ψ cos 2φ + cos 2ψ sin 2φ) � , (S6b) where S0 and s1 = S1/S0 are defined in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (1a) and (1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The oscillating term U1 cos(∆ωt) describes the interaction of a dipole moment induced by the field oscillating at ωx with the field oscillating at ωy (and vice versa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The fast oscillating term U1 cos(∆ωt) will give rise to a small amplitude micromotion at ∆ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This “fast” micromotion will in turn have an effect on the “slow” librational dynamics, which can be described as an additional, constant-in-time effective potential term U ′ 1 [44, 45], yielding U ′ 1 = 1 2(∆ω)2 � i,k A−1 ik ∂iU1∂kU1 , (S7) where the indices i and k run through θ, φ and ψ and Aik are matrix elements of the quadratic form describing the kinetic energy T, such that T = 1 2( ˙θ, ˙φ, ˙ψ)A( ˙θ, ˙φ, ˙ψ)T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S8) The matrix A depends on the Euler angles and the inertial moment according to A = � � I1 cos2 ψ + I2 sin2 ψ (I1 − I2) sin θ sin ψ cos ψ 0 (I1 − I2) sin θ sin ψ cos ψ (I1 sin2 ψ + I2 cos2 ψ) sin2 θ + I3 cos2 θ I3 cos θ 0 I3 cos θ I3 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S9) As an example, let us find the explicit expressions for U0 and U ′ 1 in the case of a rotor with cylindrical symmetry, such as a dumbbell (α1 = α2, I1 = I2): U0 = A2 1 4 I1(s1 cos 2φ − 1) sin2 θ , (S10a) U ′ 1 = A4 1I1(1 − s2 1) sin2 θ 8(∆ω)2 � I1 sin2 θ cos2 2φ + (I1 sin2 θ + I3 cos2 θ) cos2 θ sin2 2φ � (I1 sin2 θ + I3 cos2 θ) , (S10b) 3 where the parameter A1 = � (α3−α1)S0 2I1 is equal to the libration frequency in a linearly polarized trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Equations (S10a) and (S10b) indicate that the residual potential U ′ 1 is shallower than U0 by approximately a factor of (A1/∆ω)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note that for our experimental parameters, we have (A1/∆ω)2 ≈ 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us now consider how both potential terms affect the dynamics of the orientation of the dumbbell in the xy plane described by the angle φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We can expect the contribution from U ′ 1 to be negligible, except when s1 ≈ 0 (the trap is unpolarized) and U0 is independent of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, in this case, U ′ 1 is the dominant potential term governing the dynamics of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The minima of U ′ 1 occur at φ = nπ/4 with n ∈ {1, 2, 3, 4}, which means that our symmetric rotor will become diagonally oriented in the xy plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' However, in our experiment we have U ′ 1 ≪ kBT, where kB is the Boltzmann constant and T is the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, even when the tweezer is unpolarized, the effect of the residual potential U ′ 1 is completely obscured by the interaction with the environment (background gas).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' TORQUES AND LIBRATION FREQUENCIES FOR ASYMMETRIC ROTOR In this section we use the potential derived in the previous section to calculate restoring torques acting on a rotor trapped in a beam with an arbitrary DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We derive the libration frequencies as functions of DOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We denote particle-frame torque components as Ki and ki = Ki Ii .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The full expressions for torques due to the time-independent potential U0 [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S6a)] read k1 = kN cos ψ + (kz − k3 cos θ) sin ψ sin θ = A2 1 2 sin θ [(1 − s1 cos 2φ) cos θ cos ψ + s1 sin ψ sin 2φ] , (S11a) k2 = −kN sin ψ + (kz − k3 cos θ) cos ψ sin θ = −A2 2 2 sin θ[(1 − s1 cos 2φ) cos θ sin ψ − s1 cos ψ sin 2φ] , (S11b) k3 = −A2 3 2 � (1 − s1 cos 2φ) sin2 θ sin ψ cos ψ + s1(cos θ cos 2ψ sin 2φ + sin 2ψ cos 2φ) � , (S11c) where k3 = −∂U0/∂ψ, kN = −∂U0/∂θ, kz = −∂U0/∂φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Additionally we have Ai = [(|αj − αk|S0)/2Ii]1/2 where {i, j, k} are permutations of {1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' To gain an intuitive understanding, let us analyze in detail the case s1 = 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=', the tweezer is linearly polarized along x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The object is trapped in a potential minimum (along x), for which θ = φ = π 2 , and ψ is unrestrained (free).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This means that the rotor aligns itself with its long axis to the polarization axis, while it can freely spin around it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us now move beyond purely linear polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' As soon as s1 < 1, a potential minimum appears at ψ = π 2 and the angle ψ also becomes trapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Colloquially speaking, the rotor can now minimize its potential energy by “lying flat” in the polarization plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Having discussed the orientation with minimal potential energy, let us consider deviations from that orientation and the associated dynamics, which corresponds to librational motion for small angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' To this end, we introduce the libration angles describing the motion around the equilibrium position as Θ = θ − π 2 , Φ = φ− π 2 , and Ψ = ψ− π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Without loss of generality, it is convenient to assume a tweezer field that is predominantly x-polarized, such that the resulting torque components can be expressed in the laboratory frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' To first order in the Euler angles, these restoring torques acting on the angles Θ, Φ, and Ψ read kz ≈ −s1A2 1Φ, (S12a) ky ≈ −s1 + 1 2 A2 2Θ, (S12b) kx ≈ −1 − s1 2 A2 3Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S12c) The libration frequencies associated with these restoring torques read Ω1 = √ PA1, (S13a) Ω2 = � P + 1 2 A2, (S13b) Ω3 = � 1 − P 2 A3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S13c) In the above expressions we have replaced s1 with P so that Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S13a)–(S13c) are also valid around s1 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' In the case of s1 ≈ −1 the tweezer is almost y-polarized, and the potential minimum occurs for a different particle 4 orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, the angles θ, φ and ψ librate around different equilibrium positions (denoting the potential minimum) for different polarization states of the tweezer field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' However, the libration frequencies are, to linear order, always given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' EQUATIONS OF MOTION FOR A SYMMETRIC ROTOR In this section, we analyze the motion of a symmetric rotor (I1 = I2, α1 = α2) under restoring torques given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S11a)–(S11c) and an additional small spinning torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Since the parameter A3 vanishes for the symmetric rotor, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S11c) implies that there is no restoring torque pointing along the object’s long axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, for symmetric rotors the angle ψ is free for any value of s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us now explore a scenario in which the symmetric rotor is performing a small amplitude libration around the x axis (s1 ≈ 1) and an additional constant torque is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We assume that the additional torque is much smaller than the restoring torques along y and z [see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S12a) and (S12b)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Therefore, only the additional torque component pointing along x will have an effect on the dynamics, causing the rotor to spin around its long axis (which points long x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We denote the additional torque component along x as kext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Let us write the rotational equations of motion [44] (Euler’s equations), including both the restoring torques and kext for a symmetric rotor performing small amplitude libration around the x axis : ¨Φ = −µ ˙Θ ˙Ψ − Ω2 1Φ, (S14a) ¨Θ = µ ˙Ψ ˙Φ − Ω2 2Θ, (S14b) ¨Ψ = kext, (S14c) where µ = I1−I3 I1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Provided that kext is larger than fluctuating (thermal) torques, the dumbbell will start to spin consistently around its long axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The spinning rate will increase until it reaches the friction-dependent stationary value denoted as ˙Ψ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note that Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S14a) and (S14b) include coupling between angular degrees of freedom, which is an inherent feature of rotational mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Fast spinning, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=', large ˙Ψ causes strong coupling between the Φ and Θ libration modes which become hybrid precession modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Similarly to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' [30] we use the following simple model ¨Φ = −ωs ˙Θ − Ω2 1Φ, (S15a) ¨Θ = ωs ˙Φ − Ω2 2Θ, (S15b) where ωs = µ ˙Ψ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We will henceforth refer to ωs as the rotational coupling rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The eigenfunctions of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S15a)- (S15b) (precession modes) oscillate at eigenfrequencies ΩA and ΩB, which read ΩA = � Ω2 1 + Ω2 2 + ω2s − � (Ω2 1 + Ω2 2 + ω2s )2 − 4Ω2 1Ω2 2 √ 2 , (S16a) ΩB = � Ω2 1 + Ω2 2 + ω2s + � (Ω2 1 + Ω2 2 + ω2s )2 − 4Ω2 1Ω2 2 √ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S16b) We notice that the precession frequencies ΩA and ΩB satisfy the following relation: (ΩA − ΩB)2 = ω2 s + (Ω1 − Ω2)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S17) This relation illustrates the signature of the spinning along the long axis, which can be described as an additional splitting between the eigenfrequencies visible in the libration spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We have used Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S17) to reconstruct the value of the rotational coupling ωs (as function of s1) from the measured precession mode splitting (ΩA − ΩB) and the libration mode splitting (Ω1 −Ω2) predicted from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S13a) and (S13b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The value of A1 used in this procedure was measured at P = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' The obtained rotational coupling rate is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b) as a dashed black line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' Note that ωs depends only on the difference between observed peak frequencies in the libration spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We have calculated ωs from the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 3(b) and used it to find the precession mode frequencies from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' (S16a) and (S16b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We find that the resulting precession frequencies (as functions of s1) fit the behavior of the modes observed in the libration spectrum well, which confirms the spinning hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 5 Lastly, we have only discussed the effect of the additional small torque on a symmetric rotor (dumbbell).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' We note that non-symmetric rotors (clusters), when exposed to the same additional torque, will not spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' This is due to the fact that for P < 1 all degrees of freedom describing cluster orientation are trapped in a potential minimum, such that they librate and do not spin, unless the additional torque exceeds the restoring torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} +page_content=' 6' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE3T4oBgHgl3EQfdgrZ/content/2301.04536v1.pdf'} diff --git a/cNAzT4oBgHgl3EQfLfum/content/2301.01116v1.pdf b/cNAzT4oBgHgl3EQfLfum/content/2301.01116v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..340af788881a369d7853eda8de9465379b742ebc --- /dev/null +++ b/cNAzT4oBgHgl3EQfLfum/content/2301.01116v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f66070fbbb03d9f3f945792c2bb5f016bc30f8272261b561fe1fa8289f564ce6 +size 621688 diff --git a/cNAzT4oBgHgl3EQfLfum/vector_store/index.faiss b/cNAzT4oBgHgl3EQfLfum/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9131418469e9de9e422b1813d3d353fd88cca535 --- /dev/null +++ b/cNAzT4oBgHgl3EQfLfum/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b60aadb5ac52ddb642fdb99985d32f665dcb36289dfbabf45e8807b4ccd29015 +size 2752557 diff --git a/cNAzT4oBgHgl3EQfLfum/vector_store/index.pkl b/cNAzT4oBgHgl3EQfLfum/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..666850bf8b2a93818b28820defa99f52147e78ac --- /dev/null +++ b/cNAzT4oBgHgl3EQfLfum/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:37fd8260d0e197dd5feed19dce6dde68792c84459d70cd14ba16fc7bc75379ed +size 98812 diff --git a/cdAyT4oBgHgl3EQf-foD/vector_store/index.faiss b/cdAyT4oBgHgl3EQf-foD/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b7e5d3b681958746115279b3228542e77e3a4f12 --- /dev/null +++ b/cdAyT4oBgHgl3EQf-foD/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90bae1b27dcec18d4d035e98eb9e358c8c653919c8b377fa05a650d406933b3a +size 2359341 diff --git a/ctE0T4oBgHgl3EQfWgAs/content/tmp_files/2301.02278v1.pdf.txt b/ctE0T4oBgHgl3EQfWgAs/content/tmp_files/2301.02278v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1bab8c67091e0a2d44eae08c3786732031430c44 --- /dev/null +++ b/ctE0T4oBgHgl3EQfWgAs/content/tmp_files/2301.02278v1.pdf.txt @@ -0,0 +1,1060 @@ +arXiv:2301.02278v1 [cond-mat.mtrl-sci] 5 Jan 2023 +Computational characterization of novel nanostructured materials: Case study of +NiCl2 +Elizaveta B. Kalika,1 Alexey V. Verkhovtsev,2, ∗ Mikhail M. Maslov,3 Konstantin P. Katin,3 and Andrey V. Solov’yov2 +1Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700, Russia +2MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main, Germany +3Department of Condensed Matter Physics, National Research Nuclear University “MEPhI”, +Kashirskoe Shosse 31, Moscow, 115409, Russian Federation +A computational multiscale approach combining dispersion-corrected density functional theory +(DFT) and long-timescale classical molecular dynamics is employed to characterize the geometrical, +mechanical and thermal properties of a recently proposed two-dimensional (2D) transition metal +dichalcogenide, NiCl2. A classical interatomic force field is proposed whose parameters are derived +from the results of DFT calculations. The developed force field is used to study the mechanical +response, thermal stability and melting of a NiCl2 monolayer. It is found that the NiCl2 sheet is +thermally stable up to the melting point temperature of 1315 K. At higher temperatures structural +degradation of the system is observed, which involves several subsequent structural transformations, +namely the formation of a highly porous 2D sheet, 1D nanowires, and nanodroplets. The compu- +tational methodology presented through an illustrative case study of NiCl2 can be utilized for the +computational characterization of other novel 2D materials, including recently synthesized NiO2, +NiS2 and NiSe2. +I. +INTRODUCTION +Nickel-based nanomaterials are considered promising +for sensors, adsorbents, and catalysts. Recently synthe- +sized Ni-based composites have proven their effectiveness +as sensors for various organic and biological molecules +[1–3]. +Nickel nanoparticles possess catalytic activity +for many reactions, including the synthesis of primary +amines and hydrogen oxidation [4, 5]. Nickel-based two- +dimensional (2D) materials can be used for the efficient +generation of molecular oxygen [6, 7], electrocatalytic wa- +ter splitting [8] and glucose oxidation [9]. In addition, +recently synthesized pentagonal 2D sheets of nickel di- +azenide (NiN2) have tunable direct band gap and may +serve as a precursor for pentagonal 2D materials [10]. +Nickel-doped graphene materials are also widely used +for many applications. In particular, they provide ex- +cellent sensing properties [11–13] and can effectively cat- +alyze such technologically important reactions as hydro- +gen production from water [14] and ethanol steam [15], +oxygen reduction under alkaline conditions [16], and car- +bon monoxide reduction [17]. Another important appli- +cation of Ni-doped graphene is hydrogen storage. Due to +3d electrons and the spillover effect, nickel can hold hy- +drogen molecules [18–20]. At the same time, graphene is +not the only 2D material that can be doped with nickel. +Less common 2D materials, such as silicene, germanene +and MoS2, have also been used as a substrate for nickel +atoms and nanoparticles [21–23]. +The aforementioned properties of nickel-doped 2D ma- +terials are based on a combination of the mechanical char- +acteristics of a 2D sheet with the adsorption and cat- +alytic properties of nickel. A further development of this +∗ verkhovtsev@mbnexplorer.com +idea is that nickel can be not an alloying impurity but +the basis for a 2D material. Pure nickel is a metal and +cannot exist in the form of the 2D allotrope. However, +an extensive computational search for layered crystals +and related 2D materials has recently predicted the ex- +istence of several 2D nickel-based materials of the com- +position NiX2 (X = O, Cl, Br, I, S, Se) [24]. Some of +these materials have already been synthesized. Technolo- +gies developed for widespread 2D MoS2/MoSe2 materials +[25] and their analogs based on niobium [26], titanium +[27] and tungsten [28] proved to be useful for synthesiz- +ing NiX2 monolayers. Large-area NiO2 monolayers sep- +arated by lanthanum atoms have been observed using +scanning tunneling microscopy [29]. Recent experiments +have proven the feasibility of chemical vapor deposition +synthesis of nanometer layers of NiCl2 [30], NiS2 [31] and +NiSe2 [32]. Moreover, NiCl2 films up to four layers thick +have been recently synthesized [30]. In all these mate- +rials, nickel atoms are organized in a regular 2D lattice +so that the materials possess enhanced adsorption and +catalytic properties. +Currently, there is limited experimental information +on the properties of such 2D materials since only a few +laboratories have synthesized them in limited quantities. +Atomistic computer simulations can serve as an alterna- +tive approach to characterize the structure of such novel +materials and explore their properties. +This paper presents the results of a computational +characterization of a novel 2D material, NiCl2, by means +of a multiscale modeling approach. NiCl2 has been cho- +sen as an illustrative and experimentally relevant repre- +sentative of the Ni-based 2D materials family. A combi- +nation of quantum and classical approaches into a unified +multiscale methodology permits a comprehensive investi- +gation of the structure, mechanical properties, and ther- +mal stability of NiCl2. Density-functional theory (DFT) +calculations provide reference data on geometrical char- + +2 +acteristics of the material. On this basis, a new classi- +cal interatomic potential is developed and benchmarked +against the results of quantum-mechanical calculations. +The validated potential is used for atomistic modeling of +mechanical deformations and thermal stability of NiCl2 +by means of the advanced software packages MBN Ex- +plorer [33] and MBN Studio [34]. +Through an illustrative case study of NiCl2 we present +a general methodology that can be utilized for the com- +putational characterization of other novel materials, in- +cluding the recently synthesized NiO2 [29], NiS2 [31] and +NiSe2 [32]. To the best of our knowledge, NiCl2 has not +been studied computationally except for a recent study +[35], which investigated structural defects in NiCl2 and +similar materials and confirmed their stability in the en- +vironment by means of DFT calculations. +The paper is organized as follows. Section II describes +the key aspects of theoretical methods utilized in DFT +calculations and corresponding classical simulations. A +particular focus is made on the procedure to determine +the classical force field parameters for NiCl2. This follows +with the discussion of the obtained results in Section III. +The accuracy of the developed force field is evaluated +in Section III A through the analysis of structural and +energetic parameters of NiCl2. Section III B is devoted to +the analysis of mechanical properties of NiCl2 by means +of DFT and classical energy minimization calculations +using the developed force field. In Section III C the force +field is utilized to study the thermal stability of NiCl2 +and evaluate its melting temperature by means of long- +scale MD simulations. Finally, in Section IV we draw the +conclusion from this work and give an outlook for further +developments in this research direction. +II. +COMPUTATIONAL METHODOLOGY +A. +DFT calculations +DFT calculations of the structural properties of a +NiCl2 sheet have been performed using the Quantum +ESPRESSO 6.5 software package [36, 37]. +The plane- +wave basis set for valence electron states, generalized +gradient approximation (GGA) in the Perdew-Burke- +Ernzerhof (PBE) functional form for the exchange- +correlation energy [38], and projector-augmented-wave +(PAW) pseudopotentials [39, 40] for core-electron inter- +actions were used to perform the calculations. We have +employed the kinetic energy cut-off for wave functions of +100 Ry (∼1360 eV) and kinetic energy cut-off for charge +density and potential of 600 Ry (∼8160 eV) with checking +convergence of energy and charge to increase the simu- +lation accuracy. In addition, the van der Waals inter- +actions have been taken into account through the D3 +Grimme (DFT-D3) dispersion corrections [41]. +DFT- +D3 approach possesses improved accuracy due to the use +of environment-dependent dispersion coefficients and the +inclusion of a three-body component to the dispersion +FIG. 1. Structure of a NiCl2 supercell. Ni and Cl atoms are +shown in blue and green colors, respectively. +correction energy term. +The interlayer distance between separate NiCl2 sheets +has been set equal to 30 Å, which provides sufficient space +separation to avoid nonphysical interactions. Thus, opti- +mization of the lattice parameters along the axis perpen- +dicular to the NiCl2 sheet plane was unnecessary. The +atomic equilibrium positions have been obtained by the +total minimization of the supercell using the calculated +forces and stress on the atoms. The convergence criterion +of self-consistent calculations for ionic relaxations was set +to 10−10 eV between two consecutive steps. The geom- +etry optimization of the unstressed NiCl2 sheet was car- +ried out without symmetry constraints until the Hellman- +Feynman forces acting on the atoms became smaller than +10−4 hartree/bohr. Such criteria ensure that the abso- +lute value of stress is less than 0.01 kbar. The parameters +of the supercell have also been optimized. The first Bril- +louin zone integrations have been performed by using the +Monkhorst-Pack k-point sampling scheme [42] with the +6 × 6 × 1 mesh grid together with the Methfessel-Paxton +smearing [43] with the smearing width of 0.02 Ry. +The NiCl2 sheet is represented by a hexagonal Ni9Cl18 +periodic cell containing 3 × 3 elementary NiCl2 cells, see +Fig. 1. The hexagonal symmetry corresponds to the re- +sults obtained earlier for this monolayer [24]. After op- +timization, we obtained the lattice constant a = 3a0 = +10.328 Å, where a0 is the parameter of the NiCl2 prim- +itive unit cell, while the evaluated Ni–Cl bond length +was equal to 2.377 Å. Additional DFT-based geometry +optimization calculations have been performed using the +Gaussian software package [44] employing three differ- +ent exchange-correlation functionals, namely LDA, PBE0 + +3 +and HSE06. +B. +Classical MD simulations +Classical geometry optimization calculations and MD +simulations have been performed by means of MBN Ex- +plorer [33] – a software package for advanced multiscale +modeling of complex molecular structure and dynam- +ics. +MBN Explorer permits to simulate a wide range +of Meso-Bio-Nano (MBN) systems, including nanosys- +tems [33, 45–47]; nanostructured materials [48–51]; com- +posite and hybrid materials [52–55] with sizes ranging +from atomic to mesoscopic. The dedicated MBN Studio +toolkit [34] has been utilized to create the systems, pre- +pare all necessary input files, and analyze and visualize +simulation outputs. +C. +Determination of the classical force field for +NiCl2 +The first part of this study has been devoted to the +determination of parameters of a classical force field for +NiCl2. +The geometry of the 3 × 3 NiCl2 cell obtained after +DFT optimization was taken as an initial geometry for +the calculations using the classical force field. The NiCl2 +sheet has been simulated by assigning the NiCl2 super- +cell to a simulation box which is replicated in space using +periodic boundary conditions. First, several MD simu- +lations have been carried out with the trial force field +parameters fitted for transitional metal dichalides NiF2 +[56], ZnCl2 [57], AlCl3 and FeCl3 [58]. The force field +employed in these simulations has been constructed as a +sum of the short-term exponential, long-term r−6 power +and the Coulomb potentials. Such force fields have been +commonly utilized in MD simulations of various inorganic +and ionic crystals. The simulation box size was set ac- +cording to the lattice size optimized by DFT. The NiCl2 +system was unstable with any of the parameters; it was +also noticeable that the sheet would bend using most of +the given force field potentials. +As the NiCl2 sheet would bend with all of the above +mentioned force fields, the simulation box size has been +gradually increased in two dimensions. It has been found +that the NiCl2 sheet remains flat when the simulation +box size is increased by 4%. +As such, the simulation +box size used for all further simulations has been set to +53.32 Å × 92.59 Å × 30.00 Å. +Next, a new set of classical force field parameters for +the NiCl2 system has been determined in the following +way. The Nelder-Mead algorithm [59] has been utilized +for the optimization of the force field parameters. The al- +gorithm is simplex-based, meaning that in n-dimensional +space it maintains a set of n + 1 points called simplex. +After calculating the value of the function at each point +of the simplex, it extrapolates the behavior of the func- +tion to find a new test point and replaces the test points +with the worst result for a new one. The process repeat- +edly continues until the result converges to the tolerance +value or reaches the maximum number of iterations. The +Nelder-Mead algorithm was implemented in Python via +scipy.optimize.minimize library [60]. This algorithm was +used to fit the geometrical parameters of NiCl2 calculated +by MBN Explorer [33] to the ones obtained through the +DFT-based optimization; details are given below in Sec- +tion III A. +NiCl2 is an ionic crystal with partial charges on nickel +and chlorine atoms. In order to describe more accurately +the mutual polarization interaction between atoms of the +system, the r−6 potential has been replaced with a r−4 +power potential. The resulting total interaction potential +between atoms i and j of the system is given by the +following expression: +U(rij) = Aij exp(−αijrij) + Cij +r4 +ij ++ +qiqj +4πε0rij +(1) +The following six parameters of the force field, Eq. (1), +have been optimized using the Nelder-Mead algorithm: +ANi−Cl, αNi−Cl, ACl−Cl, αCl−Cl, C and q. Partial charges +on Ni and Cl atoms have been set to ensure that the +system is electrically neutral, |qNi| = 2|qCl|. A 7 Å cut- +off was applied for the exponential and power terms of +the potential. The Coulomb potential was calculated us- +ing the Ewald summation method with precision of 10−5 +and the cutoff of 12 Å. MD simulations with simulation +time of 30 ps and time step of 1 fs, Langevin thermostat +temperature of 300 K and damping time of 0.1 ps were +performed for each generated set of parameters. +The following geometrical parameters of NiCl2 have +been compared to the results of DFT calculations: (i) Ni– +Cl bond length (lNi−Cl); (ii) Ni–Ni bond length (lNi−Ni); +(iii) Cl–Cl bond length (lCl−Cl); (iv) Cl–Ni–Cl angle +(ϕCl−Ni−Cl), denoted hereafter as ϕ for brevity. In addi- +tion, the fifth parameter, namely the system’s energy as +a function of Ni–Cl interplanar distance has also been an- +alyzed. The distance between the Ni and Cl planes has +been gradually varied and single point energy calcula- +tions were carried out using MBN Explorer for different +Ni–Cl interplanar distances. The resulting dependence +of system’s energy on the Ni-Cl interplanar distance has +been fitted by a quadratic function and its minimum, d, +was found. The value of d obtained from classical force +field calculations was compared to the results of DFT +calculations. +Then, the standard deviation +σ = +� +� +� +�� +i +�li − lDFT +i +lDFT +i +�2 ++ +�ϕ − ϕDFT +ϕDFT +�2 ++ +�d − dDFT +dDFT +�2 +(2) +has been calculated and minimized using the Nelder- +Mead algorithm. Here the summation has been carried +out over different covalent bonds, namely Ni–Ni, Ni–Cl +and Cl–Cl. Each round of optimization consisted of 30 + +4 +FIG. 2. Evolution of parameters of the force field, Eq. (1), as a function of the number of global optimization iterations carried +out using the Nelder-Mead optimization algorithm. +iterations and the parameters resulting from each opti- +mization round were used as the starting parameters for +the following one. In this study, 430 subsequent itera- +tions have been carried out to determine the parameters +of the force field, Eq. (1). +The evolution of the force field parameters in the +course of the parameter optimization procedure is shown +in Fig. 2. The convergence is due to the decrease of σ +value, Eq. (2). The final values of the force field param- +eters and partial charges derived from the comparison +of NiCl2 geometrical parameters to the DFT results are +listed in Table I. These values have been employed in all +the simulations described below in Section III. +III. +RESULTS AND DISCUSSION +A. +Benchmarking the accuracy of the constructed +force field +NiCl2 is a novel material for which very little infor- +mation has been obtained both experimentally and com- +putationally. Hence, it is important to evaluate the ac- +curacy of the developed classical force field in order to +make computational predictions of structural and dy- +namical properties of NiCl2. +Table II lists the values +of Ni–Cl, Ni–Ni and Cl–Cl bond lengths and Cl–Ni–Cl +angles obtained via different optimization methods: clas- +sical force field optimization (column labeled ‘FF’) and +DFT optimization calculations using different exchange- +correlation functionals. In addition to DFT-based cal- +culations described in Sect. II A, several complementary +calculations have been carried out using the Gaussian +software package [44] to evaluate the optimal geometri- +cal parameters of NiCl2 with three different exchange- +correlation functionals (PBE0, HSE06 and LDA). +The results listed in Table II indicate that the Ni– +Cl bond length determined from classical structure opti- +mization calculations is close to the values obtained by +means of DFT with a relative discrepancy of 6%. The +equilibrium Ni–Ni bond length is longer than the values +obtained by DFT by about 5%. At the same time, the +equilibrium Cl–Cl bond length is shorter than the values +obtained by DFT, with a relative deviation of about 20%. +A smaller Ni–Cl interplanar distance results in smaller +values of the Cl–Ni–Cl angles. The discrepancy might be +attributed to limitations of the Nelder-Mead optimiza- +tion algorithm exploited in this study and a limited num- +ber of optimization iterations. +Overall, the classical force field. Eq. (1), with the pa- +rameters listed in Table I describes with a reasonable ac- +curacy the geometrical parameters of a 2D NiCl2 sheet. +The range of discrepancies between the results of classical +force field based and DFT-based geometry optimization +calculations is similar to that obtained in earlier studies +of transition-metal clusters and bulk materials [47, 48]. +B. +Mechanical properties of NiCl2 +In this study, mechanical properties of a NiCl2 sheet +have been studied by both DFT and classical force field +calculations. DFT-based calculations have used as input +the supercell described above in Section II A. The uni- +form stretching of the NiCl2 sheet has been simulated by +simultaneously increasing the lattice parameters of the + +5.0- +-0.60- +4.9 - +-0.65. +11000 +(eV) +-0.70- +4.8 +(eV +Ni-CI +10500 +4.7. +C +α +-0.75 +A +4.6. +-0.80 +10000 +4.5 +-0.85 +1550- +-0.78 +3.8- +-0.80 +1500- +3.7 +(eV) +-0.82 +1 +A +1450- +-0.84 +3.6- +b +-0.86- +1400- +3.5- +-0.88 - +-0.90. +1350- +3.4 - +400 +0 +100 +200 +300 +400 +0 +100 +200 +300 +0 +100 +200 +300 +400 +Number of optimization iterations +Number of optimization iterations +Number of optimization iterations5 +TABLE I. Parameters of the force field, Eq. (1), derived in this study for the description of a 2D NiCl2 material. +Aij (eV) +αij (Å−1) +C (eV Å4) +q, |e| +Ni–Cl +10804.52 +4.73 +Ni ++1.718 +Cl–Cl +1465.99 +3.55 +−0.805 +Cl +−0.859 +TABLE II. Comparison of geometrical parameters of a NiCl2 2D sheet after geometry optimization using the classical force +field, Eq. (1) (column labeled ‘FF’), and DFT with different exchange-correlation functionals. +Optimization method +FF +DFT +PBE PBE0 HSE06 LDA +average +Ni–Cl, Å +2.24 ± 0.02 2.38 +2.39 +2.40 +2.34 2.38 ± 0.03 +Ni–Ni, Å +3.57 ± 0.03 3.44 +3.40 +3.38 +3.33 3.39 ± 0.05 +Cl–Cl, Å +2.68 ± 0.02 3.28 +3.41 +3.38 +3.33 3.35 ± 0.06 +Cl–Ni–Cl, deg +73.5 ± 0.8 +87.2 +91.0 +89.8 +88.9 +89.2 ± 1.6 +supercell along the x− and y−directions (parallel to the +NiCl2 plane) and further optimizing atomic positions in +the supercell. +To estimate elasticity of the sheet, the latter was bi- +axially stretched so that the lattice constant a increased +according to the relation +a = a0(1 + ε) , +(3) +where a0 is the equilibrium lattice constant and ε is the +relative deformation. The deformation energy ∆E has +been calculated as follows: +∆E = E − E0 , +(4) +where E is the total energy of the deformed system and +E0 is the energy of the initial (unperturbed) system. As +the unit cell for DFT- and classical force field optimiza- +tion calculations contained different numbers of atoms, +the calculated deformation energy value was divided by +the number of atoms in the respective unit cell. +Figure 3 shows that the dependence of the NiCl2 sheet +deformation energy on ε is well described by a quadratic +function. The threshold for the elastic deformation was +found to be 20 % and 18% for DFT-based and classical +force field based optimization calculations, respectively. +Note that graphene possesses similar elastic properties +[61]. +For 2D materials, +the common definition of the +Young’s modulus is not applicable, since the thickness of +a 2D sheet cannot be determined unambiguously. There- +fore, 2D materials should preferably be characterized by +the 2D Young’s modulus E2D, which does not depend +on the sheet thickness [62]. +The value of E2D can be +evaluated using the formula +E2D = +1 +2S0 +(∆E)′′ , +(5) +where S0 is the area of the relaxed unit cell and (∆E)′′ +is the second derivative of the deformation energy with +respect to biaxial deformation ε. The value of E2D = +FIG. 3. Deformation energy ∆E of a biaxially stretched NiCl2 +sheet as a function of relative deformation ε. +32.4 N/m has been obtained in this study through the +DFT calculations of a NiCl2 sheet. The classical force +field, Eq. (1), predicts a very close value of the 2D +Young’s modulus, E2D = 34.9 N/m. +To estimate the common 3D Young’s modulus, the ob- +tained value E2D should be divided by the effective sheet +thickness. According to the results presented in Table II +the average NiCl2 sheet thickness (that is the average +Cl–Cl bond length obtained from the DFT calculations +with different exchange-correlation functionals), is equal +to 3.35 Å. Using this value one obtains the Young’s mod- +ulus equal to 97 GPa. This value is close to the value of +107 GPa obtained for NiCl2 via DFT calculations in a re- +cent study [35]. Note that the Young’s modulus reported +for graphene is about 10 times higher [63]. 2D elastic +modulus of monolayers with similar structures, MoS2 and +WS2, are about 170 N/m [64]. Therefore, the results of +calculations carried out in this study predict that NiCl2 +is a less rigid material compared to other well-studied 2D +sheets, and its Young’s modulus is close to that of GaP +monolayer [62]. Such a behavior is a consequence of the + +1.2 +口 +FF optimization +DFT optimization +1.0 +0.8 +0.6 +0.4 +0.2 +0.0 +0.00 +0.05 +0.10 +0.15 +0.20 +Relative deformation ε6 +corrugated structure of 2D NiCl2 and high elasticity of +the Ni–Cl bonds. +C. +Thermal stability of NiCl2 +The interatomic force field described in Section II C has +been utilized to study thermal properties of a 2D NiCl2 +sheet and evaluate its melting temperature. +This has +been done by carrying out a series of constant tempera- +ture MD simulations. The system initially equilibrated +at 300 K was heated gradually by either 50 degrees (in +the temperature range from 300 to 2000 K) or 100 degrees +(in the range from 2000 to 5000 K) over 200 ps and then +equilibrated over 10 ns at each temperature. A smaller +temperature increment of 20 K has been considered in +the temperature range from 1300 to 1500 K to evaluate +the melting temperature of NiCl2 more accurately. The +first 4 ns of the simulated trajectories were excluded from +the analysis. The remaining part of each trajectory was +used to evaluate the average value of the system’s to- +tal energy at a given temperature. The resulting caloric +curve, that is the dependence of the time-averaged total +energy of the system on temperature, ⟨Etot⟩(T ), is shown +in Fig. 4(a) by symbols. Figure 4(b) shows the temper- +ature dependence of heat capacity at constant volume +Cv, defined as a derivative of the internal energy of the +system over temperature: +Cv = +�∂E +∂T +� +v +. +(6) +The melting process in a macroscopic system occurs at a +specific temperature under fixed external pressure. This +process reveals itself as a first-order phase transition via a +spike in the heat capacity of the system at the transition +temperature. +At the initial phase of NiCl2 heating, the system’s to- +tal energy grows linearly with temperature, see the inset +in Fig. 4(a). At temperatures above ∼1200 K the NiCl2 +sheet transforms into a pre-melted state when the crys- +talline structure is strongly deformed, but the 2D sheet +still maintains its integrity (see the simulation snapshot +in Fig. 7(b)). A slight increase in the heat capacity as a +function of temperature also indicates the onset of sys- +tem’s pre-melting (see Fig. 4(b)). +The calculated heat capacity curve has a sharp maxi- +mum at T ≈ 1315 K, indicating the melting temperature +of NiCl2. This value is considerably lower than the melt- +ing temperature for bulk nickel, Tm(Ni) = 1728 K. On +the other hand, the evaluated value of T ≈ 1315 K is +of the same order of magnitude as the melting temper- +ature of a well-studied 2D material tungsten disulfide, +Tm(WS2) ∼ 1520 K [65]. The evalualted melting temper- +ature of NiCl2 also lies within the melting temperature +range determined computationally for different 2D metal +monoxides and monochlorides such as BeO, MgO, LiCl, +and NaCl [66]. +FIG. 4. +Caloric curve for NiCl2 (panel (a)) and the cor- +responding heat capacity Cv as a function of temperature +(panel (b)). The peak in the Cv(T ) dependence at T ≈ 1315 K +indicates the melting temperature of NiCl2. +At temperatures above the melting point, the system’s +total energy ⟨Etot⟩ continues to grow linearly with T un- +til the onset of another phase transition takes place at +T ∼ 3200 K. In contrast to the melting phase transi- +tion at Tm ≈ 1315 K, this high-temperature transition +takes place over a broad temperature range from approx- +imately 3200 to 4400 K, as indicated by a broad peak +in the Cv(T ) dependence. This transition corresponds +to the multifragmentation of NiCl2 into separate NiCl2 +molecular fragments. +The phase transitions corresponding to the peaks in +the heat capacity curve can be visualized by analyzing +the radial distribution function (RDF) of atoms in the +system. +The RDF characterizes the number of atoms +located at certain radial distance r from a reference atom. +The RDF for Ni–Ni and Cl–Cl atomic pairs, evaluated +at different temperatures of the system, are plotted in +Figures 5(a) and 5(b), respectively. A rapid change of +the RDFs between 1310 and 1320 K indicates the melting +phase transition. +It is of particular interest to explore, on the atomistic +level, the phase transition from the crystalline NiCl2 to + +-8600 +-7000 +-8800 +Total energy (eV) +-9000 +500 +1000 +1500 +-8000 +(a) +-9000 +(b) +4 +Heat capacity (eV/K) +2 +0 +1000 +2000 +3000 +4000 +5000 +Temperature (K)7 +FIG. 5. Radial distribution function for nickel (panel (a)) and clorine (panel (b)) atoms of NiCl2 at different temperatures of +the system. A rapid change of the RDFs between 1310 and 1320 K indicates the melting phase transition. +FIG. 6. +Variation of the system’s total energy, Etot, as a +function of simulation time t. Colored curves show the Etot(t) +dependencies for different temperatures, namely T = 1310 K +(just below the phase transition temperature), T = 1320 K (in +the phase transition region), as well as T = 1360 K and 1380 K +(above the phase transition temperature). Labels (1) to (5) +correspond to different time instants for the curve at T = +1320 K. These instants correspond to the system’s snapshots +shown in panels (c)–(g) of Fig. 7. +its molten state. Figure 6 shows the variation of Etot as +a function of simulation time t. Colored curves show the +Etot(t) dependencies for different temperatures, namely +T = 1310 K (just below the phase transition tempera- +ture), T = 1320 K (in the phase transition region), as +well as T = 1360 K and 1380 K (above the phase transi- +tion temperature). +At T = 1310 K (black curve in Fig. 6) the total energy +of NiCl2 fluctuates around the average value of about +−8800 eV over the 10 ns long simulation, which indi- +cates that the system remains in the crystalline state. +However, when the temperature increases to 1320 K the +system’s energy stays nearly constant within the first +∼3.7 ns of the simulated trajectory, which follows by +a rapid rise of Etot(t) within ∼0.4 ns. +This jump in +the total energy is attributed to the formation of holes +in the NiCl2 sheet as shown in Fig. 7(c,d). After that +the system’s total energy decreases as the system relaxes +into a highly porous 2D structure (see Fig. 7(e)). This +structure is metastable, and it evolves quickly into an ar- +ray of quasi-1D structures, where denser regions are con- +nected by thin NiCl2 links (see Fig. 7(f)). This structure +is also metastable, and it eventually relaxes into spheri- +cal droplets with a diameter of ∼ 3.5nm (see Fig. 7(g)). +Interestingly, as the system’s temperature increases, ran- +dom evaporation of single NiCl2 units from the droplets +and the fast diffusion of Ni and Cl atoms occurs. As a re- +sult of these processes, the droplets eventually merge into +a 1D NiCl2 nanowire which is thermally stable at tem- +peratures below ∼3000 K within the simulation times +considered in this study. This behavior, however, may +be attributed to relative small sizes of the system and +the simulation box, which enable the interaction of Ni +and Cl atoms with their periodic images across the simu- +lation box boundaries. A detailed analysis of system’s +size effects on its thermal properties is an interesting +topic which however goes beyond the scope of the present +study. At higher temperatures, the NiCl2 nanowires dis- +integrate and the multifragmentation process takes place, +which is seen from the change of the ⟨Etot⟩(T ) slope +shown in Fig. 4(a). +IV. +CONCLUSIONS +Two-dimensional (2D) materials possess properties +that are technologically relevant and differ from prop- +erties of the corresponding bulk counterparts. Monolay- +ers of layered crystals are of particular interest because +they can be synthesized with a well-known top-down ap- + +-8550 +1310K +2 +1320 K +-8600 +1360K +1380 K +Total energy (eV +-8650 +(3) +-8700 +-8750 +-8800 +-8850 +0 +2 +6 +8 +Simulation time (ns)20 +10 +(b) +CI-CI +(a) +Ni-Ni +300 K +300 K +600 K +600 K +Radial distribution function +8 +1000K +1000 K +15 +1310 K +1310 K +1320 K +1320 K +6- +4500K +4500 K +10- +4- +5. +0 +2 +8 +2 +4 +6 +10 +6 +8 +10 +Interatomic distance (A) +Interatomic distance (A)8 +FIG. 7. Snapshots of the NiCl2 system at different temperatures T as indicated. Nickel and chlorine atoms are shown in blue +and green colors, respectively. Panels (c) to (g) illustrate the system’s structure at different time instants corresponding to +labels (1)–(5) in Fig. 6. +proach. Extensive experimental characterization of such +materials is expensive and time-consuming, so computa- +tional modeling may provide valuable support for exper- +imental research. +In this study we have reported a detailed computer +simulation of the recently proposed novel 2D material +NiCl2. The combination of a rigorous DFT approach and +a classical approach based on an interatomic force field +provides insight into the mechanical and thermal prop- +erties of this material. It has been found that the 2D +NiCl2 sheet is mechanically stable at the relative defor- +mation up to 18−20%, similar to graphene. At the same +time, the obtained Young’s modulus for NiCl2 is 5 − 10 +times lower than the Young’s modulus of other commonly +studied 2D materials such as graphene, MoS2 and WS2. +It has been found that the NiCl2 sheet is thermally sta- +ble up to the melting point temperature of 1315 K. The +evaluated melting point for NiCl2 is of the same order +of magnitude as the melting temperature of WS2 and +lies within the melting temperature range determined +computationally for different 2D metal monoxides and +monochlorides, such as BeO, MgO, LiCl, and NaCl. At +temperatures above the melting point structural degra- +dation of NiCl2 has been observed, which involves several +subsequent structural transformations, namely the for- +mation of a highly porous 2D sheet, 1D nanowires, and +nanodroplets. +The classical force field developed in this study for sim- +ulating the 2D NiCl2 material describes reasonably accu- +rate the geometrical parameters of NiCl2, determined on +the basis of DFT calculations. The force field parameters +for NiCl2 presented in this study might be useful for fur- +ther studies of more complex characteristics of this ma- +terial, such as thermal conductivity, defects and phonon +spectrum. The general methodology presented through +an illustrative case study of NiCl2 can be utilized for the +computational characterization of other novel 2D materi- +als, including recently synthesized NiO2, NiS2 and NiSe2 +materials. +ACKNOWLEDGEMENTS +The authors are grateful for the support of this work +by the Deutsche Forschungsgemeinschaft provided within +the collaborative project “Hydrogen adsorption on novel +two-dimensional materials: ab initio and molecular dy- +namics study” (project number 452691275). +[1] P. Deng, X. Nie, Y. Wu, Y. Tian, J. Li, and Q. He, +Microchem. J. 160, 105744 (2021). +[2] H. Karimi-Maleh, +K. Cellat, +K. Arıkan, +A. Savk, +F. Karimi, and F. Şen, Mater. Chem. Phys. 250, 123042 + +(f) T = 1320 K, t = 5.4 ns += 1320 K. t = 4.4 ns +(g) T = 1320 K, t = 7.0 ns9 +(2020). +[3] R. Ahmad, T. Bedük, S. M. Majhi, and K. N. Salama, +Sensors and Actuators B: Chemical 286, 139 (2019). +[4] R. Jagadeesh, K. Murugesan, and M. Beller, Angew. +Chem. Int. Ed. 58, 5064 (2019). +[5] A. G. Oshchepkov, A. Bonnefont, S. N. Pronkin, O. V. +Cherstiouk, C. Ulhaq-Bouillet, V. Papaefthimiou, V. N. +Parmon, and E. R. Savinova, J. Power Sources 402, 447 +(2018). +[6] C. Luan, G. Liu, Y. Liu, L. Yu, Y. Wang, Y. Xiao, +H. Qiao, X. Dai, and X. Zhang, ACS Nano 12, 3875 +(2018). +[7] Y. Wang, Y. Zhou, M. Han, Y. Xi, H. You, H. Xianfeng, +Z. Li, J. Zhou, D. Song, D. Wang, and F. Gao, Small 15, +1805435 (2019). +[8] Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao, Y. Zheng, +J. Xu, J. Ma, C. Liu, S. Li, and Q. Yan, ACS Nano 13, +7975 (2019). +[9] Y. Shu, B. Li, J. Chen, Q. Xu, H. Pang, and X. Hu, ACS +Appl. Mater. Interfaces 10, 2360 (2018). +[10] M. Bykov, E. Bykova, A. V. Ponomareva, F. Tasnádi, +S. Chariton, V. B. Prakapenka, K. Glazyrin, J. S. Smith, +M. F. Mahmood, I. A. Abrikosov, and A. F. Goncharov, +ACS Nano 15, 13539 (2021). +[11] D.-T. Phan and G.-S. Chung, Int. J. Hydrogen Energy +39, 20294 (2014). +[12] Z. Ren, H. Mao, H. Luo, and Y. Liu, Carbon 149, 609 +(2019). +[13] G. Deokar, J. Casanova-Cháfer, N. S. Rajput, C. Aubry, +E. Llobet, M. Jouiad, and P. M. Costa, Sensors and Ac- +tuators B: Chemical 305, 127458 (2020). +[14] W. Zhang, Y. Li, and S. Peng, J. Mater. Chem. A 5, +13072 (2017). +[15] D. Chen, W. Wang, and C. Liu, Int. J. Hydrogen Energy +44, 6560 (2019). +[16] R. J. Toh, H. L. Poh, Z. Sofer, and M. Pumera, Chemistry +- An Asian Journal 8, 1295 (2013). +[17] X.-Y. Xu, J. Li, H. Xu, X. Xu, and C. Zhao, New J. +Chem. 40, 9361 (2016). +[18] C. Zhou, J. A. Szpunar, and X. Cui, ACS Appl. Mater. +Interfaces 8, 15232 (2016). +[19] D. Zhou, K. Cui, Z. Zhou, C. Liu, W. Zhao, P. Li, and +X. Qu, Int. J. Hydrogen Energy 46, 34369 (2021). +[20] L. R. Safina, K. A. Krylova, R. T. Murzaev, J. A. +Baimova, and R. R. Mulyukov, Materials 14, 2098 +(2021). +[21] A. Manjanath, V. Kumar, and A. K. Singh, Phys. Chem. +Chem. Phys. 16, 1667 (2014). +[22] S. Li, J.-C. Ren, Z. Ao, and W. Liu, Chem. Phys. Lett. +706, 202 (2018). +[23] Y. Li, X. Zhang, D. Chen, S. Xiao, and J. Tang, Appl. +Surf. Sci. 443, 274 (2018). +[24] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, +A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Ce- +pellotti, G. Pizzi, and N. Marzari, Nature Nanotechnol. +13, 246 (2018). +[25] K. M. McCreary, A. T. Hanbicki, J. T. Robinson, +E. Cobas, J. C. Culbertson, A. L. Friedman, G. G. Jerni- +gan, and B. T. Jonker, Adv. Funct. Mater. 24, 6449 +(2014). +[26] H. Wang, X. Huang, J. Lin, J. Cui, Y. Chen, C. Zhu, +F. Liu, Q. Zeng, J. Zhou, P. Yu, X. Wang, H. He, S. H. +Tsang, W. Gao, K. Suenaga, F. Ma, C. Yang, L. Lu, +T. Yu, E. H. T. Teo, G. Liu, and Z. Liu, Nature Commun. +8, 394 (2017). +[27] P. C. Sherrell, K. Sharda, C. Grotta, J. Ranalli, M. S. +Sokolikova, F. M. Pesci, P. Palczynski, V. L. Bemmer, +and C. Mattevi, ACS Omega 3, 8655 (2018). +[28] C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, +L. Sun, and T. Yu, Adv. Opt. Mater. 2, 131 (2013). +[29] A. Ikeda, Y. Krockenberger, H. Irie, M. Naito, and H. Ya- +mamoto, Appl. Phys. Express 9, 061101 (2016). +[30] Z. Luo, X. Lin, L. Tang, Y. Feng, Y. Gui, J. Zhu, +W. Yang, D. Li, L. Zhou, and L. Fu, ACS Appl. Mater. +Interfaces 12, 34755 (2020). +[31] C. Dai, B. Li, J. Li, B. Zhao, R. Wu, H. Ma, and X. Duan, +Nano Res. 13, 2506 (2020). +[32] S. Liu, D. Li, G. Zhang, D. Sun, J. Zhou, and H. Song, +ACS Appl. Mater. Interfaces 10, 34193 (2018). +[33] I. A. Solov’yov, A. V. Yakubovich, P. V. Nikolaev, +I. Volkovets, and A. V. Solov’yov, J. Comput. Chem. 33, +2412 (2012). +[34] G. B. Sushko, I. A. Solov’yov, and A. V. Solov’yov, J. +Mol. Graph. Model. 88, 247 (2019). +[35] A. A. Kistanov, S. A. Shcherbinin, R. Botella, A. Davlet- +shin, and W. Cao, J. Phys. Chem. Lett. 13, 2165 (2022). +[36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, +C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ- +cioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, +G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, +A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, +F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, +L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. +Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov- +itch, J. Phys.: Condens. Matter 21, 395502 (2009). +[37] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, +M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, +D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, +A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, +A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, +U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa- +mura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, +M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.- +V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, +D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitso- +nen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, +N. Vast, X. Wu, and S. Baroni, J. Phys.: Condens. Mat- +ter 29, 465901 (2017). +[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. +Lett. 77, 3865 (1996). +[39] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). +[40] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). +[41] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. +Phys. 132, 154104 (2010). +[42] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 +(1976). +[43] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 +(1989). +[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. +Scuseria, +M. A. Robb, J. R. Cheeseman, +G. Scal- +mani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, +M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, +R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Or- +tiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams- +Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, +B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, +V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, +M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, + +10 +M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, +T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. +Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. +Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, +R. Kobayashi, J. Normand, K. Raghavachari, A. P. Ren- +dell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, +J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. +Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. +Foresman, and D. J. Fox, Gaussian 16 Revision C.01 +(2016), Gaussian Inc. Wallingford CT. +[45] G. B. Sushko, I. A. Solov’yov, A. V. Verkhovtsev, S. N. +Volkov, and A. V. Solov’yov, Eur. Phys. J. D 70, 12 +(2016). +[46] A. V. Verkhovtsev, S. Schramm, and A. V. Solov’yov, +Eur. Phys. J. D 68, 246 (2014). +[47] A. V. Verkhovtsev, M. Hanauske, A. V. Yakubovich, and +A. V. Solov’yov, Comput. Mater. Sci. 76, 80 (2013). +[48] G. B. Sushko, A. V. Verkhovtsev, and A. V. Solov’yov, +J. Phys. Chem. A 118, 8426 (2014). +[49] G. B. Sushko, I. A. Solov’yov, and A. V. Solov’yov, Eur. +Phys. J. D 70, 217 (2016). +[50] P. de Vera, M. Azzolini, G. Sushko, I. Abril, R. Garcia- +Molina, M. Dapor, I. A. Solov’yov, and A. V. Solov’yov, +Sci. Rep. 10, 20827 (2020). +[51] A. Prosvetov, A. V. Verkhovtsev, G. Sushko, and A. V. +Solov’yov, Beilstein J. Nanotechnol. 12, 1151 (2021). +[52] J. Geng, I. A. Solov’yov, W. Zhou, A. V. Solov’yov, and +B. F. G. Johnson, J. Phys. Chem. C 113, 6390 (2009). +[53] J. Geng, I. A. Solov’yov, D. G. Reid, P. Skelton, A. E. H. +Wheatley, A. V. Solov’yov, and B. F. G. Johnson, Phys. +Rev. B 81, 214114 (2010). +[54] P. Moskovkin, M. Panshenskov, S. Lucas, and A. V. +Solov’yov, Phys. Stat. Sol. B 251, 1456 (2014). +[55] A. V. Verkhovtsev, A. Nichols, N. J. Mason, and A. V. +Solov’yov, J. Phys. Chem. A 126, 2170 (2022). +[56] K. Atkinson, R. Grimes, and S. Owens, Solid State Ionics +150, 443 (2002). +[57] M. Wilson, F. Hutchinson, and P. A. Madden, Phys. Rev. +B 65, 094109 (2002). +[58] F. Hutchinson, M. K. Walters, A. J. Rowley, and P. A. +Madden, J. Chem. Phys. 110, 5821 (1999). +[59] J. A. Nelder and R. Mead, The Computer Journal 7, 308 +(1965). +[60] F. Gao and L. Han, Comput. Optim. Appl. 51, 259 +(2012). +[61] S. V. Dmitriev, Y. A. Baimova, A. V. Savin, and Y. S. +Kivshar’, JETP Lett. 93, 571 (2011). +[62] A. Kochaev, Phys. Rev. B. 96, 155428 (2017). +[63] F. Memarian, A. Fereidoon, and M. Darvish Ganji, Su- +perlattices Microstruct. 85, 348 (2015). +[64] K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Fu, +S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Wu, +Nano Lett. 14, 5097 (2014). +[65] M. +Eagleson, +Concise +Encyclopedia +Chemistry +(De +Gruyter, 1994). +[66] B. Luo, Y. Yao, E. Tian, H. Song, X. Wang, G. Li, K. Xi, +B. Li, H. Song, and L. Li, Proc. Natl. Acad. Sci. U.S.A. +116, 17213 (2019). + diff --git a/ctE0T4oBgHgl3EQfWgAs/content/tmp_files/load_file.txt b/ctE0T4oBgHgl3EQfWgAs/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..339fa0fab55c2fe1189ed9379fb7352e6540b880 --- /dev/null +++ b/ctE0T4oBgHgl3EQfWgAs/content/tmp_files/load_file.txt @@ -0,0 +1,1228 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf,len=1227 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='02278v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='mtrl-sci] 5 Jan 2023 Computational characterization of novel nanostructured materials: Case study of NiCl2 Elizaveta B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kalika,1 Alexey V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev,2, ∗ Mikhail M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Maslov,3 Konstantin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Katin,3 and Andrey V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov2 1Moscow Institute of Physics and Technology, Institutskiy per.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Dolgoprudny,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Moscow Region,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 141700,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Russia 2MBN Research Center,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Altenhöferallee 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 60438 Frankfurt am Main,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Germany 3Department of Condensed Matter Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' National Research Nuclear University “MEPhI”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kashirskoe Shosse 31,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Moscow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 115409,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Russian Federation A computational multiscale approach combining dispersion-corrected density functional theory (DFT) and long-timescale classical molecular dynamics is employed to characterize the geometrical,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' mechanical and thermal properties of a recently proposed two-dimensional (2D) transition metal dichalcogenide,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A classical interatomic force field is proposed whose parameters are derived from the results of DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The developed force field is used to study the mechanical response, thermal stability and melting of a NiCl2 monolayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' It is found that the NiCl2 sheet is thermally stable up to the melting point temperature of 1315 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At higher temperatures structural degradation of the system is observed, which involves several subsequent structural transformations, namely the formation of a highly porous 2D sheet, 1D nanowires, and nanodroplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The compu- tational methodology presented through an illustrative case study of NiCl2 can be utilized for the computational characterization of other novel 2D materials, including recently synthesized NiO2, NiS2 and NiSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' INTRODUCTION Nickel-based nanomaterials are considered promising for sensors, adsorbents, and catalysts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Recently synthe- sized Ni-based composites have proven their effectiveness as sensors for various organic and biological molecules [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nickel nanoparticles possess catalytic activity for many reactions, including the synthesis of primary amines and hydrogen oxidation [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nickel-based two- dimensional (2D) materials can be used for the efficient generation of molecular oxygen [6, 7], electrocatalytic wa- ter splitting [8] and glucose oxidation [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In addition, recently synthesized pentagonal 2D sheets of nickel di- azenide (NiN2) have tunable direct band gap and may serve as a precursor for pentagonal 2D materials [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nickel-doped graphene materials are also widely used for many applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In particular, they provide ex- cellent sensing properties [11–13] and can effectively cat- alyze such technologically important reactions as hydro- gen production from water [14] and ethanol steam [15], oxygen reduction under alkaline conditions [16], and car- bon monoxide reduction [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Another important appli- cation of Ni-doped graphene is hydrogen storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Due to 3d electrons and the spillover effect, nickel can hold hy- drogen molecules [18–20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At the same time, graphene is not the only 2D material that can be doped with nickel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Less common 2D materials, such as silicene, germanene and MoS2, have also been used as a substrate for nickel atoms and nanoparticles [21–23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The aforementioned properties of nickel-doped 2D ma- terials are based on a combination of the mechanical char- acteristics of a 2D sheet with the adsorption and cat- alytic properties of nickel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A further development of this ∗ verkhovtsev@mbnexplorer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='com idea is that nickel can be not an alloying impurity but the basis for a 2D material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pure nickel is a metal and cannot exist in the form of the 2D allotrope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' However, an extensive computational search for layered crystals and related 2D materials has recently predicted the ex- istence of several 2D nickel-based materials of the com- position NiX2 (X = O, Cl, Br, I, S, Se) [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Some of these materials have already been synthesized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Technolo- gies developed for widespread 2D MoS2/MoSe2 materials [25] and their analogs based on niobium [26], titanium [27] and tungsten [28] proved to be useful for synthesiz- ing NiX2 monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Large-area NiO2 monolayers sep- arated by lanthanum atoms have been observed using scanning tunneling microscopy [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Recent experiments have proven the feasibility of chemical vapor deposition synthesis of nanometer layers of NiCl2 [30], NiS2 [31] and NiSe2 [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Moreover, NiCl2 films up to four layers thick have been recently synthesized [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In all these mate- rials, nickel atoms are organized in a regular 2D lattice so that the materials possess enhanced adsorption and catalytic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Currently, there is limited experimental information on the properties of such 2D materials since only a few laboratories have synthesized them in limited quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Atomistic computer simulations can serve as an alterna- tive approach to characterize the structure of such novel materials and explore their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This paper presents the results of a computational characterization of a novel 2D material, NiCl2, by means of a multiscale modeling approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' NiCl2 has been cho- sen as an illustrative and experimentally relevant repre- sentative of the Ni-based 2D materials family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A combi- nation of quantum and classical approaches into a unified multiscale methodology permits a comprehensive investi- gation of the structure, mechanical properties, and ther- mal stability of NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Density-functional theory (DFT) calculations provide reference data on geometrical char- 2 acteristics of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' On this basis, a new classi- cal interatomic potential is developed and benchmarked against the results of quantum-mechanical calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The validated potential is used for atomistic modeling of mechanical deformations and thermal stability of NiCl2 by means of the advanced software packages MBN Ex- plorer [33] and MBN Studio [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Through an illustrative case study of NiCl2 we present a general methodology that can be utilized for the com- putational characterization of other novel materials, in- cluding the recently synthesized NiO2 [29], NiS2 [31] and NiSe2 [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' To the best of our knowledge, NiCl2 has not been studied computationally except for a recent study [35], which investigated structural defects in NiCl2 and similar materials and confirmed their stability in the en- vironment by means of DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Section II describes the key aspects of theoretical methods utilized in DFT calculations and corresponding classical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A particular focus is made on the procedure to determine the classical force field parameters for NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This follows with the discussion of the obtained results in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The accuracy of the developed force field is evaluated in Section III A through the analysis of structural and energetic parameters of NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Section III B is devoted to the analysis of mechanical properties of NiCl2 by means of DFT and classical energy minimization calculations using the developed force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In Section III C the force field is utilized to study the thermal stability of NiCl2 and evaluate its melting temperature by means of long- scale MD simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Finally, in Section IV we draw the conclusion from this work and give an outlook for further developments in this research direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' COMPUTATIONAL METHODOLOGY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' DFT calculations DFT calculations of the structural properties of a NiCl2 sheet have been performed using the Quantum ESPRESSO 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='5 software package [36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The plane- wave basis set for valence electron states, generalized gradient approximation (GGA) in the Perdew-Burke- Ernzerhof (PBE) functional form for the exchange- correlation energy [38], and projector-augmented-wave (PAW) pseudopotentials [39, 40] for core-electron inter- actions were used to perform the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' We have employed the kinetic energy cut-off for wave functions of 100 Ry (∼1360 eV) and kinetic energy cut-off for charge density and potential of 600 Ry (∼8160 eV) with checking convergence of energy and charge to increase the simu- lation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In addition, the van der Waals inter- actions have been taken into account through the D3 Grimme (DFT-D3) dispersion corrections [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' DFT- D3 approach possesses improved accuracy due to the use of environment-dependent dispersion coefficients and the inclusion of a three-body component to the dispersion FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Structure of a NiCl2 supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ni and Cl atoms are shown in blue and green colors, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' correction energy term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The interlayer distance between separate NiCl2 sheets has been set equal to 30 Å, which provides sufficient space separation to avoid nonphysical interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Thus, opti- mization of the lattice parameters along the axis perpen- dicular to the NiCl2 sheet plane was unnecessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The atomic equilibrium positions have been obtained by the total minimization of the supercell using the calculated forces and stress on the atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The convergence criterion of self-consistent calculations for ionic relaxations was set to 10−10 eV between two consecutive steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The geom- etry optimization of the unstressed NiCl2 sheet was car- ried out without symmetry constraints until the Hellman- Feynman forces acting on the atoms became smaller than 10−4 hartree/bohr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Such criteria ensure that the abso- lute value of stress is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='01 kbar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The parameters of the supercell have also been optimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The first Bril- louin zone integrations have been performed by using the Monkhorst-Pack k-point sampling scheme [42] with the 6 × 6 × 1 mesh grid together with the Methfessel-Paxton smearing [43] with the smearing width of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='02 Ry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The NiCl2 sheet is represented by a hexagonal Ni9Cl18 periodic cell containing 3 × 3 elementary NiCl2 cells, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The hexagonal symmetry corresponds to the re- sults obtained earlier for this monolayer [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' After op- timization, we obtained the lattice constant a = 3a0 = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='328 Å, where a0 is the parameter of the NiCl2 prim- itive unit cell, while the evaluated Ni–Cl bond length was equal to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='377 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Additional DFT-based geometry optimization calculations have been performed using the Gaussian software package [44] employing three differ- ent exchange-correlation functionals, namely LDA, PBE0 3 and HSE06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Classical MD simulations Classical geometry optimization calculations and MD simulations have been performed by means of MBN Ex- plorer [33] – a software package for advanced multiscale modeling of complex molecular structure and dynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' MBN Explorer permits to simulate a wide range of Meso-Bio-Nano (MBN) systems, including nanosys- tems [33, 45–47];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' nanostructured materials [48–51];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' com- posite and hybrid materials [52–55] with sizes ranging from atomic to mesoscopic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The dedicated MBN Studio toolkit [34] has been utilized to create the systems, pre- pare all necessary input files, and analyze and visualize simulation outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Determination of the classical force field for NiCl2 The first part of this study has been devoted to the determination of parameters of a classical force field for NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The geometry of the 3 × 3 NiCl2 cell obtained after DFT optimization was taken as an initial geometry for the calculations using the classical force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The NiCl2 sheet has been simulated by assigning the NiCl2 super- cell to a simulation box which is replicated in space using periodic boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' First, several MD simu- lations have been carried out with the trial force field parameters fitted for transitional metal dichalides NiF2 [56], ZnCl2 [57], AlCl3 and FeCl3 [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The force field employed in these simulations has been constructed as a sum of the short-term exponential, long-term r−6 power and the Coulomb potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Such force fields have been commonly utilized in MD simulations of various inorganic and ionic crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The simulation box size was set ac- cording to the lattice size optimized by DFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The NiCl2 system was unstable with any of the parameters;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' it was also noticeable that the sheet would bend using most of the given force field potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' As the NiCl2 sheet would bend with all of the above mentioned force fields, the simulation box size has been gradually increased in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' It has been found that the NiCl2 sheet remains flat when the simulation box size is increased by 4%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' As such, the simulation box size used for all further simulations has been set to 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='32 Å × 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='59 Å × 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='00 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Next, a new set of classical force field parameters for the NiCl2 system has been determined in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The Nelder-Mead algorithm [59] has been utilized for the optimization of the force field parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The al- gorithm is simplex-based, meaning that in n-dimensional space it maintains a set of n + 1 points called simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' After calculating the value of the function at each point of the simplex, it extrapolates the behavior of the func- tion to find a new test point and replaces the test points with the worst result for a new one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The process repeat- edly continues until the result converges to the tolerance value or reaches the maximum number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The Nelder-Mead algorithm was implemented in Python via scipy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='minimize library [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This algorithm was used to fit the geometrical parameters of NiCl2 calculated by MBN Explorer [33] to the ones obtained through the DFT-based optimization;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' details are given below in Sec- tion III A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' NiCl2 is an ionic crystal with partial charges on nickel and chlorine atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In order to describe more accurately the mutual polarization interaction between atoms of the system, the r−6 potential has been replaced with a r−4 power potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The resulting total interaction potential between atoms i and j of the system is given by the following expression: U(rij) = Aij exp(−αijrij) + Cij r4 ij + qiqj 4πε0rij (1) The following six parameters of the force field, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1), have been optimized using the Nelder-Mead algorithm: ANi−Cl, αNi−Cl, ACl−Cl, αCl−Cl, C and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Partial charges on Ni and Cl atoms have been set to ensure that the system is electrically neutral, |qNi| = 2|qCl|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A 7 Å cut- off was applied for the exponential and power terms of the potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The Coulomb potential was calculated us- ing the Ewald summation method with precision of 10−5 and the cutoff of 12 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' MD simulations with simulation time of 30 ps and time step of 1 fs, Langevin thermostat temperature of 300 K and damping time of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='1 ps were performed for each generated set of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The following geometrical parameters of NiCl2 have been compared to the results of DFT calculations: (i) Ni– Cl bond length (lNi−Cl);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (ii) Ni–Ni bond length (lNi−Ni);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (iii) Cl–Cl bond length (lCl−Cl);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (iv) Cl–Ni–Cl angle (ϕCl−Ni−Cl), denoted hereafter as ϕ for brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In addi- tion, the fifth parameter, namely the system’s energy as a function of Ni–Cl interplanar distance has also been an- alyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The distance between the Ni and Cl planes has been gradually varied and single point energy calcula- tions were carried out using MBN Explorer for different Ni–Cl interplanar distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The resulting dependence of system’s energy on the Ni-Cl interplanar distance has been fitted by a quadratic function and its minimum, d, was found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The value of d obtained from classical force field calculations was compared to the results of DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Then, the standard deviation σ = � � � �� i �li − lDFT i lDFT i �2 + �ϕ − ϕDFT ϕDFT �2 + �d − dDFT dDFT �2 (2) has been calculated and minimized using the Nelder- Mead algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Here the summation has been carried out over different covalent bonds, namely Ni–Ni, Ni–Cl and Cl–Cl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Each round of optimization consisted of 30 4 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Evolution of parameters of the force field, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1), as a function of the number of global optimization iterations carried out using the Nelder-Mead optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' iterations and the parameters resulting from each opti- mization round were used as the starting parameters for the following one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In this study, 430 subsequent itera- tions have been carried out to determine the parameters of the force field, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The evolution of the force field parameters in the course of the parameter optimization procedure is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The convergence is due to the decrease of σ value, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The final values of the force field param- eters and partial charges derived from the comparison of NiCl2 geometrical parameters to the DFT results are listed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' These values have been employed in all the simulations described below in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' RESULTS AND DISCUSSION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Benchmarking the accuracy of the constructed force field NiCl2 is a novel material for which very little infor- mation has been obtained both experimentally and com- putationally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hence, it is important to evaluate the ac- curacy of the developed classical force field in order to make computational predictions of structural and dy- namical properties of NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Table II lists the values of Ni–Cl, Ni–Ni and Cl–Cl bond lengths and Cl–Ni–Cl angles obtained via different optimization methods: clas- sical force field optimization (column labeled ‘FF’) and DFT optimization calculations using different exchange- correlation functionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In addition to DFT-based cal- culations described in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' II A, several complementary calculations have been carried out using the Gaussian software package [44] to evaluate the optimal geometri- cal parameters of NiCl2 with three different exchange- correlation functionals (PBE0, HSE06 and LDA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The results listed in Table II indicate that the Ni– Cl bond length determined from classical structure opti- mization calculations is close to the values obtained by means of DFT with a relative discrepancy of 6%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The equilibrium Ni–Ni bond length is longer than the values obtained by DFT by about 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At the same time, the equilibrium Cl–Cl bond length is shorter than the values obtained by DFT, with a relative deviation of about 20%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A smaller Ni–Cl interplanar distance results in smaller values of the Cl–Ni–Cl angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The discrepancy might be attributed to limitations of the Nelder-Mead optimiza- tion algorithm exploited in this study and a limited num- ber of optimization iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Overall, the classical force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1), with the pa- rameters listed in Table I describes with a reasonable ac- curacy the geometrical parameters of a 2D NiCl2 sheet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The range of discrepancies between the results of classical force field based and DFT-based geometry optimization calculations is similar to that obtained in earlier studies of transition-metal clusters and bulk materials [47, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mechanical properties of NiCl2 In this study, mechanical properties of a NiCl2 sheet have been studied by both DFT and classical force field calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' DFT-based calculations have used as input the supercell described above in Section II A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The uni- form stretching of the NiCl2 sheet has been simulated by simultaneously increasing the lattice parameters of the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='60- 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='9 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 11000 (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='70- 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='8 (eV Ni-CI 10500 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C α 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='75 A 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='80 10000 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='85 1550- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='78 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='8- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='80 1500- 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='7 (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='82 1 A 1450- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='84 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='6- b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='86- 1400- 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='5- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='88 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 1350- 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='4 - 400 0 100 200 300 400 0 100 200 300 0 100 200 300 400 Number of optimization iterations Number of optimization iterations Number of optimization iterations5 TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Parameters of the force field, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1), derived in this study for the description of a 2D NiCl2 material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Aij (eV) αij (Å−1) C (eV Å4) q, |e| Ni–Cl 10804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='52 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='73 Ni +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='718 Cl–Cl 1465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='99 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='55 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='805 Cl −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='859 TABLE II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Comparison of geometrical parameters of a NiCl2 2D sheet after geometry optimization using the classical force field, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1) (column labeled ‘FF’), and DFT with different exchange-correlation functionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Optimization method FF DFT PBE PBE0 HSE06 LDA average Ni–Cl, Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='38 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='39 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='34 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='38 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='03 Ni–Ni, Å 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='57 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='03 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='44 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='38 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='39 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='05 Cl–Cl, Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='68 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='02 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='41 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='38 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='06 Cl–Ni–Cl, deg 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='8 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='2 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='0 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='8 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='9 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='6 supercell along the x− and y−directions (parallel to the NiCl2 plane) and further optimizing atomic positions in the supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' To estimate elasticity of the sheet, the latter was bi- axially stretched so that the lattice constant a increased according to the relation a = a0(1 + ε) , (3) where a0 is the equilibrium lattice constant and ε is the relative deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The deformation energy ∆E has been calculated as follows: ∆E = E − E0 , (4) where E is the total energy of the deformed system and E0 is the energy of the initial (unperturbed) system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' As the unit cell for DFT- and classical force field optimiza- tion calculations contained different numbers of atoms, the calculated deformation energy value was divided by the number of atoms in the respective unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Figure 3 shows that the dependence of the NiCl2 sheet deformation energy on ε is well described by a quadratic function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The threshold for the elastic deformation was found to be 20 % and 18% for DFT-based and classical force field based optimization calculations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Note that graphene possesses similar elastic properties [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' For 2D materials, the common definition of the Young’s modulus is not applicable, since the thickness of a 2D sheet cannot be determined unambiguously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' There- fore, 2D materials should preferably be characterized by the 2D Young’s modulus E2D, which does not depend on the sheet thickness [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The value of E2D can be evaluated using the formula E2D = 1 2S0 (∆E)′′ , (5) where S0 is the area of the relaxed unit cell and (∆E)′′ is the second derivative of the deformation energy with respect to biaxial deformation ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The value of E2D = FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Deformation energy ∆E of a biaxially stretched NiCl2 sheet as a function of relative deformation ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='4 N/m has been obtained in this study through the DFT calculations of a NiCl2 sheet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The classical force field, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (1), predicts a very close value of the 2D Young’s modulus, E2D = 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='9 N/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' To estimate the common 3D Young’s modulus, the ob- tained value E2D should be divided by the effective sheet thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' According to the results presented in Table II the average NiCl2 sheet thickness (that is the average Cl–Cl bond length obtained from the DFT calculations with different exchange-correlation functionals), is equal to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='35 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Using this value one obtains the Young’s mod- ulus equal to 97 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This value is close to the value of 107 GPa obtained for NiCl2 via DFT calculations in a re- cent study [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Note that the Young’s modulus reported for graphene is about 10 times higher [63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 2D elastic modulus of monolayers with similar structures, MoS2 and WS2, are about 170 N/m [64].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Therefore, the results of calculations carried out in this study predict that NiCl2 is a less rigid material compared to other well-studied 2D sheets, and its Young’s modulus is close to that of GaP monolayer [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Such a behavior is a consequence of the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='2 口 FF optimization DFT optimization 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='20 Relative deformation ε6 corrugated structure of 2D NiCl2 and high elasticity of the Ni–Cl bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Thermal stability of NiCl2 The interatomic force field described in Section II C has been utilized to study thermal properties of a 2D NiCl2 sheet and evaluate its melting temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This has been done by carrying out a series of constant tempera- ture MD simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The system initially equilibrated at 300 K was heated gradually by either 50 degrees (in the temperature range from 300 to 2000 K) or 100 degrees (in the range from 2000 to 5000 K) over 200 ps and then equilibrated over 10 ns at each temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A smaller temperature increment of 20 K has been considered in the temperature range from 1300 to 1500 K to evaluate the melting temperature of NiCl2 more accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The first 4 ns of the simulated trajectories were excluded from the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The remaining part of each trajectory was used to evaluate the average value of the system’s to- tal energy at a given temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The resulting caloric curve, that is the dependence of the time-averaged total energy of the system on temperature, ⟨Etot⟩(T ), is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 4(a) by symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Figure 4(b) shows the temper- ature dependence of heat capacity at constant volume Cv, defined as a derivative of the internal energy of the system over temperature: Cv = �∂E ∂T � v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' (6) The melting process in a macroscopic system occurs at a specific temperature under fixed external pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This process reveals itself as a first-order phase transition via a spike in the heat capacity of the system at the transition temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At the initial phase of NiCl2 heating, the system’s to- tal energy grows linearly with temperature, see the inset in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At temperatures above ∼1200 K the NiCl2 sheet transforms into a pre-melted state when the crys- talline structure is strongly deformed, but the 2D sheet still maintains its integrity (see the simulation snapshot in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A slight increase in the heat capacity as a function of temperature also indicates the onset of sys- tem’s pre-melting (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 4(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The calculated heat capacity curve has a sharp maxi- mum at T ≈ 1315 K, indicating the melting temperature of NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This value is considerably lower than the melt- ing temperature for bulk nickel, Tm(Ni) = 1728 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' On the other hand, the evaluated value of T ≈ 1315 K is of the same order of magnitude as the melting temper- ature of a well-studied 2D material tungsten disulfide, Tm(WS2) ∼ 1520 K [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The evalualted melting temper- ature of NiCl2 also lies within the melting temperature range determined computationally for different 2D metal monoxides and monochlorides such as BeO, MgO, LiCl, and NaCl [66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Caloric curve for NiCl2 (panel (a)) and the cor- responding heat capacity Cv as a function of temperature (panel (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The peak in the Cv(T ) dependence at T ≈ 1315 K indicates the melting temperature of NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At temperatures above the melting point, the system’s total energy ⟨Etot⟩ continues to grow linearly with T un- til the onset of another phase transition takes place at T ∼ 3200 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In contrast to the melting phase transi- tion at Tm ≈ 1315 K, this high-temperature transition takes place over a broad temperature range from approx- imately 3200 to 4400 K, as indicated by a broad peak in the Cv(T ) dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This transition corresponds to the multifragmentation of NiCl2 into separate NiCl2 molecular fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The phase transitions corresponding to the peaks in the heat capacity curve can be visualized by analyzing the radial distribution function (RDF) of atoms in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The RDF characterizes the number of atoms located at certain radial distance r from a reference atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The RDF for Ni–Ni and Cl–Cl atomic pairs, evaluated at different temperatures of the system, are plotted in Figures 5(a) and 5(b), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A rapid change of the RDFs between 1310 and 1320 K indicates the melting phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' It is of particular interest to explore, on the atomistic level, the phase transition from the crystalline NiCl2 to 8600 7000 8800 Total energy (eV) 9000 500 1000 1500 8000 (a) 9000 (b) 4 Heat capacity (eV/K) 2 0 1000 2000 3000 4000 5000 Temperature (K)7 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Radial distribution function for nickel (panel (a)) and clorine (panel (b)) atoms of NiCl2 at different temperatures of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A rapid change of the RDFs between 1310 and 1320 K indicates the melting phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Variation of the system’s total energy, Etot, as a function of simulation time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Colored curves show the Etot(t) dependencies for different temperatures, namely T = 1310 K (just below the phase transition temperature), T = 1320 K (in the phase transition region), as well as T = 1360 K and 1380 K (above the phase transition temperature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Labels (1) to (5) correspond to different time instants for the curve at T = 1320 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' These instants correspond to the system’s snapshots shown in panels (c)–(g) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' its molten state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Figure 6 shows the variation of Etot as a function of simulation time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Colored curves show the Etot(t) dependencies for different temperatures, namely T = 1310 K (just below the phase transition tempera- ture), T = 1320 K (in the phase transition region), as well as T = 1360 K and 1380 K (above the phase transi- tion temperature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At T = 1310 K (black curve in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 6) the total energy of NiCl2 fluctuates around the average value of about −8800 eV over the 10 ns long simulation, which indi- cates that the system remains in the crystalline state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' However, when the temperature increases to 1320 K the system’s energy stays nearly constant within the first ∼3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='7 ns of the simulated trajectory, which follows by a rapid rise of Etot(t) within ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='4 ns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This jump in the total energy is attributed to the formation of holes in the NiCl2 sheet as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7(c,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' After that the system’s total energy decreases as the system relaxes into a highly porous 2D structure (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7(e)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This structure is metastable, and it evolves quickly into an ar- ray of quasi-1D structures, where denser regions are con- nected by thin NiCl2 links (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7(f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This structure is also metastable, and it eventually relaxes into spheri- cal droplets with a diameter of ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='5nm (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Interestingly, as the system’s temperature increases, ran- dom evaporation of single NiCl2 units from the droplets and the fast diffusion of Ni and Cl atoms occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' As a re- sult of these processes, the droplets eventually merge into a 1D NiCl2 nanowire which is thermally stable at tem- peratures below ∼3000 K within the simulation times considered in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' This behavior, however, may be attributed to relative small sizes of the system and the simulation box, which enable the interaction of Ni and Cl atoms with their periodic images across the simu- lation box boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A detailed analysis of system’s size effects on its thermal properties is an interesting topic which however goes beyond the scope of the present study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At higher temperatures, the NiCl2 nanowires dis- integrate and the multifragmentation process takes place, which is seen from the change of the ⟨Etot⟩(T ) slope shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' CONCLUSIONS Two-dimensional (2D) materials possess properties that are technologically relevant and differ from prop- erties of the corresponding bulk counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Monolay- ers of layered crystals are of particular interest because they can be synthesized with a well-known top-down ap- 8550 1310K 2 1320 K 8600 1360K 1380 K Total energy (eV 8650 (3) 8700 8750 8800 8850 0 2 6 8 Simulation time (ns)20 10 (b) CI-CI (a) Ni-Ni 300 K 300 K 600 K 600 K Radial distribution function 8 1000K 1000 K 15 1310 K 1310 K 1320 K 1320 K 6- 4500K 4500 K 10- 4- 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 0 2 8 2 4 6 10 6 8 10 Interatomic distance (A) Interatomic distance (A)8 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Snapshots of the NiCl2 system at different temperatures T as indicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nickel and chlorine atoms are shown in blue and green colors, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Panels (c) to (g) illustrate the system’s structure at different time instants corresponding to labels (1)–(5) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Extensive experimental characterization of such materials is expensive and time-consuming, so computa- tional modeling may provide valuable support for exper- imental research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' In this study we have reported a detailed computer simulation of the recently proposed novel 2D material NiCl2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The combination of a rigorous DFT approach and a classical approach based on an interatomic force field provides insight into the mechanical and thermal prop- erties of this material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' It has been found that the 2D NiCl2 sheet is mechanically stable at the relative defor- mation up to 18−20%, similar to graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At the same time, the obtained Young’s modulus for NiCl2 is 5 − 10 times lower than the Young’s modulus of other commonly studied 2D materials such as graphene, MoS2 and WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' It has been found that the NiCl2 sheet is thermally sta- ble up to the melting point temperature of 1315 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The evaluated melting point for NiCl2 is of the same order of magnitude as the melting temperature of WS2 and lies within the melting temperature range determined computationally for different 2D metal monoxides and monochlorides, such as BeO, MgO, LiCl, and NaCl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' At temperatures above the melting point structural degra- dation of NiCl2 has been observed, which involves several subsequent structural transformations, namely the for- mation of a highly porous 2D sheet, 1D nanowires, and nanodroplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The classical force field developed in this study for sim- ulating the 2D NiCl2 material describes reasonably accu- rate the geometrical parameters of NiCl2, determined on the basis of DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The force field parameters for NiCl2 presented in this study might be useful for fur- ther studies of more complex characteristics of this ma- terial, such as thermal conductivity, defects and phonon spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' The general methodology presented through an illustrative case study of NiCl2 can be utilized for the computational characterization of other novel 2D materi- als, including recently synthesized NiO2, NiS2 and NiSe2 materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' ACKNOWLEDGEMENTS The authors are grateful for the support of this work by the Deutsche Forschungsgemeinschaft provided within the collaborative project “Hydrogen adsorption on novel two-dimensional materials: ab initio and molecular dy- namics study” (project number 452691275).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Deng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' He, Microchem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 160, 105744 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Karimi-Maleh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cellat, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Arıkan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Savk, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Karimi, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Şen, Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 250, 123042 (f) T = 1320 K, t = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='4 ns = 1320 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' t = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='4 ns (g) T = 1320 K, t = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='0 ns9 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ahmad, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bedük, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Majhi, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Salama, Sensors and Actuators B: Chemical 286, 139 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Jagadeesh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Murugesan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Beller, Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 58, 5064 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Oshchepkov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bonnefont, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pronkin, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cherstiouk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ulhaq-Bouillet, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Papaefthimiou, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Parmon, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Savinova, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Power Sources 402, 447 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Luan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xiao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Qiao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Dai, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhang, ACS Nano 12, 3875 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Han, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' You, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xianfeng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Song, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gao, Small 15, 1805435 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [8] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Du, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Luo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yan, ACS Nano 13, 7975 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Shu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hu, ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Interfaces 10, 2360 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bykov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bykova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ponomareva, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tasnádi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chariton, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Prakapenka, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Glazyrin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Smith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mahmood, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Abrikosov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Goncharov, ACS Nano 15, 13539 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phan and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chung, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hydrogen Energy 39, 20294 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [12] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ren, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Luo, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Carbon 149, 609 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [13] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Deokar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Casanova-Cháfer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rajput, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Aubry, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Llobet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Jouiad, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Costa, Sensors and Ac- tuators B: Chemical 305, 127458 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [14] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Peng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A 5, 13072 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hydrogen Energy 44, 6560 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Toh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Poh, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sofer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pumera, Chemistry An Asian Journal 8, 1295 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhao, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 40, 9361 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Szpunar, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cui, ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Interfaces 8, 15232 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [19] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cui, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Qu, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hydrogen Energy 46, 34369 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [20] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Safina, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Krylova, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Murzaev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Baimova, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mulyukov, Materials 14, 2098 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Manjanath, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kumar, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Singh, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 16, 1667 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ren, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ao, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 706, 202 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xiao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tang, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Surf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 443, 274 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [24] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mounet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gibertini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Schwaller, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Campi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Merkys, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Marrazzo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sohier, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Castelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ce- pellotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pizzi, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Marzari, Nature Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 13, 246 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' McCreary, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hanbicki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Robinson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cobas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Culbertson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Friedman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Jerni- gan, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Jonker, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 24, 6449 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cui, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zeng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tsang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Suenaga, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Teo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Nature Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 8, 394 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [27] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sherrell, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sharda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Grotta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ranalli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sokolikova, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pesci, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Palczynski, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bemmer, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mattevi, ACS Omega 3, 8655 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [28] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Shang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Peimyoo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Qiu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sun, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yu, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 2, 131 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ikeda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Krockenberger, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Irie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Naito, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ya- mamoto, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Express 9, 061101 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [30] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Luo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gui, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fu, ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Interfaces 12, 34755 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [31] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Dai, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ma, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Duan, Nano Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 13, 2506 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Song, ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Interfaces 10, 34193 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [33] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yakubovich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nikolaev, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Volkovets, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 33, 2412 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [34] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sushko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 88, 247 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kistanov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Shcherbinin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Botella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Davlet- shin, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 13, 2165 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [36] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Giannozzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Baroni, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bonini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Calandra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Car, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cavazzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ceresoli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chiarotti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cococ- cioni, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Dabo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Corso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' de Gironcoli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fabris, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fratesi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gebauer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gerstmann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gougoussis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kokalj, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lazzeri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Martin-Samos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Marzari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mauri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mazzarello, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Paolini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pasquarello, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Paulatto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sbraccia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Scandolo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sclauzero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Seitsonen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Smogunov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Umari, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wentzcov- itch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Matter 21, 395502 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [37] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Giannozzi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Andreussi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Brumme, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bunau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nardelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Calandra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Car, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cavazzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ceresoli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cococcioni, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Colonna, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Carnimeo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Corso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' de Gironcoli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Delugas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' DiStasio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ferretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Floris, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fratesi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fugallo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gebauer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gerstmann, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Giustino, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gorni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Jia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kawa- mura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kokalj, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Küçükbenli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lazzeri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Marsili, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Marzari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mauri, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='- V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nguyen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' de-la Roza, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Paulatto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Poncé, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rocca, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sabatini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Santra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Schlipf, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Seitso- nen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Smogunov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Timrov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Thonhauser, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Umari, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Vast, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Baroni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mat- ter 29, 465901 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Perdew, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Burke, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ernzerhof, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 77, 3865 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [39] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Blöchl, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 50, 17953 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [40] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kresse and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Joubert, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 59, 1758 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [41] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Grimme, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Antony, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ehrlich, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Krieg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 132, 154104 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [42] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Monkhorst and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Pack, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 13, 5188 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Methfessel and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Paxton, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 40, 3616 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Frisch, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Trucks, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Schlegel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Scuseria, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Robb, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cheeseman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Scal- mani, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Barone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Petersson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nakatsuji, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Caricato, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Marenich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bloino, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Janesko, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gomperts, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mennucci, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hratchian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Or- tiz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Izmaylov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sonnenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Williams- Young, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ding, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lipparini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Egidi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Goings, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Peng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Petrone, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Henderson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ranasinghe, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zakrzewski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rega, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zheng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hada, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ehara, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Toyota, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fukuda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hasegawa, 10 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ishida, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nakajima, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Honda, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kitao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nakai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Vreven, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Throssell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Montgomery, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Peralta, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ogliaro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Bearpark, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Heyd, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Brothers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kudin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Staroverov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Keith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kobayashi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Normand, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Raghavachari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ren- dell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Burant, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Iyengar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tomasi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cossi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Millam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Klene, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Adamo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Cammi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ochterski, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Martin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Morokuma, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Farkas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Foresman, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fox, Gaussian 16 Revision C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='01 (2016), Gaussian Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wallingford CT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [45] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sushko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Volkov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' D 70, 12 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Schramm, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' D 68, 246 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [47] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hanauske, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yakubovich, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 76, 80 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [48] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sushko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A 118, 8426 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [49] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sushko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' D 70, 217 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [50] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' de Vera, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Azzolini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sushko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Abril, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Garcia- Molina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Dapor, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 10, 20827 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [51] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Prosvetov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sushko, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Beilstein J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 12, 1151 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Geng, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' C 113, 6390 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [53] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Geng, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Reid, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Skelton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wheatley, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Johnson, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 81, 214114 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [54] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Moskovkin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Panshenskov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lucas, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 251, 1456 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [55] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Verkhovtsev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nichols, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mason, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Solov’yov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A 126, 2170 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [56] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Atkinson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Grimes, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Owens, Solid State Ionics 150, 443 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [57] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wilson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hutchinson, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Madden, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B 65, 094109 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [58] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Hutchinson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Walters, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rowley, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Madden, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 110, 5821 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [59] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Nelder and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Mead, The Computer Journal 7, 308 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [60] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Gao and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Han, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 51, 259 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [61] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Dmitriev, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Baimova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Savin, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kivshar’, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 93, 571 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [62] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Kochaev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 96, 155428 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [63] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Memarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fereidoon, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Darvish Ganji, Su- perlattices Microstruct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 85, 348 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [64] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Suh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Fu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tongay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Ji, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Neaton, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wu, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 14, 5097 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [65] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Eagleson, Concise Encyclopedia Chemistry (De Gruyter, 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' [66] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Yao, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Tian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Song, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Xi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Song, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Li, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} +page_content=' 116, 17213 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE0T4oBgHgl3EQfWgAs/content/2301.02278v1.pdf'} diff --git a/dtE0T4oBgHgl3EQfoQFr/content/2301.02523v1.pdf b/dtE0T4oBgHgl3EQfoQFr/content/2301.02523v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..56c4b124946bd66d176693d9a8ab98bc694db96a --- /dev/null +++ b/dtE0T4oBgHgl3EQfoQFr/content/2301.02523v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c7be69ca66da0407899385ea6c338be33acda338257f2912f26b6166b6b4b7bf +size 1236374 diff --git a/dtE0T4oBgHgl3EQfoQFr/vector_store/index.faiss b/dtE0T4oBgHgl3EQfoQFr/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..00d7c95a441d527008a668390860ee5c0291c887 --- /dev/null +++ b/dtE0T4oBgHgl3EQfoQFr/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08ec97a69b0fdcee5b99224db67b93474e409c12e4ddbe540014188695e46bde +size 3932205 diff --git a/dtE0T4oBgHgl3EQfoQFr/vector_store/index.pkl b/dtE0T4oBgHgl3EQfoQFr/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c7b72befe9586c922972ae471392a120457e7b74 --- /dev/null +++ b/dtE0T4oBgHgl3EQfoQFr/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:136b33bbfb7d544bde47207b0fb3c3e1a8c2da11769f14b586f3328b82e529ff +size 131740 diff --git a/dtE1T4oBgHgl3EQfyAVc/content/2301.03428v1.pdf b/dtE1T4oBgHgl3EQfyAVc/content/2301.03428v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a0dd1949759f6cc429de75fa7cf2ce15de4266d2 --- /dev/null +++ b/dtE1T4oBgHgl3EQfyAVc/content/2301.03428v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e60ad2967cfa63a5b277758d9eb0d0772cf749239e220d8954852cbc7570f77 +size 4738387 diff --git a/dtE1T4oBgHgl3EQfyAVc/vector_store/index.faiss b/dtE1T4oBgHgl3EQfyAVc/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..396e8f93aee0c4c991ad8391d3559104c55a959a --- /dev/null +++ b/dtE1T4oBgHgl3EQfyAVc/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dd2b38ec346d875a167a2435c720144d26e0e9f42e68b9100ba6aa9dbd8689c8 +size 1703981 diff --git a/e9E2T4oBgHgl3EQfGgbf/content/2301.03659v1.pdf b/e9E2T4oBgHgl3EQfGgbf/content/2301.03659v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..953587e11c980b4e9e8057ab898968c69fd6345a --- /dev/null +++ b/e9E2T4oBgHgl3EQfGgbf/content/2301.03659v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc60195e3876c5d2e0d5da302258a9caba7504c2fb8ee78e05aeeeb00833b66e +size 2486503 diff --git a/e9E2T4oBgHgl3EQfGgbf/vector_store/index.faiss b/e9E2T4oBgHgl3EQfGgbf/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9758168c14a12183bf70fe387ce586c0496fb634 --- /dev/null +++ b/e9E2T4oBgHgl3EQfGgbf/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:518e431ac7d61a04af257d58604847cb872fda856f8c617189e04b7477313bc6 +size 4587565 diff --git a/e9E2T4oBgHgl3EQfGgbf/vector_store/index.pkl b/e9E2T4oBgHgl3EQfGgbf/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..15a2c8e6b80c5796560d2c74dad29568422510da --- /dev/null +++ b/e9E2T4oBgHgl3EQfGgbf/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0eb83b695b35c5cef98240ad9fe333690eaf6116a3726650b510706257c59a0b +size 167281 diff --git a/edFST4oBgHgl3EQfFzg4/content/2301.13719v1.pdf b/edFST4oBgHgl3EQfFzg4/content/2301.13719v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..039362600cca312e567c1c8b85c77bf5fea19cf2 --- /dev/null +++ b/edFST4oBgHgl3EQfFzg4/content/2301.13719v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6ca58db284c280a2830505acf7d24bcc7320f8eb848f68c06b71a8be816a839c +size 238618 diff --git a/edFST4oBgHgl3EQfFzg4/vector_store/index.faiss b/edFST4oBgHgl3EQfFzg4/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..da8e30c3310bae7bfada007a4ba446129880a87b --- /dev/null +++ b/edFST4oBgHgl3EQfFzg4/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9bbf57abcefeb2f8f470a4ddd1e9412f725e43c31495d990a5904757cf21aaaf +size 3145773 diff --git a/edFST4oBgHgl3EQfFzg4/vector_store/index.pkl b/edFST4oBgHgl3EQfFzg4/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..58b86cc9792b124b1c6f97da1da02a558cac146a --- /dev/null +++ b/edFST4oBgHgl3EQfFzg4/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:18b22c0efaf192d41c0e115f7875493d35dc128f1bf80d3fdad6054371447f28 +size 109188 diff --git a/etFKT4oBgHgl3EQfAi12/content/2301.11699v1.pdf b/etFKT4oBgHgl3EQfAi12/content/2301.11699v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9321d1c9454a1b7ea49a066685442d0e0f368955 --- /dev/null +++ b/etFKT4oBgHgl3EQfAi12/content/2301.11699v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a19480555e7595ddc2f968a2823bb97a797468a5d13213046ef8a9a9bc60af12 +size 12855669 diff --git a/etFKT4oBgHgl3EQfAi12/vector_store/index.faiss b/etFKT4oBgHgl3EQfAi12/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..6711c96d36e1e90fc95f3836972b7587c3217ed3 --- /dev/null +++ b/etFKT4oBgHgl3EQfAi12/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8656fa9a2cf9ef6a4571eb0f677c4b2ccc4802d1c37aa3b021d77761471492f9 +size 5636141 diff --git a/etFKT4oBgHgl3EQfAi12/vector_store/index.pkl b/etFKT4oBgHgl3EQfAi12/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3bf6b0ac2847ea56b66d85ae2ca097adc3250051 --- /dev/null +++ b/etFKT4oBgHgl3EQfAi12/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e2fa669279eb8a37c76070f11dc40443e1e45dd639fa8f76a508bbda17ee4f94 +size 190001 diff --git a/etFST4oBgHgl3EQfGDhd/content/tmp_files/2301.13720v1.pdf.txt b/etFST4oBgHgl3EQfGDhd/content/tmp_files/2301.13720v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a7a4ef049fe2970990a347cba091927fea882d2 --- /dev/null +++ b/etFST4oBgHgl3EQfGDhd/content/tmp_files/2301.13720v1.pdf.txt @@ -0,0 +1,4667 @@ +Zero-Shot Cross-Lingual Transfer Language Selection Using +Linguistic Similarity +Juuso Eronen**, Michal Ptaszynski* and Fumito Masui* +*Kitami Institute of Technology, 165, Koencho, Kitami, 090-0015, Hokkaido, Japan + + +ARTICLE INFO +ABSTRACT +Keywords: +We study the selection of transfer languages for different Natural Language Processing tasks, +Multilingual Natural Language Pro- +specifically sentiment analysis, named entity recognition and dependency parsing. In order to +cessing +select an optimal transfer language, we propose to utilize different linguistic similarity metrics +Zero-Shot Learning +to measure the distance between languages and make the choice of transfer language based on this +Transfer Learning +information instead of relying on intuition. We demonstrate that linguistic similarity correlates +Linguistics +with cross-lingual transfer performance for all of the proposed tasks. We also show that there +Language similarity +is a Statistically significant difference in choosing the optimal language as the transfer source +instead of English. This allows us to select a more suitable transfer language which can be used to +better leverage knowledge from high-resource languages in order to improve the performance of +language applications lacking data. For the study, we used datasets from eight different languages +from three language families. +1. Introduction +As with any other supervised learning problem, the tasks in Natural Language Processing (NLP) require sufficiently +large labeled datasets. What sets NLP apart from other fields is the presence of multiple languages the datasets can +appear in. This means that in order to successfully train models for all of the world’s 7,100 languages [1], one would +need to annotate a dataset for each language. This is a very difficult and costly task [2, 3] and has led to a small number +of high-resource languages to dominate the field [4, 5, 6]. This imbalance in the distribution of resources among +languages calls for the need to develop technologies that would make model development for low-resource languages +realistically feasible and efficient. +In order to address this problem, cross-lingual transfer been proposed as a solution. This means leveraging labeled +data from high-resource languages in order to improve the performance on lower-resource languages [7, 8, 9, 10]. +Particularly, the popularity of cross-lingual zero-shot learning, or training on one task/language and testing on a +different task/language completely unknown to the model, has increased greatly in the recent years. Zero-shot learning +has gained in popularity because it does not require any labeled data in the target language for training [11, 12]. +Moreover, zero-shot cross-lingual transfer utilizes large pre-trained multilingual transformer models like Multilingual +BERT [13] or XLM-RoBERTa [14]. These models are fine-tuned with training data in a language called the source +language (usually a high-resource language) and then used to predict entries from other languages than that used in +training, often with satisfying results [11, 15]. +The choice of transfer language is usually done by intuition [16] or simply defaults to English, as is the case +with popular multilingual benchmarks like XTREME [12] and XGLUE [17], even though there is no actual evidence +backing up these choices. Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al. [18] they +found out that English is used in 149 of those papers, followed by German with 82 papers in total. There has also +been some attempts in developing a more systematic transfer language selection method [19]. However, this method +requires training of a ranking model, limiting its use to the tasks and datasets used for training, making it unusable +off-the-shelf for other applications. +Choosing the optimal language for cross-lingual transfer remains widely an understudied problem. Usually, the +suitable source language candidate is decided experimentally or by pure intuition by the individual (researcher, or ML +practitioner) based on their own theoretical knowledge and experience in the field. One option to select the source +language would be by taking a look at languages that are from the same language group as the target language [20]. + +*Corresponding author +b4 eronen. juuso@gmail .com (J. Eronen) +ORCID(s): 0000-0001-9841-3652 (J. Eronen) + +Eronen et al.: Preprint submitted to Elsevier +Page +1 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using +Linguistic Similarity +Juuso Eronena,*, Michal Ptaszynskia and Fumito Masuia +a Kitami Institute of Technology, 165, Koencho, Kitami, 090-0015, Hokkaido, Japan +ARTICLE INFO +ABSTRACT +Keywords: +We study the selection of transfer languages for different Natural Language Processing tasks, + Multilingual Natural Language Pro- +specifically sentiment analysis, named entity recognition and dependency parsing. In order to +cessing +select an optimal transfer language, we propose to utilize different linguistic similarity metrics +Zero-Shot Learning +tomeasure the distance betweenlanguages andmake the choice oftransferlanguage basedon this +Transfer Learning +information instead of relying on intuition. We demonstrate that linguistic similarity correlates +Linguistics +with cross-lingual transfer performance for all of the proposed tasks. We also show that there +Language similarity +is a statistically significant difference in choosing the optimal language as the transfer source +instead of English. This allows us to select a more suitable transfer language which can be used to +better leverage knowledge from high-resource languages in order to improve the performance of +from three language families. +1. Introduction + As with any other supervised learning problem, the tasks in Natural Language Processing (NLP) require sufficiently +large labeled datasets. What sets NLP apart from other fields is the presence of multiple languages the datasets can +appear in. This means that in order to successfully train models for all of the world's 7,100 languages [1], one would +need to annotate a dataset for each language. This is a very difficult and costly task [2, 3] and has led to a small number +of high-resource languages to dominate the field [4, 5, 6]. This imbalance in the distribution of resources among +languages calls for the need to develop technologies that would make model development for low-resource languages +realistically feasible and efficient. +In order to address this problem, cross-lingual transfer been proposed as a solution. This means leveraging labeled + s e +Particularly, the popularity of cross-lingual zero-shot learning, or training on one task/language and testing on a +different task/language completely unknown to the model, has increased greatly in the recent years. Zero-shot learning +has gained in popularity because it does not require any labeled data in the target language for training [11, 12] +BERT [13] or XLM-RoBERTa [14]. These models are fine-tuned with training data in a language called the source +language (usually a high-resource language) and then used to predict entries from other languages than that used in +training, often with satisfying results [11, 15]. +The choice of transfer language is usually done by intuition [16] or simply defaults to English, as is the case +with popular multilingual benchmarks like XTREME [12] and XGLUE [17], even though there is no actual evidence +backing up these choices. Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al. [18] they +found out that English is used in 149 of those papers, followed by German with 82 papers in total. There has also +been some attempts in developing a more systematic transfer language selection method [19]. However, this method +requires training of a ranking model, limiting its use to the tasks and datasets used for training, making it unusable +off-the-shelf for other applications. +suitable source language candidate is decided experimentally or by pure intuition by the individual (researcher, or ML +practitioner) based on their own theoretical knowledge and experience in the field. One option to select the source + +*Corresponding author +@ eronen. juuso@gmail.com (J. Eronen) +ORCID(s): 0000-0001-9841-3652 (J. Eronen) +Eronen et al.: Preprint submitted to Elsevier +Page 1 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +However, this does not guarantee that that the linguistic features shared between the two languages would be similar +[21]. +In order to contribute to the further understanding and solving this problem, we propose a method for choosing the +source language for cross-lingual transfer. We show that there is a correlation between linguistic similarity and model +performance, allowing us to select the best transfer language by comparing the source and target languages using +different linguistic similarity measures. We also show that multilingual transformer models can be used to obtain good +performance on the target language in a zero-shot learning setting. To select the optimal source language for transfer, +we propose to quantify the features of languages to compute a metric that can be used in comparing the closeness of +languages using their linguistic properties. +There are some existing metrics that use linguistic features in order to measure the linguistic distance between +languages [22, 23, 24]. However, as these metrics simply take a handful or only a single linguistic feature into account, +we propose a new linguistic similarity metric, which contains almost two hundred different features, based on the World +Atlas of Language Structures (WALS) [25]. This allows us to not simply rely only on a single or a handful of features, +but to have a more robust metric by better quantifying all aspects of the languages. +In this research we concentrated on three different Natural Language Processing tasks, namely, sentiment analysis, +named entity recognition and dependency parsing. We used datasets from eight different languages, namely English, +German, Danish, Polish, Croatian, Russian, Japanese and Korean. The languages were chosen as they have relatively +high quality datasets available. Also, the languages represent different language families (English, German, Danish - +Germanic; Polish, Russian, Croatian - Slavic; Japanese, Korean - Koreano-Japonic language family). This also gives +us the opportunity to study the efficacy of cross-lingual transfer learning between and within language family groups. +In previous research [26] we showed that cross-lingual transfer performance correlates with the linguistic similarity +of the prediction target language and the source language used for fine-tuning the models. Our hypothesis is that this is +true for also other NLP tasks. In the experiments, we used multilingual transformer models, namely Multilingual BERT +and XLM-RoBERTa, which were fine-tuned by using each of the languages as source and target. We calculated the +linguistic similarity between all of our proposed languages using four different linguistic similarity metrics, EzGlot, +eLinguistics, a quantified model based on WALS and averaged lang2vec. To demonstrate the effectiveness of our +method, we then measured the correlation between the zero-shot cross-lingual transfer performance and linguistic +similarity. +The paper outline is as follows. In Section 2 we go through all areas of previous research that are addressed in +this paper. In Section 3 we describe all the tasks and datasets applied to this research and present their differences and +features. In Section 4 we describe the applied multilingual transformer models and the linguistic similarity metrics used +in this research. In Section 5 we describe our experiment workflow and go through all the results from the conducted +experiments. In Section 6 we discuss the results in general and bring out the most interesting findings in relation to the +research goals. +1.1. Contributions of This Study +The goal of this research is to develop a method for cross-lingual transfer language selection. Most often, the choice +of a transfer source is made purely by relying on the practitioner’s own judgement, using their accumulated experience +on the field and theoretical knowledge or simply choosing a language from the same language family as the target +[20]. The current methods have many problems as they are prone to bias from the practitioner and also completely +unoptimized. In fact, one could even say that there is no systematic method usable off-the-shelf that could be used to +determine, which languages should be considered as the cross-lingual transfer source. +We propose to investigate the possibility that different linguistic similarity metrics could be utilized when trying to +find possible source language candidates for cross-lingual transfer also for other tasks than abusive language detection. +We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more +similar languages, we would be able to achieve higher model performance. +This research is was conducted in order to confirm the findings of our previous research [26] also with other Natural +Language Processing tasks. We improved the calculation process of the linguistic similarity metric quantified from the +World Atlas of Language Structures. This was done by selecting all of the features that would have a defined value for +both languages in all possible language pairs instead of having to be shared between all of the languages, increasing +the robustness of the metric. Also, we applied a linguistic similarity metric based on lang2vec by Littell et al. [27]. +The main contributions of this work are as follows: + +Eronen et al.: Preprint submitted to Elsevier +Page 2 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +However, this does not guarantee that that the linguistic features shared between the two languages would be similar +[21]. +In order to contribute to the further understanding and solving this problem, we propose a method for choosing the +source language for cross-lingual transfer. We show that there is a correlation between linguistic similarity and model +performance, allowing us to select the best transfer language by comparing the source and target languages using +different linguistic similarity measures. We also show that multilingual transformer models can be used to obtain good +performance on the target language in a zero-shot learning setting. To select the optimal source language for transfer, +we propose to quantify the features of languages to compute a metric that can be used in comparing the closeness of +languages using their linguistic properties. +There are some existing metrics that use linguistic features in order to measure the linguistic distance between +languages [22, 23, 24]. However, as these metrics simply take a handful or only a single linguistic feature into account, +we propose a new linguistic similarity metric, which contains almost two hundred different features, based on the World +Atlas of Language Structures (WALS) [25]. This allows us to not simply rely only on a single or a handful of features, +but to have a more robust metric by better quantifying all aspects of the languages. +In this research we concentrated on three different Natural Language Processing tasks, namely, sentiment analysis. +named entity recognition and dependency parsing. We used datasets from eight different languages, namely English, +German, Danish, Polish, Croatian, Russian, Japanese and Korean. The languages were chosen as they have relatively +Germanic; Polish, Russian, Croatian - Slavic; Japanese, Korean - Koreano-Japonic language family). This also gives +us the opportunity to study the efficacy of cross-lingual transfer learning between and within language family groups. +In previous research [26] we showed that cross-lingual transfer performance correlates with the linguistic similarity +of the prediction target language and the source language used for fine-tuning the models. Our hypothesis is that this is +true for also other NLP tasks. In the experiments, we used multilingual transformer models, namely Multilingual BERT +and XLM-RoBERTa, which were fine-tuned by using each of the languages as source and target. We calculated the +linguistic similarity between all of our proposed languages using four different linguistic similarity metrics, EzGlot +eLinguistics, a quantified model based on WALS and averaged lang2vec. To demonstrate the effectiveness of our +method, we then measured the correlation between the zero-shot cross-lingual transfer performance and linguistic +similarity. +The paper outline is as follows. In Section 2 we go through all areas of previous research that are addressed in +features. In Section 4 we describe the applied multilingual transformer models and the linguistic similarity metrics used +in this research. In Section 5 we describe our experiment workflow and go through all the results from the conducted +experiments. In Section 6 we discuss the results in general and bring out the most interesting findings in relation to the +research goals. +1.1. Contributions of This Study +The goal of this research is to develop a method for cross-lingual transfer language selection. Most often, the choice +of a transfer source is made purely by relying on the practitioner's own judgement, using their accumulated experience +on the field and theoretical knowledge or simply choosing a language from the same language family as the target +[20]. The current methods have many problems as they are prone to bias from the practitioner and also completely +unoptimized. In fact, one could even say that there is no systematic method usable off-the-shelf that could be used to +determine, which languages should be considered as the cross-lingual transfer source. +We propose to investigate the possibility that different linguistic similarity metrics could be utilized when trying to +find possible source language candidates for cross-lingual transfer also for other tasks than abusive language detection. +We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more +similar languages, we would be able to achieve higher model performance. +This research is was conducted in order to confirm the findings of our previous research [26] also with other Natural +Language Processing tasks. We improved the calculation process of the linguistic similarity metric quantified from the +World Atlas of Language Structures. This was done by selecting all of the features that would have a defined value for +both languages in all possible language pairs instead of having to be shared between all of the languages, increasing +the robustness of the metric. Also, we applied a linguistic similarity metric based on lang2vec by Littell et al. [27]. +The main contributions of this work are as follows: +Eronen et al.: Preprint submitted to Elsevier +Page 2 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +e We confirm the transfer language selection method based on linguistic similarity with multiple NLP tasks. +e We demonstrate the efficacy of two multidomain linguistic similarity metrics: improved quantified WALS and +averaged lang2vec. +e We show that there is a significant difference in choosing an optimal transfer source language over English. +In practice, we propose to fine-tune cross-lingual pretrained transformer models, specifically mBERT and XLM-R, +on three different Natural Language Processing tasks (sentiment analysis, named entity recognition and dependency +parsing) using each of our proposed languages (English, German, Danish, Polish, Russian, Japanese, Korean) and then +perform zero-shot prediction on the rest of the languages of the proposed set. We calculated the linguistic similarity +between all of our proposed languages using four different linguistic similarity metrics, EzGlot, eLinguistics, quantified +World Atlas of Language Structures and an averaged lang2vec proximity vectors. We then calculated the correlation +between the zero-shot cross-lingual transfer performance and linguistic similarity to show the effectiveness of our +method. A block-diagram of the system is shown in Figure 1. +Source language +Target language +data +Linguistic +data +| +similarity +g — +ee +Output +Fine-tuning += Fine-tuned model +Prediction + + + + + +Pre-trained +multilingual +transformer model +Figure 1: Block diagram of the proposed system +2. Previous Research +2.1. Measuring Linguistic Similarity +Already in 2006, the relation between the difficulty of language learning and the similarity of languages in general +was discussed in a book by Ringbom [28]. The Finnish language scene was presented as an example in order to +demonstrate the importance of cross-linguistic similarity in foreign language learning [29]. In short, he showed that +Finnish-speaking Finns have a harder time learning English than Swedish-speaking Finns. The reason behind this being +the closer relation between Swedish and English languages, giving an advantage to Swedish speakers when it comes +to transferring the existing linguistic knowledge. +Cottorell et al. [30] showed that not every language is equally difficult to model. It was also shown by them that there +is a correlation between the morphological richness of a language and the performance of the model. This means that +the more complex the language is, the more difficult it becomes to model. This is hinting that more simple languages +might not work so well when used as cross-lingual transfer sources for languages of higher complexity. This also implies +that the direct relatedness (for example, language family) of languages should not be the only criteria in deciding the +cross-lingual transfer source language as other features of the languages should also be thoroughly considered in order +to find the most optimal transfer language. +There has been some research in attempting to quantify a linguistic similarity metric from different linguistic +features. However, these metrics mostly commonly rely only on one or just a few different linguistic features. For +example, by comparing the consonants contained in a predefined set of words while taking into account the order + +Eronen et al.: Preprint submitted to Elsevier +Page 3 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +. We confirm the transfer language selection method based on linguistic similarity with multiple NLP tasks. +. We demonstrate the efficacy of two multidomain linguistic similarity metrics: improved quantified WALS and +averaged lang2vec. +. We show that there is a significant difference in choosing an optimal transfer source language over English +In practice, we propose to fine-tune cross-lingual pretrained transformer models, specifically mBERT and XLM-R, +on three different Natural Language Processing tasks (sentiment analysis, named entity recognition and dependency +parsing) using each of our proposed languages (English, German, Danish, Polish, Russian, Japanese, Korean) and then +perform zero-shot prediction on the rest of the languages of the proposed set. We calculated the linguistic similarity +between all of our proposed languages using four different linguistic similarity metrics, EzGlot, eLinguistics, quantified +World Atlas of Language Structures and an averaged lang2vec proximity vectors. We then calculated the correlation +between the zero-shot cross-lingual transfer performance and linguistic similarity to show the effectiveness of our +method. A block-diagram of the system is shown in Figure 1. +Source language +Target language +data +data +Linguistic + similarity +indno +Pre-trained +Fine-tuning +Fine-tuned model +Prediction +multilingual +transformer model +Figure 1: Block diagram of the proposed system +2. Previous Research +2.1. Measuring Linguistic Similarity +Already in 2006, the relation between the difficulty of language learning and the similarity of languages in general +was discussed in a book by Ringbom [28]. The Finnish language scene was presented as an example in order to +demonstrate the importance of cross-linguistic similarity in foreign language learning [29]. In short, he showed that +Finnish-speaking Finns have a harder time learning English than Swedish-speaking Finns. The reason behind this being +the closer relation between Swedish and English languages, giving an advantage to Swedish speakers when it comes +to transferring the existing linguistic knowledge. +Cottorell et al. [3O] showed that not every language is equally difficult to model. It was also shown by them that there +is a correlation between the morphological richness of a language and the performance of the model. This means that +the more complex the language is, the more difficult it becomes to model. This is hinting that more simple languages +that the direct relatedness (for example, language family) of languages should not be the only criteria in deciding the +cross-lingual transfer source language as other features of the languages should also be thoroughly considered in order +to find the most optimal transfer language. +There has been some research in attempting to quantify a linguistic similarity metric from different linguistic +features. However, these metrics mostly commonly rely only on one or just a few different linguistic features. For +example, by comparing the consonants contained in a predefined set of words while taking into account the order +Eronen et al.: Preprint submitted to Elsevier +Page 3 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +in which these consonants appear in the words, one can calculate a genetic proximity score between two languages. +This is implemented as the eLinguistics [23] similarity metric. The metric makes it possible to get information about +the direct relatedness of the compared languages. However, once the used languages start to become more and more +distant, accidental similarities in consonants are introduced and there is a significant increase in the error rate. This is +also acknowledged by the authors. Even though the metric is easy to calculate, it completely ignores all other kinds of +linguistic features, for example, semantic, syntactic, or morphological. +Another method to calculate a similarity metric is to take a look at the vocabularies of two languages and concentrate +on their similarity. EzGlot [24] uses lexical similarity as its basis for computation. The metric uses lexical similarity +between the two compared languages while at the same time taking into account the amount of words the two languages +are sharing with other languages. This allows for the calculation of similarity between the two languages in relation to +the similarity with every other language. +Aggarwal et al. [22] proposed a linguistic similarity metric that utilizes multiple aspects of languages. Their metric, +called STL, is based on Semantic, Terminological (lexical) and Linguistic (syntactic) similarity of languages. The +method outperformed previous similarity metrics that concentrated only on one of the previously mentioned aspects +(31, 32]. They noticed that the terminological measures showed a much higher contribution when compared to the +other two features. However, in order to use the metric, the structure of the used vocabulary dataset needs to be in the +form of a complex ontology. Due to this fact and because of the dataset only consisting of German, French, Italian, +Dutch, Spanish and English, and due to the dataset used by the authors being no longer available, it was not feasible +to use the metric as a part of this research. +The lang2vec developed by Littell et al. [27] is a database that represents languages as typological, phylogenetic, +and geographical vectors, which are derived from a number of different linguistic resources, for example, WALS +[25], PHOIBLE [33], Ethnologue [1], and Glottolog [34]. Each of these utilize multiple different features, making +them more robust than the EzGlot or eLinguistics metrics. The lang2vec is a fully-fledged library that can be used to +query for different linguistic features and to get pre-computed distances between languages, based on some typological +information. +The World Atlas of Language Structures (WALS) project [25] consists of a database that catalogs phonological, +word semantic and grammatical knowledge for 2,662 languages with almost two hundred different linguistic features +from multiple domains. Using a linguistic similarity measure quantified from the WALS database into would allow +a more robust method to measure similarity and would aid capturing all aspects of the languages instead of relying +only on a single or a handful of linguistic features. Concentrating purely on using WALS to create a similarity metric +would also preserve homogeneity and allow a more explainable and controllable implementation. In previous research +[26] we proposed a novel linguistic similarity metric quantified from the WALS database. This metric proved to be +more robust compared to the other metrics, at least for the applied abusive language detection task, as it was based on +multiple kinds of linguistic features. +2.2. Transfer Language Selection +Selecting the optimal language for cross-lingual transfer remains mostly an unanswered question. Most of the time, +the decision of which language to use as the transfer source comes up to the practitioner’s consideration. This is usually +done experimentally or by intuition [20, 35, 16] or by simply relying on English [36, 37, 38]. For example, in order to +get a more successful transfer, Cottorell and Heigold [20] focused on using languages belonging to the same language +family as the cross-lingual transfer target. However, even though the languages are part of the same language family, +two languages could be very distant for example when looking at the complexity of grammar, which means that it does +not guarantee them sharing the same linguistic features [21]. +A common way for choosing the transfer language is to simply default to English. The reason being that it is the +de-facto highest resource language available for most NLP tasks [4]. This is also the case with popular multilingual +benchmarks like XTREME [12] and XGLUE [17]. Although, recently benchmarks like XTREME-R [39] have started +to include cross-lingual training sets. Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al. +[18] they found out that English was used in 149 papers, followed by German with 82 papers. Additionally, it has been +shown that other languages than English, for example, German and Russian tend to work better as transfer sources +[40]. +Duong et al. [41] found out that choosing the transfer language based on language family is not optimal for many +languages. For example, their experiments showed that the best source language for both Finnish and German is +Czech, even though being from a different language family than the targets. They concluded that apparently, the best + +Eronen et al.: Preprint submitted to Elsevier +Page 4 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +in which these consonants appear in the words, one can calculate a genetic proximity score between two languages. +This is implemented as the eLinguistics [23] similarity metric. The metric makes it possible to get information about +the direct relatedness of the compared languages. However, once the used languages start to become more and more +distant, accidental similarities in consonants are introduced and there is a significant increase in the error rate. This is +also acknowledged by the authors. Even though the metric is easy to calculate, it completely ignores all other kinds of +linguistic features, for example, semantic, syntactic, or morphological. +Another method to calculate a similarity metric is to take a look at the vocabularies of two languages and concentrate +on their similarity. EzGlot [24] uses lexical similarity as its basis for computation. The metric uses lexical similarity +between the two compared languages while at the same time taking into account the amount of words the two languages +are sharing with other languages. This allows for the calculation of similarity between the two languages in relation to +the similarity with every other language. +Aggarwal et al. [22l proposed a linguistic similarity metric that utilizes multiple aspects of languages. Their metric, +called STL, is based on Semantic, Terminological (lexical) and Linguistic (syntactic) similarity of languages. The +method outperformed previous similarity metrics that concentrated only on one of the previously mentioned aspects +[31, 32]. They noticed that the terminological measures showed a much higher contribution when compared to the +other two features. However, in order to use the metric, the structure of the used vocabulary dataset needs to be in the +form of a complex ontology. Due to this fact and because of the dataset only consisting of German, French, Italian, +Dutch, Spanish and English, and due to the dataset used by the authors being no longer available, it was not feasible +to use the metric as a part of this research +The lang2vec developed by Littell et al. [27] is a database that represents languages as typological, phylogenetic, +and geographical vectors, which are derived from a number of different linguistic resources, for example, WALS +[25], PHOIBLE [33], Ethnologue [1], and Glottolog [34]. Each of these utilize multiple different features, making +them more robust than the EzGlot or eLinguistics metrics. The lang2vec is a fully-fledged library that can be used to +query for different linguistic features and to get pre-computed distances between languages, based on some typological +information. +The World Atlas of Language Structures (WALS) project [25] consists of a database that catalogs phonological, +word semantic and grammatical knowledge for 2,662 languages with almost two hundred different linguistic features +from multiple domains. Using a linguistic similarity measure quantified from the WALS database into would allow +a more robust method to measure similarity and would aid capturing all aspects of the languages instead of relying +only on a single or a handful of linguistic features. Concentrating purely on using WALS to create a similarity metric +more robust compared to the other metrics, at least for the applied abusive language detection task, as it was based on +multiple kinds of linguistic features. +2.2. Transfer Language Selection + Selecting the optimal language for cross-lingual transfer remains mostly an unanswered question. Most of the time, +the decision of which language to use as the transfer source comes up to the practitioner's consideration. This is usually +done experimentally or by intuition [20, 35, 16] or by simply relying on English [36, 37, 38]. For example, in order to +get a more successful transfer, Cottorell and Heigold [20] focused on using languages belonging to the same language +family as the cross-lingual transfer target. However, even though the languages are part of the same language family, +two languages could be very distant for example when looking at the complexity of grammar, which means that it does +not guarantee them sharing the same linguistic features [21]. +A common way for choosing the transfer language is to simply default to English. The reason being that it is the +de-facto highest resource language available for most NLP tasks [4]. This is also the case with popular multilingual +benchmarks like XTREME [12] and XGLUE [17]. Although, recently benchmarks like XTREME-R [39] have started +to include cross-lingual training sets. Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al. +[18] they found out that English was used in 149 papers, followed by German with 82 papers. Additionally, it has been +[40]. +Duong et al. [41] found out that choosing the transfer language based on language family is not optimal for many +languages. For example, their experiments showed that the best source language for both Finnish and German is +Czech, even though being from a different language family than the targets. They concluded that apparently, the best +Eronen et al.: Preprint submitted to Elsevier +Page 4 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +source language for cross-lingual transfer is not predictable from language family information. Instead, they proposed +two methods for transfer language selection. The first being based on the Jensen-Shannon divergence between the +distributions of parts-of-speech n-grams on a pair of languages. The second method was based on the word-order +information feature in WALS. Both of these methods showed improvements over choosing English or a language from +the same family as the target. They also experimented with using multiple source languages, which further improved +the performance. +It has been shown [42, 43, 44] that transferring from many high-resource languages at the same time can yield +higher results compared to selecting only a single language as the transfer source. However, these methods do not +consider the actual relation between the source and the target languages and the amount of contribution of each of the +languages to the total score. Also, Nooralahzadeh et al. [45] discovered that certain morphosyntactic features shared +between languages tend to give a boost to cross-lingual transfer performance. +Lin et al. [19] developed a ranking method for possible transfer language candidates using the lang2vec metrics +[27] together with dataset dependent features like word overlap and type-token ratio. they discovered that using both +the dataset independent linguistic features and database dependent features to train the ranking model yields the best +results. However, as their method requires training of the ranking model, it is dependent on the tasks and datasets used +for training and is not usable out of the box for other applications. +In another study [38] it was shown that the transfer performance with English as the source correlates with the +linguistic similarity metrics of lang2vec [27], meaning that target languages more similar to English yielded higher +scores. They found out that similarity of syntactic structures especially play an important role in selecting the source +language for tasks like parts-of-speech tagging (POS), named entity recognition (NER) and dependency parsing (DEP). +They also discovered that the fine-tuning corpus size of the target language also makes a difference considering the +cross-lingual transfer performance, especially for higher level tasks like question answering. However, their research +concentrated only on using English as the source language and the capabilities of other languages as the transfer source +were left completely unexplored. +Martinez et al. [46] found out that differences in language morphology in cross-lingual transfer generally lead to +a higher loss than when transferring between languages with the same morphological typology. Furthermore, they +showed that parts-of-speech tagging tends to be more sensitive towards changes in morphological typology compared +to sentiment analysis, which seems to be more sensitive to variables related to the fine-tuning data and the transfer +performance being generally harder to predict. +In their research, Gaikwad et al. [10] discovered that there could be a relation between cross-lingual transfer +performance and language similarity. They classified entries in the Marathi language using multiple languages, +specifically Bengali, Greek, English, Turkish and Hindi as cross-lingual transfer sources. Their results showed that +the closest language of these to Marathi, Hindi, also had the highest performance. This hints that a solution to the +problem of cross-lingual transfer language selection could be found with the aid of linguistic similarity. +In our previous research [26], we showed that there is a correlation between language similarity metrics and cross- +lingual transfer efficiency, at least for offensive language identification. This allows for choosing of an ideal transfer +language by using different metrics to compare the similarity languages without having to rely on one’s intuition. We +also showed that choosing a transfer language, for example, only by looking at the language family is not always the +best option. +3. Tasks +In this research, we concentrate on three different NLP tasks. Sentiment analysis as a document classification +task. Named entity recognition as a token classification task. And lastly, dependency parsing for understanding the +importance of syntax and grammar in cross-lingual transfer. +We hypothesize that the zero-shot cross-lingual transfer performance correlates with the linguistic similarity of the +source and target languages. In order to confirm our hypothesis, we used datasets from eight different languages, namely +English, German, Danish, Polish, Russian, Croatian, Japanese and Korean for all of the tasks. We chose these languages +as they had high quality datasets compared to other options and because the languages represent three different language +families (English, German, Danish - Germanic; Polish, Russian, Croatian - Slavic; Japanese, Korean - Koreano-Japonic +language family). This also gives us the opportunity to study the efficacy of cross-lingual transfer learning between +and within different language family groups. + +Eronen et al.: Preprint submitted to Elsevier +Page 5 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +source language for cross-lingual transfer is not predictable from language family information. Instead, they proposed +two methods for transfer language selection. The first being based on the Jensen-Shannon divergence between the +distributions of parts-of-speech n-grams on a pair of languages. The second method was based on the word-order +information feature in WALS. Both of these methods showed improvements over choosing English or a language from +the same family as the target. They also experimented with using multiple source languages, which further improved +the performance. +It has been shown [42, 43, 44] that transferring from many high-resource languages at the same time can yield +higher results compared to selecting only a single language as the transfer source. However, these methods do not +consider the actual relation between the source and the target languages and the amount of contribution of each of the +languages to the total score. Also, Nooralahzadeh et al. [45] discovered that certain morphosyntactic features shared +between languages tend to give a boost to cross-lingual transfer performance. +Lin et al. [19] developed a ranking method for possible transfer language candidates using the lang2vec metrics +[27] together with dataset dependent features like word overlap and type-token ratio. they discovered that using both +the dataset independent linguistic features and database dependent features to train the ranking model yields the best +results. However, as their method requires training of the ranking model, it is dependent on the tasks and datasets used +for training and is not usable out of the box for other applications. +In another study [38] it was shown that the transfer performance with English as the source correlates with the +scores. They found out that similarity of syntactic structures especially play an important role in selecting the source +language for tasks like parts-of-speech tagging (POS), named entity recognition (NER) and dependency parsing (DEP). +They also discovered that the fine-tuning corpus size of the target language also makes a difference considering the +cross-lingual transfer performance, especially for higher level tasks like question answering. However, their research +concentrated only on using English as the source language and the capabilities of other languages as the transfer source +were left completely unexplored. +Martinez et al. [46] found out that differences in language morphology in cross-lingual transfer generally lead to +a higher loss than when transferring between languages with the same morphological typology. Furthermore, they +showed that parts-of-speech tagging tends to be more sensitive towards changes in morphological typology compared +to sentiment analysis, which seems to be more sensitive to variables related to the fine-tuning data and the transfer +performance being generally harder to predict. +In their research, Gaikwad et al. [10] discovered that there could be a relation between cross-lingual transfer +specifically Bengali, Greek, English, Turkish and Hindi as cross-lingual transfer sources. Their results showed that +the closest language of these to Marathi, Hindi, also had the highest performance. This hints that a solution to the +problem of cross-lingual transfer language selection could be found with the aid of linguistic similarity. +In our previous research [26], we showed that there is a correlation between language similarity metrics and cross- +lingual transfer efficiency, at least for offensive language identification. This allows for choosing of an ideal transfer +language by using different metrics to compare the similarity languages without having to rely on one's intuition. We +also showed that choosing a transfer language, for example, only by looking at the language family is not always the +best option. +3. Tasks +In this research, we concentrate on three different NLP tasks. Sentiment analysis as a document classification +task. Named entity recognition as a token classification task. And lastly, dependency parsing for understanding the +importance of syntax and grammar in cross-lingual transfer. +We hypothesize that the zero-shot cross-lingual transfer performance correlates with the linguistic similarity of the +source and target languages. In order to confirm our hypothesis, we used datasets from eight different languages, namely +English, German, Danish, Polish, Russian, Croatian, Japanese and Korean for all of the tasks. We chose these languages +as they had high quality datasets compared to other options and because the languages represent three different language +families (English, German, Danish - Germanic; Polish, Russian, Croatian - Slavic; Japanese, Korean - Koreano-Japonic +language family). This also gives us the opportunity to study the efficacy of cross-lingual transfer learning between +and within different language family groups. +Eronen et al.: Preprint submitted to Elsevier +Page 5 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +3.1. Sentiment Analysis +In the field of NLP, sentiment analysis is one of the most active research areas [47]. The recent research in sentiment +analysis, as with many other NLP tasks, has mainly focused on using deep neural networks and pretrained language +models [48, 49, 50, 51, 52]. The popularization of multilingual transformer models has made it possible to utilize +cross-lingual transfer in order to train models for low-resource languages. +Rasooli et al. [53] used a set of 16 languages from different language families, namely Indo-European, Turkic, +Afro-Asiatic, Uralic, and Sino-Tibetan, to learn a sentiment analysis model. Their experiments showed that for most +target languages the best result can be obtained by leveraging from multiple source languages at the same time. Also, +datasets of a similar genre and domain tended to yield higher results when compared to out-of-domain and dissimilar +genres. +Pelicon et al. [54] used zero-shot cross-lingual transfer to classify Croatian news articles with an mBERT model +fine-tuned using Slovene data with good results. In addition, Kumar et al. [55] used XLM-R and performed cross- +lingual transfer from English to Hindi. Their model compared favorably to the used benchmarks and gives an effective +solution to the analysis of sentiments in a resource-poor scenario. +The majority of the sentiment analysis datasets used in this research consists of product reviews, as we attempted +to keep the domain the same throughout the languages. However, for some languages, we were unable to find such +data, most notably Croatian, which consists of news articles. We also had to adjust the labels of some of the datasets so +that they would match among all of the languages. Training and evaluation splits were retained from original datasets +if possible, otherwise datasets were split to 80% training and 20% evaluation. +For this research we used the Multilingual Amazon Reviews Corpus [56], which covers English, Japanese and +German. The dataset contains over 200,000 reviews for each language collected between 2015 and 2019. The reviews +are labeled from one to five stars. However, as the other datasets used in this research used a two-point scale (positive, +negative), we adjusted the labels accordingly (positive: 5 and 4 stars, negative: 2 and +1 stars). +For Danish, we used a dataset containing almost 45,000 reviews crawled from Trustpilot by Alessandro Gianfelici! . +For Polish, we used the PolEmo 2.0 corpus [57]. This dataset contains over 8,000 reviews from the domains of medicine, +hotels, products and school. For both of these datasets, we also had to adjust the labels of this dataset to a two-point +scale similarly to the Amazon Reviews dataset. +The Russian dataset used in this research was a product review dataset by Smetanin et al. [58]. The dataset consists +of 90,000 automatically labeled reviews on the topic "Women’s Clothes and Accessories", split evenly among three +classes (positive, neutral, negative). The Croatian dataset is the same used by Pelicon et al. [54], containing around +2,000 news articles. The articles were collected from 24sata, one of the leading Croatian media companies. The +annotations were done by 6 people using a five-level Likert scale. The annotations were later adjusted to a three-point +scale by the authors. For the purpose of our experiments, in case of both datasets, we left out the neutral reviews in +order to binarize the labels. +The Korean dataset used in this research was Naver sentiment movie corpus v1.0*. The dataset consists of Naver +Movie reviews, with 100,000 positive and negative samples. The reviews were originally rated from one to ten, but the +creators binarized the dataset prior to publishing. +3.2. Named Entity Recognition +The research on Named Entity Recognition (NER) has also shifted towards using Deep Neural Networks and most +recently, pretrained transformer models [59, 60, 61]. Cross-lingual transfer has also been applied to NER in multiple +research. Fritzler et al. [62] used a metric-learning method to at the time outperform a state-of-the-art recurrent neural +network method and showed to be capable in both few-shot and zero-shot settings. Moon. et al. [63] used multilingual +BERT to fine-tune a NER model in multiple languages and showed it to be more effective than a model fine-tuned +only on a single language. This demonstrates that the model can leverage knowledge from other languages in order to +improve its performance on one. +Hvingelby et al. [64] presented a Danish NLP resource based on the Danish Universal Dependencies treebank and +showed that transferring from other Germanic languages, especially from English and Norwegian, to Danish can yield +good results when using mBERT. However, using other Germanic languages in addition to Danish did not give any +better results compared to fine-tuning only with Danish in their case. + +‘https ://github.com/AlessandroGianfelici/danish_reviews_dataset +*nttps: //github.com/e9t/nsmc + +Eronen et al.: Preprint submitted to Elsevier +Page 6 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +3.1. Sentiment Analysis +In the field of NLP, sentiment analysis is one of the most active research areas [47]. The recent research in sentiment +analysis, as with many other NLP tasks, has mainly focused on using deep neural networks and pretrained language +models [48, 49, 50, 51, 52]. The popularization of multilingual transformer models has made it possible to utilize +cross-lingual transfer in order to train models for low-resource languages +Afro-Asiatic, Uralic, and Sino-Tibetan, to learn a sentiment analysis model. Their experiments showed that for most +target languages the best result can be obtained by leveraging from multiple source languages at the same time. Also, +datasets of a similar genre and domain tended to yield higher results when compared to out-of-domain and dissimilar +genres. +Pelicon et al. [54] used zero-shot cross-lingual transfer to classify Croatian news articles with an mBERT model +fine-tuned using Slovene data with good results. In addition, Kumar et al. [55] used XLM-R and performed cross- +lingual transfer from English to Hindi. Their model compared favorably to the used benchmarks and gives an effective +solution to the analysis of sentiments in a resource-poor scenario. +The majority of the sentiment analysis datasets used in this research consists of product reviews, as we attempted +to keep the domain the same throughout the languages. However, for some languages, we were unable to find such +data, most notably Croatian, which consists of news articles. We also had to adjust the labels of some of the datasets so +that they would match among all of the languages. Training and evaluation splits were retained from original datasets +if possible, otherwise datasets were split to 80% training and 20% evaluation. +For this research we used the Multilingual Amazon Reviews Corpus [56], which covers English, Japanese and +German. The dataset contains over 200,000 reviews for each language collected between 2015 and 2019. The reviews +are labeled from one to five stars. However, as the other datasets used in this research used a two-point scale (positive, +negative), we adjusted the labels accordingly (positive: 5 and 4 stars, negative: 2 and 1 stars). +For Danish, we used a dataset containing almost 45,000 reviews crawled from Trustpilot by Alessandro Gianfelicil. +For Polish, we used the PolEmo 2.0 corpus [57]. This dataset contains over 8,000 reviews from the domains of medicine, +hotels, products and school. For both of these datasets, we also had to adjust the labels of this dataset to a two-point +scale similarly to the Amazon Reviews dataset. +The Russian dataset used in this research was a product review dataset by Smetanin et al. [58]. The dataset consists +of 90,000 automatically labeled reviews on the topic "Women's Clothes and Accessories", split evenly among three +classes (positive, neutral, negative). The Croatian dataset is the same used by Pelicon et al. [54], containing around +2,000 news articles. The articles were collected from 24sata, one of the leading Croatian media companies. The +annotations were done by 6 people using a five-level Likert scale. The annotations were later adjusted to a three-point +scale by the authors. For the purpose of our experiments, in case of both datasets, we left out the neutral reviews in +order to binarize the labels. +The Korean dataset used in this research was Naver sentiment movie corpus v1.02. The dataset consists of Naver +Movie reviews, with 100,000 positive and negative samples. The reviews were originally rated from one to ten, but the +creators binarized the dataset prior to publishing. +3.2. Named Entity Recognition +The research on Named Entity Recognition (NER) has also shifted towards using Deep Neural Networks and most +research. Fritzler et al. [62] used a metric-learning method to at the time outperform a state-of-the-art recurrent neural +network method and showed to be capable in both few-shot and zero-shot settings. Moon. et al. [63] used multilingual +BERT to fine-tune a NER model in multiple languages and showed it to be more effective than a model fine-tuned +only on a single language. This demonstrates that the model can leverage knowledge from other languages in order to +improve its performance on one. +Hvingelby et al. [64] presented a Danish NLP resource based on the Danish Universal Dependencies treebank and +showed that transferring from other Germanic languages, especially from English and Norwegian, to Danish can yield +good results when using mBERT. However, using other Germanic languages in addition to Danish did not give any +better results compared to fine-tuning only with Danish in their case. +https://github.com/AlessandroGianfelici/danish_reviews_dataset +2https://github.com/e9t/nsmc +Eronen et al.: Preprint submitted to Elsevier +Page 6 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Entity projection [65, 66] has been used to generate pseudo-labeled datasets for low-resource NER datasets with +the help of parallel corpora. However, it has been shown by Weber and Steedman [67] that entity projection can +be outperformed by cross-lingual transfer and XLM-RoBERTa. The reason behind this could be explained by the +discovery by Lauscher et al. [38], who showed that transfer performance with English as the source correlates with the +similarity of the languages when dealing with a NER task. +In this study, we used the WikiANN [68] multilingual NER dataset also used by XTREME benchmark [12] for all +of the proposed languages. WikiANN consists of Wikipedia articles annotated with LOC (location), PER (person), and +ORG (organisation) NER tags. We used the version by Rahimi et al. [69], which has a balanced train, development, +and test splits and supports 176 of the 282 languages from the original WikiANN corpus. +3.3. Dependency Parsing +Cross-lingual transfer in dependency parsing (DEP) has been studied for some time before the advent of +multilingual transformer models [70, 71, 72, 73]. These studies mainly used deep neural network-based methods on +parallel corpora. The research by Duong et al. [41] discussed earlier in Section 2.2 was also conducted on a dependency +parsing task. Instead of using parallel corpora, their research was built around syntactic cross-lingual word embeddings +[74] trained over POS contexts to emphasize syntax. +Multilingual transformer models have also seen success in the dependency parsing task [15, 75, 76]. Most notably, +in their study, Lauscher et al. [38] discovered that structural and syntactic similarities between languages are the most +determining factor when it comes to the success of cross-lingual transfer for lower-level tasks like POS-tagging and +DEP. +The dataset used for all of the proposed languages in this study was the Universal Dependencies v2 [77], a widely +used resource in NLP as well as in linguistic research. The dataset was also used in the XTREME [12] benchmark +and in the research by Lauscher et al. [38] described earlier. Universal Dependencies is a framework for a consistent +annotation of grammar, including parts-of-speech, morphological features, and syntactic dependencies across a total +of more than 100 languages. +4. Methods +4.1. Models +For the experiments we used two pre-trained multilingual transformer models. The experiments were carried out +in a zero-shot cross-lingual setting [78], meaning that the fine-tuning is done using only data from another language +than the target language. +Multilingual BERT (mBERT) [13] is the multilingual version of BERT, which stands for Bidirectional Encoder +Representations from Transformers. It is based on an attention mechanism called the Transformer [79] that learns +contextual relations between words (or sub-words) in text. One of the features transformer models introduced is the +capability to read text input in both directions at once, instead of being able to only read it sequentially from left-to- +right or right-to-left. Taking advantage of this bidirectional capability, BERT is pre-trained on two NLP tasks, Masked +Language Modeling and Next Sentence Prediction. The objective of Masked Language Modeling is to mask a word in +a sentence and have the algorithm predict based on the word’s context what word has been hidden. In Next Sentence +Prediction, the algorithm takes two masked sentences and needs to predict if they have a sequential connection or not. +Although mBERT has not been trained using any cross-lingual data, it has showed cross-lingual capabilities and had +good results in many cross-lingual tasks [80]. This also includes various zero-shot transfer tasks. Multilingual BERT +has even been shown to outperform the usage of various cross-lingual embeddings [15]. This ability to generalize +could come from having word pieces used in all languages, for example, numbers, URLs, etc, mapped to a shared +space. This in turn forces the co-occurring pieces to also be mapped to a shared space, thus spreading the effect to +other word pieces, until different languages are close in a shared space [11]. +XLM-RoBERTa (XLM-R) [14] is a multi-lingual transformer model, also trained with the Masked Language +Model objective. XLM-R is trained on around a total of 2.5tb of CommonCrawl data in one hundred different languages. +The model is trained in the same way as the monolingual RoBERTa [81]. This means, that the only objective in its +pre-training is Masked Language Modeling. The model is not trained on the Next Sentence Prediction task like BERT +or using the parallel Translation Language Model objective of XLM. +XLM-R has been shown to outperform both mBERT and XLM on a many cross-lingual benchmarks, including +zero-shot cross-lingual transfer tasks [82]. It has also been shown to perform well on low-resource languages. A + +Eronen et al.: Preprint submitted to Elsevier +Page 7 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Entity projection [65, 66] has been used to generate pseudo-labeled datasets for low-resource NER datasets with +the help of parallel corpora. However, it has been shown by Weber and Steedman [67] that entity projection can +be outperformed by cross-lingual transfer and XLM-RoBERTa. The reason behind this could be explained by the +discovery by Lauscher et al. [38], who showed that transfer performance with English as the source correlates with the +similarity of the languages when dealing with a NER task. +In this study, we used the WikiANN [68] multilingual NER dataset also used by XTREME benchmark [12] for all +of the proposed languages. WikiANN consists of Wikipedia articles annotated with LOC (location), PER (person), and +ORG (organisation) NER tags. We used the version by Rahimi et al. [69], which has a balanced train, development. +and test splits and supports 176 of the 282 languages from the original WikiANN corpus. +3.3. Dependency Parsing +Cross-lingual transfer in dependency parsing (DEP) has been studied for some time before the advent of +multilingual transformer models [70, 71, 72, 73]. These studies mainly used deep neural network-based methods on +parallel corpora. The research by Duong et al. [41] discussed earlier in Section 2.2 was also conducted on a dependency +parsing task. Instead of using parallel corpora, their research was built around syntactic cross-lingual word embeddings +[74] trained over POS contexts to emphasize syntax. +Multilingual transformer models have also seen success in the dependency parsing task [15, 75, 76]. Most notably +in their study, Lauscher et al. [38] discovered that structural and syntactic similarities between languages are the most +determining factor when it comes to the success of cross-lingual transfer for lower-level tasks like POS-tagging and +DEP. +The dataset used for all of the proposed languages in this study was the Universal Dependencies v2 [77], a widely +used resource in NLP as well as in linguistic research. The dataset was also used in the XTREME [12] benchmark +and in the research by Lauscher et al. [38] described earlier. Universal Dependencies is a framework for a consistent +annotation of grammar, including parts-of-speech, morphological features, and syntactic dependencies across a total +of more than 100 languages. +4. Methods +4.1. Models +For the experiments we used two pre-trained multilingual transformer models. The experiments were carried out +in a zero-shot cross-lingual setting [78], meaning that the fine-tuning is done using only data from another language +than the target language. +Multilingual BERT (mBERT) [13] is the multilingual version of BERT, which stands for Bidirectional Encoder +contextual relations between words (or sub-words) in text. One of the features transformer models introduced is the +capability to read text input in both directions at once, instead of being able to only read it sequentially from left-to- +right or right-to-left. Taking advantage of this bidirectional capability, BERT is pre-trained on two NLP tasks, Masked +Language Modeling and Next Sentence Prediction. The objective of Masked Language Modeling is to mask a word in +a sentence and have the algorithm predict based on the word's context what word has been hidden. In Next Sentence +Prediction, the algorithm takes two masked sentences and needs to predict if they have a sequential connection or not. +Although mBERT has not been trained using any cross-lingual data, it has showed cross-lingual capabilities and had +good results in many cross-lingual tasks [80]. This also includes various zero-shot transfer tasks. Multilingual BERT +has even been shown to outperform the usage of various cross-lingual embeddings [15]. This ability to generalize +could come from having word pieces used in all languages, for example, numbers, URLs, etc, mapped to a shared +space. This in turn forces the co-occurring pieces to also be mapped to a shared space, thus spreading the effect to +other word pieces, until different languages are close in a shared space [11]. +XLM-RoBERTa (XLM-R) [14] is a multi-lingual transformer model, also trained with the Masked Language +Model objective. XLM-R is trained on around a total of 2.5tb of CommonCrawl data in one hundred different languages. +The model is trained in the same way as the monolingual RoBERTa [81]. This means, that the only objective in its +pre-training is Masked Language Modeling. The model is not trained on the Next Sentence Prediction task like BERT +or using the parallel Translation Language Model objective of XLM. +XLM-R has been shown to outperform both mBERT and XLM on a many cross-lingual benchmarks, including +zero-shot cross-lingual transfer tasks [82]. It has also been shown to perform well on low-resource languages. A +Eronen et al.: Preprint submitted to Elsevier +Page 7 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 1 +eLinguistics metric between all applied languages + +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean + +Danish +0.00 +20.60 +38.20 +66.20 +68.20 +66.20 +95.20 +97.20 +English +20.60 +0.00 +30.80 +60.30 +66.90 +60.30 +88.30 +90.00 +German +38.20 +30.80 +0.00 +64.50 +68.10 +64.50 +87.40 +95.50 +Croatian +66.20 +60.30 +64.50 +0.00 +10.70 +5.60 +90.70 +87.20 +Polish +68.20 +66.90 +68.10 +10.70 +0.00 +5.10 +93.30 +89.50 +Russian +66.20 +60.30 +64.50 +5.60 +5.10 +0.00 +93.30 +89.50 +Japanese +95.20 +88.30 +87.40 +90.70 +93.30 +93.30 +0.00 +88.00 +Korean +97.20 +90.00 +95.50 +87.20 +89.50 +89.50 +88.00 +0.00 + +notable feature of XLM-R is that it can also match the performance of to state-of-the-art monolingual models, +which demonstrates that it is possible to create multilingual models without sacrificing per-language performance +in a monolingual setting [14], most likely thanks to the sheer amount of data used in the pre-training. +4.2. Linguistic Similarity Metrics +To be able to calculate the correlation between cross-lingual zero-shot transfer performance and language similarity +for the proposed tasks, we needed +a way to quantify the aspects of all of the languages in our proposed set, +specifically, a language similarity metric. We utilized four language similarity measures, eLinguistics [23], EzGlot +[24], the multidomain metric we quantified from the linguistic features presented in WALS [25] and averaged genetic, +geographic, syntactic, inventory, phonological and featural metrics from lang2vec [27]. We propose that linguistic +similarity metrics could be utilized when trying to find optimal source language candidates for cross-lingual transfer. +We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more +similar languages, we would be able to achieve higher model performance. +eLinguistics [23] works by calculating a genetic proximity value for a pair of languages based on the use of phonetic +consonants. The score is calculated by taking a predefined word set and comparing the consonants contained in these +words. The method also takes into account the order of the consonants. This way, it is possible to get information +regarding the closeness of the phonetics of the pair of languages set for comparison. The assessment of the relationship +of the consonants is based on the research done by Brown et al [83]. +Even though completely disregarding semantic, morphological, and syntactic similarity and being very simple in +formulation, the similarity values produced by the method seemed to be in line with our expectations and the two +multidomain metrics (WALS, lang2vec) used in this research. However, as the distance between the two compared +languages increased, the method seemed to become increasingly more prone to errors. This is due to the surging +amount of accidental similarities in consonants. The similarity measure can be accessed from a web service*. The +similarity values between our proposed languages are shown in Table 1. +EzGlot [24] +is based on the similarity of vocabularies, or lexical similarity, of the two compared languages. +EzGlot’s similarity metric is computed by taking the lexical similarity between the two compared languages, while +in addition taking into account the number of words the pair of languages also have in common every other language. +This makes it possible to compute a similarity measure for a pair of languages in relation to their closeness with +every other language. Also, due to including the calculation of the number of words the languages share with all other +languages, the similarity measure becomes asymmetric between every pair of languages. This also supports studies +stating that mutual language intelligibility is being considered asymmetric as well [84, 21]. +A pre-computed language similarity matrix and the formula for its computation can be found on the EzGlot +similarity metric project’s web page*. However, the usability of the metric is hindered by the high amount of missing +values in the similarity matrix. For example taking a look at Japanese, which is one of the languages utilized in +our experiments, over half of the values are missing for our proposed languages. Also, the authors of the similarity +measure do not give away their data source. This means that we are unable to say anything regarding the quality of the +computations. This also makes it more difficult to fill in the missing values to the similarity matrix. We extracted the + +3nttp ://www.elinguistics.net/Compare_Languages. aspx +‘https: //www.ezglot.com/most-similar-languages .php + +Eronen et al.: Preprint submitted to Elsevier +Page 8 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 1 +eLinguistics metric between all applied languages +Danish +Polish +English +German +Croatian +Russian +Japanese +Korean +Danish +0.00 +20.60 +38.20 +66.20 +68.20 +66.20 +95.20 +97.20 +English +20.60 +0.00 +30.80 +60.30 +66.90 +60.30 +88.30 +90.00 +German +38.20 +30.80 +0.00 +64.50 +68.10 +64.50 +87.40 +95.50 +Croatian +60.30 +10.70 +5.60 +90.70 +66.20 +64.50 +0.00 +87.20 +Polish +68.20 +66.90 +68.10 +10.70 +0.00 +5.10 +93.30 +89.50 +Russian +66.20 +60.30 +64.50 +5.60 +5.10 +0.00 +93.30 +89.50 +Japanese +95.20 +88.30 +87.40 +90.70 +93.30 +93.30 +0.00 +88.00 +Korean +97.20 +90.00 +95.50 +87.20 +89.50 +89.50 +88.00 +0.00 +notable feature of XLM-R is that it can also match the performance of to state-of-the-art monolingual models +which demonstrates that it is possible to create multilingual models without sacrificing per-language performance +in a monolingual setting [14], most likely thanks to the sheer amount of data used in the pre-training. +4.2. Linguistic Similarity Metrics + To be able to calculate the correlation between cross-lingual zero-shot transfer performance and language similarity +for the proposed tasks, we needed a way to quantify the aspects of all of the languages in our proposed set +specifically, a language similarity metric. We utilized four language similarity measures, eLinguistics [23], EzGlot +[24], the multidomain metric we quantified from the linguistic features presented in WALS [25] and averaged genetic, +geographic, syntactic, inventory, phonological and featural metrics from lang2vec [27]. We propose that linguistic +similarity metrics could be utilized when trying to find optimal source language candidates for cross-lingual transfer. +We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more +similar languages, we would be able to achieve higher model performance. +eLinguistics [23] works by calculating a genetic proximity value for a pair of languages based on the use of phonetic +consonants. The score is calculated by taking a predefined word set and comparing the consonants contained in these +words. The method also takes into account the order of the consonants. This way, it is possible to get information +regarding the closeness of the phonetics of the pair of languages set for comparison. The assessment of the relationship +of the consonants is based on the research done by Brown et al [83]. +Even though completely disregarding semantic, morphological, and syntactic similarity and being very simple in +formulation, the similarity values produced by the method seemed to be in line with our expectations and the two +multidomain metrics (WALS, lang2vec) used in this research. However, as the distance between the two compared +languages increased, the method seemed to become increasingly more prone to errors. This is due to the surging +amount of accidental similarities in consonants. The similarity measure can be accessed from a web service3. The +similarity values between our proposed languages are shown in Table 1. +EzGlot [24] is based on the similarity of vocabularies, or lexical similarity, of the two compared languages. +EzGlot's similarity metric is computed by taking the lexical similarity between the two compared languages, while +in addition taking into account the number of words the pair of languages also have in common every other language +This makes it possible to compute a similarity measure for a pair of languages in relation to their closeness with +every other language. Also, due to including the calculation of the number of words the languages share with all other +languages, the similarity measure becomes asymmetric between every pair of languages. This also supports studies +stating that mutual language intelligibility is being considered asymmetric as well [84, 21]. +A pre-computed language similarity matrix and the formula for its computation can be found on the EzGlot +similarity metric project's web page4. However, the usability of the metric is hindered by the high amount of missing +values in the similarity matrix. For example taking a look at Japanese, which is one of the languages utilized in +our experiments, over half of the values are missing for our proposed languages. Also, the authors of the similarity +measure do not give away their data source. This means that we are unable to say anything regarding the quality of the +computations. This also makes it more difficult to fill in the missing values to the similarity matrix. We extracted the +3http://www.elinguistics.net/Compare_Languages.aspx +4https: //www.ezglot.com/most-similar-languages .php +Eronen et al.: Preprint submitted to Elsevier +Page 8 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 2 +EzGlot metric between all of the proposed languages + +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean + +Danish +100 +9 +17 +N/A +13 +N/A +N/A +9 +English +6 +100 +28 +6 +19 +14 +7 +26 +German +6 +15 +100 +4 +8 +4 +N/A +5 +Croatian +N/A +4 +5 +100 +14 +9 +N/A +5 +Polish +6 +12 +9 +14 +100 +15 +N/A +5 +Russian +N/A +11 +7 +11 +19 +100 +N/A +11 +Japanese +N/A +2 +N/A +N/A +N/A +N/A +100 +8 +Korean +1 +5 +2 +1 +1 +3 +4 +100 + +Table 3 +Averaged lang2vec metric between all of the proposed languages + +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean + +Danish +0.000 +0.511 +0.487 +0.550 +0.565 +0.597 +0.694 +0.691 +English +0.511 +0.000 +0.352 +0.578 +0.486 +0.488 +0.635 +0.578 +German +0.487 +0.352 +0.000 +0.550 +0.470 +0.471 +0.594 +0.579 +Croatian +0.550 +0.578 +0.550 +0.000 +0.513 +0.505 +0.709 +0.699 +Polish +0.565 +0.486 +0.470 +0.513 +~=0.000 +0.344 +0.624 +0.619 +Russian +0.597 +0.488 +0.471 +0.505 +0.344 +0.000 +0.589 +0.585 +Japanese +0.694 +0.635 +0.594 +0.709 +0.624 +0.589 +0.000 +0.518 +Korean +0.691 +0.578 +0.579 +0.699 +0.619 +0.585 +0.518 +0.000 + +similarity values from the EzGlot’s similarity matrix for the proposed languages. These values are presented in Table +2. +Averaged lang2vec is calculated from genetic, geographic, syntactic, inventory, phonological and featural metrics +of lang2vec. Lang2vec [27] is a database that provides vector identifications of languages based on different linguistic +features based on various linguistic resources like WALS [25], PHOIBLE [33], Ethnologue [1], and Glottolog [34]. +The lang2vec is a fully-fledged library that can be used to query for different linguistic features and to get pre-computed +genetic, geographic, syntactic, inventory, phonological and featural distances between languages. In order to use +lang2vec as a multidomain linguistic similarity metric, we used an average value of these six categories. +The method is based on multiple types of linguistic features, making it naturally more robust than EzGlot or +eLinguistics similarity metrics, which only rely on a single kind of linguistic feature each. The method also uses a +larger amount of data compared to the previously described metric based on WALS. Additionally, lang2vec deals +with the missing values in linguistic resources by predicting them [85]. However, due to being based on multiple +sources, the heterogeneous nature of the method brings up many questions. For example, there might be incoherence +as we do not know how features are selected from different sources and how they are weighted. Also, the features are +one-hot encoded which causes a complete loss of ordinality between feature values. Additionally, using geographical +information as one of the vectors seems questionable as it was shown to be unreliable when predicting similarity of +languages [86]. The averaged distance matrix for lang2vec is shown in Table 3. +Quantified World Atlas of Language Structures is a similarity metric developed by us in previous research +[26]. It is based on The World Atlas of Language Structures (WALS) [25], which is a massive language database +that records phonological, word semantic and grammatical information for a total of 2,662 languages from over 200 +different language families. There are 192 different linguistic features in the database currently (May 2022). However, +many of the linguistic features are missing for of the available languages. For example, one of the most extensively +documented language, English, has about 150 features documented in the database. This amount rapidly decreases for +languages studied less. Taking Danish as an example, it only 58 features documented>. Considering every language +and all of the features, this adds up to over 58,000 data points in total in the WALS database. This means the whole + +>Some even less studied languages have an even smaller number of features documented, e.g. Chuj language, spoken in Guatemala, has only +29, while the Indonesian Kutai language has only a single feature documented. + +Eronen et al.: Preprint submitted to Elsevier +Page 9 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 2 +EzGlot metric between all of the proposed languages +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean +Danish +100 +9 +17 +N/A +13 +N/A +N/A +9 +English +6 +100 +28 +19 +14 +26 +6 +German +6 +15 +100 +4 +8 +4 +N/A +5 +Croatian +N/A +4 +100 +14 +9 +N/A +5 +5 +Polish +6 +12 +9 +14 +100 +15 +N/A +5 +Russian +N/A +11 +7 +11 +19 +100 +N/A +11 + Japanese +N/A +2 +N/A +N/A +N/A +N/A +100 +Korean +1 +5 +2 +1 +1 +3 +4 +100 +Table 3 +Danish +English +German +Croatian + Polish +Russian +Japanese +Korean +Danish +0.000 +0.511 +0.487 +0.550 +0.565 +0.597 +0.694 +0.691 +English +0.511 +0.000 +0.352 +0.578 +0.486 +0.488 +0.635 +0.578 +German +0.487 +0.352 +0.000 +0.550 +0.470 +0.471 +0.594 +0.579 +Croatian +0.550 +0.578 +0.550 +0.000 +0.513 +0.505 +0.709 +0.699 +Polish +0.565 +0.486 +0.470 +0.513 +0.000 +0.344 +0.624 +0.619 +0.597 +Russian +0.488 +0.471 +0.505 +0.344 +0.000 +0.589 +0.585 + Japanese +0.694 +0.635 +0.594 +0.709 +0.624 +0.589 +0.000 +0.518 +Korean +0.691 +0.578 +0.579 +0.699 +0.619 +0.585 +0.518 +0.000 +similarity values from the EzGlot's similarity matrix for the proposed languages. These values are presented in Table +Averaged lang2vec is calculated from genetic, geographic, syntactic, inventory, phonological and featural metrics +of lang2vec. Lang2vec [27] is a database that provides vector identifications of languages based on different linguistic +features based on various linguistic resources like WALS [25], PHOIBLE [33], Ethnologue [1], and Glottolog [34]. +The lang2vec is a fully-fledged library that can be used to query for different linguistic features and to get pre-computed +genetic, geographic, syntactic, inventory, phonological and featural distances between languages. In order to use +lang2vec as a multidomain linguistic similarity metric, we used an average value of these six categories. +The method is based on multiple types of linguistic features, making it naturally more robust than EzGlot or +eLinguistics similarity metrics, which only rely on a single kind of linguistic feature each. The method also uses a +larger amount of data compared to the previously described metric based on WALS. Additionally, lang2vec deals +with the missing values in linguistic resources by predicting them [85]. However, due to being based on multiple +sources, the heterogeneous nature of the method brings up many questions. For example, there might be incoherence +as we do not know how features are selected from different sources and how they are weighted. Also, the features are +one-hot encoded which causes a complete loss of ordinality between feature values. Additionally, using geographical +information as one of the vectors seems questionable as it was shown to be unreliable when predicting similarity of +languages [86]. The averaged distance matrix for lang2vec is shown in Table 3. +Quantified World Atlas of Language Structures is a similarity metric developed by us in previous research +[26]. It is based on The World Atlas of Language Structures (WALS) [25], which is a massive language database +that records phonological, word semantic and grammatical information for a total of 2,662 languages from over 200 +different language families. There are 192 different linguistic features in the database currently (May 2022). However, +many of the linguistic features are missing for of the available languages. For example, one of the most extensively +documented language, English, has about 150 features documented in the database. This amount rapidly decreases for +languages studied less. Taking Danish as an example, it only 58 features documented5. Considering every language +and all of the features, this adds up to over 58,000 data points in total in the WALS database. This means the whole + 5Some even less studied languages have an even smaller number of features documented, e.g. Chuj language, spoken in Guatemala, has only +29, while the Indonesian Kutai language has only a single feature documented. +Eronen et al.: Preprint submitted to Elsevier +Page 9 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 4 +Quantified WALS metric between all of the proposed languages + +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean + +Danish +0.000 +0.109 +0.140 +0.167 +~=0.197 +0.155 +0.236 +0.202 +English +0.109 +0.000 +0.136 +0.179 +0.164 +0.141 +0.252 +0.209 +German +0.140 +0.136 +0.000 +0.221 +0.196 +0.140 +0.248 +0.225 +Croatian +0.167 +0.179 +0.221 +0.000 +0.160 +0.080 +0.272 +0.229 +Polish +0.197 +0.164 +0.196 +0.160 +0.000 +0.097 +0.249 +0.210 +Russian +0.155 +0.141 +0.140 +0.080 +0.097 +0.000 +0.225 +0.196 +Japanese +0.236 +0.252 +0.248 +0.272 +0.249 +0.225 +0.000 +0.108 +Korean +0.202 +0.209 +0.225 +0.229 +0.210 +0.196 +0.108 +0.000 + +database is only approximately 12% populated, meaning a vast majority of the information is missing. Also many +major and widely studied languages are missing many features. For example, 25% of all of the features are missing for +English. These missing values and the sparsity of the data is the main point of concern when quantifying the WALS +database into a linguistic similarity metric as using lesser known and not so widely studied languages means having +less common features among them. +In previous research, we quantified a novel linguistic similarity metric from the WALS database based on the +features all of the proposed languages shared. One of the problems of the metric was that as the amount of languages +increased, the amount of features shared with them decreased due to missing values in the database. This time, we +improved the calculation process and increased the robustness of the metric. The improved version attempts to counter +the issue caused by the diminishing feature count. This was done by selecting all of the features that would have +a defined value for both languages in all possible language pairs instead of having to be shared between all of the +languages. The language pairs were formed from our proposed languages (English, German, Danish, Polish, Russian, +Croatian, Japanese and Korean). Otherwise, the process remained the same. In short, we converted the possible +feature values into numeric and calculated an average euclidean distance between all language pairs. This resulted +in a symmetric distance metric. The goal was to create a multidomain similarity metric that would also be coherent +and try to preserve the ordinality of the feature values. The finished distance matrix is shown in Table 4. +Lastly, our plan was to take a look at the STL similarity measure [22], which is based on multiple linguistic +features. The measure puts together three different aspects of language by using Semantic, Terminological (lexical) +and Linguistic (syntactic) similarity to form a single metric. According to the authors, the STL metric outperformed +many previous measures that were relying only on one of the previously mentioned feature types [31, 32]. However, in +order to be able to use the metric, the vocabulary dataset must be structured in the form of an ontology, which restricts +the metric’s use. Due to this fact and because of the lack of available languages for the used dataset, it was not possible +for us to utilize the metric in this research. +5. Experiments +5.1. Setup +We fine-tuned both of the models (mBERT, XLM-R) with all of the proposed languages (English, German, Danish, +Polish, Russian, Croatian, Japanese and Korean) for all of the tasks. Fine-tuning refers to the training of the parameters +of a pre-trained language model (like BERT) with task-specific labeled data. This produced 16 fine-tuned models for +each task, which sums up to a total of 48 fine-tuned models (two transformer models, eight languages, three tasks). +After fine-tuning, we evaluated the models with test datasets from all of the previously mentioned languages to compute +the cross-lingual zero-shot transfer scores. We did not use a train-dev-test, but only train-test scenario for evaluation, +because the test dataset has nothing to do with the training dataset in a zero-shot task. We also do not aim at optimizing +for each dataset, or creating a product, but rather study general properties. We evaluated the models with a macro +Fl-score for sentiment analysis and NER, and Label Attachment Score (LAS) for the dependency parsing task. +After finishing the evaluations for all of the fine-tuned models, we took a look at the correlation between the +zero-shot cross-lingual transfer scores and linguistic similarity. This was done by using the four previously introduced +linguistic similarity metrics (eLinguistics, EzGlot, WALS and lang2vec). We computed Pearson’s and Spearman’s +correlations between the models’ cross-lingual zero-shot transfer scores and the language similarity measures. The + +Eronen et al.: Preprint submitted to Elsevier +Page 10 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 4 +Quantified WALS metric between all of the proposed languages +Danish +English +German +Croatian +Polish +Russian +Korean +Japanese +Danish +0.000 +0.109 +0.140 +0.167 +0.197 +0.155 +0.236 +0.202 +English +0.109 +0.000 +0.136 +0.179 +0.164 +0.141 +0.252 +0.209 +German +0.140 +0.136 +0.000 +0.221 +0.196 +0.140 +0.248 +0.225 +Croatian +0.179 +0.221 +0.167 +0.000 +0.160 +0.080 +0.272 +0.229 +Polish +0.197 +0.164 +0.196 +0.160 +0.000 +0.097 +0.249 +0.210 +Russian +0.155 +0.141 +0.140 +0.080 +0.097 +0.000 +0.225 +0.196 +Japanese +0.236 +0.252 +0.248 +0.272 +0.249 +0.225 +0.000 +0.108 +Korean +0.202 +0.209 +0.225 +0.229 +0.210 +0.196 +0.108 +0.000 +database is only approximately 12% populated, meaning a vast majority of the information is missing. Also many +major and widely studied languages are missing many features. For example, 25% of all of the features are missing for +English. These missing values and the sparsity of the data is the main point of concern when quantifying the WALS +database into a linguistic similarity metric as using lesser known and not so widely studied languages means having +less common features among them. +In previous research, we quantified a novel linguistic similarity metric from the WALS database based on the +features all of the proposed languages shared. One of the problems of the metric was that as the amount of languages +increased, the amount of features shared with them decreased due to missing values in the database. This time, we +improved the calculation process and increased the robustness of the metric. The improved version attempts to counter +the issue caused by the diminishing feature count. This was done by selecting all of the features that would have +a defined value for both languages in all possible language pairs instead of having to be shared between all of the +languages. The language pairs were formed from our proposed languages (English, German, Danish, Polish, Russian, +Croatian, Japanese and Korean). Otherwise, the process remained the same. In short, we converted the possible +feature values into numeric and calculated an average euclidean distance between all language pairs. This resulted +in a symmetric distance metric. The goal was to create a multidomain similarity metric that would also be coherent +and try to preserve the ordinality of the feature values. The finished distance matrix is shown in Table 4. +Lastly, our plan was to take a look at the STL similarity measure [22], which is based on multiple linguistic +features. The measure puts together three different aspects of language by using Semantic, Terminological (lexical) +and Linguistic (syntactic) similarity to form a single metric. According to the authors, the STL metric outperformed +many previous measures that were relying only on one of the previously mentioned feature types [31, 32]. However, in +order to be able to use the metric, the vocabulary dataset must be structured in the form of an ontology, which restricts +the metric's use. Due to this fact and because of the lack of available languages for the used dataset, it was not possible +for us to utilize the metric in this research. +5. Experiments +5.1. Setup +We fine-tuned both of the models (mBERT, XLM-R) with all of the proposed languages (English, German, Danish, +Polish, Russian, Croatian, Japanese and Korean) for all of the tasks. Fine-tuning refers to the training of the parameters +of a pre-trained language model (like BERT) with task-specific labeled data. This produced 16 fine-tuned models for +each task, which sums up to a total of 48 fine-tuned models (two transformer models, eight languages, three tasks). +After fine-tuning, we evaluated the models with test datasets from all of the previously mentioned languages to compute +the cross-lingual zero-shot transfer scores. We did not use a train-dev-test, but only train-test scenario for evaluation, +because the test dataset has nothing to do with the training dataset in a zero-shot task. We also do not aim at optimizing +for each dataset, or creating a product, but rather study general properties. We evaluated the models with a macro +F1-score for sentiment analysis and NER, and Label Attachment Score (LAS) for the dependency parsing task. +After finishing the evaluations for all of the fine-tuned models, we took a look at the correlation between the +zero-shot cross-lingual transfer scores and linguistic similarity. This was done by using the four previously introduced +correlations between the models' cross-lingual zero-shot transfer scores and the language similarity measures. The +Eronen et al.: Preprint submitted to Elsevier +Page 10 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity + + +Table 5 +Tasks, models and linguistic similarity metrics used in the experiments +Tasks +Models +Linguistic Similarity Metrics +Sentiment Analysis +mBERT +EzGlot +Named Entity Recognition +XLM-RoBERTa _ eLinguistics +Dependency Parsing +Averaged lang2vec +Quantified WALS + + + + + + +Table 6 +Sentiment analysis: F1-scores for mBERT +TARGET +Danish +English +German +Croatian +Polish +Russian +Japanese +(Korean +Danish +0.976 +0.875 +0.951 +0.941 +0.934 +0.876 +0.800 +0.881 +English +0.942 +0.935 +0.935 +0.921 +0.921 +0.849 +0.645 +0.838 +German +0.901 +0.816 +0.971 +0.908 +0.889 +0.828 +0.711 +0.741 +SOURCE +Croatian +0.952 +0.883 +0.948 +0.973 +0.940 +0.863 +0.802 +0.881 +Polish +0.952 +0.876 +0.948 +0.948 +0.967 +0.861 +0.771 +0.878 +Russian +0.949 +0.862 +0.939 +0.938 +0.933 +0.957 +0.774 +0.867 +Japanese +0.908 +0.799 +0.903 +0.894 +0.870 +0.807 +0.914 +0.869 +Korean +0.940 +0.848 +0.935 +0.930 +0.909 +0.850 +0.815 +0.957 +Table 7 +Sentiment analysis: F1-scores for XLM-R +TARGET +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean +Danish +0.972 +0.857 +0.932 +0.934 +0.926 +0.869 +0.749 +0.846 +English +0.939 +0.925 +0.920 +0.922 +0.916 +0.844 +0.705 +0.816 +German +0.882 +0.791 +0.966 +0.890 +0.871 +0.816 +0.671 +0.711 +SOURCE +Croatian +0.945 +0.859 +0.925 +0.969 +0.929 +0.876 +0.763 +0.835 +Polish +0.946 +0.853 +0.929 +0.939 +0.960 +0.865 +0.632 +0.834 +Russian +0.918 +0.792 +0.895 +0.913 +0.901 +0.953 +0.726 +0.832 +Japanese +0.888 +0.793 +0.880 +0.871 +0.851 +0.773 +0.905 +0.832 +Korean +0.921 +0.804 +0.903 +0.911 +0.880 +0.824 +0.690 +0.953 + +tasks, models and linguistic similarity metrics used in the experiments are listed in Table 5. The models were fine-tuned +by using PyTorch and the Huggingface Transformers library [87]. The hardware used was an Nvidia GTX 1080Ti GPU. +5.2. Results +Both of the multilingual transformer models (mnBERT, XLM-R) were fine-tuned with all of the proposed languages +for each task (sentiment analysis, NER, DEP) we introduced earlier. The models were fine-tuned using only the training +dataset from a single language before the evaluation step. The model evaluation scores are presented in Tables 6 and +7 for sentiment analysis, Tables 8 and 9 for NER and Tables 10 and 11 for DEP. +Looking at the results, we can clearly say that XLM-R outperformed mBERT in +all of the tasks. The only exception +to this was the sentiment analysis task, where mBERT slightly outperformed XLM-R. It can be noted from the results +that the highest transfer scores usually belong to the languages in the same language family as the source language +(English, German, Danish - Germanic; Croatian, Polish, Russian - Slavic; Japanese, Korean - Koreano-Japonic). Also, +most of the time there is a clear difference in the scores when evaluating with the same language as the source compared +to zero-shot cross-lingual transfer. The exceptions to this are the sentiment analysis task for both models and the NER +task for XLM-R. + +Eronen et al.: Preprint submitted to Elsevier +Page 11 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 5 +Tasks, models and linguistic similarity metrics used in the experiments +Tasks +Models +Linguistic Similarity Metrics +mBERT +EzGlot +Sentiment Analysis +Named Entity Recognition +XLM-RoBERTa +eLinguistics +Dependency Parsing +Averaged lang2vec +Quantified WALS +Table 6 +Sentiment analysis: F1-scores for mBERT +TARGET +Danish +English +German +Croatian +Polish +Russian + Japanese +Korean +Danish +0.976 +0.875 +0.951 +0.941 +0.934 +0.876 +0.800 +0.881 +English +0.942 +0.935 +0.935 +0.921 +0.921 +0.849 +0.645 +0.838 +German +0.901 +0.816 +0.971 +0.908 +0.889 +0.828 +0.711 +0.741 +SOURCE +Croatian +0.952 +0.883 +0.948 +0.973 +0.940 +0.863 +0.802 +0.881 +Polish +0.952 +0.876 +0.948 +0.948 +0.967 +0.861 +0.771 +0.878 +Russian +0.939 +0.949 +0.862 +0.938 +0.933 +0.957 +0.774 +0.867 +Japanese +0.908 +0.799 +0.903 +0.894 +0.870 +0.807 +0.914 +0.869 +Korean +0.940 +0.848 +0.935 +0.930 +0.909 +0.850 +0.815 +0.957 +Table 7 +Sentiment analysis: F1-scores for XLM-R +TARGET +Danish +English +Polish +Russian +Korean +German +Croatian +Japanese +Danish +0.972 +0.857 +0.932 +0.934 +0.926 +0.869 +0.749 +0.846 +English +0.939 +0.925 +0.920 +0.922 +0.916 +0.844 +0.705 +0.816 +German +0.882 +0.791 +0.966 +0.890 +0.871 +0.816 +0.671 +0.711 +SOURCE +Croatian +0.945 +0.859 +0.925 +0.969 +0.929 +0.876 +0.763 +0.835 +Polish +0.946 +0.853 +0.929 +0.939 +0.960 +0.865 +0.632 +0.834 +Russian +0.918 +0.792 +0.895 +0.913 +0.901 +0.953 +0.726 +0.832 +Japanese +0.888 +0.793 +0.880 +0.871 +0.851 +0.773 +0.905 +0.832 +Korean +0.921 +0.804 +0.903 +0.911 +0.880 +0.824 +0.690 +0.953 +tasks, models and linguistic similarity metrics used in the experiments are listed in Table 5. The models were fine-tuned +by using PyTorch and the Huggingface Transformers library [87]. The hardware used was an Nvidia GTX 1080Ti GPU. +5.2. Results +Both of the multilingual transformer models (mBERT, XLM-R) were fine-tuned with all of the proposed languages +for each task (sentiment analysis, NER, DEP) we introduced earlier. The models were fine-tuned using only the training +dataset from a single language before the evaluation step. The model evaluation scores are presented in Tables 6 and +7 for sentiment analysis, Tables 8 and 9 for NER and Tables 10 and 11 for DEP. +Looking at the results, we can clearly say that XLM-R outperformed mBERT in all of the tasks. The only exception +to this was the sentiment analysis task, where mBERT slightly outperformed XLM-R. It can be noted from the results +that the highest transfer scores usually belong to the languages in the same language family as the source language +(English, German, Danish - Germanic; Croatian, Polish, Russian - Slavic; Japanese, Korean - Koreano-Japonic). Also, +most of the time there is a clear difference in the scores when evaluating with the same language as the source compared +to zero-shot cross-lingual transfer. The exceptions to this are the sentiment analysis task for both models and the NER +task for XLM-R. +Eronen et al.: Preprint submitted to Elsevier +Page 11 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity + + + + + + + + +Table 8 +NER: Fi-scores for mBERT +TARGET +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean +Danish +0.957 +0.813 +0.801 +0.480 +0.763 +0.791 +0.675 +0.640 +English +0.778 +0.930 +0.827 +0.744 +0.852 +0.729 +0.773 +0.652 +German +0.770 +0.866 +0.936 +0.751 +0.879 +0.805 +0.766 +0.648 +SOURCE +Croatian +0.667 +0.710 +0.748 +0.876 +0.727 +0.770 +0.707 +0.622 +Polish +0.691 +0.676 +0.702 +0.695 +0.956 +0.648 +0.754 +0.625 +Russian +0.759 +0.825 +0.764 +0.761 +0.867 +0.946 +0.759 +0.564 +Japanese +0.754 +0.827 +0.761 +0.659 +0.693 +0.743 +0.926 +0.673 +Korean +0.602 +0.694 +0.668 +0.670 +0.675 +0.705 +0.700 +0.867 +Table 9 +NER: Fi-scores for XLM-R +TARGET +Danish +English +German +Croatian +Polish +Russian +Japanese +(Korean +Danish +0.975 +0.868 +0.876 +0.723 +0.958 +0.910 +0.873 +0.755 +English +0.955 +0.941 +0.941 +0.820 +0.961 +0.934 +0.920 +0.781 +German +0.960 +0.926 +0.948 +0.846 +0.975 +0.930 +0.918 +0.765 +SOURCE = _ Croatian +0.920 +0.842 +0.872 +0.911 +0.919 +0.889 +0.834 +0.723 +Polish +0.949 +0.885 +0.897 +0.877 +0.981 +0.897 +0.891 +0.740 +Russian +0.923 +0.908 +0.915 +0.611 +0.951 +0.951 +0.880 +0.737 +Japanese +0.955 +0.909 +0.920 +0.847 +0.961 +0.926 +0.936 +0.789 +Korean +0.827 +0.752 +0.799 +0.491 +0.751 +0.820 +0.840 +0.900 +Table 10 +DEP: LAS-scores for mBERT +TARGET +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean +Danish +0.860 +0.545 +0.631 +0.619 +0.556 +0.647 +0.092 +0.026 +English +0.652 +0.891 +0.670 +0.624 +0.570 +0.653 +0.165 +0.021 +German +0.635 +0.603 +0.842 +0.672 +0.613 +0.733 +0.130 +0.062 +SOURCE = Croatian +0.581 +0.607 +0.633 +0.893 +0.645 +0.778 +0.124 +0.030 +Polish +0.520 +0.518 +0.577 +0.676 +0.924 +0.760 +0.112 +0.023 +Russian +0.594 +0.604 +0.643 +0.730 +0.666 +0.878 +0.131 +0.020 +Japanese +0.132 +0.148 +0.163 +0.114 +0.117 +0.126 +0.926 +0.033 +Korean +0.058 +0.065 +0.060 +0.035 +0.045 +0.054 +0.035 +0.293 + +In dependency parsing, XLM-R slightly outperformed mBERT as expected. However, in the sentiment analysis +task mBERT scored slightly higher than XLM-R overall, with both models scoring high across all language pairs. +Some language pairs even achieving zero-shot cross-lingual transfer F-score of over 0.95. In this task, there seems not +to be a clear pattern what kind of language pairs tend to yield higher performance. For example, Slavic languages seem +to work better as sources for Danish compared to German languages in the case of both models. The scores are also +similarly high across the board for the NER task with XLM-R, with the model being able to achieve very high scores +with zero-shot transfer. The performance difference between mBERT and XLM-R is also more noticeable in the case +of NER. +As can be seen from Table 12, both Japanese and Korean worked decently well as cross-lingual transfer sources +for both sentiment analysis and NER tasks, even though being very different from the other languages used in the +experiments as they are the only non Indo-European languages. However, in the case of DEP their performance + +Eronen et al.: Preprint submitted to Elsevier +Page 12 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 8 +NER: F1-scores for mBERT +TARGET +Danish +English +German +Croatian +Polish +Russian + Japanese +Korean +Danish +0.957 +0.813 +0.801 +0.480 +0.763 +0.791 +0.675 +0.640 +English +0.778 +0.930 +0.827 +0.744 +0.852 +0.729 +0.773 +0.652 +German +0.770 +0.866 +0.936 +0.751 +0.879 +0.805 +0.766 +0.648 +SOURCE +Croatian +0.667 +0.710 +0.748 +0.876 +0.727 +0.770 +0.707 +0.622 +Polish +0.691 +0.676 +0.702 +0.695 +0.956 +0.648 +0.754 +0.625 +Russian +0.759 +0.825 +0.764 +0.761 +0.867 +0.946 +0.759 +0.564 +0.754 +0.827 +0.761 +0.659 +0.693 +0.743 +0.926 +0.673 +Japanese +Korean +0.602 +0.694 +0.668 +0.670 +0.675 +0.705 +0.700 +0.867 +Table 9 +NER: F1-scores for XLM-R +TARGET +Danish +English +German +Croatian +Polish +Russian + Japanese +Korean +Danish +0.975 +0.868 +0.876 +0.723 +0.958 +0.910 +0.873 +0.755 +English +0.955 +0.941 +0.941 +0.820 +0.961 +0.934 +0.920 +0.781 +German +0.960 +0.926 +0.948 +0.846 +0.975 +0.930 +0.918 +0.765 +SOURCE +Croatian +0.920 +0.842 +0.872 +0.911 +0.919 +0.889 +0.834 +0.723 +Polish +0.949 +0.885 +0.897 +0.877 +0.981 +0.897 +0.891 +0.740 +Russian +0.923 +0.908 +0.915 +0.611 +0.951 +0.951 +0.880 +0.737 +Japanese +0.955 +0.909 +0.920 +0.847 +0.961 +0.926 +0.936 +0.789 +Korean +0.827 +0.752 +0.799 +0.491 +0.751 +0.820 +0.840 +0.900 +Table 10 +DEP: LAS-scores for mBERT +TARGET +Danish +English +German +Croatian +Polish +Russian +Korean +Japanese +Danish +0.860 +0.545 +0.631 +0.619 +0.556 +0.647 +0.092 +0.026 +English +0.652 +0.891 +0.670 +0.624 +0.570 +0.653 +0.165 +0.021 +German +0.635 +0.603 +0.842 +0.672 +0.613 +0.733 +0.130 +0.062 +SOURCE +Croatian +0.581 +0.607 +0.633 +0.893 +0.645 +0.778 +0.124 +0.030 +Polish +0.520 +0.577 +0.676 +0.924 +0.760 +0.112 +0.023 +0.518 +Russian +0.594 +0.604 +0.643 +0.730 +0.666 +0.878 +0.131 +0.020 + Japanese +0.132 +0.148 +0.163 +0.114 +0.117 +0.126 +0.926 +0.033 + Korean +0.065 +0.060 +0.035 +0.035 +0.058 +0.045 +0.054 +0.293 +In dependency parsing, XLM-R slightly outperformed mBERT as expected. However, in the sentiment analysis +task mBERT scored slightly higher than XLM-R overall, with both models scoring high across all language pairs +Some language pairs even achieving zero-shot cross-lingual transfer F-score of over 0.95. In this task, there seems not +to be a clear pattern what kind of language pairs tend to yield higher performance. For example, Slavic languages seem +to work better as sources for Danish compared to German languages in the case of both models. The scores are also + similarly high across the board for the NER task with XLM-R, with the model being able to achieve very high scores +with zero-shot transfer. The performance difference between mBERT and XLM-R is also more noticeable in the case +of NER. +As can be seen from Table 12, both Japanese and Korean worked decently well as cross-lingual transfer sources +for both sentiment analysis and NER tasks, even though being very different from the other languages used in the +experiments as they are the only non Indo-European languages. However, in the case of DEP their performance +Eronen et al.: Preprint submitted to Elsevier +Page 12 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity + + + + + + +Table 11 +DEP: LAS-scores for XLM-R +TARGET +Danish +English +German +Croatian +Polish +Russian +Japanese +Korean +Danish +0.888 +0.679 +0.725 +0.706 +0.672 +0.715 +0.095 +0.366 +English +0.733 +0.911 +0.728 +0.720 +0.700 +0.716 +0.112 +0.364 +German +0.712 +0.681 +0.854 +0.751 +0.732 +0.784 +0.066 +0.405 +SOURCE = Croatian +0.639 +0.668 +0.702 +0.910 +0.798 +0.818 +0.069 +0.375 +Polish +0.614 +0.603 +0.676 +0.780 +0.945 +0.804 +0.049 +0.384 +Russian +0.642 +0.645 +0.722 +0.801 +0.796 +0.890 +0.101 +0.378 +Japanese +0.118 +0.132 +0.172 +0.098 +0.122 +0.106 +0.937 +0.317 +Korean +0.326 +0.292 +0.381 +0.298 +0.325 +0.304 +0.183 +0.877 +Table 12 +Average scores for each source language on each task +mBERT +XLM-R +Sentiment +NER’ +DEP __ +Sentiment +NER +DEP +Danish +0.904 +0.740 +0.497 +0.886 +0.867 +0.606 +English +0.873 +0.786 +0.531 +0.874 +0.907 +0.623 +German +0.845 +0.803 +0.536 +0.825 +0.909 +0.623 +Croatian +0.905 +0.728 +0.536 +0.888 +0.864 +0.622 +Polish +0.900 +0.719 +0.514 +0.870 +0.890 +0.607 +Russian +0.902 +0.781 +0.533 +0.866 +0.860 +0.622 +Japanese +0.871 +0.754 +0.220 +0.849 +0.905 +0.250 +Korean +0.898 +0.698 +0.081 +0.861 +0.773 +0.373 + +is extremely low. Except for this case with DEP, all of the proposed languages seem to be quite equal as cross- +lingual transfer sources in general. Interestingly, German, Croatian and Russian seem to perform slightly better overall +compared to the other languages, especially with mBERT. A similar phenomenon was also experienced by Turc et al. +[40] and in our previous research [26]. +5.3. Effect of Linguistic Similarity +We calculated the correlation between the zero-shot cross-lingual transfer results of the two models and each of the +four proposed linguistic similarity metrics (EzGlot, eLinguistics, WALS and lang2vec) in all proposed NLP tasks using +both Pearson’s and Spearman’s correlation coefficients (p-value). We were forced to ignore some of the language pairs +when calculating the correlations with the EzGlot metric as some of the similarity values were missing. The correlation +analysis results are shown in Table 13 for sentiment analysis, Table 14 for NER, Table 15 for DEP. +Looking at the results, one can say that there is mostly a strong correlation between lang2vec, WALS and +eLinguistics metrics and the cross-lingual zero-shot transfer score, and a strong-moderate correlation between the +EzGlot metric and the transfer scores for NER and DEP. In the case of sentiment analysis, the correlation is noticeably +lower with XLM-R, staying at a moderate level with all of the linguistic similarity metrics. The correlation is strongest +with the dependency parsing task with XLM-R, with the highest absolute Spearman’s correlation being 0.897 with +eLinguistics metric. Also, the results show p-value < 0.05 for all of the tasks, models and metrics, indicating statistical +significance. +For both of the models, the correlation for lang2vec, WALS and eLinguistics metrics are generally higher than +EzGlot, except in the case of sentiment analysis, where EzGlot’s correlation is slightly higher than WALS and +eLinguistics using both Pearson’s and Spearman’s correlation coefficients. Also, the correlations were generally slightly +stronger with mBERT in sentiment analysis, while XLM-R had higher correlations in both NER and DEP tasks. +However, the results changed drastically for all tasks except dependency parsing, when we removed the anchor +points of same source-target language pairs (monolingual scenarios), leaving only the zero-shot transfer results. This +was necessary to do in order remove the bias brought by the monolingual data points, as the scores are higher and the + +Eronen et al.: Preprint submitted to Elsevier +Page 13 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 11 +DEP: LAS-scores for XLM-R +TARGET +Danish +English +Polish +Russian +Korean +German +Croatian +Japanese +Danish +0.888 +0.679 +0.725 +0.706 +0.672 +0.715 +0.095 +0.366 +English +0.733 +0.728 +0.720 +0.716 +0.112 +0.911 +0.700 +0.364 +German +0.712 +0.681 +0.854 +0.751 +0.732 +0.784 +0.066 +0.405 +SOURCE +Croatian +0.639 +0.668 +0.702 +0.910 +0.798 +0.818 +0.069 +0.375 +Polish +0.614 +0.603 +0.676 +0.780 +0.945 +0.804 +0.049 +0.384 +Russian +0.642 +0.645 +0.722 +0.801 +0.796 +0.890 +0.101 +0.378 +Japanese +0.118 +0.132 +0.172 +0.098 +0.122 +0.106 +0.937 +0.317 +Korean +0.326 +0.292 +0.381 +0.298 +0.325 +0.304 +0.183 +0.877 +Table 12 +Average scores for each source language on each task +mBERT +XLM-R +Sentiment +NER +DEP +Sentiment +NER +DEP +Danish +0.904 +0.740 +0.497 +0.886 +0.867 +0.606 +English +0.873 +0.786 +0.531 +0.874 +0.907 +0.623 +German +0.845 +0.803 +0.536 +0.825 +0.909 +0.623 +Croatian +0.905 +0.728 +0.536 +0.888 +0.864 +0.622 +Polish +0.900 +0.719 +0.514 +0.870 +0.890 +0.607 +Russian +0.902 +0.781 +0.533 +0.866 +0.860 +0.622 +Japanese +0.871 +0.754 +0.220 +0.849 +0.905 +0.250 + Korean +0.898 +0.698 +0.081 +0.861 +0.773 +0.373 +is extremely low. Except for this case with DEP, all of the proposed languages seem to be quite equal as cross- +lingual transfer sources in general. Interestingly, German, Croatian and Russian seem to perform slightly better overall +compared to the other languages, especially with mBERT. A similar phenomenon was also experienced by Turc et al. +[40] and in our previous research [26]. +5.3. Effect of Linguistic Similarity +We calculated the correlation between the zero-shot cross-lingual transfer results of the two models and each of the +four proposed linguistic similarity metrics (EzGlot, eLinguistics, WALS and lang2vec) in all proposed NLP tasks using +both Pearson's and Spearman's correlation coefficients (p-value). We were forced to ignore some of the language pairs +when calculating the correlations with the EzGlot metric as some of the similarity values were missing. The correlation +analysis results are shown in Table 13 for sentiment analysis, Table 14 for NER, Table 15 for DEP. +Looking at the results, one can say that there is mostly a strong correlation between lang2vec, WALS and +eLinguistics metrics and the cross-lingual zero-shot transfer score, and a strong-moderate correlation between the +EzGlot metric and the transfer scores for NER and DEP. In the case of sentiment analysis, the correlation is noticeably +lower with XLM-R, staying at a moderate level with all of the linguistic similarity metrics. The correlation is strongest +with the dependency parsing task with XLM-R, with the highest absolute Spearman's correlation being O.897 with +eLinguistics metric. Also, the results show p-value < 0.05 for all of the tasks, models and metrics, indicating statistical +significance. +For both of the models, the correlation for lang2vec, WALS and eLinguistics metrics are generally higher than +EzGlot, except in the case of sentiment analysis, where EzGlot's correlation is slightly higher than WALS and +eLinguistics using both Pearson's and Spearman's correlation coefficients. Also, the correlations were generally slightly +stronger with mBERT in sentiment analysis, while XLM-R had higher correlations in both NER and DEP tasks. +However, the results changed drastically for all tasks except dependency parsing, when we removed the anchor +points of same source-target language pairs (monolingual scenarios), leaving only the zero-shot transfer results. This +was necessary to do in order remove the bias brought by the monolingual data points, as the scores are higher and the +Eronen et al.: Preprint submitted to Elsevier +Page 13 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity + + + + + + + + + + + + + + +Table 13 +Sentiment analysis: Pearson’s and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics +Pearson +Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.297 +0.017 +-0.645 +0.000 = -0.331 +0.008 +-0.537 +0.000 +EzGlot +0.389 +0.005 +0.729 +0.000 +0.533 +0.000 +0.586 +0.000 +eLinguistics += -0.355 +0.004 +-0.648 +0.000 +=-0.413 +0.001 +-0.652 +0.000 +lang2vec +-0.418 +0.001 +-0.746 +0.000 +-0.482 +0.000 +-0.623 +0.000 +Table 14 +NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics +Pearson +Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.514 +0.000 +-0.500 +0.000 += -0.510 +0.000 +-0.486 +0.000 +EzGlot +0.494 +0.000 +0.427 +0.002 +0.464 +0.001 +0.401 +0.004 +eLinguistics + -0.580 +0.000 +-0.517 +0.000 +-0.608 +0.000 +-0.553 +0.000 +lang2vec +-0.465 +0.000 +-0.432 +0.000 += +-0.504 +0.000 +-0.461 +0.000 +Table 15 +DEP: Pearson’s and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics +Pearson +Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.781 +0.000 +-0.718 +0.000 +-0.844 +0.000 +-0.693 +0.000 +EzGlot +0.588 +0.000 +0.516 +0.000 +0.694 +0.000 +0.561 +0.000 +eLinguistics +-0.845 +0.000 +-0.840 +0.000 +=-0.897 +0.000 +-0.867 +0.000 +lang2vec +-0.702 +0.000 +-0.679 +0.000 += -0.848 +0.000 +-0.754 +0.000 + +languages would also be the most similar (same). The results after removing the same source-target language pairs are +shown in Table 16 for sentiment analysis, Table 17 for NER, Table 18 for DEP. +First of all, for eLinguistics and WALS similarity metrics, the correlations generally dropped from strong to +moderate for the NER task while EzGlot’s correlation fell close to zero and also lost all statistical significance. The +correlation of lang2vec also plummeted and mostly lost statistical significance, but remained higher than EzGlot’s. +Interestingly, for sentiment analysis, the result looks completely opposite. The correlations of EzGlot and lang2vec +only fell slightly while WALS’ and eLinguistics’ correlation plummeted down and lost statistical significance for +XLM-R. The correlations in the dependency parsing task only dropped slightly for all of the linguistic similarity +metrics. Also, after removing the same source-target language pairs, the strongest correlations are still found in DEP, +followed by NER, while sentiment analysis still has the weakest correlations overall. However, as linguistic similarity +still correlates with cross-lingual transfer performance, we can get an improved model performance by using linguistic +similarity for transfer language selection. + +Eronen et al.: Preprint submitted to Elsevier +Page 14 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 13 +Sentiment analysis: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics +Pearson + Spearman +XLM-R +mBERT +XLM-R +mBERT + p-value +p-value +p +p-value + p-value +p +p +p +WALS +-0.297 +0.017 +-0.645 +0.000 +-0.331 +0.008 +-0.537 +0.000 +EzGlot +0.389 +0.005 +0.729 +0.000 +0.533 +0.000 +0.586 +0.000 +eLinguistics +-0.355 +0.004 +-0.648 +0.000 +-0.413 +0.001 +-0.652 +0.000 +lang2vec +-0.418 +0.001 +-0.746 +0.000 +-0.482 +0.000 +-0.623 +0.000 +Table 14 +NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics +Pearson + Spearman +XLM-R +mBERT +XLM-R +mBERT + p-value +p-value +p +p-value + p-value +p +p +p +WALS +-0.514 +0.000 +-0.500 +0.000 +-0.510 +0.000 +-0.486 +0.000 +EzGlot +0.494 +0.000 +0.427 +0.002 +0.464 +0.001 +0.401 +0.004 +eLinguistics +-0.580 +0.000 +-0.517 +0.000 +-0.608 +0.000 +-0.553 +0.000 +lang2vec +-0.465 +0.000 +-0.432 +0.000 +-0.504 +0.000 +-0.461 +0.000 +Table 15 +DEP: Pearson's and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics +Pearson + Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.781 +0.000 +-0.718 +0.000 +-0.844 +0.000 +-0.693 +0.000 +EzGlot +0.588 +0.000 +0.516 +0.000 +0.694 +0.000 +0.561 +0.000 +eLinguistics +-0.845 +0.000 +-0.840 +0.000 +-0.897 +0.000 +-0.867 +0.000 +lang2vec +-0.702 +0.000 +-0.679 +0.000 +-0.848 +0.000 +-0.754 +0.000 +languages would also be the most similar (same). The results after removing the same source-target language pairs are +shown in Table 16 for sentiment analysis, Table 17 for NER, Table 18 for DEP. +First of all, for eLinguistics and WALS similarity metrics, the correlations generally dropped from strong to +moderate for the NER task while EzGlot's correlation fell close to zero and also lost all statistical significance. The +correlation of lang2vec also plummeted and mostly lost statistical significance, but remained higher than EzGlot's +only fell slightly while WALS' and eLinguistics' correlation plummeted down and lost statistical significance for +XLM-R. The correlations in the dependency parsing task only dropped slightly for all of the linguistic similarity +followed by NER, while sentiment analysis still has the weakest correlations overall. However, as linguistic similarity +still correlates with cross-lingual transfer performance, we can get an improved model performance by using linguistic +similarity for transfer language selection. +Eronen et al.: Preprint submitted to Elsevier +Page 14 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 16 +Sentiment analysis: Pearson’s and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics +for zero-shot only + + + + +Pearson +Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.111 +0.415 +-0.262 +0.051 += -0.168 +0.216 +-0.315 +0.018 +EzGlot +0.327 +0.035 +0.303 +0.051 +0.403 +0.008 +0.313 +0.044 +eLinguistics + -0.229 +0.090 +-0.392 +0.003 +-0.284 +0.034 +-0.487 +0.000 +lang2vec +-0.380 +0.004 +-0.454 +0.000 +=-0.374 +0.005 +-0.440 +0.001 + +Table 17 +NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics for zero-shot +only + + + + +Pearson +Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.336 +0.011 +-0.347 +0.009 +-0.316 +0.017 +-0.293 +0.028 +EzGlot +0.173 +0.274 +0.120 +0.448 +0.170 +0.282 +0.095 +0.549 +eLinguistics +-0.453 +0.000 +-0.384 +0.003 +-0.458 +0.000 +-0.389 +0.003 +lang2vec +-0.234 +0.082 +-0.214 +0.113 +-0.307 +0.021 +-0.256 +0.057 + +Table 18 +DEP: Pearson's and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics for zero-shot +only + + + + +Pearson +Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value +p +p-value +p +p-value +p +p-value +WALS +-0.738 +0.000 +-0.661 +0.000 +-0.769 +0.000 +-0.588 +0.000 +EzGlot +0.421 +0.005 +0.373 +0.015 +0.488 +0.001 +0.349 +0.024 +eLinguistics +-0.795 +0.000 +-0.822 +0.000 +-0.848 +0.000 +-0.842 +0.000 +lang2vec +-0.714 +0.000 +-0.709 +0.000 = -0.775 +0.000 +-0.676 +0.000 + +6. Discussion +6.1. Transfer Language Performance +XLM-R outperforming mBERT generally matches our expectations, as it also did so on a variety of benchmark +tasks [12, 17]. The reason behind this most likely is the fact that XLM-R uses a vastly larger amount of data for +pretraining compared to mBERT. The performance difference between the two models is the most clear in the NER +task. +According to the results, simply choosing English as the transfer source did not yield top results most of the time, +sometimes even as a source language to other languages in the Germanic language group. For example, it had a lower +than average performance in sentiment analysis and an average performance in the other two tasks probably due to +its simplicity when compared to both Danish and German. It was also slightly outperformed by Slavic languages in +some cases when used as a source for other Germanic languages. Another reason could be the influence of French +[88, 89, 90], which might further distance it from the other Germanic languages. Also, the differences in morphology +could be a factor here. Danish and German probably work better with each other due to a great amount of historic +mutual influence. + +Eronen et al.: Preprint submitted to Elsevier +Page 15 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Table 16 +Sentiment analysis: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics +for zero-shot only +Pearson + Spearman +XLM-R +mBERT +XLM-R +mBERT +p + p-value +p +p-value +p + p-value + p-value +p +WALS +-0.111 +0.415 +-0.262 +0.051 +-0.168 +0.216 +-0.315 +0.018 +EzGlot +0.327 +0.035 +0.303 +0.051 +0.403 +0.008 +0.313 +0.044 +eLinguistics +-0.229 +0.090 +-0.392 +0.003 +-0.284 +0.034 +-0.487 +0.000 +lang2vec +-0.380 +0.004 +-0.454 +0.000 +-0.374 +0.005 +-0.440 +0.001 +Table 17 +NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics for zero-shot +only +Pearson + Spearman +XLM-R +mBERT +XLM-R +mBERT +p + p-value +p-value +p-value + p-value +p +p +p +WALS +-0.336 +0.011 +-0.347 +0.009 +-0.316 +0.017 +-0.293 +0.028 +EzGlot +0.173 +0.274 +0.120 +0.448 +0.170 +0.282 +0.095 +0.549 +eLinguistics +-0.453 +0.000 +-0.384 +0.003 +-0.458 +0.000 +-0.389 +0.003 +lang2vec +-0.234 +0.082 +-0.214 +0.113 +-0.307 +0.021 +-0.256 +0.057 +Table 18 +DEP: Pearson's and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics for zero-shot +only +Pearson + Spearman +XLM-R +mBERT +XLM-R +mBERT +p +p-value + p-value +p +p-value + p-value +p +p +WALS +-0.738 +0.000 +-0.661 +0.000 +-0.769 +0.000 +-0.588 +0.000 +EzGlot +0.421 +0.005 +0.373 +0.015 +0.488 +0.001 +0.349 +0.024 +eLinguistics +-0.795 +0.000 +-0.822 +0.000 +-0.848 +0.000 +-0.842 +0.000 +lang2vec +-0.714 +0.000 +-0.709 +0.000 +-0.775 +0.000 +-0.676 +0.000 +6. Discussion +6.1. Transfer Language Performance +XLM-R outperforming mBERT generally matches our expectations, as it also did so on a variety of benchmark +tasks [12, 17]. The reason behind this most likely is the fact that XLM-R uses a vastly larger amount of data for +pretraining compared to mBERT. The performance difference between the two models is the most clear in the NER +task. +According to the results, simply choosing English as the transfer source did not yield top results most of the time, +than average performance in sentiment analysis and an average performance in the other two tasks probably due to +its simplicity when compared to both Danish and German. It was also slightly outperformed by Slavic languages in +some cases when used as a source for other Germanic languages. Another reason could be the influence of French +[88, 89, 90], which might further distance it from the other Germanic languages. Also, the differences in morphology +could be a factor here. Danish and German probably work better with each other due to a great amount of historic +mutual influence. +Eronen et al.: Preprint submitted to Elsevier +Page 15 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +In sentiment analysis, the models achieved slightly better scores with English and it was on-par with other Germanic +languages. However, all of the Slavic languages still tended to work slightly better as transfer sources. These results +show that other languages should also be considered over English as the cross-lingual transfer source if available. For +the other two tasks, NER and DEP, English performed well and showed to be a good transfer source for the other two +Germanic languages. +In most cases, using languages from the same language family as the source language yielded the highest cross- +lingual transfer scores. This matches with the typical intuition-based selection process used to select source language for +cross-lingual transfer. However, relying only on intuition and looking purely at language families when when selecting +the transfer language will lead to diminished results in some cases. +One example would be taking Polish as the target language for NER task. One could expect that in this case, the +best transfer languages would be Croatian and Russian, but looking at the results (Tables 8 and 9) German had a +higher cross-lingual transfer score even though it is from the Germanic language family, not Slavic. This could be, for +example, due to mutual influence of these two languages. The grammar of both Danish and English is relatively simple +compared to German, which could aid them in generalizing better with one another. Looking at the scores, it can be +noted that German is a good source for both Germanic and Slavic languages, which could mean that the historical +mutual influence between the Germans and Slavs could be a factor here. Furthermore, German, in addition to having a +higher average performance on most tasks, tended to also work exceptionally well also as a source language for other +Slavic languages, most likely because of the reasons discussed above. +In addition, Japanese and Korean did not achieve comparably better scores with one another, contrary to our +expectations, and were even slightly outperformed by the other languages approximately half of the time, even though +being more similar with each other compared to any of the other proposed languages. Here the reason could be, for +example, the differences in the writing systems, as neither of these two languages use alphabets and their systems also +greatly differ from each other. +Also, both Russian and Croatian had a higher than average performance on most of the tasks. This was similar to +our previous research [26] where Russian performed exceptionally well as a transfer source for offensive language +identification. However, unlike in our previous research, Russian did not perform noticeably well as the transfer +language source for Korean and Japanese. Thus the phenomenon experienced previously is most likely related to +the topic of offensive language identification itself or to the properties of these specific datasets. We will investigate +this in later research. Also, Japanese and Korean had a satisfying performance as source languages for the Germanic +and Slavic languages in both sentiment analysis and NER tasks, even though Japanese and Korean are fundamentally +different from the languages of these two families, as they are the only non Indo-European languages in the proposed +set. This demonstrates that multilingual transformer models are also able to leverage knowledge even from very distant +languages. +6.2. Analysis of Linguistic Similarity Metrics +The correlation between cross-lingual transfer performance and the similarity metrics were strong or moderate +with all of the proposed metrics, which would suggest that using even a single feature such as lexical information or +by comparing phonetic consonants is still effective to some extent. +6.2.1. EzGlot +However, when considering only the zero-shot transfer results, EzGlot’s similarity metric’s correlation dropped +drastically and out of statistical significance in the NER task. This shows that it does not necessarily rely on lexical +features and that other linguistic features need to be considered when choosing the source language for NER. On +the other hand, the same happened with the lang2vec metric despite it being created using different features from +multiple domains. Also, the opposite happened in the sentiment analysis task, as both WALS and eLinguistics metrics’ +correlation dropped drastically and out of statistical significance. This hints the importance of lexical similarity when +choosing the source language for sentiment analysis tasks. +6.2.2. eLinguistics +Surprisingly, even though using only a predefined set of phonetic consonants for its calculation, the correlation of +eLinguistics’ similarity metric was stronger in all tasks compared to the the correlation of the WALS metric, which we +quantified from the WALS database using linguistic features from multiple domains. The correlation of eLinguistics +was also higher than the averaged lang2vec metric in both NER and DEP. The reason behind this could be that including + +Eronen et al.: Preprint submitted to Elsevier +Page 16 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +In sentiment analysis, the models achieved slightly better scores with English and it was on-par with other Germanic +languages. However, all of the Slavic languages still tended to work slightly better as transfer sources. These results +show that other languages should also be considered over English as the cross-lingual transfer source if available. For +the other two tasks, NER and DEP, English performed well and showed to be a good transfer source for the other two +Germanic languages. +In most cases, using languages from the same language family as the source language yielded the highest cross- +lingual transfer scores. This matches with the typicalintuition-based selection process used to select source language for +cross-lingual transfer. However, relying only on intuition and looking purely at language families when when selecting +the transfer language will lead to diminished results in some cases. +One example would be taking Polish as the target language for NER task. One could expect that in this case, the +best transfer languages would be Croatian and Russian, but looking at the results (Tables 8 and 9) German had a +example, due to mutual influence of these two languages. The grammar of both Danish and English is relatively simple +compared to German, which could aid them in generalizing better with one another. Looking at the scores, it can be +noted that German is a good source for both Germanic and Slavic languages, which could mean that the historical +mutual influence between the Germans and Slavs could be a factor here. Furthermore, German, in addition to having a +higher average performance on most tasks, tended to also work exceptionally well also as a source language for other +Slavic languages, most likely because of the reasons discussed above. +In addition, Japanese and Korean did not achieve comparably better scores with one another, contrary to our +expectations, and were even slightly outperformed by the other languages approximately half of the time, even though +being more similar with each other compared to any of the other proposed languages. Here the reason could be, for +example, the differences in the writing systems, as neither of these two languages use alphabets and their systems also +greatly differ from each other. +Also, both Russian and Croatian had a higher than average performance on most of the tasks. This was similar to +our previous research [26] where Russian performed exceptionally well as a transfer source for offensive language +identification. However, unlike in our previous research, Russian did not perform noticeably well as the transfer +the topic of offensive language identification itself or to the properties of these specific datasets. We will investigate +this in later research. Also, Japanese and Korean had a satisfying performance as source languages for the Germanic +and Slavic languages in both sentiment analysis and NER tasks, even though Japanese and Korean are fundamentally +different from the languages of these two families, as they are the only non Indo-European languages in the proposed +set. This demonstrates that multilingual transformer models are also able to leverage knowledge even from very distant +languages. +6.2. Analysis of Linguistic Similarity Metrics +The correlation between cross-lingual transfer performance and the similarity metrics were strong or moderate +with all of the proposed metrics, which would suggest that using even a single feature such as lexical information or +by comparing phonetic consonants is still effective to some extent. +6.2.1. EzGlot +However, when considering only the zero-shot transfer results, EzGlot's similarity metric's correlation dropped +drastically and out of statistical significance in the NER task. This shows that it does not necessarily rely on lexical +features and that other linguistic features need to be considered when choosing the source language for NER. On +multiple domains. Also, the opposite happened in the sentiment analysis task, as both WALS and eLinguistics metrics' +correlation dropped drastically and out of statistical significance. This hints the importance of lexical similarity when +choosing the source language for sentiment analysis tasks. +6.2.2. eLinguistics +Surprisingly, even though using only a predefined set of phonetic consonants for its calculation, the correlation of +eLinguistics' similarity metric was stronger in all tasks compared to the the correlation of the WALS metric, which we +quantified from the WALS database using linguistic features from multiple domains. The correlation of eLinguistics +was also higher than the averaged lang2vec metric in both NER and DEP. The reason behind this could be that including +Eronen et al.: Preprint submitted to Elsevier +Page 16 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +all of possible features between each language pair could have caused too many irrelevant features to be included. This +can cause a possible bias the metric calculation. +However, the eLinguistics metric also has its weak points as it is based on only a single aspect of language, even +though its correlation being the strongest. One can see from Table +1 that eLinguistics shows Japanese being very +distant from Korean, being at the same level as Polish and Russian, with Croatian being seemingly closer to Korean +than Japanese, which is not true due to the similarities in the vocabulary and grammar of Japanese and Korean. Taking +a look at Tables 4 and 3, it is clear that the WALS and lang2vec metrics are a lot more robust to this kind of errors. +The reason most likely is that instead of using only a single linguistic feature like the eLinguistics metric, the WALS +and lang2vec metrics are based on a large amount of features spanning over multiple domains. +6.2.3. Averaged lang2vec and Quantified WALS +Both lang2vec and WALS had a strong correlation with the DEP task. Although both metrics are based on a large +number of linguistic features spanning over multiple domains, their correlations varied greatly with the other two +tasks. Specifically, in NER, the correlation of lang2vec was noticeably lower. In sentiment analysis, the correlation of +WALS plummeted while lang2vec stayed at a moderate level. The reason is probably in the calculation of the metrics. +In the quantified WALS metric, features are treated as continuous whereas lang2vec uses one-hot encoding. Also, in +quantified WALS, every single feature has the same weight whereas in averaged lang2vec every category of features has +the same weight but might contain a different amount of features. Additionally, the features in lang2vec are collected +from multiple sources, which increases the amount of data while possibly introducing incoherence. Lastly, the number +of features used in the similarity calculations with the quantified WALS metric varies slightly between language pairs +due to missing values in the database. Lang2vec tries to counter this by using a model to predict the missing values, +although this might introduce more errors in some cases. +In the future, we will take another glance at the WALS database, aiming for a better quantification by looking at +the importance of each feature group (syntactic, lexical, phonetic, etc.) and weighing accordingly while filtering out +redundant features in order to develop an even more effective and comprehensive similarity metric. We will also take a +look at lang2vec, aiming to filter out redundant features and weigh the categories accordingly instead of simply taking +an average in order to make it better suited for transfer language selection. After all, both WALS and lang2vec metrics +are more robust thanks to being based on a large amount of features spanning over multiple domains instead of using +only a single linguistic feature like eLinguistics or EzGlot. +6.3. Task-Specific Analysis +6.3.1. Sentiment Analysis +Looking at the f-scores of the sentiment analysis task, it is clear that the results are very high across the board and +the score differences between language groups are also very small, with sometimes languages from other language +groups than the target emerging as the best performers. This is the case for example with Danish, as Croatian achieved +the highest zero-shot transfer scores for both mBERT and XLM-R instead of another Germanic language. +A trait only observed in this task was that lang2vec and EzGlot were the only metrics keeping a moderate correlation +in the zero-shot setting. The fact that Ezglot’s correlation stayed moderate hints the importance of lexical features. One +could argue that the reason behind the overall high scores might be due to the task being too easy, as it simply required +the classification of the entries into positive and negative. This has also been shown in other research [91]. However, this +also shows that it could be possible to achieve at least close to state-of-the-art results with multilingual transformer +models in a zero-shot cross-lingual setting. This raises questions about how to improve the cross-lingual models to +better utilize cross-lingual transfer. In the future, it would be useful to further investigate the models’ behaviour in +zero-shot setting. This could also be useful in the further development of measures to support low-resource languages. +6.3.2. Named Entity Recognition +For mBERT, the zero-shot results of the NER task look clearly lower than with same language pairs and quite +even across all of the proposed languages and the languages belonging to the same group having generally a slightly +higher score. However, the results of XLM-R closely resemble those of the sentiment analysis task as the results are +considerably high across all language pairs. This further shows the potential these models have in relieving the issues +with low-resource languages. Also, there is a moderate correlation between the zero-shot transfer performance and +linguistic similarity for both WALS and eLinguistics metrics, and a weak/moderate correlation with lang2vec. + +Eronen et al.: Preprint submitted to Elsevier +Page 17 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +all of possible features between each language pair could have caused too many irrelevant features to be included. This +can cause a possible bias the metric calculation. +However, the eLinguistics metric also has its weak points as it is based on only a single aspect of language, even +though its correlation being the strongest. One can see from Table 1 that eLinguistics shows Japanese being very +distant from Korean, being at the same level as Polish and Russian, with Croatian being seemingly closer to Korean +than Japanese, which is not true due to the similarities in the vocabulary and grammar of Japanese and Korean. Taking +a look at Tables 4 and 3, it is clear that the WALS and lang2vec metrics are a lot more robust to this kind of errors +The reason most likely is that instead of using only a single linguistic feature like the eLinguistics metric, the WALS +and lang2vec metrics are based on a large amount of features spanning over multiple domains. +6.2.3. Averaged lang2vec and Quantified WALS +Both lang2vec and WALS had a strong correlation with the DEP task. Although both metrics are based on a large +number of linguistic features spanning over multiple domains, their correlations varied greatly with the other two +tasks. Specifically, in NER, the correlation of lang2vec was noticeably lower. In sentiment analysis, the correlation of +WALS plummeted while lang2vec stayed at a moderate level. The reason is probably in the calculation of the metrics. +In the quantified WALS metric, features are treated as continuous whereas lang2vec uses one-hot encoding. Also, in +quantified WALS, every single feature has the same weight whereas in averaged lang2vec every category of features has +the same weight but might contain a different amount of features. Additionally, the features in lang2vec are collected +from multiple sources, which increases the amount of data while possibly introducing incoherence. Lastly, the number +of features used in the similarity calculations with the quantified WALS metric varies slightly between language pairs +due to missing values in the database. Lang2vec tries to counter this by using a model to predict the missing values, +although this might introduce more errors in some cases. +In the future, we will take another glance at the WALS database, aiming for a better quantification by looking at +the importance of each feature group (syntactic, lexical, phonetic, etc.) and weighing accordingly while filtering out +redundant features in order to develop an even more effective and comprehensive similarity metric. We will also take a +look at lang2vec, aiming to filter out redundant features and weigh the categories accordingly instead of simply taking +an average in order to make it better suited for transfer language selection. After all, both WALS and lang2vec metrics +are more robust thanks to being based on a large amount of features spanning over multiple domains instead of using +only a single linguistic feature like eLinguistics or EzGlot. +6.3. Task-Specific Analysis +6.3.1. Sentiment Analysis +Looking at the f-scores of the sentiment analysis task, it is clear that the results are very high across the board and +the score differences between language groups are also very small, with sometimes languages from other language +groups than the target emerging as the best performers. This is the case for example with Danish, as Croatian achieved +the highest zero-shot transfer scores for both mBERT and XLM-R instead of another Germanic language. +A trait only observed in this task was that lang2vec and EzGlot were the only metrics keeping a moderate correlation +in the zero-shot setting. The fact that Ezglot's correlation stayed moderate hints the importance of lexical features. One +could argue that the reason behind the overall high scores might be due to the task being too easy, as it simply required +the classification of the entries into positive and negative. This has also been shown in other research [91]. However, this +also shows that it could be possible to achieve at least close to state-of-the-art results with multilingual transformer +models in a zero-shot cross-lingual setting. This raises questions about how to improve the cross-lingual models to +better utilize cross-lingual transfer. In the future, it would be useful to further investigate the models' behaviour in +zero-shot setting. This could also be useful in the further development of measures to support low-resource languages. +6.3.2. Named Entity Recognition +For mBERT, the zero-shot results of the NER task look clearly lower than with same language pairs and quite +higher score. However, the results of XLM-R closely resemble those of the sentiment analysis task as the results are +considerably high across all language pairs. This further shows the potential these models have in relieving the issues +with low-resource languages. Also, there is a moderate correlation between the zero-shot transfer performance and +linguistic similarity for both WALS and eLinguistics metrics, and a weak/moderate correlation with lang2vec. +Eronen et al.: Preprint submitted to Elsevier +Page 17 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +6.3.3. Dependency Parsing +The zero-shot results in DEP also seem clearly lower than with same language pairs and somewhat even across the +board. The languages belonging to the same language family also generally have a slightly higher score. As the task +requires the understanding of syntax and grammar and the scores are still reasonably high overall, the results could also +support studies claiming that cross-lingual transformer models are able to learn grammar without explicit information +[92]. +On the other hand, Japanese and Korean had very poor performance as source languages while also being very +difficult target languages in the DEP task, unlike in the sentiment analysis and NER tasks. This could mean that the +model is unable to generalize to the syntax and grammar of Indo-European languages with Japonic-Koreanic languages +and vice versa. The reason might be due to the differences in writing systems. In the DEP task, both XLM-R and +mBERT keep a strong correlation between the zero-shot transfer performance and linguistic similarity with WALS, +eLinguistics and lang2vec metrics and a moderate correlation with EzGlot in a zero-shot setting. +6.4. Impact +As there is a correlation with linguistic similarity and cross-lingual transfer performance for all of the tasks, +including the abusive language identification task used in our previous research [26], it is possible to use linguistic +similarity for transfer language selection, at least for these tasks. However, the correlation varied greatly from task +to task, which means there is a lot of room for improvement in developing an optimal similarity metric for transfer +language selection. +In order to confirm the efficacy of choosing another language over English as the cross-lingual transfer source, we +performed a z-test between the results of using English as transfer source and using the language with the highest score. +The test showed Z = —3.18 < —1.96 and p = 0.001 < 0.05 meaning that there is a significant difference between +using English and the optimal language as the cross-lingual transfer source. +Based on these results, as there is a significant difference between using English and the optimal language as the +cross-lingual transfer source, it is better to look for high-resource languages that have proper data available and are as +close as possible to the target language based on a similarity metric instead of making a decision based on intuition +or simply relying on English. This allows one to make a more informed and effective decision and makes model +development more efficient. +6.5. Future Research +In the future, we are planning to analyze, what kind of linguistic features are the most important from the +point of view of cross-lingual transfer. A solution could be grouping the features presented in WALS into syntactic, +lexical, phonetic, etc., and calculating, which feature group has the strongest correlation with the cross-lingual transfer +performance. We could then re-quantify the WALS database using this information in order to develop an even more +effective and comprehensive similarity metric. It would also be beneficial if the WALS project received more attention +and the feature matrix became more densely populated. Also, instead of taking an average of lang2vec’s categories, +they should be weighed by importance. +As shown by the DEP task, the models might be able to learn syntax and grammar without any explicit information. +This could mean that adding explicit syntactic and grammatical information to the pre-training process of the models +might also improve their performance. We will take a look at this in the future. Also, as the models achieved zero-shot +transfer scores rivaling those of the monolingual settings, especially in sentiment analysis, it would be useful to perform +an in-depth investigation about the models’ behaviour in a zero-shot transfer learning setting to possibly find insights +on how to improve their transfer learning capabilities. +7. Conclusions +In this research we studied cross-lingual transfer language selection for zero-shot learning using three different +NLP tasks, namely, sentiment analysis, NER, and dependency parsing. We showed the effectiveness of cross-lingual +zero-shot transfer learning with a total of eight languages from three language families. In this way, existing data from +higher-resource languages may be used to improve the performance of languages that lack sufficient data. +We found a strong correlation between the similarity of the used languages and cross-lingual transfer performance. +The transfer performance declines when the distance between the languages increases. This allows for the selection +of a more suitable transfer language by assessing linguistic similarities rather than simply depending on intuition + +Eronen et al.: Preprint submitted to Elsevier +Page 18 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +6.3.3. Dependency Parsing +board. The languages belonging to the same language family also generally have a slightly higher score. As the task +requires the understanding of syntax and grammar and the scores are still reasonably high overall, the results could also +support studies claiming that cross-lingual transformer models are able to learn grammar without explicit information +[92] +On the other hand, Japanese and Korean had very poor performance as source languages while also being very +difficult target languages in the DEP task, unlike in the sentiment analysis and NER tasks. This could mean that the +model is unable to generalize to the syntax and grammar of Indo-European languages with Japonic-Koreanic languages +and vice versa. The reason might be due to the differences in writing systems. In the DEP task, both XLM-R and +mBERT keep a strong correlation between the zero-shot transfer performance and linguistic similarity with WALS, +eLinguistics and lang2vec metrics and a moderate correlation with EzGlot in a zero-shot setting. +6.4. Impact +As there is a correlation with linguistic similarity and cross-lingual transfer performance for all of the tasks, +including the abusive language identification task used in our previous research [26], it is possible to use linguistic +similarity for transfer language selection, at least for these tasks. However, the correlation varied greatly from task +to task, which means there is a lot of room for improvement in developing an optimal similarity metric for transfer +language selection. +In order to confirm the efficacy of choosing another language over English as the cross-lingual transfer source, we +performed a z-test between the results of using English as transfer source and using the language with the highest score. +The test showed Z = -3.18 < -1.96 and p = 0.001 < 0.05 meaning that there is a significant difference between +using English and the optimal language as the cross-lingual transfer source. +Based on these results, as there is a significant difference between using English and the optimal language as the +cross-lingual transfer source, it is better to look for high-resource languages that have proper data available and are as +close as possible to the target language based on a similarity metric instead of making a decision based on intuition +or simply relying on English. This allows one to make a more informed and effective decision and makes model +development more efficient. +6.5. Future Research +In the future, we are planning to analyze, what kind of linguistic features are the most important from the +point of view of cross-lingual transfer. A solution could be grouping the features presented in WALS into syntactic, +lexical, phonetic, etc., and calculating, which feature group has the strongest correlation with the cross-lingual transfer +performance. We could then re-quantify the WALS database using this information in order to develop an even more +effective and comprehensive similarity metric. It would also be beneficial if the WALS project received more attention +and the feature matrix became more densely populated. Also, instead of taking an average of lang2vec's categories, +they should be weighed by importance. + As shown by the DEP task, the models might be able to learn syntax and grammar without any explicit information. +This could mean that adding explicit syntactic and grammatical information to the pre-training process of the models +might also improve their performance. We will take a look at this in the future. Also, as the models achieved zero-shot +transfer scores rivaling those of the monolingual settings, especially in sentiment analysis, it would be useful to perform +an in-depth investigation about the models' behaviour in a zero-shot transfer learning setting to possibly find insights +on how to improve their transfer learning capabilities. +7. Conclusions +In this research we studied cross-lingual transfer language selection for zero-shot learning using three different +NLP tasks, namely, sentiment analysis, NER, and dependency parsing. We showed the effectiveness of cross-lingual +zero-shot transfer learning with a total of eight languages from three language families. In this way, existing data from +higher-resource languages may be used to improve the performance of languages that lack sufficient data. +We found a strong correlation between the similarity of the used languages and cross-lingual transfer performance. +The transfer performance declines when the distance between the languages increases. This allows for the selection +of a more suitable transfer language by assessing linguistic similarities rather than simply depending on intuition +Eronen et al.: Preprint submitted to Elsevier +Page 18 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +or defaulting to English. As our experiments have demonstrated, there is a significant difference in choosing the +optimal transfer language over defaulting to English. As there is a correlation between linguistic similarity and transfer +performance and a significant difference between using English and the optimal language as the cross-lingual transfer +source, one should instead choose the source language based on a linguistic similarity measure. Our experiments also +demonstrated that lexical information alone is insufficient to determine the optimal transfer languages at least for the +tasks of NER and DEP. +it is better to look for high-resource languages that have proper data available and are as close as possible to the target +language based on a similarity metric instead of making a decision based on intuition or simply relying on English. +This allows one to make a more informed and effective decision and makes model development more efficient. +The results showed that the proposed method for cross-lingual transfer language selection could also be useful as a +general method for other Natural Language Processing tasks, at least based on these tasks and our previous research. We +also showed that it is possible to achieve good performance on the target language in a zero-shot cross-lingual transfer +setting with multiple NLP tasks. This helps in developing better systems, especially when dealing with low-resource +languages. +We improved a novel linguistic similarity metric consisting of various linguistic features by using the WALS +database. Our proposed method did not show the strongest correlation with the transfer performance, but it still showed +potential as a metric that could be useful for the selection process, especially if given a more refined or inclusive feature +set. In the future, we will reassess the importances of the linguistic features used in the similarity metric calculation in +order to have a more refined feature set, aiming to create an even more effective and comprehensive linguistic similarity +metric. +Lastly, even though the overall high scores in the sentiment analysis task might be caused by the task being too +easy, it also shows that it could be possible to achieve results close to those of a monolingual fine-tuning in a zero-shot +cross-lingual transfer setting. This means it could be useful to thoroughly investigate the models’ behaviour in zero-shot +setting in order to find insights to improving their transfer capabilities. Also, as the DEP task demonstrated that the +models might have a capability to understand grammar, adding explicit syntactic and grammatical information to the +models’ pre-training could also increase performance. +CRediT authorship contribution statement +Juuso Eronen: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review & Editing. +Michal Ptaszynski: Conceptualization, Methodology, Supervision, Data Curation. Fumito Masui: Conceptualization, +Methodology, Supervision, Data Curation. +References +[1] +David M. Eberhard, Gary F. Simons, and Charles D. Fennig, editors. Ethnologue: Languages of the World. +SIL International, Dallas, TX, +USA, twenty-fifth edition, 2022. +[2] +Sean P. Engelson and Ido Dagan. Minimizing manual annotation cost in supervised training from corpora. In Proceedings of the 34th Annual +Meeting on Association for Computational Linguistics, ACL ’96, page 319-326, USA, 1996. Association for Computational Linguistics. +[3] +Sandipan Dandapat, Priyanka Biswas, Monojit Choudhury, and Kalika Bali. Complex linguistic annotation—no easy way out! a case from +bangla and hindi pos labeling tasks. In Proceedings of the Third Linguistic Annotation Workshop (LAW III), pages 10-18, 2009. +[4] +Julia Hirschberg and Christopher D. Manning. Advances in natural language processing. Science, 349(6245):261-266, 2015. +[5] +Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak, Ivan Vuli¢, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, and Anna Korhonen. +Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, +45(3):559-601, September 2019. +[6] +Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state and fate of linguistic diversity and inclusion in +the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6282-6293, Online, July +2020. Association for Computational Linguistics. +[7] +Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. +Low resource dependency parsing: Cross-lingual parameter sharing in a neural +network parser. +In Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint +conference on natural language processing (volume 2: short papers), pages 845-850, 2015. +[8] +Rouzbeh Ghasemi, Seyed Arad Ashrafi Asli, and Saeedeh Momtazi. Deep persian sentiment analysis: Cross-lingual training for low-resource +languages. Journal of Information Science, page 0165551520962781, 2020. +[9] +Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan. +A survey of multilingual neural machine translation. +ACM Comput. Surv., 53(5), +September 2020. +[10] +Saurabh Gaikwad, Tharindu Ranasinghe, Marcos Zampieri, and Christopher M. Homan. Cross-lingual offensive language identification for +low resource languages: The case of marathi, 2021. + +Eronen et al.: Preprint submitted to Elsevier +Page 19 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +or defaulting to English. As our experiments have demonstrated, there is a significant difference in choosing the +optimal transfer language over defaulting to English. As there is a correlation between linguistic similarity and transfer +performance and a significant difference between using English and the optimal language as the cross-lingual transfer +source. one should instead choose the source language based on a linguistic similarity measure. Our experiments also +demonstrated that lexical information alone is insufficient to determine the optimal transfer languages at least for the +tasks of NER and DEP. +it is better to look for high-resource languages that have proper data available and are as close as possible to the target +language based on a similarity metric instead of making a decision based on intuition or simply relying on English. +This allows one to make a more informed and effective decision and makes model development more efficient. +The results showed that the proposed method for cross-lingual transfer language selection could also be useful as a +general method for other Natural Language Processing tasks, at least based on these tasks and our previous research. We +also showed that it is possible to achieve good performance on the target language in a zero-shot cross-lingual transfer +setting with multiple NLP tasks. This helps in developing better systems, especially when dealing with low-resource +languages. +We improved a novel linguistic similarity metric consisting of various linguistic features by using the WALS +database. Our proposed method did not show the strongest correlation with the transfer performance, but it still showed +potential as a metric that could be useful for the selection process, especially if given a more refined or inclusive feature +set. In the future, we will reassess the importances of the linguistic features used in the similarity metric calculation in +order to have a more refined feature set, aiming to create an even more effective and comprehensive linguistic similarity +metric. +Lastly, even though the overall high scores in the sentiment analysis task might be caused by the task being too +easy, it also shows that it could be possible to achieve results close to those of a monolingual fine-tuning in a zero-shot +cross-lingual transfer setting. This means it could be useful to thoroughly investigate the models' behaviour in zero-shot +setting in order to find insights to improving their transfer capabilities. Also, as the DEP task demonstrated that the +models might have a capability to understand grammar, adding explicit syntactic and grammatical information to the +models' pre-training could also increase performance. +CRediT authorship contribution statement +Juuso Eronen: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review & Editing. +Michal Ptaszynski: Conceptualization, Methodology, Supervision, Data Curation. Fumito Masui: Conceptualization, +Methodology, Supervision, Data Curation. +References +[1] David M. Eberhard, Gary F. Simons, and Charles D. Fennig, editors. Ethnologue: Languages of the World. SIL International, Dallas, TX, +USA, twenty-fifth edition, 2022. +[2] Sean P. Engelson and Ido Dagan. Minimizing manual annotation cost in supervised training from corpora. In Proceedings of the 34th Annual +Meeting on Association for Computational Linguistics, ACL '96, page 319-326, USA, 1996. Association for Computational Linguistics +bangla and hindi pos labeling tasks. In Proceedings of the Third Linguistic Annotation Workshop (LAW II), pages 10-18, 2009. +[4] Julia Hirschberg and Christopher D. Manning. Advances in natural language processing. Science, 349(6245):261-266, 2015. +[5] Edoardo Maria Ponti, Helen O'Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, and Anna Korhonen. +Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, +45(3):559-601, September 2019. +[6] Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state and fate of linguistic diversity and inclusion in +the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6282-6293, Online, July +2020. Association for Computational Linguistics +[7] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-lingual parameter sharing in a neural +network parser. In Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint +conference on natural language processing (volume 2: short papers), pages 845-850, 2015. +[8] Rouzbeh Ghasemi, Seyed Arad Ashrafi Asli, and Saeedeh Momtazi. Deep persian sentiment analysis: Cross-lingual training for low-resource +languages. Journal of Information Science, page 0165551520962781, 2020. +September 2020. +[10] Saurabh Gaikwad, Tharindu Ranasinghe, Marcos Zampieri, and Christopher M. Homan. Cross-lingual offensive language identification for +low resource languages: The case of marathi, 2021. +Eronen et al.: Preprint submitted to Elsevier +Page 19 of 23{11] +{12] +(13) +{14] +{15} +[16] +[17] +[18] +{19} +[20] +[21] +[22] +[23] +[24] +[25] +[26] +[27] +[28] +[29] +[30] +[31] +[32] +[33] +[34] +[35] +[36] +[37] +[38] +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual bert? In ACL, 2019. +Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson. Xtreme: A massively multilingual multi-task +benchmark for evaluating cross-lingual generalisation. In International Conference on Machine Learning, pages 4411-4421. PMLR, 2020. +Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. +Bert: Pre-training of deep bidirectional transformers for language +understanding, 2018. +Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard Grave, Myle Ott, +Luke Zettlemoyer, and Veselin Stoyanov. +Unsupervised cross-lingual representation learning at scale. +In Proceedings of the 58th Annual +Meeting of the Association for Computational Linguistics, pages 8440-8451, Online, 2020. Association for Computational Linguistics. +Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference +on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- +IJCNLP), pages 833-844, Hong Kong, China, November 2019. Association for Computational Linguistics. +Edward P. Stabler and Edward L. Keenan. Structural similarity within and among languages. Theoretical Computer Science, 293(2):345-363, +2003. Algebraic Methods in Language Processing. +Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, et al. Xglue: +A new benchmark datasetfor cross-lingual pre-training, understanding and generation. In Proceedings of the 2020 Conference on Empirical +Methods in Natural Language Processing (EMNLP), pages 6008-6018, 2020. +Matt Pikuliak, Marian Simko, and Maria Bielikova. Cross-lingual learning for text processing: A survey. Expert Systems with Applications, +165:113765, 2021. +Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe +Ma, Antonios Anastasopoulos, Patrick Littell, and Graham Neubig. Choosing transfer languages for cross-lingual learning. +In Proceedings +of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3125-3135, Florence, Italy, July 2019. Association for +Computational Linguistics. +Ryan Cotterell and Georg Heigold. Cross-lingual character-level neural morphological tagging. +In Proceedings of the 2017 Conference on +Empirical Methods in Natural Language Processing, pages 748-759, Copenhagen, Denmark, September 2017. Association for Computational +Linguistics. +Charlotte Gooskens, Vincent J. van Heuven, Jelena Golubovi¢é, Anja Schiippert, Femke Swarte, and Stefanie Voigt. +Mutual intelligibility +between closely related languages in europe. International Journal of Multilingualism, 15(2):169-193, 2018. +Nitish Aggarwal, Tobias Wunner, Mihael Aréan, Paul Buitelaar, and Sean O’Riain. A similarity measure based on semantic, terminological +and linguistic information. In Proceedings of the 6th International Workshop on Ontology Matching, 01 2011. +Vincent Beaufils and Johannes Tomin. Stochastic approach to worldwide language classification: the signals and the noise towards long-range +exploration, Oct 2020. +Lazar Kovacevic, Vladimir Bradic, Gerard de Melo, Sinisa Zdravkovic, and Olga Ryzhova. Ezglot. https: //www.ezglot.com/, 2021. +Matthew S. Dryer and Martin Haspelmath, editors. WALS Online. Max Planck Institute for Evolutionary Anthropology, Leipzig, 2013. +Juuso Eronen, Michal Ptaszynski, Fumito Masui, Masaki Arata, Gniewosz Leliwa, and Michal Wroczynski. Transfer language selection for +zero-shot cross-lingual abusive language detection. Information Processing and Management, 59(4):102981, 2022. +Patrick Littell, David R. Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin. URIEL and lang2vec: Representing languages +as typological, geographical, and phylogenetic vectors. In Proceedings of the 15th Conference of the European Chapter of the Association for +Computational Linguistics: Volume 2, Short Papers, pages 8-14, Valencia, Spain, April 2017. Association for Computational Linguistics. +Hakan Ringbom. Cross-linguistic Similarity in Foreign Language Learning. Multilingual Matters, 2006. +Robert Bley-Vroman. The evolving context of the fundamental difference hypothesis. Studies in Second Language Acquisition, 31(2):175—198, +2009. +Ryan Cotterell, Sabrina J. Mielke, Jason Eisner, and Brian Roark. Are all languages equally hard to language-model? In Proceedings of the +2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume +2 (Short Papers), pages 536-541, New Orleans, Louisiana, 2018. Association for Computational Linguistics. +Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. The evaluation of sentence similarity measures. In Proceedings of the International +Conference on Data Warehousing and Knowledge Discovery, volume 5182, pages 305-316, 09 2008. +Aminul Islam and Diana Inkpen. Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl. Discov. +Data, 2(2), 2008. +Steven Moran, Daniel McCloy, and Richard Wright, editors. PHOIBLE Online. Max Planck Institute for Evolutionary Anthropology, Leipzig, +2014. +Harald Hammarstrém, Robert Forkel, Martin Haspelmath, and Sebastian Bank. glottolog/glottolog: Glottolog database 4.5, December 2021. +Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, +Greg Corrado, et al. Google’s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association +for Computational Linguistics, 5:339-351, 2017. +Yang Chen and Alan Ritter. Model selection for cross-lingual transfer. In Proceedings of the 2021 Conference on Empirical Methods in Natural +Language Processing, pages 5675-5687, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational +Linguistics. +Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and Jennimaria Palomaki. +TyDi +QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages. Transactions of the Association for +Computational Linguistics, 8:454-470, 07 2020. +Anne Lauscher, Vinit Ravishankar, Ivan Vuli¢, and Goran Glava8. From zero to hero: On the limitations of zero-shot language transfer with +multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages +4483-4499, Online, November 2020. Association for Computational Linguistics. + +Eronen et al.: Preprint submitted to Elsevier +Page 20 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +[11] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual bert? In ACL, 2019. +[12] Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson. Xtreme: A massively multilingual multi-task +benchmark for evaluating cross-lingual generalisation. In International Conference on Machine Learning, pages 4411-4421. PMLR, 2020. +understanding, 2018. +Luke Zettlemoyer +and Veselin Stoyanov. Unsupervised cross-lingual repre +esentation learning at scale. In Proceedings of the 58th Annual +Meeting of the Association for Computational Linguistics, pages 8440-8451, Online, 2020. Association for Computational Linguistics +[15] Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 20i9 Conference +on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- +IJCNLP), pages 833-844, Hong Kong, China, November 2019. Association for Computational Linguistics +[16] Edward P. Stabler and Edward L. Keenan. Structural similarity within and among languages. Theoretical Computer Science, 293(2):345-363, +2003. Algebraic Methods in Language Processing. +[17] Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, et al. Xglue: +A new benchmark datasetfor cross-lingual pre-training, understanding and generation. In Proceedings of the 2020 Conference on Empirical +Methods in Natural Language Processing (EMNLP), pages 6008-6018, 2020. +[18] Matus Pikuliak, Marian Simko, and Maria Bielikova. Cross-lingual learning for text processing: A survey. Expert Systems with Applications, +165:113765, 2021 +[19] Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe +of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3125-3135, Florence, Italy, July 2019. Association for +Computational Linguistics +[20] Ryan Cotterell and Georg Heigold. Cross-lingual character-level neural morphological tagging. In Proceedings of the 2017 Conference on +Empirical Methods in Natural Language Processing, pages 748-759, Copenhagen, Denmark, September 2017. Association for Computational +Linguistics +[21] Charlotte Gooskens, Vincent J. van Heuven, Jelena Golubovic, Anja Schuppert, Femke Swarte, and Stefanie Voigt. Mutual intelligibility +between closely related languages in europe. International Journal of Multilingualism, 15(2):169-193, 2018 +[22] Nitish Aggarwal, Tobias Wunner, Mihael Arcan, Paul Buitelaar, and Sean O'Riain. A similarity measure based on semantic, terminological +and linguistic information. In Proceedings of the 6th International Workshop on Ontology Matching, O1 2011 +[23] Vincent Beaufils and Johannes Tomin. Stochastic approach to worldwide language classification: the signals and the noise towards long-range +exploration, Oct 2020. +[24] Lazar Kovacevic, Vladimir Bradic, Gerard de Melo, Sinisa Zdravkovic, and Olga Ryzhova. Ezglot. https : / /www . ezglot . com/, 2021. +[25] Matthew S. Dryer and Martin Haspelmath, editors. WALS Online. Max Planck Institute for Evolutionary Anthropology, Leipzig, 2013 +[27] Patrick Littell, David R. Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin. URIEL and lang2vec: Representing languages +as typological, geographical, and phylogenetic vectors. In Proceedings of the 15th Conference of the European Chapter of the Association for +Computational Linguistics: Volume 2, Short Papers, pages 8-14, Valencia, Spain, April 2017. Association for Computational Linguistics. +[28] Hakan Ringbom. Cross-linguistic Similarity in Foreign Language Learning. Multilingual Matters, 2006. +[29] Robert Bley-Vroman. The evolving context of the fundamental difference hypothesis. Studies in Second Language Acquisition, 31(2):175-198, +2009 +[3o] Ryan Cotterell, Sabrina J. Mielke, Jason Eisner, and Brian Roark. Are all languages equally hard to language-model? In Proceedings of the +2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume +[31] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. The evaluation of sentence similarity measures. In Proceedings of the International +Conference on Data Warehousing and Knowledge Discovery, volume 5182, pages 305-316, 09 2008. +[32] Aminul Islam and Diana Inkpen. Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl. Discov. +Data, 2(2), 2008. +[33] Steven Moran, Daniel McCloy, and Richard Wright, editors. PHOIBLE Online. Max Planck Institute for Evolutionary Anthropology, Leipzig +2014. +341 + Harald Hammarstrom, Robert Forkel, Martin Haspelmath, and Sebastian Bank. glottolog/glottolog: Glottolog database 4.5, December 2021 +[35] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viegas, Martin Wattenberg, +Greg Corrado, et al. Google's multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association +for Computational Linguistics, 5:339-351, 2017. +[36] Yang Chen and Alan Ritter. Model selection for cross-lingual transfer. In Proceedings of the 2021 Conference on Empirical Methods in Natural +Language Processing, pages 5675-5687, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational +Linguistics. +[37] Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and Jennimaria Palomaki. TyDi +QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages. Transactions of the Association for +ComputationalLinguistics.8:454-470.072020 +[38] Anne Lauscher, Vinit Ravishankar, Ivan Vulic, and Goran Glavas. From zero to hero: On the limitations of zero-shot language transfer with +multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages + 4483-4499, Online, November 2020. Association for Computational Linguistics. +Eronen et al.: Preprint submitted to Elsevier +Page 20 of 23[39] +[40] +[41] +[42] +[43] +[44] +[45] +[46] +[47] +[48] +[49] +[50] +[51] +[52] +[53] +[54] +[55] +[56] +[57] +[58] +[59] +[60] +[61] +[62] +[63] +[64] +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Sebastian Ruder, Noah Constant, Jan Botha, Aditya Siddhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie Hu, Dan Garrette, Graham Neubig, +and Melvin Johnson. XTREME-R: Towards more challenging and nuanced multilingual evaluation. In Proceedings of the 2021 Conference +on Empirical Methods in Natural Language Processing, pages 10215-10245, Online and Punta Cana, Dominican Republic, November 2021. +Association for Computational Linguistics. +Tulia Turc, Kenton Lee, Jacob Eisenstein, Ming-Wei Chang, and Kristina Toutanova. +Revisiting the primacy of english in zero-shot cross- +lingual transfer, 2021. +Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Cross-lingual transfer for unsupervised dependency parsing without parallel data. In +Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 113-122, 2015. +Xilun Chen, Ahmed Hassan Awadallah, Hany Hassan, Wei Wang, and Claire Cardie. +Multi-source cross-lingual model transfer: Learning +what to share. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3098-3112, Florence, Italy, +July 2019. Association for Computational Linguistics. +Quynh Do and Judith Gaspers. +Cross-lingual transfer learning with data selection for large-scale spoken language understanding. +In +Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference +on Natural Language Processing (EMNLP-IJCNLP), pages 1455-1460, Hong Kong, China, 2019. Association for Computational Linguistics. +Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, and Ekaterina Shutova. Multilingual and cross-lingual document classification: +A meta-learning approach. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: +Main Volume, pages 1966-1976, Online, April 2021. Association for Computational Linguistics. +Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva, and Isabelle Augenstein. Zero-shot cross-lingual transfer with meta learning. In +Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4547-4562, Online, November +2020. Association for Computational Linguistics. +Antonio Martinez-Garcia, Toni Badia, and Jeremy Barnes. +Evaluating morphological typology in zero-shot cross-lingual transfer. +In +Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on +Natural Language Processing (Volume 1: Long Papers), pages 3136-3153, Online, August 2021. Association for Computational Linguistics. +Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1):1—-167, 2012. +Koyel Chakraborty, Siddhartha Bhattacharyya, and Rajib Bag. A survey of sentiment analysis from social media data. IEEE Transactions on +Computational Social Systems, 7(2):450-464, 2020. +Ashima Yadav and Dinesh Kumar Vishwakarma. +Sentiment analysis using deep learning architectures: A review. +Artificial Intelligence +Review, 53(6):4335-4385, aug 2020. +Hu Xu, Bing Liu, Lei Shu, and Philip Yu. BERT post-training for review reading comprehension and aspect-based sentiment analysis. +In +Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language +Technologies, Volume 1 (Long and Short Papers), pages 2324-2335, Minneapolis, Minnesota, June 2019. Association for Computational +Linguistics. +Anindya Sarkar, Sujeeth Reddy, and Raghu Sesha Iyengar. Zero-shot multilingual sentiment analysis using hierarchical attentive network and +bert. +In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, NLPIR 2019, +page 49-56, New York, NY, USA, 2019. Association for Computing Machinery. +Marouane Birjali, Mohammed Kasri, and Abderrahim Beni-Hssane. A comprehensive survey on sentiment analysis: Approaches, challenges +and trends. Knowledge-Based Systems, 226:107134, 2021. +Mohammad Sadegh Rasooli, Noura Farra, Axinia Radeva, Tao Yu, and Kathleen McKeown. +Cross-lingual sentiment transfer with limited +resources. Machine Translation, 32(1):143-165, 2018. +Andraz Pelicon, Marko Pranjié, Dragana Miljkovi¢, Blaz Skrlj, and Senja Pollak. +Zero-shot learning for cross-lingual news sentiment +classification. Applied Sciences, 10(17), 2020. +Akshi Kumar and Victor Hugo C. Albuquerque. Sentiment analysis using xlm-r transformer and zero-shot transfer learning on resource-poor +indian language. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 20(5), jun 2021. +Phillip Keung, Yichao Lu, Gyérgy Szarvas, and Noah A Smith. The multilingual amazon reviews corpus. arXiv preprint arXiv:2010.02573, +2020. +Jan Kocon, Piotr Mitkowski, and Monika Zasko-Zieliriska. Multi-level sentiment analysis of PolEmo 2.0: Extended corpus of multi-domain +consumer reviews. +In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 980-991, Hong +Kong, China, November 2019. Association for Computational Linguistics. +Sergey Smetanin and Michail Komarov. Sentiment analysis of product reviews in russian using convolutional neural networks. In 2019 IEEE +21st Conference on Business Informatics (CBI), volume 01, pages 482-486, July 2019. +Vikas Yadav and Steven Bethard. +A survey on recent advances in named entity recognition from deep learning models. +arXiv preprint +arXiv:1910.11470, 2019. +Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for named entity recognition. JEEE Transactions on Knowledge +and Data Engineering, 34(1):50-70, 2022. +Sajid Ali, Khalid Masood, Anas Riaz, and Amna Saud. +Named entity recognition using deep learning: A review. +In 2022 International +Conference on Business Analytics for Technology and Security (ICBATS), pages 1-7. IEEE, 2022. +Alexander Fritzler, Varvara Logacheva, and Maksim Kretov. Few-shot classification in named entity recognition task. In Proceedings of the +34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, page 993-1000, New York, NY, USA, 2019. Association for Computing +Machinery. +Taesun Moon, Parul Awasthy, Jian Ni, and Radu Florian. Towards lingua franca named entity recognition with bert, 2019. +Rasmus Hvingelby, Amalie Brogaard Pauli, Maria Barrett, Christina Rosted, Lasse Malm Lidegaard, and Anders Sggaard. DaNE: A named +entity resource for Danish. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4597-4604, Marseille, France, +May 2020. European Language Resources Association. + +Eronen et al.: Preprint submitted to Elsevier +Page 21 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +[39] Sebastian Ruder, Noah Constant, Jan Botha, Aditya Siddhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie Hu, Dan Garrette, Graham Neubig: +Association for Computational Linguistics +[40] Iulia Turc, Kenton Lee, Jacob Eisenstein, Ming-Wei Chang, and Kristina Toutanova. Revisiting the primacy of english in zero-shot cross- +lingual transfer, 2021. +[41] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Cross-lingual transfer for unsupervised dependency parsing without parallel data. In +Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 113-122, 2015. +[42] Xilun Chen, Ahmed Hassan Awadallah, Hany Hassar +n, Wei Wang, and Claire Cardie. Multi-source cross-lingual model transfer: Learning +what to share. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3098-3112, Florence, Italy, +July 2019. Association for Computational Linguistic +Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference +on Natural Language Processing (EMNLP-IJCNLP), pages 1455-1460, Hong Kong, China, 2019. Association for Computational Linguistics. +[44] Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, and Ekaterina Shutova. Multilingual and cross-lingual document classification: +A meta-learning approach. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: +Main Volume, pages 1966-1976, Online, April 2021. Association for Computational Linguistics +[45] Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva, and Isabelle Augenstein. Zero-shot cross-lingual transfer with meta learning. In +Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4547-4562, Online, November +2020. Association for Computational Linguistics +[46] Antonio Martinez-Garcia, Toni Badia, and Jeremy Barnes. Evaluating morphological typology in zero-shot cross-lingual transfer. +Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 1lth International Joint Conference on +[47] Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1):1-167, 2012. +[48] Koyel Chakraborty, Siddhartha Bhattacharyya, and Rajib Bag. A survey of sentiment analysis from social media data. IEEE Transactions on +Computational Social Systems, 7(2):450-464, 2020 +[49] Ashima Yadav and Dinesh Kumar Vishwakarma. Sentiment analysis using deep learning architectures: A review. Artificial Intelligence +Review, 53(6):4335-4385, aug 2020 +[50] Hu Xu, Bing Liu, Lei Shu, and Philip Yu. BERT post-training for review reading comprehension and aspect-based sentiment analysis. In +Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language +Technologies, Volume 1 (Long and Short Papers), pages 2324-2335, Minneapolis, Minnesota, June 2019. Association for Computational +Linguistics. +[51] Anindya Sarkar, Sujeeth Reddy, and Raghu Sesha Iyengar. Zero-shot multilingual sentiment analysis using hierarchical attentive network and +bert. In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, NLPIR 2019 +page 49-56, New York, NY, USA, 2019. Association for Computing Machinery +[52] Marouane Birjali, Mohammed Kasri, and Abderrahim Beni-Hssane. A comprehensive survey on sentiment analysis: Approaches, challenges +and trends. Knowledge-Based Systems, 226:107134, 2021 +[53] Mohammad Sadegh Rasooli, Noura Farra, Axinia Radeva, Tao Yu, and Kathleen McKeown. Cross-lingual sentiment transfer with limited +resources. Machine Translation, 32(1):143-165, 2018. +[54] Andraz Pelicon, Marko Pranjic, Dragana Miljkovic, Blaz Skrlj, and Senja Pollak. Zero-shot learning for cross-lingual news sentiment +classification. Applied Sciences, 10(17), 2020. +[55] Akshi Kumar and Victor Hugo C. Albuquerque. Sentiment analysis using +ig xlm-r transformer and zero-shot transfer learning on resource-poor +[56] Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A Smith. The multilingual amazon reviews corpus. arXiv preprint arXiv:2010.02573, +2020. +t analysis of PolEmo 2.0: Extended corpus of multi-domain +Kong, China, November 2019. Association for Computational Linguistics. +21st Conference on Business Informatics (CBI), volume 01, pages 482-486, July 2019. +[59] Vikas Yadav and Steven Bethard. A survey on recent advances in named entity recognition from deep learning models. arXiv preprint +arXiv:1910.11470, 2019 +[60] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for named entity recognition. IEEE Transactions on Knowledge +ind Data Engineering, 34(1):50-70, 2022 +[61] Sajid Ali, Khalid Masood, Anas Riaz, and Amna Saud. Named entity recognition using deep learning: A review. In 2022 International +Conference on Business Analytics for Technology and Security (ICBATS), pages 1-7. IEEE, 2022. +[62] Alexander Fritzler, Varvara Logacheva, and Maksim Kretov. Few-shot classification in named entity recognition task. In Proceedings of the +34th ACM/SIGAPP Symposium on Applied Computing, SAC '19, page 993-1000, New York, NY, USA, 2019. Association for Computing +Machinery. +[64] Rasmus Hvingelby, Amalie Brogaard Pauli, Maria Barrett, Christina Rosted, Lasse Malm Lidegaard, and Anders Sogaard. DaNE: A named +entity resource for Danish. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4597-4604, Marseille, France, +May 2020. European Language Resources Association. +Eronen et al.: Preprint submitted to Elsevier +Page 21 of 23[65] +[66] +[67] +[68] +[69] +[70] +[71] +[72] +[73] +[74] +[75] +[76] +[77] +[78] +[79] +[80] +[81] +[82] +[83] +[84] +[85] +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Alankar Jain, Bhargavi Paranjape, and Zachary C. Lipton. Entity projection via machine translation for cross-lingual NER. In Proceedings of +the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language +Processing (EMNLP-IJCNLP), pages 1083-1092, Hong Kong, China, November 2019. Association for Computational Linguistics. +Bing Li, Yujie He, and Wenjin Xu. Cross-lingual named entity recognition using parallel corpus: A new approach using xlm-roberta alignment. +arXiv preprint arXiv:2101.11112, 2021. +Sabine Weber and Mark Steedman. +Zero-shot cross-lingual transfer is a hard baseline to beat in German fine-grained entity typing. +In +Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 42-48, Online and Punta Cana, Dominican Republic, +November 2021. Association for Computational Linguistics. +Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. +Cross-lingual name tagging and linking for 282 +languages. +In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages +1946-1958, Vancouver, Canada, July 2017. Association for Computational Linguistics. +Afshin Rahimi, Yuan Li, and Trevor Cohn. +Massively multilingual transfer for NER. +In Proceedings of the 57th Annual Meeting of the +Association for Computational Linguistics, pages 151-164, Florence, Italy, July 2019. Association for Computational Linguistics. +Min Xiao and Yuhong Guo. Distributed word representation learning for cross-lingual dependency parsing. In Proceedings of the Eighteenth +Conference on Computational Natural Language Learning, pages 119-129, Ann Arbor, Michigan, June 2014. Association for Computational +Linguistics. +Jérg Tiedemann. +Cross-lingual dependency parsing with universal dependencies and predicted pos labels. +In Proceedings of the Third +International Conference on Dependency Linguistics (Depling 2015), pages 340-349, 2015. +Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. +Cross-lingual dependency parsing based on distributed +representations. +In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International +Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1234-1244, Beijing, China, July 2015. Association for +Computational Linguistics. +Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and Frangois Yvon. Frustratingly easy cross-lingual transfer for transition-based +dependency parsing. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: +Human Language Technologies, pages 1058-1063, 2016. +Mohit Bansal. Dependency link embeddings: Continuous representations of syntactic substructures. +In Proceedings of the Ist Workshop +on Vector Space Modeling for Natural Language Processing, pages 102-108, Denver, Colorado, June 2015. Association for Computational +Linguistics. +Dan Kondratyuk and Milan Straka. 75 languages, 1 model: Parsing Universal Dependencies universally. In Proceedings of the 2019 Conference +on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- +IJCNLP), pages 2779-2795, Hong Kong, China, November 2019. Association for Computational Linguistics. +Matej Uléar and Marko Robnik-Sikonja. Finest bert and crosloengual bert. In International Conference on Text, Speech, and Dialogue, pages +104-111. Springer, 2020. +Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Haji¢, Christopher D. Manning, Sampo Pyysalo, Sebastian Schuster, Francis +Tyers, and Daniel Zeman. Universal Dependencies v2: An evergrowing multilingual treebank collection. In Proceedings of the 12th Language +Resources and Evaluation Conference, pages 4034-4043, Marseille, France, May 2020. European Language Resources Association. +Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, +Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen +Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin +Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori +Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, +Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith +Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, +Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, +Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung +Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, +Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, +Armin W. Thomas, Florian Tramér, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, +Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On +the opportunities and risks of foundation models, 2021. +Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention +is all you need. Advances in neural information processing systems, 30, 2017. +Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan Roth. Cross-lingual ability of multilingual bert: An empirical study. In International +Conference on Learning Representations, 2020. +Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. +Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. +Alexis Conneau and Guillaume Lample. +Cross-lingual language model pretraining. Advances in Neural Information Processing Systems, +32:7059-7069, 2019. +Cecil Brown, Eric Holman, and Sgren Wichmann. Sound correspondences in the world’s languages. Language, 89:4—29, 03 2013. +Charlotte Gooskens. +The contribution of linguistic factors to the intelligibility of closely related languages. +Journal of Multilingual and +multicultural development, 28(6):445—467, 2007. +Chaitanya Malaviya, Graham Neubig, and Patrick Littell. +Learning language representations for typology prediction. +In Proceedings of +the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2529-2535, Copenhagen, Denmark, September 2017. + +Eronen et al.: Preprint submitted to Elsevier +Page 22 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +[65] Alankar Jain, Bhargavi Paranjape, and Zachary C. Lipton. Entity projection via machine translation for cross-lingual NER. In Proceedings of +the 2O19 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language +[66] Bing Li, Yujie He, and Wenjin Xu. Cross-lingual named entity recognition using parallel corpus: A new approach using xlm-roberta alignment +arXiv preprint arXiv:2101.11112, 2021. +[67] Sabine Weber and Mark Steedman. Zero-shot cross-lingual transfer is a hard baseline to beat in German fine-grained entity typing. +Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 42-48, Online and Punta Cana, Dominican Republic, +November 2021. Association for Computational Linguistics. +[68] Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. Cross-lingual name tagging and linking for 282 +languages. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume I: Long Papers), pages +[69] Afshin Rahimi, Yuan Li, and Trevor Cohn. Massively multilingual transfer for NER. In Proceedings of the 57th Annual Meeting of the +[70] Min Xiao and Yuhong Guo. Distributed word representation learning for cross-lingual dependency parsing. In Proceedings of the Eighteenth +Conference on Computational Natural Language Learning, pages 119-129, Ann Arbor, Michigan, June 2014. Association for Computational +Linguistics +[71] Jorg Tiedemann. Cross-lingual dependency parsing with universal dependencies and predicted pos labels. In Proceedings of the Third +[72] Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. Cross-lingual dependency parsing based on distributed +epresentations. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International +Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1234-1244, Beijing, China, July 2015. Association for +Computational Linguistics. +[73] Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and Frangois Yvon. Frustratingly easy cross-lingual transfer for transition-based +dependency parsing. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: +Human Language Technologies, pages 1058-1063, 2016 +[74] Mohit Bansal. Dependency link embeddings: Continuous representations of syntactic substructures. In Proceedings of the Ist Workshop +on Vector Space Modeling for Natural Language Processing, pages 102-108, Denver, Colorado, June 2015. Association for Computational +Linguistics +[75] Dan Kondratyuk and Milan Straka. 75 languages, 1 model: Parsing Universal Dependencies universally. In Proceedings of the 2019 Conference +on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- +IJCNLP), pages 2779-2795, Hong Kong, China, November 2019. Association for Computational Linguistics +[76] Matej Ulcar and Marko Robnik-Sikonja. Finest bert and crosloengual bert. In International Conference on Text, Speech, and Dialogue, pages +104-111.Springer.2020 +[77] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajic, Christopher D. Manning, Sampo Pyysalo, Sebastian Schuster, Francis +Resources and Evaluation Conference, pages 4034 4043, Marseille, France, May 2020. European Language Resources Association +[78] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, +Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen +Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin +Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori +Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, +Pratyusha Kalluri. Siddharth Karamcheti. Geoff Keeling. Fereshte Khani, Omar Khattab. Pang Wei Koh. Mark Krass. Ranjay Krishna. Rohith +Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, +Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan +Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung +Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz. +Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, +Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On +the opportunities and risks of foundation models, 2021. +[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention +is all you need. Advances in neural information processing systems, 30, 2017 +[80] Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan Roth. Cross-lingual ability of multilingual bert: An empirical study. In International +Conference on Learning Representations, 2020. +[81] +Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. +Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. +32:7059-7069, 2019 +[83] Cecil Brown, Eric Holman, and Soren Wichmann. +Sound c +ribution of linguistic factors to the intelligibility of closely related languages. Journal of Multilingual and +multicultural development, 28(6):445-467, 2007. +[85] Chaitanya Malaviya, Graham Neubig, and Patrick Littell. Learning language representations for typology prediction. In Proceedings of +the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2529-2535, Copenhagen, Denmark, September 2017. +Eronen et al.: Preprint submitted to Elsevier +Page 22 of 23[86] +[87] +[88] +[89] +[90] +[91] +[92] +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Association for Computational Linguistics. +Benedikt Szmrecsanyi. Geography is overrated. Dialectological and folk dialectological concepts of space, pages 215-231, 2012. +Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, +Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain +Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language processing. In Proceedings +of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020. +Association for Computational Linguistics. +Leon Kellner. Historical outlines of English syntax. Macmillan, 1892. +Christiane Dalton-Puffer. The French influence on Middle English morphology: A corpus-based study on derivation, volume 20. Walter de +Gruyter, 2011. +Philip Durkin. Borrowed words: A history of loanwords in English. Oxford University Press, 2014. +Juuso Eronen, Michal Ptaszynski, Fumito Masui, Aleksander Smywiriski-Pohl, Gniewosz Leliwa, and Michal Wroczynski. Improving classifier +training efficiency for automatic cyberbullying detection with feature density. Information Processing & Management, 58(5):102616, 2021. +Ganesh Jawahar, Benoit Sagot, and Djamé Seddah. +What does BERT learn about the structure of language? +In Proceedings of the 57th +Annual Meeting of the Association for Computational Linguistics, pages 3651-3657, Florence, Italy, July 2019. Association for Computational +Linguistics. + +Eronen et al.: Preprint submitted to Elsevier +Page 23 of 23 + +Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity +Association for Computational Linguistics. +[86] Benedikt Szmrecsanyi. Geography is overrated. Dialectological and folk dialectological concepts of space, pages 215-231, 2012. +[87] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, +Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain +Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language processing. In Proceedings +of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020. +Association for Computational Linguistics. +[88] Leon Kellner. Historical outlines of English syntax. Macmillan, 1892. +[89] Christiane Dalton-Puffer. The French infuence on Middle English morphology: A corpus-based study on derivation, volume 20. Walter de +Gruyter, 2011. +[90] +Philip Durkin. Borrowed words: A history of loanwords in English. Oxford University Press, 2014. +[91] Juuso Eronen, Michal Ptaszynski, Fumito Masui, Aleksander Smywinski-Pohl, Gniewosz Leliwa, and Michal Wroczynski. Improving classifier +training efficiency for automatic cyberbullying detection with feature density. Information Processing & Management, 58(5):102616, 2021. +[92] C +Annual Meeting of the Association for Computational Linguistics, pages 3651-3657, Florence, Italy, July 2019. Association for Computational +Linguistics. +Eronen et al.: Preprint submitted to Elsevier +Page 23 of 23 \ No newline at end of file diff --git a/etFST4oBgHgl3EQfGDhd/content/tmp_files/load_file.txt b/etFST4oBgHgl3EQfGDhd/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..69fde48d14474bbbdba0a43311e918d9ce86fa24 --- /dev/null +++ b/etFST4oBgHgl3EQfGDhd/content/tmp_files/load_file.txt @@ -0,0 +1,3669 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf,len=3668 +page_content='Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Juuso Eronen**, Michal Ptaszynski* and Fumito Masui* Kitami Institute of Technology, 165, Koencho, Kitami, 090-0015, Hokkaido, Japan ARTICLE INFO ABSTRACT Keywords: We study the selection of transfer languages for different Natural Language Processing tasks, Multilingual Natural Language Pro- specifically sentiment analysis, named entity recognition and dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to cessing select an optimal transfer language, we propose to utilize different linguistic similarity metrics Zero-Shot Learning to measure the distance between languages and make the choice of transfer language based on this Transfer Learning information instead of relying on intuition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We demonstrate that linguistic similarity correlates Linguistics with cross-lingual transfer performance for all of the proposed tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also show that there Language similarity is a Statistically significant difference in choosing the optimal language as the transfer source instead of English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows us to select a more suitable transfer language which can be used to better leverage knowledge from high-resource languages in order to improve the performance of language applications lacking data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For the study, we used datasets from eight different languages from three language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Introduction As with any other supervised learning problem, the tasks in Natural Language Processing (NLP) require sufficiently large labeled datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' What sets NLP apart from other fields is the presence of multiple languages the datasets can appear in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means that in order to successfully train models for all of the world’s 7,100 languages [1], one would need to annotate a dataset for each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is a very difficult and costly task [2, 3] and has led to a small number of high-resource languages to dominate the field [4, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This imbalance in the distribution of resources among languages calls for the need to develop technologies that would make model development for low-resource languages realistically feasible and efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to address this problem, cross-lingual transfer been proposed as a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means leveraging labeled data from high-resource languages in order to improve the performance on lower-resource languages [7, 8, 9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Particularly, the popularity of cross-lingual zero-shot learning, or training on one task/language and testing on a different task/language completely unknown to the model, has increased greatly in the recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot learning has gained in popularity because it does not require any labeled data in the target language for training [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Moreover, zero-shot cross-lingual transfer utilizes large pre-trained multilingual transformer models like Multilingual BERT [13] or XLM-RoBERTa [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These models are fine-tuned with training data in a language called the source language (usually a high-resource language) and then used to predict entries from other languages than that used in training, often with satisfying results [11, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The choice of transfer language is usually done by intuition [16] or simply defaults to English, as is the case with popular multilingual benchmarks like XTREME [12] and XGLUE [17], even though there is no actual evidence backing up these choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [18] they found out that English is used in 149 of those papers, followed by German with 82 papers in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There has also been some attempts in developing a more systematic transfer language selection method [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, this method requires training of a ranking model, limiting its use to the tasks and datasets used for training, making it unusable off-the-shelf for other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Choosing the optimal language for cross-lingual transfer remains widely an understudied problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Usually, the suitable source language candidate is decided experimentally or by pure intuition by the individual (researcher, or ML practitioner) based on their own theoretical knowledge and experience in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One option to select the source language would be by taking a look at languages that are from the same language group as the target language [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Corresponding author b4 eronen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' juuso@gmail .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen) ORCID(s): 0000-0001-9841-3652 (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen) Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 1 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Juuso Eronena,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='*,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Michal Ptaszynskia and Fumito Masuia a Kitami Institute of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 165,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Koencho,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Kitami,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 090-0015,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hokkaido,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japan ARTICLE INFO ABSTRACT Keywords: We study the selection of transfer languages for different Natural Language Processing tasks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual Natural Language Pro- specifically sentiment analysis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' named entity recognition and dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to cessing select an optimal transfer language, we propose to utilize different linguistic similarity metrics Zero-Shot Learning tomeasure the distance betweenlanguages andmake the choice oftransferlanguage basedon this Transfer Learning information instead of relying on intuition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We demonstrate that linguistic similarity correlates Linguistics with cross-lingual transfer performance for all of the proposed tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also show that there Language similarity is a statistically significant difference in choosing the optimal language as the transfer source instead of English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows us to select a more suitable transfer language which can be used to better leverage knowledge from high-resource languages in order to improve the performance of from three language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Introduction As with any other supervised learning problem, the tasks in Natural Language Processing (NLP) require sufficiently large labeled datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' What sets NLP apart from other fields is the presence of multiple languages the datasets can appear in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" This means that in order to successfully train models for all of the world's 7,100 languages [1], one would need to annotate a dataset for each language." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is a very difficult and costly task [2, 3] and has led to a small number of high-resource languages to dominate the field [4, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This imbalance in the distribution of resources among languages calls for the need to develop technologies that would make model development for low-resource languages realistically feasible and efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to address this problem, cross-lingual transfer been proposed as a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means leveraging labeled s e Particularly, the popularity of cross-lingual zero-shot learning, or training on one task/language and testing on a different task/language completely unknown to the model, has increased greatly in the recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot learning has gained in popularity because it does not require any labeled data in the target language for training [11, 12] BERT [13] or XLM-RoBERTa [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These models are fine-tuned with training data in a language called the source language (usually a high-resource language) and then used to predict entries from other languages than that used in training, often with satisfying results [11, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The choice of transfer language is usually done by intuition [16] or simply defaults to English, as is the case with popular multilingual benchmarks like XTREME [12] and XGLUE [17], even though there is no actual evidence backing up these choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [18] they found out that English is used in 149 of those papers, followed by German with 82 papers in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There has also been some attempts in developing a more systematic transfer language selection method [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, this method requires training of a ranking model, limiting its use to the tasks and datasets used for training, making it unusable off-the-shelf for other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' suitable source language candidate is decided experimentally or by pure intuition by the individual (researcher, or ML practitioner) based on their own theoretical knowledge and experience in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One option to select the source Corresponding author @ eronen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' juuso@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen) ORCID(s): 0000-0001-9841-3652 (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen) Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 1 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity However, this does not guarantee that that the linguistic features shared between the two languages would be similar [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to contribute to the further understanding and solving this problem, we propose a method for choosing the source language for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We show that there is a correlation between linguistic similarity and model performance, allowing us to select the best transfer language by comparing the source and target languages using different linguistic similarity measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also show that multilingual transformer models can be used to obtain good performance on the target language in a zero-shot learning setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' To select the optimal source language for transfer, we propose to quantify the features of languages to compute a metric that can be used in comparing the closeness of languages using their linguistic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There are some existing metrics that use linguistic features in order to measure the linguistic distance between languages [22, 23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as these metrics simply take a handful or only a single linguistic feature into account, we propose a new linguistic similarity metric, which contains almost two hundred different features, based on the World Atlas of Language Structures (WALS) [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows us to not simply rely only on a single or a handful of features, but to have a more robust metric by better quantifying all aspects of the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this research we concentrated on three different Natural Language Processing tasks, namely, sentiment analysis, named entity recognition and dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We used datasets from eight different languages, namely English, German, Danish, Polish, Croatian, Russian, Japanese and Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The languages were chosen as they have relatively high quality datasets available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the languages represent different language families (English, German, Danish - Germanic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Polish, Russian, Croatian - Slavic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese, Korean - Koreano-Japonic language family).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also gives us the opportunity to study the efficacy of cross-lingual transfer learning between and within language family groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In previous research [26] we showed that cross-lingual transfer performance correlates with the linguistic similarity of the prediction target language and the source language used for fine-tuning the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Our hypothesis is that this is true for also other NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the experiments, we used multilingual transformer models, namely Multilingual BERT and XLM-RoBERTa, which were fine-tuned by using each of the languages as source and target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We calculated the linguistic similarity between all of our proposed languages using four different linguistic similarity metrics, EzGlot, eLinguistics, a quantified model based on WALS and averaged lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' To demonstrate the effectiveness of our method, we then measured the correlation between the zero-shot cross-lingual transfer performance and linguistic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The paper outline is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 2 we go through all areas of previous research that are addressed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 3 we describe all the tasks and datasets applied to this research and present their differences and features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 4 we describe the applied multilingual transformer models and the linguistic similarity metrics used in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 5 we describe our experiment workflow and go through all the results from the conducted experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 6 we discuss the results in general and bring out the most interesting findings in relation to the research goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Contributions of This Study The goal of this research is to develop a method for cross-lingual transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Most often, the choice of a transfer source is made purely by relying on the practitioner’s own judgement, using their accumulated experience on the field and theoretical knowledge or simply choosing a language from the same language family as the target [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The current methods have many problems as they are prone to bias from the practitioner and also completely unoptimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In fact, one could even say that there is no systematic method usable off-the-shelf that could be used to determine, which languages should be considered as the cross-lingual transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We propose to investigate the possibility that different linguistic similarity metrics could be utilized when trying to find possible source language candidates for cross-lingual transfer also for other tasks than abusive language detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more similar languages, we would be able to achieve higher model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This research is was conducted in order to confirm the findings of our previous research [26] also with other Natural Language Processing tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We improved the calculation process of the linguistic similarity metric quantified from the World Atlas of Language Structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was done by selecting all of the features that would have a defined value for both languages in all possible language pairs instead of having to be shared between all of the languages, increasing the robustness of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, we applied a linguistic similarity metric based on lang2vec by Littell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The main contributions of this work are as follows: Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 2 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity However, this does not guarantee that that the linguistic features shared between the two languages would be similar [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to contribute to the further understanding and solving this problem, we propose a method for choosing the source language for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We show that there is a correlation between linguistic similarity and model performance, allowing us to select the best transfer language by comparing the source and target languages using different linguistic similarity measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also show that multilingual transformer models can be used to obtain good performance on the target language in a zero-shot learning setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' To select the optimal source language for transfer, we propose to quantify the features of languages to compute a metric that can be used in comparing the closeness of languages using their linguistic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There are some existing metrics that use linguistic features in order to measure the linguistic distance between languages [22, 23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as these metrics simply take a handful or only a single linguistic feature into account, we propose a new linguistic similarity metric, which contains almost two hundred different features, based on the World Atlas of Language Structures (WALS) [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows us to not simply rely only on a single or a handful of features, but to have a more robust metric by better quantifying all aspects of the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this research we concentrated on three different Natural Language Processing tasks, namely, sentiment analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' named entity recognition and dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We used datasets from eight different languages, namely English, German, Danish, Polish, Croatian, Russian, Japanese and Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The languages were chosen as they have relatively Germanic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Polish, Russian, Croatian - Slavic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese, Korean - Koreano-Japonic language family).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also gives us the opportunity to study the efficacy of cross-lingual transfer learning between and within language family groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In previous research [26] we showed that cross-lingual transfer performance correlates with the linguistic similarity of the prediction target language and the source language used for fine-tuning the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Our hypothesis is that this is true for also other NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the experiments, we used multilingual transformer models, namely Multilingual BERT and XLM-RoBERTa, which were fine-tuned by using each of the languages as source and target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We calculated the linguistic similarity between all of our proposed languages using four different linguistic similarity metrics, EzGlot eLinguistics, a quantified model based on WALS and averaged lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' To demonstrate the effectiveness of our method, we then measured the correlation between the zero-shot cross-lingual transfer performance and linguistic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The paper outline is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 2 we go through all areas of previous research that are addressed in features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 4 we describe the applied multilingual transformer models and the linguistic similarity metrics used in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 5 we describe our experiment workflow and go through all the results from the conducted experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Section 6 we discuss the results in general and bring out the most interesting findings in relation to the research goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Contributions of This Study The goal of this research is to develop a method for cross-lingual transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Most often, the choice of a transfer source is made purely by relying on the practitioner's own judgement, using their accumulated experience on the field and theoretical knowledge or simply choosing a language from the same language family as the target [20]." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The current methods have many problems as they are prone to bias from the practitioner and also completely unoptimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In fact, one could even say that there is no systematic method usable off-the-shelf that could be used to determine, which languages should be considered as the cross-lingual transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We propose to investigate the possibility that different linguistic similarity metrics could be utilized when trying to find possible source language candidates for cross-lingual transfer also for other tasks than abusive language detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more similar languages, we would be able to achieve higher model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This research is was conducted in order to confirm the findings of our previous research [26] also with other Natural Language Processing tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We improved the calculation process of the linguistic similarity metric quantified from the World Atlas of Language Structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was done by selecting all of the features that would have a defined value for both languages in all possible language pairs instead of having to be shared between all of the languages, increasing the robustness of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, we applied a linguistic similarity metric based on lang2vec by Littell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The main contributions of this work are as follows: Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 2 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity e We confirm the transfer language selection method based on linguistic similarity with multiple NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' e We demonstrate the efficacy of two multidomain linguistic similarity metrics: improved quantified WALS and averaged lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' e We show that there is a significant difference in choosing an optimal transfer source language over English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In practice, we propose to fine-tune cross-lingual pretrained transformer models, specifically mBERT and XLM-R, on three different Natural Language Processing tasks (sentiment analysis, named entity recognition and dependency parsing) using each of our proposed languages (English, German, Danish, Polish, Russian, Japanese, Korean) and then perform zero-shot prediction on the rest of the languages of the proposed set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We calculated the linguistic similarity between all of our proposed languages using four different linguistic similarity metrics, EzGlot, eLinguistics, quantified World Atlas of Language Structures and an averaged lang2vec proximity vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We then calculated the correlation between the zero-shot cross-lingual transfer performance and linguistic similarity to show the effectiveness of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A block-diagram of the system is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Source language Target language data Linguistic data | similarity g — ee Output Fine-tuning = Fine-tuned model Prediction Pre-trained multilingual transformer model Figure 1: Block diagram of the proposed system 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Previous Research 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Measuring Linguistic Similarity Already in 2006, the relation between the difficulty of language learning and the similarity of languages in general was discussed in a book by Ringbom [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Finnish language scene was presented as an example in order to demonstrate the importance of cross-linguistic similarity in foreign language learning [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In short, he showed that Finnish-speaking Finns have a harder time learning English than Swedish-speaking Finns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this being the closer relation between Swedish and English languages, giving an advantage to Swedish speakers when it comes to transferring the existing linguistic knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cottorell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [30] showed that not every language is equally difficult to model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It was also shown by them that there is a correlation between the morphological richness of a language and the performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means that the more complex the language is, the more difficult it becomes to model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is hinting that more simple languages might not work so well when used as cross-lingual transfer sources for languages of higher complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also implies that the direct relatedness (for example, language family) of languages should not be the only criteria in deciding the cross-lingual transfer source language as other features of the languages should also be thoroughly considered in order to find the most optimal transfer language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There has been some research in attempting to quantify a linguistic similarity metric from different linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, these metrics mostly commonly rely only on one or just a few different linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, by comparing the consonants contained in a predefined set of words while taking into account the order Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 3 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We confirm the transfer language selection method based on linguistic similarity with multiple NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We demonstrate the efficacy of two multidomain linguistic similarity metrics: improved quantified WALS and averaged lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We show that there is a significant difference in choosing an optimal transfer source language over English In practice,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' we propose to fine-tune cross-lingual pretrained transformer models,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' specifically mBERT and XLM-R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' on three different Natural Language Processing tasks (sentiment analysis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' named entity recognition and dependency parsing) using each of our proposed languages (English,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' German,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Danish,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Polish,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Russian,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Korean) and then perform zero-shot prediction on the rest of the languages of the proposed set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We calculated the linguistic similarity between all of our proposed languages using four different linguistic similarity metrics, EzGlot, eLinguistics, quantified World Atlas of Language Structures and an averaged lang2vec proximity vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We then calculated the correlation between the zero-shot cross-lingual transfer performance and linguistic similarity to show the effectiveness of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A block-diagram of the system is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Source language Target language data data Linguistic similarity indno Pre-trained Fine-tuning Fine-tuned model Prediction multilingual transformer model Figure 1: Block diagram of the proposed system 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Previous Research 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Measuring Linguistic Similarity Already in 2006, the relation between the difficulty of language learning and the similarity of languages in general was discussed in a book by Ringbom [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Finnish language scene was presented as an example in order to demonstrate the importance of cross-linguistic similarity in foreign language learning [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In short, he showed that Finnish-speaking Finns have a harder time learning English than Swedish-speaking Finns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this being the closer relation between Swedish and English languages, giving an advantage to Swedish speakers when it comes to transferring the existing linguistic knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cottorell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [3O] showed that not every language is equally difficult to model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It was also shown by them that there is a correlation between the morphological richness of a language and the performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means that the more complex the language is, the more difficult it becomes to model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is hinting that more simple languages that the direct relatedness (for example, language family) of languages should not be the only criteria in deciding the cross-lingual transfer source language as other features of the languages should also be thoroughly considered in order to find the most optimal transfer language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There has been some research in attempting to quantify a linguistic similarity metric from different linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, these metrics mostly commonly rely only on one or just a few different linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, by comparing the consonants contained in a predefined set of words while taking into account the order Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 3 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity in which these consonants appear in the words, one can calculate a genetic proximity score between two languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is implemented as the eLinguistics [23] similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The metric makes it possible to get information about the direct relatedness of the compared languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, once the used languages start to become more and more distant, accidental similarities in consonants are introduced and there is a significant increase in the error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is also acknowledged by the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Even though the metric is easy to calculate, it completely ignores all other kinds of linguistic features, for example, semantic, syntactic, or morphological.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Another method to calculate a similarity metric is to take a look at the vocabularies of two languages and concentrate on their similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' EzGlot [24] uses lexical similarity as its basis for computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The metric uses lexical similarity between the two compared languages while at the same time taking into account the amount of words the two languages are sharing with other languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows for the calculation of similarity between the two languages in relation to the similarity with every other language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Aggarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [22] proposed a linguistic similarity metric that utilizes multiple aspects of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their metric, called STL, is based on Semantic, Terminological (lexical) and Linguistic (syntactic) similarity of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method outperformed previous similarity metrics that concentrated only on one of the previously mentioned aspects (31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They noticed that the terminological measures showed a much higher contribution when compared to the other two features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in order to use the metric, the structure of the used vocabulary dataset needs to be in the form of a complex ontology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Due to this fact and because of the dataset only consisting of German, French, Italian, Dutch, Spanish and English, and due to the dataset used by the authors being no longer available, it was not feasible to use the metric as a part of this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The lang2vec developed by Littell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [27] is a database that represents languages as typological, phylogenetic, and geographical vectors, which are derived from a number of different linguistic resources, for example, WALS [25], PHOIBLE [33], Ethnologue [1], and Glottolog [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Each of these utilize multiple different features, making them more robust than the EzGlot or eLinguistics metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The lang2vec is a fully-fledged library that can be used to query for different linguistic features and to get pre-computed distances between languages, based on some typological information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The World Atlas of Language Structures (WALS) project [25] consists of a database that catalogs phonological, word semantic and grammatical knowledge for 2,662 languages with almost two hundred different linguistic features from multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Using a linguistic similarity measure quantified from the WALS database into would allow a more robust method to measure similarity and would aid capturing all aspects of the languages instead of relying only on a single or a handful of linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Concentrating purely on using WALS to create a similarity metric would also preserve homogeneity and allow a more explainable and controllable implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In previous research [26] we proposed a novel linguistic similarity metric quantified from the WALS database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This metric proved to be more robust compared to the other metrics, at least for the applied abusive language detection task, as it was based on multiple kinds of linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transfer Language Selection Selecting the optimal language for cross-lingual transfer remains mostly an unanswered question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Most of the time, the decision of which language to use as the transfer source comes up to the practitioner’s consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is usually done experimentally or by intuition [20, 35, 16] or by simply relying on English [36, 37, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, in order to get a more successful transfer, Cottorell and Heigold [20] focused on using languages belonging to the same language family as the cross-lingual transfer target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, even though the languages are part of the same language family, two languages could be very distant for example when looking at the complexity of grammar, which means that it does not guarantee them sharing the same linguistic features [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A common way for choosing the transfer language is to simply default to English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason being that it is the de-facto highest resource language available for most NLP tasks [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is also the case with popular multilingual benchmarks like XTREME [12] and XGLUE [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Although, recently benchmarks like XTREME-R [39] have started to include cross-lingual training sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [18] they found out that English was used in 149 papers, followed by German with 82 papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, it has been shown that other languages than English, for example, German and Russian tend to work better as transfer sources [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Duong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [41] found out that choosing the transfer language based on language family is not optimal for many languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, their experiments showed that the best source language for both Finnish and German is Czech, even though being from a different language family than the targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They concluded that apparently, the best Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 4 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity in which these consonants appear in the words, one can calculate a genetic proximity score between two languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is implemented as the eLinguistics [23] similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The metric makes it possible to get information about the direct relatedness of the compared languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, once the used languages start to become more and more distant, accidental similarities in consonants are introduced and there is a significant increase in the error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is also acknowledged by the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Even though the metric is easy to calculate, it completely ignores all other kinds of linguistic features, for example, semantic, syntactic, or morphological.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Another method to calculate a similarity metric is to take a look at the vocabularies of two languages and concentrate on their similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' EzGlot [24] uses lexical similarity as its basis for computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The metric uses lexical similarity between the two compared languages while at the same time taking into account the amount of words the two languages are sharing with other languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows for the calculation of similarity between the two languages in relation to the similarity with every other language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Aggarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [22l proposed a linguistic similarity metric that utilizes multiple aspects of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their metric, called STL, is based on Semantic, Terminological (lexical) and Linguistic (syntactic) similarity of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method outperformed previous similarity metrics that concentrated only on one of the previously mentioned aspects [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They noticed that the terminological measures showed a much higher contribution when compared to the other two features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in order to use the metric, the structure of the used vocabulary dataset needs to be in the form of a complex ontology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Due to this fact and because of the dataset only consisting of German, French, Italian, Dutch, Spanish and English, and due to the dataset used by the authors being no longer available, it was not feasible to use the metric as a part of this research The lang2vec developed by Littell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [27] is a database that represents languages as typological, phylogenetic, and geographical vectors, which are derived from a number of different linguistic resources, for example, WALS [25], PHOIBLE [33], Ethnologue [1], and Glottolog [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Each of these utilize multiple different features, making them more robust than the EzGlot or eLinguistics metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The lang2vec is a fully-fledged library that can be used to query for different linguistic features and to get pre-computed distances between languages, based on some typological information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The World Atlas of Language Structures (WALS) project [25] consists of a database that catalogs phonological, word semantic and grammatical knowledge for 2,662 languages with almost two hundred different linguistic features from multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Using a linguistic similarity measure quantified from the WALS database into would allow a more robust method to measure similarity and would aid capturing all aspects of the languages instead of relying only on a single or a handful of linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Concentrating purely on using WALS to create a similarity metric more robust compared to the other metrics, at least for the applied abusive language detection task, as it was based on multiple kinds of linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transfer Language Selection Selecting the optimal language for cross-lingual transfer remains mostly an unanswered question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Most of the time, the decision of which language to use as the transfer source comes up to the practitioner's consideration." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is usually done experimentally or by intuition [20, 35, 16] or by simply relying on English [36, 37, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, in order to get a more successful transfer, Cottorell and Heigold [20] focused on using languages belonging to the same language family as the cross-lingual transfer target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, even though the languages are part of the same language family, two languages could be very distant for example when looking at the complexity of grammar, which means that it does not guarantee them sharing the same linguistic features [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A common way for choosing the transfer language is to simply default to English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason being that it is the de-facto highest resource language available for most NLP tasks [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is also the case with popular multilingual benchmarks like XTREME [12] and XGLUE [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Although, recently benchmarks like XTREME-R [39] have started to include cross-lingual training sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, in a survey of 157 cross-lingual learning papers by Pikuliak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [18] they found out that English was used in 149 papers, followed by German with 82 papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, it has been [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Duong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [41] found out that choosing the transfer language based on language family is not optimal for many languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, their experiments showed that the best source language for both Finnish and German is Czech, even though being from a different language family than the targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They concluded that apparently, the best Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 4 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity source language for cross-lingual transfer is not predictable from language family information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Instead, they proposed two methods for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The first being based on the Jensen-Shannon divergence between the distributions of parts-of-speech n-grams on a pair of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The second method was based on the word-order information feature in WALS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Both of these methods showed improvements over choosing English or a language from the same family as the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They also experimented with using multiple source languages, which further improved the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It has been shown [42, 43, 44] that transferring from many high-resource languages at the same time can yield higher results compared to selecting only a single language as the transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, these methods do not consider the actual relation between the source and the target languages and the amount of contribution of each of the languages to the total score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, Nooralahzadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [45] discovered that certain morphosyntactic features shared between languages tend to give a boost to cross-lingual transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [19] developed a ranking method for possible transfer language candidates using the lang2vec metrics [27] together with dataset dependent features like word overlap and type-token ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' they discovered that using both the dataset independent linguistic features and database dependent features to train the ranking model yields the best results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as their method requires training of the ranking model, it is dependent on the tasks and datasets used for training and is not usable out of the box for other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In another study [38] it was shown that the transfer performance with English as the source correlates with the linguistic similarity metrics of lang2vec [27], meaning that target languages more similar to English yielded higher scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They found out that similarity of syntactic structures especially play an important role in selecting the source language for tasks like parts-of-speech tagging (POS), named entity recognition (NER) and dependency parsing (DEP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They also discovered that the fine-tuning corpus size of the target language also makes a difference considering the cross-lingual transfer performance, especially for higher level tasks like question answering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, their research concentrated only on using English as the source language and the capabilities of other languages as the transfer source were left completely unexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Martinez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [46] found out that differences in language morphology in cross-lingual transfer generally lead to a higher loss than when transferring between languages with the same morphological typology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, they showed that parts-of-speech tagging tends to be more sensitive towards changes in morphological typology compared to sentiment analysis, which seems to be more sensitive to variables related to the fine-tuning data and the transfer performance being generally harder to predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In their research, Gaikwad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [10] discovered that there could be a relation between cross-lingual transfer performance and language similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They classified entries in the Marathi language using multiple languages, specifically Bengali, Greek, English, Turkish and Hindi as cross-lingual transfer sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their results showed that the closest language of these to Marathi, Hindi, also had the highest performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This hints that a solution to the problem of cross-lingual transfer language selection could be found with the aid of linguistic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In our previous research [26], we showed that there is a correlation between language similarity metrics and cross- lingual transfer efficiency, at least for offensive language identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows for choosing of an ideal transfer language by using different metrics to compare the similarity languages without having to rely on one’s intuition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also showed that choosing a transfer language, for example, only by looking at the language family is not always the best option.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Tasks In this research, we concentrate on three different NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis as a document classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named entity recognition as a token classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' And lastly, dependency parsing for understanding the importance of syntax and grammar in cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We hypothesize that the zero-shot cross-lingual transfer performance correlates with the linguistic similarity of the source and target languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to confirm our hypothesis, we used datasets from eight different languages, namely English, German, Danish, Polish, Russian, Croatian, Japanese and Korean for all of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We chose these languages as they had high quality datasets compared to other options and because the languages represent three different language families (English, German, Danish - Germanic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Polish, Russian, Croatian - Slavic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese, Korean - Koreano-Japonic language family).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also gives us the opportunity to study the efficacy of cross-lingual transfer learning between and within different language family groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 5 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity source language for cross-lingual transfer is not predictable from language family information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Instead, they proposed two methods for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The first being based on the Jensen-Shannon divergence between the distributions of parts-of-speech n-grams on a pair of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The second method was based on the word-order information feature in WALS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Both of these methods showed improvements over choosing English or a language from the same family as the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They also experimented with using multiple source languages, which further improved the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It has been shown [42, 43, 44] that transferring from many high-resource languages at the same time can yield higher results compared to selecting only a single language as the transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, these methods do not consider the actual relation between the source and the target languages and the amount of contribution of each of the languages to the total score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, Nooralahzadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [45] discovered that certain morphosyntactic features shared between languages tend to give a boost to cross-lingual transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [19] developed a ranking method for possible transfer language candidates using the lang2vec metrics [27] together with dataset dependent features like word overlap and type-token ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' they discovered that using both the dataset independent linguistic features and database dependent features to train the ranking model yields the best results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as their method requires training of the ranking model, it is dependent on the tasks and datasets used for training and is not usable out of the box for other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In another study [38] it was shown that the transfer performance with English as the source correlates with the scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They found out that similarity of syntactic structures especially play an important role in selecting the source language for tasks like parts-of-speech tagging (POS), named entity recognition (NER) and dependency parsing (DEP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' They also discovered that the fine-tuning corpus size of the target language also makes a difference considering the cross-lingual transfer performance, especially for higher level tasks like question answering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, their research concentrated only on using English as the source language and the capabilities of other languages as the transfer source were left completely unexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Martinez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [46] found out that differences in language morphology in cross-lingual transfer generally lead to a higher loss than when transferring between languages with the same morphological typology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, they showed that parts-of-speech tagging tends to be more sensitive towards changes in morphological typology compared to sentiment analysis, which seems to be more sensitive to variables related to the fine-tuning data and the transfer performance being generally harder to predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In their research, Gaikwad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [10] discovered that there could be a relation between cross-lingual transfer specifically Bengali, Greek, English, Turkish and Hindi as cross-lingual transfer sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their results showed that the closest language of these to Marathi, Hindi, also had the highest performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This hints that a solution to the problem of cross-lingual transfer language selection could be found with the aid of linguistic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In our previous research [26], we showed that there is a correlation between language similarity metrics and cross- lingual transfer efficiency, at least for offensive language identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" This allows for choosing of an ideal transfer language by using different metrics to compare the similarity languages without having to rely on one's intuition." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also showed that choosing a transfer language, for example, only by looking at the language family is not always the best option.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Tasks In this research, we concentrate on three different NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis as a document classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named entity recognition as a token classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' And lastly, dependency parsing for understanding the importance of syntax and grammar in cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We hypothesize that the zero-shot cross-lingual transfer performance correlates with the linguistic similarity of the source and target languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to confirm our hypothesis, we used datasets from eight different languages, namely English, German, Danish, Polish, Russian, Croatian, Japanese and Korean for all of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We chose these languages as they had high quality datasets compared to other options and because the languages represent three different language families (English, German, Danish - Germanic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Polish, Russian, Croatian - Slavic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese, Korean - Koreano-Japonic language family).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also gives us the opportunity to study the efficacy of cross-lingual transfer learning between and within different language family groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 5 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment Analysis In the field of NLP, sentiment analysis is one of the most active research areas [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The recent research in sentiment analysis, as with many other NLP tasks, has mainly focused on using deep neural networks and pretrained language models [48, 49, 50, 51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The popularization of multilingual transformer models has made it possible to utilize cross-lingual transfer in order to train models for low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Rasooli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [53] used a set of 16 languages from different language families, namely Indo-European, Turkic, Afro-Asiatic, Uralic, and Sino-Tibetan, to learn a sentiment analysis model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their experiments showed that for most target languages the best result can be obtained by leveraging from multiple source languages at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, datasets of a similar genre and domain tended to yield higher results when compared to out-of-domain and dissimilar genres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Pelicon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [54] used zero-shot cross-lingual transfer to classify Croatian news articles with an mBERT model fine-tuned using Slovene data with good results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In addition, Kumar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [55] used XLM-R and performed cross- lingual transfer from English to Hindi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their model compared favorably to the used benchmarks and gives an effective solution to the analysis of sentiments in a resource-poor scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The majority of the sentiment analysis datasets used in this research consists of product reviews, as we attempted to keep the domain the same throughout the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, for some languages, we were unable to find such data, most notably Croatian, which consists of news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also had to adjust the labels of some of the datasets so that they would match among all of the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Training and evaluation splits were retained from original datasets if possible, otherwise datasets were split to 80% training and 20% evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For this research we used the Multilingual Amazon Reviews Corpus [56], which covers English, Japanese and German.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset contains over 200,000 reviews for each language collected between 2015 and 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reviews are labeled from one to five stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as the other datasets used in this research used a two-point scale (positive, negative), we adjusted the labels accordingly (positive: 5 and 4 stars, negative: 2 and 1 stars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For Danish, we used a dataset containing almost 45,000 reviews crawled from Trustpilot by Alessandro Gianfelici!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For Polish, we used the PolEmo 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0 corpus [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This dataset contains over 8,000 reviews from the domains of medicine, hotels, products and school.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For both of these datasets, we also had to adjust the labels of this dataset to a two-point scale similarly to the Amazon Reviews dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Russian dataset used in this research was a product review dataset by Smetanin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset consists of 90,000 automatically labeled reviews on the topic "Women’s Clothes and Accessories", split evenly among three classes (positive, neutral, negative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Croatian dataset is the same used by Pelicon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [54], containing around 2,000 news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The articles were collected from 24sata, one of the leading Croatian media companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The annotations were done by 6 people using a five-level Likert scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The annotations were later adjusted to a three-point scale by the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For the purpose of our experiments, in case of both datasets, we left out the neutral reviews in order to binarize the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Korean dataset used in this research was Naver sentiment movie corpus v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset consists of Naver Movie reviews, with 100,000 positive and negative samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reviews were originally rated from one to ten, but the creators binarized the dataset prior to publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named Entity Recognition The research on Named Entity Recognition (NER) has also shifted towards using Deep Neural Networks and most recently, pretrained transformer models [59, 60, 61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual transfer has also been applied to NER in multiple research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fritzler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [62] used a metric-learning method to at the time outperform a state-of-the-art recurrent neural network method and showed to be capable in both few-shot and zero-shot settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [63] used multilingual BERT to fine-tune a NER model in multiple languages and showed it to be more effective than a model fine-tuned only on a single language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This demonstrates that the model can leverage knowledge from other languages in order to improve its performance on one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hvingelby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [64] presented a Danish NLP resource based on the Danish Universal Dependencies treebank and showed that transferring from other Germanic languages, especially from English and Norwegian, to Danish can yield good results when using mBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, using other Germanic languages in addition to Danish did not give any better results compared to fine-tuning only with Danish in their case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' ‘https ://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/AlessandroGianfelici/danish_reviews_dataset nttps: //github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/e9t/nsmc Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 6 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment Analysis In the field of NLP, sentiment analysis is one of the most active research areas [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The recent research in sentiment analysis, as with many other NLP tasks, has mainly focused on using deep neural networks and pretrained language models [48, 49, 50, 51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The popularization of multilingual transformer models has made it possible to utilize cross-lingual transfer in order to train models for low-resource languages Afro-Asiatic, Uralic, and Sino-Tibetan, to learn a sentiment analysis model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their experiments showed that for most target languages the best result can be obtained by leveraging from multiple source languages at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, datasets of a similar genre and domain tended to yield higher results when compared to out-of-domain and dissimilar genres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Pelicon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [54] used zero-shot cross-lingual transfer to classify Croatian news articles with an mBERT model fine-tuned using Slovene data with good results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In addition, Kumar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [55] used XLM-R and performed cross- lingual transfer from English to Hindi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Their model compared favorably to the used benchmarks and gives an effective solution to the analysis of sentiments in a resource-poor scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The majority of the sentiment analysis datasets used in this research consists of product reviews, as we attempted to keep the domain the same throughout the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, for some languages, we were unable to find such data, most notably Croatian, which consists of news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also had to adjust the labels of some of the datasets so that they would match among all of the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Training and evaluation splits were retained from original datasets if possible, otherwise datasets were split to 80% training and 20% evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For this research we used the Multilingual Amazon Reviews Corpus [56], which covers English, Japanese and German.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset contains over 200,000 reviews for each language collected between 2015 and 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reviews are labeled from one to five stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as the other datasets used in this research used a two-point scale (positive, negative), we adjusted the labels accordingly (positive: 5 and 4 stars, negative: 2 and 1 stars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For Danish, we used a dataset containing almost 45,000 reviews crawled from Trustpilot by Alessandro Gianfelicil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For Polish, we used the PolEmo 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0 corpus [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This dataset contains over 8,000 reviews from the domains of medicine, hotels, products and school.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For both of these datasets, we also had to adjust the labels of this dataset to a two-point scale similarly to the Amazon Reviews dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Russian dataset used in this research was a product review dataset by Smetanin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset consists of 90,000 automatically labeled reviews on the topic "Women\'s Clothes and Accessories", split evenly among three classes (positive, neutral, negative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Croatian dataset is the same used by Pelicon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [54], containing around 2,000 news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The articles were collected from 24sata, one of the leading Croatian media companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The annotations were done by 6 people using a five-level Likert scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The annotations were later adjusted to a three-point scale by the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For the purpose of our experiments, in case of both datasets, we left out the neutral reviews in order to binarize the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Korean dataset used in this research was Naver sentiment movie corpus v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset consists of Naver Movie reviews, with 100,000 positive and negative samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reviews were originally rated from one to ten, but the creators binarized the dataset prior to publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named Entity Recognition The research on Named Entity Recognition (NER) has also shifted towards using Deep Neural Networks and most research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fritzler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [62] used a metric-learning method to at the time outperform a state-of-the-art recurrent neural network method and showed to be capable in both few-shot and zero-shot settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [63] used multilingual BERT to fine-tune a NER model in multiple languages and showed it to be more effective than a model fine-tuned only on a single language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This demonstrates that the model can leverage knowledge from other languages in order to improve its performance on one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hvingelby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [64] presented a Danish NLP resource based on the Danish Universal Dependencies treebank and showed that transferring from other Germanic languages, especially from English and Norwegian, to Danish can yield good results when using mBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, using other Germanic languages in addition to Danish did not give any better results compared to fine-tuning only with Danish in their case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/AlessandroGianfelici/danish_reviews_dataset 2https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/e9t/nsmc Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 6 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Entity projection [65, 66] has been used to generate pseudo-labeled datasets for low-resource NER datasets with the help of parallel corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, it has been shown by Weber and Steedman [67] that entity projection can be outperformed by cross-lingual transfer and XLM-RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this could be explained by the discovery by Lauscher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [38], who showed that transfer performance with English as the source correlates with the similarity of the languages when dealing with a NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this study, we used the WikiANN [68] multilingual NER dataset also used by XTREME benchmark [12] for all of the proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' WikiANN consists of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) NER tags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We used the version by Rahimi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [69], which has a balanced train, development, and test splits and supports 176 of the 282 languages from the original WikiANN corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dependency Parsing Cross-lingual transfer in dependency parsing (DEP) has been studied for some time before the advent of multilingual transformer models [70, 71, 72, 73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These studies mainly used deep neural network-based methods on parallel corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The research by Duong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [41] discussed earlier in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2 was also conducted on a dependency parsing task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Instead of using parallel corpora, their research was built around syntactic cross-lingual word embeddings [74] trained over POS contexts to emphasize syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual transformer models have also seen success in the dependency parsing task [15, 75, 76].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Most notably, in their study, Lauscher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [38] discovered that structural and syntactic similarities between languages are the most determining factor when it comes to the success of cross-lingual transfer for lower-level tasks like POS-tagging and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset used for all of the proposed languages in this study was the Universal Dependencies v2 [77], a widely used resource in NLP as well as in linguistic research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset was also used in the XTREME [12] benchmark and in the research by Lauscher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [38] described earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Universal Dependencies is a framework for a consistent annotation of grammar, including parts-of-speech, morphological features, and syntactic dependencies across a total of more than 100 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Methods 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Models For the experiments we used two pre-trained multilingual transformer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The experiments were carried out in a zero-shot cross-lingual setting [78], meaning that the fine-tuning is done using only data from another language than the target language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual BERT (mBERT) [13] is the multilingual version of BERT, which stands for Bidirectional Encoder Representations from Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It is based on an attention mechanism called the Transformer [79] that learns contextual relations between words (or sub-words) in text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One of the features transformer models introduced is the capability to read text input in both directions at once, instead of being able to only read it sequentially from left-to- right or right-to-left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taking advantage of this bidirectional capability, BERT is pre-trained on two NLP tasks, Masked Language Modeling and Next Sentence Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The objective of Masked Language Modeling is to mask a word in a sentence and have the algorithm predict based on the word’s context what word has been hidden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Next Sentence Prediction, the algorithm takes two masked sentences and needs to predict if they have a sequential connection or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Although mBERT has not been trained using any cross-lingual data, it has showed cross-lingual capabilities and had good results in many cross-lingual tasks [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also includes various zero-shot transfer tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual BERT has even been shown to outperform the usage of various cross-lingual embeddings [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This ability to generalize could come from having word pieces used in all languages, for example, numbers, URLs, etc, mapped to a shared space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This in turn forces the co-occurring pieces to also be mapped to a shared space, thus spreading the effect to other word pieces, until different languages are close in a shared space [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XLM-RoBERTa (XLM-R) [14] is a multi-lingual transformer model, also trained with the Masked Language Model objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XLM-R is trained on around a total of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5tb of CommonCrawl data in one hundred different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The model is trained in the same way as the monolingual RoBERTa [81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means, that the only objective in its pre-training is Masked Language Modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The model is not trained on the Next Sentence Prediction task like BERT or using the parallel Translation Language Model objective of XLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XLM-R has been shown to outperform both mBERT and XLM on a many cross-lingual benchmarks, including zero-shot cross-lingual transfer tasks [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It has also been shown to perform well on low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 7 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Entity projection [65, 66] has been used to generate pseudo-labeled datasets for low-resource NER datasets with the help of parallel corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, it has been shown by Weber and Steedman [67] that entity projection can be outperformed by cross-lingual transfer and XLM-RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this could be explained by the discovery by Lauscher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [38], who showed that transfer performance with English as the source correlates with the similarity of the languages when dealing with a NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this study, we used the WikiANN [68] multilingual NER dataset also used by XTREME benchmark [12] for all of the proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' WikiANN consists of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) NER tags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We used the version by Rahimi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [69], which has a balanced train, development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' and test splits and supports 176 of the 282 languages from the original WikiANN corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dependency Parsing Cross-lingual transfer in dependency parsing (DEP) has been studied for some time before the advent of multilingual transformer models [70, 71, 72, 73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These studies mainly used deep neural network-based methods on parallel corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The research by Duong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [41] discussed earlier in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2 was also conducted on a dependency parsing task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Instead of using parallel corpora, their research was built around syntactic cross-lingual word embeddings [74] trained over POS contexts to emphasize syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual transformer models have also seen success in the dependency parsing task [15, 75, 76].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Most notably in their study, Lauscher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [38] discovered that structural and syntactic similarities between languages are the most determining factor when it comes to the success of cross-lingual transfer for lower-level tasks like POS-tagging and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset used for all of the proposed languages in this study was the Universal Dependencies v2 [77], a widely used resource in NLP as well as in linguistic research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The dataset was also used in the XTREME [12] benchmark and in the research by Lauscher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [38] described earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Universal Dependencies is a framework for a consistent annotation of grammar, including parts-of-speech, morphological features, and syntactic dependencies across a total of more than 100 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Methods 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Models For the experiments we used two pre-trained multilingual transformer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The experiments were carried out in a zero-shot cross-lingual setting [78], meaning that the fine-tuning is done using only data from another language than the target language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual BERT (mBERT) [13] is the multilingual version of BERT, which stands for Bidirectional Encoder contextual relations between words (or sub-words) in text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One of the features transformer models introduced is the capability to read text input in both directions at once, instead of being able to only read it sequentially from left-to- right or right-to-left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taking advantage of this bidirectional capability, BERT is pre-trained on two NLP tasks, Masked Language Modeling and Next Sentence Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" The objective of Masked Language Modeling is to mask a word in a sentence and have the algorithm predict based on the word's context what word has been hidden." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Next Sentence Prediction, the algorithm takes two masked sentences and needs to predict if they have a sequential connection or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Although mBERT has not been trained using any cross-lingual data, it has showed cross-lingual capabilities and had good results in many cross-lingual tasks [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also includes various zero-shot transfer tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual BERT has even been shown to outperform the usage of various cross-lingual embeddings [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This ability to generalize could come from having word pieces used in all languages, for example, numbers, URLs, etc, mapped to a shared space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This in turn forces the co-occurring pieces to also be mapped to a shared space, thus spreading the effect to other word pieces, until different languages are close in a shared space [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XLM-RoBERTa (XLM-R) [14] is a multi-lingual transformer model, also trained with the Masked Language Model objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XLM-R is trained on around a total of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5tb of CommonCrawl data in one hundred different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The model is trained in the same way as the monolingual RoBERTa [81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means, that the only objective in its pre-training is Masked Language Modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The model is not trained on the Next Sentence Prediction task like BERT or using the parallel Translation Language Model objective of XLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XLM-R has been shown to outperform both mBERT and XLM on a many cross-lingual benchmarks, including zero-shot cross-lingual transfer tasks [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It has also been shown to perform well on low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 7 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 1 eLinguistics metric between all applied languages Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 English 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='80 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='90 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 German 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='40 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 Croatian 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 Polish 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='90 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 Russian 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 Japanese 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='40 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 Korean 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 notable feature of XLM-R is that it can also match the performance of to state-of-the-art monolingual models, which demonstrates that it is possible to create multilingual models without sacrificing per-language performance in a monolingual setting [14], most likely thanks to the sheer amount of data used in the pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Linguistic Similarity Metrics To be able to calculate the correlation between cross-lingual zero-shot transfer performance and language similarity for the proposed tasks, we needed a way to quantify the aspects of all of the languages in our proposed set, specifically, a language similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We utilized four language similarity measures, eLinguistics [23], EzGlot [24], the multidomain metric we quantified from the linguistic features presented in WALS [25] and averaged genetic, geographic, syntactic, inventory, phonological and featural metrics from lang2vec [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We propose that linguistic similarity metrics could be utilized when trying to find optimal source language candidates for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more similar languages, we would be able to achieve higher model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' eLinguistics [23] works by calculating a genetic proximity value for a pair of languages based on the use of phonetic consonants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The score is calculated by taking a predefined word set and comparing the consonants contained in these words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method also takes into account the order of the consonants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This way, it is possible to get information regarding the closeness of the phonetics of the pair of languages set for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The assessment of the relationship of the consonants is based on the research done by Brown et al [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Even though completely disregarding semantic, morphological, and syntactic similarity and being very simple in formulation, the similarity values produced by the method seemed to be in line with our expectations and the two multidomain metrics (WALS, lang2vec) used in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as the distance between the two compared languages increased, the method seemed to become increasingly more prone to errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is due to the surging amount of accidental similarities in consonants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The similarity measure can be accessed from a web service*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The similarity values between our proposed languages are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' EzGlot [24] is based on the similarity of vocabularies, or lexical similarity, of the two compared languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' EzGlot’s similarity metric is computed by taking the lexical similarity between the two compared languages, while in addition taking into account the number of words the pair of languages also have in common every other language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This makes it possible to compute a similarity measure for a pair of languages in relation to their closeness with every other language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, due to including the calculation of the number of words the languages share with all other languages, the similarity measure becomes asymmetric between every pair of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also supports studies stating that mutual language intelligibility is being considered asymmetric as well [84, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A pre-computed language similarity matrix and the formula for its computation can be found on the EzGlot similarity metric project’s web page*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the usability of the metric is hindered by the high amount of missing values in the similarity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example taking a look at Japanese, which is one of the languages utilized in our experiments, over half of the values are missing for our proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the authors of the similarity measure do not give away their data source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means that we are unable to say anything regarding the quality of the computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also makes it more difficult to fill in the missing values to the similarity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We extracted the 3nttp ://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='elinguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='net/Compare_Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' aspx ‘https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='ezglot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/most-similar-languages .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='php Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 8 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 1 eLinguistics metric between all applied languages Danish Polish English German Croatian Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 English 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='80 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='90 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 German 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='40 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 Croatian 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 Polish 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='90 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 Russian 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='60 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 Japanese 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='40 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='70 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 Korean 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='20 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='50 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='00 notable feature of XLM-R is that it can also match the performance of to state-of-the-art monolingual models which demonstrates that it is possible to create multilingual models without sacrificing per-language performance in a monolingual setting [14], most likely thanks to the sheer amount of data used in the pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Linguistic Similarity Metrics To be able to calculate the correlation between cross-lingual zero-shot transfer performance and language similarity for the proposed tasks, we needed a way to quantify the aspects of all of the languages in our proposed set specifically, a language similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We utilized four language similarity measures, eLinguistics [23], EzGlot [24], the multidomain metric we quantified from the linguistic features presented in WALS [25] and averaged genetic, geographic, syntactic, inventory, phonological and featural metrics from lang2vec [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We propose that linguistic similarity metrics could be utilized when trying to find optimal source language candidates for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We hypothesize that linguistic similarity correlates with cross-lingual transfer efficacy, meaning that by using more similar languages, we would be able to achieve higher model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' eLinguistics [23] works by calculating a genetic proximity value for a pair of languages based on the use of phonetic consonants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The score is calculated by taking a predefined word set and comparing the consonants contained in these words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method also takes into account the order of the consonants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This way, it is possible to get information regarding the closeness of the phonetics of the pair of languages set for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The assessment of the relationship of the consonants is based on the research done by Brown et al [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Even though completely disregarding semantic, morphological, and syntactic similarity and being very simple in formulation, the similarity values produced by the method seemed to be in line with our expectations and the two multidomain metrics (WALS, lang2vec) used in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as the distance between the two compared languages increased, the method seemed to become increasingly more prone to errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is due to the surging amount of accidental similarities in consonants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The similarity measure can be accessed from a web service3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The similarity values between our proposed languages are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' EzGlot [24] is based on the similarity of vocabularies, or lexical similarity, of the two compared languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" EzGlot's similarity metric is computed by taking the lexical similarity between the two compared languages, while in addition taking into account the number of words the pair of languages also have in common every other language This makes it possible to compute a similarity measure for a pair of languages in relation to their closeness with every other language." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, due to including the calculation of the number of words the languages share with all other languages, the similarity measure becomes asymmetric between every pair of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also supports studies stating that mutual language intelligibility is being considered asymmetric as well [84, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" A pre-computed language similarity matrix and the formula for its computation can be found on the EzGlot similarity metric project's web page4." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the usability of the metric is hindered by the high amount of missing values in the similarity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example taking a look at Japanese, which is one of the languages utilized in our experiments, over half of the values are missing for our proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the authors of the similarity measure do not give away their data source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means that we are unable to say anything regarding the quality of the computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This also makes it more difficult to fill in the missing values to the similarity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We extracted the 3http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='elinguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='net/Compare_Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='aspx 4https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='ezglot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/most-similar-languages .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='php Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Page 8 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Table 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='EzGlot metric between all of the proposed languages ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='German ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Croatian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Polish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Russian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Japanese ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Korean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='German ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Croatian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Polish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Russian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Japanese ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Korean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Table 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Averaged lang2vec metric between all of the proposed languages ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='German ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Croatian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Polish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Russian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Japanese ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Korean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='565 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='691 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='352 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='352 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='470 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='579 Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='699 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='565 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='470 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='513 ~=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='619 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='589 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='585 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='589 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='518 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='579 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='699 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='518 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 similarity values from the EzGlot’s similarity matrix for the proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These values are presented in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Averaged lang2vec is calculated from genetic, geographic, syntactic, inventory, phonological and featural metrics of lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lang2vec [27] is a database that provides vector identifications of languages based on different linguistic features based on various linguistic resources like WALS [25], PHOIBLE [33], Ethnologue [1], and Glottolog [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The lang2vec is a fully-fledged library that can be used to query for different linguistic features and to get pre-computed genetic, geographic, syntactic, inventory, phonological and featural distances between languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to use lang2vec as a multidomain linguistic similarity metric, we used an average value of these six categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method is based on multiple types of linguistic features, making it naturally more robust than EzGlot or eLinguistics similarity metrics, which only rely on a single kind of linguistic feature each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method also uses a larger amount of data compared to the previously described metric based on WALS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, lang2vec deals with the missing values in linguistic resources by predicting them [85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, due to being based on multiple sources, the heterogeneous nature of the method brings up many questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, there might be incoherence as we do not know how features are selected from different sources and how they are weighted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the features are one-hot encoded which causes a complete loss of ordinality between feature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, using geographical information as one of the vectors seems questionable as it was shown to be unreliable when predicting similarity of languages [86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The averaged distance matrix for lang2vec is shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Quantified World Atlas of Language Structures is a similarity metric developed by us in previous research [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It is based on The World Atlas of Language Structures (WALS) [25], which is a massive language database that records phonological, word semantic and grammatical information for a total of 2,662 languages from over 200 different language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There are 192 different linguistic features in the database currently (May 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, many of the linguistic features are missing for of the available languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, one of the most extensively documented language, English, has about 150 features documented in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This amount rapidly decreases for languages studied less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taking Danish as an example, it only 58 features documented>.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Considering every language and all of the features, this adds up to over 58,000 data points in total in the WALS database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means the whole >Some even less studied languages have an even smaller number of features documented, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Chuj language, spoken in Guatemala, has only 29, while the Indonesian Kutai language has only a single feature documented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Page 9 of 23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Table 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='EzGlot metric between all of the proposed languages ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='German ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Croatian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Polish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Russian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Japanese ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Korean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='German ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Croatian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Polish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Russian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Japanese ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='N/A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Korean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Table 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='German ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Croatian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Polish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Russian ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Japanese ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Korean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Danish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='565 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='691 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='352 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='352 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='470 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='579 Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='699 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='565 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='470 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='597 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='589 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='585 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='589 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='518 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='579 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='699 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='518 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="000 similarity values from the EzGlot's similarity matrix for the proposed languages." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These values are presented in Table Averaged lang2vec is calculated from genetic, geographic, syntactic, inventory, phonological and featural metrics of lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lang2vec [27] is a database that provides vector identifications of languages based on different linguistic features based on various linguistic resources like WALS [25], PHOIBLE [33], Ethnologue [1], and Glottolog [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The lang2vec is a fully-fledged library that can be used to query for different linguistic features and to get pre-computed genetic, geographic, syntactic, inventory, phonological and featural distances between languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to use lang2vec as a multidomain linguistic similarity metric, we used an average value of these six categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method is based on multiple types of linguistic features, making it naturally more robust than EzGlot or eLinguistics similarity metrics, which only rely on a single kind of linguistic feature each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The method also uses a larger amount of data compared to the previously described metric based on WALS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, lang2vec deals with the missing values in linguistic resources by predicting them [85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, due to being based on multiple sources, the heterogeneous nature of the method brings up many questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, there might be incoherence as we do not know how features are selected from different sources and how they are weighted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the features are one-hot encoded which causes a complete loss of ordinality between feature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, using geographical information as one of the vectors seems questionable as it was shown to be unreliable when predicting similarity of languages [86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The averaged distance matrix for lang2vec is shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Quantified World Atlas of Language Structures is a similarity metric developed by us in previous research [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It is based on The World Atlas of Language Structures (WALS) [25], which is a massive language database that records phonological, word semantic and grammatical information for a total of 2,662 languages from over 200 different language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' There are 192 different linguistic features in the database currently (May 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, many of the linguistic features are missing for of the available languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, one of the most extensively documented language, English, has about 150 features documented in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This amount rapidly decreases for languages studied less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taking Danish as an example, it only 58 features documented5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Considering every language and all of the features, this adds up to over 58,000 data points in total in the WALS database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means the whole 5Some even less studied languages have an even smaller number of features documented, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Chuj language, spoken in Guatemala, has only 29, while the Indonesian Kutai language has only a single feature documented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 9 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 4 Quantified WALS metric between all of the proposed languages Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='167 ~=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='202 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='136 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='179 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='252 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='209 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='136 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='248 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='167 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='179 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='229 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='210 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='252 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='248 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='108 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='202 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='210 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 database is only approximately 12% populated, meaning a vast majority of the information is missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also many major and widely studied languages are missing many features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, 25% of all of the features are missing for English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These missing values and the sparsity of the data is the main point of concern when quantifying the WALS database into a linguistic similarity metric as using lesser known and not so widely studied languages means having less common features among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In previous research, we quantified a novel linguistic similarity metric from the WALS database based on the features all of the proposed languages shared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One of the problems of the metric was that as the amount of languages increased, the amount of features shared with them decreased due to missing values in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This time, we improved the calculation process and increased the robustness of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The improved version attempts to counter the issue caused by the diminishing feature count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was done by selecting all of the features that would have a defined value for both languages in all possible language pairs instead of having to be shared between all of the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The language pairs were formed from our proposed languages (English, German, Danish, Polish, Russian, Croatian, Japanese and Korean).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Otherwise, the process remained the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In short, we converted the possible feature values into numeric and calculated an average euclidean distance between all language pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This resulted in a symmetric distance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The goal was to create a multidomain similarity metric that would also be coherent and try to preserve the ordinality of the feature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The finished distance matrix is shown in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lastly, our plan was to take a look at the STL similarity measure [22], which is based on multiple linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The measure puts together three different aspects of language by using Semantic, Terminological (lexical) and Linguistic (syntactic) similarity to form a single metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' According to the authors, the STL metric outperformed many previous measures that were relying only on one of the previously mentioned feature types [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in order to be able to use the metric, the vocabulary dataset must be structured in the form of an ontology, which restricts the metric’s use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Due to this fact and because of the lack of available languages for the used dataset, it was not possible for us to utilize the metric in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Experiments 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Setup We fine-tuned both of the models (mBERT, XLM-R) with all of the proposed languages (English, German, Danish, Polish, Russian, Croatian, Japanese and Korean) for all of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fine-tuning refers to the training of the parameters of a pre-trained language model (like BERT) with task-specific labeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This produced 16 fine-tuned models for each task, which sums up to a total of 48 fine-tuned models (two transformer models, eight languages, three tasks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' After fine-tuning, we evaluated the models with test datasets from all of the previously mentioned languages to compute the cross-lingual zero-shot transfer scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We did not use a train-dev-test, but only train-test scenario for evaluation, because the test dataset has nothing to do with the training dataset in a zero-shot task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also do not aim at optimizing for each dataset, or creating a product, but rather study general properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We evaluated the models with a macro Fl-score for sentiment analysis and NER, and Label Attachment Score (LAS) for the dependency parsing task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' After finishing the evaluations for all of the fine-tuned models, we took a look at the correlation between the zero-shot cross-lingual transfer scores and linguistic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was done by using the four previously introduced linguistic similarity metrics (eLinguistics, EzGlot, WALS and lang2vec).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We computed Pearson’s and Spearman’s correlations between the models’ cross-lingual zero-shot transfer scores and the language similarity measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 10 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 4 Quantified WALS metric between all of the proposed languages Danish English German Croatian Polish Russian Korean Japanese Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='167 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='202 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='136 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='179 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='252 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='209 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='136 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='248 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='179 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='167 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='229 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='210 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='252 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='248 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='108 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='202 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='209 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='210 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 database is only approximately 12% populated, meaning a vast majority of the information is missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also many major and widely studied languages are missing many features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, 25% of all of the features are missing for English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These missing values and the sparsity of the data is the main point of concern when quantifying the WALS database into a linguistic similarity metric as using lesser known and not so widely studied languages means having less common features among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In previous research, we quantified a novel linguistic similarity metric from the WALS database based on the features all of the proposed languages shared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One of the problems of the metric was that as the amount of languages increased, the amount of features shared with them decreased due to missing values in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This time, we improved the calculation process and increased the robustness of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The improved version attempts to counter the issue caused by the diminishing feature count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was done by selecting all of the features that would have a defined value for both languages in all possible language pairs instead of having to be shared between all of the languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The language pairs were formed from our proposed languages (English, German, Danish, Polish, Russian, Croatian, Japanese and Korean).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Otherwise, the process remained the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In short, we converted the possible feature values into numeric and calculated an average euclidean distance between all language pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This resulted in a symmetric distance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The goal was to create a multidomain similarity metric that would also be coherent and try to preserve the ordinality of the feature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The finished distance matrix is shown in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lastly, our plan was to take a look at the STL similarity measure [22], which is based on multiple linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The measure puts together three different aspects of language by using Semantic, Terminological (lexical) and Linguistic (syntactic) similarity to form a single metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' According to the authors, the STL metric outperformed many previous measures that were relying only on one of the previously mentioned feature types [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" However, in order to be able to use the metric, the vocabulary dataset must be structured in the form of an ontology, which restricts the metric's use." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Due to this fact and because of the lack of available languages for the used dataset, it was not possible for us to utilize the metric in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Experiments 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Setup We fine-tuned both of the models (mBERT, XLM-R) with all of the proposed languages (English, German, Danish, Polish, Russian, Croatian, Japanese and Korean) for all of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fine-tuning refers to the training of the parameters of a pre-trained language model (like BERT) with task-specific labeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This produced 16 fine-tuned models for each task, which sums up to a total of 48 fine-tuned models (two transformer models, eight languages, three tasks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' After fine-tuning, we evaluated the models with test datasets from all of the previously mentioned languages to compute the cross-lingual zero-shot transfer scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We did not use a train-dev-test, but only train-test scenario for evaluation, because the test dataset has nothing to do with the training dataset in a zero-shot task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also do not aim at optimizing for each dataset, or creating a product, but rather study general properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We evaluated the models with a macro F1-score for sentiment analysis and NER, and Label Attachment Score (LAS) for the dependency parsing task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' After finishing the evaluations for all of the fine-tuned models, we took a look at the correlation between the zero-shot cross-lingual transfer scores and linguistic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" This was done by using the four previously introduced correlations between the models' cross-lingual zero-shot transfer scores and the language similarity measures." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 10 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 5 Tasks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' models and linguistic similarity metrics used in the experiments Tasks Models Linguistic Similarity Metrics Sentiment Analysis mBERT EzGlot Named Entity Recognition XLM-RoBERTa _ eLinguistics Dependency Parsing Averaged lang2vec Quantified WALS Table 6 Sentiment analysis: F1-scores for mBERT TARGET Danish English German Croatian Polish Russian Japanese (Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='875 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='881 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='942 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='921 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='921 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='838 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='828 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='711 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='741 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='883 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='973 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='863 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='802 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='881 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='861 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='771 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='878 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='938 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='933 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='799 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='894 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='807 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='869 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='957 Table 7 Sentiment analysis: F1-scores for XLM-R TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='857 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='932 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='869 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='749 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='846 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='922 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='916 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='844 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='816 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='882 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='791 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='671 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='711 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='929 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='835 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='929 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='632 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='834 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='895 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='953 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='726 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='832 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='793 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='832 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='921 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='804 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='824 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='690 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='953 tasks, models and linguistic similarity metrics used in the experiments are listed in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The models were fine-tuned by using PyTorch and the Huggingface Transformers library [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The hardware used was an Nvidia GTX 1080Ti GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Results Both of the multilingual transformer models (mnBERT, XLM-R) were fine-tuned with all of the proposed languages for each task (sentiment analysis, NER, DEP) we introduced earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The models were fine-tuned using only the training dataset from a single language before the evaluation step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The model evaluation scores are presented in Tables 6 and 7 for sentiment analysis, Tables 8 and 9 for NER and Tables 10 and 11 for DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Looking at the results, we can clearly say that XLM-R outperformed mBERT in all of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The only exception to this was the sentiment analysis task, where mBERT slightly outperformed XLM-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It can be noted from the results that the highest transfer scores usually belong to the languages in the same language family as the source language (English, German, Danish - Germanic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Croatian, Polish, Russian - Slavic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese, Korean - Koreano-Japonic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, most of the time there is a clear difference in the scores when evaluating with the same language as the source compared to zero-shot cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The exceptions to this are the sentiment analysis task for both models and the NER task for XLM-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 11 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 5 Tasks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' models and linguistic similarity metrics used in the experiments Tasks Models Linguistic Similarity Metrics mBERT EzGlot Sentiment Analysis Named Entity Recognition XLM-RoBERTa eLinguistics Dependency Parsing Averaged lang2vec Quantified WALS Table 6 Sentiment analysis: F1-scores for mBERT TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='875 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='881 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='942 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='921 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='921 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='838 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='828 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='711 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='741 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='883 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='973 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='863 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='802 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='881 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='861 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='771 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='878 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='938 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='933 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='799 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='894 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='807 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='869 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='957 Table 7 Sentiment analysis: F1-scores for XLM-R TARGET Danish English Polish Russian Korean German Croatian Japanese Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='857 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='932 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='869 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='749 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='846 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='922 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='916 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='844 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='816 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='882 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='791 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='671 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='711 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='929 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='835 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='929 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='632 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='834 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='895 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='953 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='726 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='832 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='793 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='832 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='921 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='804 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='824 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='690 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='953 tasks, models and linguistic similarity metrics used in the experiments are listed in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The models were fine-tuned by using PyTorch and the Huggingface Transformers library [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The hardware used was an Nvidia GTX 1080Ti GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Results Both of the multilingual transformer models (mBERT, XLM-R) were fine-tuned with all of the proposed languages for each task (sentiment analysis, NER, DEP) we introduced earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The models were fine-tuned using only the training dataset from a single language before the evaluation step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The model evaluation scores are presented in Tables 6 and 7 for sentiment analysis, Tables 8 and 9 for NER and Tables 10 and 11 for DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Looking at the results, we can clearly say that XLM-R outperformed mBERT in all of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The only exception to this was the sentiment analysis task, where mBERT slightly outperformed XLM-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It can be noted from the results that the highest transfer scores usually belong to the languages in the same language family as the source language (English, German, Danish - Germanic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Croatian, Polish, Russian - Slavic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Japanese, Korean - Koreano-Japonic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, most of the time there is a clear difference in the scores when evaluating with the same language as the source compared to zero-shot cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The exceptions to this are the sentiment analysis task for both models and the NER task for XLM-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 11 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 8 NER: Fi-scores for mBERT TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='480 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='791 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='640 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='744 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='652 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='866 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='648 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='748 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='727 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='622 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='695 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='956 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='648 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='625 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='761 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='564 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='761 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='659 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='693 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='673 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='602 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 Table 9 NER: Fi-scores for XLM-R TARGET Danish English German Croatian Polish Russian Japanese (Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='723 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='958 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='755 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='961 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='781 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='846 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='765 SOURCE = _ Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='872 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='919 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='723 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='877 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='740 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='611 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='737 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='847 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='961 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='789 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='752 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='799 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='491 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='900 Table 10 DEP: LAS-scores for mBERT TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='545 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='556 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='647 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='026 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='652 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='653 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='165 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='021 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='613 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='062 SOURCE = Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='581 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='030 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='520 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='518 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='577 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='023 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='643 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='666 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='020 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='132 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='148 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='114 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='126 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='033 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='293 In dependency parsing, XLM-R slightly outperformed mBERT as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in the sentiment analysis task mBERT scored slightly higher than XLM-R overall, with both models scoring high across all language pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Some language pairs even achieving zero-shot cross-lingual transfer F-score of over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this task, there seems not to be a clear pattern what kind of language pairs tend to yield higher performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, Slavic languages seem to work better as sources for Danish compared to German languages in the case of both models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The scores are also similarly high across the board for the NER task with XLM-R, with the model being able to achieve very high scores with zero-shot transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The performance difference between mBERT and XLM-R is also more noticeable in the case of NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As can be seen from Table 12, both Japanese and Korean worked decently well as cross-lingual transfer sources for both sentiment analysis and NER tasks, even though being very different from the other languages used in the experiments as they are the only non Indo-European languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in the case of DEP their performance Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 12 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 8 NER: F1-scores for mBERT TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='480 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='791 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='640 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='744 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='652 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='866 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='648 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='748 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='727 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='622 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='695 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='956 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='648 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='625 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='761 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='564 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='761 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='659 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='693 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='673 Japanese Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='602 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 Table 9 NER: F1-scores for XLM-R TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='723 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='958 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='755 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='961 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='781 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='846 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='765 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='872 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='919 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='723 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='877 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='740 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='611 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='737 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='847 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='961 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='789 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='827 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='752 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='799 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='491 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='900 Table 10 DEP: LAS-scores for mBERT TARGET Danish English German Croatian Polish Russian Korean Japanese Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='545 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='556 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='647 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='026 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='652 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='653 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='165 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='021 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='613 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='062 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='581 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='030 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='520 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='577 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='518 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='643 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='666 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='020 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='132 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='148 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='114 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='126 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='033 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='293 In dependency parsing, XLM-R slightly outperformed mBERT as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in the sentiment analysis task mBERT scored slightly higher than XLM-R overall, with both models scoring high across all language pairs Some language pairs even achieving zero-shot cross-lingual transfer F-score of over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this task, there seems not to be a clear pattern what kind of language pairs tend to yield higher performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, Slavic languages seem to work better as sources for Danish compared to German languages in the case of both models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The scores are also similarly high across the board for the NER task with XLM-R, with the model being able to achieve very high scores with zero-shot transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The performance difference between mBERT and XLM-R is also more noticeable in the case of NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As can be seen from Table 12, both Japanese and Korean worked decently well as cross-lingual transfer sources for both sentiment analysis and NER tasks, even though being very different from the other languages used in the experiments as they are the only non Indo-European languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, in the case of DEP their performance Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 12 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 11 DEP: LAS-scores for XLM-R TARGET Danish English German Croatian Polish Russian Japanese Korean Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='679 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='715 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='366 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='720 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='716 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='364 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='712 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='732 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='784 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='405 SOURCE = Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='639 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='798 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='818 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='375 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='614 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='804 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='049 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='384 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='642 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='722 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='796 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='378 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='118 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='132 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='122 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='106 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='937 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='317 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='292 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='304 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='183 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='877 Table 12 Average scores for each source language on each task mBERT XLM-R Sentiment NER’ DEP __ Sentiment NER DEP Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='497 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='606 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='874 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='907 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='623 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='623 Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='864 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='622 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='719 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='607 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='866 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='622 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='220 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='250 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='898 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='698 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='081 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='861 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='373 is extremely low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Except for this case with DEP, all of the proposed languages seem to be quite equal as cross- lingual transfer sources in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Interestingly, German, Croatian and Russian seem to perform slightly better overall compared to the other languages, especially with mBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A similar phenomenon was also experienced by Turc et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [40] and in our previous research [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Effect of Linguistic Similarity We calculated the correlation between the zero-shot cross-lingual transfer results of the two models and each of the four proposed linguistic similarity metrics (EzGlot, eLinguistics, WALS and lang2vec) in all proposed NLP tasks using both Pearson’s and Spearman’s correlation coefficients (p-value).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We were forced to ignore some of the language pairs when calculating the correlations with the EzGlot metric as some of the similarity values were missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlation analysis results are shown in Table 13 for sentiment analysis, Table 14 for NER, Table 15 for DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Looking at the results, one can say that there is mostly a strong correlation between lang2vec, WALS and eLinguistics metrics and the cross-lingual zero-shot transfer score, and a strong-moderate correlation between the EzGlot metric and the transfer scores for NER and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the case of sentiment analysis, the correlation is noticeably lower with XLM-R, staying at a moderate level with all of the linguistic similarity metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlation is strongest with the dependency parsing task with XLM-R, with the highest absolute Spearman’s correlation being 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 with eLinguistics metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the results show p-value < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='05 for all of the tasks, models and metrics, indicating statistical significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For both of the models, the correlation for lang2vec, WALS and eLinguistics metrics are generally higher than EzGlot, except in the case of sentiment analysis, where EzGlot’s correlation is slightly higher than WALS and eLinguistics using both Pearson’s and Spearman’s correlation coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the correlations were generally slightly stronger with mBERT in sentiment analysis, while XLM-R had higher correlations in both NER and DEP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the results changed drastically for all tasks except dependency parsing, when we removed the anchor points of same source-target language pairs (monolingual scenarios), leaving only the zero-shot transfer results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was necessary to do in order remove the bias brought by the monolingual data points, as the scores are higher and the Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 13 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 11 DEP: LAS-scores for XLM-R TARGET Danish English Polish Russian Korean German Croatian Japanese Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='679 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='715 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='366 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='720 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='716 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='364 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='712 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='732 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='784 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='405 SOURCE Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='639 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='798 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='818 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='375 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='614 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='603 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='804 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='049 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='384 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='642 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='722 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='796 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='378 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='118 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='132 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='122 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='106 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='937 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='317 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='326 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='292 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='304 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='183 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='877 Table 12 Average scores for each source language on each task mBERT XLM-R Sentiment NER DEP Sentiment NER DEP Danish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='497 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='606 English 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='874 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='907 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='623 German 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='623 Croatian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='864 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='622 Polish 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='719 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='607 Russian 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='866 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='622 Japanese 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='220 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='250 Korean 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='898 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='698 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='081 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='861 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='373 is extremely low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Except for this case with DEP, all of the proposed languages seem to be quite equal as cross- lingual transfer sources in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Interestingly, German, Croatian and Russian seem to perform slightly better overall compared to the other languages, especially with mBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A similar phenomenon was also experienced by Turc et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [40] and in our previous research [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Effect of Linguistic Similarity We calculated the correlation between the zero-shot cross-lingual transfer results of the two models and each of the four proposed linguistic similarity metrics (EzGlot, eLinguistics, WALS and lang2vec) in all proposed NLP tasks using both Pearson's and Spearman's correlation coefficients (p-value)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We were forced to ignore some of the language pairs when calculating the correlations with the EzGlot metric as some of the similarity values were missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlation analysis results are shown in Table 13 for sentiment analysis, Table 14 for NER, Table 15 for DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Looking at the results, one can say that there is mostly a strong correlation between lang2vec, WALS and eLinguistics metrics and the cross-lingual zero-shot transfer score, and a strong-moderate correlation between the EzGlot metric and the transfer scores for NER and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the case of sentiment analysis, the correlation is noticeably lower with XLM-R, staying at a moderate level with all of the linguistic similarity metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" The correlation is strongest with the dependency parsing task with XLM-R, with the highest absolute Spearman's correlation being O." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 with eLinguistics metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the results show p-value < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='05 for all of the tasks, models and metrics, indicating statistical significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" For both of the models, the correlation for lang2vec, WALS and eLinguistics metrics are generally higher than EzGlot, except in the case of sentiment analysis, where EzGlot's correlation is slightly higher than WALS and eLinguistics using both Pearson's and Spearman's correlation coefficients." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the correlations were generally slightly stronger with mBERT in sentiment analysis, while XLM-R had higher correlations in both NER and DEP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the results changed drastically for all tasks except dependency parsing, when we removed the anchor points of same source-target language pairs (monolingual scenarios), leaving only the zero-shot transfer results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was necessary to do in order remove the bias brought by the monolingual data points, as the scores are higher and the Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" : Preprint submitted to Elsevier Page 13 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 13 Sentiment analysis: Pearson’s and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='297 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='331 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='389 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 eLinguistics = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='648 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 =-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='413 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='652 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='418 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='746 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='623 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="000 Table 14 NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='510 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='494 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='464 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='401 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='004 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='580 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='608 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='553 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='465 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='432 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='461 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="000 Table 15 DEP: Pearson’s and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='718 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='844 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='693 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='516 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='561 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 =-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='679 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 languages would also be the most similar (same).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The results after removing the same source-target language pairs are shown in Table 16 for sentiment analysis, Table 17 for NER, Table 18 for DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' First of all, for eLinguistics and WALS similarity metrics, the correlations generally dropped from strong to moderate for the NER task while EzGlot’s correlation fell close to zero and also lost all statistical significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlation of lang2vec also plummeted and mostly lost statistical significance, but remained higher than EzGlot’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Interestingly, for sentiment analysis, the result looks completely opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlations of EzGlot and lang2vec only fell slightly while WALS’ and eLinguistics’ correlation plummeted down and lost statistical significance for XLM-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlations in the dependency parsing task only dropped slightly for all of the linguistic similarity metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, after removing the same source-target language pairs, the strongest correlations are still found in DEP, followed by NER, while sentiment analysis still has the weakest correlations overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as linguistic similarity still correlates with cross-lingual transfer performance, we can get an improved model performance by using linguistic similarity for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" : Preprint submitted to Elsevier Page 14 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 13 Sentiment analysis: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics Pearson Spearman XLM-R mBERT XLM-R mBERT p-value p-value p p-value p-value p p p WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='297 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='331 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='389 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='648 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='413 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='652 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='418 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='746 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='623 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="000 Table 14 NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics Pearson Spearman XLM-R mBERT XLM-R mBERT p-value p-value p p-value p-value p p p WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='510 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='494 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='464 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='401 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='004 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='580 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='608 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='553 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='465 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='432 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='461 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="000 Table 15 DEP: Pearson's and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='718 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='844 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='693 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='516 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='561 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='679 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='754 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 languages would also be the most similar (same).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The results after removing the same source-target language pairs are shown in Table 16 for sentiment analysis, Table 17 for NER, Table 18 for DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" First of all, for eLinguistics and WALS similarity metrics, the correlations generally dropped from strong to moderate for the NER task while EzGlot's correlation fell close to zero and also lost all statistical significance." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" The correlation of lang2vec also plummeted and mostly lost statistical significance, but remained higher than EzGlot's only fell slightly while WALS' and eLinguistics' correlation plummeted down and lost statistical significance for XLM-R." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlations in the dependency parsing task only dropped slightly for all of the linguistic similarity followed by NER, while sentiment analysis still has the weakest correlations overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, as linguistic similarity still correlates with cross-lingual transfer performance, we can get an improved model performance by using linguistic similarity for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" : Preprint submitted to Elsevier Page 14 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 16 Sentiment analysis: Pearson’s and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics for zero-shot only Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='415 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='262 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='051 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='168 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='216 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='315 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='018 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='051 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='403 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='313 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='044 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='090 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='392 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='284 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='380 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='454 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 =-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='440 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="001 Table 17 NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics for zero-shot only Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='316 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='293 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='028 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='173 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='274 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='448 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='170 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='282 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='549 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='453 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='458 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='389 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='003 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='234 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='214 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='307 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='256 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="057 Table 18 DEP: Pearson's and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics for zero-shot only Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p p-value WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='661 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='769 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='421 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='373 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='349 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='024 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='795 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Discussion 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transfer Language Performance XLM-R outperforming mBERT generally matches our expectations, as it also did so on a variety of benchmark tasks [12, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this most likely is the fact that XLM-R uses a vastly larger amount of data for pretraining compared to mBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The performance difference between the two models is the most clear in the NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' According to the results, simply choosing English as the transfer source did not yield top results most of the time, sometimes even as a source language to other languages in the Germanic language group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For example, it had a lower than average performance in sentiment analysis and an average performance in the other two tasks probably due to its simplicity when compared to both Danish and German.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It was also slightly outperformed by Slavic languages in some cases when used as a source for other Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Another reason could be the influence of French [88, 89, 90], which might further distance it from the other Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the differences in morphology could be a factor here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Danish and German probably work better with each other due to a great amount of historic mutual influence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" : Preprint submitted to Elsevier Page 15 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Table 16 Sentiment analysis: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics for zero-shot only Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p p-value p p-value p-value p WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='415 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='262 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='051 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='168 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='216 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='315 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='018 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='051 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='403 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='313 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='044 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='090 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='392 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='284 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='487 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='380 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='454 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='440 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="001 Table 17 NER: Pearson's and Spearman's correlation coefficients for model F1 scores and linguistic similarity metrics for zero-shot only Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p-value p-value p-value p p p WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='316 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='293 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='028 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='173 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='274 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='448 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='170 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='282 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='549 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='453 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='384 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='458 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='389 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='003 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='234 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='214 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='307 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='256 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content="057 Table 18 DEP: Pearson's and Spearman's correlation coefficients for model LAS scores and linguistic similarity metrics for zero-shot only Pearson Spearman XLM-R mBERT XLM-R mBERT p p-value p-value p p-value p-value p p WALS 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='661 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='769 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 EzGlot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='421 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='373 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='349 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='024 eLinguistics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='795 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 lang2vec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='000 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Discussion 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transfer Language Performance XLM-R outperforming mBERT generally matches our expectations, as it also did so on a variety of benchmark tasks [12, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this most likely is the fact that XLM-R uses a vastly larger amount of data for pretraining compared to mBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The performance difference between the two models is the most clear in the NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' According to the results, simply choosing English as the transfer source did not yield top results most of the time, than average performance in sentiment analysis and an average performance in the other two tasks probably due to its simplicity when compared to both Danish and German.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It was also slightly outperformed by Slavic languages in some cases when used as a source for other Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Another reason could be the influence of French [88, 89, 90], which might further distance it from the other Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the differences in morphology could be a factor here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Danish and German probably work better with each other due to a great amount of historic mutual influence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 15 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity In sentiment analysis, the models achieved slightly better scores with English and it was on-par with other Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, all of the Slavic languages still tended to work slightly better as transfer sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These results show that other languages should also be considered over English as the cross-lingual transfer source if available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For the other two tasks, NER and DEP, English performed well and showed to be a good transfer source for the other two Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In most cases, using languages from the same language family as the source language yielded the highest cross- lingual transfer scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This matches with the typical intuition-based selection process used to select source language for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, relying only on intuition and looking purely at language families when when selecting the transfer language will lead to diminished results in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One example would be taking Polish as the target language for NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One could expect that in this case, the best transfer languages would be Croatian and Russian, but looking at the results (Tables 8 and 9) German had a higher cross-lingual transfer score even though it is from the Germanic language family, not Slavic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could be, for example, due to mutual influence of these two languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The grammar of both Danish and English is relatively simple compared to German, which could aid them in generalizing better with one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Looking at the scores, it can be noted that German is a good source for both Germanic and Slavic languages, which could mean that the historical mutual influence between the Germans and Slavs could be a factor here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, German, in addition to having a higher average performance on most tasks, tended to also work exceptionally well also as a source language for other Slavic languages, most likely because of the reasons discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In addition, Japanese and Korean did not achieve comparably better scores with one another, contrary to our expectations, and were even slightly outperformed by the other languages approximately half of the time, even though being more similar with each other compared to any of the other proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Here the reason could be, for example, the differences in the writing systems, as neither of these two languages use alphabets and their systems also greatly differ from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, both Russian and Croatian had a higher than average performance on most of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was similar to our previous research [26] where Russian performed exceptionally well as a transfer source for offensive language identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, unlike in our previous research, Russian did not perform noticeably well as the transfer language source for Korean and Japanese.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Thus the phenomenon experienced previously is most likely related to the topic of offensive language identification itself or to the properties of these specific datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We will investigate this in later research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, Japanese and Korean had a satisfying performance as source languages for the Germanic and Slavic languages in both sentiment analysis and NER tasks, even though Japanese and Korean are fundamentally different from the languages of these two families, as they are the only non Indo-European languages in the proposed set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This demonstrates that multilingual transformer models are also able to leverage knowledge even from very distant languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Analysis of Linguistic Similarity Metrics The correlation between cross-lingual transfer performance and the similarity metrics were strong or moderate with all of the proposed metrics, which would suggest that using even a single feature such as lexical information or by comparing phonetic consonants is still effective to some extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' EzGlot However, when considering only the zero-shot transfer results, EzGlot’s similarity metric’s correlation dropped drastically and out of statistical significance in the NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This shows that it does not necessarily rely on lexical features and that other linguistic features need to be considered when choosing the source language for NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' On the other hand, the same happened with the lang2vec metric despite it being created using different features from multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, the opposite happened in the sentiment analysis task, as both WALS and eLinguistics metrics’ correlation dropped drastically and out of statistical significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This hints the importance of lexical similarity when choosing the source language for sentiment analysis tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' eLinguistics Surprisingly, even though using only a predefined set of phonetic consonants for its calculation, the correlation of eLinguistics’ similarity metric was stronger in all tasks compared to the the correlation of the WALS metric, which we quantified from the WALS database using linguistic features from multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlation of eLinguistics was also higher than the averaged lang2vec metric in both NER and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this could be that including Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 16 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity In sentiment analysis, the models achieved slightly better scores with English and it was on-par with other Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, all of the Slavic languages still tended to work slightly better as transfer sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' These results show that other languages should also be considered over English as the cross-lingual transfer source if available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' For the other two tasks, NER and DEP, English performed well and showed to be a good transfer source for the other two Germanic languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In most cases, using languages from the same language family as the source language yielded the highest cross- lingual transfer scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This matches with the typicalintuition-based selection process used to select source language for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, relying only on intuition and looking purely at language families when when selecting the transfer language will lead to diminished results in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One example would be taking Polish as the target language for NER task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One could expect that in this case, the best transfer languages would be Croatian and Russian, but looking at the results (Tables 8 and 9) German had a example, due to mutual influence of these two languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The grammar of both Danish and English is relatively simple compared to German, which could aid them in generalizing better with one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Looking at the scores, it can be noted that German is a good source for both Germanic and Slavic languages, which could mean that the historical mutual influence between the Germans and Slavs could be a factor here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Furthermore, German, in addition to having a higher average performance on most tasks, tended to also work exceptionally well also as a source language for other Slavic languages, most likely because of the reasons discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In addition, Japanese and Korean did not achieve comparably better scores with one another, contrary to our expectations, and were even slightly outperformed by the other languages approximately half of the time, even though being more similar with each other compared to any of the other proposed languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Here the reason could be, for example, the differences in the writing systems, as neither of these two languages use alphabets and their systems also greatly differ from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, both Russian and Croatian had a higher than average performance on most of the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This was similar to our previous research [26] where Russian performed exceptionally well as a transfer source for offensive language identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, unlike in our previous research, Russian did not perform noticeably well as the transfer the topic of offensive language identification itself or to the properties of these specific datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We will investigate this in later research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, Japanese and Korean had a satisfying performance as source languages for the Germanic and Slavic languages in both sentiment analysis and NER tasks, even though Japanese and Korean are fundamentally different from the languages of these two families, as they are the only non Indo-European languages in the proposed set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This demonstrates that multilingual transformer models are also able to leverage knowledge even from very distant languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Analysis of Linguistic Similarity Metrics The correlation between cross-lingual transfer performance and the similarity metrics were strong or moderate with all of the proposed metrics, which would suggest that using even a single feature such as lexical information or by comparing phonetic consonants is still effective to some extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" EzGlot However, when considering only the zero-shot transfer results, EzGlot's similarity metric's correlation dropped drastically and out of statistical significance in the NER task." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This shows that it does not necessarily rely on lexical features and that other linguistic features need to be considered when choosing the source language for NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' On multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Also, the opposite happened in the sentiment analysis task, as both WALS and eLinguistics metrics' correlation dropped drastically and out of statistical significance." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This hints the importance of lexical similarity when choosing the source language for sentiment analysis tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" eLinguistics Surprisingly, even though using only a predefined set of phonetic consonants for its calculation, the correlation of eLinguistics' similarity metric was stronger in all tasks compared to the the correlation of the WALS metric, which we quantified from the WALS database using linguistic features from multiple domains." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The correlation of eLinguistics was also higher than the averaged lang2vec metric in both NER and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason behind this could be that including Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 16 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity all of possible features between each language pair could have caused too many irrelevant features to be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This can cause a possible bias the metric calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the eLinguistics metric also has its weak points as it is based on only a single aspect of language, even though its correlation being the strongest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One can see from Table 1 that eLinguistics shows Japanese being very distant from Korean, being at the same level as Polish and Russian, with Croatian being seemingly closer to Korean than Japanese, which is not true due to the similarities in the vocabulary and grammar of Japanese and Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taking a look at Tables 4 and 3, it is clear that the WALS and lang2vec metrics are a lot more robust to this kind of errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason most likely is that instead of using only a single linguistic feature like the eLinguistics metric, the WALS and lang2vec metrics are based on a large amount of features spanning over multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Averaged lang2vec and Quantified WALS Both lang2vec and WALS had a strong correlation with the DEP task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Although both metrics are based on a large number of linguistic features spanning over multiple domains, their correlations varied greatly with the other two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Specifically, in NER, the correlation of lang2vec was noticeably lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In sentiment analysis, the correlation of WALS plummeted while lang2vec stayed at a moderate level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason is probably in the calculation of the metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the quantified WALS metric, features are treated as continuous whereas lang2vec uses one-hot encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, in quantified WALS, every single feature has the same weight whereas in averaged lang2vec every category of features has the same weight but might contain a different amount of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, the features in lang2vec are collected from multiple sources, which increases the amount of data while possibly introducing incoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lastly, the number of features used in the similarity calculations with the quantified WALS metric varies slightly between language pairs due to missing values in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lang2vec tries to counter this by using a model to predict the missing values, although this might introduce more errors in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the future, we will take another glance at the WALS database, aiming for a better quantification by looking at the importance of each feature group (syntactic, lexical, phonetic, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=') and weighing accordingly while filtering out redundant features in order to develop an even more effective and comprehensive similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We will also take a look at lang2vec, aiming to filter out redundant features and weigh the categories accordingly instead of simply taking an average in order to make it better suited for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' After all, both WALS and lang2vec metrics are more robust thanks to being based on a large amount of features spanning over multiple domains instead of using only a single linguistic feature like eLinguistics or EzGlot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Task-Specific Analysis 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment Analysis Looking at the f-scores of the sentiment analysis task, it is clear that the results are very high across the board and the score differences between language groups are also very small, with sometimes languages from other language groups than the target emerging as the best performers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is the case for example with Danish, as Croatian achieved the highest zero-shot transfer scores for both mBERT and XLM-R instead of another Germanic language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A trait only observed in this task was that lang2vec and EzGlot were the only metrics keeping a moderate correlation in the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The fact that Ezglot’s correlation stayed moderate hints the importance of lexical features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One could argue that the reason behind the overall high scores might be due to the task being too easy, as it simply required the classification of the entries into positive and negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This has also been shown in other research [91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, this also shows that it could be possible to achieve at least close to state-of-the-art results with multilingual transformer models in a zero-shot cross-lingual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This raises questions about how to improve the cross-lingual models to better utilize cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the future, it would be useful to further investigate the models’ behaviour in zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could also be useful in the further development of measures to support low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named Entity Recognition For mBERT, the zero-shot results of the NER task look clearly lower than with same language pairs and quite even across all of the proposed languages and the languages belonging to the same group having generally a slightly higher score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the results of XLM-R closely resemble those of the sentiment analysis task as the results are considerably high across all language pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This further shows the potential these models have in relieving the issues with low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, there is a moderate correlation between the zero-shot transfer performance and linguistic similarity for both WALS and eLinguistics metrics, and a weak/moderate correlation with lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 17 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity all of possible features between each language pair could have caused too many irrelevant features to be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This can cause a possible bias the metric calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the eLinguistics metric also has its weak points as it is based on only a single aspect of language, even though its correlation being the strongest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One can see from Table 1 that eLinguistics shows Japanese being very distant from Korean, being at the same level as Polish and Russian, with Croatian being seemingly closer to Korean than Japanese, which is not true due to the similarities in the vocabulary and grammar of Japanese and Korean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taking a look at Tables 4 and 3, it is clear that the WALS and lang2vec metrics are a lot more robust to this kind of errors The reason most likely is that instead of using only a single linguistic feature like the eLinguistics metric, the WALS and lang2vec metrics are based on a large amount of features spanning over multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Averaged lang2vec and Quantified WALS Both lang2vec and WALS had a strong correlation with the DEP task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Although both metrics are based on a large number of linguistic features spanning over multiple domains, their correlations varied greatly with the other two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Specifically, in NER, the correlation of lang2vec was noticeably lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In sentiment analysis, the correlation of WALS plummeted while lang2vec stayed at a moderate level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason is probably in the calculation of the metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the quantified WALS metric, features are treated as continuous whereas lang2vec uses one-hot encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, in quantified WALS, every single feature has the same weight whereas in averaged lang2vec every category of features has the same weight but might contain a different amount of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Additionally, the features in lang2vec are collected from multiple sources, which increases the amount of data while possibly introducing incoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lastly, the number of features used in the similarity calculations with the quantified WALS metric varies slightly between language pairs due to missing values in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lang2vec tries to counter this by using a model to predict the missing values, although this might introduce more errors in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the future, we will take another glance at the WALS database, aiming for a better quantification by looking at the importance of each feature group (syntactic, lexical, phonetic, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=') and weighing accordingly while filtering out redundant features in order to develop an even more effective and comprehensive similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We will also take a look at lang2vec, aiming to filter out redundant features and weigh the categories accordingly instead of simply taking an average in order to make it better suited for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' After all, both WALS and lang2vec metrics are more robust thanks to being based on a large amount of features spanning over multiple domains instead of using only a single linguistic feature like eLinguistics or EzGlot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Task-Specific Analysis 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment Analysis Looking at the f-scores of the sentiment analysis task, it is clear that the results are very high across the board and the score differences between language groups are also very small, with sometimes languages from other language groups than the target emerging as the best performers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This is the case for example with Danish, as Croatian achieved the highest zero-shot transfer scores for both mBERT and XLM-R instead of another Germanic language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A trait only observed in this task was that lang2vec and EzGlot were the only metrics keeping a moderate correlation in the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" The fact that Ezglot's correlation stayed moderate hints the importance of lexical features." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' One could argue that the reason behind the overall high scores might be due to the task being too easy, as it simply required the classification of the entries into positive and negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This has also been shown in other research [91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, this also shows that it could be possible to achieve at least close to state-of-the-art results with multilingual transformer models in a zero-shot cross-lingual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This raises questions about how to improve the cross-lingual models to better utilize cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" In the future, it would be useful to further investigate the models' behaviour in zero-shot setting." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could also be useful in the further development of measures to support low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named Entity Recognition For mBERT, the zero-shot results of the NER task look clearly lower than with same language pairs and quite higher score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the results of XLM-R closely resemble those of the sentiment analysis task as the results are considerably high across all language pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This further shows the potential these models have in relieving the issues with low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, there is a moderate correlation between the zero-shot transfer performance and linguistic similarity for both WALS and eLinguistics metrics, and a weak/moderate correlation with lang2vec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 17 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dependency Parsing The zero-shot results in DEP also seem clearly lower than with same language pairs and somewhat even across the board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The languages belonging to the same language family also generally have a slightly higher score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As the task requires the understanding of syntax and grammar and the scores are still reasonably high overall, the results could also support studies claiming that cross-lingual transformer models are able to learn grammar without explicit information [92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' On the other hand, Japanese and Korean had very poor performance as source languages while also being very difficult target languages in the DEP task, unlike in the sentiment analysis and NER tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could mean that the model is unable to generalize to the syntax and grammar of Indo-European languages with Japonic-Koreanic languages and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason might be due to the differences in writing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the DEP task, both XLM-R and mBERT keep a strong correlation between the zero-shot transfer performance and linguistic similarity with WALS, eLinguistics and lang2vec metrics and a moderate correlation with EzGlot in a zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Impact As there is a correlation with linguistic similarity and cross-lingual transfer performance for all of the tasks, including the abusive language identification task used in our previous research [26], it is possible to use linguistic similarity for transfer language selection, at least for these tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the correlation varied greatly from task to task, which means there is a lot of room for improvement in developing an optimal similarity metric for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to confirm the efficacy of choosing another language over English as the cross-lingual transfer source, we performed a z-test between the results of using English as transfer source and using the language with the highest score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The test showed Z = —3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='18 < —1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='96 and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='05 meaning that there is a significant difference between using English and the optimal language as the cross-lingual transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Based on these results, as there is a significant difference between using English and the optimal language as the cross-lingual transfer source, it is better to look for high-resource languages that have proper data available and are as close as possible to the target language based on a similarity metric instead of making a decision based on intuition or simply relying on English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows one to make a more informed and effective decision and makes model development more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Future Research In the future, we are planning to analyze, what kind of linguistic features are the most important from the point of view of cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A solution could be grouping the features presented in WALS into syntactic, lexical, phonetic, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=', and calculating, which feature group has the strongest correlation with the cross-lingual transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We could then re-quantify the WALS database using this information in order to develop an even more effective and comprehensive similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It would also be beneficial if the WALS project received more attention and the feature matrix became more densely populated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, instead of taking an average of lang2vec’s categories, they should be weighed by importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As shown by the DEP task, the models might be able to learn syntax and grammar without any explicit information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could mean that adding explicit syntactic and grammatical information to the pre-training process of the models might also improve their performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We will take a look at this in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, as the models achieved zero-shot transfer scores rivaling those of the monolingual settings, especially in sentiment analysis, it would be useful to perform an in-depth investigation about the models’ behaviour in a zero-shot transfer learning setting to possibly find insights on how to improve their transfer learning capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Conclusions In this research we studied cross-lingual transfer language selection for zero-shot learning using three different NLP tasks, namely, sentiment analysis, NER, and dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We showed the effectiveness of cross-lingual zero-shot transfer learning with a total of eight languages from three language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this way, existing data from higher-resource languages may be used to improve the performance of languages that lack sufficient data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We found a strong correlation between the similarity of the used languages and cross-lingual transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The transfer performance declines when the distance between the languages increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows for the selection of a more suitable transfer language by assessing linguistic similarities rather than simply depending on intuition Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 18 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dependency Parsing board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The languages belonging to the same language family also generally have a slightly higher score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As the task requires the understanding of syntax and grammar and the scores are still reasonably high overall, the results could also support studies claiming that cross-lingual transformer models are able to learn grammar without explicit information [92] On the other hand, Japanese and Korean had very poor performance as source languages while also being very difficult target languages in the DEP task, unlike in the sentiment analysis and NER tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could mean that the model is unable to generalize to the syntax and grammar of Indo-European languages with Japonic-Koreanic languages and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The reason might be due to the differences in writing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the DEP task, both XLM-R and mBERT keep a strong correlation between the zero-shot transfer performance and linguistic similarity with WALS, eLinguistics and lang2vec metrics and a moderate correlation with EzGlot in a zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Impact As there is a correlation with linguistic similarity and cross-lingual transfer performance for all of the tasks, including the abusive language identification task used in our previous research [26], it is possible to use linguistic similarity for transfer language selection, at least for these tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' However, the correlation varied greatly from task to task, which means there is a lot of room for improvement in developing an optimal similarity metric for transfer language selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In order to confirm the efficacy of choosing another language over English as the cross-lingual transfer source, we performed a z-test between the results of using English as transfer source and using the language with the highest score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The test showed Z = -3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='18 < -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='96 and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='001 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='05 meaning that there is a significant difference between using English and the optimal language as the cross-lingual transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Based on these results, as there is a significant difference between using English and the optimal language as the cross-lingual transfer source, it is better to look for high-resource languages that have proper data available and are as close as possible to the target language based on a similarity metric instead of making a decision based on intuition or simply relying on English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows one to make a more informed and effective decision and makes model development more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Future Research In the future, we are planning to analyze, what kind of linguistic features are the most important from the point of view of cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A solution could be grouping the features presented in WALS into syntactic, lexical, phonetic, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=', and calculating, which feature group has the strongest correlation with the cross-lingual transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We could then re-quantify the WALS database using this information in order to develop an even more effective and comprehensive similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' It would also be beneficial if the WALS project received more attention and the feature matrix became more densely populated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Also, instead of taking an average of lang2vec's categories, they should be weighed by importance." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As shown by the DEP task, the models might be able to learn syntax and grammar without any explicit information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This could mean that adding explicit syntactic and grammatical information to the pre-training process of the models might also improve their performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We will take a look at this in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Also, as the models achieved zero-shot transfer scores rivaling those of the monolingual settings, especially in sentiment analysis, it would be useful to perform an in-depth investigation about the models' behaviour in a zero-shot transfer learning setting to possibly find insights on how to improve their transfer learning capabilities." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Conclusions In this research we studied cross-lingual transfer language selection for zero-shot learning using three different NLP tasks, namely, sentiment analysis, NER, and dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We showed the effectiveness of cross-lingual zero-shot transfer learning with a total of eight languages from three language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In this way, existing data from higher-resource languages may be used to improve the performance of languages that lack sufficient data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We found a strong correlation between the similarity of the used languages and cross-lingual transfer performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The transfer performance declines when the distance between the languages increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows for the selection of a more suitable transfer language by assessing linguistic similarities rather than simply depending on intuition Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 18 of 23Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity or defaulting to English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As our experiments have demonstrated, there is a significant difference in choosing the optimal transfer language over defaulting to English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As there is a correlation between linguistic similarity and transfer performance and a significant difference between using English and the optimal language as the cross-lingual transfer source, one should instead choose the source language based on a linguistic similarity measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Our experiments also demonstrated that lexical information alone is insufficient to determine the optimal transfer languages at least for the tasks of NER and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' it is better to look for high-resource languages that have proper data available and are as close as possible to the target language based on a similarity metric instead of making a decision based on intuition or simply relying on English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows one to make a more informed and effective decision and makes model development more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The results showed that the proposed method for cross-lingual transfer language selection could also be useful as a general method for other Natural Language Processing tasks, at least based on these tasks and our previous research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also showed that it is possible to achieve good performance on the target language in a zero-shot cross-lingual transfer setting with multiple NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This helps in developing better systems, especially when dealing with low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We improved a novel linguistic similarity metric consisting of various linguistic features by using the WALS database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Our proposed method did not show the strongest correlation with the transfer performance, but it still showed potential as a metric that could be useful for the selection process, especially if given a more refined or inclusive feature set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the future, we will reassess the importances of the linguistic features used in the similarity metric calculation in order to have a more refined feature set, aiming to create an even more effective and comprehensive linguistic similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lastly, even though the overall high scores in the sentiment analysis task might be caused by the task being too easy, it also shows that it could be possible to achieve results close to those of a monolingual fine-tuning in a zero-shot cross-lingual transfer setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This means it could be useful to thoroughly investigate the models’ behaviour in zero-shot setting in order to find insights to improving their transfer capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Also, as the DEP task demonstrated that the models might have a capability to understand grammar, adding explicit syntactic and grammatical information to the models’ pre-training could also increase performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' CRediT authorship contribution statement Juuso Eronen: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review & Editing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Michal Ptaszynski: Conceptualization, Methodology, Supervision, Data Curation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fumito Masui: Conceptualization, Methodology, Supervision, Data Curation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' References [1] David M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eberhard, Gary F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Simons, and Charles D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fennig, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ethnologue: Languages of the World.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' SIL International, Dallas, TX, USA, twenty-fifth edition, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [2] Sean P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Engelson and Ido Dagan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Minimizing manual annotation cost in supervised training from corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, ACL ’96, page 319-326, USA, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [3] Sandipan Dandapat, Priyanka Biswas, Monojit Choudhury, and Kalika Bali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Complex linguistic annotation—no easy way out!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' a case from bangla and hindi pos labeling tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Third Linguistic Annotation Workshop (LAW III), pages 10-18, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [4] Julia Hirschberg and Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Manning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Advances in natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Science, 349(6245):261-266, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [5] Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak, Ivan Vuli¢, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, and Anna Korhonen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Modeling language variation and universals: A survey on typological linguistics for natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Computational Linguistics, 45(3):559-601, September 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [6] Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The state and fate of linguistic diversity and inclusion in the NLP world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6282-6293, Online, July 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [7] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing (volume 2: short papers), pages 845-850, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [8] Rouzbeh Ghasemi, Seyed Arad Ashrafi Asli, and Saeedeh Momtazi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Deep persian sentiment analysis: Cross-lingual training for low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Journal of Information Science, page 0165551520962781, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [9] Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey of multilingual neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' ACM Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Surv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=', 53(5), September 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [10] Saurabh Gaikwad, Tharindu Ranasinghe, Marcos Zampieri, and Christopher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Homan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual offensive language identification for low resource languages: The case of marathi, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 19 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity or defaulting to English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As our experiments have demonstrated, there is a significant difference in choosing the optimal transfer language over defaulting to English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' As there is a correlation between linguistic similarity and transfer performance and a significant difference between using English and the optimal language as the cross-lingual transfer source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' one should instead choose the source language based on a linguistic similarity measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Our experiments also demonstrated that lexical information alone is insufficient to determine the optimal transfer languages at least for the tasks of NER and DEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' it is better to look for high-resource languages that have proper data available and are as close as possible to the target language based on a similarity metric instead of making a decision based on intuition or simply relying on English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This allows one to make a more informed and effective decision and makes model development more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The results showed that the proposed method for cross-lingual transfer language selection could also be useful as a general method for other Natural Language Processing tasks, at least based on these tasks and our previous research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We also showed that it is possible to achieve good performance on the target language in a zero-shot cross-lingual transfer setting with multiple NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' This helps in developing better systems, especially when dealing with low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' We improved a novel linguistic similarity metric consisting of various linguistic features by using the WALS database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Our proposed method did not show the strongest correlation with the transfer performance, but it still showed potential as a metric that could be useful for the selection process, especially if given a more refined or inclusive feature set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In the future, we will reassess the importances of the linguistic features used in the similarity metric calculation in order to have a more refined feature set, aiming to create an even more effective and comprehensive linguistic similarity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lastly, even though the overall high scores in the sentiment analysis task might be caused by the task being too easy, it also shows that it could be possible to achieve results close to those of a monolingual fine-tuning in a zero-shot cross-lingual transfer setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" This means it could be useful to thoroughly investigate the models' behaviour in zero-shot setting in order to find insights to improving their transfer capabilities." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Also, as the DEP task demonstrated that the models might have a capability to understand grammar, adding explicit syntactic and grammatical information to the models' pre-training could also increase performance." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' CRediT authorship contribution statement Juuso Eronen: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review & Editing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Michal Ptaszynski: Conceptualization, Methodology, Supervision, Data Curation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fumito Masui: Conceptualization, Methodology, Supervision, Data Curation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' References [1] David M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eberhard, Gary F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Simons, and Charles D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fennig, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ethnologue: Languages of the World.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' SIL International, Dallas, TX, USA, twenty-fifth edition, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [2] Sean P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Engelson and Ido Dagan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Minimizing manual annotation cost in supervised training from corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" In Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, ACL '96, page 319-326, USA, 1996." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics bangla and hindi pos labeling tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Third Linguistic Annotation Workshop (LAW II), pages 10-18, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [4] Julia Hirschberg and Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Manning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Advances in natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Science, 349(6245):261-266, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" [5] Edoardo Maria Ponti, Helen O'Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, and Anna Korhonen." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Modeling language variation and universals: A survey on typological linguistics for natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Computational Linguistics, 45(3):559-601, September 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [6] Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The state and fate of linguistic diversity and inclusion in the NLP world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6282-6293, Online, July 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [7] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing (volume 2: short papers), pages 845-850, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [8] Rouzbeh Ghasemi, Seyed Arad Ashrafi Asli, and Saeedeh Momtazi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Deep persian sentiment analysis: Cross-lingual training for low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Journal of Information Science, page 0165551520962781, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' September 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [10] Saurabh Gaikwad, Tharindu Ranasinghe, Marcos Zampieri, and Christopher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Homan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual offensive language identification for low resource languages: The case of marathi, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 19 of 23{11] {12] (13) {14] {15} [16] [17] [18] {19} [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Telmo Pires, Eva Schlinger, and Dan Garrette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' How multilingual is multilingual bert?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In ACL, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 4411-4421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Unsupervised cross-lingual representation learning at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440-8451, Online, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Shijie Wu and Mark Dredze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 833-844, Hong Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Edward P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Stabler and Edward L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Keenan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Structural similarity within and among languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Theoretical Computer Science, 293(2):345-363, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Algebraic Methods in Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Xglue: A new benchmark datasetfor cross-lingual pre-training, understanding and generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6008-6018, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Matt Pikuliak, Marian Simko, and Maria Bielikova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual learning for text processing: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Expert Systems with Applications, 165:113765, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe Ma, Antonios Anastasopoulos, Patrick Littell, and Graham Neubig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Choosing transfer languages for cross-lingual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3125-3135, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ryan Cotterell and Georg Heigold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual character-level neural morphological tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 748-759, Copenhagen, Denmark, September 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Charlotte Gooskens, Vincent J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' van Heuven, Jelena Golubovi¢é, Anja Schiippert, Femke Swarte, and Stefanie Voigt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mutual intelligibility between closely related languages in europe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' International Journal of Multilingualism, 15(2):169-193, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Nitish Aggarwal, Tobias Wunner, Mihael Aréan, Paul Buitelaar, and Sean O’Riain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A similarity measure based on semantic, terminological and linguistic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 6th International Workshop on Ontology Matching, 01 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Vincent Beaufils and Johannes Tomin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Stochastic approach to worldwide language classification: the signals and the noise towards long-range exploration, Oct 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lazar Kovacevic, Vladimir Bradic, Gerard de Melo, Sinisa Zdravkovic, and Olga Ryzhova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ezglot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='ezglot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='com/, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Matthew S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dryer and Martin Haspelmath, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' WALS Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Max Planck Institute for Evolutionary Anthropology, Leipzig, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Juuso Eronen, Michal Ptaszynski, Fumito Masui, Masaki Arata, Gniewosz Leliwa, and Michal Wroczynski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transfer language selection for zero-shot cross-lingual abusive language detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Information Processing and Management, 59(4):102981, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Patrick Littell, David R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' URIEL and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 8-14, Valencia, Spain, April 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hakan Ringbom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-linguistic Similarity in Foreign Language Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual Matters, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Robert Bley-Vroman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The evolving context of the fundamental difference hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Studies in Second Language Acquisition, 31(2):175—198, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ryan Cotterell, Sabrina J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mielke, Jason Eisner, and Brian Roark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Are all languages equally hard to language-model?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 536-541, New Orleans, Louisiana, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The evaluation of sentence similarity measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, volume 5182, pages 305-316, 09 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Aminul Islam and Diana Inkpen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Semantic text similarity using corpus-based word similarity and string similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Knowl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Discov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Data, 2(2), 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Steven Moran, Daniel McCloy, and Richard Wright, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' PHOIBLE Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Max Planck Institute for Evolutionary Anthropology, Leipzig, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Harald Hammarstrém, Robert Forkel, Martin Haspelmath, and Sebastian Bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' glottolog/glottolog: Glottolog database 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5, December 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Google’s multilingual neural machine translation system: Enabling zero-shot translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transactions of the Association for Computational Linguistics, 5:339-351, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Yang Chen and Alan Ritter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Model selection for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5675-5687, Online and Punta Cana, Dominican Republic, November 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jonathan H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and Jennimaria Palomaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transactions of the Association for Computational Linguistics, 8:454-470, 07 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Anne Lauscher, Vinit Ravishankar, Ivan Vuli¢, and Goran Glava8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' From zero to hero: On the limitations of zero-shot language transfer with multilingual Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4483-4499, Online, November 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 20 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity [11] Telmo Pires, Eva Schlinger, and Dan Garrette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' How multilingual is multilingual bert?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In ACL, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [12] Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 4411-4421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' understanding, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Luke Zettlemoyer and Veselin Stoyanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Unsupervised cross-lingual repre esentation learning at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440-8451, Online, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [15] Shijie Wu and Mark Dredze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 20i9 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 833-844, Hong Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [16] Edward P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Stabler and Edward L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Keenan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Structural similarity within and among languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Theoretical Computer Science, 293(2):345-363, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Algebraic Methods in Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [17] Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Xglue: A new benchmark datasetfor cross-lingual pre-training, understanding and generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6008-6018, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [18] Matus Pikuliak, Marian Simko, and Maria Bielikova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual learning for text processing: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Expert Systems with Applications, 165:113765, 2021 [19] Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3125-3135, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [20] Ryan Cotterell and Georg Heigold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual character-level neural morphological tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 748-759, Copenhagen, Denmark, September 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [21] Charlotte Gooskens, Vincent J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' van Heuven, Jelena Golubovic, Anja Schuppert, Femke Swarte, and Stefanie Voigt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mutual intelligibility between closely related languages in europe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" International Journal of Multilingualism, 15(2):169-193, 2018 [22] Nitish Aggarwal, Tobias Wunner, Mihael Arcan, Paul Buitelaar, and Sean O'Riain." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A similarity measure based on semantic, terminological and linguistic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 6th International Workshop on Ontology Matching, O1 2011 [23] Vincent Beaufils and Johannes Tomin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Stochastic approach to worldwide language classification: the signals and the noise towards long-range exploration, Oct 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [24] Lazar Kovacevic, Vladimir Bradic, Gerard de Melo, Sinisa Zdravkovic, and Olga Ryzhova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ezglot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' https : / /www .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' ezglot .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' com/, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [25] Matthew S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dryer and Martin Haspelmath, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' WALS Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Max Planck Institute for Evolutionary Anthropology, Leipzig, 2013 [27] Patrick Littell, David R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' URIEL and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 8-14, Valencia, Spain, April 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [28] Hakan Ringbom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-linguistic Similarity in Foreign Language Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual Matters, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [29] Robert Bley-Vroman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The evolving context of the fundamental difference hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Studies in Second Language Acquisition, 31(2):175-198, 2009 [3o] Ryan Cotterell, Sabrina J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mielke, Jason Eisner, and Brian Roark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Are all languages equally hard to language-model?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume [31] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The evaluation of sentence similarity measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, volume 5182, pages 305-316, 09 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [32] Aminul Islam and Diana Inkpen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Semantic text similarity using corpus-based word similarity and string similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Knowl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Discov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Data, 2(2), 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [33] Steven Moran, Daniel McCloy, and Richard Wright, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' PHOIBLE Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Max Planck Institute for Evolutionary Anthropology, Leipzig 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 341 Harald Hammarstrom, Robert Forkel, Martin Haspelmath, and Sebastian Bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' glottolog/glottolog: Glottolog database 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='5, December 2021 [35] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viegas, Martin Wattenberg, Greg Corrado, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" Google's multilingual neural machine translation system: Enabling zero-shot translation." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transactions of the Association for Computational Linguistics, 5:339-351, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [36] Yang Chen and Alan Ritter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Model selection for cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5675-5687, Online and Punta Cana, Dominican Republic, November 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [37] Jonathan H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and Jennimaria Palomaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transactions of the Association for ComputationalLinguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='8:454-470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='072020 [38] Anne Lauscher, Vinit Ravishankar, Ivan Vulic, and Goran Glavas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' From zero to hero: On the limitations of zero-shot language transfer with multilingual Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4483-4499, Online, November 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 20 of 23[39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Sebastian Ruder, Noah Constant, Jan Botha, Aditya Siddhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie Hu, Dan Garrette, Graham Neubig, and Melvin Johnson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' XTREME-R: Towards more challenging and nuanced multilingual evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10215-10245, Online and Punta Cana, Dominican Republic, November 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Tulia Turc, Kenton Lee, Jacob Eisenstein, Ming-Wei Chang, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Revisiting the primacy of english in zero-shot cross- lingual transfer, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual transfer for unsupervised dependency parsing without parallel data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 113-122, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Xilun Chen, Ahmed Hassan Awadallah, Hany Hassan, Wei Wang, and Claire Cardie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multi-source cross-lingual model transfer: Learning what to share.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3098-3112, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Quynh Do and Judith Gaspers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual transfer learning with data selection for large-scale spoken language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1455-1460, Hong Kong, China, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, and Ekaterina Shutova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual and cross-lingual document classification: A meta-learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1966-1976, Online, April 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva, and Isabelle Augenstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot cross-lingual transfer with meta learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4547-4562, Online, November 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Antonio Martinez-Garcia, Toni Badia, and Jeremy Barnes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Evaluating morphological typology in zero-shot cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3136-3153, Online, August 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Bing Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis and opinion mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Synthesis lectures on human language technologies, 5(1):1—-167, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Koyel Chakraborty, Siddhartha Bhattacharyya, and Rajib Bag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey of sentiment analysis from social media data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' IEEE Transactions on Computational Social Systems, 7(2):450-464, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ashima Yadav and Dinesh Kumar Vishwakarma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis using deep learning architectures: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Artificial Intelligence Review, 53(6):4335-4385, aug 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hu Xu, Bing Liu, Lei Shu, and Philip Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' BERT post-training for review reading comprehension and aspect-based sentiment analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2324-2335, Minneapolis, Minnesota, June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Anindya Sarkar, Sujeeth Reddy, and Raghu Sesha Iyengar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot multilingual sentiment analysis using hierarchical attentive network and bert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, NLPIR 2019, page 49-56, New York, NY, USA, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Marouane Birjali, Mohammed Kasri, and Abderrahim Beni-Hssane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A comprehensive survey on sentiment analysis: Approaches, challenges and trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Knowledge-Based Systems, 226:107134, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mohammad Sadegh Rasooli, Noura Farra, Axinia Radeva, Tao Yu, and Kathleen McKeown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual sentiment transfer with limited resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Machine Translation, 32(1):143-165, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Andraz Pelicon, Marko Pranjié, Dragana Miljkovi¢, Blaz Skrlj, and Senja Pollak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot learning for cross-lingual news sentiment classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Applied Sciences, 10(17), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Akshi Kumar and Victor Hugo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Albuquerque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis using xlm-r transformer and zero-shot transfer learning on resource-poor indian language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Asian Low-Resour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=', 20(5), jun 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Phillip Keung, Yichao Lu, Gyérgy Szarvas, and Noah A Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The multilingual amazon reviews corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='02573, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jan Kocon, Piotr Mitkowski, and Monika Zasko-Zieliriska.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multi-level sentiment analysis of PolEmo 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0: Extended corpus of multi-domain consumer reviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 980-991, Hong Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sergey Smetanin and Michail Komarov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis of product reviews in russian using convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In 2019 IEEE 21st Conference on Business Informatics (CBI), volume 01, pages 482-486, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Vikas Yadav and Steven Bethard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey on recent advances in named entity recognition from deep learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11470, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey on deep learning for named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' JEEE Transactions on Knowledge and Data Engineering, 34(1):50-70, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sajid Ali, Khalid Masood, Anas Riaz, and Amna Saud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named entity recognition using deep learning: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In 2022 International Conference on Business Analytics for Technology and Security (ICBATS), pages 1-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' IEEE, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Alexander Fritzler, Varvara Logacheva, and Maksim Kretov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Few-shot classification in named entity recognition task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, page 993-1000, New York, NY, USA, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Taesun Moon, Parul Awasthy, Jian Ni, and Radu Florian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Towards lingua franca named entity recognition with bert, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Rasmus Hvingelby, Amalie Brogaard Pauli, Maria Barrett, Christina Rosted, Lasse Malm Lidegaard, and Anders Sggaard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' DaNE: A named entity resource for Danish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4597-4604, Marseille, France, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' European Language Resources Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 21 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity [39] Sebastian Ruder, Noah Constant, Jan Botha, Aditya Siddhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie Hu, Dan Garrette, Graham Neubig: Association for Computational Linguistics [40] Iulia Turc, Kenton Lee, Jacob Eisenstein, Ming-Wei Chang, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Revisiting the primacy of english in zero-shot cross- lingual transfer, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [41] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual transfer for unsupervised dependency parsing without parallel data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 113-122, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [42] Xilun Chen, Ahmed Hassan Awadallah, Hany Hassar n, Wei Wang, and Claire Cardie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multi-source cross-lingual model transfer: Learning what to share.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3098-3112, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistic Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1455-1460, Hong Kong, China, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [44] Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, and Ekaterina Shutova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Multilingual and cross-lingual document classification: A meta-learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1966-1976, Online, April 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [45] Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva, and Isabelle Augenstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot cross-lingual transfer with meta learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4547-4562, Online, November 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [46] Antonio Martinez-Garcia, Toni Badia, and Jeremy Barnes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Evaluating morphological typology in zero-shot cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 1lth International Joint Conference on [47] Bing Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis and opinion mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Synthesis lectures on human language technologies, 5(1):1-167, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [48] Koyel Chakraborty, Siddhartha Bhattacharyya, and Rajib Bag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey of sentiment analysis from social media data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' IEEE Transactions on Computational Social Systems, 7(2):450-464, 2020 [49] Ashima Yadav and Dinesh Kumar Vishwakarma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis using deep learning architectures: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Artificial Intelligence Review, 53(6):4335-4385, aug 2020 [50] Hu Xu, Bing Liu, Lei Shu, and Philip Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' BERT post-training for review reading comprehension and aspect-based sentiment analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2324-2335, Minneapolis, Minnesota, June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [51] Anindya Sarkar, Sujeeth Reddy, and Raghu Sesha Iyengar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot multilingual sentiment analysis using hierarchical attentive network and bert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, NLPIR 2019 page 49-56, New York, NY, USA, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computing Machinery [52] Marouane Birjali, Mohammed Kasri, and Abderrahim Beni-Hssane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A comprehensive survey on sentiment analysis: Approaches, challenges and trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Knowledge-Based Systems, 226:107134, 2021 [53] Mohammad Sadegh Rasooli, Noura Farra, Axinia Radeva, Tao Yu, and Kathleen McKeown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual sentiment transfer with limited resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Machine Translation, 32(1):143-165, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [54] Andraz Pelicon, Marko Pranjic, Dragana Miljkovic, Blaz Skrlj, and Senja Pollak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot learning for cross-lingual news sentiment classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Applied Sciences, 10(17), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [55] Akshi Kumar and Victor Hugo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Albuquerque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sentiment analysis using ig xlm-r transformer and zero-shot transfer learning on resource-poor [56] Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The multilingual amazon reviews corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='02573, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' t analysis of PolEmo 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='0: Extended corpus of multi-domain Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 21st Conference on Business Informatics (CBI), volume 01, pages 482-486, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [59] Vikas Yadav and Steven Bethard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey on recent advances in named entity recognition from deep learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11470, 2019 [60] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' A survey on deep learning for named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' IEEE Transactions on Knowledge ind Data Engineering, 34(1):50-70, 2022 [61] Sajid Ali, Khalid Masood, Anas Riaz, and Amna Saud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Named entity recognition using deep learning: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In 2022 International Conference on Business Analytics for Technology and Security (ICBATS), pages 1-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' IEEE, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [62] Alexander Fritzler, Varvara Logacheva, and Maksim Kretov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Few-shot classification in named entity recognition task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=" In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC '19, page 993-1000, New York, NY, USA, 2019." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [64] Rasmus Hvingelby, Amalie Brogaard Pauli, Maria Barrett, Christina Rosted, Lasse Malm Lidegaard, and Anders Sogaard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' DaNE: A named entity resource for Danish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4597-4604, Marseille, France, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' European Language Resources Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 21 of 23[65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Alankar Jain, Bhargavi Paranjape, and Zachary C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lipton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Entity projection via machine translation for cross-lingual NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1083-1092, Hong Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Bing Li, Yujie He, and Wenjin Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual named entity recognition using parallel corpus: A new approach using xlm-roberta alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11112, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sabine Weber and Mark Steedman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot cross-lingual transfer is a hard baseline to beat in German fine-grained entity typing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 42-48, Online and Punta Cana, Dominican Republic, November 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual name tagging and linking for 282 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1946-1958, Vancouver, Canada, July 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Afshin Rahimi, Yuan Li, and Trevor Cohn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Massively multilingual transfer for NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 151-164, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Min Xiao and Yuhong Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Distributed word representation learning for cross-lingual dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Eighteenth Conference on Computational Natural Language Learning, pages 119-129, Ann Arbor, Michigan, June 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jérg Tiedemann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual dependency parsing with universal dependencies and predicted pos labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), pages 340-349, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual dependency parsing based on distributed representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1234-1244, Beijing, China, July 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and Frangois Yvon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Frustratingly easy cross-lingual transfer for transition-based dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1058-1063, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mohit Bansal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dependency link embeddings: Continuous representations of syntactic substructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Ist Workshop on Vector Space Modeling for Natural Language Processing, pages 102-108, Denver, Colorado, June 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dan Kondratyuk and Milan Straka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 75 languages, 1 model: Parsing Universal Dependencies universally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 2779-2795, Hong Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Matej Uléar and Marko Robnik-Sikonja.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Finest bert and crosloengual bert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In International Conference on Text, Speech, and Dialogue, pages 104-111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Haji¢, Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Universal Dependencies v2: An evergrowing multilingual treebank collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4034-4043, Marseille, France, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' European Language Resources Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Rishi Bommasani, Drew A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Manning,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Suvir Mirchandani,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eric Mitchell,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zanele Munyikwa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Suraj Nair,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Avanika Narayan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Deepak Narayanan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ben Newman,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Allen Nie,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Juan Carlos Niebles,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hamed Nilforoshan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Julian Nyarko,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Giray Ogut,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Laurel Orr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Isabel Papadimitriou,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Joon Sung Park,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Chris Piech,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eva Portelance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Christopher Potts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Aditi Raghunathan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Rob Reich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hongyu Ren,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Frieda Rong,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Yusuf Roohani,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Camilo Ruiz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jack Ryan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Christopher Ré,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dorsa Sadigh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Shiori Sagawa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Keshav Santhanam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Andy Shih,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Krishnan Srinivasan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Alex Tamkin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Rohan Taori,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Armin W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Thomas, Florian Tramér, Rose E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' On the opportunities and risks of foundation models, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan Roth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual ability of multilingual bert: An empirical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In International Conference on Learning Representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Roberta: A robustly optimized bert pretraining approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11692, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Alexis Conneau and Guillaume Lample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual language model pretraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 32:7059-7069, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cecil Brown, Eric Holman, and Sgren Wichmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sound correspondences in the world’s languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Language, 89:4—29, 03 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Charlotte Gooskens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The contribution of linguistic factors to the intelligibility of closely related languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Journal of Multilingual and multicultural development, 28(6):445—467, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Chaitanya Malaviya, Graham Neubig, and Patrick Littell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Learning language representations for typology prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2529-2535, Copenhagen, Denmark, September 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 22 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity [65] Alankar Jain, Bhargavi Paranjape, and Zachary C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Lipton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Entity projection via machine translation for cross-lingual NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2O19 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language [66] Bing Li, Yujie He, and Wenjin Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual named entity recognition using parallel corpus: A new approach using xlm-roberta alignment arXiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11112, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [67] Sabine Weber and Mark Steedman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Zero-shot cross-lingual transfer is a hard baseline to beat in German fine-grained entity typing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 42-48, Online and Punta Cana, Dominican Republic, November 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [68] Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual name tagging and linking for 282 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume I: Long Papers), pages [69] Afshin Rahimi, Yuan Li, and Trevor Cohn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Massively multilingual transfer for NER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 57th Annual Meeting of the [70] Min Xiao and Yuhong Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Distributed word representation learning for cross-lingual dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Eighteenth Conference on Computational Natural Language Learning, pages 119-129, Ann Arbor, Michigan, June 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [71] Jorg Tiedemann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual dependency parsing with universal dependencies and predicted pos labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Third [72] Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual dependency parsing based on distributed epresentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1234-1244, Beijing, China, July 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [73] Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and Frangois Yvon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Frustratingly easy cross-lingual transfer for transition-based dependency parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1058-1063, 2016 [74] Mohit Bansal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dependency link embeddings: Continuous representations of syntactic substructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the Ist Workshop on Vector Space Modeling for Natural Language Processing, pages 102-108, Denver, Colorado, June 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [75] Dan Kondratyuk and Milan Straka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 75 languages, 1 model: Parsing Universal Dependencies universally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 2779-2795, Hong Kong, China, November 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics [76] Matej Ulcar and Marko Robnik-Sikonja.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Finest bert and crosloengual bert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In International Conference on Text, Speech, and Dialogue, pages 104-111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='2020 [77] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajic, Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Manning, Sampo Pyysalo, Sebastian Schuster, Francis Resources and Evaluation Conference, pages 4034 4043, Marseille, France, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' European Language Resources Association [78] Rishi Bommasani, Drew A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Siddharth Karamcheti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Geoff Keeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Fereshte Khani, Omar Khattab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Pang Wei Koh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Mark Krass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ranjay Krishna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' On the opportunities and risks of foundation models, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017 [80] Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan Roth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Cross-lingual ability of multilingual bert: An empirical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In International Conference on Learning Representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [81] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Roberta: A robustly optimized bert pretraining approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content='11692, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' 32:7059-7069, 2019 [83] Cecil Brown, Eric Holman, and Soren Wichmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Sound c ribution of linguistic factors to the intelligibility of closely related languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Journal of Multilingual and multicultural development, 28(6):445-467, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [85] Chaitanya Malaviya, Graham Neubig, and Patrick Littell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Learning language representations for typology prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2529-2535, Copenhagen, Denmark, September 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 22 of 23[86] [87] [88] [89] [90] [91] [92] Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Benedikt Szmrecsanyi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Geography is overrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dialectological and folk dialectological concepts of space, pages 215-231, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transformers: State-of-the-art natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Leon Kellner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Historical outlines of English syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Macmillan, 1892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Christiane Dalton-Puffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The French influence on Middle English morphology: A corpus-based study on derivation, volume 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Walter de Gruyter, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Philip Durkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Borrowed words: A history of loanwords in English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Oxford University Press, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Juuso Eronen, Michal Ptaszynski, Fumito Masui, Aleksander Smywiriski-Pohl, Gniewosz Leliwa, and Michal Wroczynski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Improving classifier training efficiency for automatic cyberbullying detection with feature density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Information Processing & Management, 58(5):102616, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' What does BERT learn about the structure of language?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3651-3657, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 23 of 23 Zero-Shot Cross-Lingual Transfer Language Selection Using Linguistic Similarity Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [86] Benedikt Szmrecsanyi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Geography is overrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Dialectological and folk dialectological concepts of space, pages 215-231, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [87] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Transformers: State-of-the-art natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [88] Leon Kellner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Historical outlines of English syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Macmillan, 1892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [89] Christiane Dalton-Puffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' The French infuence on Middle English morphology: A corpus-based study on derivation, volume 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Walter de Gruyter, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [90] Philip Durkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Borrowed words: A history of loanwords in English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Oxford University Press, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [91] Juuso Eronen, Michal Ptaszynski, Fumito Masui, Aleksander Smywinski-Pohl, Gniewosz Leliwa, and Michal Wroczynski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Improving classifier training efficiency for automatic cyberbullying detection with feature density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Information Processing & Management, 58(5):102616, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' [92] C Annual Meeting of the Association for Computational Linguistics, pages 3651-3657, Florence, Italy, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' Eronen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 23 of 23' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/etFST4oBgHgl3EQfGDhd/content/2301.13720v1.pdf'} diff --git a/f9AzT4oBgHgl3EQfavwP/content/2301.01372v1.pdf b/f9AzT4oBgHgl3EQfavwP/content/2301.01372v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3970fc5647e0fdb24c5176ebfd2ecc31c0e1f151 --- /dev/null +++ b/f9AzT4oBgHgl3EQfavwP/content/2301.01372v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7e8740b2d4a2ed41b2ffa677968a4864c784d580df3f700294463eab1cd918f1 +size 3910830 diff --git a/f9AzT4oBgHgl3EQfavwP/vector_store/index.pkl b/f9AzT4oBgHgl3EQfavwP/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..954a31baf1e1bfa6ca93721767c74a3f16fcdf65 --- /dev/null +++ b/f9AzT4oBgHgl3EQfavwP/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fe08c30b9ec12d205c498c8d6ab57308efd79bcabb90a2334d66ddf6a9524a51 +size 208158 diff --git a/fdE2T4oBgHgl3EQfbgfz/content/tmp_files/2301.03887v1.pdf.txt b/fdE2T4oBgHgl3EQfbgfz/content/tmp_files/2301.03887v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f3dfcebada0cec3a8261800f80f2d55fa80aea1 --- /dev/null +++ b/fdE2T4oBgHgl3EQfbgfz/content/tmp_files/2301.03887v1.pdf.txt @@ -0,0 +1,1025 @@ +Actor-Director-Critic: A Novel Deep Reinforcement Learning Framework +Zongwei Liu +Xi’an Jiaotong University +China +Ting Haode@stu.xjtu.edu.cn +Yonghong Song +Xi’an Jiaotong University +China +songyh@xjtu.edu.cn +Yuanlin Zhang +Xi’an Jiaotong University +China +ylzhangxian@xjtu.edu.cn +Abstract +In this paper, we propose actor-director-critic, a new +framework for deep reinforcement learning. Compared with +the actor-critic framework, the director role is added, and +action classification and action evaluation are applied si- +multaneously to improve the decision-making performance +of the agent. Firstly, the actions of the agent are divided +into high quality actions and low quality actions according +to the rewards returned from the environment. Then, the di- +rector network is trained to have the ability to discriminate +high and low quality actions and guide the actor network +to reduce the repetitive exploration of low quality actions +in the early stage of training. In addition, we propose an +improved double estimator method to better solve the prob- +lem of overestimation in the field of reinforcement learning. +For the two critic networks used, we design two target critic +networks for each critic network instead of one. In this way, +the target value of each critic network can be calculated +by taking the average of the outputs of the two target critic +networks, which is more stable and accurate than using only +one target critic network to obtain the target value. In order +to verify the performance of the actor-director-critic frame- +work and the improved double estimator method, we ap- +plied them to the TD3 algorithm to improve the TD3 algo- +rithm. Then, we carried out experiments in multiple envi- +ronments in MuJoCo and compared the experimental data +before and after the algorithm improvement. The final ex- +perimental results show that the improved algorithm can +achieve faster convergence speed and higher total return. +1. Introduction +Deep reinforcement learning is a trial-and-error ap- +proach to learning, which takes the data obtained from the +interaction between the agent and the environment as sam- +ples for the agent’s policy learning. In the model-free re- +inforcement learning algorithm, the agent’s cognition of +the environment comes entirely from the sample data ob- +tained during the interaction. It is this iterative trial-and- +error learning method that makes a high percentage of low- +quality data in a large amount of sample data, resulting in +a poor utilization of the samples. Therefore, if there is a +way to improve the sample utilization, the learning speed of +reinforcement learning can be improved. There are many +excellent existing model-free reinforcement learning algo- +rithms that combine policy functions and value functions +based on the actor-critic framework, which are applicable +to a variety of action type problems with improved sam- +ple training efficiency. In the actor-critic framework, actor +learns parameterized policy function and critic learns pa- +rameterized value function. The learned value function can +provide more feedback information to the policy function +than the environmental reward to guide the policy function +in action decision making. Therefore, the learning of the +policy function depends on the quality of the estimates of +the value function that undergoes learning simultaneously. +Because of this, it leads to the problem that until the value +function can provide a reasonable signal to the policy func- +tion, it is difficult for the agent to rely on the policy function +to make good actions. +In order to provide more guidance to the policy function +before the value function can provide reasonable guidance +signals for the policy function and speed up the learning +of the policy function, we propose the actor-director-critic +framework. Compared with actor-critic framework, actor- +director-critic framework adds a director network with dis- +criminative function to discriminate between low quality +and high quality actions. Director can provide guidance +other than critic to actor at the early stage of actor training, +so that agent can reduce the repetitive exploration of low +quality actions in the initial trial-and-error learning process, +and further improve the training efficiency of samples. In +the process of interacting with the environment, the agent +receives a reward back from the environment for each ac- +tion it performs. We simply classify the actions into two +categories based on the reward returned, one is low quality +actions with relatively low reward value, and the other is +high quality actions with relatively high reward value. Be- +arXiv:2301.03887v1 [cs.LG] 10 Jan 2023 + +Figure 1. Implementation process of CTD3. +fore training the director network, we divided the empirical +dataset into two categories, a low quality dataset consisting +of low quality actions and their corresponding rewards and +states, and a high quality dataset consisting of high qual- +ity actions and their corresponding rewards and states. We +then use these two datasets above to train the ability of the +director network to discriminate between high and low qual- +ity actions, so that the director network can help the actor +network to reduce the repetitive exploration of low quality +actions during policy optimization. We set attenuation fac- +tor so that the director focuses on the early stages of actor +training. +In addition, there is the problem of overestimation in re- +inforcement learning. The overestimation problem is usu- +ally caused by two reasons. One is the idea of maximiza- +tion of the objective policy, where the maximum value of +the estimated value function is used as the estimate of the +true value, which leads to maximization bias and thus over- +estimation. The second is the bootstrap phenomenon, which +means using the predicted value of the value function at the +future moment to update the estimated value of the value +function at the present moment, which will also bring about +the overestimation problem. The double estimator method +is a common method to solve the overestimation problem. +And existing method learns two independent Q networks, +each of which has a target Q network. The target Q net- +work copies its parameters from the Q network at regular +intervals, and the output of the target Q network is then con- +sidered as the target value to optimize the Q network. The +problem is that the output of a single target Q is often un- +stable, and this instability will reduce the accuracy of the +target value and lower the training efficiency. +In order to better solve the overestimation problem, we +propose an improved double estimator method, which is to +design two target Q networks for each Q network separately, +and these two target Q networks update the parameters al- +ternately according to a fixed time interval. The average +of the outputs of the two target Q networks is used as the +target value when optimizing the Q network. This method +will obtain more stable and accurate target values than us- +ing a single target Q network, and thus can better solve the +overestimation problem. +The TD3 [6] algorithm is an excellent performing al- +gorithm based on the actor-critic framework. To test the +performance of the above actor-director-critic framework +and the improved double estimator method, we improve +the TD3 algorithm using the actor-director-critic framework +and the improved double estimator method, and refer to the +improved algorithm as CTD3 algorithm for short. We con- +ducted comparison experiments and ablation experiments +in several environments in the MuJoCo, and all of them +achieved good results. +2. Related work +2.1. Actor-Critic framework +Model-free reinforcement learning algorithms can be +classified as policy-based algorithms, value-based algo- +rithms, and algorithms that combine policy and value. The + +agent forms a trajectory τ during its interaction with the +environment, and the policy-based algorithm is to learn an +action-generating function called policy function π, such +that the agent is able to maximize the cumulative reward +when making decisions under the guidance of this policy +function. The cumulative reward J (τ) can be expressed as +follows: +J (τ) = +K +� +k=0 +γkrt+k+1 +(1) +The discount factor γ represents the effect of future re- +wards on the present and takes a value between 0 and 1. +At different moments, the agent is in different states, so the +policy function π is meant to produce an action a = π(s) +with state s as input, indicating the probability of taking ac- +tion a in the case of state s. The policy-based algorithm +directly optimizes the cumulative reward J (τ), which is of +most interest to the agent. And policy-based algorithm can +be applied to problems of either discrete or continuous ac- +tion types, with the disadvantage that the sample training +is relatively inefficient. The value function can provide in- +formation about J (τ). The value function has two forms, +one is the state value function, which indicates the expected +value of the subsequent cumulative reward that can be ob- +tained in a certain state s. The state value function V(s) can +be expressed as follows: +V(s) = E( +K +� +k=0 +γkrt+k+1|St = s) +(2) +The other is the action value function, which represents +the expected value of the cumulative reward that can be ob- +tained after performing action a in some state s. The action +value function Q(s, a) can be expressed as follows: +Q(s, a) = E( +K +� +k=0 +γkrt+k+1|St = s, At = a) +(3) +The value-based algorithm firstly learns a value function, +and either the state value function or the action value func- +tion ultimately uses the computed (s,a) to generate the opti- +mal policy. The contribution of each action is measured by +calculating and comparing the output of the function cor- +responding to all possible actions in the current state. The +agent should be in a state with high value as far as possible +and choose actions with high value as far as possible, so as +to achieve the purpose of maximizing cumulative rewards. +The advantage of the value-based algorithm is that the sam- +ple training is more efficient, and the disadvantage is that it +is often limited to problems with discrete action types and +is not suitable for problems where the target policy is a ran- +dom one. +The algorithm based on the actor-critic framework is an +algorithm that combines the policy gradient method and the +value function method, which can not only solve the prob- +lem of multiple action types, but also the sample training +efficiency is relatively high. Two parameterized functions +need to be learned in the actor-critic framework, in which +actor learns the parameterized policy function and critic +learns the parameterized value function. The policy func- +tion guides the agent to make action decisions, and the value +function is responsible for evaluating the actions. Actor is a +network representing the policy function, which selects the +actions to be performed based on the current state informa- +tion of the environment, and learns a better policy using the +policy gradient under the guidance of critic. Actor’s opti- +mization objective can be expressed as follows: +maxJ = E[Q(s, a)] +(4) +Critic is a network representing the value function that +learns a value function based on the data collected during +the actor’s interaction with the environment, and helps the +actor to make policy updates by evaluating the quality of the +actor’s actions. The optimization objective of critic can be +expressed as follows: +minL = E[(Q(s, a) − (r + γQ(s′, a′)))2] +(5) +The learned value function can provide more feedback +information to the policy function than the environmental +reward, so the policy function can achieve better results +when it learns based on the information provided by the +value function that has completed learning. +In the field +of single-agent reinforcement learning, many existing ex- +cellent algorithms use the actor-critic framework, such as +DDPG [12], TRPO [17], A3C [14], PPO [18], ACER [20], +SAC [8], D4PG [1], TD3 [6], DAC [24], TAAC [23], DCAC +[2], ESAC [19], and so on. In the field of multi-agent rein- +forcement learning, there are also many multi-agent algo- +rithms that continue to use the actor-critic framework, such +as MADDPG [13], COMA [5], IPPO [4], SEAC [3], CM3 +[21], MACAAC [15], MAPPO [22], HAPPO [11], and so +on. +In addition, the QMIX [16] algorithm also borrows +ideas from the actor-critic framework, where the agent RNN +network is equivalent to the actor network and the mix- +ing network is equivalent to the critic network. Of course, +there are also many algorithms that improve on the actor- +critic framework, such as the multi-agent algorithm MAAC +[10], which introduces the attention mechanism based on +the actor-critic framework and proposes the actor-attention- +critic framework, in the hope that the agent can selectively +focus on the information that is more conducive to gaining +greater returns when learning other agent policies. +As stated in the introduction, reinforcement learning suf- +fers from relatively low sample utilization and, for the actor- +critic framework, it is difficult for an agent to rely on the + +policy function to make good actions until the value func- +tion can provide a reasonable signal for the policy func- +tion. +Regarding the two roles in the actor-critic frame- +work, we can regard the actor as the student and the critic +as the teacher. +In real life, a student often needs more +teachers to teach him to learn more, and the more teach- +ers a student has, the higher the probability of getting good +grades. So the concept of multiple teachers can be intro- +duced on the basis of the actor-critic framework. In the +actor-director-critic framework proposed in this paper, the +director is equivalent to another teacher for the actor, pro- +viding guidance to the actor other than the critic and helping +the actor learn better policies faster. +2.2. Double estimator method +Double estimator is a common method to solve the over- +estimation problem, and two methods of double estimator +will be described below. One is a method that has been +used in some algorithms such as Double Q-Learning [9], +which learns two independent Q networks, and each Q net- +work uses the output value of the other during training as an +estimate of the action value function of the optimal action +sought by itself. This can be described as follows: +y1 = r + γQ2(s′, a′) +(6) +y2 = r + γQ1(s′, a′) +(7) +Although two Q networks are used, only one Q network +is updated at each update, and they both have a 50% prob- +ability of being selected randomly. Another method, which +has been used in some algorithms such as TD3 [6], also +uses two Q networks that are independent of each other. +The difference is that both networks are updated simulta- +neously during the training process, using the minimum of +their outputs as the estimate of the value function. More- +over, when updating the network parameters, the estimate +of the value function is shared between the two Q networks +in the calculation of the loss function. This can be described +as follows: +y = r + γminQ1,2(s′, a′) +(8) +In the existing actor-critic framework, two relatively in- +dependent critic networks need to be trained, and then the +risk of overestimation is diluted by randomly selecting the +output value of one of the critic networks or by taking the +minimum value of the output of the two critic networks. In +the two double estimator methods mentioned above, each +critic network has only one target critic network. In order +to better solve the overestimation problem, this paper pro- +poses an improved double estimator method by designing +two target critic networks for each critic network. +Algorithm 1 CTD3 +Initialize the director network Dφ, critical network Qω1, +Qω2 and actor network µθ with random parameters φ, +ω1, ω2, θ +Initialize target networks ω′ +1-1 ← ω1, ω′ +1-2 ← ω1, +ω′ +2-1 ← ω2, ω′ +2-2 ← ω2, θ′ ← θ +Initialize three replay buffers B, B1, B2 +for t = 1 to T do +Select action with exploration noise +�at = µθ(st) + ϵt, ϵt ← Nt(0, σ) +Execute action �at to get reward rt and new state st+1 +Store transition tuple (st, at, rt, st+1) in B +Choose a reward value cut-off of the right size, R +if rt > R then +at ∈ ah, Store (st, at, rt, st+1) in B1 +else +at ∈ al, Store (st, at, rt, st+1) in B2 +Sample a random minibatch of N transitions +(sj, aj, rj, sj+1) from B1 +Sample a random minibatch of N transitions +(sk, ak, rk, sk+1) from B2 +Use (sj, aj, rj, sj+1), (sk, ak, rk, sk+1) to update +director network Dφ: +∇φV(φ) = +1 +N +N +� +i=1 +(∇φDφ(si, ahi) − ∇φDφ(si, ali)) +Sample a random minibatch of N transitions +(si, ai, ri, si+1) from B +�ai = µθ(si) + ϵi, ϵi ← Nt(0, σ) +� +ai+1 = µθ′(si+1) + ϵ′ +i, ϵ′ +i ← clip(Nt(0, σ′), -c, c) +yi = ri+ γQmin( +Qω′ +1-1 +(si+1, � +ai+1)+Qω′ +1-2(si+1, � +ai+1) +2 +, +Qω′ +2-1(si+1, � +ai+1)+Qω′ +2-2(si+1, � +ai+1) +2 +) +Use (si, ai, ri, si+1) to update critic network +Qω1 or Qω2: +∇ωL(ω) = 1 +N +N +� +i=1 +(Qω(si, �ai) − yi)∇ωQω(si, �ai) +if t mod d then +Use (si, ai, ri, si+1) to update actor network µθ: +∇θJ (θ) = 1 +N +N +� +i=1 +(γD∇�aDφ(si, �ai)∇θµθ(si)+ +∇�aQω(si, �ai)∇θµθ(si)) +θ′ ← τθ + (1 − τ)θ′ +end if +When t is odd, update target networks: +ω′ +1-1 ← τω1 + (1 − τ)ω′ +1-1 +ω′ +1-2 ← τω1 + (1 − τ)ω′ +1-2 +When t is even, update target networks: +ω′ +2-1 ← τω2 + (1 − τ)ω′ +2-1 +ω′ +2-2 ← τω2 + (1 − τ)ω′ +2-2 +end for + +2.3. Policy network delay update and target policy +smoothing regularization +Bias is introduced in the process of function approx- +imation using neural networks, and the problem of error +accumulation will come to the fore as the number of it- +erations increases. In the existing actor-critic framework, +if the critic’ assessments are inaccurate, the actor will not +learn an accurate policy. In order to make the critic’s eval- +uation more accurate, the frequency of critic updates can +be increased and the frequency of actor updates can be de- +creased, which is the method of delaying the update of the +policy network used in the TD3 [6] algorithm. In our pro- +posed actor-director-critic framework, we also adopt this +approach, and the director network and the critic network +converge earlier than the actor network, so that the actor +network can be instructed to reduce unnecessary and ineffi- +cient update operations when updating. Ultimately, training +efficiency can be improved. +In addition, the TD3 [6] algorithm also uses the process- +ing of adding clipped noise to the target action to solve the +problem of error accumulation, with the aim of smoothing +the values of a small area around the target action enough +so that those actions that are similar to the target action can +have similar values to the target action. This smoothing op- +eration based on noise processing can reduce the impact of +certain wrong value estimates on the whole policy learning +and reduce the generation of errors, so we retain this noise +processing operation when improving the TD3 algorithm. +This can be described as follows: +ϵ ← clip(N(0, σ), -c, c) +(9) +a = π(s) + ϵ +(10) +3. Proposed method +3.1. Actor-Director-Critic framework +There are three roles in actor-director-critic framework: +actor, director, and critic. As in actor-critic framework, the +critic in the actor-director-critic framework is still a network +representing a value function that learns a value function +based on the data collected from the actor’s interaction with +the environment. Critic plays a role in evaluating the long- +term benefits of the actor’s actions by comparing the mag- +nitude of the value function. Critic’s optimization goal can +also be expressed as follows: +minL = E[(Q(s, a) − (r + γQ(s′, a′)))2] +(11) +Director is a network that represents the discriminative +function. In specific experiments, we classify the actions +based on the feedback rewards as simple superiority or in- +feriority. We obtain a low quality dataset and a high quality +dataset, and then train the discriminative ability of the direc- +tor network on the actions. We introduced a decay factor to +make the director work mainly in the initial phase of train- +ing. In the initial stage of training, the actor can quickly +recognize which actions are worth exploring and which ac- +tions should be avoided with the help of the director, and +then quickly learn to reduce the exploration of those poorer +actions and improve the training speed. The optimization +objective of the director is as follows: +maxV = Eah∼pdata(ah)[D(s, ah)]+ +Eal∼pdata(al)[1 − D(s, al)] +(12) +The actor is still a network that represents the policy +function and chooses the actions to be performed based on +the state information of the current environment. At this +point, it no longer receives guidance only from the critic, but +also from the director. The critic is the lifelong teacher who +teaches the actor to make action decisions in the long-term +interest, while the director, by design, is the stage teacher +who primarily guides the actor in the early stages of learn- +ing to quickly distinguish between the low quality actions +and high quality actions. Under the joint guidance of both, +the actor learns the optimal policy much faster. γ is a decay +factor, and actor’s optimization goals can be described as +follows: +maxJ = γE[D(s, a)] + E[Q(s, a)] +(13) +3.2. Improved double estimator method +In the actor-director-critic framework, we design two +critic networks and two target critic networks for each critic +network. Target critic networks are independent of each +other and do not need to be trained. We only need to copy +the parameters of the critic network to the target critic net- +work in a soft update manner periodically. It should be +noted that for each critic network, the two target critic net- +works are updated alternately, and only one of the target +networks is updated at a time. When optimizing the two +critic networks used, they share the same target value. The +target value is calculated by first averaging the outputs of +the two target critic networks for each critic network and +then taking the minimum of the two averages, as shown in +the following equation: +Q′ = min(Q1-1(s′, a′) + Q1-2(s′, a′) +2 +, +Q2-1(s′, a′) + Q2-2(s′, a′) +2 +) +(14) +The advantage of this design is that precisely because the +alternate updates of the target critic networks make them +represent the training results of the critic network in differ- +ent historical periods, the average of the target values cal- +culated by the training results in different historical periods + +can better dilute some prediction biases and thus improve +the stability and accuracy of the target values. +3.3. Classified twin delayed deep deterministic pol- +icy gradient algorithm +As mentioned in the introduction, in order to test the per- +formance of the above actor-director-critic framework and +the improved double estimator method, we apply them to +the TD3 algorithm to improve the TD3 algorithm. The TD3 +algorithm is chosen because it is a well-performing algo- +rithm based on the actor-critic framework. The full name of +the TD3 algorithm is twin delayed deep deterministic policy +gradient algorithm, and we refer to the improved algorithm +as classified twin delayed deep deterministic policy gradi- +ent algorithm, abbreviated as CTD3. The implementation +process of CTD3 is shown in Figure 1. +The actor makes action choices based on the state of the +environment it observes. There are two critic networks, and +each critic network has two target critic networks. The pa- +rameters of the target critic networks are copied from the +critic network in the way of soft updating alternately. To +solve the overestimation problem, the minimum value of +the output of the two critic networks is chosen as a refer- +ence to evaluate the actor’s action in the long term interest. +In addition, we select appropriate reward value cut-off to +classify actions into low quality actions and high quality +actions based on the reward values returned from the envi- +ronment, and use low-quality and high-quality datasets to +train the discriminative ability of the director. Then director +can guide the actor to reduce repetitive exploration of low +quality actions during training. +In the CTD3 algorithm we keep the two methods used +in the TD3 algorithm to solve the error accumulation prob- +lem. One is to delay the update of the policy network, that +is, to reduce the frequency of actor updates, and the other +is the smoothing operation of the target policy, that is, to +add clipped noise. The way to add clipped noise can be +described as follows: +ϵ ← N(0, σ) +(15) +�a = µθ(s) + ϵ +(16) +ϵ′ ← clip(N(0, σ′), -c, c) +(17) +�a′ = µθ′(s′) + ϵ′ +(18) +The target action of adding truncated noise will be used +for the calculation of the target value of the value function. +Two target critic networks are designed for each critic net- +work to solve the overestimation problem. +Q′ = min(Qω′ +1-1(s′, �a′) + Qω′ +1-2(s′, �a′) +2 +, +Qω′ +2-1(s′, �a′) + Qω′ +2-2(s′, �a′) +2 +) +(19) +y = r + γQQ′ +(20) +The optimization objective of the critic network is to +minimize the loss between the predicted target value y and +the output value Qω(s, �a). +L(ω) = E[(Qω(s, �a) − y)2] +(21) +∇ωL(ω) = 1 +N +N +� +i=1 +(Qω(si, �ai) − yi)∇ωQω(si, �ai) +(22) +yi = ri + γQmin( +Qω′ +1-1(s′ +i, �a′ +i) + Qω′ +1-2(s′ +i, �a′ +i) +2 +, +Qω′ +2-1(s′ +i, �a′ +i) + Qω′ +2-2(s′ +i, �a′ +i) +2 +) +(23) +The director network learns to discriminate between high +and low quality actions through different datasets, with the +output being 1 when the input is a high quality action and 0 +when the input is a low quality action. Director network is +designed with reference to the concept of GAN [7], and its +goal is to perform the learning of the discriminant function +V(φ). +V(φ) = Eah∼pdata(ah)[Dφ(s, ah)]+ +Eal∼pdata(al)[1 − Dφ(s, al)] +(24) +∇φV(φ) = 1 +N +N +� +i=1 +(∇φDφ(si, ahi) − ∇φDφ(si, ali)) (25) +The actor network performs policy optimization with the +joint help of the critic network and the director network, +and the optimization goal is to maximize the value of the +value function output by the critic network as well as to +maximize the value of the discriminant function output by +the director network. Here the decay factor γD is used to +make the director focus on the early stage of training and +speed up the training. +J (θ) = γDE[Dφ(s, �a)] + E[Qω(s, �a)] +(26) +∇θJ (θ) = 1 +N +N +� +i=1 +(γD∇�aDφ(si, �ai)∇θµθ(si)+ +∇�aQω(si, �ai)∇θµθ(si)) +(27) +CTD3 is summarized in Algorithm 1. + +4. Experiment +4.1. Experimental environments +Figure 2. Six experimental environments in MuJoCo. +We conducted experiments in MuJoCo simulation envi- +ronment. The six experimental environments selected in +Figure 2 are all continuous action environments and are rich +in reward value settings. +4.2. Comparative evaluation and ablation study +As already mentioned, in order to test the effectiveness +of the proposed actor-director-critic framework and the im- +proved double estimator method, we apply them to the TD3 +algorithm. CTD3 algorithm is obtained by improving TD3. +First of all, we would like to explain why we chose TD3 +algorithm for comparison, because TD3 is a very good re- +inforcement learning algorithm based on actor-critic frame- +work. In the original paper of the TD3 [6] algorithm pub- +lished in ICML, this method can completely beat DDPG, +PPO, TRPO, ACKTR, and SAC. Therefore, we choose the +TD3 algorithm for comparison experiments. +We conduct comparative experiments on CTD3 and TD3 +in six environments under the MuJoCo platform. For each +environment a specific random seed is set and the maxi- +mum number of experimental steps is limited. The data are +smoothed at the end of the experiments, using the sliding +average filtering method. A suitable sliding window size is +set for each data of different environments, and the data in +the window are averaged. All data are smoothed when the +window is sliding from the beginning to the end. On the one +hand, the smoothed data are written to Table 1, and it should +be noted that the data of the six environments written to Ta- +ble 1 are the data at the end of the last training round run +by agent, both for CTD3 and TD3. On the other hand, all +the smoothed data of CTD3 and TD3 are plotted as curves +to obtain Figure 3, where the training process of CTD3 and +TD3 in each environment can be visually compared. +CTD3 is a new algorithm that improves TD3 by apply- +ing the two ideas of actor-director-critic framework and the +improved double estimator method proposed in this paper +to the TD3 algorithm. We can compare the performance of +CTD3 and TD3 by comparing the data in Table 1 and the +curves in Figure 3. In all the six environments, the total +return of CTD3 is higher than that of TD3, and the conver- +gence rate of CTD3 is also faster than that of TD3. Since +the performance of the CTD3 algorithm is better than TD3 +in terms of convergence speed and final score, it can prove +that the actor-director-critic framework and the improved +double estimator method proposed in this paper are feasi- +ble. +TD3+ADCF means that the ADC framework is ap- +plied to the TD3 algorithm to improve the TD3 algo- +rithm. TD3+IDEM means that the improved double esti- +mator method is applied to the TD3 algorithm to improve +the TD3 algorithm. CTD3(TD3+ADCF+IDEM) means that +the ADC framework and the improved double estimator +method are applied to the TD3 algorithm at the same time +to improve the TD3 algorithm and obtain the CTD3 algo- +rithm. For ablation experiments, we can analyze the per- +formance of the ADC framework and the improved double +estimator method proposed in this paper by comparing the +data of TD3, TD3+ADCF, TD3+IDEM and CTD3 in Ta- +ble 1 and the curves in Figure 3. As shown in Table 1, in +all six experimental environments, no matter TD3+ADCF +or TD3+IDEM, their total returns are higher than those +of TD3. +The curve in Figure 3 also shows that in all +six experimental environments, no matter TD3+ADCF or +TD3+IDEM, their convergence speed is faster than that of +TD3. In most cases, CTD3 outperforms TD3+ADCF and +TD3+IDEM, but sometimes it is outperformed by one or +the other. +In conclusion, the improved performance compared to +TD3, either using the actor-director-critic framework alone +or the improved double estimator method alone, or use both +of them, are sufficient to demonstrate the feasibility of our +proposed methods in this paper. +5. Conclusion +Reinforcement learning is a kind of trial-and-error learn- +ing, which has the problem of low sample utilization. More- +over, in existing deep reinforcement learning algorithms +based on the actor-critic framework, there is also a problem +that it is difficult for an agent to rely on the policy function +to make good actions until the value function is learned to +the extent that it can provide reasonable guidance to the pol- +icy function. Therefore, in order to alleviate these two prob- +lems, this paper proposes a new deep reinforcement learn- +ing framework, actor-director-critic framework. The direc- +tor role is added to the actor-critic framework, and a decay +factor is set for the director. By training the director to dis- + +� +� +� +� +� +� +�#� "������ +� +���� +���� +���� +���� +��&�!� +��%����%�!#����$�������$�$� +��� +�������� +�������� +������������������� +� +�� +�� +�� +�� +��� +�"��!������ +� +���� +���� +���� +���� +���� +��$� � +��#����������"�� +��� +�������� +�������� +������������������� +� +�� +�� +�� +�� +��� +�"��!������ +� +���� +���� +���� +���� +���� +��%� � +��$���#������ +��� +�������� +�������� +������������������� +� +�� +�� +�� +�� +��� +����������� +� +���� +���� +���� +���� +���� +�� ��� +�������� +��� +�������� +�������� +������������������� +� +�� +�� +�� +�� +��� +�!�� ������ +� +���� +���� +���� +���� +���� +��#��� +��"���������� +��� +�������� +�������� +������������������� +� +�� +�� +�� +�� +��� +� ��������� +� +��� +���� +���� +���� +���� +���� +��"��� +��!�������� +��� +�������� +�������� +������������������� +Figure 3. Performance curves in six environments. +Environment +TD3 +TD3+ADCF +TD3+IDEM +CTD3(TD3+ADCF+IDEM) +InvertedDoublePendulum +9341.302 +9342.752 +9350.902 +9342.690 +HalfCheetah +8214.770 +9460.794 +9156.181 +10324.831 +Humanoid +4755.148 +5034.893 +5085.446 +5057.048 +Ant +2949.150 +4861.062 +4779.486 +5171.217 +Walker2d +3818.958 +4902.341 +4208.518 +4468.348 +Hopper +2395.742 +3169.502 +3118.340 +3252.941 +Table 1. Experimental results in six environments. +criminate between low quality and high quality actions, it +can help the actor reduce repetitive attempts to perform low +quality actions during exploration, thus improving sample +utilization and speeding up training. +In solving the problem of overestimation in reinforce- +ment learning, for the method called double estimator +method that requires training two Q networks and design- +ing one target network for each Q network, this paper tries +to propose an improved double estimator method to design +two target networks for each Q network. For each Q net- +work, its two target networks are alternately soft updated. +The outputs of these target networks are comprehensively +used to calculate the target value of Q network. First, the +output average of the two target networks owned by each Q +network is calculated, and then the smaller of the two aver- +age values is taken as the final target value of the Q network, +and this target value is shared by both Q networks. so as to +alleviate the problem of overestimation. So that the problem +of overvaluation can be mitigated much better than before. +To test the feasibility of both the actor-director-critic +framework and the improved double estimator method, we +applied them to the TD3 algorithm and improved the TD3 +algorithm to obtain the CTD3 algorithm. We conducted +comparative and ablation experiments in several environ- +ments in the MuJoCo. Experimental results show that the +CTD3 algorithm generally has faster convergence speed and +higher total return than TD3, proving the feasibility of the +methods proposed in this paper. + +References +[1] Gabriel Barth-Maron, Matthew W Hoffman, David Bud- +den, Will Dabney, Dan Horgan, TB Dhruva, Alistair Muldal, +Nicolas Heess, and Timothy Lillicrap. Distributed distribu- +tional deterministic policy gradients. In International Con- +ference on Learning Representations, 2018. 3 +[2] Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, +Christopher Pal, and Jonathan Binas. Reinforcement learn- +ing with random delays. +In International conference on +learning representations, 2020. 3 +[3] Filippos Christianos, Lukas Sch¨afer, and Stefano Albrecht. +Shared experience actor-critic for multi-agent reinforcement +learning. +Advances in neural information processing sys- +tems, 33:10707–10717, 2020. 3 +[4] Christian Schroeder de Witt, Tarun Gupta, Denys Makovi- +ichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei Sun, +and Shimon Whiteson. +Is independent learning all you +need in the starcraft multi-agent challenge? arXiv preprint +arXiv:2011.09533, 2020. 3 +[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, +Nantas Nardelli, and Shimon Whiteson. +Counterfactual +multi-agent policy gradients. +In Proceedings of the AAAI +conference on artificial intelligence, volume 32, 2018. 3 +[6] Scott Fujimoto, Herke Hoof, and David Meger. Address- +ing function approximation error in actor-critic methods. In +International conference on machine learning, pages 1587– +1596. PMLR, 2018. 2, 3, 4, 5, 7 +[7] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing +Xu, David Warde-Farley, Sherjil Ozair, Aaron C Courville, +and Yoshua Bengio. Generative adversarial nets. In NIPS, +2014. 6 +[8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey +Levine. Soft actor-critic: Off-policy maximum entropy deep +reinforcement learning with a stochastic actor. In Interna- +tional conference on machine learning, pages 1861–1870. +PMLR, 2018. 3 +[9] Hado Hasselt. Double q-learning. Advances in neural infor- +mation processing systems, 23, 2010. 4 +[10] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi- +agent reinforcement learning. +In International conference +on machine learning, pages 2961–2970. PMLR, 2019. 3 +[11] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying +Wen, Fanglei Sun, Jun Wang, and Yaodong Yang. Trust re- +gion policy optimisation in multi-agent reinforcement learn- +ing. In International Conference on Learning Representa- +tions, 2021. 3 +[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, +Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and +Daan Wierstra. Continuous control with deep reinforcement +learning. arXiv preprint arXiv:1509.02971, 2015. 3 +[13] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI +Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic +for mixed cooperative-competitive environments. Advances +in neural information processing systems, 30, 2017. 3 +[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, +Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, +and Koray Kavukcuoglu. Asynchronous methods for deep +reinforcement learning. In International conference on ma- +chine learning, pages 1928–1937. PMLR, 2016. 3 +[15] P Parnika, Raghuram Bharadwaj Diddigi, Sai Koti Reddy +Danda, and Shalabh Bhatnagar. Attention actor-critic algo- +rithm for multi-agent constrained co-operative reinforcement +learning. In Proceedings of the 20th International Confer- +ence on Autonomous Agents and MultiAgent Systems, pages +1616–1618, 2021. 3 +[16] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, +Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. +Qmix: +Monotonic value function factorisation for deep +multi-agent reinforcement learning. In International confer- +ence on machine learning, pages 4295–4304. PMLR, 2018. +3 +[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor- +dan, and Philipp Moritz. Trust region policy optimization. In +International conference on machine learning, pages 1889– +1897. PMLR, 2015. 3 +[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad- +ford, and Oleg Klimov. Proximal policy optimization algo- +rithms. arXiv preprint arXiv:1707.06347, 2017. 3 +[19] Karush Suri. Off-policy evolutionary reinforcement learning +with maximum mutations. In Proceedings of the 21st Inter- +national Conference on Autonomous Agents and Multiagent +Systems, pages 1237–1245, 2022. 3 +[20] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, +Remi Munos, Koray Kavukcuoglu, and Nando de Freitas. +Sample efficient actor-critic with experience replay. arXiv +preprint arXiv:1611.01224, 2016. 3 +[21] Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fu- +jimura, and Hongyuan Zha. Cm3: Cooperative multi-goal +multi-stage multi-agent reinforcement learning. In Interna- +tional Conference on Learning Representations, 2020. 3 +[22] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexan- +dre Bayen, and Yi Wu. +The surprising effectiveness of +ppo in cooperative, multi-agent games. +arXiv preprint +arXiv:2103.01955, 2021. 3 +[23] Haonan Yu, Wei Xu, and Haichao Zhang. Taac: Temporally +abstract actor-critic for continuous control. Advances in Neu- +ral Information Processing Systems, 34:29021–29033, 2021. +3 +[24] Shangtong Zhang and Shimon Whiteson. Dac: The double +actor-critic architecture for learning options. +Advances in +Neural Information Processing Systems, 32, 2019. 3 + diff --git a/fdE2T4oBgHgl3EQfbgfz/content/tmp_files/load_file.txt b/fdE2T4oBgHgl3EQfbgfz/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..cb31fe66c08e950cb85ac142a7443090188982c8 --- /dev/null +++ b/fdE2T4oBgHgl3EQfbgfz/content/tmp_files/load_file.txt @@ -0,0 +1,389 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf,len=388 +page_content='Actor-Director-Critic: A Novel Deep Reinforcement Learning Framework Zongwei Liu Xi’an Jiaotong University China Ting Haode@stu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='xjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='cn Yonghong Song Xi’an Jiaotong University China songyh@xjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='cn Yuanlin Zhang Xi’an Jiaotong University China ylzhangxian@xjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='cn Abstract In this paper, we propose actor-director-critic, a new framework for deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Compared with the actor-critic framework, the director role is added, and action classification and action evaluation are applied si- multaneously to improve the decision-making performance of the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Firstly, the actions of the agent are divided into high quality actions and low quality actions according to the rewards returned from the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Then, the di- rector network is trained to have the ability to discriminate high and low quality actions and guide the actor network to reduce the repetitive exploration of low quality actions in the early stage of training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In addition, we propose an improved double estimator method to better solve the prob- lem of overestimation in the field of reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' For the two critic networks used, we design two target critic networks for each critic network instead of one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In this way, the target value of each critic network can be calculated by taking the average of the outputs of the two target critic networks, which is more stable and accurate than using only one target critic network to obtain the target value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In order to verify the performance of the actor-director-critic frame- work and the improved double estimator method, we ap- plied them to the TD3 algorithm to improve the TD3 algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Then, we carried out experiments in multiple envi- ronments in MuJoCo and compared the experimental data before and after the algorithm improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The final ex- perimental results show that the improved algorithm can achieve faster convergence speed and higher total return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Introduction Deep reinforcement learning is a trial-and-error ap- proach to learning, which takes the data obtained from the interaction between the agent and the environment as sam- ples for the agent’s policy learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the model-free re- inforcement learning algorithm, the agent’s cognition of the environment comes entirely from the sample data ob- tained during the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' It is this iterative trial-and- error learning method that makes a high percentage of low- quality data in a large amount of sample data, resulting in a poor utilization of the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Therefore, if there is a way to improve the sample utilization, the learning speed of reinforcement learning can be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' There are many excellent existing model-free reinforcement learning algo- rithms that combine policy functions and value functions based on the actor-critic framework, which are applicable to a variety of action type problems with improved sam- ple training efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the actor-critic framework, actor learns parameterized policy function and critic learns pa- rameterized value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The learned value function can provide more feedback information to the policy function than the environmental reward to guide the policy function in action decision making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Therefore, the learning of the policy function depends on the quality of the estimates of the value function that undergoes learning simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Because of this, it leads to the problem that until the value function can provide a reasonable signal to the policy func- tion, it is difficult for the agent to rely on the policy function to make good actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In order to provide more guidance to the policy function before the value function can provide reasonable guidance signals for the policy function and speed up the learning of the policy function, we propose the actor-director-critic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Compared with actor-critic framework, actor- director-critic framework adds a director network with dis- criminative function to discriminate between low quality and high quality actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Director can provide guidance other than critic to actor at the early stage of actor training, so that agent can reduce the repetitive exploration of low quality actions in the initial trial-and-error learning process, and further improve the training efficiency of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the process of interacting with the environment, the agent receives a reward back from the environment for each ac- tion it performs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We simply classify the actions into two categories based on the reward returned, one is low quality actions with relatively low reward value, and the other is high quality actions with relatively high reward value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Be- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='03887v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='LG] 10 Jan 2023 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Implementation process of CTD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' fore training the director network, we divided the empirical dataset into two categories, a low quality dataset consisting of low quality actions and their corresponding rewards and states, and a high quality dataset consisting of high qual- ity actions and their corresponding rewards and states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We then use these two datasets above to train the ability of the director network to discriminate between high and low qual- ity actions, so that the director network can help the actor network to reduce the repetitive exploration of low quality actions during policy optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We set attenuation fac- tor so that the director focuses on the early stages of actor training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In addition, there is the problem of overestimation in re- inforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The overestimation problem is usu- ally caused by two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' One is the idea of maximiza- tion of the objective policy, where the maximum value of the estimated value function is used as the estimate of the true value, which leads to maximization bias and thus over- estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The second is the bootstrap phenomenon, which means using the predicted value of the value function at the future moment to update the estimated value of the value function at the present moment, which will also bring about the overestimation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The double estimator method is a common method to solve the overestimation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' And existing method learns two independent Q networks, each of which has a target Q network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The target Q net- work copies its parameters from the Q network at regular intervals, and the output of the target Q network is then con- sidered as the target value to optimize the Q network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The problem is that the output of a single target Q is often un- stable, and this instability will reduce the accuracy of the target value and lower the training efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In order to better solve the overestimation problem, we propose an improved double estimator method, which is to design two target Q networks for each Q network separately, and these two target Q networks update the parameters al- ternately according to a fixed time interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The average of the outputs of the two target Q networks is used as the target value when optimizing the Q network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' This method will obtain more stable and accurate target values than us- ing a single target Q network, and thus can better solve the overestimation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The TD3 [6] algorithm is an excellent performing al- gorithm based on the actor-critic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' To test the performance of the above actor-director-critic framework and the improved double estimator method, we improve the TD3 algorithm using the actor-director-critic framework and the improved double estimator method, and refer to the improved algorithm as CTD3 algorithm for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We con- ducted comparison experiments and ablation experiments in several environments in the MuJoCo, and all of them achieved good results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Related work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Actor-Critic framework Model-free reinforcement learning algorithms can be classified as policy-based algorithms, value-based algo- rithms, and algorithms that combine policy and value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The agent forms a trajectory τ during its interaction with the environment, and the policy-based algorithm is to learn an action-generating function called policy function π, such that the agent is able to maximize the cumulative reward when making decisions under the guidance of this policy function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The cumulative reward J (τ) can be expressed as follows: J (τ) = K � k=0 γkrt+k+1 (1) The discount factor γ represents the effect of future re- wards on the present and takes a value between 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' At different moments, the agent is in different states, so the policy function π is meant to produce an action a = π(s) with state s as input, indicating the probability of taking ac- tion a in the case of state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The policy-based algorithm directly optimizes the cumulative reward J (τ), which is of most interest to the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' And policy-based algorithm can be applied to problems of either discrete or continuous ac- tion types, with the disadvantage that the sample training is relatively inefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The value function can provide in- formation about J (τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The value function has two forms, one is the state value function, which indicates the expected value of the subsequent cumulative reward that can be ob- tained in a certain state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The state value function V(s) can be expressed as follows: V(s) = E( K � k=0 γkrt+k+1|St = s) (2) The other is the action value function, which represents the expected value of the cumulative reward that can be ob- tained after performing action a in some state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The action value function Q(s, a) can be expressed as follows: Q(s, a) = E( K � k=0 γkrt+k+1|St = s, At = a) (3) The value-based algorithm firstly learns a value function, and either the state value function or the action value func- tion ultimately uses the computed (s,a) to generate the opti- mal policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The contribution of each action is measured by calculating and comparing the output of the function cor- responding to all possible actions in the current state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The agent should be in a state with high value as far as possible and choose actions with high value as far as possible, so as to achieve the purpose of maximizing cumulative rewards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The advantage of the value-based algorithm is that the sam- ple training is more efficient, and the disadvantage is that it is often limited to problems with discrete action types and is not suitable for problems where the target policy is a ran- dom one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The algorithm based on the actor-critic framework is an algorithm that combines the policy gradient method and the value function method, which can not only solve the prob- lem of multiple action types, but also the sample training efficiency is relatively high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Two parameterized functions need to be learned in the actor-critic framework, in which actor learns the parameterized policy function and critic learns the parameterized value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The policy func- tion guides the agent to make action decisions, and the value function is responsible for evaluating the actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Actor is a network representing the policy function, which selects the actions to be performed based on the current state informa- tion of the environment, and learns a better policy using the policy gradient under the guidance of critic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Actor’s opti- mization objective can be expressed as follows: maxJ = E[Q(s, a)] (4) Critic is a network representing the value function that learns a value function based on the data collected during the actor’s interaction with the environment, and helps the actor to make policy updates by evaluating the quality of the actor’s actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The optimization objective of critic can be expressed as follows: minL = E[(Q(s, a) − (r + γQ(s′, a′)))2] (5) The learned value function can provide more feedback information to the policy function than the environmental reward, so the policy function can achieve better results when it learns based on the information provided by the value function that has completed learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the field of single-agent reinforcement learning, many existing ex- cellent algorithms use the actor-critic framework, such as DDPG [12], TRPO [17], A3C [14], PPO [18], ACER [20], SAC [8], D4PG [1], TD3 [6], DAC [24], TAAC [23], DCAC [2], ESAC [19], and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the field of multi-agent rein- forcement learning, there are also many multi-agent algo- rithms that continue to use the actor-critic framework, such as MADDPG [13], COMA [5], IPPO [4], SEAC [3], CM3 [21], MACAAC [15], MAPPO [22], HAPPO [11], and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In addition, the QMIX [16] algorithm also borrows ideas from the actor-critic framework, where the agent RNN network is equivalent to the actor network and the mix- ing network is equivalent to the critic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Of course, there are also many algorithms that improve on the actor- critic framework, such as the multi-agent algorithm MAAC [10], which introduces the attention mechanism based on the actor-critic framework and proposes the actor-attention- critic framework, in the hope that the agent can selectively focus on the information that is more conducive to gaining greater returns when learning other agent policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' As stated in the introduction, reinforcement learning suf- fers from relatively low sample utilization and, for the actor- critic framework, it is difficult for an agent to rely on the policy function to make good actions until the value func- tion can provide a reasonable signal for the policy func- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Regarding the two roles in the actor-critic frame- work, we can regard the actor as the student and the critic as the teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In real life, a student often needs more teachers to teach him to learn more, and the more teach- ers a student has, the higher the probability of getting good grades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' So the concept of multiple teachers can be intro- duced on the basis of the actor-critic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the actor-director-critic framework proposed in this paper, the director is equivalent to another teacher for the actor, pro- viding guidance to the actor other than the critic and helping the actor learn better policies faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Double estimator method Double estimator is a common method to solve the over- estimation problem, and two methods of double estimator will be described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' One is a method that has been used in some algorithms such as Double Q-Learning [9], which learns two independent Q networks, and each Q net- work uses the output value of the other during training as an estimate of the action value function of the optimal action sought by itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' This can be described as follows: y1 = r + γQ2(s′, a′) (6) y2 = r + γQ1(s′, a′) (7) Although two Q networks are used, only one Q network is updated at each update, and they both have a 50% prob- ability of being selected randomly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Another method, which has been used in some algorithms such as TD3 [6], also uses two Q networks that are independent of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The difference is that both networks are updated simulta- neously during the training process, using the minimum of their outputs as the estimate of the value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' More- over, when updating the network parameters, the estimate of the value function is shared between the two Q networks in the calculation of the loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' This can be described as follows: y = r + γminQ1,2(s′, a′) (8) In the existing actor-critic framework, two relatively in- dependent critic networks need to be trained, and then the risk of overestimation is diluted by randomly selecting the output value of one of the critic networks or by taking the minimum value of the output of the two critic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the two double estimator methods mentioned above, each critic network has only one target critic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In order to better solve the overestimation problem, this paper pro- poses an improved double estimator method by designing two target critic networks for each critic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Algorithm 1 CTD3 Initialize the director network Dφ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' critical network Qω1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Qω2 and actor network µθ with random parameters φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ω1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ω2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' θ Initialize target networks ω′ 1-1 ← ω1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ω′ 1-2 ← ω1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ω′ 2-1 ← ω2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ω′ 2-2 ← ω2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' θ′ ← θ Initialize three replay buffers B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' B1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' B2 for t = 1 to T do Select action with exploration noise �at = µθ(st) + ϵt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ϵt ← Nt(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' σ) Execute action �at to get reward rt and new state st+1 Store transition tuple (st,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' at,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' st+1) in B Choose a reward value cut-off of the right size,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' R if rt > R then at ∈ ah,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Store (st,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' at,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' st+1) in B1 else at ∈ al,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Store (st,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' at,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' st+1) in B2 Sample a random minibatch of N transitions (sj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' aj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' sj+1) from B1 Sample a random minibatch of N transitions (sk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ak,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' sk+1) from B2 Use (sj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' aj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' sj+1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' (sk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ak,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' rk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' sk+1) to update director network Dφ: ∇φV(φ) = 1 N N � i=1 (∇φDφ(si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ahi) − ∇φDφ(si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ali)) Sample a random minibatch of N transitions (si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ri,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' si+1) from B �ai = µθ(si) + ϵi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ϵi ← Nt(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' σ) � ai+1 = µθ′(si+1) + ϵ′ i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ϵ′ i ← clip(Nt(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' σ′),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' -c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' c) yi = ri+ γQmin( Qω′ 1-1 (si+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' � ai+1)+Qω′ 1-2(si+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' � ai+1) 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Qω′ 2-1(si+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' � ai+1)+Qω′ 2-2(si+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' � ai+1) 2 ) Use (si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ri,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' si+1) to update critic network Qω1 or Qω2: ∇ωL(ω) = 1 N N � i=1 (Qω(si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' �ai) − yi)∇ωQω(si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' �ai) if t mod d then Use (si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' ri,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' si+1) to update actor network µθ: ∇θJ (θ) = 1 N N � i=1 (γD∇�aDφ(si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' �ai)∇θµθ(si)+ ∇�aQω(si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' �ai)∇θµθ(si)) θ′ ← τθ + (1 − τ)θ′ end if When t is odd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' update target networks: ω′ 1-1 ← τω1 + (1 − τ)ω′ 1-1 ω′ 1-2 ← τω1 + (1 − τ)ω′ 1-2 When t is even,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' update target networks: ω′ 2-1 ← τω2 + (1 − τ)ω′ 2-1 ω′ 2-2 ← τω2 + (1 − τ)ω′ 2-2 end for 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Policy network delay update and target policy smoothing regularization Bias is introduced in the process of function approx- imation using neural networks, and the problem of error accumulation will come to the fore as the number of it- erations increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the existing actor-critic framework, if the critic’ assessments are inaccurate, the actor will not learn an accurate policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In order to make the critic’s eval- uation more accurate, the frequency of critic updates can be increased and the frequency of actor updates can be de- creased, which is the method of delaying the update of the policy network used in the TD3 [6] algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In our pro- posed actor-director-critic framework, we also adopt this approach, and the director network and the critic network converge earlier than the actor network, so that the actor network can be instructed to reduce unnecessary and ineffi- cient update operations when updating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Ultimately, training efficiency can be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In addition, the TD3 [6] algorithm also uses the process- ing of adding clipped noise to the target action to solve the problem of error accumulation, with the aim of smoothing the values of a small area around the target action enough so that those actions that are similar to the target action can have similar values to the target action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' This smoothing op- eration based on noise processing can reduce the impact of certain wrong value estimates on the whole policy learning and reduce the generation of errors, so we retain this noise processing operation when improving the TD3 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' This can be described as follows: ϵ ← clip(N(0, σ), -c, c) (9) a = π(s) + ϵ (10) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Proposed method 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Actor-Director-Critic framework There are three roles in actor-director-critic framework: actor, director, and critic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' As in actor-critic framework, the critic in the actor-director-critic framework is still a network representing a value function that learns a value function based on the data collected from the actor’s interaction with the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Critic plays a role in evaluating the long- term benefits of the actor’s actions by comparing the mag- nitude of the value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Critic’s optimization goal can also be expressed as follows: minL = E[(Q(s, a) − (r + γQ(s′, a′)))2] (11) Director is a network that represents the discriminative function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In specific experiments, we classify the actions based on the feedback rewards as simple superiority or in- feriority.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We obtain a low quality dataset and a high quality dataset, and then train the discriminative ability of the direc- tor network on the actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We introduced a decay factor to make the director work mainly in the initial phase of train- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the initial stage of training, the actor can quickly recognize which actions are worth exploring and which ac- tions should be avoided with the help of the director, and then quickly learn to reduce the exploration of those poorer actions and improve the training speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The optimization objective of the director is as follows: maxV = Eah∼pdata(ah)[D(s, ah)]+ Eal∼pdata(al)[1 − D(s, al)] (12) The actor is still a network that represents the policy function and chooses the actions to be performed based on the state information of the current environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' At this point, it no longer receives guidance only from the critic, but also from the director.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The critic is the lifelong teacher who teaches the actor to make action decisions in the long-term interest, while the director, by design, is the stage teacher who primarily guides the actor in the early stages of learn- ing to quickly distinguish between the low quality actions and high quality actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Under the joint guidance of both, the actor learns the optimal policy much faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' γ is a decay factor, and actor’s optimization goals can be described as follows: maxJ = γE[D(s, a)] + E[Q(s, a)] (13) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Improved double estimator method In the actor-director-critic framework, we design two critic networks and two target critic networks for each critic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Target critic networks are independent of each other and do not need to be trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We only need to copy the parameters of the critic network to the target critic net- work in a soft update manner periodically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' It should be noted that for each critic network, the two target critic net- works are updated alternately, and only one of the target networks is updated at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' When optimizing the two critic networks used, they share the same target value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The target value is calculated by first averaging the outputs of the two target critic networks for each critic network and then taking the minimum of the two averages,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' as shown in the following equation: Q′ = min(Q1-1(s′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' a′) + Q1-2(s′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' a′) 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Q2-1(s′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' a′) + Q2-2(s′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' a′) 2 ) (14) The advantage of this design is that precisely because the alternate updates of the target critic networks make them represent the training results of the critic network in differ- ent historical periods,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' the average of the target values cal- culated by the training results in different historical periods can better dilute some prediction biases and thus improve the stability and accuracy of the target values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Classified twin delayed deep deterministic pol- icy gradient algorithm As mentioned in the introduction, in order to test the per- formance of the above actor-director-critic framework and the improved double estimator method, we apply them to the TD3 algorithm to improve the TD3 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The TD3 algorithm is chosen because it is a well-performing algo- rithm based on the actor-critic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The full name of the TD3 algorithm is twin delayed deep deterministic policy gradient algorithm, and we refer to the improved algorithm as classified twin delayed deep deterministic policy gradi- ent algorithm, abbreviated as CTD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The implementation process of CTD3 is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The actor makes action choices based on the state of the environment it observes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' There are two critic networks, and each critic network has two target critic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The pa- rameters of the target critic networks are copied from the critic network in the way of soft updating alternately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' To solve the overestimation problem, the minimum value of the output of the two critic networks is chosen as a refer- ence to evaluate the actor’s action in the long term interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In addition, we select appropriate reward value cut-off to classify actions into low quality actions and high quality actions based on the reward values returned from the envi- ronment, and use low-quality and high-quality datasets to train the discriminative ability of the director.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Then director can guide the actor to reduce repetitive exploration of low quality actions during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the CTD3 algorithm we keep the two methods used in the TD3 algorithm to solve the error accumulation prob- lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' One is to delay the update of the policy network, that is, to reduce the frequency of actor updates, and the other is the smoothing operation of the target policy, that is, to add clipped noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The way to add clipped noise can be described as follows: ϵ ← N(0, σ) (15) �a = µθ(s) + ϵ (16) ϵ′ ← clip(N(0, σ′), -c, c) (17) �a′ = µθ′(s′) + ϵ′ (18) The target action of adding truncated noise will be used for the calculation of the target value of the value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Two target critic networks are designed for each critic net- work to solve the overestimation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Q′ = min(Qω′ 1-1(s′, �a′) + Qω′ 1-2(s′, �a′) 2 , Qω′ 2-1(s′, �a′) + Qω′ 2-2(s′, �a′) 2 ) (19) y = r + γQQ′ (20) The optimization objective of the critic network is to minimize the loss between the predicted target value y and the output value Qω(s, �a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' L(ω) = E[(Qω(s, �a) − y)2] (21) ∇ωL(ω) = 1 N N � i=1 (Qω(si, �ai) − yi)∇ωQω(si, �ai) (22) yi = ri + γQmin( Qω′ 1-1(s′ i, �a′ i) + Qω′ 1-2(s′ i, �a′ i) 2 , Qω′ 2-1(s′ i, �a′ i) + Qω′ 2-2(s′ i, �a′ i) 2 ) (23) The director network learns to discriminate between high and low quality actions through different datasets, with the output being 1 when the input is a high quality action and 0 when the input is a low quality action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Director network is designed with reference to the concept of GAN [7], and its goal is to perform the learning of the discriminant function V(φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' V(φ) = Eah∼pdata(ah)[Dφ(s, ah)]+ Eal∼pdata(al)[1 − Dφ(s, al)] (24) ∇φV(φ) = 1 N N � i=1 (∇φDφ(si, ahi) − ∇φDφ(si, ali)) (25) The actor network performs policy optimization with the joint help of the critic network and the director network, and the optimization goal is to maximize the value of the value function output by the critic network as well as to maximize the value of the discriminant function output by the director network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Here the decay factor γD is used to make the director focus on the early stage of training and speed up the training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' J (θ) = γDE[Dφ(s, �a)] + E[Qω(s, �a)] (26) ∇θJ (θ) = 1 N N � i=1 (γD∇�aDφ(si, �ai)∇θµθ(si)+ ∇�aQω(si, �ai)∇θµθ(si)) (27) CTD3 is summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Experiment 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Experimental environments Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Six experimental environments in MuJoCo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We conducted experiments in MuJoCo simulation envi- ronment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The six experimental environments selected in Figure 2 are all continuous action environments and are rich in reward value settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Comparative evaluation and ablation study As already mentioned, in order to test the effectiveness of the proposed actor-director-critic framework and the im- proved double estimator method, we apply them to the TD3 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' CTD3 algorithm is obtained by improving TD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' First of all, we would like to explain why we chose TD3 algorithm for comparison, because TD3 is a very good re- inforcement learning algorithm based on actor-critic frame- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In the original paper of the TD3 [6] algorithm pub- lished in ICML, this method can completely beat DDPG, PPO, TRPO, ACKTR, and SAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Therefore, we choose the TD3 algorithm for comparison experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We conduct comparative experiments on CTD3 and TD3 in six environments under the MuJoCo platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' For each environment a specific random seed is set and the maxi- mum number of experimental steps is limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The data are smoothed at the end of the experiments, using the sliding average filtering method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' A suitable sliding window size is set for each data of different environments, and the data in the window are averaged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' All data are smoothed when the window is sliding from the beginning to the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' On the one hand, the smoothed data are written to Table 1, and it should be noted that the data of the six environments written to Ta- ble 1 are the data at the end of the last training round run by agent, both for CTD3 and TD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' On the other hand, all the smoothed data of CTD3 and TD3 are plotted as curves to obtain Figure 3, where the training process of CTD3 and TD3 in each environment can be visually compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' CTD3 is a new algorithm that improves TD3 by apply- ing the two ideas of actor-director-critic framework and the improved double estimator method proposed in this paper to the TD3 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We can compare the performance of CTD3 and TD3 by comparing the data in Table 1 and the curves in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In all the six environments, the total return of CTD3 is higher than that of TD3, and the conver- gence rate of CTD3 is also faster than that of TD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Since the performance of the CTD3 algorithm is better than TD3 in terms of convergence speed and final score, it can prove that the actor-director-critic framework and the improved double estimator method proposed in this paper are feasi- ble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' TD3+ADCF means that the ADC framework is ap- plied to the TD3 algorithm to improve the TD3 algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' TD3+IDEM means that the improved double esti- mator method is applied to the TD3 algorithm to improve the TD3 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' CTD3(TD3+ADCF+IDEM) means that the ADC framework and the improved double estimator method are applied to the TD3 algorithm at the same time to improve the TD3 algorithm and obtain the CTD3 algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' For ablation experiments, we can analyze the per- formance of the ADC framework and the improved double estimator method proposed in this paper by comparing the data of TD3, TD3+ADCF, TD3+IDEM and CTD3 in Ta- ble 1 and the curves in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' As shown in Table 1, in all six experimental environments, no matter TD3+ADCF or TD3+IDEM, their total returns are higher than those of TD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The curve in Figure 3 also shows that in all six experimental environments, no matter TD3+ADCF or TD3+IDEM, their convergence speed is faster than that of TD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In most cases, CTD3 outperforms TD3+ADCF and TD3+IDEM, but sometimes it is outperformed by one or the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In conclusion, the improved performance compared to TD3, either using the actor-director-critic framework alone or the improved double estimator method alone, or use both of them, are sufficient to demonstrate the feasibility of our proposed methods in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Conclusion Reinforcement learning is a kind of trial-and-error learn- ing, which has the problem of low sample utilization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' More- over, in existing deep reinforcement learning algorithms based on the actor-critic framework, there is also a problem that it is difficult for an agent to rely on the policy function to make good actions until the value function is learned to the extent that it can provide reasonable guidance to the pol- icy function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Therefore, in order to alleviate these two prob- lems, this paper proposes a new deep reinforcement learn- ing framework, actor-director-critic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The direc- tor role is added to the actor-critic framework, and a decay factor is set for the director.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' By training the director to dis- � � � � � � �#� "������ � ���� ���� ���� ���� ��&�!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='� ��%����%�!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='#����$�������$�$� ��� �������� �������� ������������������� � �� �� �� �� ��� �"��!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='������ � ���� ���� ���� ���� ���� ��$� � ��#����������"�� ��� �������� �������� ������������������� � �� �� �� �� ��� �"��!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='������ � ���� ���� ���� ���� ���� ��%� � ��$���#������ ��� �������� �������� ������������������� � �� �� �� �� ��� ����������� � ���� ���� ���� ���� ���� �� ��� �������� ��� �������� �������� ������������������� � �� �� �� �� ��� �!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='�� ������ � ���� ���� ���� ���� ���� ��#��� ��"���������� ��� �������� �������� ������������������� � �� �� �� �� ��� � ��������� � ��� ���� ���� ���� ���� ���� ��"��� ��!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='�������� ��� �������� �������� ������������������� Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Performance curves in six environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Environment TD3 TD3+ADCF TD3+IDEM CTD3(TD3+ADCF+IDEM) InvertedDoublePendulum 9341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='302 9342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='752 9350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='902 9342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='690 HalfCheetah 8214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='770 9460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='794 9156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='181 10324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='831 Humanoid 4755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='148 5034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='893 5085.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='446 5057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='048 Ant 2949.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='150 4861.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='062 4779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='486 5171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='217 Walker2d 3818.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='958 4902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='341 4208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='518 4468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='348 Hopper 2395.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='742 3169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='502 3118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='340 3252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='941 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Experimental results in six environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' criminate between low quality and high quality actions, it can help the actor reduce repetitive attempts to perform low quality actions during exploration, thus improving sample utilization and speeding up training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In solving the problem of overestimation in reinforce- ment learning, for the method called double estimator method that requires training two Q networks and design- ing one target network for each Q network, this paper tries to propose an improved double estimator method to design two target networks for each Q network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' For each Q net- work, its two target networks are alternately soft updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The outputs of these target networks are comprehensively used to calculate the target value of Q network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' First, the output average of the two target networks owned by each Q network is calculated, and then the smaller of the two aver- age values is taken as the final target value of the Q network, and this target value is shared by both Q networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' so as to alleviate the problem of overestimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' So that the problem of overvaluation can be mitigated much better than before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' To test the feasibility of both the actor-director-critic framework and the improved double estimator method, we applied them to the TD3 algorithm and improved the TD3 algorithm to obtain the CTD3 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' We conducted comparative and ablation experiments in several environ- ments in the MuJoCo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Experimental results show that the CTD3 algorithm generally has faster convergence speed and higher total return than TD3, proving the feasibility of the methods proposed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' References [1] Gabriel Barth-Maron, Matthew W Hoffman, David Bud- den, Will Dabney, Dan Horgan, TB Dhruva, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Distributed distribu- tional deterministic policy gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International Con- ference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [2] Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Reinforcement learn- ing with random delays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International conference on learning representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [3] Filippos Christianos, Lukas Sch¨afer, and Stefano Albrecht.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Shared experience actor-critic for multi-agent reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Advances in neural information processing sys- tems, 33:10707–10717, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [4] Christian Schroeder de Witt, Tarun Gupta, Denys Makovi- ichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Is independent learning all you need in the starcraft multi-agent challenge?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' arXiv preprint arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='09533, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Counterfactual multi-agent policy gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [6] Scott Fujimoto, Herke Hoof, and David Meger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Address- ing function approximation error in actor-critic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International conference on machine learning, pages 1587– 1596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 2, 3, 4, 5, 7 [7] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C Courville, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Generative adversarial nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In NIPS, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 6 [8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In Interna- tional conference on machine learning, pages 1861–1870.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [9] Hado Hasselt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Double q-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Advances in neural infor- mation processing systems, 23, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 4 [10] Shariq Iqbal and Fei Sha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Actor-attention-critic for multi- agent reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International conference on machine learning, pages 2961–2970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [11] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Trust re- gion policy optimisation in multi-agent reinforcement learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International Conference on Learning Representa- tions, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Continuous control with deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' arXiv preprint arXiv:1509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='02971, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [13] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Multi-agent actor-critic for mixed cooperative-competitive environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Asynchronous methods for deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International conference on ma- chine learning, pages 1928–1937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' PMLR, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [15] P Parnika, Raghuram Bharadwaj Diddigi, Sai Koti Reddy Danda, and Shalabh Bhatnagar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Attention actor-critic algo- rithm for multi-agent constrained co-operative reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In Proceedings of the 20th International Confer- ence on Autonomous Agents and MultiAgent Systems, pages 1616–1618, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [16] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International confer- ence on machine learning, pages 4295–4304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor- dan, and Philipp Moritz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Trust region policy optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In International conference on machine learning, pages 1889– 1897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' PMLR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad- ford, and Oleg Klimov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Proximal policy optimization algo- rithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='06347, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [19] Karush Suri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Off-policy evolutionary reinforcement learning with maximum mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In Proceedings of the 21st Inter- national Conference on Autonomous Agents and Multiagent Systems, pages 1237–1245, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [20] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and Nando de Freitas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Sample efficient actor-critic with experience replay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' arXiv preprint arXiv:1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='01224, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [21] Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fu- jimura, and Hongyuan Zha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Cm3: Cooperative multi-goal multi-stage multi-agent reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' In Interna- tional Conference on Learning Representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [22] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexan- dre Bayen, and Yi Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' The surprising effectiveness of ppo in cooperative, multi-agent games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content='01955, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [23] Haonan Yu, Wei Xu, and Haichao Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Taac: Temporally abstract actor-critic for continuous control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Advances in Neu- ral Information Processing Systems, 34:29021–29033, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3 [24] Shangtong Zhang and Shimon Whiteson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Dac: The double actor-critic architecture for learning options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} +page_content=' 3' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fdE2T4oBgHgl3EQfbgfz/content/2301.03887v1.pdf'} diff --git a/gNE1T4oBgHgl3EQfMQM3/content/2301.02986v1.pdf b/gNE1T4oBgHgl3EQfMQM3/content/2301.02986v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..91ab1a76a27a70a3c21c7c1712ecb9d6e658bb3f --- /dev/null +++ b/gNE1T4oBgHgl3EQfMQM3/content/2301.02986v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9a7f85f5c69c3523ba60030ac1e54b4eeb4113482d75016b03ad103f9577be40 +size 3203560 diff --git a/gNE1T4oBgHgl3EQfMQM3/vector_store/index.faiss b/gNE1T4oBgHgl3EQfMQM3/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..655b4613cc38680941d1bf5786e43669b0fb746a --- /dev/null +++ b/gNE1T4oBgHgl3EQfMQM3/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9332b6de05b1b0d5e737de8d3648454f5372eda2089ed60cbb342794c9ef9a6f +size 4325421 diff --git a/gNE1T4oBgHgl3EQfMQM3/vector_store/index.pkl b/gNE1T4oBgHgl3EQfMQM3/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d7a5a30b4b9104920b5ac3a11683420798ede52b --- /dev/null +++ b/gNE1T4oBgHgl3EQfMQM3/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:09e44fdcd75e5854479181ba4b16a09b837581d7cb09349fcda0e1bce0501b17 +size 152683 diff --git a/h9AyT4oBgHgl3EQf-vq9/content/2301.00898v1.pdf b/h9AyT4oBgHgl3EQf-vq9/content/2301.00898v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2c6def4f9b893e55c416607c0085084749fc3374 --- /dev/null +++ b/h9AyT4oBgHgl3EQf-vq9/content/2301.00898v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8ed099767d8d55cac500c18be67ed2e19d90750b0e5c1c1cc7151611c86dd4eb +size 391551 diff --git a/h9AyT4oBgHgl3EQf-vq9/vector_store/index.faiss b/h9AyT4oBgHgl3EQf-vq9/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..2136f3c7df768bb08f61cc975a68c180eb4f6159 --- /dev/null +++ b/h9AyT4oBgHgl3EQf-vq9/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a76e615399fb2d7c5af27a331216cd7e8b64862078fa52dd8654f1963b95b88e +size 6553645 diff --git a/h9AyT4oBgHgl3EQf-vq9/vector_store/index.pkl b/h9AyT4oBgHgl3EQf-vq9/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..13ffb2f70c316bbd2a38a42516bfbe02a637d04a --- /dev/null +++ b/h9AyT4oBgHgl3EQf-vq9/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dabfc7e73df2dbadfad8f713d85a33d280000c18f8c8ace581ce9f19c81c83eb +size 232107 diff --git a/hNE3T4oBgHgl3EQfgArH/content/tmp_files/2301.04558v1.pdf.txt b/hNE3T4oBgHgl3EQfgArH/content/tmp_files/2301.04558v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b9d12d300f18b61c9f5833ab13153f31bf40302f --- /dev/null +++ b/hNE3T4oBgHgl3EQfgArH/content/tmp_files/2301.04558v1.pdf.txt @@ -0,0 +1,2609 @@ +Learning to Exploit Temporal Structure for +Biomedical Vision–Language Processing +Shruthi Bannur∗, Stephanie Hyland∗†, Qianchu Liu, Fernando P´erez-Garc´ıa, Maximilian Ilse, +Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, +Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori +Javier Alvarez-Valle, and Ozan Oktay +Microsoft Health Futures +Abstract +Self-supervised learning in vision–language processing +(VLP) exploits semantic alignment between imaging and +text modalities. Prior work in biomedical VLP has mostly +relied on the alignment of single image and report pairs +even though clinical notes commonly refer to prior im- +ages. +This does not only introduce poor alignment be- +tween the modalities but also a missed opportunity to ex- +ploit rich self-supervision through existing temporal con- +tent in the data. +In this work, we explicitly account for +prior images and reports when available during both train- +ing and fine-tuning. Our approach, named BioViL-T, uses +a CNN–Transformer hybrid multi-image encoder trained +jointly with a text model. +It is designed to be versatile +to arising challenges such as pose variations and miss- +ing input images across time. The resulting model excels +on downstream tasks both in single- and multi-image se- +tups, achieving state-of-the-art (SOTA) performance on (I) +progression classification, (II) phrase grounding, and (III) +report generation, whilst offering consistent improvements +on disease classification and sentence-similarity tasks. We +release a novel multi-modal temporal benchmark dataset, +MS-CXR-T, to quantify the quality of vision–language rep- +resentations in terms of temporal semantics. Our experi- +mental results show the advantages of incorporating prior +images and reports to make most use of the data. +1. Introduction +Self-supervision from image–text pairs has enabled the +development of flexible general-purpose vision–language +models both in the general domain [39, 52, 76] and for +specialised domains such as biomedicine and radiology +∗These authors contributed equally. +†Corresponding author: stephanie.hyland@microsoft.com +"pleural fluid in the right base" +"lung nodule remains unchanged" +"pleural effusion is worsening" +Image +encoder +Text +encoder +Image +encoder +Text +encoder +✓ +× +✓ +× +? +✓ +× +× +✓ +× +? +× +× +× +× +? +? +? +? +× +Prior image +Current image +Spatiotemporal modelling +Spatial modelling +Current image + +InfoNCE +affinity matrix +Current image +Prior image + +(if available) +Clinical report +Existing methods +Proposed method +InfoNCE +affinity matrix +Clinical report +(b) +(a) +(c) +(d) +Figure 1. (a) Existing visual–language pre-training approaches +[9, 31, 80] often use only a single image for contrastive learning +(e.g., InfoNCE [48]). (b) In such settings, discarding the temporal +connectivity of images limits the alignment of image–text pairs as +shown with the affinity matrix, leading to suboptimal pre-training +and missed opportunity to create additional model supervision for +free. (c, d) Our approach exploits this domain knowledge by learn- +ing to incorporate a series of images and correlate them to reports, +leading to pre-trained models that can generalise to a wider range +of downstream tasks whilst achieving SOTA performance. +[9, 31, 80]. Vision–language processing (VLP) has shown +that cross-modal supervision can provide a richer signal for +training both image [18] and text [9] models. However, the +success of VLP relies on paired samples sharing semantics, +i.e., given an image and text pair, the text should describe +the image with minimal extraneous detail [15,16,34]. +In this regard, VLP in biomedicine and radiology poses +a distinctive challenge, as reports routinely include compar- +isons to prior imaging studies [3, 46, 56]. Without knowl- +1 +arXiv:2301.04558v1 [cs.CV] 11 Jan 2023 + +edge of this prior image1, temporal information in the text +modality, e.g. “Pneumonia is improving”, could pertain to +any image containing “Pneumonia”, producing ambiguity +during contrastive training (Figure 1). Despite this, the ex- +isting VLP work to date considers alignment between only +single images and reports [9,31,45,80], going so far as to re- +move temporal content from reports in training data to pre- +vent ‘hallucinations’ in downstream report generation [53]. +However, temporal information can provide complementary +self-supervision, solely by exploiting existing structure, and +without requiring any additional data. +In this work, we neither ignore nor remove temporal in- +formation in the text modality, but explicitly account for it +during pre-training. Rather than treating all image–report +pairs in the dataset as independent, we exploit temporal cor- +relations by making prior images available for comparison +to a given report. To learn from this structure, we develop +a temporal VLP pre-training framework named BioViL-T. +A core component is its new multi-image encoder that can +handle the absence of prior images and potential spatial +misalignment between images across time. BioViL-T takes +into account prior images where available, removing cross- +modal ambiguity as illustrated in Fig. 1. Linking multi- +ple images during pre-training proves beneficial to both im- +age and text models: we report state-of-the-art (SOTA) per- +formance on both temporal image classification and report +generation. In the latter case, we show that prefixing the +prior report substantially increases performance, again re- +flecting the value of prior information. We emphasise that +the benefit is not restricted to temporal downstream tasks: +our approach also achieves SOTA on non-temporal tasks of +pneumonia detection [59] and phrase grounding [10], un- +derscoring the value of a cleaner learning signal during VLP +without needing to modify or add to the training dataset. +Our contributions can be summarised as follows: +• We introduce a novel pre-training framework, called +BioViL-T, which leverages the temporal relationship of +samples to self-supervise VLP models. BioViL-T ex- +tends the applicability of biomedical pre-trained models +to a new set of downstream tasks without compromising +performance on existing benchmarks. +• We develop a generic multi-image encoder that handles +missing image inputs and incorporates longitudinal in- +formation without requiring explicit image registration. +• We achieve SOTA results in biomedical report genera- +tion, temporal image classification, and phrase ground- +ing downstream benchmarks by accounting for prior +context in self-supervised training and fine-tuning. +• We release a new multimodal benchmark dataset, +MS-CXR-T, curated by an expert radiologist. It enables +1In the MIMIC-CXR v2 dataset [35], around 40% of reports explicitly +reference a previous image. See Appendix B for details. +benchmarking of biomedical VLP models in terms of +temporal semantics extracted from image and text data. +2. Related work +Vision–language processing +Self-supervised VLP can +significantly reduce the need for manual labels required for +the training of image encoders [18, 52]. The availability of +large-scale paired image–text datasets has thus led to rapid +development of general-purpose VLP models. Objectives +include contrastive and discriminative image–text matching +[39,52,68] including local variants [31,75], auto-regressive +(AR) captioning [4, 38, 76] and multi-modal masked mod- +elling objectives [13,39,60]. +Biomedical vision–language processing +Paired medical +image–report datasets were originally used for supervised +learning via (typically) automated label extraction from +clinical reports [32, 62, 69]. Using such datasets, advances +in general-domain self-supervised VLP have been demon- +strated to benefit biomedical imaging applications [9, 31, +80]. +Work has incorporated ideas from general-domain +VLP such as the original CLIP-style cross-modal con- +trastive objective [80], multi-modal masking with merged +co-attention on image–text representations [45], and adap- +tations to the data of the domain. For example, a radiology +report may have sparse image-specific details, prompting +a local modification to the contrastive loss enabling align- +ment between text tokens and image patches [31]. Domain- +specific pre-training of the text model is shown to benefit +biomedical VLP [9], and preferential masking of medical +terms during masked language modelling (MLM) was ex- +plored [74]. Here we use a local loss and domain-specific +pre-training of the text model, but did not find a benefit to +preferential masking. Similarly, cross-attention [21] is used +rather than merged co-attention for image-guided MLM. +Longitudinal modelling of medical images +While prior +images are used in unimodal supervised longitudinal analy- +sis of medical images [36,57,67,73], temporal information +has not directly been employed for self-supervision. The +closest work exploits patient metadata to select positive or +negative examples in unimodal contrastive learning [66,78]. +Existing models typically employ either late fusion of +global image representations [57,63,67,73], which can miss +fine-grained localised changes [31], or explicit spatial cor- +respondence of features, using fixed spatial grids [47] or +object detection [36]. Registering image pairs is commonly +used for change detection in other contexts [17,51,58], and +has been applied to medical imaging [5, 22]. +For chest +X-rays (CXRs) however, registration entails the ill-posed +problem of aligning 2D projections of 3D geometry, which +inevitably results in residual misalignment. Our approach +does not rely on bounding boxes or explicit graph construc- +2 + +tion as it uses self-attention of visual tokens across time to +handle any spatial misalignment. +Self-supervision across time +Self-supervision has found +applications on densely-sampled time series data (e.g., +video) to capture temporal information [29,54,77,79]. Our +problem setting involves sparsely and sporadically sampled +data where temporal pretext tasks are less applicable [2]. +Similarly, it requires text supervision to enable both static +and temporal learning, when temporal structure is present. +3. BioViL-T training framework +Our approach comprises a multi-image encoder designed +to extract spatio-temporal features from sequences of im- +ages (Section 3.1) and a text encoder incorporating optional +cross-attention on image features. The models are trained +jointly with image-guided MLM and cross-modal global +and local contrastive objectives (Section 3.2). The resulting +image and text models are later adapted for uni- or multi- +modal downstream tasks as described in Section 3.3. Im- +plementation details are presented in Appendices E and F. +For a given image and report pair (xcurr +img ,xcurr +txt ), the re- +port xcurr +txt describes the current image content and changes +in reference to prior images. Our proposed formulation fo- +cuses on a single prior image; however, it can be gener- +alised to multiple prior images depending on the applica- +tion. Hence, we construct datasets by including the prior +image whenever it exists2: (xcurr +img ,xprior +img ,xcurr +txt ) ∈ Dm or +(xcurr +img ,∅,xcurr +txt ) ∈ Ds with the resulting dataset being a +union of single and multi-image examples: D = Dm ∪ Ds. +3.1. Extracting spatio-temporal image features +Clinical findings are often observed across different im- +age regions and co-occur simultaneously, which requires +dense level visual reasoning across time to capture both +static and temporal features. In contrast to late global fusion +[63] and bounding-box based approaches [36], BioViL-T +leverages local correspondences between image regions +across time using transformer self-attention blocks [20]. +Thus our method does not require an explicit image reg- +istration step between time points. +We propose a hybrid CNN–Transformer encoder model +due to its data efficiency and spatial flexibility of +cross-attention across time points: +Eimg +∶ RW ×H +→ +RW ′×H′×Dimg and Aimg ∶ RT ×L×Dimg → RL×Dimg, where +W, H, and T correspond to spatiotemporal dimensions, +L = W ′H′ is the number of visual tokens per image, +and Dimg is the embedding dimension. Here Eimg (e.g., +ResNet-50 [30]) serves as a stem network [50] to provide +visual token features of individual images. The CNN’s in- +ductive biases [23, 50] ensure data efficiency of our hy- +2The prior report is not included during pre-training as it may further +reference an earlier study, reintroducing temporal ambiguity. +brid model, making it ideal for smaller scale biomedical +datasets. Eimg is initialised with BioViL weights [9]. The +main purpose of Aimg is to capture patch embedding inter- +actions across time when a prior image xprior +img is available +and to aggregate them into a fixed-length token represen- +tation. Input visual tokens, Hcurr +0 += Pcurr ∶= Eimg(xcurr +img ), +Hprior +0 +∶= Eimg(xprior +img ) are augmented with spatial and tem- +poral positional encodings and flattened across the spatial +dimensions. They are then processed by K transformer en- +coder [65] layers A as follows: +[Hcurr +k +Hprior +k +] = Ak([ Hcurr +k−1 + S + 1L ⊗ tcurr +Hprior +k−1 + S + 1L ⊗ tprior]), +(1) +for k = 1,...,K, where S ∈ RL×Dimg denotes 2D sinusoidal +positional encodings [12] and T = [tcurr;tprior] ∈ R2×Dimg +is its temporal counterpart, which is learnt (Fig. 2) [4]. The +layer-normalised (LN) [6] output of the final transformer +encoder block Pdiff ∶= LN(Hcurr +K +) is an ‘aggregated’ repre- +sentation of patch-level progression information anchored +on the current image. Figure 3 shows attention roll-out [1] +applied to Pdiff after pre-training, showing how the prior +image contributes to the fused representation. Figure A.3 +further highlights the robustness to variations in pose un- +derlining that registration is not necessary for this encoder. +Static-temporal feature decomposition +When a prior +image is available the final image representation V ∶= +Pcurr ⊕ Pdiff ∈ RW ′×H′×2Dimg is formed by concatenating +two sets of features (similar to [7]): those from the current +image alone (Pcurr) and the temporal features from cur- +rent and prior images (Pdiff). In this way, self-attention +is mainly required to cope with pose variations and patch +comparisons across time in extracting temporal content, re- +moving the need for registration or explicit spatial feature +alignment. +When no prior scan is available (x ∈ Ds), +Aimg is not used and Pdiff is replaced by a learnable to- +ken pmiss ∈ RDimg, replicated across the spatial dimen- +sions. Section 4.5 later demonstrates that Aimg highlights +the value of feature decomposition for tasks such as phrase +grounding which require well-localised features [10]. +Hereafter, downstream tasks that require solely single +image features, Pcurr, are referred to as static tasks, and the +ones that benefit from additional progression information, +Pdiff, as temporal tasks, e.g., report decoding. +3.2. Text-supervision for spatio-temporal learning +Let w = (w1,...,wM) denote a vector of M tokens of +a report xtxt after tokenisation. We first obtain contextu- +alised token features Etxt(w) ∈ RM×Dtxt by passing a se- +quence of text tokens w = (w1,...,wM) through a BERT +encoder Etxt [19]. The input sequence is prepended with +either a [CLS] or [MLM] token associated with a down- +stream training objective, conditioning the output features +3 + +(If available) +Transformer +encoder +blocks +CXR-BERT +MLM loss +CNN +CNN +Global + local +contrastive loss +[CLS] increased right pleural +effusion [SEP] left lower lobe +pneumonia is improving [SEP] +[MLM] [MASK] right pleural +effusion [SEP] [MASK] lower lobe +pneumonia is [MASK] [SEP] +CXR-BERT +Increased right pleural +effusion. Left lower lobe +pneumonia is improving. +(self-attention ++ feed-forward network) +Temporal +encoding +Spatial +encoding +Flatten and +concatenate +If prior available +Otherwise +"Missing image" +embedding +Cross-attention +For masked language modelling +For contrastive loss +[CLS] +[MLM] +Shared +weights +Shared +weights +"Difference" +embedding +Figure 2. The proposed self-supervised VLP training framework BioViL-T: Image representations V are extracted from single and +multiple input scans (whenever available) using a hybrid CNN and transformer encoder [23,50]. This design choice is to increase the data- +efficiency and enable the fusion of temporal content without requiring image registration. They are later matched with their corresponding +text representations obtained with CXR-BERT [9] using local [31] and global InfoNCE [48] training objectives. As an additional model +supervision, multi-modal fused representations, obtained with cross-attention, are used for image-guided masked language modelling. +similar to [38, 41]. +During training, we do two forward +passes through Etxt: once with masking at 45% probabil- +ity (for the MLM objective) and once without masking for +contrastive learning, as shown in Figure 2. The text encoder +is initialised with the weights of CXR-BERT3 [9], a model +pre-trained on domain-specific vocabulary and corpora. +Both text and image features are later projected into a +joint latent space with φtxt ∶ RDtxt → RD, and similarly +vproj +w,h ∶= φimg(vw,h) where φimg ∶ RDimg → RD, with φ +being a two-layer perceptron in our experiments. +Contrastive objectives +Let r ∶= [Etxt(w)][CLS] denote +the global representation of w, with rproj ∶= φtxt(r) its pro- +jected version. Given projected patch embeddings vproj +w,h , we +can compute a global cosine similarity SC(¯vproj,rproj) and +a local similarity using weighted pairwise cosine similari- +ties across text tokens and projected patch embeddings [31, +75]. These similarities are used in both global and local +contrastive objectives with the InfoNCE loss [48, 52]. The +local loss proves crucial both for static phrase-grounding +and temporal image classification (see Table 4), highlight- +ing the importance of localised self-supervision. +Image-guided masked language modelling +Prior work +[9,45] has shown that biomedical visual-language learning +benefits from an auxiliary task such as MLM since captur- +ing the joint distribution of tokens can stabilise and improve +3https : / / huggingface . co / microsoft / BiomedVLP - +CXR-BERT-general +language understanding during joint learning. Given a batch +B of token vectors w, it is often defined as the cross-entropy +for predicting the randomly sampled masked tokens, m ⊂ +{1,...,M}, LMLM = − 1 +∣B∣ ∑w∈B log pθ(wm ∣w/m), where +θ are the weights of the text encoder Etxt. +In the absence of image information, however, certain +masked findings and attributes are not readily predicted, +e.g., “[MASK] is worsening”. As shown in the general do- +main [13], visual information can help disambiguate such +masked predictions and provide additional cross-modal su- +pervision. Thus, we use cross-attention [21,65] to the image +features vproj +w,h during this task. Specifically, for our image- +guided MLM objective we model pθ(wm ∣w/m,vproj +w,h ). +3.3. Adaptations to downstream tasks +BioViL-T can be adapted to various downstream tasks. +For phrase-grounding and zero-shot inference, we rely +on SC(rproj, vproj +w,h ) similar to [9, 31]. For multiple-text +prompts, projected text embeddings are marginalised prior +to ℓ2-normalisation [52]. +To enable language decoding, +vproj +w,h inputs are cross-attended by text queries w, and +causal-attention is utilised between text tokens [38,65]. Dif- +fering from [9,31,80], we show that report generation tasks +can greatly benefit from temporal joint latent space. +Conditioning on prior reports +In contrast to existing +work, we incorporate the prior report as a prompt to contex- +tualise the report generation task: pΦ(wcurr +txt ∣wprior +txt , vproj +w,h ), +4 + +where Φ are the multi-modal encoder–decoder network’s +weights, and wcurr +txt , wprior +txt +denote text tokens for current +and prior reports respectively. This is analogous to fine- +tuning GPT-3 [11] with prompts and instructions [70], but +conditioning on both images and the previous report. A +dedicated separation token [SEP] is added into the input +sequence [wprior +txt ,[SEP],wcurr +txt ]. +Curation of imaging datasets +CXR datasets [35] often +contain multiple image acquisitions Z = {ximg +1 +,...,ximg +Z } +in a single visit due to data quality issues such as a lim- +ited field-of-view or scanning the wrong body part (Fig- +ure A.4). Unlike [9,31,80], we conduct curation to choose +higher quality images among the potential candidates in- +stead of performing a random selection. For this step, a +separate BioViL-T is trained on ‘clean’ studies with sin- +gle acquisitions and later used in a zero-shot setting to de- +tect out-of-distribution samples [25,26] arising from the re- +imaging process. The candidate ˆz is selected as follows: +ˆz = arg maxz∈Z SC(¯vproj +z +, rproj) s.t. ∣sˆz − sZ/ˆz∣ > δ for a +margin δ. This approach is applied to enhance the quality +of the temporal classification dataset given its limited size. +4. Datasets & experiments +Here, we demonstrate BioViL-T’s data efficiency and +adaptability to a wide range of applications, and show how +the model achieves SOTA performance on various down- +stream tasks by learning from data instances linked across +time, making effective use of domain priors and the avail- +able training data. Specifically, our model is evaluated on +a diverse set of downstream tasks including zero- and few- +shot static and temporal image classification, language de- +coding (report generation), phrase-grounding [10], and sen- +tence similarity. +MS-CXR-T benchmark +We release a new multi-modal +benchmark dataset4, MS-CXR-T, to evaluate biomedical +VLP models on two distinct temporal tasks: image clas- +sification and sentence similarity. The former comprises +multi-image and ground-truth label pairs (N = 1326) across +5 findings, with classes corresponding to 3 states of disease +progression for each finding: +{Improving, Stable, +Worsening}. The latter quantifies the temporal-semantic +similarity of text embeddings extracted from pairs of sen- +tences (N = 361). The pairs can be either paraphrases or +contradictions in terms of disease progression. The data for +both tasks was manually annotated and reviewed by a board +certified radiologist. Appendix C provides further details on +its data distribution and annotation protocol. +Datasets +For pre-training, we use the MIMIC-CXR v2 +[27, 35] chest X-ray dataset, which contains longitudinal +4MS-CXR-T benchmark dataset will soon be released at: https:// +aka.ms/ms-cxr-t +Prior image +Current image +Prior image +Current image +Figure 3. +Attention rollout maps [1] from the reference patch +(marked with ★) to the current and prior images. The bounding +boxes, annotated by a radiologist, show the extent of consolida- +tion. Note that the reference patch attends to its anatomical neigh- +bourhood in the prior image despite the misalignment between +prior and current images. The grid (14 × 14) represents the patch +tokens processed in the transformer encoder blocks. +imaging studies with corresponding radiological reports, +see Fig. B.1 for the distribution of studies per patient. We +only use frontal view (AP/PA) scans and discard samples +where reports do not contain an IMPRESSION section. From +this data, we gather 174.1k and 4.9k text-image pairs for +model training and validation respectively, with a major- +ity of text-image pairs including a prior image: ∣Dtrain +m +∣ = +118.8k, ∣Dtrain +s +∣ = 55.3k. The text consists of the IMPRES- +SION section and, for MLM additionally the FINDINGS sec- +tion if available. Note that no manual labels are used during +pre-training and no additional data is used for the methods +that leverage the link between current and prior images. For +early stopping we track the validation loss - see Appendix E +for implementation details. +Downstream evaluations are performed on a disjoint +held-out test set shared across all tasks, ∣Dtest∣ = 2971. +For report generation, we extend this test set with samples +from healthy subjects (N = 815) to match the prevalence +of pathological studies used in prior work [14, 24, 44]. For +fine-tuning on temporal image classification, we use labels +from the Chest ImaGenome dataset [71] as in [36] (statis- +tics in Table F.2). In detail, we use the following bench- +mark datasets: (I) MS-CXR [10] for phrase grounding, (II) +the RSNA Pneumonia dataset [59,69] to test zero-shot and +fine-tuned classification, (III) MS-CXR-T for temporal sen- +tence similarity and temporal image classification. +Comparison approaches +We compare our approach to +other domain-specific SOTA pre-training frameworks [9, +31] specifically on phrase-grounding and zero-shot predic- +tive performance. The non-temporal BioViL framework [9] +is most similar to our approach and provides insight into +non-temporal pre-training. Our ResNet model is initialised +with BioViL weights and architecturally have only added +the transformer encoder block to support multiple images, +and cross-attention is utilised for image-guided MLM. We +additionally compare to internal ablations such as remov- +ing the past report during report generation and masking +prior images during phrase grounding. +For SOTA per- +5 + +357Table 1. +Results for report generation task: +Predictions are +evaluated in terms of lexical (BLEU-4, ROUGE) and factual- +ity metrics (CHEXBERT, TEM). Approaches are grouped into +two broad categories: nearest-neighbour (NN) and auto-regressive +(AR). BioViL-T pre-training consistently yields improved decod- +ing. Further, the consistent performance gains of using prior im- +age and report demonstrate the importance of such domain priors. +‘PI / PR’ indicate usage of prior image and report, respectively. +Method +Pre-training PI / PR BLEU-4 +ROUGE +CHEXBERT +TEM +NN +CXR-RePaiR-2 [24] BioViL + /  +2.1 +14.3 +28.1 +12.5 +Baseline (NN) [9] +BioViL + /  +3.7 +20.0 +28.3 +11.1 +Proposed (NN) +BioViL-T +/  +4.5 +20.5 +29.0 +13.0 +AR +Baseline (AR) [9] +BioViL + /  +7.5 ± 0.1 +27.9 ± 0.1 +29.3 ± 0.3 +13.8 ± 0.1 +Proposed +BioViL-T +/  +8.2 ± 0.1 +28.7 ± 0.1 +30.2 ± 0.7 +16.0 ± 0.3 +Proposed +BioViL-T +/  +9.2 ± 0.3 +29.6 ± 0.1 +31.7 ± 1.0 +17.5 ± 0.1 +formance comparison, various AR and nearest-neighbour +(NN) based language decoding approaches are used as base- +lines: IFCC [44], R2Gen [14], CXR-RePaiR-2 [24], and +CXR-RePaiR-Select [24]. +For the temporal classification task, we compare against +a baseline exploiting the BioViL image encoder [9], and an +approach that makes use of graph convolutions across re- +gions of interest extracted from bounding boxes [36]. For +BioViL, we perform affine image registration (with 4 DoF) +for each pair of scans to cope with pose variations, and the +encoded images are concatenated along the feature dimen- +sion and classified via a multilayer perceptron. For [36], +we compare to the three-class setting. Lastly, we bench- +mark our final text model in isolation against domain spe- +cific SOTA models in a temporal sentence similarity task: +CXR-BERT [9] and PubMedBert [28]. +Metrics +Due to class imbalance, +we report macro- +accuracy for temporal image classification. +For phrase +grounding, we use mean Intersection-Over-Union (mIoU) +and Contrast-to-Noise-Ratio (CNR) [9]. The latter mea- +sures the discrepancies between cosine similarities inside +and out of the bounding box region without requiring hard +thresholds. +To evaluate the quality of generated reports, +we use both the standard lexical metrics, e.g., BLEU [49], +ROUGE-L [40], and also domain-specific factuality metric: +CheXbert5 [61]. To directly probe the generation of change- +related information, we introduce a new metric called tem- +poral entity matching (TEM) to compute the match score of +a fixed set of temporal entities (see Appendix D). +4.1. Temporal pre-training yields data efficiency +Downstream tasks are enabled with minimal labels. +The sections ‘NN’ and ‘Z&F’ on Tables 1 and 2 report +zero- and few-shot performance on tasks benefitting from +temporal information: temporal image classification and re- +5The average of the weighted-F1 score across 14 pathological observa- +tions labelled by CheXbert. +Table 2. +Temporal image classification results (repeated for 4 +random seeds) on the MS-CXR-T benchmark for fully-supervised +and zero-/few-shot (Z&F) learning settings, in terms of macro- +accuracy across the three classes for each finding. Affine regis- +tration is performed for the baseline method (denoted with suffix +‘w/reg’), to partially address the pose variations across scans. +Method (% of labels) Pre-train Consolidation Pl. effusion Pneumonia Pneumothorax Edema +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +Z&F +BioViL-T prompt (0%) Temporal +53.6 ± 1.9 +59.7 ± 2.1 +58.0 ± 3.9 +34.9 ± 1.0 +64.2 ± 1.5 +BioViL-T (10%) +Temporal +59.7 ± 2.4 +62.4 ± 1.4 +60.1 ± 2.1 +35.3 ± 2.6 +62.6 ± 1.7 +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +Supervised +CNN + Transformer +ImageNet +44.0 ± 2.0 +61.3 ± 1.6 +45.1 ± 3.5 +31.5 ± 3.1 +65.5 ± 1.1 +CheXRelNet [36] +ImageNet +47 +47 +47 +36 +49 +BioViL [9] +Static +56.1 ± 1.5 +62.3 ± 1.1 +59.4 ± 1.0 +41.7 ± 2.8 +67.5 ± 0.8 +BioViL w/reg [9] +Static +56.0 ± 1.5 +63.0 ± 0.9 +60.2 ± 0.7 +42.5 ± 2.7 +67.5 ± 0.9 +BioViL-T +Temporal +61.1 ± 2.4 +67.0 ± 0.8 +61.9 ± 1.9 +42.6 ± 1.6 +68.5 ± 0.8 +Table 3. Report generation results obtained with SOTA baseline +methods using the same train/test splits. For comparison, we re- +port the same lexical (BLEU-2) and factuality (CHEXBERT) met- +rics from [24], and the specific sections decoded by each method. +Method +Decoded sections +BLEU-2 +CHEXBERT +R2gen [14] +Findings & Impression +21.20 ± 0.10 +14.80 ± 0.30 +IFCC [44] +Findings +21.70 ± 0.10 +27.00 ± 0.40 +CXR-RePaiR-Sel. [24] +Impression +5.00 ± 0.10 +27.40 ± 0.30 +BioViL-T +Impression +15.86 ± 0.14 +34.83 ± 0.73 +BioViL-T +Findings & Impression +21.31 ± 0.19 +35.86 ± 0.35 +port generation. Here we measure the quality of the learnt +joint latent space and the extent to which BioViL-T enables +efficient use of raw data. For zero-shot classification we +prompt the AR fine-tuned model with prefix: “[FINDING] +is” and compare the next-token probability of words mean- +ing ‘improving’, ‘stable’, and ‘worsening’ (Appendix F.4). +Without using any labelled data, Table 2 shows that the +proposed AR-based approach already yields performance +superior to prior fully-supervised work [36] on temporal +image classification. +With only 10% of labels, classifi- +cation fine-tuning provides a further boost, indicating that +BioViL-T produces a multi-image encoder readily adapted +to temporal tasks. Similarly, in a zero-shot report-retrieval +setting, the findings show that compared to temporally- +agnostic pre-training, BioViL-T leveraging prior images +improves across all metrics. +Consistent with prior work +[24], the retrieved reports already preserve factuality with +high CheXbert scores, more-so than the other metrics which +measure fine-grained specifics of phrasing. This demon- +strates that the latent space captures the high-level seman- +tics of the clinical features. Fine-grained phrasing however +will be substantially improved by AR fine-tuning. +4.2. Achieving SOTA performance with BioViL-T +A wide range of downstream tasks benefit substantially +from temporally-aware pre-training. +Through downstream adaptations and fine-tuning our +model, we report SOTA performance on report generation +and temporal image classification tasks. For the former, us- +6 + +ing both prior images and reports during fine-tuning sub- +stantially improves across metrics (Table 1). In particular, +TEM metric results show that temporal context is key for +accurately describing change in the generated report while +avoiding hallucinations (see Table A.1 for examples). Com- +paring to published results on a comparable test split and +metrics (Sec. 4.1), we conclude that BioViL-T with fine- +tuning achieves SOTA on report generation, producing re- +ports that are lexically on par with prior work but substan- +tially more factually accurate. Note that we do ‘vanilla’ +AR fine-tuning to focus on the impact of the pre-trained +encoders, so application-specific supervision [44] could be +used in conjunction to further boost performance. +In temporal image classification (Tab. 2), BioViL-T pre- +training outperforms the non-temporal baseline (BioViL) +and improves on previously-reported results [36] by up to +20 percentage points (pp). +Furthermore, baseline meth- +ods that rely on image registration (BioViL w/reg), under- +perform compared to the proposed approach. Further anal- +ysis reveals that errors tend to be in cases with disagreement +between radiologists (Appendix A.2). We also note that pre- +training is critical for a hybrid CNN-transformer model on +this task, likely due to the small labelled dataset. Lastly, cu- +ration of temporal training data is observed to improve the +classification results by .68 pp aggregated across the find- +ings, see Appendix A.4 for details. +4.3. Static tasks benefit from temporal learning +BioViL-T broadens the range of applicable downstream +tasks whilst contributing to performance on static tasks. +In this section, we demonstrate that performance im- +provements afforded by BioViL-T are not restricted to tem- +poral tasks – static tasks also benefit. +Below, we re- +port results on zero- and few-shot pneumonia classification +from single images [59], where BioViL-T establishes a new +SOTA compared to prior work [9,31]. +RSNA Pneumonia Detection Benchmark [59] +Classification results for train & test split of 70% – 30% respectively +Method +% of Labels +Supervision +Acc. +F1 +AUROC +GLoRIA [31] + +Zero-shot +0.70 +0.58 +- +BioViL [9] + +Zero-shot +0.732 +0.665 +0.831 +BioViL-T + +Zero-shot +0.805 +0.706 +0.871 +BioViL [9] +1% +Few-shot +0.805 +0.723 +0.881 +BioViL-T +1% +Few-shot +0.814 +0.730 +0.890 +We see a similar trend on the MS-CXR phrase grounding +benchmark (below). This task can be solved with single +images, however we show that the inclusion of the prior +image (where available) does not impair the performance +of BioViL-T: feature decomposition effectively preserves +localised information from the current image. +MS-CXR benchmark results [10] (5-runs with different seeds) +“Multi-image” column indicates the input images used at test time. +Method +Multi-Image +Avg. CNR +Avg. mIoU +BioViL [9] + +1.07 ± 0.04 +0.229 ± 0.005 ++ Local loss [9,31] + +1.21 ± 0.05 +0.202 ± 0.010 +BioViL-T + +1.33 ± 0.04 +0.243 ± 0.005 +BioViL-T + +1.32 ± 0.04 +0.240 ± 0.005 +4.4. Towards better sentence embedding quality +Language models acquire increased temporal sensitivity. +We hypothesise that text encoders learn temporal seman- +tics through supervision from longitudinal image series. To +verify this, RadNLI [44] and MS-CXR-T datasets are used +in a zero-shot binary classification setting. Cosine similarity +of sentence pair embeddings [55] are treated as class-logits +to label each pair either as paraphrase or contradiction. See +Appendix F.6 for further details. +Our text model is benchmarked against SOTA domain- +specific BERT models. +The results below (MS-CXR-T), +collected over 4 runs, show that the proposed framework +greatly increases the sensitivity of sentence embeddings to +temporal content. At same time, it learns to better capture +the static content (RadNLI). Here, CXR-BERT-Specialised +[9] is a text-model learnt through single-image based pre- +training. Note that our text model is initialised with CXR- +BERT-General, illustrating the substantial increase in tem- +poral and static sensitivity due to BioViL-T pre-training. +MS-CXR-T (361 pairs) +RadNLI (145 pairs) +Text Model +Accuracy +ROC-AUC +Accuracy +ROC-AUC +PubMedBERT [28] +60.39 +.542 +81.38 +.727 +CXR-BERT-G [9] +62.60 +.601 +87.59 +.902 +CXR-BERT-S [9] +78.12 +.837 +89.66 +.932 +BioViL-T +87.77 ± 0.5 +.933 ± .003 +90.52 ± 1.0 +.947 ± .003 +4.5. Ablation experiments +In Table 4 we report extensive ablations across the multi- +image encoder architecture, pre-training choices, and AR +fine-tuning for report generation. +Image encoder +Table 4 shows that decomposition of +static and progression features is essential to ensure good +performance on single-image tasks, such as phrase ground- +ing. For temporal representations, on the other hand, posi- +tional encodings are essential to disambiguate the order of +scans, i.e., permutation variance across time. +Model pre-training +The corresponding results are shown +in the middle section of Table 4. The local contrastive loss +proves crucial to ensure meaningful language supervision +during pre-training, followed by the image-guided MLM +objective. Lastly, use of the FINDINGS section results in +only minor performance gains as the key findings are al- +ready captured in the IMPRESSION section. +7 + +Table 4. Ablation experiments on image encoder, pre-training set- +tings, and report generation (repeated for 4 random seeds). Note +that for temporal classification, linear probing is applied to frozen +image embeddings. In report generation, the baseline method is +fine-tuned with both prior image and report. +Ablation +Avg. CNR (mIoU) +Pl. Effusion Acc. +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Encoder +Baseline +1.33 ± 0.02 (.248) +64.8 ± 0.6 +No temporal encoding +1.32 ± 0.02 (.242) +62.9 ± 1.0 +No decomposition +1.11 ± 0.08 (.203) +64.0 ± 0.6 +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Pre-training +Baseline +1.33 ± 0.02 (.248) +64.8 ± 0.6 +Findings section discarded +1.32 ± 0.01 (.246) +63.8 ± 0.8 +No MLM loss +1.28 ± 0.02 (.238) +63.2 ± 0.7 +No local contrastive loss +1.18 ± 0.02 (.236) +60.2 ± 0.6 +Ablation +ROUGE +TEM +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Report gen. +Baseline +29.64 ± 0.08 +17.54 ± 0.11 +No prior image +29.35 ± 0.25 +16.30 ± 0.40 +No prior report +28.67 ± 0.12 +16.00 ± 0.30 +No prior image & report +27.78 ± 0.09 +13.65 ± 0.48 +No separation token +26.00 ± 0.40 +15.50 ± 1.06 +Report generation +The importance of prior image and re- +port is demonstrated by the substantial drop in the “no prior +image & report” ablation especially on TEM metric, con- +firming our hypothesis that temporal context is crucial for +improving report quality. While both inputs are crucial for +optimal performance, the prior report proves to be more im- +portant. This is expected as the prior report is a summary of +the image and thus provides a stronger and clearer signal. +The prior image however cannot be dismissed entirely as it +provides granular details which may not always be docu- +mented in a report. Finally, we found the separation token +is crucial in differentiating between the predicted tokens for +the current report and tokens from the prior report. +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +Progression +Support devices +Other +Stop word +Positional +Meta +Anatomy +Descriptive +Size or degree +Finding +Uncertain +∆prior +img (w) +Figure 4. Mean token-level increase in image-guided MLM loss +when prior image is discarded, grouped by token category. The +prior image is excluded during inference to measure its impact +on masked token predictions. Progression tokens are significantly +better predicted when prior images are incorporated into image +embeddings. The top five Progression tokens are ‘persist’, ‘im- +proving’, ‘remains’, ‘unchanged’, and ‘residual’. +4.6. Which tokens require a prior image in MLM? +We leverage the MLM objective in an inference setting to +analyse the influence of prior images in predicting masked +tokens. +Inspired by the ∆ image loss of [8], we define +∆prior +img as the change in loss by conditioning the estimation +with a prior image for a given token w as follows: +∆prior +img (w) = l(w,xcurr +img ,∅) − l(w,xcurr +img ,xprior +img ) +(2) +where l(w,xcurr +img ,xprior +img ) is the cross-entropy of predicting +the masked token w given visual features (MLM loss for a +single token), averaged over sentences in which w appears. +∆prior +img is a measure of how much that token benefits from +access to the prior image, as well as an assessment of the +contribution of the prior image to the image representation. +In Figure 4 we show the distribution of ∆prior +img +as a func- +tion of token category (e.g., Anatomy, Positional; see F.5 +for annotation details). +For Progression-type terms in particular, the model +heavily relies on the prior image for image-guided MLM. +We further observe that this effect is specific to temporal to- +kens; as expected, those from other semantic categories do +not consistently rely on the prior image. +5. Conclusion +In this paper, we introduced BioViL-T, a vision– +language pre-training framework enabling alignment be- +tween text and multiple images. BioViL-T makes use of +a novel multi-image encoder and explicitly decomposes +static–temporal features to augment the current image rep- +resentation with information from prior images. This en- +ables the grounding of temporal references in the text. To +our knowledge, this is the first method capable of lever- +aging the temporal content commonly present in biomed- +ical text. It addresses an important limitation in existing +VLP approaches, which simply discard such context. Also, +incorporating such multi-modal temporal content provides +strong learning signals to the model, resulting in richer rep- +resentations and improved downstream performance. +We demonstrate the value of this paradigm through ex- +tensive experiments: BioViL-T excels on both static and +temporal tasks, establishing new SOTA on report genera- +tion, temporal image classification, few/zero-shot pneumo- +nia detection, and phrase grounding. Furthermore, we re- +lease a new multi-modal benchmark (MS-CXR-T) to mea- +sure the quality of image and text representations in terms +of temporal semantics, enabling more diverse evaluation of +biomedical VLP models. The corresponding model weights +and code will be made publicly available6. +For applications requiring the encoding of more than +2 images, the proposed model can scale linearly with the +6Code will be released at: https://aka.ms/biovil-t-code +8 + +number of time points by switching to cross-attention of vi- +sual tokens across time. Further exploration and evaluation +are required on diverse datasets to characterise what kinds +of tasks would benefit from a temporal modelling approach, +and specifically from the proposed methodology. +Acknowledgements: +We would like to thank Hoifung +Poon, Melanie Bernhardt, Melissa Bristow and Naoto +Usuyama for their valuable feedback and contributions, and +Hannah Richardson for helping with the compliance review +of the datasets used in this study. +References +[1] Samira Abnar and Willem Zuidema. Quantifying attention +flow in transformers. +In Proceedings of the 58th Annual +Meeting of the Association for Computational Linguistics, +pages 4190–4197, Online, July 2020. Association for Com- +putational Linguistics. 3, 5, 13, 14 +[2] Monica N Agrawal, Hunter Lang, Michael Offin, Lior Gazit, +and David Sontag. +Leveraging time irreversibility with +order-contrastive pre-training. In International Conference +on Artificial Intelligence and Statistics, pages 2330–2353. +PMLR, 2022. 3 +[3] Uwa O. Aideyan, Kevin Berbaum, and Wilbur L. Smith. +Influence of prior radiologic information on the interpre- +tation of radiographic examinations. Academic Radiology, +2(3):205–208, 1995. 1 +[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine +Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, +Katie Millican, Malcolm Reynolds, et al. Flamingo: a vi- +sual language model for few-shot learning. arXiv preprint +arXiv:2204.14198, 2022. 2, 3 +[5] B.B. Avants, C.L. Epstein, M. Grossman, and J.C. Gee. +Symmetric diffeomorphic image registration with cross- +correlation: Evaluating automated labeling of elderly and +neurodegenerative brain. Medical Image Analysis, 12(1):26– +41, 2008. Special Issue on The Third International Workshop +on Biomedical Image Registration – WBIR 2006. 2 +[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin- +ton. Layer normalization. arXiv preprint arXiv:1607.06450, +2016. 3 +[7] Nadine Behrmann, Mohsen Fayyaz, Juergen Gall, and +Mehdi Noroozi. Long short view feature decomposition via +contrastive video representation learning. +In Proceedings +of the IEEE/CVF International Conference on Computer Vi- +sion, pages 9244–9253, 2021. 3 +[8] Yonatan Bitton, Gabriel Stanovsky, Michael Elhadad, and +Roy Schwartz. Data efficient masked language modeling for +vision and language. In 2021 Findings of the Association for +Computational Linguistics, Findings of ACL: EMNLP 2021, +pages 3013–3028. Association for Computational Linguis- +tics (ACL), 2021. 8 +[9] Benedikt Boecking, +Naoto Usuyama, +Shruthi Bannur, +Daniel C. Castro, Anton Schwaighofer, Stephanie Hyland, +Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier +Alvarez-Valle, Hoifung Poon, and Ozan Oktay. +Making +the most of text semantics to improve biomedical vision– +language processing. In European Conference on Computer +Vision (ECCV), pages 1–21. Springer, 2022. 1, 2, 3, 4, 5, 6, +7, 16, 17, 18, 19, 20, 21 +[10] Benedikt Boecking, +Naoto Usuyama, +Shruthi Bannur, +Daniel C. Castro, Anton Schwaighofer, Stephanie Hyland, +Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier +Alvarez-Valle, Hoifung Poon, and Ozan Oktay. MS-CXR: +Making the most of text semantics to improve biomedical +vision–language processing (version 0.1). PhysioNet, 2022. +2, 3, 5, 7 +[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub- +biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan- +tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan- +guage models are few-shot learners. Advances in neural in- +formation processing systems, 33:1877–1901, 2020. 5, 19 +[12] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas +Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to- +end object detection with transformers. In European confer- +ence on computer vision, pages 213–229. Springer, 2020. 3 +[13] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, +Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. +UNITER: UNiversal Image-TExt Representation learning. +In European conference on computer vision, pages 104–120. +Springer, 2020. 2, 4 +[14] Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang +Wan. Generating radiology reports via memory-driven trans- +former. In Proceedings of the 2020 Conference on Empirical +Methods in Natural Language Processing, Nov. 2020. 5, 6 +[15] Ching-Yao Chuang, R Devon Hjelm, Xin Wang, Vibhav Vi- +neet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, and +Yale Song. Robust contrastive learning against noisy views. +In Proceedings of the IEEE/CVF Conference on Computer +Vision and Pattern Recognition, pages 16670–16681, 2022. +1 +[16] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, An- +tonio Torralba, and Stefanie Jegelka. Debiased contrastive +learning. +Advances in neural information processing sys- +tems, 33:8765–8775, 2020. 1 +[17] R. C. Daudt, B. L. Saux, and Alexandre Boulch. Fully convo- +lutional siamese networks for change detection. In 2018 25th +IEEE International Conference on Image Processing (ICIP), +pages 4063–4067, 2018. 2 +[18] Karan Desai and Justin Johnson. +Virtex: Learning visual +representations from textual annotations. In Proceedings of +the IEEE/CVF conference on computer vision and pattern +recognition, pages 11162–11173, 2021. 1, 2 +[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina +Toutanova. +Bert: +Pre-training of deep bidirectional +transformers for language understanding. +arXiv preprint +arXiv:1810.04805, 2018. 3 +[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, +Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, +Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- +vain Gelly, et al. An image is worth 16x16 words: Trans- +formers for image recognition at scale. In International Con- +ference on Learning Representations, 2020. 3, 13 +9 + +[21] Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang +Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu +Yuan, Nanyun Peng, et al. An empirical study of training +end-to-end vision-and-language transformers. In Proceed- +ings of the IEEE/CVF Conference on Computer Vision and +Pattern Recognition, pages 18166–18176, 2022. 2, 4 +[22] Stanley Durrleman, Xavier Pennec, Alain Trouv´e, Jos´e +Braga, Guido Gerig, and Nicholas Ayache. Toward a com- +prehensive framework for the spatiotemporal statistical anal- +ysis of longitudinal shape data. +International Journal of +Computer Vision, 103:22–59, 2013. 2 +[23] St´ephane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S +Morcos, Giulio Biroli, and Levent Sagun. Convit: Improv- +ing vision transformers with soft convolutional inductive bi- +ases. +In International Conference on Machine Learning, +pages 2286–2296. PMLR, 2021. 3, 4 +[24] Mark Endo, Rayan Krishnan, Viswesh Krishna, Andrew Y +Ng, and Pranav Rajpurkar. Retrieval-based chest x-ray report +generation using a pre-trained contrastive language-image +model. +In Machine Learning for Health, pages 209–219. +PMLR, 2021. 5, 6, 18 +[25] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei +Shu. +Zero-shot out-of-distribution detection based on the +pretrained model clip. In Proceedings of the AAAI confer- +ence on artificial intelligence, 2022. 5 +[26] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Ex- +ploring the limits of out-of-distribution detection. Advances +in Neural Information Processing Systems, 34:7068–7081, +2021. 5 +[27] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M +Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mi- +etus, George B Moody, Chung-Kang Peng, and H Eugene +Stanley. PhysioBank, PhysioToolkit, and PhysioNet: com- +ponents of a new research resource for complex physiologic +signals. Circulation, 101(23):e215–e220, 2000. 5 +[28] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto +Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, +and Hoifung Poon. Domain-specific language model pre- +training for biomedical natural language processing. ACM +Transactions on Computing for Healthcare (HEALTH), +3(1):1–23, 2021. 6, 7, 20 +[29] Tengda Han, Weidi Xie, and Andrew Zisserman. +Self- +supervised co-training for video representation learning. Ad- +vances in Neural Information Processing Systems, 33:5679– +5690, 2020. 3 +[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. +Deep residual learning for image recognition. In Proceed- +ings of the IEEE Conference on Computer Vision and Pattern +Recognition (CVPR), pages 770–778, 2016. 3 +[31] Shih-Cheng Huang, Liyue Shen, Matthew P Lungren, and +Serena Yeung. GLoRIA: A multimodal global-local repre- +sentation learning framework for label-efficient medical im- +age recognition. In Proceedings of the IEEE/CVF Interna- +tional Conference on Computer Vision, pages 3942–3951, +2021. 1, 2, 4, 5, 7 +[32] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Sil- +viana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad +Haghgoo, Robyn Ball, Katie Shpanskaya, et al. CheXpert: +A large chest radiograph dataset with uncertainty labels and +expert comparison. Proceedings of the AAAI conference on +artificial intelligence, 33(01):590–597, 2019. 2 +[33] Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven +Truong, Tan Bui, Pierre Chambon, Yuhao Zhang, Matthew P +Lungren, Andrew Y Ng, Curtis Langlotz, et al. Radgraph: +Extracting clinical entities and relations from radiology re- +ports. In Thirty-fifth Conference on Neural Information Pro- +cessing Systems Datasets and Benchmarks Track (Round 1), +2021. 16 +[34] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, +Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom +Duerig. Scaling up visual and vision-language representa- +tion learning with noisy text supervision. In International +Conference on Machine Learning, pages 4904–4916. PMLR, +2021. 1, 13 +[35] A. Johnson, T. Pollard, S.J. Berkowitz, R. Mark, and S. +Horng. MIMIC-CXR database (version 2.0.0). PhysioNet, +2019. 2, 5 +[36] Gaurang Karwande, Amarachi B Mbakwe, Joy T Wu, Leo A +Celi, Mehdi Moradi, and Ismini Lourentzou. +Chexrelnet: +An anatomy-aware model for tracking longitudinal relation- +ships between chest x-rays. In Medical Image Computing +and Computer Assisted Intervention–MICCAI 2022, pages +581–591, 2022. 2, 3, 5, 6, 7 +[37] Jiann-Shu Lee, Jing-Wein Wang, Hsing-Hsien Wu, and +Ming-Zheng Yuan. A nonparametric-based rib suppression +method for chest radiographs. Computers & Mathematics +with Applications, 64(5):1390–1399, 2012. 21 +[38] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. +BLIP: Bootstrapping language-image pre-training for uni- +fied vision-language understanding and generation. In Ka- +malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes- +vari, Gang Niu, and Sivan Sabato, editors, Proceedings of the +39th International Conference on Machine Learning, vol- +ume 162 of Proceedings of Machine Learning Research, +pages 12888–12900. PMLR, 17–23 Jul 2022. 2, 4 +[39] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, +Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi. +Align before fuse: Vision and language representation learn- +ing with momentum distillation. Advances in neural infor- +mation processing systems, 34:9694–9705, 2021. 1, 2 +[40] Chin-Yew Lin. ROUGE: A package for automatic evaluation +of summaries. In Text Summarization Branches Out, pages +74–81, Barcelona, Spain, July 2004. Association for Com- +putational Linguistics. 6 +[41] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, +Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. Generat- +ing wikipedia by summarizing long sequences. In Interna- +tional Conference on Learning Representations, 2018. 4 +[42] Ilya Loshchilov and Frank Hutter. +Decoupled weight de- +cay regularization. In International Conference on Learning +Representations, 2018. 17, 18 +[43] Bradley C Lowekamp, David T Chen, Luis Ib´a˜nez, and +Daniel Blezek. The design of simpleitk. Frontiers in neu- +roinformatics, 7:45, 2013. 21 +10 + +[44] Yasuhide Miura, Yuhao Zhang, Emily Tsai, Curtis Langlotz, +and Dan Jurafsky. Improving factual completeness and con- +sistency of image-to-text radiology report generation. +In +Proceedings of the 2021 Conference of the North American +Chapter of the Association for Computational Linguistics: +Human Language Technologies, pages 5288–5304, Online, +June 2021. Association for Computational Linguistics. 5, 6, +7, 18 +[45] Jong Hak Moon, Hyungyung Lee, Woncheol Shin, Young- +Hak Kim, and Edward Choi. Multi-modal understanding and +generation for medical images and text via vision-language +pre-training. IEEE Journal of Biomedical and Health Infor- +matics, 2022. 2, 4 +[46] American College of Radiology (ACR). +ACR practice +guideline for communication of diagnostic imaging findings. +Practice guidelines & technical standards, 2020. 1 +[47] Dong Yul Oh, Jihang Kim, and Kyong Joon Lee. Longitudi- +nal change detection on chest X-rays using geometric corre- +lation maps. In International Conference on Medical Image +Computing and Computer-Assisted Intervention, pages 748– +756. Springer, 2019. 2 +[48] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre- +sentation learning with contrastive predictive coding. arXiv +preprint arXiv:1807.03748, 2018. 1, 4 +[49] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing +Zhu. Bleu: a method for automatic evaluation of machine +translation. In Proceedings of the 40th Annual Meeting of the +Association for Computational Linguistics, pages 311–318, +Philadelphia, Pennsylvania, USA, July 2002. Association for +Computational Linguistics. 6 +[50] Namuk Park and Songkuk Kim. How do vision transformers +work? In International Conference on Learning Represen- +tations, 2022. 3, 4 +[51] Daifeng Peng, Yongjun Zhang, and Haiyan Guan. End-to- +end change detection for high resolution satellite images us- +ing improved UNet++. Remote Sensing, 11(11):1382, 2019. +2 +[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya +Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, +Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn- +ing transferable visual models from natural language super- +vision. In International Conference on Machine Learning, +pages 8748–8763. PMLR, 2021. 1, 2, 4 +[53] Vignav Ramesh, Nathan Andrew Chi, and Pranav Rajpurkar. +Improving radiology report generation systems by removing +hallucinated references to non-existent priors. arXiv preprint +arXiv:2210.06340, 2022. 2 +[54] Adria Recasens, Pauline Luc, Jean-Baptiste Alayrac, Luyu +Wang, Florian Strub, Corentin Tallec, Mateusz Malinowski, +Viorica P˘atr˘aucean, Florent Altch´e, Michal Valko, et al. +Broaden your views for self-supervised video learning. In +Proceedings of the IEEE/CVF International Conference on +Computer Vision, pages 1255–1265, 2021. 3 +[55] Nils +Reimers, +Iryna +Gurevych, +Nils +Reimers, +Iryna +Gurevych, Nandan Thakur, Nils Reimers, Johannes Dax- +enberger, Iryna Gurevych, Nils Reimers, Iryna Gurevych, +et al. Sentence-bert: Sentence embeddings using siamese +bert-networks. In Proceedings of the 2019 Conference on +Empirical Methods in Natural Language Processing, pages +671–688. Association for Computational Linguistics, 2019. +7, 20 +[56] Liqa A Rousan, Eyhab Elobeid, Musaab Karrar, and Yousef +Khader. +Chest x-ray findings and temporal lung changes +in patients with covid-19 pneumonia. +BMC Pulmonary +Medicine, 20(1):1–9, 2020. 1 +[57] Ruggiero Santeramo, Samuel Joseph Withey, and G. Mon- +tana. Longitudinal detection of radiological abnormalities +with time-modulated LSTM. In MICCAI 2018 Workshop on +Deep Learning in Medical Imaging Analysis, 2018. 2 +[58] Wenzhong Shi, Min Zhang, Rui Zhang, Shanxiong Chen, +and Zhao Zhan. Change detection based on artificial intel- +ligence: State-of-the-art and challenges. +Remote Sensing, +12(10):1688, 2020. 2 +[59] George Shih, Carol C Wu, Safwan S Halabi, Marc D +Kohli, Luciano M Prevedello, Tessa S Cook, Arjun Sharma, +Judith K Amorosa, Veronica Arteaga, Maya Galperin- +Aizenberg, et al. +Augmenting the national institutes of +health chest radiograph dataset with expert annotations of +possible pneumonia. +Radiology: +Artificial Intelligence, +1(1):e180041, 2019. 2, 5, 7 +[60] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil- +laume Couairon, Wojciech Galuba, Marcus Rohrbach, and +Douwe Kiela. Flava: A foundational language and vision +alignment model. +2022 IEEE/CVF Conference on Com- +puter Vision and Pattern Recognition (CVPR), pages 15617– +15629, 2022. 2 +[61] Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, +Andrew Ng, and Matthew Lungren. Combining automatic +labelers and expert annotations for accurate radiology report +labeling using BERT. In Proceedings of the 2020 Confer- +ence on Empirical Methods in Natural Language Processing +(EMNLP), pages 1500–1519, Online, Nov. 2020. Associa- +tion for Computational Linguistics. 6 +[62] Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, +Andrew Y Ng, and Matthew P Lungren. CheXbert: com- +bining automatic labelers and expert annotations for accu- +rate radiology report labeling using bert. +arXiv preprint +arXiv:2004.09167, 2020. 2, 16 +[63] Anuroop +Sriram, +Matthew +Muckley, +Koustuv +Sinha, +F. Shamout, +Joelle Pineau, +K. Geras, +L. Azour, +Y. +Aphinyanaphongs, N. Yakubova, and William H. Moore. +COVID-19 prognosis via self-supervised representation +learning and multi-image prediction. +arXiv preprint +arXiv:2101.04909, 2021. 2, 3 +[64] Philippe Th´evenaz and Michael Unser. Optimization of mu- +tual information for multiresolution image registration. IEEE +transactions on image processing, 9(12):2083–2099, 2000. +21 +[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko- +reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia +Polosukhin. Attention is all you need. Advances in neural +information processing systems, 30, 2017. 3, 4 +[66] Yen Nhi Truong Vu, Richard Wang, Niranjan Balachandar, +Can Liu, Andrew Y Ng, and Pranav Rajpurkar. Medaug: +11 + +Contrastive learning leveraging patient metadata improves +representations for chest x-ray interpretation. +In Ma- +chine Learning for Healthcare Conference, pages 755–769. +PMLR, 2021. 2 +[67] Chuang Wang, Andreas Rimner, Yu chi Hu, Neelam Tyagi, +Jue Jiang, Ellen Yorke, Sadegh Riyahi, Gig S. Mageras, +Joseph O. Deasy, and Pengpeng Zhang. Towards predicting +the evolution of lung tumors during radiotherapy observed +on a longitudinal MR imaging study via a deep learning al- +gorithm. Medical Physics, 2019. 2 +[68] Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei. +Vlmo: Unified vision-language pre-training with mixture-of- +modality-experts. arXiv preprint arXiv:2111.02358, 2021. 2 +[69] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo- +hammadhadi Bagheri, and Ronald M Summers. +ChestX- +Ray8: Hospital-scale chest X-ray database and benchmarks +on weakly-supervised classification and localization of com- +mon thorax diseases. In 2017 IEEE Conference on Computer +Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, +USA, July 21-26, 2017, pages 2097–2106. IEEE Computer +Society, 2017. 2, 5 +[70] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, +Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and +Quoc V Le. Finetuned language models are zero-shot learn- +ers. In International Conference on Learning Representa- +tions, 2021. 5 +[71] Joy Wu, Nkechinyere Agu, Ismini Lourentzou, Arjun +Sharma, Joseph Paguio, Jasper Seth Yao, Edward Christo- +pher Dee, William Mitchell, Satyananda Kashyap, Andrea +Giovannini, Leo Anthony Celi, Tanveer Syeda-Mahmood, +and Mehdi Moradi. +Chest imagenome dataset (version +1.0.0). PhysioNet, 2021. 5, 15, 18 +[72] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and +Hongyang Chao. Rethinking and improving relative posi- +tion encoding for vision transformer. In Proceedings of the +IEEE/CVF International Conference on Computer Vision, +pages 10033–10041, 2021. 19 +[73] Yiwen Xu, Ahmed Hosny, Roman Zeleznik, Chintan Parmar, +Thibaud P. Coroller, Idalid Ivy Franco, Raymond H. Mak, +and Hugo J.W.L. Aerts. Deep learning predicts lung cancer +treatment response from serial medical imaging. +Clinical +Cancer Research, 25:3266 – 3275, 2019. 2 +[74] Bin Yan and Mingtao Pei. Clinical-BERT: Vision-language +pre-training for radiograph diagnosis and reports generation. +Proceedings of the AAAI Conference on Artificial Intelli- +gence, 36(3):2982–2990, 2022. 2 +[75] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe +Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and +Chunjing Xu. Filip: Fine-grained interactive language-image +pre-training. arXiv preprint arXiv:2111.07783, 2021. 2, 4 +[76] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo- +jtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive +captioners are image-text foundation models. arXiv preprint +arXiv:2205.01917, 2022. 1, 2 +[77] Sukmin Yun, Jaehyung Kim, Dongyoon Han, Hwanjun +Song, Jung-Woo Ha, and Jinwoo Shin. +Time is matter: +Temporal self-supervision for video transformers. In Inter- +national Conference on Machine Learning, pages 25804– +25816. PMLR, 2022. 3 +[78] Dewen Zeng, John N Kheir, Peng Zeng, and Yiyu Shi. Con- +trastive learning with temporal correlated medical images: A +case study using lung segmentation in chest x-rays. In 2021 +IEEE/ACM International Conference On Computer Aided +Design (ICCAD), pages 1–7. IEEE, 2021. 2 +[79] Zhaoyang Zeng, Daniel McDuff, Yale Song, et al. +Con- +trastive learning of global and local video representa- +tions. Advances in Neural Information Processing Systems, +34:7025–7040, 2021. 3 +[80] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D +Manning, and Curtis P Langlotz. +Contrastive learning of +medical visual representations from paired images and text. +arXiv preprint arXiv:2010.00747, 2020. 1, 2, 4, 5 +[81] Yuhao Zhang, Yuhui Zhang, Peng Qi, Christopher D Man- +ning, and Curtis P Langlotz. Biomedical and clinical english +model packages for the stanza python nlp library. Journal of +the American Medical Informatics Association, 28(9):1892– +1899, 2021. 16, 17, 18 +12 + +A. Additional Results and Analyses +A.1. Qualitative analysis of generated reports +Table A.1 shows example reports generated with +BioViL-T and BioViL models, which are compared to the +reference radiologist’s reports. In comparison with BioViL +which only models the current image, BioViL-T shows the +benefit from incorporating prior study information and is +able to provide factually more accurate reports especially +in terms of describing temporal progression of the findings. +This is showcased in the first two examples in the table: In +the first row, BioViL-T is able to comment on not only the +presence of the pleural effusion but also its improvement +while BioViL fails to mention the change. In the second +example, BioViL-T is able to correctly identify that there is +no relevant change by comparing with the previous study, +while BioViL wrongly hallucinates the tube in the current +image as a new placement. BioViL-T can also avoid hallu- +cination of the temporal information when there is no prior +study. For instance, in the third example, BioViL-T cor- +rectly acknowledges that there is no prior image and gen- +erates the report based on information from the single cur- +rent image, while BioViL hallucinates a non-exisistent prior +study and wrongly generates temporal descriptions in the +report. +A.2. Further analysis on temporal classification +A subset of the MS-CXR-T benchmark dataset is re- +annotated by an expert radiologist by blinding them to the +existing ground-truth labels and displaying only pairs of im- +ages obtained from each subject. With the new set of labels, +the analysis focuses on measuring the correlation between +inter-rater agreement and image model’s prediction errors. +Figure A.1 shows the dependency between the two where +the x-axis corresponds to the cross entropy loss between the +MS-CXR-T benchmark labels and model predictions. We +observe lower model performance on cases with smaller +inter-rater reliability for the three classes in the dataset, in- +dicating that the model’s prediction errors occur more often +for the cases where experts may disagree with each other. +A.3. Self-attention visualisation +In Figure A.2, we show examples of self-attention roll- +out [1] maps for pleural effusion and consolidation, includ- +ing radiologist-annotated bounding boxes surrounding the +corresponding pathology in each prior and current image. +To model the attention flow through the transformer en- +coder block, we first average each attention weight matrix +across all heads, subsequently we multiply the matrices be- +tween every two layers. For every block we add the identity +matrix in order to model the residual connections. Last, we +only keep the top 10 % of attention weights per block to re- +duce noise in the final rollout map. In contrast to [20], we +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +Classification loss +Improving +Stable +Worsening +Agreement +Disagreement +Figure A.1. +Cross entropy between model predictions and +MS-CXR-T temporal classification labels. ‘Disagreement’ indi- +cates cases for which annotations differed amongst radiologists. +Model performance is higher for cases with with low ambiguity +(‘Agreement’). +do not visualize the rollout map with respect to a [CLS] +token. Instead, we choose a reference image patch from the +center of the radiologist-annotated bounding boxes, marked +with ★ in Figure A.2. +We find that the rollout maps in Figure A.2 are in good +agreement with radiologist-annotated bounding boxes, i.e., +the reference patch attends to other patches within the +bounding boxes in the prior and current image. In addition, +we find that BioViL-T is robust to pose variations, e.g., in +Figure A.2 (a) we show that despite the vertical shift be- +tween prior and current image, the reference patch attends +to the correct image patches in the prior image. +To further assess the robustness of BioViL-T against +pose variations between prior and current images, we per- +formed multiple rotations to the prior image within a pair +and computed rollout maps from the same reference patch +in the current image. Figure A.3 shows that BioViL-T con- +sistently attends to the corresponding anatomical region in- +dependently of the spatial transformation applied, demon- +strating that registration is not needed. +A.4. Data curation of imaging datasets +Large datasets often contain instances that are misla- +belled or out of distribution [34]. We used BioViL-T to per- +form pairwise ranking of instances in MIMIC-CXR (Sec- +tion 3.3, δ = 0.2) and selected representative examples +found in the dataset. Our method is able to select the most +appropriate image for a range of different image-acquisition +or image-processing issues (Figure A.4). +We found that many lateral acquisitions in the dataset +were unexpectedly labelled as frontal (Figure A.4a). Some +images contained only noise (Figure A.4b), non-human +samples (Figures A.4d and A.4e) or incorrect anatomy (Fig- +ure A.4g). Often, acquisitions with an incomplete field of +view (FOV) (i.e., the lungs are not completely visible) were +repeated (Figure A.4c). Lastly, post-processed images were +13 + +Reference (by radiologist) +BioViL +BioViL-T +No evidence of acute cardiopul- +monary process. +Decreased +right pleural effusion. +Small right pleural effusion. +Small +right +pleural +effusion, +decreased since . +No relevant change +as +com- +pared to the previous image. No +evidence of pneumonia or other +parenchymal pathology. Normal +size of the heart. +No pleural +effusions. +In comparison with the study of , there has +been placement of a right ij port - a - cath that +extends to the lower svc. No evidence of post +procedure pneumothorax. The cardiac silhouette +is within normal limits and there is no vascular +congestion or pleural effusion. There is some +asymmetry of opacification at the bases, more +prominent on the left. In the appropriate clinical +setting, this could possibly represent a develop- +ing consolidation. +As compared to the previous ra- +diograph, no relevant change is +seen. The lung volumes are nor- +mal. +Normal size of the car- +diac silhouette. Normal hilar and +mediastinal structures. No pneu- +monia, no pulmonary edema, no +pleural effusions. +No previous images . +The car- +diac silhouette is within normal +limits and there is no evidence of +vascular congestion, pleural effu- +sion, or acute focal pneumonia. +In comparison +with the study of +, there is +little change +and no evidence of acute car- +diopulmonary disease. No pneumonia, vascular +congestion, or pleural effusion. +No previous images . +The car- +diac silhouette is within normal +limits and there is no vascular +congestion, pleural effusion, or +acute focal pneumonia. +Table A.1. Comparison between reports generated by radiologists, BioViL using only a single current image and BioViL-T using both +the current and previous study. BioViL-T with access to longitudinal information can generate more accurate reports with more precise +details on the progression of findings (as in the first and second example) while avoiding hallucination (in the third example). Blue box +highlights the correct temporal information and brown box highlights incorrect temporal information including hallucination. +Prior image +Current image +(a) Example of improving pleural effusion +Prior image +Current image +(b) Example of stable pleural effusion +Prior image +Current image +(c) Example of worsening pleural effusion +Prior image +Current image +(d) Example of improving consolidation +Prior image +Current image +(e) Example of stable consolidation +Prior image +Current image +(f) Example of worsening consolidation +Figure A.2. Self-attention rollout maps [1] from the reference patch (marked with ★) to the current and prior images, overlaid on example +cases of (a) improving, (b) stable and (c) worsening pleural effusion (top row) and consolidation (bottom row). The bounding boxes, +annotated by a radiologist, show the area corresponding to the pathology. The centre patch in the bounding box for the current image was +selected as reference. The grid (14 × 14) represents the visual tokens processed in the transformer encoder blocks. +14 + +O★PORTABLEPORTABLE357Prior image +Current image +(a) Previous image rotated -30° +Prior image +Current image +(b) Original pair +Prior image +Current image +(c) Previous image rotated 30° +Figure A.3. Comparison of roll-out maps computed after applying in-plane spatial rotations to the prior image. The reference visual token +(★) attends to the corresponding anatomical region annotated by an expert independent of the underlying spatial transformation. +detected by the algorithm such as contrast-enhanced scans +(Figure A.4i) that are not often used for diagnostic purposes +in clinical practice. +B. Temporal aspects of the MIMIC-CXR v.2 +dataset +Subjects in the MIMIC-CXR dataset often have multi- +ple associated studies that happened at different times. A +study, sometimes referred to as an ‘exam’ or ‘procedure’, +refers to “one or more images taken on a single visit to a +medical facility”7. To assess pathology progression, radi- +ologists compare images (also referred to as ‘scans’ or ‘se- +ries’) from different studies. In the MIMIC-CXR dataset, +each study (with one or more images) is accompanied by the +report written by the radiologist. Figure B.1 represents the +distribution of studies per subject within MIMIC-CXR and +the corresponding cumulative distribution function, show- +ing that 67 % of the subjects have at least two different as- +sociated studies (and therefore at least two images acquired +at different stages of the disease). +Another way to quantify temporal information in +MIMIC-CXR is through the progression labels provided +by the Chest ImaGenome dataset [71]. These progression +labels are extracted from the reports and thus identify the +cases when the radiologist explicitly describes changes. We +found that in MIMIC, around 40 % of the reports are as- +sociated with a progression label from any of the available +findings defined by ImaGenome. +C. MS-CXR-T benchmark +C.1. Temporal image classification +The MS-CXR-T temporal image classification contains +progression labels for five findings (Consolidation, Edema, +Pleural Effusion, Pneumonia and Pneumothorax) across +three progression classes (Improving, Stable, and +Worsening). +This benchmark builds on the publicly +available Chest ImaGenome gold and Chest ImaGenome +7Adapted from https://ncithesaurus.nci.nih.gov/ +silver datasets [71] which provide progression labels auto- +matically derived from radiology reports. We collected a set +of studies that are part of the ImaGenome silver dataset, ex- +cluding any studies that had been previously verified as part +of the ImaGenome gold dataset. Additionally, we excluded +studies where there are multiple progression labels for a sin- +gle pathology (e.g. left pleural effusion has increased, right +pleural effusion remains stable). We conducted a review +process of the selected candidates, asking a board certified +radiologist to either accept or reject the label. To inform +their review of the labels, the radiologist was given access to +the radiology report for the current image, and the sentence +from which the auto generated label had been extracted. +After collecting our curated labels and labels from the +ImaGenome gold dataset, we matched the report-based la- +bels to specific image pairs, performing a second data cu- +ration step to create the image dataset. To ensure the di- +agnostic quality of all images in the dataset, if a study had +multiple frontal scans we performed a quality control step +asking a radiologist to select the best image for each study. +Fig. F.1 shows examples from the benchmark across differ- +ent pathologies and progression labels. +The class distribution for the image classification task in +MS-CXR-T is shown in Tab. C.1. As seen in the table, the +class distribution of the dataset skews towards the stable +and worsening classes. This could be explained as pa- +tients are more likely to get a chest X-ray scan when their +condition is stable or deteriorating as opposed to when there +is an improvement in patient condition. +C.2. Temporal sentence similarity +In this section, we describe the process of creating the +MS-CXR-T temporal sentence similarity benchmark, which +consists of pairs of paraphrase or contradiction sentences in +terms of disease progression. We create this dataset using +two different methods, RadGraph where paraphrase and +contradiction sentence pairs are discovered by analysing +graph representations of sentences and Swaps where para- +phrases and contradictions are created by swapping out tem- +poral keywords in the sentence. +To create this dataset, we first collected a set of sentences +15 + +(a) Incorrect view +(b) Invalid acquisition +(c) Incomplete field of view +(d) Non-human sample +(e) Non-human sample +(f) Inverted intensities +(g) Non-chest sample +(h) Image orientation +(i) Post-processed image +(j) Processing artefacts +Figure A.4. Pairwise ranking of images performed by the proposed data curation method (see Section 3.3) on images from the MIMIC- +CXR v2 dataset. Images highlighted with dashed green rectangles are automatically selected by our method and used for training to +improve model’s downstream performance. The rejected image samples may not be appropriate for training due to image acquisition or +image processing issues as shown in each subfigure above. +0 +5 +10 +15 +20 +25 +Number of studies per subject +0 +7000 +14000 +21000 +28000 +35000 +Number of subjects +0% +20% +40% +60% +80% +100% +Cumulative percentage +Figure B.1. Number of studies per subject in the MIMIC-CXR +dataset. A study, sometimes referred to as an ‘exam’ or ‘proce- +dure’, refers to “one or more images taken on a single visit to +a medical facility” (adapted from https://ncithesaurus. +nci.nih.gov/). Note that 67 % of subjects have at least two +studies that happened at different times. +Table C.1. MS-CXR-T temporal image classification benchmark: +Showing the distribution of multi-image studies across different +clinical findings, distribution of classes {Improving, Stable, +Worsening} per finding, and number of subjects. +Findings +# of annotation pairs +Class distribution +# of subjects +Consolidation +201 +14% / 42% / 44% +187 +Edema +266 +31% / 26% / 43% +241 +Pleural effusion +411 +19% / 49% / 32% +370 +Pneumonia +237 +8% / 25% / 67% +218 +Pneumothorax +211 +15% / 55% / 30% +148 +Total +1326 +18% / 40% / 42% +800 +from the MIMIC dataset, using the Stanza constituency +parser [81] to extract individual sentences from reports. Us- +ing the CheXbert labeller [62], we filtered this set to sen- +tences that described one of seven pathologies - Atelecta- +Subset +# of paraphrase pairs +# of contradiction pairs +Total +Radgraph +42 +75 +117 +Swaps +99 +145 +244 +Total +141 +220 +361 +Table C.2. MS-CXR-T temporal sentence similarity benchmark: +Number of paraphrase and contradiction examples in the full +dataset and across the RadGraph and Swaps subsets (see Ap- +pendix C.2). +sis, Consolidation, Edema, Lung Opacity, Pleural Effusion, +Pneumonia or Pneumothorax. We then filtered to sentences +which contained at least one mention of a temporal key- +word. Using this sentence pool, paraphrase and contradic- +tion pairs were constructed in two ways. (I) We paired sen- +tences from the sentence pool by matching on RadGraph +[33] entities, relaxing the matching constraint only for tem- +poral keywords and possible mentions of pathologies. (II) +We swapped out temporal keywords in a sentence to cre- +ate sentence pairs, choosing swap candidates from the top 5 +masked token predictions from CXR-BERT-Specialized [9] +provided they were temporal keywords. After creating can- +didate sentence pairs, we manually filtered out sentence +pairs with ambiguous differences in terms of disease pro- +gression. A board certified radiologist then annotated each +sentence pair as either paraphrase or contradiction. Sen- +tences were filtered out in the annotation process if (I) they +were not clear paraphrases or contradictions (II) the sen- +tences differed in meaning and this difference was not re- +lated to any temporal information (III) they were not gram- +matically correct. +Examples from the benchmark are shown in Table C.3. +The distribution of sentence pairs across the paraphrase and +contradiction classes are described in Table C.2. +16 + +SEMI-EREC +3013 +PORTABLE00.00SUPINE +PORTABLPORTABLISEMI-ERECT +PORTABLELabel +Sentence 1 +Sentence 2 +Swaps +Paraphrase +“Unchanged small-to-moderate right pleural effusion.” +“Stable small-to-moderate right pleural effusion.” +Contradiction +“Interval worsening of the right-sided pneumothorax.” +“Interval resolution of the right-sided pneumothorax.” +RadGraph +Paraphrase +“There has also been a slight increase in left basal consolidation.” +“There is slight interval progression of left basal consolidation.” +Contradiction +“Right mid and lower lung consolidations are unchanged.” +“There has been worsening of the consolidation involving the right +mid and lower lung fields.” +Table C.3. Examples of paraphrase and contradiction sentence pairs from the MS-CXR-T temporal sentence similarity benchmark. The +examples are selected from the RadGraph and Swaps subsets (see Appendix C.2). +D. Temporal entity matching +To quantify how well the generated report describes +progression-related information, we propose a new metric, +namely temporal entity matching (TEM) score. +D.1. Metric Formulation +We first extract entities (tagged as “observation” or “ob- +servation modifier”) from the text by running the named en- +tity recognition model in the Stanza library [81]. Within the +extracted entities, we manually curated a list of temporal +entities that indicate progression (listed below). The list is +reviewed by an expert radiologist. Given extracted tempo- +ral entities E in N pairs of reference and generated reports, +we calculate global precision (pE) and global recall (rE) as +below: +pE = ∑N +i=1 ∣Ei +gen ∩ Ei +ref∣ +∑N +i=1 ∣Eigen∣ +(3) +rE = ∑N +i=1 ∣Ei +gen ∩ Ei +ref∣ +∑N +i=1 ∣Ei +ref∣ +(4) +The TEM score is the harmonic mean of precision and +recall (also known as the F1 score). +D.2. List of temporal keywords +The list of temporal keywords used to compute the TEM +score are as follows: {bigger, change, cleared, constant, +decrease, decreased, decreasing, elevated, elevation, en- +larged, enlargement, enlarging, expanded, greater, growing, +improved, improvement, improving, increase, increased, +increasing, larger, new, persistence, persistent, persisting, +progression, progressive, reduced, removal, resolution, re- +solved, resolving, smaller, stability, stable, stably, un- +changed, unfolded, worse, worsen, worsened, worsening, +unaltered}. +E. Architecture and implementation details +E.1. Hyper-parameters +The models are trained in a distributed setting across 8 +GPU cards. For pre-training, we use a batch size of 240 +(30 * 8 GPUs) and the AdamW optimizer [42]. We use a +linear learning rate scheduler with a warm-up proportion of +0.03 and base learning rate of 2 × 10−5. We train for a max- +imum of 50 epochs and use validation set loss for check- +point selection. The overall loss is a sum of components +with weighting factors: global contrastive (1.0), local con- +trastive (0.5), and image-guided MLM (1.0) respectively, +see Sec. 3.1 for further details on their formulation. +Following [9] we use sentence permutation as text-based +data augmentation. Similarly, spelling errors in the reports +are corrected prior to tokenisation of the text data8. For +image augmentations, note that we apply the same augmen- +tation to current and prior images to prevent severe mis- +alignment. We resize the shorter edge to 512 and centre- +crop to (448, 448). We apply random affine transformations +(rotation up to 30○ and shear up to 15○) and colour jitter +(brightness and contrast). +E.2. Training infrastructure +We train with distributed data processing (DDP) on eight +NVIDIA Tesla V100s with 32GB of memory each. To han- +dle inconsistently-present prior images with DDP, we define +a custom batch sampler. This sampler is a mixture of two +samplers, in proportion to their dataset coverage: a sam- +pler which produces batches with only multi-image exam- +ples – (xcurr +img ,xprior +img ,xcurr +txt ) ∈ Dm and one with only single- +image examples – (xcurr +img ,∅,xcurr +txt ) ∈ Ds. Each GPU then +processes a batch which is entirely single or multi-image, +avoiding branching logic within the forward pass and en- +abling an efficient single pass through the CNN to process +all input images (current or prior) by concatenating them +along the batch dimension. +We confirmed that although the custom sampler theoret- +ically impacts the order in which the dataset is traversed, +it has a negligible effect on training metrics relative to fully +random sampling. Since we train on eight GPUs and collect +negatives across all GPUs during contrastive training, each +update involves on average a representative mixture of both +single-image and multi-image samples. +8https://github.com/farrell236/mimic-cxr/blob/ +master/txt/section_parser.py +17 + +Finally, following [9] we use the DICOM images from +MIMIC-CXR to avoid JPEG compression artefacts. +F. Adaptation and experimentation details +F.1. Fine-tuning BioViL-T for report generation +During fine-tuning of BioViL-T for report generation, +we minimise the cross entropy loss to maximise the log like- +lihood of the report in an autoregressive manner given the +input images. The model is initialised from the pretrained +weights of the image encoder and the text encoder. Sim- +ilar to the cross-modal masked language modelling task, +we additionally train a linear projection layer to map the +projected patch embeddings to the same hidden dimension +of the text encoder, and we train cross-attention layers in +each transformer block. The difference from the masked +language modelling task is that we change the bidirectional +self-attention to unidirectional causal attention that can only +access the past tokens. If trained with prior report, we pass +the prior report as prefix to condition the generation of the +current report (the current and prior report are separated by +[SEP]), and we only back-propagate the gradients from +the loss on the tokens in the current report. +For all experiments, we train the model for 100 epochs +and we chose the best checkpoint according to metrics on +the validation set. We performed grid search for learning +rate in [10−5,2 × 10−5,5 × 10−5] and found 2 × 10−5 to be +optimal. We ran each experiment with 3 random seeds and +report mean and standard deviation. +In addition to the metrics we reported in the main text, +we also evaluate the generated reports by named entity met- +ric (NEM). This metric was defined in [44] to measure the +accuracy of reporting clinically relevant entities in the gen- +erated reports (Similar to how TEM is computed to measure +the match of temporal entities in our study). Following [44], +we extract entities (tagged as “observation” or “observa- +tion modifier”) from the text by running the named entity +recognition model in the Stanza library [81]. The results are +presented in Tab. F.1. +F.2. Nearest-neighbour-based report retrieval +The joint latent space learnt by BioViL-T can also be +used to directly perform report retrieval without requiring +task-specific model fine-tuning. Given the test image, we +retrieve its semantically closest report from the training set +in the joint latent space. Specifically, we encode each test +image with the image model in BioViL-T and collect its +projected image embeddings, and similarly we encode all +the reports in the training data with their projected text em- +beddings. For each test study, we compute cosine similarity +between the test image embedding and all the text embed- +dings from the training set in the joint latent space, and we +retrieve the closest text embedding and use its correspond- +Table F.1. +Results for report generation task: Predictions are +evaluated on NEM. The approaches are grouped into two broad +categories: NN (Nearest Neighbour) and AR (Auto-Regressive). +BioViL-T pre-training consistently yields superior decoding per- +formance. Further, the use of prior image and report consistently +yield performance gains demonstrating the importance of such do- +main priors. +Method +Pre-training Prior Img/Report +NEM +NN +CXR-RePaiR-2 [24] +BioViL + /  +13.36 +Baseline (NN) [9] +BioViL + /  +16.25 +Proposed (NN) +BioViL-T +/  +17.55 +AR +Baseline (AR) [9] +BioViL + /  +24.27 ± 0.22 +Proposed +BioViL-T +/  +25.50 ± 0.04 +Proposed +BioViL-T +/  +26.95 ± 0.17 +ing report as the prediction. To evaluate the retrieval perfor- +mance, we use the same decoding metrics on the retrieved +reports and report results in the top section of Table 1. +In a separate set of experiments, we also tried performing +nearest neighbour search only within the image embedding +space by retrieving the report associated with the closet im- +age embedding, but this yielded sub-optimal performance +compared with using the joint latent space. +F.3. Fine-tuning for temporal image classification +In this section, we describe the training dataset and fine- +tuning procedure for the fully supervised and few-shot set- +tings of the temporal image classification task. For this task, +we finetune BioViL-T on a subset of the Chest ImaGenome +silver dataset [71] to predict progression labels for 5 differ- +ent pathologies. To create our training dataset, we filter out +image pairs from this dataset where there are multiple di- +rections of progression of a single pathology in the image- +pair. We additionally perform an automatic data curation +step to choose higher quality image pairs when possible, as +described in 3.3. Table F.2 shows the number of training +samples and label distribution for the training dataset. +Table F.2. Statistics of the training dataset used for downstream +fine-tuning on temporal image classification. +Findings +# labelled pairs +Class distribution +# of subjects +Consolidation +7012 +15% / 42% / 43% +3308 +Edema +14170 +28% / 33% / 39% +4813 +Pleural effusion +26320 +16% / 53% / 31% +6838 +Pneumonia +8471 +12% / 29% / 59% +4197 +Pneumothorax +3795 +21% / 57% / 22% +1161 +For the fully supervised setting, we add a multilayer clas- +sification head to the BioViL-T image encoder and fine- +tune the model independently for each pathology. We use +weighted cross entropy loss with a batch size of 128 and +the AdamW optimizer [42]. During parameter optimisation, +positional encodings and missing-image embeddings are +18 + +Target class +Tokens +Improving +better, cleared, decreased, decreasing, im- +proved, improving, reduced, resolved, re- +solving, smaller +Stable +constant, stable, unchanged +Worsening +bigger, developing, enlarged, enlarging, +greater, growing, increased, increasing, +larger, +new, +progressing, +progressive, +worse, worsened, worsening +Table F.3. Prompting the AR language decoding model for zero- +shot image classification. The list above shows the mapping from +decoded tokens to progression classes. +exempt from weight decay penalty as in [72]. We train for +30 epochs, with a linear learning rate schedule, a warmup +proportion of 0.03 and a base learning rate of 1 × 10−5. For +data augmentation, we first resize the shorter edge of the im- +age to 512 and centre crop to (448, 448). We apply random +horizontal flips, random cropping, random affine transfor- +mations (rotation up to 30○, shear up to 15○), colour trans- +forms (brightness and contrast) and Gaussian noise. +For the few-shot setting we tune only a single-layer lin- +ear head on the BioViL-T image encoder and freeze the rest +of the encoder. We initialise the weight matrix of the linear +head with values from encoded text prompts [9] for each +of the three progression classes, and the bias matrix is ini- +tialised with zeros. To train, we again use weighted cross +entropy loss, with a batch size of 32 and the AdamW opti- +mizer. We use a learning rate of 1 × 10−3 and train for 40 +epochs. For data augmentation, we resize the shorter edge +of the image to 448 and center crop to (448, 488). We ap- +ply random horizontal flips, random affine transformations +(rotation up to 45○ and shear up to 25○), colour transforms +(brightness and contrast). As in the pre-training step, we +always synchronise image data augmentations to apply the +identical transforms to the current and prior images. +F.4. Auto-regressive prompting for zero-shot tem- +poral image classification +Following the GPT-3 style language prompting [11], we +prompt the fine-tuned AR language decoding model with +the template: “[FINDING] is” and infer the next token +to perform temporal classification for each of the five find- +ings. The mapping from the predicted next token to the +three progression classes is characterised by a short list of +tokens provided in Table F.3. After computing the posterior +for each token in the list, the obtained values are normalised +across the three classes, and the class with the highest score +is selected as the prediction. The corresponding results are +reported in Table 2. +F.5. Further analysis of image-guided MLM +In Section 4.6 we used a simplified notation for the +computation of ∆prior +img (m) for ease of exposition – here +we provide further detail. Recall that w = (w1,...,wM) +is a sequence of tokens and w/m is that sequence +with token m masked. +Let pθ(wm ∣w/m,xcurr +img ,xprior +img ) +be the text model’s predicted probability of token m +given xcurr +img ,xprior +img , and w/m (θ are the weights of the +model). +Then, l(w,pθ(wm ∣w/m,xcurr +img ,xprior +img )) is the +cross-entropy loss of predicting token m given those inputs. +It is possible for different sentences in a report to refer +to the same image finding. Since we mask single tokens +at a time, to prevent information leakage from other sen- +tences we consider each sentence in a report independently. +Suppose report xcurr +txt consists of S sentences, so we have +xcurr +txt = [w1,[SEP],...,[SEP],wS], where ws is the to- +kens of sentence s and [SEP] separates sentences. +For a given sample (xcurr +img ,xprior +img ,xcurr +txt ) ∈ Dm in the test +set indexed by i, we define +δi(m) = ∑ +s∈S +[l(m,pθ(ws +m ∣ws +/m,xcurr +img ,∅)) +−l(m,pθ(ws +m ∣ws +/m,xcurr +img ,xprior +img ))] +This is the MLM loss for predicting m given each sentence +in the report with and without the prior image. Note that if +m does not appear in a given sentence, its contribution to +the sum is zero. The overall ∆prior +img (m) is computed across +all samples: +∆prior +img = +1 +Nm +⎛ +⎝ ∑ +i∈Dtest +m +δi(m)⎞ +⎠ +(5) +where Nm is the number of sentences in reports in Dtest +m +in which token m appears. This estimate is subject to high +variance when Nm is small. Hence, for Figure 4 we filter +to tokens m with Nm ≥ 10. We collected 931 tokens with +Nm ≥ 10 from the validation set for manual annotation by +a board-certified radiologist. The categories, shown in Fig- +ure 4 and described in Table F.4 are specific to the radiology +domain. +F.6. Sentence similarity experiment +The text models are evaluated in isolation to observe if +their encoding is sensitive to key clinical observations. To +achieve this, we assess the quality of sentence represen- +tations obtained from our text model by examining how +well the contradiction and paraphrase pairs can be sepa- +rated in the embedding space. Unlike the traditional NLI +task where a model needs to be fine-tuned, here the models +are probed in a zero-shot setting and the BERT output token +embeddings are utilised. To do so, we encode the sentences +from RadNLI and MS-CXR-T sentence similarity datasets +19 + +Category +Description +Examples +Progression +Pertaining to change or progression +bigger, cleared, new +Support devices +Tubes, lines and implants +nasogastric, pacemaker, cannula +‘Other’ +No clear category +can, relevant, overall +Stop word +‘Insignificant’ words +the, no, of +Positional +Localisation (not anatomical) +right, lower, bilateral +Meta +Pertaining to the report itself or practice of radiology +evidence, radiograph, study +Anatomy +Anatomical locations +pulmonary, chest, mediastinal +Descriptive +Qualitative appearance of a finding +layering, focal, patchy +Size or degree +Quantifying extent or severity +extensive, moderate, severe +Finding +Radiographic finding or pathology +edema, penumonia, pneumothorax +Uncertain +Expression of certainty or doubt +may, possible, concerning +Table F.4. Semantic categories used in Figure 4. +Prior image +Current image +(a) Improving consolidation +Prior image +Current image +(b) Stable consolidation +Prior image +Current image +(c) Worsening consolidation +Prior image +Current image +(d) Improving pulmonary edema +Prior image +Current image +(e) Stable pulmonary edema +Prior image +Current image +(f) Worsening pulmonary edema +Prior image +Current image +(g) Improving pleural effusion +Prior image +Current image +(h) Stable pleural effusion +Prior image +Current image +(i) Worsening pleural effusion +Figure F.1. Examples of image pairs in our MS-CXR-T benchmark. +with the [CLS] token from CXR-BERT-Specialised [9] +and BioViL-T. For PubMedBERT [28] and CXR-BERT- +General [9] which did not directly optimise the [CLS] to- +ken during pretraining, we follow [55] to average the token +output embeddings to represent each sentence. +Cosine similarity is computed between the representa- +tions of each sentence pair in the dataset [55] and is used as +logits for the binary classification between paraphrase and +contradiction. Note that for RadNLI, we use the subset of +‘entailment’ and ‘contradiction’ pairs and discard the ’neu- +tral’ pairs to unify the task across the two datasets. Given +the similarities for each sentence pair, we report ROC-AUC +and binary-accuracy. For the latter, a threshold value for +each method is derived by setting aside a validation set. +For this, we perform ten-fold cross validation and tune the +threshold with step size of 0.005 on the validation set. +20 + +ERECT +TABLEORTABLF.7. Image registration algorithm +In Section 4.2, image registration is applied to pairs of +images as a preprocessing step to enable a fair compari- +son for the baseline approaches (e.g., BioViL [9]). We per- +formed bidirectional multi-scale registration between image +pairs optimising an affine transformation (4 degrees of free- +dom), using mutual information (MI) [64] with 128 bins as +the similarity criterion. In more detail, the spatial transfor- +mation is characterised by four parameters: two for transla- +tion, one for isotropic scaling, and one for rotation. The op- +timisation is repeated five times with different random seeds +for initialisation, and the run with the highest MI is selected +to determine the final spatial alignment. To better identify +the correspondences between the scans, bilateral filtering is +applied to each image before registration to remove detailed +texture whilst preserving edge information [37]. Our imple- +mentation is based on the SimpleITK library [43]. +21 + diff --git a/hNE3T4oBgHgl3EQfgArH/content/tmp_files/load_file.txt b/hNE3T4oBgHgl3EQfgArH/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..12d2c28c3b6b496740ff96b75005059c537a2e9b --- /dev/null +++ b/hNE3T4oBgHgl3EQfgArH/content/tmp_files/load_file.txt @@ -0,0 +1,1383 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf,len=1382 +page_content='Learning to Exploit Temporal Structure for Biomedical Vision–Language Processing Shruthi Bannur∗, Stephanie Hyland∗†, Qianchu Liu, Fernando P´erez-Garc´ıa, Maximilian Ilse, Daniel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Lungren, Aditya Nori Javier Alvarez-Valle, and Ozan Oktay Microsoft Health Futures Abstract Self-supervised learning in vision–language processing (VLP) exploits semantic alignment between imaging and text modalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This does not only introduce poor alignment be- tween the modalities but also a missed opportunity to ex- ploit rich self-supervision through existing temporal con- tent in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In this work, we explicitly account for prior images and reports when available during both train- ing and fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our approach, named BioViL-T, uses a CNN–Transformer hybrid multi-image encoder trained jointly with a text model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' It is designed to be versatile to arising challenges such as pose variations and miss- ing input images across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The resulting model excels on downstream tasks both in single- and multi-image se- tups, achieving state-of-the-art (SOTA) performance on (I) progression classification, (II) phrase grounding, and (III) report generation, whilst offering consistent improvements on disease classification and sentence-similarity tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We release a novel multi-modal temporal benchmark dataset, MS-CXR-T, to quantify the quality of vision–language rep- resentations in terms of temporal semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our experi- mental results show the advantages of incorporating prior images and reports to make most use of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Introduction Self-supervision from image–text pairs has enabled the development of flexible general-purpose vision–language models both in the general domain [39, 52, 76] and for specialised domains such as biomedicine and radiology ∗These authors contributed equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' †Corresponding author: stephanie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='hyland@microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='com "pleural fluid in the right base" "lung nodule remains unchanged" "pleural effusion is worsening" Image encoder Text encoder Image encoder Text encoder ✓ × ✓ × ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ✓ × × ✓ × ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' × × × × ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' × Prior image Current image Spatiotemporal modelling Spatial modelling Current image InfoNCE affinity matrix Current image Prior image (if available) Clinical report Existing methods Proposed method InfoNCE affinity matrix Clinical report (b) (a) (c) (d) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' (a) Existing visual–language pre-training approaches [9, 31, 80] often use only a single image for contrastive learning (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', InfoNCE [48]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' (b) In such settings, discarding the temporal connectivity of images limits the alignment of image–text pairs as shown with the affinity matrix, leading to suboptimal pre-training and missed opportunity to create additional model supervision for free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' (c, d) Our approach exploits this domain knowledge by learn- ing to incorporate a series of images and correlate them to reports, leading to pre-trained models that can generalise to a wider range of downstream tasks whilst achieving SOTA performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' [9, 31, 80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Vision–language processing (VLP) has shown that cross-modal supervision can provide a richer signal for training both image [18] and text [9] models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' However, the success of VLP relies on paired samples sharing semantics, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', given an image and text pair, the text should describe the image with minimal extraneous detail [15,16,34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In this regard, VLP in biomedicine and radiology poses a distinctive challenge, as reports routinely include compar- isons to prior imaging studies [3, 46, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Without knowl- 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04558v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='CV] 11 Jan 2023 edge of this prior image1, temporal information in the text modality, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' “Pneumonia is improving”, could pertain to any image containing “Pneumonia”, producing ambiguity during contrastive training (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Despite this, the ex- isting VLP work to date considers alignment between only single images and reports [9,31,45,80], going so far as to re- move temporal content from reports in training data to pre- vent ‘hallucinations’ in downstream report generation [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' However, temporal information can provide complementary self-supervision, solely by exploiting existing structure, and without requiring any additional data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In this work, we neither ignore nor remove temporal in- formation in the text modality, but explicitly account for it during pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Rather than treating all image–report pairs in the dataset as independent, we exploit temporal cor- relations by making prior images available for comparison to a given report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To learn from this structure, we develop a temporal VLP pre-training framework named BioViL-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A core component is its new multi-image encoder that can handle the absence of prior images and potential spatial misalignment between images across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T takes into account prior images where available, removing cross- modal ambiguity as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Linking multi- ple images during pre-training proves beneficial to both im- age and text models: we report state-of-the-art (SOTA) per- formance on both temporal image classification and report generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In the latter case, we show that prefixing the prior report substantially increases performance, again re- flecting the value of prior information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We emphasise that the benefit is not restricted to temporal downstream tasks: our approach also achieves SOTA on non-temporal tasks of pneumonia detection [59] and phrase grounding [10], un- derscoring the value of a cleaner learning signal during VLP without needing to modify or add to the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our contributions can be summarised as follows: We introduce a novel pre-training framework, called BioViL-T, which leverages the temporal relationship of samples to self-supervise VLP models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T ex- tends the applicability of biomedical pre-trained models to a new set of downstream tasks without compromising performance on existing benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We develop a generic multi-image encoder that handles missing image inputs and incorporates longitudinal in- formation without requiring explicit image registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We achieve SOTA results in biomedical report genera- tion, temporal image classification, and phrase ground- ing downstream benchmarks by accounting for prior context in self-supervised training and fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We release a new multimodal benchmark dataset, MS-CXR-T, curated by an expert radiologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' It enables 1In the MIMIC-CXR v2 dataset [35], around 40% of reports explicitly reference a previous image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' See Appendix B for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' benchmarking of biomedical VLP models in terms of temporal semantics extracted from image and text data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Related work Vision–language processing Self-supervised VLP can significantly reduce the need for manual labels required for the training of image encoders [18, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The availability of large-scale paired image–text datasets has thus led to rapid development of general-purpose VLP models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Objectives include contrastive and discriminative image–text matching [39,52,68] including local variants [31,75], auto-regressive (AR) captioning [4, 38, 76] and multi-modal masked mod- elling objectives [13,39,60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Biomedical vision–language processing Paired medical image–report datasets were originally used for supervised learning via (typically) automated label extraction from clinical reports [32, 62, 69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Using such datasets, advances in general-domain self-supervised VLP have been demon- strated to benefit biomedical imaging applications [9, 31, 80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Work has incorporated ideas from general-domain VLP such as the original CLIP-style cross-modal con- trastive objective [80], multi-modal masking with merged co-attention on image–text representations [45], and adap- tations to the data of the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For example, a radiology report may have sparse image-specific details, prompting a local modification to the contrastive loss enabling align- ment between text tokens and image patches [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Domain- specific pre-training of the text model is shown to benefit biomedical VLP [9], and preferential masking of medical terms during masked language modelling (MLM) was ex- plored [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Here we use a local loss and domain-specific pre-training of the text model, but did not find a benefit to preferential masking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Similarly, cross-attention [21] is used rather than merged co-attention for image-guided MLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Longitudinal modelling of medical images While prior images are used in unimodal supervised longitudinal analy- sis of medical images [36,57,67,73], temporal information has not directly been employed for self-supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The closest work exploits patient metadata to select positive or negative examples in unimodal contrastive learning [66,78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Existing models typically employ either late fusion of global image representations [57,63,67,73], which can miss fine-grained localised changes [31], or explicit spatial cor- respondence of features, using fixed spatial grids [47] or object detection [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Registering image pairs is commonly used for change detection in other contexts [17,51,58], and has been applied to medical imaging [5, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For chest X-rays (CXRs) however, registration entails the ill-posed problem of aligning 2D projections of 3D geometry, which inevitably results in residual misalignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our approach does not rely on bounding boxes or explicit graph construc- 2 tion as it uses self-attention of visual tokens across time to handle any spatial misalignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Self-supervision across time Self-supervision has found applications on densely-sampled time series data (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', video) to capture temporal information [29,54,77,79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our problem setting involves sparsely and sporadically sampled data where temporal pretext tasks are less applicable [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Similarly, it requires text supervision to enable both static and temporal learning, when temporal structure is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T training framework Our approach comprises a multi-image encoder designed to extract spatio-temporal features from sequences of im- ages (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1) and a text encoder incorporating optional cross-attention on image features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The models are trained jointly with image-guided MLM and cross-modal global and local contrastive objectives (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The resulting image and text models are later adapted for uni- or multi- modal downstream tasks as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Im- plementation details are presented in Appendices E and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For a given image and report pair (xcurr img ,xcurr txt ), the re- port xcurr txt describes the current image content and changes in reference to prior images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our proposed formulation fo- cuses on a single prior image;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' however, it can be gener- alised to multiple prior images depending on the applica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Hence, we construct datasets by including the prior image whenever it exists2: (xcurr img ,xprior img ,xcurr txt ) ∈ Dm or (xcurr img ,∅,xcurr txt ) ∈ Ds with the resulting dataset being a union of single and multi-image examples: D = Dm ∪ Ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Extracting spatio-temporal image features Clinical findings are often observed across different im- age regions and co-occur simultaneously, which requires dense level visual reasoning across time to capture both static and temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In contrast to late global fusion [63] and bounding-box based approaches [36], BioViL-T leverages local correspondences between image regions across time using transformer self-attention blocks [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Thus our method does not require an explicit image reg- istration step between time points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We propose a hybrid CNN–Transformer encoder model due to its data efficiency and spatial flexibility of cross-attention across time points: Eimg ∶ RW ×H → RW ′×H′×Dimg and Aimg ∶ RT ×L×Dimg → RL×Dimg, where W, H, and T correspond to spatiotemporal dimensions, L = W ′H′ is the number of visual tokens per image, and Dimg is the embedding dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Here Eimg (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', ResNet-50 [30]) serves as a stem network [50] to provide visual token features of individual images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The CNN’s in- ductive biases [23, 50] ensure data efficiency of our hy- 2The prior report is not included during pre-training as it may further reference an earlier study, reintroducing temporal ambiguity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' brid model, making it ideal for smaller scale biomedical datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Eimg is initialised with BioViL weights [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The main purpose of Aimg is to capture patch embedding inter- actions across time when a prior image xprior img is available and to aggregate them into a fixed-length token represen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Input visual tokens, Hcurr 0 = Pcurr ∶= Eimg(xcurr img ), Hprior 0 ∶= Eimg(xprior img ) are augmented with spatial and tem- poral positional encodings and flattened across the spatial dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' They are then processed by K transformer en- coder [65] layers A as follows: [Hcurr k Hprior k ] = Ak([ Hcurr k−1 + S + 1L ⊗ tcurr Hprior k−1 + S + 1L ⊗ tprior]), (1) for k = 1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',K, where S ∈ RL×Dimg denotes 2D sinusoidal positional encodings [12] and T = [tcurr;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='tprior] ∈ R2×Dimg is its temporal counterpart, which is learnt (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2) [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The layer-normalised (LN) [6] output of the final transformer encoder block Pdiff ∶= LN(Hcurr K ) is an ‘aggregated’ repre- sentation of patch-level progression information anchored on the current image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Figure 3 shows attention roll-out [1] applied to Pdiff after pre-training, showing how the prior image contributes to the fused representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 further highlights the robustness to variations in pose un- derlining that registration is not necessary for this encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Static-temporal feature decomposition When a prior image is available the final image representation V ∶= Pcurr ⊕ Pdiff ∈ RW ′×H′×2Dimg is formed by concatenating two sets of features (similar to [7]): those from the current image alone (Pcurr) and the temporal features from cur- rent and prior images (Pdiff).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In this way, self-attention is mainly required to cope with pose variations and patch comparisons across time in extracting temporal content, re- moving the need for registration or explicit spatial feature alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' When no prior scan is available (x ∈ Ds), Aimg is not used and Pdiff is replaced by a learnable to- ken pmiss ∈ RDimg, replicated across the spatial dimen- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 later demonstrates that Aimg highlights the value of feature decomposition for tasks such as phrase grounding which require well-localised features [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Hereafter, downstream tasks that require solely single image features, Pcurr, are referred to as static tasks, and the ones that benefit from additional progression information, Pdiff, as temporal tasks, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', report decoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Text-supervision for spatio-temporal learning Let w = (w1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',wM) denote a vector of M tokens of a report xtxt after tokenisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We first obtain contextu- alised token features Etxt(w) ∈ RM×Dtxt by passing a se- quence of text tokens w = (w1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',wM) through a BERT encoder Etxt [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The input sequence is prepended with either a [CLS] or [MLM] token associated with a down- stream training objective, conditioning the output features 3 (If available) Transformer encoder blocks CXR-BERT MLM loss CNN CNN Global + local contrastive loss [CLS] increased right pleural effusion [SEP] left lower lobe pneumonia is improving [SEP] [MLM] [MASK] right pleural effusion [SEP] [MASK] lower lobe pneumonia is [MASK] [SEP] CXR-BERT Increased right pleural effusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Left lower lobe pneumonia is improving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' (self-attention + feed-forward network) Temporal encoding Spatial encoding Flatten and concatenate If prior available Otherwise "Missing image" embedding Cross-attention For masked language modelling For contrastive loss [CLS] [MLM] Shared weights Shared weights "Difference" embedding Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The proposed self-supervised VLP training framework BioViL-T: Image representations V are extracted from single and multiple input scans (whenever available) using a hybrid CNN and transformer encoder [23,50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This design choice is to increase the data- efficiency and enable the fusion of temporal content without requiring image registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' They are later matched with their corresponding text representations obtained with CXR-BERT [9] using local [31] and global InfoNCE [48] training objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' As an additional model supervision, multi-modal fused representations, obtained with cross-attention, are used for image-guided masked language modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' similar to [38, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' During training, we do two forward passes through Etxt: once with masking at 45% probabil- ity (for the MLM objective) and once without masking for contrastive learning, as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The text encoder is initialised with the weights of CXR-BERT3 [9], a model pre-trained on domain-specific vocabulary and corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Both text and image features are later projected into a joint latent space with φtxt ∶ RDtxt → RD, and similarly vproj w,h ∶= φimg(vw,h) where φimg ∶ RDimg → RD, with φ being a two-layer perceptron in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Contrastive objectives Let r ∶= [Etxt(w)][CLS] denote the global representation of w, with rproj ∶= φtxt(r) its pro- jected version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Given projected patch embeddings vproj w,h , we can compute a global cosine similarity SC(¯vproj,rproj) and a local similarity using weighted pairwise cosine similari- ties across text tokens and projected patch embeddings [31, 75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' These similarities are used in both global and local contrastive objectives with the InfoNCE loss [48, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The local loss proves crucial both for static phrase-grounding and temporal image classification (see Table 4), highlight- ing the importance of localised self-supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Image-guided masked language modelling Prior work [9,45] has shown that biomedical visual-language learning benefits from an auxiliary task such as MLM since captur- ing the joint distribution of tokens can stabilise and improve 3https : / / huggingface .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' co / microsoft / BiomedVLP - CXR-BERT-general language understanding during joint learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Given a batch B of token vectors w, it is often defined as the cross-entropy for predicting the randomly sampled masked tokens, m ⊂ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',M}, LMLM = − 1 ∣B∣ ∑w∈B log pθ(wm ∣w/m), where θ are the weights of the text encoder Etxt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In the absence of image information, however, certain masked findings and attributes are not readily predicted, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', “[MASK] is worsening”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' As shown in the general do- main [13], visual information can help disambiguate such masked predictions and provide additional cross-modal su- pervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Thus, we use cross-attention [21,65] to the image features vproj w,h during this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Specifically, for our image- guided MLM objective we model pθ(wm ∣w/m,vproj w,h ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Adaptations to downstream tasks BioViL-T can be adapted to various downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For phrase-grounding and zero-shot inference, we rely on SC(rproj, vproj w,h ) similar to [9, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For multiple-text prompts, projected text embeddings are marginalised prior to ℓ2-normalisation [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To enable language decoding, vproj w,h inputs are cross-attended by text queries w, and causal-attention is utilised between text tokens [38,65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Dif- fering from [9,31,80], we show that report generation tasks can greatly benefit from temporal joint latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Conditioning on prior reports In contrast to existing work, we incorporate the prior report as a prompt to contex- tualise the report generation task: pΦ(wcurr txt ∣wprior txt , vproj w,h ), 4 where Φ are the multi-modal encoder–decoder network’s weights, and wcurr txt , wprior txt denote text tokens for current and prior reports respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This is analogous to fine- tuning GPT-3 [11] with prompts and instructions [70], but conditioning on both images and the previous report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A dedicated separation token [SEP] is added into the input sequence [wprior txt ,[SEP],wcurr txt ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Curation of imaging datasets CXR datasets [35] often contain multiple image acquisitions Z = {ximg 1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',ximg Z } in a single visit due to data quality issues such as a lim- ited field-of-view or scanning the wrong body part (Fig- ure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Unlike [9,31,80], we conduct curation to choose higher quality images among the potential candidates in- stead of performing a random selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For this step, a separate BioViL-T is trained on ‘clean’ studies with sin- gle acquisitions and later used in a zero-shot setting to de- tect out-of-distribution samples [25,26] arising from the re- imaging process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The candidate ˆz is selected as follows: ˆz = arg maxz∈Z SC(¯vproj z , rproj) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ∣sˆz − sZ/ˆz∣ > δ for a margin δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This approach is applied to enhance the quality of the temporal classification dataset given its limited size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Datasets & experiments Here, we demonstrate BioViL-T’s data efficiency and adaptability to a wide range of applications, and show how the model achieves SOTA performance on various down- stream tasks by learning from data instances linked across time, making effective use of domain priors and the avail- able training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Specifically, our model is evaluated on a diverse set of downstream tasks including zero- and few- shot static and temporal image classification, language de- coding (report generation), phrase-grounding [10], and sen- tence similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR-T benchmark We release a new multi-modal benchmark dataset4, MS-CXR-T, to evaluate biomedical VLP models on two distinct temporal tasks: image clas- sification and sentence similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The former comprises multi-image and ground-truth label pairs (N = 1326) across 5 findings, with classes corresponding to 3 states of disease progression for each finding: {Improving, Stable, Worsening}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The latter quantifies the temporal-semantic similarity of text embeddings extracted from pairs of sen- tences (N = 361).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The pairs can be either paraphrases or contradictions in terms of disease progression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The data for both tasks was manually annotated and reviewed by a board certified radiologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Appendix C provides further details on its data distribution and annotation protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Datasets For pre-training, we use the MIMIC-CXR v2 [27, 35] chest X-ray dataset, which contains longitudinal 4MS-CXR-T benchmark dataset will soon be released at: https:// aka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='ms/ms-cxr-t Prior image Current image Prior image Current image Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Attention rollout maps [1] from the reference patch (marked with ★) to the current and prior images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The bounding boxes, annotated by a radiologist, show the extent of consolida- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that the reference patch attends to its anatomical neigh- bourhood in the prior image despite the misalignment between prior and current images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The grid (14 × 14) represents the patch tokens processed in the transformer encoder blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' imaging studies with corresponding radiological reports, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 for the distribution of studies per patient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We only use frontal view (AP/PA) scans and discard samples where reports do not contain an IMPRESSION section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' From this data, we gather 174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1k and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9k text-image pairs for model training and validation respectively, with a major- ity of text-image pairs including a prior image: ∣Dtrain m ∣ = 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8k, ∣Dtrain s ∣ = 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The text consists of the IMPRES- SION section and, for MLM additionally the FINDINGS sec- tion if available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that no manual labels are used during pre-training and no additional data is used for the methods that leverage the link between current and prior images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For early stopping we track the validation loss - see Appendix E for implementation details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Downstream evaluations are performed on a disjoint held-out test set shared across all tasks, ∣Dtest∣ = 2971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For report generation, we extend this test set with samples from healthy subjects (N = 815) to match the prevalence of pathological studies used in prior work [14, 24, 44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For fine-tuning on temporal image classification, we use labels from the Chest ImaGenome dataset [71] as in [36] (statis- tics in Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In detail, we use the following bench- mark datasets: (I) MS-CXR [10] for phrase grounding, (II) the RSNA Pneumonia dataset [59,69] to test zero-shot and fine-tuned classification, (III) MS-CXR-T for temporal sen- tence similarity and temporal image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Comparison approaches We compare our approach to other domain-specific SOTA pre-training frameworks [9, 31] specifically on phrase-grounding and zero-shot predic- tive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The non-temporal BioViL framework [9] is most similar to our approach and provides insight into non-temporal pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our ResNet model is initialised with BioViL weights and architecturally have only added the transformer encoder block to support multiple images, and cross-attention is utilised for image-guided MLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We additionally compare to internal ablations such as remov- ing the past report during report generation and masking prior images during phrase grounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For SOTA per- 5 357Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Results for report generation task: Predictions are evaluated in terms of lexical (BLEU-4, ROUGE) and factual- ity metrics (CHEXBERT, TEM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Approaches are grouped into two broad categories: nearest-neighbour (NN) and auto-regressive (AR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T pre-training consistently yields improved decod- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Further, the consistent performance gains of using prior im- age and report demonstrate the importance of such domain priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ‘PI / PR’ indicate usage of prior image and report, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Method Pre-training PI / PR BLEU-4 ROUGE CHEXBERT TEM NN CXR-RePaiR-2 [24] BioViL \x17 / \x17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 Baseline (NN) [9] BioViL \x17 / \x17 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 Proposed (NN) BioViL-T \x13/ \x17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 AR Baseline (AR) [9] BioViL \x17 / \x17 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 Proposed BioViL-T \x13/ \x17 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 Proposed BioViL-T \x13/ \x13 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 formance comparison, various AR and nearest-neighbour (NN) based language decoding approaches are used as base- lines: IFCC [44], R2Gen [14], CXR-RePaiR-2 [24], and CXR-RePaiR-Select [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For the temporal classification task, we compare against a baseline exploiting the BioViL image encoder [9], and an approach that makes use of graph convolutions across re- gions of interest extracted from bounding boxes [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For BioViL, we perform affine image registration (with 4 DoF) for each pair of scans to cope with pose variations, and the encoded images are concatenated along the feature dimen- sion and classified via a multilayer perceptron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For [36], we compare to the three-class setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Lastly, we bench- mark our final text model in isolation against domain spe- cific SOTA models in a temporal sentence similarity task: CXR-BERT [9] and PubMedBert [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Metrics Due to class imbalance, we report macro- accuracy for temporal image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For phrase grounding, we use mean Intersection-Over-Union (mIoU) and Contrast-to-Noise-Ratio (CNR) [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The latter mea- sures the discrepancies between cosine similarities inside and out of the bounding box region without requiring hard thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To evaluate the quality of generated reports, we use both the standard lexical metrics, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', BLEU [49], ROUGE-L [40], and also domain-specific factuality metric: CheXbert5 [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To directly probe the generation of change- related information, we introduce a new metric called tem- poral entity matching (TEM) to compute the match score of a fixed set of temporal entities (see Appendix D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Temporal pre-training yields data efficiency Downstream tasks are enabled with minimal labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The sections ‘NN’ and ‘Z&F’ on Tables 1 and 2 report zero- and few-shot performance on tasks benefitting from temporal information: temporal image classification and re- 5The average of the weighted-F1 score across 14 pathological observa- tions labelled by CheXbert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Temporal image classification results (repeated for 4 random seeds) on the MS-CXR-T benchmark for fully-supervised and zero-/few-shot (Z&F) learning settings, in terms of macro- accuracy across the three classes for each finding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Affine regis- tration is performed for the baseline method (denoted with suffix ‘w/reg’), to partially address the pose variations across scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Method (% of labels) Pre-train Consolidation Pl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' effusion Pneumonia Pneumothorax Edema Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F Z&F BioViL-T prompt (0%) Temporal 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 BioViL-T (10%) Temporal 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised Supervised CNN + Transformer ImageNet 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 CheXRelNet [36] ImageNet 47 47 47 36 49 BioViL [9] Static 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 BioViL w/reg [9] Static 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 BioViL-T Temporal 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report generation results obtained with SOTA baseline methods using the same train/test splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For comparison, we re- port the same lexical (BLEU-2) and factuality (CHEXBERT) met- rics from [24], and the specific sections decoded by each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Method Decoded sections BLEU-2 CHEXBERT R2gen [14] Findings & Impression 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='10 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='80 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='30 IFCC [44] Findings 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='70 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='10 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='40 CXR-RePaiR-Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' [24] Impression 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='10 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='30 BioViL-T Impression 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='86 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='14 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='83 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='73 BioViL-T Findings & Impression 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='31 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='19 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='86 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='35 port generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Here we measure the quality of the learnt joint latent space and the extent to which BioViL-T enables efficient use of raw data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For zero-shot classification we prompt the AR fine-tuned model with prefix: “[FINDING] is” and compare the next-token probability of words mean- ing ‘improving’, ‘stable’, and ‘worsening’ (Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Without using any labelled data, Table 2 shows that the proposed AR-based approach already yields performance superior to prior fully-supervised work [36] on temporal image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' With only 10% of labels, classifi- cation fine-tuning provides a further boost, indicating that BioViL-T produces a multi-image encoder readily adapted to temporal tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Similarly, in a zero-shot report-retrieval setting, the findings show that compared to temporally- agnostic pre-training, BioViL-T leveraging prior images improves across all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Consistent with prior work [24], the retrieved reports already preserve factuality with high CheXbert scores, more-so than the other metrics which measure fine-grained specifics of phrasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This demon- strates that the latent space captures the high-level seman- tics of the clinical features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Fine-grained phrasing however will be substantially improved by AR fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Achieving SOTA performance with BioViL-T A wide range of downstream tasks benefit substantially from temporally-aware pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Through downstream adaptations and fine-tuning our model, we report SOTA performance on report generation and temporal image classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For the former, us- 6 ing both prior images and reports during fine-tuning sub- stantially improves across metrics (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In particular, TEM metric results show that temporal context is key for accurately describing change in the generated report while avoiding hallucinations (see Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 for examples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Com- paring to published results on a comparable test split and metrics (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1), we conclude that BioViL-T with fine- tuning achieves SOTA on report generation, producing re- ports that are lexically on par with prior work but substan- tially more factually accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that we do ‘vanilla’ AR fine-tuning to focus on the impact of the pre-trained encoders, so application-specific supervision [44] could be used in conjunction to further boost performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In temporal image classification (Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2), BioViL-T pre- training outperforms the non-temporal baseline (BioViL) and improves on previously-reported results [36] by up to 20 percentage points (pp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Furthermore, baseline meth- ods that rely on image registration (BioViL w/reg), under- perform compared to the proposed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Further anal- ysis reveals that errors tend to be in cases with disagreement between radiologists (Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We also note that pre- training is critical for a hybrid CNN-transformer model on this task, likely due to the small labelled dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Lastly, cu- ration of temporal training data is observed to improve the classification results by .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='68 pp aggregated across the find- ings, see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Static tasks benefit from temporal learning BioViL-T broadens the range of applicable downstream tasks whilst contributing to performance on static tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In this section, we demonstrate that performance im- provements afforded by BioViL-T are not restricted to tem- poral tasks – static tasks also benefit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Below, we re- port results on zero- and few-shot pneumonia classification from single images [59], where BioViL-T establishes a new SOTA compared to prior work [9,31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' RSNA Pneumonia Detection Benchmark [59] Classification results for train & test split of 70% – 30% respectively Method % of Labels Supervision Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F1 AUROC GLoRIA [31] \x17 Zero-shot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='58 BioViL [9] \x17 Zero-shot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='732 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='665 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='831 BioViL-T \x17 Zero-shot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='871 BioViL [9] 1% Few-shot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='723 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='881 BioViL-T 1% Few-shot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='814 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='730 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='890 We see a similar trend on the MS-CXR phrase grounding benchmark (below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This task can be solved with single images, however we show that the inclusion of the prior image (where available) does not impair the performance of BioViL-T: feature decomposition effectively preserves localised information from the current image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR benchmark results [10] (5-runs with different seeds) “Multi-image” column indicates the input images used at test time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Method Multi-Image Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' CNR Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' mIoU BioViL [9] \x17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='229 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='005 + Local loss [9,31] \x17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='21 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='202 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='010 BioViL-T \x17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='243 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='005 BioViL-T \x13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='240 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='005 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Towards better sentence embedding quality Language models acquire increased temporal sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We hypothesise that text encoders learn temporal seman- tics through supervision from longitudinal image series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To verify this, RadNLI [44] and MS-CXR-T datasets are used in a zero-shot binary classification setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Cosine similarity of sentence pair embeddings [55] are treated as class-logits to label each pair either as paraphrase or contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' See Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 for further details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our text model is benchmarked against SOTA domain- specific BERT models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The results below (MS-CXR-T), collected over 4 runs, show that the proposed framework greatly increases the sensitivity of sentence embeddings to temporal content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' At same time, it learns to better capture the static content (RadNLI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Here, CXR-BERT-Specialised [9] is a text-model learnt through single-image based pre- training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that our text model is initialised with CXR- BERT-General, illustrating the substantial increase in tem- poral and static sensitivity due to BioViL-T pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR-T (361 pairs) RadNLI (145 pairs) Text Model Accuracy ROC-AUC Accuracy ROC-AUC PubMedBERT [28] 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='39 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='542 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='38 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='727 CXR-BERT-G [9] 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='60 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='601 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='59 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='902 CXR-BERT-S [9] 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='837 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='66 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='932 BioViL-T 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='77 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='933 ± .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='003 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='52 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='947 ± .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='003 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Ablation experiments In Table 4 we report extensive ablations across the multi- image encoder architecture, pre-training choices, and AR fine-tuning for report generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Image encoder Table 4 shows that decomposition of static and progression features is essential to ensure good performance on single-image tasks, such as phrase ground- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For temporal representations, on the other hand, posi- tional encodings are essential to disambiguate the order of scans, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', permutation variance across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Model pre-training The corresponding results are shown in the middle section of Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The local contrastive loss proves crucial to ensure meaningful language supervision during pre-training, followed by the image-guided MLM objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Lastly, use of the FINDINGS section results in only minor performance gains as the key findings are al- ready captured in the IMPRESSION section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 7 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Ablation experiments on image encoder, pre-training set- tings, and report generation (repeated for 4 random seeds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that for temporal classification, linear probing is applied to frozen image embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In report generation, the baseline method is fine-tuned with both prior image and report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Ablation Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' CNR (mIoU) Pl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Effusion Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Encoder Baseline 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='02 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='248) 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 No temporal encoding 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='02 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='242) 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 No decomposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='08 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='203) 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Pre-training Baseline 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='02 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='248) 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 Findings section discarded 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='01 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='246) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='8 No MLM loss 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='28 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='02 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='238) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7 No local contrastive loss 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='02 (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='236) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 Ablation ROUGE TEM Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Report gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Baseline 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='64 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='08 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='11 No prior image 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='30 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='40 No prior report 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='67 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='12 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='30 No prior image & report 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='78 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='09 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='65 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='48 No separation token 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='40 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='06 Report generation The importance of prior image and re- port is demonstrated by the substantial drop in the “no prior image & report” ablation especially on TEM metric, con- firming our hypothesis that temporal context is crucial for improving report quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' While both inputs are crucial for optimal performance, the prior report proves to be more im- portant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This is expected as the prior report is a summary of the image and thus provides a stronger and clearer signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The prior image however cannot be dismissed entirely as it provides granular details which may not always be docu- mented in a report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Finally, we found the separation token is crucial in differentiating between the predicted tokens for the current report and tokens from the prior report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 Progression Support devices Other Stop word Positional Meta Anatomy Descriptive Size or degree Finding Uncertain ∆prior img (w) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Mean token-level increase in image-guided MLM loss when prior image is discarded, grouped by token category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The prior image is excluded during inference to measure its impact on masked token predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Progression tokens are significantly better predicted when prior images are incorporated into image embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The top five Progression tokens are ‘persist’, ‘im- proving’, ‘remains’, ‘unchanged’, and ‘residual’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Which tokens require a prior image in MLM?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We leverage the MLM objective in an inference setting to analyse the influence of prior images in predicting masked tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Inspired by the ∆ image loss of [8], we define ∆prior img as the change in loss by conditioning the estimation with a prior image for a given token w as follows: ∆prior img (w) = l(w,xcurr img ,∅) − l(w,xcurr img ,xprior img ) (2) where l(w,xcurr img ,xprior img ) is the cross-entropy of predicting the masked token w given visual features (MLM loss for a single token), averaged over sentences in which w appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ∆prior img is a measure of how much that token benefits from access to the prior image, as well as an assessment of the contribution of the prior image to the image representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Figure 4 we show the distribution of ∆prior img as a func- tion of token category (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', Anatomy, Positional;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' see F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5 for annotation details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For Progression-type terms in particular, the model heavily relies on the prior image for image-guided MLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We further observe that this effect is specific to temporal to- kens;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' as expected, those from other semantic categories do not consistently rely on the prior image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Conclusion In this paper, we introduced BioViL-T, a vision– language pre-training framework enabling alignment be- tween text and multiple images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T makes use of a novel multi-image encoder and explicitly decomposes static–temporal features to augment the current image rep- resentation with information from prior images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This en- ables the grounding of temporal references in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To our knowledge, this is the first method capable of lever- aging the temporal content commonly present in biomed- ical text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' It addresses an important limitation in existing VLP approaches, which simply discard such context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Also, incorporating such multi-modal temporal content provides strong learning signals to the model, resulting in richer rep- resentations and improved downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We demonstrate the value of this paradigm through ex- tensive experiments: BioViL-T excels on both static and temporal tasks, establishing new SOTA on report genera- tion, temporal image classification, few/zero-shot pneumo- nia detection, and phrase grounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Furthermore, we re- lease a new multi-modal benchmark (MS-CXR-T) to mea- sure the quality of image and text representations in terms of temporal semantics, enabling more diverse evaluation of biomedical VLP models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The corresponding model weights and code will be made publicly available6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For applications requiring the encoding of more than 2 images, the proposed model can scale linearly with the 6Code will be released at: https://aka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='ms/biovil-t-code 8 number of time points by switching to cross-attention of vi- sual tokens across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Further exploration and evaluation are required on diverse datasets to characterise what kinds of tasks would benefit from a temporal modelling approach, and specifically from the proposed methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Acknowledgements: We would like to thank Hoifung Poon, Melanie Bernhardt, Melissa Bristow and Naoto Usuyama for their valuable feedback and contributions, and Hannah Richardson for helping with the compliance review of the datasets used in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' References [1] Samira Abnar and Willem Zuidema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Quantifying attention flow in transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4190–4197, Online, July 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Association for Com- putational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3, 5, 13, 14 [2] Monica N Agrawal, Hunter Lang, Michael Offin, Lior Gazit, and David Sontag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Leveraging time irreversibility with order-contrastive pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Artificial Intelligence and Statistics, pages 2330–2353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [3] Uwa O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Aideyan, Kevin Berbaum, and Wilbur L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Influence of prior radiologic information on the interpre- tation of radiographic examinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Academic Radiology, 2(3):205–208, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1 [4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Flamingo: a vi- sual language model for few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='14198, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 3 [5] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Avants, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Epstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Grossman, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Gee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Symmetric diffeomorphic image registration with cross- correlation: Evaluating automated labeling of elderly and neurodegenerative brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Medical Image Analysis, 12(1):26– 41, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Special Issue on The Third International Workshop on Biomedical Image Registration – WBIR 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Hin- ton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Layer normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='06450, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [7] Nadine Behrmann, Mohsen Fayyaz, Juergen Gall, and Mehdi Noroozi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Long short view feature decomposition via contrastive video representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vi- sion, pages 9244–9253, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [8] Yonatan Bitton, Gabriel Stanovsky, Michael Elhadad, and Roy Schwartz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Data efficient masked language modeling for vision and language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In 2021 Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021, pages 3013–3028.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Association for Computational Linguis- tics (ACL), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 8 [9] Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Castro, Anton Schwaighofer, Stephanie Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, Hoifung Poon, and Ozan Oktay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Making the most of text semantics to improve biomedical vision– language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In European Conference on Computer Vision (ECCV), pages 1–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Springer, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21 [10] Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Castro, Anton Schwaighofer, Stephanie Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, Hoifung Poon, and Ozan Oktay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR: Making the most of text semantics to improve biomedical vision–language processing (version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PhysioNet, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 3, 5, 7 [11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub- biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan- tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Lan- guage models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Advances in neural in- formation processing systems, 33:1877–1901, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5, 19 [12] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' End-to- end object detection with transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In European confer- ence on computer vision, pages 213–229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [13] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' UNITER: UNiversal Image-TExt Representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In European conference on computer vision, pages 104–120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 4 [14] Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang Wan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Generating radiology reports via memory-driven trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5, 6 [15] Ching-Yao Chuang, R Devon Hjelm, Xin Wang, Vibhav Vi- neet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, and Yale Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Robust contrastive learning against noisy views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16670–16681, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1 [16] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, An- tonio Torralba, and Stefanie Jegelka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Debiased contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Advances in neural information processing sys- tems, 33:8765–8775, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1 [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Daudt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Saux, and Alexandre Boulch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Fully convo- lutional siamese networks for change detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 4063–4067, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [18] Karan Desai and Justin Johnson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Virtex: Learning visual representations from textual annotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11162–11173, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2 [19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Bert: Pre-training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04805, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- vain Gelly, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' An image is worth 16x16 words: Trans- formers for image recognition at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Con- ference on Learning Representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3, 13 9 [21] Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu Yuan, Nanyun Peng, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' An empirical study of training end-to-end vision-and-language transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceed- ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18166–18176, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 4 [22] Stanley Durrleman, Xavier Pennec, Alain Trouv´e, Jos´e Braga, Guido Gerig, and Nicholas Ayache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Toward a com- prehensive framework for the spatiotemporal statistical anal- ysis of longitudinal shape data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' International Journal of Computer Vision, 103:22–59, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [23] St´ephane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Convit: Improv- ing vision transformers with soft convolutional inductive bi- ases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 2286–2296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3, 4 [24] Mark Endo, Rayan Krishnan, Viswesh Krishna, Andrew Y Ng, and Pranav Rajpurkar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Retrieval-based chest x-ray report generation using a pre-trained contrastive language-image model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Machine Learning for Health, pages 209–219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5, 6, 18 [25] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Zero-shot out-of-distribution detection based on the pretrained model clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the AAAI confer- ence on artificial intelligence, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5 [26] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Ex- ploring the limits of out-of-distribution detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34:7068–7081, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5 [27] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mi- etus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PhysioBank, PhysioToolkit, and PhysioNet: com- ponents of a new research resource for complex physiologic signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Circulation, 101(23):e215–e220, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5 [28] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, and Hoifung Poon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Domain-specific language model pre- training for biomedical natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ACM Transactions on Computing for Healthcare (HEALTH), 3(1):1–23, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 6, 7, 20 [29] Tengda Han, Weidi Xie, and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Self- supervised co-training for video representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Ad- vances in Neural Information Processing Systems, 33:5679– 5690, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [31] Shih-Cheng Huang, Liyue Shen, Matthew P Lungren, and Serena Yeung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' GLoRIA: A multimodal global-local repre- sentation learning framework for label-efficient medical im- age recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Interna- tional Conference on Computer Vision, pages 3942–3951, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2, 4, 5, 7 [32] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Sil- viana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Proceedings of the AAAI conference on artificial intelligence, 33(01):590–597, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [33] Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven Truong, Tan Bui, Pierre Chambon, Yuhao Zhang, Matthew P Lungren, Andrew Y Ng, Curtis Langlotz, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Radgraph: Extracting clinical entities and relations from radiology re- ports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Thirty-fifth Conference on Neural Information Pro- cessing Systems Datasets and Benchmarks Track (Round 1), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 16 [34] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Scaling up visual and vision-language representa- tion learning with noisy text supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 4904–4916.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 13 [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Pollard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Berkowitz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Mark, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Horng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MIMIC-CXR database (version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PhysioNet, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 5 [36] Gaurang Karwande, Amarachi B Mbakwe, Joy T Wu, Leo A Celi, Mehdi Moradi, and Ismini Lourentzou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Chexrelnet: An anatomy-aware model for tracking longitudinal relation- ships between chest x-rays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Medical Image Computing and Computer Assisted Intervention–MICCAI 2022, pages 581–591, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 3, 5, 6, 7 [37] Jiann-Shu Lee, Jing-Wein Wang, Hsing-Hsien Wu, and Ming-Zheng Yuan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A nonparametric-based rib suppression method for chest radiographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Computers & Mathematics with Applications, 64(5):1390–1399, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 21 [38] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BLIP: Bootstrapping language-image pre-training for uni- fied vision-language understanding and generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Ka- malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes- vari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, vol- ume 162 of Proceedings of Machine Learning Research, pages 12888–12900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 17–23 Jul 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 4 [39] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Align before fuse: Vision and language representation learn- ing with momentum distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Advances in neural infor- mation processing systems, 34:9694–9705, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2 [40] Chin-Yew Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ROUGE: A package for automatic evaluation of summaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Association for Com- putational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 6 [41] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Generat- ing wikipedia by summarizing long sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Interna- tional Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 4 [42] Ilya Loshchilov and Frank Hutter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Decoupled weight de- cay regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 17, 18 [43] Bradley C Lowekamp, David T Chen, Luis Ib´a˜nez, and Daniel Blezek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The design of simpleitk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Frontiers in neu- roinformatics, 7:45, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 21 10 [44] Yasuhide Miura, Yuhao Zhang, Emily Tsai, Curtis Langlotz, and Dan Jurafsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Improving factual completeness and con- sistency of image-to-text radiology report generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5288–5304, Online, June 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5, 6, 7, 18 [45] Jong Hak Moon, Hyungyung Lee, Woncheol Shin, Young- Hak Kim, and Edward Choi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Multi-modal understanding and generation for medical images and text via vision-language pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' IEEE Journal of Biomedical and Health Infor- matics, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 4 [46] American College of Radiology (ACR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ACR practice guideline for communication of diagnostic imaging findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Practice guidelines & technical standards, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1 [47] Dong Yul Oh, Jihang Kim, and Kyong Joon Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Longitudi- nal change detection on chest X-rays using geometric corre- lation maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 748– 756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Springer, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [48] Aaron van den Oord, Yazhe Li, and Oriol Vinyals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Repre- sentation learning with contrastive predictive coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='03748, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 4 [49] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Bleu: a method for automatic evaluation of machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 6 [50] Namuk Park and Songkuk Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' How do vision transformers work?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Learning Represen- tations, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3, 4 [51] Daifeng Peng, Yongjun Zhang, and Haiyan Guan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' End-to- end change detection for high resolution satellite images us- ing improved UNet++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Remote Sensing, 11(11):1382, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Learn- ing transferable visual models from natural language super- vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 8748–8763.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2, 4 [53] Vignav Ramesh, Nathan Andrew Chi, and Pranav Rajpurkar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Improving radiology report generation systems by removing hallucinated references to non-existent priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='06340, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [54] Adria Recasens, Pauline Luc, Jean-Baptiste Alayrac, Luyu Wang, Florian Strub, Corentin Tallec, Mateusz Malinowski, Viorica P˘atr˘aucean, Florent Altch´e, Michal Valko, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Broaden your views for self-supervised video learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1255–1265, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [55] Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna Gurevych, Nandan Thakur, Nils Reimers, Johannes Dax- enberger, Iryna Gurevych, Nils Reimers, Iryna Gurevych, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Sentence-bert: Sentence embeddings using siamese bert-networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, pages 671–688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Association for Computational Linguistics, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 7, 20 [56] Liqa A Rousan, Eyhab Elobeid, Musaab Karrar, and Yousef Khader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Chest x-ray findings and temporal lung changes in patients with covid-19 pneumonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BMC Pulmonary Medicine, 20(1):1–9, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1 [57] Ruggiero Santeramo, Samuel Joseph Withey, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Mon- tana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Longitudinal detection of radiological abnormalities with time-modulated LSTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In MICCAI 2018 Workshop on Deep Learning in Medical Imaging Analysis, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [58] Wenzhong Shi, Min Zhang, Rui Zhang, Shanxiong Chen, and Zhao Zhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Change detection based on artificial intel- ligence: State-of-the-art and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Remote Sensing, 12(10):1688, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [59] George Shih, Carol C Wu, Safwan S Halabi, Marc D Kohli, Luciano M Prevedello, Tessa S Cook, Arjun Sharma, Judith K Amorosa, Veronica Arteaga, Maya Galperin- Aizenberg, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Radiology: Artificial Intelligence, 1(1):e180041, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 5, 7 [60] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil- laume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Flava: A foundational language and vision alignment model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2022 IEEE/CVF Conference on Com- puter Vision and Pattern Recognition (CVPR), pages 15617– 15629, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [61] Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, Andrew Ng, and Matthew Lungren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Combining automatic labelers and expert annotations for accurate radiology report labeling using BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the 2020 Confer- ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1500–1519, Online, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Associa- tion for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 6 [62] Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, Andrew Y Ng, and Matthew P Lungren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' CheXbert: com- bining automatic labelers and expert annotations for accu- rate radiology report labeling using bert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='09167, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 16 [63] Anuroop Sriram, Matthew Muckley, Koustuv Sinha, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Shamout, Joelle Pineau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Geras, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Azour, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Aphinyanaphongs, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Yakubova, and William H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Moore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' COVID-19 prognosis via self-supervised representation learning and multi-image prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04909, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 3 [64] Philippe Th´evenaz and Michael Unser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Optimization of mu- tual information for multiresolution image registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' IEEE transactions on image processing, 9(12):2083–2099, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 21 [65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko- reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3, 4 [66] Yen Nhi Truong Vu, Richard Wang, Niranjan Balachandar, Can Liu, Andrew Y Ng, and Pranav Rajpurkar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Medaug: 11 Contrastive learning leveraging patient metadata improves representations for chest x-ray interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Ma- chine Learning for Healthcare Conference, pages 755–769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [67] Chuang Wang, Andreas Rimner, Yu chi Hu, Neelam Tyagi, Jue Jiang, Ellen Yorke, Sadegh Riyahi, Gig S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Mageras, Joseph O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Deasy, and Pengpeng Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Towards predicting the evolution of lung tumors during radiotherapy observed on a longitudinal MR imaging study via a deep learning al- gorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Medical Physics, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [68] Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Vlmo: Unified vision-language pre-training with mixture-of- modality-experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='02358, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [69] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo- hammadhadi Bagheri, and Ronald M Summers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ChestX- Ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of com- mon thorax diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2097–2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' IEEE Computer Society, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 5 [70] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Finetuned language models are zero-shot learn- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In International Conference on Learning Representa- tions, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5 [71] Joy Wu, Nkechinyere Agu, Ismini Lourentzou, Arjun Sharma, Joseph Paguio, Jasper Seth Yao, Edward Christo- pher Dee, William Mitchell, Satyananda Kashyap, Andrea Giovannini, Leo Anthony Celi, Tanveer Syeda-Mahmood, and Mehdi Moradi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Chest imagenome dataset (version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PhysioNet, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 5, 15, 18 [72] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Rethinking and improving relative posi- tion encoding for vision transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10033–10041, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 19 [73] Yiwen Xu, Ahmed Hosny, Roman Zeleznik, Chintan Parmar, Thibaud P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Coroller, Idalid Ivy Franco, Raymond H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Mak, and Hugo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Aerts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Deep learning predicts lung cancer treatment response from serial medical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Clinical Cancer Research, 25:3266 – 3275, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [74] Bin Yan and Mingtao Pei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Clinical-BERT: Vision-language pre-training for radiograph diagnosis and reports generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Proceedings of the AAAI Conference on Artificial Intelli- gence, 36(3):2982–2990, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [75] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and Chunjing Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Filip: Fine-grained interactive language-image pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='07783, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2, 4 [76] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo- jtaba Seyedhosseini, and Yonghui Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Coca: Contrastive captioners are image-text foundation models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='01917, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2 [77] Sukmin Yun, Jaehyung Kim, Dongyoon Han, Hwanjun Song, Jung-Woo Ha, and Jinwoo Shin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Time is matter: Temporal self-supervision for video transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In Inter- national Conference on Machine Learning, pages 25804– 25816.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' PMLR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [78] Dewen Zeng, John N Kheir, Peng Zeng, and Yiyu Shi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Con- trastive learning with temporal correlated medical images: A case study using lung segmentation in chest x-rays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' IEEE, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 2 [79] Zhaoyang Zeng, Daniel McDuff, Yale Song, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Con- trastive learning of global and local video representa- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 34:7025–7040, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3 [80] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Contrastive learning of medical visual representations from paired images and text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00747, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 1, 2, 4, 5 [81] Yuhao Zhang, Yuhui Zhang, Peng Qi, Christopher D Man- ning, and Curtis P Langlotz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Biomedical and clinical english model packages for the stanza python nlp library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Journal of the American Medical Informatics Association, 28(9):1892– 1899, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 16, 17, 18 12 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Additional Results and Analyses A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Qualitative analysis of generated reports Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 shows example reports generated with BioViL-T and BioViL models, which are compared to the reference radiologist’s reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In comparison with BioViL which only models the current image, BioViL-T shows the benefit from incorporating prior study information and is able to provide factually more accurate reports especially in terms of describing temporal progression of the findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This is showcased in the first two examples in the table: In the first row, BioViL-T is able to comment on not only the presence of the pleural effusion but also its improvement while BioViL fails to mention the change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In the second example, BioViL-T is able to correctly identify that there is no relevant change by comparing with the previous study, while BioViL wrongly hallucinates the tube in the current image as a new placement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T can also avoid hallu- cination of the temporal information when there is no prior study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For instance, in the third example, BioViL-T cor- rectly acknowledges that there is no prior image and gen- erates the report based on information from the single cur- rent image, while BioViL hallucinates a non-exisistent prior study and wrongly generates temporal descriptions in the report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Further analysis on temporal classification A subset of the MS-CXR-T benchmark dataset is re- annotated by an expert radiologist by blinding them to the existing ground-truth labels and displaying only pairs of im- ages obtained from each subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' With the new set of labels, the analysis focuses on measuring the correlation between inter-rater agreement and image model’s prediction errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 shows the dependency between the two where the x-axis corresponds to the cross entropy loss between the MS-CXR-T benchmark labels and model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We observe lower model performance on cases with smaller inter-rater reliability for the three classes in the dataset, in- dicating that the model’s prediction errors occur more often for the cases where experts may disagree with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Self-attention visualisation In Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2, we show examples of self-attention roll- out [1] maps for pleural effusion and consolidation, includ- ing radiologist-annotated bounding boxes surrounding the corresponding pathology in each prior and current image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To model the attention flow through the transformer en- coder block, we first average each attention weight matrix across all heads, subsequently we multiply the matrices be- tween every two layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For every block we add the identity matrix in order to model the residual connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Last, we only keep the top 10 % of attention weights per block to re- duce noise in the final rollout map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In contrast to [20], we 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00 Classification loss Improving Stable Worsening Agreement Disagreement Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Cross entropy between model predictions and MS-CXR-T temporal classification labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ‘Disagreement’ indi- cates cases for which annotations differed amongst radiologists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Model performance is higher for cases with with low ambiguity (‘Agreement’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' do not visualize the rollout map with respect to a [CLS] token.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Instead, we choose a reference image patch from the center of the radiologist-annotated bounding boxes, marked with ★ in Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We find that the rollout maps in Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 are in good agreement with radiologist-annotated bounding boxes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', the reference patch attends to other patches within the bounding boxes in the prior and current image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In addition, we find that BioViL-T is robust to pose variations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', in Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 (a) we show that despite the vertical shift be- tween prior and current image, the reference patch attends to the correct image patches in the prior image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To further assess the robustness of BioViL-T against pose variations between prior and current images, we per- formed multiple rotations to the prior image within a pair and computed rollout maps from the same reference patch in the current image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3 shows that BioViL-T con- sistently attends to the corresponding anatomical region in- dependently of the spatial transformation applied, demon- strating that registration is not needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Data curation of imaging datasets Large datasets often contain instances that are misla- belled or out of distribution [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We used BioViL-T to per- form pairwise ranking of instances in MIMIC-CXR (Sec- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3, δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2) and selected representative examples found in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our method is able to select the most appropriate image for a range of different image-acquisition or image-processing issues (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We found that many lateral acquisitions in the dataset were unexpectedly labelled as frontal (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Some images contained only noise (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4b), non-human samples (Figures A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4d and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4e) or incorrect anatomy (Fig- ure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Often, acquisitions with an incomplete field of view (FOV) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', the lungs are not completely visible) were repeated (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Lastly, post-processed images were 13 Reference (by radiologist) BioViL BioViL-T No evidence of acute cardiopul- monary process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Decreased right pleural effusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Small right pleural effusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Small right pleural effusion, decreased since .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No relevant change as com- pared to the previous image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No evidence of pneumonia or other parenchymal pathology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Normal size of the heart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No pleural effusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In comparison with the study of , there has been placement of a right ij port - a - cath that extends to the lower svc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No evidence of post procedure pneumothorax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The cardiac silhouette is within normal limits and there is no vascular congestion or pleural effusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' There is some asymmetry of opacification at the bases, more prominent on the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In the appropriate clinical setting, this could possibly represent a develop- ing consolidation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' As compared to the previous ra- diograph, no relevant change is seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The lung volumes are nor- mal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Normal size of the car- diac silhouette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Normal hilar and mediastinal structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No pneu- monia, no pulmonary edema, no pleural effusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No previous images .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The car- diac silhouette is within normal limits and there is no evidence of vascular congestion, pleural effu- sion, or acute focal pneumonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In comparison with the study of , there is little change and no evidence of acute car- diopulmonary disease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No pneumonia, vascular congestion, or pleural effusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' No previous images .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The car- diac silhouette is within normal limits and there is no vascular congestion, pleural effusion, or acute focal pneumonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Comparison between reports generated by radiologists, BioViL using only a single current image and BioViL-T using both the current and previous study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T with access to longitudinal information can generate more accurate reports with more precise details on the progression of findings (as in the first and second example) while avoiding hallucination (in the third example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Blue box highlights the correct temporal information and brown box highlights incorrect temporal information including hallucination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Prior image Current image (a) Example of improving pleural effusion Prior image Current image (b) Example of stable pleural effusion Prior image Current image (c) Example of worsening pleural effusion Prior image Current image (d) Example of improving consolidation Prior image Current image (e) Example of stable consolidation Prior image Current image (f) Example of worsening consolidation Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Self-attention rollout maps [1] from the reference patch (marked with ★) to the current and prior images, overlaid on example cases of (a) improving, (b) stable and (c) worsening pleural effusion (top row) and consolidation (bottom row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The bounding boxes, annotated by a radiologist, show the area corresponding to the pathology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The centre patch in the bounding box for the current image was selected as reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The grid (14 × 14) represents the visual tokens processed in the transformer encoder blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 14 O★PORTABLEPORTABLE357Prior image Current image (a) Previous image rotated -30° Prior image Current image (b) Original pair Prior image Current image (c) Previous image rotated 30° Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Comparison of roll-out maps computed after applying in-plane spatial rotations to the prior image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The reference visual token (★) attends to the corresponding anatomical region annotated by an expert independent of the underlying spatial transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' detected by the algorithm such as contrast-enhanced scans (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4i) that are not often used for diagnostic purposes in clinical practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Temporal aspects of the MIMIC-CXR v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 dataset Subjects in the MIMIC-CXR dataset often have multi- ple associated studies that happened at different times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A study, sometimes referred to as an ‘exam’ or ‘procedure’, refers to “one or more images taken on a single visit to a medical facility”7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To assess pathology progression, radi- ologists compare images (also referred to as ‘scans’ or ‘se- ries’) from different studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In the MIMIC-CXR dataset, each study (with one or more images) is accompanied by the report written by the radiologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 represents the distribution of studies per subject within MIMIC-CXR and the corresponding cumulative distribution function, show- ing that 67 % of the subjects have at least two different as- sociated studies (and therefore at least two images acquired at different stages of the disease).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Another way to quantify temporal information in MIMIC-CXR is through the progression labels provided by the Chest ImaGenome dataset [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' These progression labels are extracted from the reports and thus identify the cases when the radiologist explicitly describes changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We found that in MIMIC, around 40 % of the reports are as- sociated with a progression label from any of the available findings defined by ImaGenome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR-T benchmark C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Temporal image classification The MS-CXR-T temporal image classification contains progression labels for five findings (Consolidation, Edema, Pleural Effusion, Pneumonia and Pneumothorax) across three progression classes (Improving, Stable, and Worsening).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This benchmark builds on the publicly available Chest ImaGenome gold and Chest ImaGenome 7Adapted from https://ncithesaurus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='nci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='gov/ silver datasets [71] which provide progression labels auto- matically derived from radiology reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We collected a set of studies that are part of the ImaGenome silver dataset, ex- cluding any studies that had been previously verified as part of the ImaGenome gold dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Additionally, we excluded studies where there are multiple progression labels for a sin- gle pathology (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' left pleural effusion has increased, right pleural effusion remains stable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We conducted a review process of the selected candidates, asking a board certified radiologist to either accept or reject the label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To inform their review of the labels, the radiologist was given access to the radiology report for the current image, and the sentence from which the auto generated label had been extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' After collecting our curated labels and labels from the ImaGenome gold dataset, we matched the report-based la- bels to specific image pairs, performing a second data cu- ration step to create the image dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To ensure the di- agnostic quality of all images in the dataset, if a study had multiple frontal scans we performed a quality control step asking a radiologist to select the best image for each study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 shows examples from the benchmark across differ- ent pathologies and progression labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The class distribution for the image classification task in MS-CXR-T is shown in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' As seen in the table, the class distribution of the dataset skews towards the stable and worsening classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This could be explained as pa- tients are more likely to get a chest X-ray scan when their condition is stable or deteriorating as opposed to when there is an improvement in patient condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Temporal sentence similarity In this section, we describe the process of creating the MS-CXR-T temporal sentence similarity benchmark, which consists of pairs of paraphrase or contradiction sentences in terms of disease progression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We create this dataset using two different methods, RadGraph where paraphrase and contradiction sentence pairs are discovered by analysing graph representations of sentences and Swaps where para- phrases and contradictions are created by swapping out tem- poral keywords in the sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To create this dataset, we first collected a set of sentences 15 (a) Incorrect view (b) Invalid acquisition (c) Incomplete field of view (d) Non-human sample (e) Non-human sample (f) Inverted intensities (g) Non-chest sample (h) Image orientation (i) Post-processed image (j) Processing artefacts Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Pairwise ranking of images performed by the proposed data curation method (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3) on images from the MIMIC- CXR v2 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Images highlighted with dashed green rectangles are automatically selected by our method and used for training to improve model’s downstream performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The rejected image samples may not be appropriate for training due to image acquisition or image processing issues as shown in each subfigure above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 0 5 10 15 20 25 Number of studies per subject 0 7000 14000 21000 28000 35000 Number of subjects 0% 20% 40% 60% 80% 100% Cumulative percentage Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Number of studies per subject in the MIMIC-CXR dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A study, sometimes referred to as an ‘exam’ or ‘proce- dure’, refers to “one or more images taken on a single visit to a medical facility” (adapted from https://ncithesaurus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' nci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='gov/).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that 67 % of subjects have at least two studies that happened at different times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Table C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR-T temporal image classification benchmark: Showing the distribution of multi-image studies across different clinical findings, distribution of classes {Improving, Stable, Worsening} per finding, and number of subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Findings # of annotation pairs Class distribution # of subjects Consolidation 201 14% / 42% / 44% 187 Edema 266 31% / 26% / 43% 241 Pleural effusion 411 19% / 49% / 32% 370 Pneumonia 237 8% / 25% / 67% 218 Pneumothorax 211 15% / 55% / 30% 148 Total 1326 18% / 40% / 42% 800 from the MIMIC dataset, using the Stanza constituency parser [81] to extract individual sentences from reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Us- ing the CheXbert labeller [62], we filtered this set to sen- tences that described one of seven pathologies - Atelecta- Subset # of paraphrase pairs # of contradiction pairs Total Radgraph 42 75 117 Swaps 99 145 244 Total 141 220 361 Table C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' MS-CXR-T temporal sentence similarity benchmark: Number of paraphrase and contradiction examples in the full dataset and across the RadGraph and Swaps subsets (see Ap- pendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' sis, Consolidation, Edema, Lung Opacity, Pleural Effusion, Pneumonia or Pneumothorax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We then filtered to sentences which contained at least one mention of a temporal key- word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Using this sentence pool, paraphrase and contradic- tion pairs were constructed in two ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' (I) We paired sen- tences from the sentence pool by matching on RadGraph [33] entities, relaxing the matching constraint only for tem- poral keywords and possible mentions of pathologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' (II) We swapped out temporal keywords in a sentence to cre- ate sentence pairs, choosing swap candidates from the top 5 masked token predictions from CXR-BERT-Specialized [9] provided they were temporal keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' After creating can- didate sentence pairs, we manually filtered out sentence pairs with ambiguous differences in terms of disease pro- gression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' A board certified radiologist then annotated each sentence pair as either paraphrase or contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Sen- tences were filtered out in the annotation process if (I) they were not clear paraphrases or contradictions (II) the sen- tences differed in meaning and this difference was not re- lated to any temporal information (III) they were not gram- matically correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Examples from the benchmark are shown in Table C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The distribution of sentence pairs across the paraphrase and contradiction classes are described in Table C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 16 SEMI-EREC 3013 PORTABLE00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='00SUPINE PORTABLPORTABLISEMI-ERECT PORTABLELabel Sentence 1 Sentence 2 Swaps Paraphrase “Unchanged small-to-moderate right pleural effusion.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' “Stable small-to-moderate right pleural effusion.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Contradiction “Interval worsening of the right-sided pneumothorax.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' “Interval resolution of the right-sided pneumothorax.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' RadGraph Paraphrase “There has also been a slight increase in left basal consolidation.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' “There is slight interval progression of left basal consolidation.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Contradiction “Right mid and lower lung consolidations are unchanged.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' “There has been worsening of the consolidation involving the right mid and lower lung fields.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Table C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Examples of paraphrase and contradiction sentence pairs from the MS-CXR-T temporal sentence similarity benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The examples are selected from the RadGraph and Swaps subsets (see Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Temporal entity matching To quantify how well the generated report describes progression-related information, we propose a new metric, namely temporal entity matching (TEM) score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Metric Formulation We first extract entities (tagged as “observation” or “ob- servation modifier”) from the text by running the named en- tity recognition model in the Stanza library [81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Within the extracted entities, we manually curated a list of temporal entities that indicate progression (listed below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The list is reviewed by an expert radiologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Given extracted tempo- ral entities E in N pairs of reference and generated reports, we calculate global precision (pE) and global recall (rE) as below: pE = ∑N i=1 ∣Ei gen ∩ Ei ref∣ ∑N i=1 ∣Eigen∣ (3) rE = ∑N i=1 ∣Ei gen ∩ Ei ref∣ ∑N i=1 ∣Ei ref∣ (4) The TEM score is the harmonic mean of precision and recall (also known as the F1 score).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' List of temporal keywords The list of temporal keywords used to compute the TEM score are as follows: {bigger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' change,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' cleared,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' constant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' decrease,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' decreased,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' decreasing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' elevated,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' elevation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' en- larged,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' enlargement,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' enlarging,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' expanded,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' greater,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' growing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' improved,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' improvement,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' improving,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' increase,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' increased,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' increasing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' larger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' new,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' persistence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' persistent,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' persisting,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' progression,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' progressive,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' reduced,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' removal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' resolution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' re- solved,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' resolving,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' smaller,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' stability,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' stable,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' stably,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' un- changed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' unfolded,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' worse,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' worsen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' worsened,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' worsening,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' unaltered}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Architecture and implementation details E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Hyper-parameters The models are trained in a distributed setting across 8 GPU cards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For pre-training, we use a batch size of 240 (30 * 8 GPUs) and the AdamW optimizer [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We use a linear learning rate scheduler with a warm-up proportion of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='03 and base learning rate of 2 × 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We train for a max- imum of 50 epochs and use validation set loss for check- point selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The overall loss is a sum of components with weighting factors: global contrastive (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0), local con- trastive (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5), and image-guided MLM (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='0) respectively, see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1 for further details on their formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Following [9] we use sentence permutation as text-based data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Similarly, spelling errors in the reports are corrected prior to tokenisation of the text data8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For image augmentations, note that we apply the same augmen- tation to current and prior images to prevent severe mis- alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We resize the shorter edge to 512 and centre- crop to (448, 448).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We apply random affine transformations (rotation up to 30○ and shear up to 15○) and colour jitter (brightness and contrast).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Training infrastructure We train with distributed data processing (DDP) on eight NVIDIA Tesla V100s with 32GB of memory each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To han- dle inconsistently-present prior images with DDP, we define a custom batch sampler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This sampler is a mixture of two samplers, in proportion to their dataset coverage: a sam- pler which produces batches with only multi-image exam- ples – (xcurr img ,xprior img ,xcurr txt ) ∈ Dm and one with only single- image examples – (xcurr img ,∅,xcurr txt ) ∈ Ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Each GPU then processes a batch which is entirely single or multi-image, avoiding branching logic within the forward pass and en- abling an efficient single pass through the CNN to process all input images (current or prior) by concatenating them along the batch dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We confirmed that although the custom sampler theoret- ically impacts the order in which the dataset is traversed, it has a negligible effect on training metrics relative to fully random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Since we train on eight GPUs and collect negatives across all GPUs during contrastive training, each update involves on average a representative mixture of both single-image and multi-image samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 8https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='com/farrell236/mimic-cxr/blob/ master/txt/section_parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='py 17 Finally, following [9] we use the DICOM images from MIMIC-CXR to avoid JPEG compression artefacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Adaptation and experimentation details F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Fine-tuning BioViL-T for report generation During fine-tuning of BioViL-T for report generation, we minimise the cross entropy loss to maximise the log like- lihood of the report in an autoregressive manner given the input images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The model is initialised from the pretrained weights of the image encoder and the text encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Sim- ilar to the cross-modal masked language modelling task, we additionally train a linear projection layer to map the projected patch embeddings to the same hidden dimension of the text encoder, and we train cross-attention layers in each transformer block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The difference from the masked language modelling task is that we change the bidirectional self-attention to unidirectional causal attention that can only access the past tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' If trained with prior report, we pass the prior report as prefix to condition the generation of the current report (the current and prior report are separated by [SEP]), and we only back-propagate the gradients from the loss on the tokens in the current report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For all experiments, we train the model for 100 epochs and we chose the best checkpoint according to metrics on the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We performed grid search for learning rate in [10−5,2 × 10−5,5 × 10−5] and found 2 × 10−5 to be optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We ran each experiment with 3 random seeds and report mean and standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In addition to the metrics we reported in the main text, we also evaluate the generated reports by named entity met- ric (NEM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This metric was defined in [44] to measure the accuracy of reporting clinically relevant entities in the gen- erated reports (Similar to how TEM is computed to measure the match of temporal entities in our study).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Following [44], we extract entities (tagged as “observation” or “observa- tion modifier”) from the text by running the named entity recognition model in the Stanza library [81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The results are presented in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Nearest-neighbour-based report retrieval The joint latent space learnt by BioViL-T can also be used to directly perform report retrieval without requiring task-specific model fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Given the test image, we retrieve its semantically closest report from the training set in the joint latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Specifically, we encode each test image with the image model in BioViL-T and collect its projected image embeddings, and similarly we encode all the reports in the training data with their projected text em- beddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For each test study, we compute cosine similarity between the test image embedding and all the text embed- dings from the training set in the joint latent space, and we retrieve the closest text embedding and use its correspond- Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Results for report generation task: Predictions are evaluated on NEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The approaches are grouped into two broad categories: NN (Nearest Neighbour) and AR (Auto-Regressive).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' BioViL-T pre-training consistently yields superior decoding per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Further, the use of prior image and report consistently yield performance gains demonstrating the importance of such do- main priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Method Pre-training Prior Img/Report NEM NN CXR-RePaiR-2 [24] BioViL \x17 / \x17 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='36 Baseline (NN) [9] BioViL \x17 / \x17 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='25 Proposed (NN) BioViL-T \x13/ \x17 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='55 AR Baseline (AR) [9] BioViL \x17 / \x17 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='27 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='22 Proposed BioViL-T \x13/ \x17 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='50 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='04 Proposed BioViL-T \x13/ \x13 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='95 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='17 ing report as the prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To evaluate the retrieval perfor- mance, we use the same decoding metrics on the retrieved reports and report results in the top section of Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In a separate set of experiments, we also tried performing nearest neighbour search only within the image embedding space by retrieving the report associated with the closet im- age embedding, but this yielded sub-optimal performance compared with using the joint latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Fine-tuning for temporal image classification In this section, we describe the training dataset and fine- tuning procedure for the fully supervised and few-shot set- tings of the temporal image classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For this task, we finetune BioViL-T on a subset of the Chest ImaGenome silver dataset [71] to predict progression labels for 5 differ- ent pathologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To create our training dataset, we filter out image pairs from this dataset where there are multiple di- rections of progression of a single pathology in the image- pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We additionally perform an automatic data curation step to choose higher quality image pairs when possible, as described in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2 shows the number of training samples and label distribution for the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Statistics of the training dataset used for downstream fine-tuning on temporal image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Findings # labelled pairs Class distribution # of subjects Consolidation 7012 15% / 42% / 43% 3308 Edema 14170 28% / 33% / 39% 4813 Pleural effusion 26320 16% / 53% / 31% 6838 Pneumonia 8471 12% / 29% / 59% 4197 Pneumothorax 3795 21% / 57% / 22% 1161 For the fully supervised setting, we add a multilayer clas- sification head to the BioViL-T image encoder and fine- tune the model independently for each pathology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We use weighted cross entropy loss with a batch size of 128 and the AdamW optimizer [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' During parameter optimisation, positional encodings and missing-image embeddings are 18 Target class Tokens Improving better, cleared, decreased, decreasing, im- proved, improving, reduced, resolved, re- solving, smaller Stable constant, stable, unchanged Worsening bigger, developing, enlarged, enlarging, greater, growing, increased, increasing, larger, new, progressing, progressive, worse, worsened, worsening Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Prompting the AR language decoding model for zero- shot image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The list above shows the mapping from decoded tokens to progression classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' exempt from weight decay penalty as in [72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We train for 30 epochs, with a linear learning rate schedule, a warmup proportion of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='03 and a base learning rate of 1 × 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For data augmentation, we first resize the shorter edge of the im- age to 512 and centre crop to (448, 448).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We apply random horizontal flips, random cropping, random affine transfor- mations (rotation up to 30○, shear up to 15○), colour trans- forms (brightness and contrast) and Gaussian noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For the few-shot setting we tune only a single-layer lin- ear head on the BioViL-T image encoder and freeze the rest of the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We initialise the weight matrix of the linear head with values from encoded text prompts [9] for each of the three progression classes, and the bias matrix is ini- tialised with zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To train, we again use weighted cross entropy loss, with a batch size of 32 and the AdamW opti- mizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We use a learning rate of 1 × 10−3 and train for 40 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For data augmentation, we resize the shorter edge of the image to 448 and center crop to (448, 488).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We ap- ply random horizontal flips, random affine transformations (rotation up to 45○ and shear up to 25○), colour transforms (brightness and contrast).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' As in the pre-training step, we always synchronise image data augmentations to apply the identical transforms to the current and prior images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Auto-regressive prompting for zero-shot tem- poral image classification Following the GPT-3 style language prompting [11], we prompt the fine-tuned AR language decoding model with the template: “[FINDING] is” and infer the next token to perform temporal classification for each of the five find- ings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The mapping from the predicted next token to the three progression classes is characterised by a short list of tokens provided in Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' After computing the posterior for each token in the list, the obtained values are normalised across the three classes, and the class with the highest score is selected as the prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The corresponding results are reported in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Further analysis of image-guided MLM In Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6 we used a simplified notation for the computation of ∆prior img (m) for ease of exposition – here we provide further detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Recall that w = (w1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',wM) is a sequence of tokens and w/m is that sequence with token m masked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Let pθ(wm ∣w/m,xcurr img ,xprior img ) be the text model’s predicted probability of token m given xcurr img ,xprior img , and w/m (θ are the weights of the model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Then, l(w,pθ(wm ∣w/m,xcurr img ,xprior img )) is the cross-entropy loss of predicting token m given those inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' It is possible for different sentences in a report to refer to the same image finding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Since we mask single tokens at a time, to prevent information leakage from other sen- tences we consider each sentence in a report independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Suppose report xcurr txt consists of S sentences, so we have xcurr txt = [w1,[SEP],.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=',[SEP],wS], where ws is the to- kens of sentence s and [SEP] separates sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For a given sample (xcurr img ,xprior img ,xcurr txt ) ∈ Dm in the test set indexed by i, we define δi(m) = ∑ s∈S [l(m,pθ(ws m ∣ws /m,xcurr img ,∅)) −l(m,pθ(ws m ∣ws /m,xcurr img ,xprior img ))] This is the MLM loss for predicting m given each sentence in the report with and without the prior image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that if m does not appear in a given sentence, its contribution to the sum is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The overall ∆prior img (m) is computed across all samples: ∆prior img = 1 Nm ⎛ ⎝ ∑ i∈Dtest m δi(m)⎞ ⎠ (5) where Nm is the number of sentences in reports in Dtest m in which token m appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' This estimate is subject to high variance when Nm is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Hence, for Figure 4 we filter to tokens m with Nm ≥ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We collected 931 tokens with Nm ≥ 10 from the validation set for manual annotation by a board-certified radiologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The categories, shown in Fig- ure 4 and described in Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4 are specific to the radiology domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Sentence similarity experiment The text models are evaluated in isolation to observe if their encoding is sensitive to key clinical observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To achieve this, we assess the quality of sentence represen- tations obtained from our text model by examining how well the contradiction and paraphrase pairs can be sepa- rated in the embedding space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Unlike the traditional NLI task where a model needs to be fine-tuned, here the models are probed in a zero-shot setting and the BERT output token embeddings are utilised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To do so,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' we encode the sentences from RadNLI and MS-CXR-T sentence similarity datasets 19 Category Description Examples Progression Pertaining to change or progression bigger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' cleared,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' new Support devices Tubes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' lines and implants nasogastric,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' pacemaker,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' cannula ‘Other’ No clear category can,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' relevant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' overall Stop word ‘Insignificant’ words the,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' no,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' of Positional Localisation (not anatomical) right,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' lower,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' bilateral Meta Pertaining to the report itself or practice of radiology evidence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' radiograph,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' study Anatomy Anatomical locations pulmonary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' chest,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' mediastinal Descriptive Qualitative appearance of a finding layering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' focal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' patchy Size or degree Quantifying extent or severity extensive,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' moderate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' severe Finding Radiographic finding or pathology edema,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' penumonia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' pneumothorax Uncertain Expression of certainty or doubt may,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' possible,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' concerning Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Semantic categories used in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(a) Improving consolidation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(b) Stable consolidation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(c) Worsening consolidation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(d) Improving pulmonary edema ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(e) Stable pulmonary edema ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(f) Worsening pulmonary edema ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(g) Improving pleural effusion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(h) Stable pleural effusion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Prior image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Current image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='(i) Worsening pleural effusion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='Figure F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Examples of image pairs in our MS-CXR-T benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' with the [CLS] token from CXR-BERT-Specialised [9] and BioViL-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For PubMedBERT [28] and CXR-BERT- General [9] which did not directly optimise the [CLS] to- ken during pretraining, we follow [55] to average the token output embeddings to represent each sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Cosine similarity is computed between the representa- tions of each sentence pair in the dataset [55] and is used as logits for the binary classification between paraphrase and contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Note that for RadNLI, we use the subset of ‘entailment’ and ‘contradiction’ pairs and discard the ’neu- tral’ pairs to unify the task across the two datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Given the similarities for each sentence pair, we report ROC-AUC and binary-accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For the latter, a threshold value for each method is derived by setting aside a validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' For this, we perform ten-fold cross validation and tune the threshold with step size of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='005 on the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 20 ERECT TABLEORTABLF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Image registration algorithm In Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='2, image registration is applied to pairs of images as a preprocessing step to enable a fair compari- son for the baseline approaches (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=', BioViL [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' We per- formed bidirectional multi-scale registration between image pairs optimising an affine transformation (4 degrees of free- dom), using mutual information (MI) [64] with 128 bins as the similarity criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' In more detail, the spatial transfor- mation is characterised by four parameters: two for transla- tion, one for isotropic scaling, and one for rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' The op- timisation is repeated five times with different random seeds for initialisation, and the run with the highest MI is selected to determine the final spatial alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' To better identify the correspondences between the scans, bilateral filtering is applied to each image before registration to remove detailed texture whilst preserving edge information [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' Our imple- mentation is based on the SimpleITK library [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} +page_content=' 21' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE3T4oBgHgl3EQfgArH/content/2301.04558v1.pdf'} diff --git a/iNE0T4oBgHgl3EQfYAA8/content/2301.02300v1.pdf b/iNE0T4oBgHgl3EQfYAA8/content/2301.02300v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d3f83ea8bb353aca9fe71cfcef6f4b892cebe97d --- /dev/null +++ b/iNE0T4oBgHgl3EQfYAA8/content/2301.02300v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1b0b12e58c3d79d3a6d829e8528ce0af3feecf166c6c515fdd614d54554752bb +size 294611 diff --git a/iNE0T4oBgHgl3EQfYAA8/vector_store/index.pkl b/iNE0T4oBgHgl3EQfYAA8/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..23c50ca05155238421da8a8f5baea1ed9273adff --- /dev/null +++ b/iNE0T4oBgHgl3EQfYAA8/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:78a9b60efc688ad8a6889e6511e5548b4df78ef03f7356eef7a18f122be09600 +size 234905 diff --git a/iNE1T4oBgHgl3EQfMwPW/vector_store/index.faiss b/iNE1T4oBgHgl3EQfMwPW/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b1df231a257f9daf576aac2673081ad31f62d752 --- /dev/null +++ b/iNE1T4oBgHgl3EQfMwPW/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6d18a0d9c69e87b3f57a721827fb366645d01af324587c34e564f288dadd84c3 +size 4587565 diff --git a/iNE1T4oBgHgl3EQfMwPW/vector_store/index.pkl b/iNE1T4oBgHgl3EQfMwPW/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..46e175358600ccbebc3733378376c316b9dd95a4 --- /dev/null +++ b/iNE1T4oBgHgl3EQfMwPW/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:25aa294114686b758fecb71115664ad6f906d79247a982d94e74dc71ec77bcc6 +size 152440 diff --git a/itFKT4oBgHgl3EQfvy5I/content/tmp_files/2301.11896v1.pdf.txt b/itFKT4oBgHgl3EQfvy5I/content/tmp_files/2301.11896v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d4478e553e7effa35a346c5d18d031ade9d924f3 --- /dev/null +++ b/itFKT4oBgHgl3EQfvy5I/content/tmp_files/2301.11896v1.pdf.txt @@ -0,0 +1,1467 @@ +Prepared for submission to JHEP +Scale-free non-Hermitian skin effect in a +boundary-dissipated spin chain +He-Ran Wang, Bo Li, Fei Song, Zhong Wang +Institute for Advanced Study, Tsinghua University, Beijing, 100084, China +E-mail: whr21@mails.tsinghua.edu.cn, boliwalker@outlook.com, +songf18@mails.tsinghua.edu.cn, wangzhongemail@tsinghua.edu.cn +Abstract: We study the open XXZ spin chain with a PT-symmetric non-Hermitian +boundary field. We find an interaction-induced scale-free non-Hermitian skin effect by using +the coordinate Bethe ansatz. The steady state and the ground state in the PT broken phase +are constructed, and the formulas of their eigen-energies in the thermodynamic limit are +obtained. The differences between the many-body scale-free states and the boundary string +states are explored, and the transition between the two at isotropic point is investigated. +We also discuss an experimental scheme to verify our results. +Keywords: Bethe Ansatz, Quantum Dissipative Systems, Spin Chain, Non-Hermitian +Skin Effect +arXiv:2301.11896v1 [quant-ph] 27 Jan 2023 + +Contents +1 +Introduction +1 +2 +Non-Hermitian XXZ model and the phase diagram +3 +3 +Bethe ansatz solutions for scale-free skin modes +6 +3.1 +Single-magnon state +6 +3.2 +Two-magnon state +6 +3.3 +Imaginary Bethe equation at 0 < ∆ < 1 +8 +3.4 +Boundary bound state at ∆ > 1 and phase transition +12 +4 +Ground state phase diagram +13 +4.1 +Scale-free solutions for −1 < ∆ < 0 +14 +4.2 +Imaginary Bethe equation at ∆ < −1 +14 +5 +Experimental Realizations +16 +6 +Conclusion +18 +1 +Introduction +Exactly solvable models play important roles in condensed matter physics, statistical +physics, and mathematical physics. Certain experimentally relevant one-dimensional sys- +tems can be modeled by open spin chains with boundary fields, some of which belong to the +category of Yang-Baxter integrability. Examples include spin chains with diagonal [1–8] +or off-diagonal [9–12] magnetic field. The problem is also related to classical dynamics of +molecules with drain and source [13–17], and spin transport within the framework of Lind- +blad master equation [18–25]. Many mathematical tools, such as coordinate Bethe ansatz +[1, 2, 6, 7, 14, 26], Sklyanin’s reflection algebra (an open boundary version of algebraic +Bethe ansatz) [3–5, 8–12, 27], matrix product operator ansatz [13, 15–19, 21–24], etc, have +been developed to treat those systems. +In this article, we investigate a non-Hermitian open XXZ chain using coordinated Bethe +ansatz. The chain is subjected to opposite imaginary magnetic field on two ends, pointing +to a prescribed direction called z. +Here, the non-Hermiticity naturally stems from the +ubiquitous coupling with the environment. A special case has been studied thoroughly in +previous literature, where the strength of the boundary field takes a specific value depending +on the anisotropic interaction strength between adjacent spins. +The Hamiltonian then +respects the q−deformed SU(2) symmetry [28] with |q| = 1, and serves as a representation +of the Temperley-Lieb algebra [29, 30]. The spectrum of the model is purely real, though +the Hamiltonian is non-Hermitian. Furthermore, when q is a root of unity for some values +– 1 – + +of the boundary field, the representation of the symmetry group enjoys richer structures, +such that an exact duality between the spin model and free-end quantum Potts model. The +duality leads to the same conformal field theory (CFT) structure of two models, thus the +negative central charge obtained from the side of Potts model makes the non-Hermitian +spin chain a typical example of recently introduced “non-unitary” CFT [31, 32]. +A significant consequence of q being a root of unity is that the spin Hamiltonian +develops Jordan blocks, which feature exceptional points. The number of Jordan blocks for +given q and size N has been counted [33], followed by the constructions of the corresponding +generalized eigenstates [34]. Given the existence of many-body exceptional points, it is +natural to identify different phases around them. +Our article exhausts the parameter +space of boundary imaginary field and anisotropic interaction. For a small boundary field, +the spectrum remains real, and the Bethe roots of the ground state only shift slightly +compared with the Hermitian case. The spectrum becomes complex, however, when the +boundary field exceeds the q−deformed SU(2) symmetric value. We show that, despite the +breaking of the quantum group invariance, the model possesses a novel behaviour of scale- +free localization. We figure out the structure of the steady state (with the largest imaginary +part of energy) and the ground state (with the lowest real part of energy) as the combination +of a boundary Bethe root and a set of continuous Bethe roots in the thermodynamic limit. +The continuous Bethe roots all have an imaginary part proportional inversely to the system +size N, corresponding to a small imaginary wavevector (or momentum) κ ∼ α/N. +In +the single-particle context, when the localization length of wavefunction is proportional +to the system size N, the density |ψN(x)|2 ∼ exp(2αx/N) is invariant under re-scaling +transformation with factor s: |ψN(x)|2 = |ψsN(sx)|2, and therefore called scale-free non- +Hermitian skin effect (NHSE) or critical NHSE [35–37]. Scale-free NHSE has also been +found in Hermitian systems with non-Hermitian boundary field, though the mechanism +is different [38]. In the present work, the imaginary part of wavevector is attributed to +the scattering between the boundary mode and magnons traveling in the bulk, and these +Bethe roots contribute a non-negligible imaginary part to the energy. Thus, unlike previous +works, our scale-free behaviour has a many-body origin. More precisely, it originates from +the interplay between boundary dissipation and many-body interactions. On one hand, +the interaction among magnons is an indispensable ingredient for the scale-free NHSE. On +the other hand, we also note that the Hermitian counterpart, namely the open XXZ model +subjected to real boundary field, has only isolated boundary modes, and such continuous +skin modes are lacking [6–8]. We derive an integral equation, dubbed imaginary Bethe +equation, to solve the scale-free localization length in the thermodynamic limit. We then +give an exact formula for the imaginary part of the steady state energy, which are then +compared to finite-size numerical results. We also explain how to measure these physical +quantities in cold-atom experiments. +Before proceeding, we compare our results to earlier studies on boundary-driven spin +chains as open quantum systems. The evolution of those open quantum systems is gen- +erated by the Linbladian operator, composed of an integrable Hamiltonian and quantum +– 2 – + +jump operators on the boundary. A typical example relevant to our work is [19] +L(ρ) = −i[HXXZ, ρ] + +� +µ=1,N +LµρL† +µ − 1 +2{L† +µLµ, ρ} += −iHeffρ + iρH† +eff + +� +µ=1,N +LµρL† +µ, +with L1 = √gS− +1 , LN = √gS+ +N and Heff = HXXZ − i +2 +� +µ=1,N L† +µLµ. Here, Heff is the non- +Hermitian Hamiltonian we shall focus on below (see eq.(2.1)). Although the Lindbladian +breaks integrability, the density matrix of non-equilibrium steady state (NESS) has been +established by the matrix product operator (MPO) ansatz exactly. Furthermore, it has +been found that the local matrix of MPO ansatz is indeed the infinite-dimensional solution +of Yang-Baxter relations, and thus exterior integrability emerges in the NESS [39, 40]. +However, the dynamics towards NESS is unknown yet. Our work about the non-Hermitian +effective Hamiltonian is complementary to the NESS solution because Heff governs the +time evolution of the open quantum system under post-selection, which is relevant to +numerous experiments [41]. Our solution is enabled by the Yang-Baxter integrability of +the model. Another related system is the XXZ model with only one jump operator L1 +on the left boundary [26]. Since the dissipator is purely lossy, the Lindbladian becomes +upper-triangular under an appropriate basis choice, so that the Liouvillian spectrum can +be completely determined by the effective non-Hermitian Hamiltonian. The Hamiltonian +has scale-free eigenstates even in the single-magnon sector, but PT symmetry is absent due +to that the dissipator occurs only on one of the two ends. By contrast, our Hamiltonian +preserves PT symmetry, and in single-magnon sector there are only Bloch-wave modes and +exponentially localized states. Scale-free modes originate from many-body interactions in +our model. +The rest part is organized as follows. In the next section, we introduce the model +Hamiltonian, its general Bethe equations, and the phase diagram. In Sections 3.1 and 3.2, +we consider the single-magnon and two-magnon state as a warm-up. We then generalize the +results to the many-body cases to obtain the steady state with scale-free NHSE in Section +3.3. Section 3.4 is devoted to another type of steady state solution, the boundary string +states, which emerges for the highly anisotropic case. In Section 4, we apply the ansatz of +scale-free solutions to the ground state for different parameters. A possible experimental +setup for the non-Hermitian model is discussed in section 5. We give some concluding +remarks in Section 6 . +2 +Non-Hermitian XXZ model and the phase diagram +The Hamiltonian reads: +H = − +N−1 +� +j=1 +(Sx +j Sx +j+1 + Sy +j Sy +j+1 + ∆Sz +j Sz +j+1) + ig +2 (Sz +N − Sz +1). +(2.1) +where Sα = 1 +2σα(α = x, y, z) is the spin-1/2 operator; the anisotropic interaction strength +∆ and boundary field strength g are purely real, with g > 0. The model respects the PT +– 3 – + +symmetry with TiT = −i and PSα +j P = Sα +N−j, and therefore the eigenvalues are either real +or form complex conjugate pairs. When the whole spectrum is purely real, the model is +said to be in the PT exact (or PT-symmetric) phase, otherwise it is in the PT broken +phase [42, 43]. The steady state, which has the largest imaginary part of eigen-energy in +the PT broken phase, is of great importance because it captures the long-time behaviour +of the system. A generic initial wavefunction evolving for a sufficiently long time under +exp(−iHt) will converge to the steady state; we shall study the phase diagram of this steady +state. The Hamiltonian also commutes with total z magnetization m = �N +j=1 Sz +j , so that +it can be block diagonalized in each sector with definite total magnetization. Furthermore, +there is another symmetry operator PX with X = �N +j=1 σx +j which sends m to −m, and +therefore it suffices to study non-positive magnetization (m ≤ 0) states. For the odd length +chain, PX symmetry leads to the two-fold degeneracy of the steady states. Thus, we only +take even site number N throughout the paper. +Ferromagnetic (∆ > 0) and anti-ferromagnetic (∆ < 0) models can be related by the +transformation Z = �N/2 +j +σz +2j−1: +ZTH(∆, g)ZT = ZH(∆, −g)Z = −H(−∆, g). +(2.2) +As such, an eigenstate of ferromagnetic Hamiltonian with H(∆, g)|ψ⟩ = E|ψ⟩ can be trans- +formed to an eigenstate of the anti-ferromagnetic one: H(−∆, g)(ZT|ψ⟩) = −E∗(ZT|ψ⟩). +If E has the largest imaginary part among the spectrum, so does −E∗. Thus, the steady +state properties remain the same for ±∆, and it suffices to study the ferromagnetic case. +Δ +g +PT exact +Scale-free skin effect +Boundary +string +Boundary +string +1 +-1 +1 +Figure 1. +Steady-state phase diagram of model Eq. +(2.1) in the zero magnetization sector. +The critical curve ∆2 + g2 = 1 separates PT exact and broken phases. +When |∆| < 1 and +g > gc = +√ +1 − ∆2, the steady state is the many-body scale-free state; when |∆| > 1, the steady +state is the boundary string state. +Eigenstates of the model can be solved by coordinate Bethe ansatz [1]. Take all spin +down state as the reference state with energy E0 = − 1 +4(N −1)∆, we can excite M magnons +by flipping M spins up (M ≤ N/2). +We can construct the ansatz state |ψ⟩ , whose +– 4 – + +wavefunction in the onsite magnon number basis is given by: +⟨n1 · · · nj · · · nM|ψ⟩ = +� +P +� +{ηj} +(−1)PA({eikj}; P, {ηj})eiη1kP1n1 · · · eiηjkPjnj · · · eiηMkPMnM , +where n1 < · · · < nj < · · · < nM are the positions of up spin, P refers to all possible +permutations, and chirality ηj = ±1 corresponds to right-moving and left-moving magnons. +Relabeling the momentum of magnon by βj = eikj [44, 45], we have the equivalent form: +⟨n1 · · · nj · · · nM|ψ⟩ = +� +P +� +{ηj} +(−1)PA({βj}; P, {ηj})βη1n1 +P1 +· · · βηjnj +Pj +· · · βηMnM +PM +. +(2.3) +The coefficient A({βj}; P, {ηj}) is a function of magnon momenta {βj}, permutation P, +and chirality {ηj}. Imposing the condition that |ψ⟩ is an eigenstate of H with energy +EM({βj}) = E0 + +M +� +j=1 +(∆ − (βj + β−1 +j )/2) +(2.4) +and the boundary condition, those coefficients can be found as [1]: +A({βj}; P, {ηj}) = +M +� +j +(1 − ∆+βηj +Pj)β−(N+1)ηj +Pj +� +j 1. A boundary string corresponds to a multi- +magnon bound state localized at the boundary, which will be explained in Section 3.4. +3 +Bethe ansatz solutions for scale-free skin modes +3.1 +Single-magnon state +In the single-magnon sector (M = 1), the Bethe equation (2.6) is simplified to +β2(N−1) +(β − ∆+)(β − ∆−) +(β−1 − ∆+)(β−1 − ∆−) = 1. +(3.1) +When |∆±| < 1, or equivalently g < gc, solutions of the equation have been found to +be on the unit circle [46]. We review the proof briefly: define complex variable function +h(β) : C → C as +h(β) = βN−1(β − ∆+)/(β−1 − ∆−). +(3.2) +Eq.(3.1) is then transformed to h(β) = h(β−1). For g < gc, the image of the disk |β| < 1 +under h is still inside the disk, that is, |h(β)| < 1, and vice versa. The statement can be +verified by writing β = ρ exp(iφ), ∆+ = ρ0 exp(iφ0) with ρ0 < 1, then +|β − ∆+|2 − |β−1 − ∆−|2 = (ρ − ρ−1)(ρ + ρ−1 − 2ρ0 cos(φ − φ0)). +Since ρ + ρ−1 ≥ 1 > 2ρ0 cos(φ − φ0), we have |β − ∆+| < |β−1 − ∆−| when |β| < 1 +(ρ < 1 < ρ−1), therefore |h(β)| < 1. +A similar argument works for |β| > 1. +Thus, +possible solutions of h(β) = h(β−1) must be on the unit circle, corresponding to purely +real momentum. +When g > gc, no theorem prohibits the existence of non-unitary solutions, and one can +notice that a pair of isolated boundary modes with β± ≈ ∆± is possible. For such a solution, +|β±| > 1 leads to the divergence of the term β2(N−1) in Eq. (3.1) in the thermodynamic +limit, but this can be compensated by the factor (β − ∆+)(β − ∆−), which is close to zero. +Most of the energy levels remain real, and the scale-free localization behavior is absent in +this sector. We define the boundary imaginary energy contributed by one boundary mode +as +Eb = −1 +2Im(∆− + ∆−1 +− ) = 1 +2(g − +g +∆2 + g2 ). +(3.3) +3.2 +Two-magnon state +In the M = 2 sector, scale-free modes appear and contribute to the 1/N scaling behaviour +of energy. Figure 2(a1) shows a typical finite-size two-magnon spectrum. We color the +– 6 – + +eigenvalues by many-body participation entropy [47–49], a measure of localization gener- +alized from single-particle inverse participation ratio (IPR): +S2(|ψ⟩) = − log +� +i |ψi|4 +(� +i |ψi|2)2 , +(3.4) +where the index i sums over all the basis functions in the relevant Hilbert space, |ψ⟩ is +the many-body eigenstate concerned. +The participation entropy gets smaller when the +eigenstate is more localized in the Hilbert space, as we observed in figure 2(a1): Two dark +points correspond to isolated states bounded to the boundaries, and both two magnons are +localized to the same side; around Im(E) = ±Eb there is a continuum of states, which are +the combination of a boundary mode with β1 ≈ ∆± and a scale-free mode with β2 ≈ eik; the +continuum on the real axis is brighter, though there is one localized mode, corresponding +to the state with two magnons localized on different ends. +We apply Bethe equation to the state with one magnon bounded to the boundary +while the other has momentum β2: +|β2|2N ≈ | 1 − 2∆β2 + ∆−β2 +1 − 2∆∆− + ∆−β2 +1 − 2∆β2 + ∆−1 +− β2 +1 − 2∆∆−1 +− + ∆−β2 +|. +(3.5) +The right hand side, which will be denoted by exp(2κ), is of order O(1). Taking logarithm +of both sides, we have 2Nln|β2| = 2κ+O(1/N). Thus, lnβ2 acquires a first order correction +to the real part: +Re(lnβ2) = ln|β2| = κ/N + O(1/N 2). +Traveling along the chain, the corresponding magnon accumulates an amplitude change +A = |β2|N ∼ exp (κ). +The localized mode can be distinguished from disorder-induced +localization or non-Hermitian skin effect, both of which has the exponential decay behavior +ψ(x) ∼ exp(κ′x). In contrast, the leading order of A shows no dependence on the system +size N. Here, the scale-free localization has an intrinsic many-body origin because in the +non-interacting limit ∆ = 0, the right hand side of Eq. (3.5) equals 1, and the imaginary +momentum vanishes. Therefore, the phenomenon in our model is dramatically different +from that of free-particle models [35–37]. +The energy of such two-magnon state is +Im(E) = Eb − 1 +2Im(β2 + β−1 +2 ) = Eb − 1 +N κ sin(k). +(3.6) +The statement is verified by finite-size scaling of the average of those complex energy. As +shown in Fig. 2(b1), the imaginary part scales linearly with 1/N. In the thermodynamic +limit, it will converge to ±Eb. Moreover, we add a next-nearest-neighbor zz interaction +Hnn = − +N−2 +� +j=1 +∆′Sz +j Sz +j+2 +(3.7) +to break integrability, yet the numerical results [Fig. 2(b1)(b2)] show no qualitative differ- +ences, which supports the universality of scale-free behaviour. +– 7 – + +8 +6 +4 +Re(E) +0.2 +0.1 +0.0 +0.1 +0.2 +Im(E) +(a1) +3.5 +4.5 +5.5 +6.5 +10 +8 +6 +Re(E) +0.30 +0.15 +0.00 +0.15 +0.30 +Im(E) +(b1) +3 +4 +5 +6 +0.02 +0.022 +0.024 +0.026 +1/N +0.0852 +0.0855 +0.0858 +AVG[Im(E)] +(a2) += 0.76 g = 0.83 += 0.80 g = 0.80 += 0.85 g = 0.76 +0.02 +0.022 +0.024 +0.026 +1/N +0.1295 +0.1315 +0.1335 +AVG[Im(E)] +(b2) += 0.77 g = 0.84 += 0.80 g = 0.80 += 0.85 g = 0.73 +Figure 2. (a1) and (b1) The spectrum of M = 2 sector for N = 40, ∆ = 0.8, g = 0.8. Eigenvalues +are colored by the participation entropy of the corresponding eigenstate. (a2) and (b2) Finite-size +scaling for the average of the imaginary part of the energy. Only those states with Im(E) > 0 in the +continuous spectrum are taken into consideration. (a1) and (a2) are based on the pristine model +Eq. (2.1); for (b1) and (b2), additional next-nearest-neighbor coupling ∆′ = 0.3 is added [see Eq. +(3.7)]. +3.3 +Imaginary Bethe equation at 0 < ∆ < 1 +After the warm-up on two-body scale-free modes, we now generalize it to the many-body +cases. We will study the parameter space 0 < ∆ < 1, where it is the Luttinger liquid +phase in the Hermitian limit and the ground state lies in M = N/2 sector. We assume +that the steady state is composed of a boundary mode and a set of continuous scale-free +Bethe roots, and then derive the Bethe equations in the thermodynamic limit. +We adopt a conventional parametrization of magnon momentum [50, 51]: +βj = −sinh[γ(xj − i)/2] +sinh[γ(xj + i)/2], +(3.8) +where γ = arccos(−∆) such that 0 < γ < π. The kinetic energy of the magnon is +Exj = −1 +2(βj + β−1 +j ) = 1 − cos(γ) cosh(γxj) +cos(γ) − cosh(γxj) . +(3.9) +– 8 – + +Taking the logarithm of Bethe equations (2.6), we have +2Nθ1(xj) + φb(xj) = 2πIj + +� +l̸=j +[θ2(xj − xl) + θ2(xj + xl)], +(3.10) +where the function θn is defined as +θn(x) = 2 arctan[cot(nγ/2) tanh(γx/2)]. +(3.11) +The second term φb(xj) on the left of Eq. (3.10) is the scattering phase between the magnon +j and the boundary, which has the form: +φb(x) = θm+(x) + θm−(x), +where θm± is obtained by taking n in Eq. (3.11) as complex numbers +m± = 1 +γ θ1(ln(cos(γ) ± ig) +γ +) + iπ +2γ . +This involved boundary term will not have significance in the rest part of solution. For +the right hand side, Ij is an integer and the set of {Ij} determines the set of Bethe roots. +We take the occupation of one boundary mode and Ij = j on the steady state, and the +corresponding boundary Bethe root β0 = ∆− has the parametrization +x0 = 1 +γ ln g − sin(γ) +g + sin(γ) − i = λ0 − i. +(3.12) +The steady-state Bethe equations becomes +2Nθ1(xj)+φb(xj) = 2πj + +� +l̸=j +[θ2(xj −xl)+θ2(xj +xl)]+θ2(xj −x0)+θ2(xj +x0). (3.13) +We rewrite xj = λj + iσj/N with purely real λj, σj. We note that |σj/N| ≪ λj, and +therefore any real function of xj can be expanded as +f(xj) = f(λj) + if′(λj)σj/N + O(1/N 2). +(3.14) +The real and imaginary part of Bethe equations are: +2Nθ1(λj) + φb(λj) + O(1) = 2πj + [ +� +l̸=j +θ2(λj − λl) + θ2(λj + λl)] ++Re[θ2(λj − x0) + θ2(λj + x0)], +(2θ′ +1(λj) + 1 +N φ′ +b(λj))σj + O( 1 +N ) = 1 +N +� +l̸=j +θ′ +2(λj − λl)(σj − σl) + θ2(λj + λl)(σj + σl)] ++Im[θ2(λj − x0) + θ2(λj + x0)]. +(3.15) +For the real (imaginary) part only O(N) (O(1)) terms are included, and the leading terms +of the real and imaginary part of Bethe equations are: +2Nθ1(λj) = 2πj + [ +� +l̸=j +θ2(λj − λl) + θ2(λj + λl)], +(3.16) +2θ′ +1(λj)σj = 1 +N +� +l̸=j +θ′ +2(λj − λl)(σj − σl) + θ2(λj + λl)(σj + σl)] ++Im[θ2(λj − x0) + θ2(λj + x0)]. +(3.17) +– 9 – + +Eq. (3.16) is the same as the ground state Bethe equations of the Hermitian open XXZ +model [1]. It is standard to calculate the difference between (j + 1) − th and the j − th +equation, taking f(λj+1) − f(λj) = f′(λj)(λj+1 − λj): +2Nθ′ +1(λj)(λj+1 − λj) = 2π + [ +� +l̸=j +θ′ +2(λj − λl) + θ′ +2(λj + λl)](λj+1 − λj). +(3.18) +The thermodynamic limit is taken by sending +lim +N→∞ +1 +N(λj − λj+1) = ρ(λj), +lim +N→∞ +1 +N +� +l +f(λl) = +� ∞ +0 +dλρ(λ)f(λ), +(3.19) +then the integral equation of ρ(λ) is +1 +2ρ(λ) + +� +∞ +−∞ +dλ′ K2(λ − λ′) +2π +1 +2ρ(λ′) = K1(λ) +2π +, +(3.20) +where Kn(λ) = θ′ +n(λ). Note that only when the steady state belongs to the zero magne- +tization sector, the integral interval of λ can be taken as (−∞, ∞). This is the case here, +and it corresponds to filling the Fermi sea k ∈ (−π +γ, π −γ). The integral equation (3.20) +is commonly solved by Fourier transformation: +˜ρ(ω) = +� +∞ +−∞ +dλ +2πρ(λ)eiωλ, +˜Kn(ω) = +� +∞ +−∞ +dλ +2πKn(λ)eiωλ = +sinh( π +γ − n)ω +sinh π +γ ω +. +(3.21) +Applying the convolution formula on Eq. (3.20), we have a linear equation +1 +2(1 + ˜K2(ω))˜ρ(ω) = +˜K1(ω) +2π +, +(3.22) +then the distribution function is solved: ˜ρ(ω) = 1/(2π cosh ω), ρ(λ) = 1/(2 cosh(πλ/2)). +Eq. (3.17) counts two kinds of mechanisms of scale-free localization. On the right +hand side, the first term sums interactions between magnons in the bulk, while the second +term is the scattering with the boundary mode. The last one is much smaller than the first +in a few-body state, but becomes comparable when the magnon number is the same order +of system size N, e.g. in the zero magnetization sector. Define σ(λ) as a function of λ, the +continuous version of this equation is +ρ(λ)σ(λ) + +� +∞ +−∞ +dλ′ K2(λ − λ′) +2π +ρ(λ′)σ(λ′) = 1 +2πIm[θ2(λ − x0) + θ2(λ + x0)]. +(3.23) +Dubbed “imaginary Bethe equation”, it is a central result of this article. To derive the +linear equation of ˜σρ(ω) = +� +∞ +−∞ +dλ +2πeiωλρ(λ)σ(λ), we need to find the Fourier transformation +– 10 – + +of the right hand side: +� +∞ +−∞ +dλ +2πeiωλIm[θ2(λ − x0) + θ2(λ + x0)] = +� +∞ +−∞ +dλ +2πeiωλIm[θ2(λ − λ0 + i) + θ2(λ + λ0 − i)] += 2i sin(ωλ0) +� +∞ +−∞ +dλ +2πeiωλIm[θ2(λ + i)] += −2 sin(ωλ0) +ω +� +∞ +−∞ +dλ +2πeiωλ d +dλIm[θ2(λ + i)] += 2 sin(ωλ0) +ω +� +∞ +−∞ +dλ +2πeiωλ +2γ cos(γ) sin2(γ) sinh(γλ) +(cosh(γλ) − cos(γ))(cosh(γλ) − cos(3γ)) += 2i sin(ωλ0) sinh(ω) +sinh[( π +γ − 2)ω] +ω sinh( π +γ ω) +. +(3.24) +Denoting the result above by Θ(ω), we can solve σ(λ) formally: +˜σρ(ω) = +1 +1 + ˜K2(ω) +Θ(ω) +2π . +(3.25) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +g +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +Im(Es) +Ferromagnetic: += 0.8 +BA +Eb +ED +Figure 3. +Imaginary part of the steady state energy Es as a function of the non-Hermitian +parameter g. We take ∆ = 0.8, so that gc = 0.6. Red curve is from the Bethe ansatz (BA). As a +comparsion, blue line is imaginary energy of a boundary mode (Eb). The black dots are computed +from exact diagonalization (ED) in the zero-magnetization subspace, with system size N = 16. +The summation of energy of all those scale-free modes becomes an integral over λ in +the thermodynamic limit. The imaginary part of energy formula of a single magnon is +Im(E(x)) = 1 +N E′(λ)σ(λ) = −sin(γ) +Nγ K′ +1(λ)σ(λ). +(3.26) +While each one contributes O(1/N) to the total imaginary part, the sum of contributions +– 11 – + +from all scale-free magnons is comparable to the boundary mode contribution Eb: +� +j +Im(E(xj)) = −sin(γ) +γ +� +∞ +0 +dλρ(λ)K′ +1(λ)σ(λ) += −sin(γ) +2γ +� +∞ +−∞ +dω 2πiω ˜K1(ω)˜σρ(ω) += −sin(γ) +2γ +� +∞ +−∞ +dω iω +˜K1(ω) +1 + ˜K2(ω) +Θ(ω) += −sin(γ) +γ +� +∞ +0 +dω sin(−ωλ0) tanh(ω) +sinh[(π +γ − 2)ω] +sinh( π +γ ω) +. +(3.27) +The imaginary part of the steady-state eigen-energy is then given by adding Eb: +Im(Es) = +� +j +Im(E(xj)) + Eb. +(3.28) +In Fig. 3, we compare our formula with the exact diagonalization (ED) results in the +M = N/2 sector, which agrees excellently. The boundary field g controls the imaginary +part of the energy totally via λ0 = +1 +γ ln g−gc +g+gc . As g crosses gc, the steady state energy +becomes complex. +3.4 +Boundary bound state at ∆ > 1 and phase transition +Anisotropic interaction ∆ > 1 prefers bounding all magnons together, and therefore the +magnons in the steady state tend to localize to the boundary. Specifically, the first magnon +is bound to the boundary, and the next one is bounded to the previous one recursively. +In the context of integrable spin models, the bound state is named an “string”; we shall +follow this terminology and call our bound state near the boundary a “boundary string”. +We note that similar states have been identified in the spin model subjected to a non- +Hermitian magnetic field at only one end [26]. In the thermodynamic limit, Bethe roots +{βj} satisfies a recursive relation: +βj+1 + β−1 +j += 2∆, β1 = ∆ − ig. +(3.29) +The imaginary part of energy is given by +Im(Es) = −1 +2 +M +� +j=1 +Im(βj + β−1 +j ) += −1 +2 +M−1 +� +j=1 +Im(β−1 +j ++ βj+1) − 1 +2Im(β1 + β−1 +M ) += −1 +2Im(β1 + β−1 +M ). +For large N, βN/2 approaches the fixed point of recursive relations Eq. +(3.29): β∞ = +∆ ± +√ +∆2 − 1, which is purely real. It follows that Im(Es) = − 1 +2Im(β1) = g +2. +– 12 – + +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +0.0 +0.2 +0.4 +Im(Es) +(a) +g=0.8 +g=0.6 +0.06 +0.08 +0.10 +0.12 +1/N +0.02 +0.04 +0.06 +0.08 +0-Im(Es) +(b) +g = 0.2 +g = 1.0 +g = 1.6 +Figure 4. (a) The imaginary part of the steady state energy in the zero magnetization sector. +The size N = 16. (b) Finite-size scaling of the steady-state energy at the isotropic point ∆ = 1. +γ0 = g/2 [see the paragraph above Eq. (3.31)]. +It is clear that the structure of Bethe roots of the steady state is different for 0 < ∆ < 1 +and ∆ > 1. We may take the isotropic limit ∆ = 1 from the two sides to understand the +phase transition point. +In the scale-free phase, we have to deal with the γ → π limit of Eq. (3.27) carefully. +Note that the Fermi sea ranging from −π+γ to π−γ shrinks to a Fermi point when γ → π. +We take the limit by substituting ω by ωγ/ sin γ with sin γ ≪ 1, and the integral can be +simplified to +� +∞ +0 +dω sin(2ω/g) exp(−2ω) = g/2(1 + g2), +(3.30) +so that Im(Es) = Eb + g/2(1 + g2) = g/2. +In the boundary-string phase, the imaginary part is a constant γ0 = g/2. Bethe roots +can be determined by the recursive equation Eqs. (3.29) at ∆ = 1, which results in an +explicit solution: +βn = 1 + +1 +n − 1 + i +g +. +(3.31) +For small n, the magnon localizes exponentially at the boundary. However, for n sufficiently +large (n/N ∼ O(1)), it behaves in a scale-free fashion. +This result is also confirmed +by comparing the imaginary part with γ0 for different system sizes, and the differences +scale linearly with 1/N (see Fig.4). We emphasize that the solution Eq. (3.31), though +qualitatively valid, is not exact because the scattering between the large n scale-free modes +have been neglected. This approximation has been implied in Eq. (3.29). +4 +Ground state phase diagram +For the ferromagnetic case ∆ > 0, the steady state and the ground state coincide, and the +phase boundary ∆ = 1 separates the scale-free phase and the boundary string. However, +the transformation ZT relating the ferromagnetic and the anti-ferromagnetic steady state +– 13 – + +Δ +g +Luttinger liquid +Luttinger liquid +(Scale-free) +Boundary +string +Gapped spinon +(Scale-free) +1 +-1 +1 +Figure 5. Ground state phase diagram in the zero magnetization sector. The right half of the +diagram, ∆ > 0, coincides with the counterpart of steady state (see figure 1). In the PT exact +phase (g < gc ≡ +√ +1 − ∆2), the ground state is Luttinger liquid (LL); for g > gc, gapless excitations +become scale-free. When ∆ < −1, the gap between the ground state and excited states opens, yet +our ansatz of scale-free skin modes remains valid. +is not applicable to the ground state, because it changes to the highest-energy (real part) +state when reversing the sign of ∆. Therefore, one cannot borrow the ground-state phase +diagram from that of the steady state. Moreover, the comparison between ground states +at zero and finite non-Hermiticity provides another perspective on the effect of boundary +dissipation. +In Fig. +5, we summarize the results of the ground state. +The ansatz of +many-body scale-free state in the region ∆ < 0 is studied in the following subsections. +4.1 +Scale-free solutions for −1 < ∆ < 0 +For −1 < ∆ < 0, we find that Eq. (3.27) can still be applied to the ground state, though +it does not coincide with the steady state anymore. The formula is compared with exact +diagonalization results in Fig. 6. It seems that the data does not agree as well as in the +ferromagnetic case (see Fig. 3). This is due to the larger finite-size error. In fact, we +observe that as size N increases, the ED results become closer to the analytical ones. +4.2 +Imaginary Bethe equation at ∆ < −1 +The imaginary Bethe equation also works for ∆ < −1, with some technical modifications. +Retaining the parametrization ∆ = − cos(γ), |∆| > 1 now leads to a purely imaginary γ, +and it is convenient to write γ → iφ: +βj = −sin[φ(xj − i)/2] +sin[φ(xj + i)/2], +(4.1) +where φ = arccos h(−∆). The boundary Bethe root is +x0 = − 2 +φ arctan(sinh(φ) +g +) − i = λ0 − i. +(4.2) +– 14 – + +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +g +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +Im(Eg) +Antiferromagnetic: += +0.8 +BA +Eb +ED,N=10 +ED,N=16 +Figure 6. +Imaginary part of the ground state energy Eg as a function of the non-Hermitian +parameter g. We take ∆ = −0.8, so that gc = 0.6. Red curve is from the Bethe ansatz (BA). As a +comparison, blue curve is imaginary part of the energy of a boundary mode (Eb). The hollow dots +are obtained from exact diagonalization (ED) with N = 10, and solid dots with N = 16. +On the ground state the whole Brillouin zone k ∈ (−π, π) is filled, so that Re(x) ∈ +(−π/φ, π/φ). The single-magnon kinetic energy is +Exj = 1 − cosh(φ) cos(φxj) +cosh(φ) − cos(φxj) . +(4.3) +We also adopted here a new definition of the function θn: +θn(x) = 2 arctan[coth(nφ/2) tan(φx/2)]. +The imaginary Bethe equation is then given by +ρ(λ)σ(λ) + +� +π/φ +−π/φ +dλ′ K2(λ − λ′) +2π +ρ(λ′)σ(λ′) = 1 +2πIm[θ2(λ − x0) + θ2(λ + x0)]. +(4.4) +Since functions of λ are periodic functions with periodicity 2π/φ, we can expand them +as Fourier series to solve the integral equation: +˜f(m) = +� +π/φ +−π/φ +dλ +2πf(λ)eimφλ, m ∈ Z +(4.5) +Notably, ˜ +Kn(m) = exp(−n|m|φ), and the right hand side of the Eq. (4.4) transforms as +� +π/φ +−π/φ +dλ +2πeimφλIm[θ2(λ − x0) + θ2(λ + x0)] = 2i sin(mφλ0) +� +π/φ +−π/φ +dλ +2πeimφλIm[θ2(λ + i)] += 2 sin(mφλ0) +mφ +� +π/φ +−π/φ +dλ +2πeimφλ +2φ cosh(φ) sinh2(φ) sin(φλ) +(cos(φλ) − cosh(φ))(cos(φλ) − cosh(3φ)) += 2isin(mφλ0) +mφ +sinh(mφ)e−2mφ = Θ(m). +(4.6) +– 15 – + +The imaginary part of energy is: +� +j +Im(E(xj)) = −sinh(φ) +φ +� +π/φ +0 +dλρ(λ)K′ +1(λ)σ(λ) += −sinh(φ) +2 +� +m∈Z +2πimφ ˜K1(m)˜σρ(m) += −sinh(φ) +2 +� +m∈Z +imφ +˜K1(m) +1 + ˜K2(m) +Θ(m) += sinh(φ) +� +m∈Z+ +sin(mφλ0) tanh(mφ)e−2mφ. +(4.7) +As illustrated in Fig. 7, there are finite-size errors between the numerical results and +our Bethe ansatz formula, which is similar to the gapless antiferromagnetic case. +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +g +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +Im(Eg) += +1.2 +BA +ED,N=10 +ED,N=16 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +g +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.40 +Im(Eg) += +2.0 +BA +ED,N=10 +ED,N=16 +Figure 7. Imaginary part of the ground state energy as a function of the non-Hermitian parameter +g. Left panel: ∆ = −1.2; Right panel: ∆ = −2.0. Red curve is obtained from the Bethe ansatz +(BA). Green triangles and blue squares are numerical results from exact diagonalization of N = 10 +and N = 16, respectively. +5 +Experimental Realizations +The onsite non-Hermiticity can be realized in cold atom systems by coupling the spin down +(up) degrees of freedom of the first (last) site to an auxiliary state by optical pumping +[52, 53]. Each atom in the bulk has two effective energy levels to mimic a 1/2 spin. XXZ +interaction can be induced by the mixing of even and odd parity states, e.g. in Rydberg +atoms [54]. We may introduce the third energy levels on the two ends so that the effective +spin down (up) state on the left (right) end can decay to it spontaneously. The effective +loss is described by a non-Hermitian term +Hloss = −ig +2 | ↑⟩⟨↑ |1 − ig +2 | ↓⟩⟨↓ |N = −ig +2 + ig +2 (Sz +N − Sz +1). +To evolve the open system under the non-Hermitian Hamiltonian without quantum jump, +i.e., by post-selection, the population of auxiliary energy levels should be monitored by +– 16 – + +0 +20 +40 +60 +80 +100 +time[1/g] +0.15 +0.15 +0.45 +Sz +j +(a) +j=14 +j=10 +j=8 +0 +20 +40 +60 +80 +time[1/g] +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +Sz +j +(b) +j=14 +j=10 +j=8 +0 +20 +40 +60 +80 +100 +time[1/g] +0.20 +0.15 +0.50 +Sz +j +(c) +j=14 +j=10 +j=8 +0 +20 +40 +60 +80 +time[1/g] +0.3 +0.4 +0.5 +Sz +j +(d) +j=14 +j=10 +j=8 +2 +4 +6 +8 +10 +12 +14 +position +0.5 +0.0 +0.5 +Sz +j +(e) +2 +4 +6 +8 +10 +12 +14 +position +0.5 +0.0 +0.5 +Sz +j +(f) +Figure 8. (a)-(d) Time evolution of spin polarization under post-selection dynamics. The dashed +lines indicate the values of Im(Es) +g +obtained from the Bethe ansatz. For (a)(b), the time evolution +starts from a local quench; in (c)(d), it starts from the “domain-wall” initial state (see text). The +time is measured in unit of 1/g. (e)(f) Steady-state spin polarization profile obtained from exact +diagonalization. Parameter values: N = 14 and g = 0.8 are fixed. For (a)(c)(e), ∆ = 0.8; for +(b)(d)(f), ∆ = 1.2. +exciting the states with laser. +The absence of fluorescence signals the absence of the +quantum jump from the magnetization-conserved quantum trajectory. The evolution of +the many-body state is then governed by the effective Hamiltonian Heff = HXXZ + Hloss, +– 17 – + +which differs from our initial Hamiltonian Eq. (2.1) only by an imaginary constant ig +2 . +During the time interval [t, t + δt], the state |ψ⟩ evolves as +|ψ(t + δt)⟩ = exp(−iHeffδt)|ψ(t)⟩ +| exp(−iHeffδt)|ψ(t)⟩|, +Starting from an initial state in the zero magnetization sector, the system will relax to +the steady state after sufficiently long time. +The imaginary part of the corresponding +eigenvalue can be obtained by measuring the expectation of boundary spin polarization: +Im(Es) = Im⟨ψs|H|ψs⟩ = Im⟨ψs|Heff|ψs⟩ + g +2 = g +2⟨ψs|(Sz +N − Sz +1)|ψs⟩ = g⟨ψs|Sz +N|ψs⟩, (5.1) +where |ψs⟩ is the steady state. The measured boundary spin polarization can be compared +to our analytical result of Im(Es). +Numerical simulations for post-selection evolution under Heff are conducted on N = 14 +chain to back up the above proposal. We consider two kinds of initial states. The first one +is a “local quench”, in which the spin chain is prepared in the ground state of HXXZ, and +boundary coupling to the auxiliary energy levels is turned on at certain moment. The other +initial state is a domain-wall configuration, in which the spins of the left half chain point +down while those of the right half point up. We discretize the continuous time evolution by +fourth order Runge-Kutta method, and obtain the spin polarizations in Fig. 8(a-d). It is +clear that for both local quench and domain wall initial states, the edge spin polarization +converges to the predictions of Bethe ansatz solution. For certain parameter choices, e.g., +Fig. 8(b), the relaxation time towards the steady state is comparable to 1/g, which is most +convenient from experimental perspective. The results from Bethe ansatz and numerical +simulation are also confirmed by exact diagonalization Fig. 8(e)(f). Fig. 8(e)(f) also shows +clearly that the steady-state expectation of Sz +N is well below 1/2 for |∆| < 1 , while it +saturates to 1/2 for |∆| > 1. +6 +Conclusion +In this work, we applied coordinate Bethe ansatz to solve the steady state and the ground +state of a PT symmetric one-dimensional boundary-dissipated spin chain, focusing on the +PT broken phase. We found the many-body scale-free state, which is composed of one +boundary mode and a continuum of scale-free modes in our particular model. We then +derived the Bethe equations of the scale-free Bethe roots, and obtained a compact formula +for the eigen-energy in the thermodynamic limit. +We then proposed an experimental +scheme to measure the dissipative part of the energy, and discussed how to compare it +with our analytical results. +Our findings shed a light on exceptional points and PT transition in many-body +physics. Particularly, our solution is a generalization of the concept of scale-free NHSE from +free-particle to many-body systems. Although we focused on the scale-free behaviour in the +XXZ spin chain, it is expected that this feature is universal in a family of non-Hermitian +models with interactions in the bulk and dissipation-induced defect mode at the boundary. +For example, non-integrable models also exhibit scale-free properties, as demonstrated in +– 18 – + +Fig. 2. Moreover, in integrable models solvable by nested Bethe ansatz (Fermi-Hubbard +model, higher spin XXX chain, etc.), boundary-operator induced PT symmetry transition +and the corresponding steady states may have richer structures to uncover. +We have demonstrated the scale-free skin effect by the difference between the imaginary +part of the steady state energy and that of a single boundary mode. Intuitively, the scale- +free skin effect may also manifest itself in the excitation spectra near the steady state. +A thorough analysis of those eigenstates requires preserving the O(1/N 2)-order terms in +the imaginary Bethe equations, which is left for future studies. Algebraic Bethe ansatz is +another possible approach to the solutions of excitations, though it remains a question how +scale-free Bethe roots emerge in the monodromy and transfer matrices. +Acknowledgments +This work is supported by NSFC under Grant No. 12125405. +References +[1] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R. Baxter and G. Quispel, Surface exponents of +the quantum XXZ, Ashkin-Teller and Potts models, Journal of Physics A: mathematical and +general 20 (1987) 6397. +[2] M.T. Batchelor and C. Hamer, Surface energy of integrable quantum spin chains, Journal of +Physics A: Mathematical and General 23 (1990) 761. +[3] M. Jimbo, R. Kedem, T. Kojima, H. Konno and T. Miwa, XXZ chain with a boundary, +Nuclear Physics B 441 (1995) 437. +[4] M. Jimbo, R. Kedem, H. Konno, T. Miwa and R. Weston, Difference equations in spin +chains with a boundary, Nuclear Physics B 448 (1995) 429. +[5] M.T. Grisaru, L. Mezincescu and R.I. Nepomechie, Direct calculation of the boundary +s-matrix for the open heisenberg chain, Journal of Physics A: Mathematical and General 28 +(1995) 1027. +[6] S. Skorik and H. Saleur, Boundary bound states and boundary bootstrap in the sine-gordon +model with dirichlet boundary conditions, Journal of Physics A: Mathematical and General +28 (1995) 6605. +[7] A. Kapustin and S. Skorik, Surface excitations and surface energy of the antiferromagnetic +xxz chain by the bethe ansatz approach, Journal of Physics A: Mathematical and General 29 +(1996) 1629. +[8] S. Grijalva, J. De Nardis and V. Terras, Open XXZ chain and boundary modes at zero +temperature, SciPost Physics 7 (2019) 023. +[9] J. Cao, H.-Q. Lin, K.-j. Shi and Y. Wang, Exact solution of XXZ spin chain with unparallel +boundary fields, Nuclear Physics B 663 (2003) 487. +[10] R.I. Nepomechie, Bethe ansatz solution of the open XXZ chain with nondiagonal boundary +terms, Journal of physics A: mathematical and general 37 (2003) 433. +– 19 – + +[11] R.I. Nepomechie and F. Ravanini, Completeness of the Bethe Ansatz solution of the open +XXZ chain with nondiagonal boundary terms, Journal of Physics A: Mathematical and +General 36 (2003) 11391. +[12] G. Niccoli and V. Terras, Correlation functions for open XXZ spin 1/2 quantum chains with +unparallel boundary magnetic fields, Journal of Physics A: Mathematical and Theoretical +(2022) . +[13] G.M. Sch¨utz, Integrable stochastic many-body systems, Tech. Rep. Publikationen vor 2000 +(1998). +[14] J. de Gier and F.H.L. Essler, Bethe ansatz solution of the asymmetric exclusion process with +open boundaries, Phys. Rev. Lett. 95 (2005) 240601. +[15] F.H.L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially +asymmetric diffusion with open boundaries, Journal of Physics A: Mathematical and General +29 (1996) 3375. +[16] N. Cramp´e, E. Ragoucy and D. Simon, Matrix coordinate bethe ansatz: applications to XXZ +and ASEP models, Journal of Physics A: Mathematical and Theoretical 44 (2011) 405003. +[17] M. Henkel, E. Orlandini and J. Santos, Reaction–diffusion processes from equivalent +integrable quantum chains, annals of physics 259 (1997) 163. +[18] T.c.v. Prosen, Open XXZ spin chain: Nonequilibrium steady state and a strict bound on +ballistic transport, Phys. Rev. Lett. 106 (2011) 217206. +[19] T.c.v. Prosen, Exact nonequilibrium steady state of a strongly driven open XXZ chain, Phys. +Rev. Lett. 107 (2011) 137201. +[20] M. ˇZnidariˇc, Spin transport in a one-dimensional anisotropic heisenberg model, Phys. Rev. +Lett. 106 (2011) 220601. +[21] D. Karevski, V. Popkov and G.M. Sch¨utz, Exact matrix product solution for the +boundary-driven lindblad XXZ chain, Phys. Rev. Lett. 110 (2013) 047201. +[22] T.c.v. Prosen, Exact nonequilibrium steady state of an open hubbard chain, Phys. Rev. Lett. +112 (2014) 030603. +[23] V. Popkov, T.c.v. Prosen and L. Zadnik, Exact nonequilibrium steady state of open +XXZ/XYZ spin-1/2 chain with dirichlet boundary conditions, Phys. Rev. Lett. 124 (2020) +160403. +[24] V. Popkov, T.c.v. Prosen and L. Zadnik, Inhomogeneous matrix product ansatz and exact +steady states of boundary-driven spin chains at large dissipation, Phys. Rev. E 101 (2020) +042122. +[25] V. Popkov and C. Presilla, Full spectrum of the liouvillian of open dissipative quantum +systems in the zeno limit, Phys. Rev. Lett. 126 (2021) 190402. +[26] B. Buˇca, C. Booker, M. Medenjak and D. Jaksch, Bethe ansatz approach for dissipation: +exact solutions of quantum many-body dynamics under loss, New Journal of Physics 22 +(2020) 123040. +[27] E.K. Sklyanin, Boundary conditions for integrable quantum systems, Journal of Physics A: +Mathematical and General 21 (1988) 2375. +[28] V. Pasquier and H. Saleur, Common structures between finite systems and conformal field +theories through quantum groups, Nuclear Physics B 330 (1990) 523. +– 20 – + +[29] C. Korff and R. Weston, PT symmetry on the lattice: the quantum group invariant XXZ spin +chain, Journal of Physics A: Mathematical and Theoretical 40 (2007) 8845. +[30] A. Morin-Duchesne, J. Rasmussen, P. Ruelle and Y. Saint-Aubin, On the reality of spectra of +uq (sl2)-invariant XXZ hamiltonians, Journal of Statistical Mechanics: Theory and +Experiment 2016 (2016) 053105. +[31] R. Couvreur, J.L. Jacobsen and H. Saleur, Entanglement in nonunitary quantum critical spin +chains, Phys. Rev. Lett. 119 (2017) 040601. +[32] Y.-T. Tu, Y.-C. Tzeng and P.-Y. Chang, R´enyi entropies and negative central charges in +non-hermitian quantum systems, SciPost Physics 12 (2022) 194. +[33] A.M. Gainutdinov, W. Hao, R.I. Nepomechie and A.J. Sommese, Counting solutions of the +bethe equations of the quantum group invariant open xxz chain at roots of unity, Journal of +Physics A: Mathematical and Theoretical 48 (2015) 494003. +[34] A.M. Gainutdinov and R.I. Nepomechie, Algebraic bethe ansatz for the quantum group +invariant open xxz chain at roots of unity, Nuclear Physics B 909 (2016) 796. +[35] L. Li, C.H. Lee, S. Mu and J. Gong, Critical non-hermitian skin effect, Nature +communications 11 (2020) 1. +[36] L. Li, C.H. Lee and J. Gong, Impurity induced scale-free localization, Communications +Physics 4 (2021) 1. +[37] K. Yokomizo and S. Murakami, Scaling rule for the critical non-hermitian skin effect, Phys. +Rev. B 104 (2021) 165117. +[38] B. Li, H.-R. Wang, F. Song and Z. Wang, “Local non-hermiticity induced scale-free +localization and pt breaking.” +[39] E. Ilievski and B. ˇZunkoviˇc, Quantum group approach to steady states of boundary-driven +open quantum systems, Journal of Statistical Mechanics: Theory and Experiment 2014 +(2014) P01001. +[40] T. Prosen, Matrix product solutions of boundary driven quantum chains, Journal of Physics +A: Mathematical and Theoretical 48 (2015) 373001. +[41] Y. Ashida, Z. Gong and M. Ueda, Non-hermitian physics, Advances in Physics 69 (2020) +249. +[42] R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter and +D.N. Christodoulides, Non-hermitian physics and pt symmetry, Nature Physics 14 (2018) 11. +[43] M.-A. Miri and A. Al`u, Exceptional points in optics and photonics, Science 363 (2019) . +[44] S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. +Rev. Lett. 121 (2018) 086803. +[45] K. Yokomizo and S. Murakami, Non-bloch band theory of non-hermitian systems, Phys. Rev. +Lett. 123 (2019) 066404. +[46] C. Korff, PT symmetry of the non-hermitian XX spin-chain: non-local bulk interaction from +complex boundary fields, Journal of Physics A: Mathematical and Theoretical 41 (2008) +295206. +[47] A. De Luca and A. Scardicchio, Ergodicity breaking in a model showing many-body +localization, EPL (Europhysics Letters) 101 (2013) 37003. +– 21 – + +[48] D.J. Luitz, F. Alet and N. Laflorencie, Universal behavior beyond multifractality in quantum +many-body systems, Physical Review Letters 112 (2014) 057203. +[49] D.J. Luitz, N. Laflorencie and F. Alet, Participation spectroscopy and entanglement +hamiltonian of quantum spin models, Journal of Statistical Mechanics: Theory and +Experiment 2014 (2014) P08007. +[50] F. Franchini et al., An introduction to integrable techniques for one-dimensional quantum +systems, . +[51] M. Takahashi, Thermodynamics of one-dimensional solvable models, Thermodynamics of +One-Dimensional Solvable Models (2005) . +[52] T.E. Lee and C.-K. Chan, Heralded magnetism in non-hermitian atomic systems, Phys. Rev. +X 4 (2014) 041001. +[53] J. Li, A.K. Harter, J. Liu, L. de Melo, Y.N. Joglekar and L. Luo, Observation of parity-time +symmetry breaking transitions in a dissipative floquet system of ultracold atoms, Nature +communications 10 (2019) 1. +[54] J.Y. Lee, J. Ramette, M.A. Metlitski, V. Vuletic, W.W. Ho and S. Choi, Landau-forbidden +quantum criticality in rydberg quantum simulators, arXiv preprint arXiv:2207.08829 (2022) . +– 22 – + diff --git a/itFKT4oBgHgl3EQfvy5I/content/tmp_files/load_file.txt b/itFKT4oBgHgl3EQfvy5I/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0dcb5820e273e267200838010f682a28b3b3a637 --- /dev/null +++ b/itFKT4oBgHgl3EQfvy5I/content/tmp_files/load_file.txt @@ -0,0 +1,888 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf,len=887 +page_content='Prepared for submission to JHEP Scale-free non-Hermitian skin effect in a boundary-dissipated spin chain He-Ran Wang, Bo Li, Fei Song, Zhong Wang Institute for Advanced Study, Tsinghua University, Beijing, 100084, China E-mail: whr21@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='cn, boliwalker@outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='com, songf18@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='cn, wangzhongemail@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='cn Abstract: We study the open XXZ spin chain with a PT-symmetric non-Hermitian boundary field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We find an interaction-induced scale-free non-Hermitian skin effect by using the coordinate Bethe ansatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The steady state and the ground state in the PT broken phase are constructed, and the formulas of their eigen-energies in the thermodynamic limit are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The differences between the many-body scale-free states and the boundary string states are explored, and the transition between the two at isotropic point is investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We also discuss an experimental scheme to verify our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Keywords: Bethe Ansatz, Quantum Dissipative Systems, Spin Chain, Non-Hermitian Skin Effect arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='11896v1 [quant-ph] 27 Jan 2023 Contents 1 Introduction 1 2 Non-Hermitian XXZ model and the phase diagram 3 3 Bethe ansatz solutions for scale-free skin modes 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='1 Single-magnon state 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='2 Two-magnon state 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='3 Imaginary Bethe equation at 0 < ∆ < 1 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='4 Boundary bound state at ∆ > 1 and phase transition 12 4 Ground state phase diagram 13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='1 Scale-free solutions for −1 < ∆ < 0 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='2 Imaginary Bethe equation at ∆ < −1 14 5 Experimental Realizations 16 6 Conclusion 18 1 Introduction Exactly solvable models play important roles in condensed matter physics, statistical physics, and mathematical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Certain experimentally relevant one-dimensional sys- tems can be modeled by open spin chains with boundary fields, some of which belong to the category of Yang-Baxter integrability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Examples include spin chains with diagonal [1–8] or off-diagonal [9–12] magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The problem is also related to classical dynamics of molecules with drain and source [13–17], and spin transport within the framework of Lind- blad master equation [18–25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Many mathematical tools, such as coordinate Bethe ansatz [1, 2, 6, 7, 14, 26], Sklyanin’s reflection algebra (an open boundary version of algebraic Bethe ansatz) [3–5, 8–12, 27], matrix product operator ansatz [13, 15–19, 21–24], etc, have been developed to treat those systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' In this article, we investigate a non-Hermitian open XXZ chain using coordinated Bethe ansatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The chain is subjected to opposite imaginary magnetic field on two ends, pointing to a prescribed direction called z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Here, the non-Hermiticity naturally stems from the ubiquitous coupling with the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' A special case has been studied thoroughly in previous literature, where the strength of the boundary field takes a specific value depending on the anisotropic interaction strength between adjacent spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The Hamiltonian then respects the q−deformed SU(2) symmetry [28] with |q| = 1, and serves as a representation of the Temperley-Lieb algebra [29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The spectrum of the model is purely real, though the Hamiltonian is non-Hermitian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Furthermore, when q is a root of unity for some values – 1 – of the boundary field, the representation of the symmetry group enjoys richer structures, such that an exact duality between the spin model and free-end quantum Potts model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The duality leads to the same conformal field theory (CFT) structure of two models, thus the negative central charge obtained from the side of Potts model makes the non-Hermitian spin chain a typical example of recently introduced “non-unitary” CFT [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' A significant consequence of q being a root of unity is that the spin Hamiltonian develops Jordan blocks, which feature exceptional points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The number of Jordan blocks for given q and size N has been counted [33], followed by the constructions of the corresponding generalized eigenstates [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Given the existence of many-body exceptional points, it is natural to identify different phases around them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Our article exhausts the parameter space of boundary imaginary field and anisotropic interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' For a small boundary field, the spectrum remains real, and the Bethe roots of the ground state only shift slightly compared with the Hermitian case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The spectrum becomes complex, however, when the boundary field exceeds the q−deformed SU(2) symmetric value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We show that, despite the breaking of the quantum group invariance, the model possesses a novel behaviour of scale- free localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We figure out the structure of the steady state (with the largest imaginary part of energy) and the ground state (with the lowest real part of energy) as the combination of a boundary Bethe root and a set of continuous Bethe roots in the thermodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The continuous Bethe roots all have an imaginary part proportional inversely to the system size N, corresponding to a small imaginary wavevector (or momentum) κ ∼ α/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' In the single-particle context, when the localization length of wavefunction is proportional to the system size N, the density |ψN(x)|2 ∼ exp(2αx/N) is invariant under re-scaling transformation with factor s: |ψN(x)|2 = |ψsN(sx)|2, and therefore called scale-free non- Hermitian skin effect (NHSE) or critical NHSE [35–37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Scale-free NHSE has also been found in Hermitian systems with non-Hermitian boundary field, though the mechanism is different [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' In the present work, the imaginary part of wavevector is attributed to the scattering between the boundary mode and magnons traveling in the bulk, and these Bethe roots contribute a non-negligible imaginary part to the energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Thus, unlike previous works, our scale-free behaviour has a many-body origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' More precisely, it originates from the interplay between boundary dissipation and many-body interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' On one hand, the interaction among magnons is an indispensable ingredient for the scale-free NHSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' On the other hand, we also note that the Hermitian counterpart, namely the open XXZ model subjected to real boundary field, has only isolated boundary modes, and such continuous skin modes are lacking [6–8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We derive an integral equation, dubbed imaginary Bethe equation, to solve the scale-free localization length in the thermodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We then give an exact formula for the imaginary part of the steady state energy, which are then compared to finite-size numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We also explain how to measure these physical quantities in cold-atom experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Before proceeding, we compare our results to earlier studies on boundary-driven spin chains as open quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The evolution of those open quantum systems is gen- erated by the Linbladian operator, composed of an integrable Hamiltonian and quantum – 2 – jump operators on the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' A typical example relevant to our work is [19] L(ρ) = −i[HXXZ, ρ] + � µ=1,N LµρL† µ − 1 2{L† µLµ, ρ} = −iHeffρ + iρH† eff + � µ=1,N LµρL† µ, with L1 = √gS− 1 , LN = √gS+ N and Heff = HXXZ − i 2 � µ=1,N L† µLµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Here, Heff is the non- Hermitian Hamiltonian we shall focus on below (see eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Although the Lindbladian breaks integrability, the density matrix of non-equilibrium steady state (NESS) has been established by the matrix product operator (MPO) ansatz exactly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Furthermore, it has been found that the local matrix of MPO ansatz is indeed the infinite-dimensional solution of Yang-Baxter relations, and thus exterior integrability emerges in the NESS [39, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' However, the dynamics towards NESS is unknown yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Our work about the non-Hermitian effective Hamiltonian is complementary to the NESS solution because Heff governs the time evolution of the open quantum system under post-selection, which is relevant to numerous experiments [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Our solution is enabled by the Yang-Baxter integrability of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Another related system is the XXZ model with only one jump operator L1 on the left boundary [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Since the dissipator is purely lossy, the Lindbladian becomes upper-triangular under an appropriate basis choice, so that the Liouvillian spectrum can be completely determined by the effective non-Hermitian Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The Hamiltonian has scale-free eigenstates even in the single-magnon sector, but PT symmetry is absent due to that the dissipator occurs only on one of the two ends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' By contrast, our Hamiltonian preserves PT symmetry, and in single-magnon sector there are only Bloch-wave modes and exponentially localized states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Scale-free modes originate from many-body interactions in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The rest part is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' In the next section, we introduce the model Hamiltonian, its general Bethe equations, and the phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' In Sections 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='2, we consider the single-magnon and two-magnon state as a warm-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We then generalize the results to the many-body cases to obtain the steady state with scale-free NHSE in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='4 is devoted to another type of steady state solution, the boundary string states, which emerges for the highly anisotropic case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' In Section 4, we apply the ansatz of scale-free solutions to the ground state for different parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' A possible experimental setup for the non-Hermitian model is discussed in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We give some concluding remarks in Section 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' 2 Non-Hermitian XXZ model and the phase diagram The Hamiltonian reads: H = − N−1 � j=1 (Sx j Sx j+1 + Sy j Sy j+1 + ∆Sz j Sz j+1) + ig 2 (Sz N − Sz 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='1) where Sα = 1 2σα(α = x, y, z) is the spin-1/2 operator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' the anisotropic interaction strength ∆ and boundary field strength g are purely real, with g > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The model respects the PT – 3 – symmetry with TiT = −i and PSα j P = Sα N−j, and therefore the eigenvalues are either real or form complex conjugate pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' When the whole spectrum is purely real, the model is said to be in the PT exact (or PT-symmetric) phase, otherwise it is in the PT broken phase [42, 43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The steady state, which has the largest imaginary part of eigen-energy in the PT broken phase, is of great importance because it captures the long-time behaviour of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' A generic initial wavefunction evolving for a sufficiently long time under exp(−iHt) will converge to the steady state;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' we shall study the phase diagram of this steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The Hamiltonian also commutes with total z magnetization m = �N j=1 Sz j , so that it can be block diagonalized in each sector with definite total magnetization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Furthermore, there is another symmetry operator PX with X = �N j=1 σx j which sends m to −m, and therefore it suffices to study non-positive magnetization (m ≤ 0) states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' For the odd length chain, PX symmetry leads to the two-fold degeneracy of the steady states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Thus, we only take even site number N throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Ferromagnetic (∆ > 0) and anti-ferromagnetic (∆ < 0) models can be related by the transformation Z = �N/2 j σz 2j−1: ZTH(∆, g)ZT = ZH(∆, −g)Z = −H(−∆, g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='2) As such, an eigenstate of ferromagnetic Hamiltonian with H(∆, g)|ψ⟩ = E|ψ⟩ can be trans- formed to an eigenstate of the anti-ferromagnetic one: H(−∆, g)(ZT|ψ⟩) = −E∗(ZT|ψ⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' If E has the largest imaginary part among the spectrum, so does −E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Thus, the steady state properties remain the same for ±∆, and it suffices to study the ferromagnetic case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Δ g PT exact Scale-free skin effect Boundary string Boundary string 1 1 1 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Steady-state phase diagram of model Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='1) in the zero magnetization sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' The critical curve ∆2 + g2 = 1 separates PT exact and broken phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' When |∆| < 1 and g > gc = √ 1 − ∆2, the steady state is the many-body scale-free state;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' when |∆| > 1, the steady state is the boundary string state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Eigenstates of the model can be solved by coordinate Bethe ansatz [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Take all spin down state as the reference state with energy E0 = − 1 4(N −1)∆, we can excite M magnons by flipping M spins up (M ≤ N/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' We can construct the ansatz state |ψ⟩ , whose – 4 – wavefunction in the onsite magnon number basis is given by: ⟨n1 · · · nj · · · nM|ψ⟩ = � P � {ηj} (−1)PA({eikj};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' P, {ηj})eiη1kP1n1 · · · eiηjkPjnj · · · eiηMkPMnM , where n1 < · · · < nj < · · · < nM are the positions of up spin, P refers to all possible permutations, and chirality ηj = ±1 corresponds to right-moving and left-moving magnons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Relabeling the momentum of magnon by βj = eikj [44, 45], we have the equivalent form: ⟨n1 · · · nj · · · nM|ψ⟩ = � P � {ηj} (−1)PA({βj};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' P, {ηj})βη1n1 P1 · · βηjnj Pj · · βηMnM PM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='3) The coefficient A({βj};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' P, {ηj}) is a function of magnon momenta {βj}, permutation P, and chirality {ηj}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' Imposing the condition that |ψ⟩ is an eigenstate of H with energy EM({βj}) = E0 + M � j=1 (∆ − (βj + β−1 j )/2) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content='4) and the boundary condition, those coefficients can be found as [1]: A({βj};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFKT4oBgHgl3EQfvy5I/content/2301.11896v1.pdf'} +page_content=' P, {ηj}) = M � j (1 − ∆+βηj Pj)β−(N+1)ηj Pj � j 0. From Equation (1), we can see by induction that Tn+1(x) ≥ +Tn(x) for all x ≥ 1. One sees that if |α| ≥ |β|, then Tα(x) > Tβ(x) for +all x > 1 (see Lemma 3). More generally, any weighted geometric mean of +functions of the form Tα is bounded by another function of the same form: +Theorem 1. Let ti, 1 ≤ i ≤ n, be nonnegative real numbers such that +�n +i=1 ti = 1. If α2 ≥ �n +i=1 tiα2 +i , then we have +n +� +i=1 +(Tαi(x))ti ≤ Tα(x), +(4) +for all x ≥ 1, where the equality occurs if and only if x = 1 or |α| = |αi| +for all 1 ≤ i ≤ n with ti ̸= 0. Conversely, if the inequality (4) holds for all +x ≥ 1, then α2 ≥ �n +i=1 tiα2 +i . +When n = 2, Theorem 1 can be used to show that if (c − 1)2 ≤ 2ab, then +(xc + yc)2 ≥ (x + y)(xayb + yaxb), +for all x, y ≥ 0, where c = (a + b + 1)/2. This inequality is a homogeneous +cyclic inequality on two variables. We are interested in a general form of this +inequality on n arbitrary nonnegative variables: +� n +� +i=1 +xc +i +�2 +≥ +n +� +i=1 +xi +n +� +i=1 +xa +i xb +i+1. +(5) +2 + +It turns out that, given fixed values of a, b ≥ 0, the validity of the cyclic +homogeneous inequality (5) depends on n. One can make the following ob- +servations regarding the inequality (5): +i) If a + b = 1, then the inequality holds for all n ≥ 1 (by the Rearrange- +ment inequality [3]). +ii) Given a, b ≥ 0 with a + b ̸= 1, there exists an integer N(a, b) such that +the inequality (5) holds for all x1, . . . , xn ≥ 0 if and only if n ≤ N(a, b); +[4]. +iii) Given a positive integer n, the set On of (a, b) ∈ [0, ∞) × [0, ∞) for +which the inequality (5) holds for all x1, . . . , xn ≥ 0 is a topologically +closed and convex subset of R2. +Theorem 5 shows that O2 = {(a, b) : a, b ≥ 0 and (a+b−1)2 ≤ 8ab}. The +problem of completely characterizing On for n > 2 seems difficult, however, +a necessary condition is that +(a + b − 1)2 ≤ 8ab sin2(π/n). +For n = 3, in Theorem 6, we will show that +{(a, b) : a, b ≥ 0 and 2a + 1 ≥ b ≥ (a − 1)/2 ≥ −b/2} ⊆ O3. +As an example, in section 4, we will consider the case of a = b = 1 and prove +the following theorem. +Theorem 2. Let x1, . . . , xn be nonnegative real numbers. If n ≤ 8, then +� n +� +i=1 +x3 +i +�2 +≥ +� n +� +i=1 +x2 +i +� � n +� +i=1 +x2 +i x2 +i+1 +� +, +(6) +where the equality occurs if and only if x1 = x2 = · · · = xn. Moreover, the +inequality (6) does not hold in general if n > 8. +2 +Inequalities on Chebyshev polynomials +In this section, we prove Theorem 1 which gives an upper bound for geometric +means of Chebyshev polynomials. We first show that Tα(x) is an increasing +function of |α| for a fixed x > 1. +Lemma 3. If |α| ≥ |β|, then Tα(x) ≥ Tβ(x) for all x ≥ 1. The equality +occurs if and only if x = 1 or |α| = |β|. +3 + +Proof. Without loss of generality, suppose that α ≥ β > 0. By virtue of +Equation 3, we need to show that the function α �→ xα + x−α is a strictly +increasing function of α > 0 for a fixed positive x ̸= 1. The claim then +follows from +d +dα(xα + x−α) = (xα − x−α) ln x > 0, +which holds for all positive x ̸= 1 and α > 0. +Next, we prove Theorem 1 in the case of n = 2. +Lemma 4. If 2α2 ≥ β2 + γ2, then +(Tα(x))2 ≥ Tβ(x)Tγ(x), +(7) +for all x ≥ 1. The equality occurs if and only if x = 1 or |α| = |β| = |γ|. +Conversely, if the inequality (7) holds for all x ≥ 1, then 2α2 ≥ β2 + γ2. +Proof. We let +G(x) = (xα + x−α)2 − (xβ + x−β)(xγ + x−γ). +To prove the inequality (7), it is sufficient to show that G(x) ≥ 0 for all +x > 0. For H(x) = xG′(x), one has H(1) = 0 and +xH′(x) = 4α2(x2α + x−2α) − (β + γ)2(xβ+γ + x−β−γ) − (β − γ)2(xβ−γ + x−β+γ) +≥ 4α2(x2α + x−2α) − (β + γ)2(x2α + x−2α) − (β − γ)2(x2α + x−2α) +≥ 2(2α2 − β2 − γ2)(x2α + x−2α) ≥ 0, +since |2α| ≥ |β + γ| and |2α| ≥ |β − γ|. It follows that H′(x) ≥ 0 for all +x > 0. Since H(1) = 0, we must have H(x) ≥ 0 for all x ≥ 1 and H(x) ≤ 0 +for all 0 < x ≤ 1. Therefore, G′(x) ≥ 0 for all x ≥ 1 and G′(x) ≤ 0 for all +0 < x ≤ 1. Since G(1) = 0, it follows that G(x) ≥ 0 for all x > 0. The +equality occurs if and only if x = 1 or |2α| = |β + γ| or |2α| = |β − γ|. +Therefore, the equality occurs if and only if x = 1 or |α| = |β| = |γ|. +For the converse, suppose that G(x) ≥ 0 for all x > 0. From the calcu- +lations above, we have G′(1) = 0 and G′′(1) = 4(2α2 − β2 − γ2). Since G +attains a minimum at x = 1, we must have G′′(1) ≥ 0, which implies that +2α2 ≥ β2 + γ2. +A function f(x) is said to be concave on an interval [a, b], if +f(tx1 + (1 − t)x2) ≥ tf(x1) + (1 − t)f(x2), +4 + +for all x1, x2 ∈ [a, b]. A function f(x) is said to be midpoint-concave on an +interval [a, b], if +f +�x1 + x2 +2 +� +≥ f(x1) + f(x2) +2 +, +for all x1, x2 ∈ [a, b]. We are now ready to prove Theorem 1. +Proof of Theorem 1. Let fx : (0, ∞) → R be defined by +fx(α) = ln T√α(x). +We show that fx is a midpoint-concave function of α > 0 for any fixed value +of x ≥ 1. It follows from Lemma 4 that +fx(α) + fx(β) = ln T√α(x) + ln T√β(x) = ln T√α(x)T√β(x) ≤ ln T√γ(x)2, +where γ = (α+β)/2. Therefore, fx(α)+fx(β) ≤ 2fx((α+β)/2), which means +that fx is a midpoint-concave function on (0, ∞). A theorem of Jensen states +that if a function is continuous and midpoint-concave, then it is concave [5, 6]. +It follows that fx is concave. By Jensen’s inequality [3], we conclude that +n +� +i=1 +tifx(α2 +i ) ≤ fx +� n +� +i=1 +tiα2 +i +� +, +which implies the inequality (4). +For the converse, by replacing x with (x + x−1)/2 in (4) and taking the +natural logarithm of both sides, suppose that +G(x) = ln(xα + x−α) − +n +� +i=1 +ti ln(xαi + x−αi) ≥ 0, +for all x > 0. It is straightforward to show that G(1) = G′(1) = 0 and +G′′(1) = 1 +2 +� +α2 − +� +i=1 +tiα2 +i +� +. +Since G attains a minimum at x = 1, we conclude that G′′(1) ≥ 0, and the +claim follows. +□ +3 +A related cyclic homogeneous inequality +In this section, we study the cyclic homogeneous inequality (5). We first +consider the case of n = 2. +5 + +Theorem 5. Let a, b ≥ 0 and c = (a + b + 1)/2. If (c − 1)2 ≤ 2ab, then +(xc + yc)2 ≥ (x + y)(xayb + yaxb), +(8) +for all x, y ≥ 0, and the equality occurs if and only if x = y or {a, b} = {0, 1}. +Proof. With α = c/2, β = 1/2, and γ = (a − b)/2, Lemma 4 implies that +((x/y)c/2 + (x/y)−c/2)2 ≥ ((x/y)1/2 + (x/y)−1/2)((x/y)(a−b)/2 + (x/y)(b−a)/2), +for all x ≥ 1, if 2α2 ≥ β2 + γ2 or equivalently (c − 1)2 ≤ 2ab. The equality +occurs if and only if x/y = 1 or |α| = |β| = |γ|, or equivalently, if and only +if x = y or {a, b} = {0, 1}. +Next, we consider the following general homogeneous cyclic inequality +� n +� +i=1 +xc +i +�2 +≥ +n +� +i=1 +xi +n +� +i=1 +xa +i xb +i+1, +(9) +where c = (a + b + 1)/2 and a, b, x1, . . . , xn ≥ 0. +One asks that under +what conditions on a, b, c, the inequality (9) holds for all x1, . . . , xn ≥ 0. +It is straightforward to see that if a + b = 1, then the inequality (9) for +all x1, . . . , xn ≥ 0, follows from the Rearrangement inequality [2, Ch. 6]. +However, if a+b ̸= 1, then the inequality (9) fails to hold if n is large enough +[4]. In other words, the validity of the inequality (9) for all x1, . . . , xn ≥ 0 +for fixed values of a, b ≥ 0 with a + b ̸= 1 depends on n. Similarly, given a +fixed value of n, the inequality (9) holds for a specific subset On of values +(a, b) ∈ [0, ∞)×[0, ∞). Theorem 5 describes O2 completely. For n > 2, such +a complete description seems to be difficult to find. However, in the following +theorem, we derive a sufficient condition for the inequality (9) in the case of +n = 3. +Theorem 6. If 2a + 1 ≥ b ≥ (a − 1)/2 ≥ −b/2, then +(xc + yc + zc)2 ≥ (x + y + z)(xayb + yazb + zaxb), +for all x, y, z ≥ 0. The equality occurs if and only if x = y = z. +Proof. Without loss of generality, we assume that a ≥ b. If b ≥ a − 1, then +the claim follows from [4, Prop. 2.1]. Thus, suppose that a − b − 1 ≥ 0. Let +x, y, z ≥ 0. By Jensen’s inequality [2, Ch. 7]: +a + 1 − b +2c +x2c + b +cxcyc ≥ xa+1yb, +b +2cx2c + 2b − a + 1 +2c +y2c + a − b +c +xcyc ≥ xayb+1, +a − b − 1 +2c +x2c + 1 +cxczc + b +cxcyc ≥ xaybz. +6 + +Adding these inequalities yields +2a − b +2c +x2c + 2b − a + 1 +2c +y2c + a + b +c +xcyc + 1 +cxczc ≥ (x + y + z)xayb. +(10) +Similarly +2a − b +2c +y2c + 2b − a + 1 +2c +z2c + a + b +c +yczc + 1 +cxcyc ≥ (x + y + z)yazb, +(11) +2a − b +2c +z2c + 2b − a + 1 +2c +x2c + a + b +c +xczc + 1 +cyczc ≥ (x + y + z)zaxb. +(12) +The claim follows from adding inequalities (10)-(12). +4 +The case of a = b = 1 +In this section, we prove Theorem 2 which states that the inequality (5) holds +in the case of a = b = 1 if and only if n ≤ 8. To show that the inequality +(5) does not hold for n ≥ 9, it is sufficient to find a counterexample for the +inequality with 9 variables, since if the inequality (5) holds for n variables, +then it holds for n − 1 variables. Here is one such counterexample [4]: +x1 = x9 = 8.5, x2 = x8 = 9, x3 = x7 = 10, x4 = x6 = 11.5, x5 = 12. +It is then left to prove that the inequality (5) holds with a = b = 1 for all +x1, . . . , x8 ≥ 0. We first need a lemma. +Lemma 7. Let x1, . . . , x8 be nonnegative real numbers. Then +8 +� +i=1 +x3 +i ≥ 1 +8 +� +8 +� +i=1 +xi +� � +8 +� +i=1 +x2 +i +� +. +Proof. By the Power Mean Inequality [1, Ch. III], one has +� +1 +8 +8 +� +i=1 +x3 +i +�1/3 +≥ 1 +8 +8 +� +i=1 +xi and +� +1 +8 +8 +� +i=1 +x3 +i +�1/3 +≥ +� +1 +8 +8 +� +i=1 +x2 +i +�1/2 +. +The claim follows from these inequalities. +Now, we are ready to prove Theorem 2. +7 + +Proof of Theorem 2. +Equivalently, we show that the maximum value of +the function f : U → R defined by +f(x1, . . . , x8) = +�8 +i=1 x4 +i x4 +i+1 +��8 +i=1 x6 +i +�2 , +is 1, where +U = +� +(x1, . . . , x8) : +8 +� +i=1 +x4 +i = 1 +� +. +one has (�8 +i=1 x6 +i /8)1/6 ≥ (�8 +i=1 x4 +i /8)1/4 by the Power Mean Inequality [1, +Ch. III]. Therefore, �8 +i=1 x6 +i ≥ +� +1/8 and so the function f is bounded from +above on U, hence it attains a positive absolute maximum on the compact set +U, say at (x1, . . . , x8). Without loss of generality, we can assume x1, . . . , x8 ≥ +0. By the method of Lagrange multipliers, there exists a real number λ such +that +1 +A4 +� +4x3 +i (x4 +i−1 + x4 +i+1)A2 − 2AB(6x5 +i ) +� += λ(4x3 +i ), ∀i = 1, . . . , 8, +(13) +where A = x6 +1 + · · · + x6 +8 and B = x4 +1x4 +2 + · · · + x4 +8x4 +1. Therefore, +x4 +i (x4 +i−1 + x4 +i+1)A − 3Bx6 +i = λA3x4 +i , ∀1 ≤ i ≤ 8. +(14) +By summing the equations (14), we have λ = −B/A2. We need to show +that A2 ≥ B. +On the contrary, suppose B > A2, and we will derive a +contradiction. +Equations (13) imply that, if xi ̸= 0, then +3Bx2 +i = A(x4 +i−1 + x4 +i+1) + AB. +(15) +First, we show that xi ̸= 0 for all i ∈ {1, . . . , 8}. On the contrary, and +without loss of generality, suppose x8 = 0 and x7 > 0. Given ǫ ∈ (0, x7), let +δ = δ(ǫ) = (x4 +7 − (x7 − ǫ)4)1/4, +such that (x7 − ǫ)4 + δ4 = x4 +7, and so δ3δ′ = (x7 − ǫ)3. We define +F(ǫ) = f(x1, . . . , x6, x7 − ǫ, δ) = Bǫ +A2ǫ +, +and compute +F ′(ǫ) = 4(x7 − ǫ)3 +A4ǫ +� +A2 +ǫ(−x4 +6 − δ4 + (x7 − ǫ)4 + x4 +1) + 3AǫBǫ((x7 − ǫ)2 − δ2) +� +. +8 + +It follows that +lim +ǫ→0+ F ′(ǫ) = x3 +7 +A4(A2(+x4 +7 + x4 +1) − A2x2 +6 + 3ABx2 +7) += x3 +7 +A4(A2(x4 +1 + x4 +7) + A2B) > 0, +(16) +where we have used equation (15) with i = 7 to obtain −A2x2 +6 + 3ABx2 +7 = +A2B. The inequality (16) is a contradiction with the assumption that F(ǫ) +attains a maximum as ǫ → 0+. We conclude that xi > 0 for all i = 1, . . . , 8. +In particular, equations (15) hold for all i = 1, . . . , 8. In the rest of the proof, +we let yi = x2 +i . Hence, with C = B/A, the equations (15) turn into +3yiC = y2 +i−1 + y2 +i+1 + B, ∀1 ≤ i ≤ 8. +(17) +It follows that +3(yi + yi+4)C = 2B + y2 +i−1 + y2 +i+1 + y2 +i+3 + y2 +i+5, +3(yi+2 + yi+6)C = 2B + y2 +i+1 + y2 +i+3 + y2 +i+5 + y2 +i+7, +which imply that yj + yj+4 = yj+2 + yj+6 for all j, since yi−1 = yi+7 as +the indices are computed modulo 8. Therefore, there exist nonnegative real +numbers r, s such that +y1 + y5 = y3 + y7 = r, +(18) +y2 + y6 = y4 + y8 = s. +(19) +Equations (17) imply that +3(y1 − y3)C = y2 +8 − y2 +4 +3(y2 − y4)C = y2 +1 − y2 +5 +3(y3 − y5)C = y2 +2 − y2 +6 +3(y4 − y6)C = y2 +3 − y2 +7. +Let ¯yi = yi − r/2 if i is odd, and ¯yi = yi − s/2 if i is even. It follows that +¯yi + ¯yi+4 = 0 for all i. Moreover, for i odd, we have +3C(¯yi − ¯yi+4) = 3C(yi − yi+4) = y2 +i−1 − y2 +i+1 + y2 +i+3 − y2 +i+5 += (yi−1 − yi+3)(yi−1 + yi+3) + (yi+1 − yi+5)(yi+1 + yi+5) += 2¯yi−1s + 2¯yi+1s, +which implies that ¯yi = (¯yi−1 + ¯yi+1)s/(3C) for odd i. Similarly, ¯yi = (¯yi−1 + +¯yi+1)r/(3C) for even i. It then follows that +¯yi = s +3C (¯yi−1 + ¯yi+1) = rs +9C2(¯yi−2 + ¯yi + ¯yi + ¯yi+2) = 2rs +9C2 ¯yi, +9 + +for odd i, and similarly for even i. We claim that 9C2 ̸= 2rs. On the contrary, +suppose 9C2 = 2rs, and so, since C = B/A > A, we must have +6 +√ +2A < 6 +√ +2C ≤ 4√rs ≤ 2(r + s) ≤ +8 +� +i=1 +yi. +(20) +However, by Lemma 7, we have 8A ≥ �8 +i=1 yi which contradicts (20), since +6 +√ +2 > 8. Thus 9C2 ̸= 2rs, and so ¯yi = 0 for all i. Therefore, y1 = y3 = +y5 = y7 = r/2, and y2 = y4 = y6 = y8 = s/2. +So we have r2 + s2 = +4((r/2)2 + (s/2)2) = �8 +i=1 y2 +i = 1 and +f(x1, . . . , x8) = +8(r/2)2(s/2)2 +(4(r/2)3 + 4(s/2)3)2 = +2r2s2 +(r3 + s3)2 ≤ 1, +(21) +since it follows from r2 + s2 = 1 that +r3 + s3 ≥ 2 +�r2 + s2 +2 +�3/2 +≥ 2 +�1 +2 +�3/2 +≥ r2 + s2 +√ +2 +≥ +√ +2rs. +The equality occurs in (21) if and only if r = s (and so y1 = y2 = · · · = y8); +hence, the equality in (6) occurs if and only if x1 = x2 = · · · = x8. +□ +References +[1] P. S. Bullen, Handbook of Means and Their Inequalities, Springer (2003). +[2] Z. Cvetkovski, Inequalities, Theorems, Techniques, and Selected Prob- +lems, Springer, Berlin (2012). +[3] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities , Cambridge Univ. +Press (1934). +[4] M. Javaheri, A new arrangement inequality, J. Ineq. Pure Appl. Math. +7(5) (2006), Article 162. +[5] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre +les valeurs moyennes, Acta Mathematica (Institut Mittag-Leffler) 1906, +Vol. 30, No. 1, pp 175–193. +[6] C.P. Niculescu and L-E. Persson, Convex Functions and Their Applica- +tions, Springer International Publishing, (2018). +10 + diff --git a/j9AyT4oBgHgl3EQfyPkN/content/tmp_files/load_file.txt b/j9AyT4oBgHgl3EQfyPkN/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee65344b8f10de93a3c418b06ffcd7e36c205db2 --- /dev/null +++ b/j9AyT4oBgHgl3EQfyPkN/content/tmp_files/load_file.txt @@ -0,0 +1,261 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf,len=260 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='00679v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='CA] 28 Dec 2022 On a Cyclic Inequality Related to Chebyshev Polynomials Mohammad Javaheri Harry Shen mjavaheri@siena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='edu hx21shen@siena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='edu 515 Loudon Road Siena College, School of Science Loudonville, NY 12211 Abstract We show that any weighted geometric mean of Chebyshev polyno- mials is bounded from above by another Chebyshev polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We also study a related homogeneous cyclic inequality � n � i=1 x(a+b+1)/2 i �2 ≥ n � i=1 xi n � i=1 xa i xb i+1, where a, b, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn (with xn+1 = x1) are nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' In particular, we prove that the inequality holds when a = b = 1 and n ≤ 8 for all nonnegative numbers x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 1 1 Introduction Chebyshev polynomials of the first kind are defined by the recurrence rela- tion: Tn+1(x) = 2xTn(x) − Tn−1(x), (1) where T0(x) = 1 and T1(x) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The most well-known property of Chebyshev polynomials is that they express cos(nθ) in terms of cos(θ) via the equation cos(nθ) = Tn(cos θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Chebyshev polynomials are a special kind of Jacobi polynomials (also known as hypergeometric polynomials), a class of classical orthogonal polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Chebyshev was the first mathematician to have 1Mathematics Subject Classification (2010): 26D07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Keywords: Chebyshev polynomials, cyclic homogeneous inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 1 noticed them in 1854, but their importance was not noticed until Hans Hahn rediscovered them and named them after Chebyshev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The polynomials Tn(x) are orthogonal with respect to the inner product ⟨f, g⟩ = 2 π � 1 −1 f(x)g(x) dx √ 1 − x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' In other words, ⟨Tm, Tn⟩ = 0 for all positive integers m ̸= n, and ⟨Tn, Tn⟩ = 1 for all integers n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Chebyshev polynomials have the explicit expression Tn(x) = 1 2 � x − √ x2 − 1 �n + 1 2 � x + √ x2 − 1 �n , (2) for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' By replacing n with α in Equation (2), one can generalize Cheby- shev polynomials to functions Tα : [1, ∞) → [1, ∞) for all values of α ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Equivalently, Tα is defined by Tα �x + x−1 2 � = xα + x−α 2 , (3) for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' From Equation (1), we can see by induction that Tn+1(x) ≥ Tn(x) for all x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' One sees that if |α| ≥ |β|, then Tα(x) > Tβ(x) for all x > 1 (see Lemma 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' More generally, any weighted geometric mean of functions of the form Tα is bounded by another function of the same form: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let ti, 1 ≤ i ≤ n, be nonnegative real numbers such that �n i=1 ti = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If α2 ≥ �n i=1 tiα2 i , then we have n � i=1 (Tαi(x))ti ≤ Tα(x), (4) for all x ≥ 1, where the equality occurs if and only if x = 1 or |α| = |αi| for all 1 ≤ i ≤ n with ti ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Conversely, if the inequality (4) holds for all x ≥ 1, then α2 ≥ �n i=1 tiα2 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' When n = 2, Theorem 1 can be used to show that if (c − 1)2 ≤ 2ab, then (xc + yc)2 ≥ (x + y)(xayb + yaxb), for all x, y ≥ 0, where c = (a + b + 1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' This inequality is a homogeneous cyclic inequality on two variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We are interested in a general form of this inequality on n arbitrary nonnegative variables: � n � i=1 xc i �2 ≥ n � i=1 xi n � i=1 xa i xb i+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (5) 2 It turns out that, given fixed values of a, b ≥ 0, the validity of the cyclic homogeneous inequality (5) depends on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' One can make the following ob- servations regarding the inequality (5): i) If a + b = 1, then the inequality holds for all n ≥ 1 (by the Rearrange- ment inequality [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' ii) Given a, b ≥ 0 with a + b ̸= 1, there exists an integer N(a, b) such that the inequality (5) holds for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn ≥ 0 if and only if n ≤ N(a, b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' iii) Given a positive integer n, the set On of (a, b) ∈ [0, ∞) × [0, ∞) for which the inequality (5) holds for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn ≥ 0 is a topologically closed and convex subset of R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Theorem 5 shows that O2 = {(a, b) : a, b ≥ 0 and (a+b−1)2 ≤ 8ab}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The problem of completely characterizing On for n > 2 seems difficult, however, a necessary condition is that (a + b − 1)2 ≤ 8ab sin2(π/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' For n = 3, in Theorem 6, we will show that {(a, b) : a, b ≥ 0 and 2a + 1 ≥ b ≥ (a − 1)/2 ≥ −b/2} ⊆ O3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' As an example, in section 4, we will consider the case of a = b = 1 and prove the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn be nonnegative real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If n ≤ 8, then � n � i=1 x3 i �2 ≥ � n � i=1 x2 i � � n � i=1 x2 i x2 i+1 � , (6) where the equality occurs if and only if x1 = x2 = · · · = xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Moreover, the inequality (6) does not hold in general if n > 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 2 Inequalities on Chebyshev polynomials In this section, we prove Theorem 1 which gives an upper bound for geometric means of Chebyshev polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We first show that Tα(x) is an increasing function of |α| for a fixed x > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If |α| ≥ |β|, then Tα(x) ≥ Tβ(x) for all x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The equality occurs if and only if x = 1 or |α| = |β|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 3 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Without loss of generality, suppose that α ≥ β > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' By virtue of Equation 3, we need to show that the function α �→ xα + x−α is a strictly increasing function of α > 0 for a fixed positive x ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The claim then follows from d dα(xα + x−α) = (xα − x−α) ln x > 0, which holds for all positive x ̸= 1 and α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Next, we prove Theorem 1 in the case of n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If 2α2 ≥ β2 + γ2, then (Tα(x))2 ≥ Tβ(x)Tγ(x), (7) for all x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The equality occurs if and only if x = 1 or |α| = |β| = |γ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Conversely, if the inequality (7) holds for all x ≥ 1, then 2α2 ≥ β2 + γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We let G(x) = (xα + x−α)2 − (xβ + x−β)(xγ + x−γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' To prove the inequality (7), it is sufficient to show that G(x) ≥ 0 for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' For H(x) = xG′(x), one has H(1) = 0 and xH′(x) = 4α2(x2α + x−2α) − (β + γ)2(xβ+γ + x−β−γ) − (β − γ)2(xβ−γ + x−β+γ) ≥ 4α2(x2α + x−2α) − (β + γ)2(x2α + x−2α) − (β − γ)2(x2α + x−2α) ≥ 2(2α2 − β2 − γ2)(x2α + x−2α) ≥ 0, since |2α| ≥ |β + γ| and |2α| ≥ |β − γ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It follows that H′(x) ≥ 0 for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Since H(1) = 0, we must have H(x) ≥ 0 for all x ≥ 1 and H(x) ≤ 0 for all 0 < x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, G′(x) ≥ 0 for all x ≥ 1 and G′(x) ≤ 0 for all 0 < x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Since G(1) = 0, it follows that G(x) ≥ 0 for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The equality occurs if and only if x = 1 or |2α| = |β + γ| or |2α| = |β − γ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, the equality occurs if and only if x = 1 or |α| = |β| = |γ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' For the converse, suppose that G(x) ≥ 0 for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' From the calcu- lations above, we have G′(1) = 0 and G′′(1) = 4(2α2 − β2 − γ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Since G attains a minimum at x = 1, we must have G′′(1) ≥ 0, which implies that 2α2 ≥ β2 + γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' A function f(x) is said to be concave on an interval [a, b], if f(tx1 + (1 − t)x2) ≥ tf(x1) + (1 − t)f(x2), 4 for all x1, x2 ∈ [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' A function f(x) is said to be midpoint-concave on an interval [a, b], if f �x1 + x2 2 � ≥ f(x1) + f(x2) 2 , for all x1, x2 ∈ [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We are now ready to prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let fx : (0, ∞) → R be defined by fx(α) = ln T√α(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We show that fx is a midpoint-concave function of α > 0 for any fixed value of x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It follows from Lemma 4 that fx(α) + fx(β) = ln T√α(x) + ln T√β(x) = ln T√α(x)T√β(x) ≤ ln T√γ(x)2, where γ = (α+β)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, fx(α)+fx(β) ≤ 2fx((α+β)/2), which means that fx is a midpoint-concave function on (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' A theorem of Jensen states that if a function is continuous and midpoint-concave, then it is concave [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It follows that fx is concave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' By Jensen’s inequality [3], we conclude that n � i=1 tifx(α2 i ) ≤ fx � n � i=1 tiα2 i � , which implies the inequality (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' For the converse, by replacing x with (x + x−1)/2 in (4) and taking the natural logarithm of both sides, suppose that G(x) = ln(xα + x−α) − n � i=1 ti ln(xαi + x−αi) ≥ 0, for all x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It is straightforward to show that G(1) = G′(1) = 0 and G′′(1) = 1 2 � α2 − � i=1 tiα2 i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Since G attains a minimum at x = 1, we conclude that G′′(1) ≥ 0, and the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' □ 3 A related cyclic homogeneous inequality In this section, we study the cyclic homogeneous inequality (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We first consider the case of n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 5 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let a, b ≥ 0 and c = (a + b + 1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If (c − 1)2 ≤ 2ab, then (xc + yc)2 ≥ (x + y)(xayb + yaxb), (8) for all x, y ≥ 0, and the equality occurs if and only if x = y or {a, b} = {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' With α = c/2, β = 1/2, and γ = (a − b)/2, Lemma 4 implies that ((x/y)c/2 + (x/y)−c/2)2 ≥ ((x/y)1/2 + (x/y)−1/2)((x/y)(a−b)/2 + (x/y)(b−a)/2), for all x ≥ 1, if 2α2 ≥ β2 + γ2 or equivalently (c − 1)2 ≤ 2ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The equality occurs if and only if x/y = 1 or |α| = |β| = |γ|, or equivalently, if and only if x = y or {a, b} = {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Next, we consider the following general homogeneous cyclic inequality � n � i=1 xc i �2 ≥ n � i=1 xi n � i=1 xa i xb i+1, (9) where c = (a + b + 1)/2 and a, b, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' One asks that under what conditions on a, b, c, the inequality (9) holds for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It is straightforward to see that if a + b = 1, then the inequality (9) for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn ≥ 0, follows from the Rearrangement inequality [2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' However, if a+b ̸= 1, then the inequality (9) fails to hold if n is large enough [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' In other words, the validity of the inequality (9) for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , xn ≥ 0 for fixed values of a, b ≥ 0 with a + b ̸= 1 depends on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Similarly, given a fixed value of n, the inequality (9) holds for a specific subset On of values (a, b) ∈ [0, ∞)×[0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Theorem 5 describes O2 completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' For n > 2, such a complete description seems to be difficult to find.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' However, in the following theorem, we derive a sufficient condition for the inequality (9) in the case of n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If 2a + 1 ≥ b ≥ (a − 1)/2 ≥ −b/2, then (xc + yc + zc)2 ≥ (x + y + z)(xayb + yazb + zaxb), for all x, y, z ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The equality occurs if and only if x = y = z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Without loss of generality, we assume that a ≥ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' If b ≥ a − 1, then the claim follows from [4, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Thus, suppose that a − b − 1 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let x, y, z ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' By Jensen’s inequality [2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 7]: a + 1 − b 2c x2c + b cxcyc ≥ xa+1yb, b 2cx2c + 2b − a + 1 2c y2c + a − b c xcyc ≥ xayb+1, a − b − 1 2c x2c + 1 cxczc + b cxcyc ≥ xaybz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 6 Adding these inequalities yields 2a − b 2c x2c + 2b − a + 1 2c y2c + a + b c xcyc + 1 cxczc ≥ (x + y + z)xayb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (10) Similarly 2a − b 2c y2c + 2b − a + 1 2c z2c + a + b c yczc + 1 cxcyc ≥ (x + y + z)yazb, (11) 2a − b 2c z2c + 2b − a + 1 2c x2c + a + b c xczc + 1 cyczc ≥ (x + y + z)zaxb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (12) The claim follows from adding inequalities (10)-(12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 4 The case of a = b = 1 In this section, we prove Theorem 2 which states that the inequality (5) holds in the case of a = b = 1 if and only if n ≤ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' To show that the inequality (5) does not hold for n ≥ 9, it is sufficient to find a counterexample for the inequality with 9 variables, since if the inequality (5) holds for n variables, then it holds for n − 1 variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Here is one such counterexample [4]: x1 = x9 = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='5, x2 = x8 = 9, x3 = x7 = 10, x4 = x6 = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='5, x5 = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It is then left to prove that the inequality (5) holds with a = b = 1 for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We first need a lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8 be nonnegative real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Then 8 � i=1 x3 i ≥ 1 8 � 8 � i=1 xi � � 8 � i=1 x2 i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' By the Power Mean Inequality [1, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' III], one has � 1 8 8 � i=1 x3 i �1/3 ≥ 1 8 8 � i=1 xi and � 1 8 8 � i=1 x3 i �1/3 ≥ � 1 8 8 � i=1 x2 i �1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The claim follows from these inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Now, we are ready to prove Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 7 Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Equivalently, we show that the maximum value of the function f : U → R defined by f(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8) = �8 i=1 x4 i x4 i+1 ��8 i=1 x6 i �2 , is 1, where U = � (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8) : 8 � i=1 x4 i = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' one has (�8 i=1 x6 i /8)1/6 ≥ (�8 i=1 x4 i /8)1/4 by the Power Mean Inequality [1, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' III].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, �8 i=1 x6 i ≥ � 1/8 and so the function f is bounded from above on U, hence it attains a positive absolute maximum on the compact set U, say at (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Without loss of generality, we can assume x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' By the method of Lagrange multipliers, there exists a real number λ such that 1 A4 � 4x3 i (x4 i−1 + x4 i+1)A2 − 2AB(6x5 i ) � = λ(4x3 i ), ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , 8, (13) where A = x6 1 + · · · + x6 8 and B = x4 1x4 2 + · · · + x4 8x4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, x4 i (x4 i−1 + x4 i+1)A − 3Bx6 i = λA3x4 i , ∀1 ≤ i ≤ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (14) By summing the equations (14), we have λ = −B/A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We need to show that A2 ≥ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' On the contrary, suppose B > A2, and we will derive a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Equations (13) imply that, if xi ̸= 0, then 3Bx2 i = A(x4 i−1 + x4 i+1) + AB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (15) First, we show that xi ̸= 0 for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , 8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' On the contrary, and without loss of generality, suppose x8 = 0 and x7 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Given ǫ ∈ (0, x7), let δ = δ(ǫ) = (x4 7 − (x7 − ǫ)4)1/4, such that (x7 − ǫ)4 + δ4 = x4 7, and so δ3δ′ = (x7 − ǫ)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We define F(ǫ) = f(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x6, x7 − ǫ, δ) = Bǫ A2ǫ , and compute F ′(ǫ) = 4(x7 − ǫ)3 A4ǫ � A2 ǫ(−x4 6 − δ4 + (x7 − ǫ)4 + x4 1) + 3AǫBǫ((x7 − ǫ)2 − δ2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 8 It follows that lim ǫ→0+ F ′(ǫ) = x3 7 A4(A2(+x4 7 + x4 1) − A2x2 6 + 3ABx2 7) = x3 7 A4(A2(x4 1 + x4 7) + A2B) > 0, (16) where we have used equation (15) with i = 7 to obtain −A2x2 6 + 3ABx2 7 = A2B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The inequality (16) is a contradiction with the assumption that F(ǫ) attains a maximum as ǫ → 0+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We conclude that xi > 0 for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' In particular, equations (15) hold for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' In the rest of the proof, we let yi = x2 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Hence, with C = B/A, the equations (15) turn into 3yiC = y2 i−1 + y2 i+1 + B, ∀1 ≤ i ≤ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (17) It follows that 3(yi + yi+4)C = 2B + y2 i−1 + y2 i+1 + y2 i+3 + y2 i+5, 3(yi+2 + yi+6)C = 2B + y2 i+1 + y2 i+3 + y2 i+5 + y2 i+7, which imply that yj + yj+4 = yj+2 + yj+6 for all j, since yi−1 = yi+7 as the indices are computed modulo 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, there exist nonnegative real numbers r, s such that y1 + y5 = y3 + y7 = r, (18) y2 + y6 = y4 + y8 = s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (19) Equations (17) imply that 3(y1 − y3)C = y2 8 − y2 4 3(y2 − y4)C = y2 1 − y2 5 3(y3 − y5)C = y2 2 − y2 6 3(y4 − y6)C = y2 3 − y2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Let ¯yi = yi − r/2 if i is odd, and ¯yi = yi − s/2 if i is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It follows that ¯yi + ¯yi+4 = 0 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Moreover, for i odd, we have 3C(¯yi − ¯yi+4) = 3C(yi − yi+4) = y2 i−1 − y2 i+1 + y2 i+3 − y2 i+5 = (yi−1 − yi+3)(yi−1 + yi+3) + (yi+1 − yi+5)(yi+1 + yi+5) = 2¯yi−1s + 2¯yi+1s, which implies that ¯yi = (¯yi−1 + ¯yi+1)s/(3C) for odd i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Similarly, ¯yi = (¯yi−1 + ¯yi+1)r/(3C) for even i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' It then follows that ¯yi = s 3C (¯yi−1 + ¯yi+1) = rs 9C2(¯yi−2 + ¯yi + ¯yi + ¯yi+2) = 2rs 9C2 ¯yi, 9 for odd i, and similarly for even i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' We claim that 9C2 ̸= 2rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' On the contrary, suppose 9C2 = 2rs, and so, since C = B/A > A, we must have 6 √ 2A < 6 √ 2C ≤ 4√rs ≤ 2(r + s) ≤ 8 � i=1 yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' (20) However, by Lemma 7, we have 8A ≥ �8 i=1 yi which contradicts (20), since 6 √ 2 > 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Thus 9C2 ̸= 2rs, and so ¯yi = 0 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Therefore, y1 = y3 = y5 = y7 = r/2, and y2 = y4 = y6 = y8 = s/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' So we have r2 + s2 = 4((r/2)2 + (s/2)2) = �8 i=1 y2 i = 1 and f(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' , x8) = 8(r/2)2(s/2)2 (4(r/2)3 + 4(s/2)3)2 = 2r2s2 (r3 + s3)2 ≤ 1, (21) since it follows from r2 + s2 = 1 that r3 + s3 ≥ 2 �r2 + s2 2 �3/2 ≥ 2 �1 2 �3/2 ≥ r2 + s2 √ 2 ≥ √ 2rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' The equality occurs in (21) if and only if r = s (and so y1 = y2 = · · · = y8);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' hence, the equality in (6) occurs if and only if x1 = x2 = · · · = x8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' □ References [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Bullen, Handbook of Means and Their Inequalities, Springer (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' [2] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Cvetkovski, Inequalities, Theorems, Techniques, and Selected Prob- lems, Springer, Berlin (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' [3] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Hardy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Littlewood, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Pólya, Inequalities , Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Press (1934).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Javaheri, A new arrangement inequality, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Ineq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 7(5) (2006), Article 162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica (Institut Mittag-Leffler) 1906, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 30, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 1, pp 175–193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Niculescu and L-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' Persson, Convex Functions and Their Applica- tions, Springer International Publishing, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} +page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9AyT4oBgHgl3EQfyPkN/content/2301.00679v1.pdf'} diff --git a/jdE4T4oBgHgl3EQfsg0n/vector_store/index.faiss b/jdE4T4oBgHgl3EQfsg0n/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..7c4109f992cbc6340d68357c26fb7134589d195c --- /dev/null +++ b/jdE4T4oBgHgl3EQfsg0n/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f65174410514cfc37f868e713845194ec5869e43d5b19a89f0842d3d6b97600e +size 3211309 diff --git a/kNFPT4oBgHgl3EQf1zVk/content/2301.13184v1.pdf b/kNFPT4oBgHgl3EQf1zVk/content/2301.13184v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3c4f2342f2f8eb2bbd86658965a9a863507f853d --- /dev/null +++ b/kNFPT4oBgHgl3EQf1zVk/content/2301.13184v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1be3fe9d3c71020e90fc5ca0321b1a4e98f0262dbd5c6b8aec0f14a1a4562104 +size 3480045 diff --git a/kNFPT4oBgHgl3EQf1zVk/vector_store/index.pkl b/kNFPT4oBgHgl3EQf1zVk/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..2441d12da1f3ad31b068d9c762c420f486106f3d --- /dev/null +++ b/kNFPT4oBgHgl3EQf1zVk/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:83ca7f67999bbf479ba2be5ffdb5307676f8ee70780e14788909e1c03bbc4543 +size 231085 diff --git a/kdFQT4oBgHgl3EQfmjaf/content/tmp_files/2301.13366v1.pdf.txt b/kdFQT4oBgHgl3EQfmjaf/content/tmp_files/2301.13366v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..20a8a6d3804ddcb699d64c20a3a47710eb6fd623 --- /dev/null +++ b/kdFQT4oBgHgl3EQfmjaf/content/tmp_files/2301.13366v1.pdf.txt @@ -0,0 +1,1259 @@ + +1 + +CaraNet: Context Axial Reverse Attention Network for Segmentation +of Small Medical Objects +Ange Lou1, Shuyue Guan2, Murray Loew2 +Vanderbilt University1, Nashville TN, USA +ange.lou@vanderbilt.edu +The George Washington University2, Washington DC, USA +{frankshuyueguan, loew}@gwu.edu +Abstract +Purpose: Segmenting medical images accurately and reliably is important for disease diagnosis and treatment. It is a +challenging task because of the wide variety of objects’ sizes, shapes, and scanning modalities. Recently, many +convolutional neural networks (CNN) have been designed for segmentation tasks and achieved great success. Few studies, +however, have fully considered the sizes of objects, and thus most demonstrate poor performance for small objects +segmentation. This can have a significant impact on the early detection of diseases. +Approach: This paper proposes a Context Axial Reverse Attention Network (CaraNet) to improve the segmentation +performance on small objects compared with several recent state-of-the-art models. CaraNet applies axial reserve attention +(ARA) and channel-wise feature pyramid (CFP) module to dig feature information of small medical object. And we +evaluate our model by six different measurement metrics. +Results: We test our CaraNet on brain tumor (BraTS 2018) and polyp (Kvasir-SEG, CVC-ColonDB, CVC-ClinicDB, +CVC-300, and ETIS-LaribPolypDB) segmentation datasets. Our CaraNet achieves the top-rank mean Dice segmentation +accuracy, and results show a distinct advantage of CaraNet in the segmentation of small medical objects. +Conclusion: We proposed CaraNet to segment small medical objects and outperform other state-of-the-art methods. +Codes available: https://github.com/AngeLouCN/CaraNet +Keywords: Small object segmentation; Brain tumor; Colonoscopy; Attention; Context axial reverse +1. INTRODUCTION +Deep learning has had a tremendous impact on various fields in science. Our focus of the current study in deep learning +is on one of the most critical areas of computer vision: medical image segmentation. Recently, various convolutional neural +networks (CNNs) have shown great performance on medical image segmentation [1,2,3,4]. Those CNNs have been +introduced for various medical imaging modalities, including X-ray, visible-light imaging, magnetic resonance imaging +(MRI), positron emission tomography (PET), and computerized tomography (CT). They all achieved excellent +performance on medical image segmentation challenges from different modalities, like BraTS [5,6,7], KiTS19 [8], and +COVID19-20 [9,10]. To obtain more accurate segmentation results, many works introduced improvements of network +architectures. Those improvements are mostly attributed to exploring new neural architectures by designing networks with +varying depths (ResNet [11]), widths (ResNeXt [12]), connectivity (DenseNet [13] and GoogLeNet [14]), or new types of +components (pyramid scene [15] and atrous convolution [16]). Although those new architectures improve the overall +segmentation results, they are less sensitive to detecting small medical objects. And it is very common in medical image +segmentation that the anatomy of interest occupies only a very small portion of the image [17]. Most extracted features +belong to the background, while these small lesion areas are important for early detection and diagnosis. For example, the +survival rate decreases with the growing size of a brain tumor [18]. Thus, it has clinical significance to build an +effective network to detect tiny medical objects. +The attention mechanism plays a dominant role in neural network research. It can effectively use information +transferred from several subsequent feature maps to detect the salience features [19]. Many attention methods such +as self-attention and multi-head attention have been verified to have high performance in applications of natural +language processing [20] and computer vision [21]. Those attention methods also have been successfully used for +medical image segmentation; for example, the Medical Transformer [22] (MedT) used a gated axial self-attention +layer to build a Local-Global (LoGo) network for ultrasound and microscopy image segmentation, TransUNet [23] + + +2 + +stacked self-attention as a transformer in the encoder for CT image segmentation, and CoTr [24] bridged two CNN +encoder and decoder by the transformer encoder for multi-organ segmentation. All those attention-based +segmentations achieve significant improvement compared with purely convolutional neural networks like U-Net [1] +and FCN [25]. +Although those new types of neural networks show good performance on many medical segmentation tasks, +they seldom consider the small object segmentation, especially in the medical image area. We propose here a novel +attention-based deep neural network, called Context Axial Reverse Attention Network (CaraNet). The contribution +of the paper can be summarized as follows: +1) +We propose a novel neural network – CaraNet -- to solve the problem of segmentation of small medical objects. +2) +We introduce a method to evaluate the network’s performance on small medical objects. +3) +Our experiments show that CaraNet outperforms most current models (e.g., DS-TransUNet from TMI ’22, +CCBANet from MICCAI ‘21and PraNet from MICCAI ’20) and advances the state-of-the-art by a large margin, +both overall and on small objects, in segmentation performance on polyps. +2. METHOD +Figure 1 shows the architecture of our CaraNet, which uses a parallel partial decoder [26] to generate the high- +level semantic global map and a set of context and axial reverse attention operations to detect global and local feature +information. We introduce main components of the CaraNet architecture in the following subsections with +explanation of the motivation, purpose, or effectiveness to add these components. + +Figure 1. Overview of CaraNet, which contains pretrained backbone, partial decoder, channel-wise feature pyramid (CFP) module and +axial reverse attention (A-RA) module. +2.1 Backbone +Transfer learning provides a feasible method for alleviating the challenge of data-hunger, and it has been widely +applied to the field of computer vision [27]. Benefiting from the strong visual knowledge distributed in ImageNet +[28], the pre-trained CNNs can be fine-tuned with a small amount of task-specific data and can perform well on + +f1 +f2 +PD +Sg +f3 +f4 +fs +CFP +CFP +CFP +Down-sampling +Axial-attention +fi +8=P +8=p +8=P +Height +Width +f1 +f2 +f3 +axis +axis +Si +A-RA +A-RA +A-RA +S +ARA3 +ARA4 +ARA5 ++ ++ ++ +Up-sampling +Deep supervision +Partial decoder +Featureflow +Mapflow +GT +Prediction +S3 +S4 +I Ss +S +Sigmoid +3 + +downstream tasks. Since Res2Net [29] can construct hierarchical residual-like connections within one single residual +block that has stronger multi-scale representation ability, we applied the pre-trained Res2Net as the backbone of +CaraNet. +2.2 Partial decoder +Existing state-of-the-art segmentation networks rely on aggregating multi-level features from the encoder (e.g., U- +Net aggregates all level features extracted from an encoder). Compared to the high-level features, however, low-level +features contribute less to performance but have higher computational cost because of their larger spatial resolution [30]. +Thus, we applied the parallel partial decoder [26] as shown in Figure 2 to aggregate high-level features. We feed the original +image which size is ℎ × 𝑤 × 𝑐 (ℎ, 𝑤, and 𝑐 represent the height, width, and channel) into Res2Net, and we can get five +different level features {𝑓𝑖, 𝑖 = 1, … , 5} with resolution { +ℎ +2𝑖−1 , +𝑤 +2𝑖−1} . We aggregated the high-level features {𝑓3, 𝑓4, 𝑓5} +from Res2Net by using the partial decoder with a parallel connection. Then, we can get a global map 𝑆𝑔 = 𝑃𝐷(𝑓3, 𝑓4, 𝑓5). + +Figure 2. Overview of partial decoder with parallel connection. +2.3 Channel-wise feature pyramid module +The Feature Pyramid (FP) has been widely used in deep learning models for computer vision tasks due to its ability +to represent multi-scale features. For example, PSPNet [31] builds a pyramid pooling module with different sizes’ pooling +layers to extract multi-scale features, and the Feature Pyramid Network (FPN) [32] takes different strides with convolution +kernels to obtain a FP. Although those FP-based methods perform well in the computer vision area, they cannot avoid using +large numbers of parameters, which consume a large amount of computation resources. In addition, their receptive fields +are usually small and do not perform well in datasets with sharply varying object sizes [33]. Alternatively, our previous +works [33, 34] proposed a lightweight Channel-wise Feature Pyramid (CFP) module and successfully applied it to both +nature and medical image segmentation. The architecture of this CFP module is shown in Figure 3. +Figure 3(a) shows the architecture of the CFP module; it contains total 𝐾 channels and each channel has its own +dilation rate 𝑟𝐾 . Typically, we choose the 𝐾 = 4 for CaraNet and the dilation rates for each channel {𝑟1, 𝑟2, 𝑟3, 𝑟4} = +{1,2,4,8} which has been verified as the best dilation rates combination for CaraNet in Table 4; thus, each channel’s +dimension is 𝑀/4. Simple feature fusion method sometimes introduces some unwanted checkboard or gridding artifacts +that greatly influence the accuracy and quality of segmentation masks [33]. Thus, we applied hierarchical feature fusion +[35] (HFF) to sum the outputs of all channels step by step. For the FP channel, we provide two versions with regular +convolution and asymmetric convolution as shown in Figure 3(b) and (c). We connected the outputs of each convolutional +module by using skip connection, and thus each channel can be considered as a sub-pyramid. We selected the regular +convolution as FP channel for CaraNet. The overall FP is obtained from concatenating those sub-pyramids from the +hierarchical feature fusion operation. The final FP contains four levels of feature stacks as shown in Figure 4. These four +levels of feature stacks {𝑙𝑒𝑣𝑒𝑙𝑖, 𝑖 = 1, … ,4} are computed by: + +Aggregation +Aggregation +13 +Node l-1 +Node3-2 +Aggregation +Aggregation +Node 1-2 +Node2-2 +Aggregation +f5 +Node1-3 +Upsampling +4 + +{ +𝑙𝑒𝑣𝑒𝑙1 = 𝑜𝑢𝑡𝐹𝑃1 +𝑙𝑒𝑣𝑒𝑙2 = 𝑙𝑒𝑣𝑒𝑙1 + 𝑜𝑢𝑡𝐹𝑃2 +𝑙𝑒𝑣𝑒𝑙3 = 𝑙𝑒𝑣𝑒𝑙2 + 𝑜𝑢𝑡𝐹𝑃3 +𝑙𝑒𝑣𝑒𝑙4 = 𝑙𝑒𝑣𝑒𝑙3 + 𝑜𝑢𝑡𝐹𝑃4 +(1) +And the final FP is computed by ∑ 𝑙𝑒𝑣𝑒𝑙𝑖 +𝑖 +. Based on our split-merge feature pyramid strategy, the receptive fields of a +single CFP module with dilation rates {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {1,2,4,8} varies from 3 × 3 to 55 × 55 , which successfully +overcomes the challenge from sharply varying object sizes. + + + +(a) (b) (c) +Figure 3. (a) CFP module, (b) FP channel with regular convolution, (c) FP channel with asymmetric convolution + +Figure 4. Final feature pyramid obtained from CFP module. +2.4 Axial reverse attention module +The previous partial decoder that generates the global map 𝑆𝑔 (Sec. 2.2) could roughly locate the position of medical +objects, and the CFP module extracted only multi-scale features from the pre-trained model. To obtain more accurate +feature information, we designed the Axial Reverse Attention (A-RA) module to refine localization information and multi- +scale features efficiently. The overview and detail of the A-RA module can be seen in Figure 1 and Figure 5, respectively. +The input of the top line is the multi-scale feature maps 𝑓𝑖 +′ from the CFP module and we used axial attention to analyze +the salience information. The axial attention is based on self-attention, which maps a query and a set of key-value pairs to +an output and the operation: + +Input +M.1×1.M/K +FP channel, r +FP channel, r2 +FP channel, rk. +FP channel, rk +Add +PpV +HFF +Add +Concatenation +M. 1x1.M +Add3x3 convolution +3x3convolution +3x3convolution +concatenation3x1convolution +1x3convolution +3x1 convolution +1x3convolution +3x1 convolution +1x3convolution +concatenationLevel l: +Level 3: +Level2: +Level4: +Output: +5 + + +𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ( +𝑄𝐾𝑇 +√𝑑𝐾) +(2) +where 𝑄, 𝐾, 𝑉, and 𝑑𝐾 represent query, key, value, and dimension of key, respectively. However, self-attention consumes +great computational resources, especially when the spatial dimension of the input is large [36]. Therefore, we applied axial +attention, which factorizes 2D attention into two 1D attention along height and width axes. Here we replace the softmax +activation function with a sigmoid, based on the experiments. For the second line, we applied the reverse operation [37] to +detect the salience features from the side-output 𝑆𝑖, which is obtained from the output of the previous A-RA module. The +reverse operation is: +𝑅𝑖 = 1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝑖). +(3) +The total axial reverse attention operation is: +𝐴𝑅𝐴𝑖 = 𝐴𝐴𝑖⨀𝑅𝑖 +(4) +where ⊙ is element-wise multiplication, and the 𝐴𝐴𝑖 is feature from the axial attention route. + +Figure 5. Structure of Axial Reverse Attention module. +2.5 Deep supervision +We apply weighted intersection over union (IoU) and weighted binary cross-entropy (BCE) in our loss function: ℒ = +ℒ𝐼𝑜𝑈 +𝑤 ++ ℒ𝐵𝐶𝐸 +𝑤 + to calculate the global loss and local (pixel-level) loss, respectively. To train CaraNet, we apply deep +supervision for the three side-outputs (𝑆1, 𝑆2, 𝑆3) and the global map 𝑆𝑔. Before calculating the loss, we up-sampled them +to the same size as ground truth 𝐺. Thus, the total loss: +ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ(𝐺, 𝑆𝑔 +𝑢𝑝) + ∑ ℒ(𝐺, 𝑆𝑖 +𝑢𝑝) +5 +𝑖=3 +(5) +2.6 Small object segmentation analysis +Since the size of all images input to the segmentation models must be fixed, the size of an object is determined by the +number of pixels in the object m and the number of total pixels in the image N. Thus, we consider the object’s size using +the size ratio (proportion) = m/N. Then, we evaluate the performance of segmentation models according to the sizes of +objects. Especially, we mainly focus on the small areas whose size ratios are smaller than 5%. To define the watershed of +small size is a question; it depends on data and model performance. We further discuss this question in Discussion section. +To evaluate the performance of segmentation models according to the sizes of objects, we first obtain the mean-Dice +coefficients and size ratios of segmentations from the test dataset. Similar to computing the histogram, we plot the results +in a curve whose y-axis is mean-Dice coefficients and x-axis is increasingly sorted size ratios. To smooth the curve, we + +Axialattcntion +Height +Wcight +Convolutionalfeature +Weighted convolutionalfeature +S; +Sigmoid +Reverse weight +W=1-Sigmoid(Si) +Up-sampledfeature +6 + +take interval-averaged mean-Dice coefficients by sorted size ratios: we divide the entire range of size ratios into a +consecutive, non-overlapping, and of equal length series of intervals, and then calculate the average mean-Dice coefficients +of size ratios in each interval. The interval-averaged coefficients have a smooth curve and are more stable in the presence +of noise. +3. EXPERIMENT +3.1 Implementation details +We implemented our model in PyTorch accelerated by the NVIDIA RTX 2070Ti GPU. We resized input images to +352 × 352 for polyp segmentation and 256 × 256 for brain tumor segmentation and employed a multi-scale training +strategy {0.75, 1.0, 1.25} instead of data augmentation. We used Adam optimizer with the initial learning rate 1𝑒−4. +3.2 Dataset +We test our CaraNet on five polyp segmentation datasets: ETIS [38], CVC-ClinicDB [39], CVC-ColonDB [40], +EndoScene [41], and Kvasir [42]. The first four are standard benchmarks, and the last one is the largest dataset, which was +released recently. We also test our model on the Brain Tumor Segmentation 2018 (BraTS 2018) dataset [48, 49], which +contains more extremely small medical objects. Table 1 shows the details of these datasets: image size, scale of testing set, +and size ratios of medical objects. +The data of brain tumor segmentation is from the multimodal brain tumor segmentation challenge 2018 (BraTS 2018) +built by the Section for Biomedical Image Analysis (SBIA) at the University of Pennsylvania. It contains the multimodal +brain MRI scans and manual ground truth labels of glioblastoma from 285 cases (patients). Each case includes four scan- +modals: 1) native (T1), 2) T1 contrast enhanced (T1ce), 3) T2-weighted (T2), and 4) T2 Fluid Attenuated Inversion +Recovery (FLAIR). And each case includes three types of ground truth labels: necrotic and non-enhancing tumor core +(NET), gadolinium-enhancing tumor (ET), and peritumoral edema (Ed). In this study, T1ce is selected as our input images +and ground truth labels use NET type because it delineates the minimum areas for small object segmentation. The MRI +scans for each case are sliced to 2-D images. As shown in Table 1, the test samples are chosen by the sizes of objects in +images (by examining the areas of truth labels) ranging in 0.01% - 4.91%. +Table 1. Details of datasets + +Image size +Number of test samples +Object size ratio +ETIS +966 × 1225 +196 +0.11% - 29.05% +CVC-ClinicDB +288 × 384 +62 +0.34 % - 45.88% +CVC-ColonDB +500 × 574 +380 +0.30% - 63.15% +CVC-300 +500 × 574 +60 +0.55% - 18.42% +Kvasir +1070 × 1348 +100 +0.79% - 62.13% +BraTS 2018 +256 × 256 +3231 +0.01% - 4.91% +3.3 Baseline +We compared CaraNet with six medical image segmentation models, including state-of-the-art models: U-Net [1], U- +Net++ [2], ResUNet-mod [43], ResUNet++ [3], SFA [44], PraNet [27], CCBANet [50] and DS-TransUNet [51]. +3.4 Training and measurement metrics +We randomly split 80% of images from Kvasir and CVC-ClinicDB as training set and the remainder as a testing +dataset. In addition to mean Dice and mean IoU, we also apply four other measurement metrics: weighted dice metric 𝐹𝛽 +𝑤, +MAE, enhanced alignment metric Ε𝜙 +𝑚𝑎𝑥 [45], and structural measurement 𝑆𝛼 [46]. Table 2 shows the polyp +segmentation on the five datasets. The weighted dice metric 𝐹𝛽 +𝑤 is used to amend the “equal importance flaw” in dice. + + +7 + +The MAE is used to measure the pixel-to-pixel accuracy. The recently released enhanced alignment metric Ε𝜙 +𝑚𝑎𝑥 is +utilized to evaluate the pixel-level and global-level similarity. And 𝑆𝛼 is used to measure the structure similarity between +predictions and ground truth. +3.5 Results +We first report the polyp segmentation results and compare with state-of-the-arts such as DS-TransUNet, CCBANet +and PraNet in Table 2. Among all five public endoscopy segmentation datasets, our proposed CaraNet achieves best +performance, especially in the ETIS dataset which contains more small polyps. We also show some polyp segmentation +results in Figure 6. For the five polyp datasets, CaraNet not only outperforms the compared models in overall performance, +but also on samples with small polyps. Figure 7 shows the segmentation performance of CaraNet and PraNet for small +objects (proportions ≤ 5%). For the extremely small object segmentation analysis on the BraTS 2018 dataset, we compare +only CaraNet with PraNet because PraNet has the closest performance to ours, and the overall accuracies of the other +segmentation models are clearly lower than those of CaraNet and PraNet. (Note: the fluctuations with size in colonoscopy +datasets are caused by types and boundary of polyps, and quality of imaging) +Table 2. Quantitative results on Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and CVC-T (test dataset of EndoScene). Note: mDice: +mean Dice, mIoU: mean IoU, 𝐹𝛽 +𝑤: weighted dice, 𝑆𝛼: structural measurement [46], Ε𝜙 +𝑚𝑎𝑥: enhanced alignment [45] and MAE: mean +absolute error. ↑ denotes higher the better and ↓ denotes lower the better. + Methods +mDice ↑ +mIoU ↑ +𝑭𝜷 +𝒘 ↑ +𝑺𝜶 ↑ +𝚬𝝓 +𝒎𝒂𝒙 ↑ +MAE ↓ +Kvasir +UNet +0.818 +0.746 +0.794 +0.858 +0.893 +0.055 +UNet++ +0.821 +0.743 +0.808 +0.862 +0.910 +0.048 +ResUNet-mod +0.791 +n/a +n/a +n/a +n/a +n/a +ResUNet++ +0.813 +0.793 +n/a +n/a +n/a +n/a +SFA +0.723 +0.611 +0.670 +0.782 +0.849 +0.075 +PraNet +0.898 +0.840 +0.885 +0.915 +0.948 +0.030 +CCBANet +0.902 +0.845 +0.887 +0.916 +0.952 +0.032 +DS-TransUNet +0.913 +0.857 +0.902 +0.923 +0.963 +0.023 +CaraNet +0.918 +0.865 +0.909 +0.929 +0.968 +0.023 +CVC-ClinicDB +UNet +0.823 +0.755 +0.811 +0.889 +0.954 +0.019 +UNet++ +0.794 +0.729 +0.785 +0.873 +0.931 +0.022 +ResUNet-mod +0.779 +n/a +n/a +n/a +n/a +n/a +ResUNet++ +0.796 +0.796 +n/a +n/a +n/a +n/a +SFA +0.700 +0.607 +0.647 +0.793 +0.885 +0.042 +PraNet +0.899 +0.849 +0.896 +0.936 +0.979 +0.009 +CCBANet +0.909 +0.856 +0.903 +0.939 +0.971 +0.010 +DS-TransUNet +0.912 +0.859 +0.908 +0.936 +0.976 +0.007 +CaraNet +0.936 +0.887 +0.931 +0.954 +0.991 +0.007 +ColonDB +UNet +0.512 +0.444 +0.498 +0.712 +0.776 +0.061 +UNet++ +0.483 +0.410 +0.467 +0.691 +0.760 +0.064 +SFA +0.469 +0.347 +0.379 +0.634 +0.765 +0.094 +PraNet +0.709 +0.640 +0.696 +0.819 +0.869 +0.045 +CCBANet +0.758 +0.675 +0.736 +0.842 +0.880 +0.042 +DS-TransUNet +0.762 +0.682 +0.738 +0.829 +0.872 +0.053 +CaraNet +0.773 +0.689 +0.729 +0.853 +0.902 +0.042 +ETIS +UNet +0.398 +0.335 +0.366 +0.684 +0.740 +0.036 +UNet++ +0.401 +0.344 +0.390 +0.683 +0.776 +0.035 +SFA +0.297 +0.217 +0.231 +0.557 +0.633 +0.109 +PraNet +0.628 +0.567 +0.600 +0.794 +0.841 +0.031 +CCBANet +0.677 +0.610 +0.640 +0.800 +0.838 +0.028 +DS-TransUNet +0.675 +0.592 +0.625 +0.802 +0.859 +0.023 +CaraNet +0.747 +0.672 +0.709 +0.868 +0.894 +0.017 +CVC-T +UNet +0.710 +0.627 +0.684 +0.843 +0.876 +0.022 +UNet++ +0.707 +0.624 +0.687 +0.839 +0.898 +0.018 +SFA +0.467 +0.329 +0.341 +0.640 +0.817 +0.065 +PraNet +0.871 +0.797 +0.843 +0.925 +0.972 +0.010 +CCBANet +0.903 +0.833 +0.881 +0.933 +0.986 +0.007 +DS-TransUNet +0.880 +0.798 +0.854 +0.920 +0.978 +0.007 +CaraNet +0.903 +0.838 +0.887 +0.940 +0.989 +0.007 + + +8 + + + +Figure 6. Polyp segmentation results + + + +CVC-300 +CVC-ClinicDB +CVC-ColonDB +ETIS +Kvasir +Images +Ground +truth +UNet +UNet++ +SFA +PraNet +CCBANet +DSTransUNet +CaraNet +9 + + + + + + + +Figure 7. The performance of CaraNet and PraNet for small object segmentation. More discussion about small object segmentation +analysis is in Sec. 2.6. For each subfigure, the x-axis is the proportion size (%) of polyp and the y-axis is the averaged mean Dice +coefficient. Subfigures show performance vs. size on the five polyp datasets, which are Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, +and CVC-300. Blue line is for our CaraNet and orange is for the PraNet, showing only the results of small polyp sizes (<6%). We can +find that our CaraNet overperforms the PraNet for most cases of small size polyps from the five datasets. +Table 3. Quantitative results on brain tumor (BraTS 2018) dataset. +Methods +mean Dice +mean IoU +𝑭𝜷 +𝒘 +𝑺𝜶 +𝚬𝝓 +𝒎𝒂𝒙 +MAE +CaraNet (Ours) +0.631 +0.619 +0.507 +0.629 +0.786 +0.927 +0.003 +PraNet (MICCAI’20) +0.494 +0.606 +0.776 +0.920 +0.003 + +Kvasir +1.0 +0.9 +0.8 +0.7 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +0 +1 +2 +3 +4 +5 +6CVC-ClinicDB +1.0 +0.9 +0.8 +0.7 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +0 +1 +2 +3 +4 +5 +6CVC-ColonDB +1.0 +0.9 +0.8 +0.7 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +0 +2 +3 +4 +5ETIS +1.0 +0.9 +0.8 +0.7 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +: +2 +3 +4 +6CVC-300 +1.0 +0.9 +0.8 +0.7 +0.6 +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +0 +1 +2 +3 +4 +5 +6 +-CaraNet (Ours) +-PraNet +10 + + + + +Figure 8. Performance vs. Size on brain tumor datasets. The x-axis is the proportion size (%) of tumor. Upper figure: y-axis is the +mean Dice coefficient results of our CaraNet and PraNet. For the very small tumor sizes (≤1%), almost all results of CaraNet are +better than PraNet. Lower figure: the y-axis is the difference between the averaged mean Dice coefficient results of CaraNet and +PraNet. Red indicates the Dice value of CaraNet is greater than that of PraNet; blue shows the opposite. + +BrainTumor +0.9 +0.8 +0.7 +0.6 +Dice +0.5 +0.4 +0.3 +0.2 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Tumor Sizes (%) +-CaraNet (Ours) +--PraNet0.03 +0.02 +ice ++0.7630 +0.01 +0 +Car +-0.2362 +-0.02 +-0.03 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +TumorSizes(%) +11 + + + +Figure 9. Brain tumor segmentation results +To further evaluate the effectiveness of CaraNet for small-object segmentation, we conducted another experiment +using the brain tumor dataset (BraTS 2018). The polyp datasets lack extremely small objects (the minimum is about 0.11%) +and do not have enough small samples (like Kvasir and CVC-ClinicDB, in Figure 7, there are fewer samples in the range +of small sizes). The brain tumor dataset was created from the BraTS 2018 database by slicing 2D images from the “T1ce” +source with “NET” type labels. We randomly select 60% of the images as the training set and the remainder as the testing +dataset. Altogether, 3231 images with proportions of tumor sizes ranging from 0.01% – 4.91% were in the testing dataset. +Table 3, Figure 8, and Figure 9 show the comparison result. We compared CaraNet with only PraNet for the same reason +stated above. Clearly, our CaraNet performed better, especially for the extremely small cases (range 0.01% – 0.1% in +Figure 8 and the red area indicates that the Dice value of CaraNet is greater than that of PraNet; blue area shows the +opposite. Values on the right show the summations of all red and blue differential values). +3.5 Ablation study +Table 4. Quantitative results on Kvasir for different dilation rate +Dilation Rate +Mean Dice +0 +0.909 +4 +0.908 +8 +0.918 +16 +0.913 +32 +0.907 +To search the best dilation rate for our CFP module, we set up experiments and choose different dilation rates from 0 +to 32. The performance of CaraNet with different dilation rate are testing on Kvasir testing set as shown in Table 4. When +we choose small dilation rates like 0 and 4, the dilations rates for each channel are {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,0,0,0} and +{𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,1,2,4}. The CFP module focuses on local information but ignore the global one, thus the accuracy is +about 1% lower than the best one. When large dilation rates are chosen like 16 and 32, the dilation rates for each channel +are {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,4,8,16} and {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,8,16,32}. There only one channel focus on local features which is +unreasonable for small medical object detection. When we choose a fairish dilation rate like 8 which {𝑟1, 𝑟2, 𝑟3, 𝑟4} = +{0,2,4,8}, the weights of local and global information can be balanced and then achieves best performance. +We further conduct ablation studies to demonstrate the effectiveness of our proposed CFP module and Axial Reverse +Attention (A-RA) module five public endoscopy segmentation datasets, and we choose same six measurement metrics as +in Section 3.4 for evaluation. + +Images +Ground truth +PraNet +CaraNet +12 + +We first conduct an experiment to evaluate CaraNet without CFP module. As shown in Table 5, the performance +without CFP module drops sharply on five public datasets. In particular, the mDice achieves about 8% reduction on ETIS +dataset, which strongly verifies that CFP module can effectively detect local-to-global feature due to its various sizes +receptive field. Then, we evaluate the CaraNet without both CFP module and A-RA module. The mDice continued to +decrease about 2%-3%, indicating that our A-RA module enables our CaraNet to accurately distinguish true polyp tissues. +Table 5. Ablation study for CaraNet on Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and CVC-T (test dataset of EndoScene). Note: +mDice: mean Dice, mIoU: mean IoU, 𝐹𝛽 +𝑤: weighted dice, 𝑆𝛼: structural measurement [46], Ε𝜙 +𝑚𝑎𝑥: enhanced alignment [45] and +MAE: mean absolute error. ↑ denotes higher the better and ↓ denotes lower the better. +Dataset +CFP +A-RA +mDice ↑ +mIoU ↑ +𝑭𝜷 +𝒘 ↑ +𝑺𝜶 ↑ +𝚬𝝓 +𝒎𝒂𝒙 ↑ +MAE ↓ +Kvasir + + +0.870 +0.798 +0.836 +0.899 +0.938 +0.043 + +✓ +0.888 +0.830 +0.878 +0.911 +0.940 +0.032 +✓ +✓ +0.918 +0.865 +0.909 +0.929 +0.968 +0.023 +CVC-ClinicDB + + +0.862 +0.789 +0.841 +0.908 +0.949 +0.021 + +✓ +0.887 +0.830 +0.874 +0.928 +0.966 +0.012 +✓ +✓ +0.936 +0.887 +0.931 +0.954 +0.991 +0.007 +ColonDB + + +0.681 +0.586 +0.595 +0.797 +0.865 +0.063 + +✓ +0.707 +0.636 +0.689 +0.815 +0.867 +0.048 +✓ +✓ +0.773 +0.689 +0.729 +0.853 +0.902 +0.042 +ETIS + + +0.646 +0.570 +0.587 +0.790 +0.833 +0.055 + +✓ +0.662 +0.580 +0.604 +0.805 +0.869 +0.032 +✓ +✓ +0.747 +0.672 +0.709 +0.868 +0.894 +0.017 +CVC-T + + +0.839 +0.765 +0.802 +0.909 +0.943 +0.022 + +✓ +0.870 +0.803 +0.839 +0.917 +0.965 +0.009 +✓ +✓ +0.903 +0.838 +0.887 +0.940 +0.989 +0.007 + +4. DISCUSSION +We propose a novel deep-learning based segmentation model – CaraNet, by combining the Axial Reverse Attention +and Channel-wise Feature Pyramid (CFP) modules. This new method can help improve the performance of the +segmentation of small medical objects. Through the experiments, we show that CaraNet outperforms the most famous +models by a large margin overall for six measurement metrics. As shown by the polyp segmentation results, CaraNet not +only produces high quality segmentation on samples of large polyps, but also performs well for small and multi small- +object segmentation. Figure 9 shows some results of extremely small tumor segmentation from the BraTS 2018 dataset. +The advantage of the CaraNet in segmenting small single- and multi-objects is evident. In addition, compared with the +recent state-of-the-art network, PraNet, CaraNet provides a more precise prediction for the most-challenging cases. +We also introduce the process to evaluate segmentation models according to the size of objects. We consider the +object’s size using the size ratio including the sizes of objects and the whole image. In this study, we assume the size ratios +of “small objects” are less than 5%. However, the definition of “small objects” is not specified. Since few studies have +fully considered the sizes of objects and the small-object problems in medical imaging, we could further study this question +in future work. Preliminarily, the small size (watershed) could be defined by the Performance vs. Size curves. Figure 10 +shows an example on ETIS datasets. The watershed of small size could be defined at 9.8%. After that point, the performance +generally increase/change slower and is more stable. The definition of small area may depend on datasets, segmentation +models, and object shapes; but if these conditions are fixed, it is feasible to make fair comparisons. The definition of small +area discussed here may not be perfect, but it is worth paying attention to the model’s performance on small size cases +besides the whole dataset. Figure 10 also indicates that the overall performance of segmentation depends on size ranges. +If we remove the small size cases, the overall performance will be greatly improved. + + +13 + + +Figure 10. Performance vs. Size on ETIS datasets. The x-axis is the proportion size (%) of polyp; y-axis is the mean Dice coefficient. +Blue is for our CaraNet and orange is for the SFA model. Unlike Figure 7, it shows the results of all sizes. +Although CaraNet achieves good improvement on medical image segmentation tasks, there are still some limitations +and potentials to optimize the model. For example, using bilinear interpolation to up-sample feature maps cannot avoid the +loss of some useful information and lead to a coarse boundary. It can be improved by applying a deconvolutional layer. In +addition, the backbone of CaraNet is pre-trained on ImageNet, which contains natural images that are very different from +medical images. Moreover, the sliced brain MRI data also cause loss of spatial information between the voxels; that may +influence the accuracy of small tumor detection. In our future work, we will use the Model Genesis [47] as a 3-D backbone +to replace the Res2Net (2-D backbone) and adjust the CaraNet to employ it on 3-D medical imaging segmentation to build +a 3-D version CaraNet for more accurate CT or MRI image segmentation. Segmentation of 3-D medical images is of +growing interest; we believe CaraNet will address that problem successfully. +5. CONCLUSION +We have proposed a novel neural network, CaraNet, for small medical object segmentation. We use a partial decoder +to roughly localize polyp position, improve the adaptability of the CaraNet to detect different sizes objects by using a CFP +module and finally refine the polyp segmentation by A-RA module. From the overall segmentation accuracy, we can find +that CaraNet outperforms all state-of-the-art approaches by at least 2% (mean dice accuracy). For the early diagnosis +dataset (ETIS) which contains many small polyps, however, CaraNet can reach 74.7% mean dice accuracy, which is about +12% higher than PraNet. For the extremely small object segmentation dataset (BraTS 2018), CaraNet can achieve 3% +higher than PraNet. When evaluating segmentation models according to the size of objects, CaraNet outperforms PraNet +for small objects in all six datasets we used. In addition to the average accuracy through the whole dataset, to +evaluate/compare segmentation models according to sizes of objects could show more characteristics of models; especially, +their performance on small areas. And this method can find or verify models that are good for small objects segmentation. +DISCLOSURES +No conflicts of interest. +References +[1] +Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image +segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234- +241). Springer, Cham. +[2] +Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical +image segmentation. In Deep learning in medical image analysis and multimodal learning for clinical decision support +(pp. 3-11). Springer, Cham. + + +14 + +[3] +Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., De Lange, T., Halvorsen, P., & Johansen, H. D. (2019, +December). Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE International +Symposium on Multimedia (ISM) (pp. 225-2255). IEEE. +[4] +Fan, D. P., Ji, G. P., Zhou, T., Chen, G., Fu, H., Shen, J., & Shao, L. (2020, October). Pranet: Parallel reverse attention +network for polyp segmentation. In International Conference on Medical Image Computing and Computer-Assisted +Intervention (pp. 263-273). Springer, Cham. +[5] +Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., ... & Van Leemput, K. (2014). The +multimodal brain tumor image segmentation benchmark (BRATS). IEEE transactions on medical imaging, 34(10), +1993-2024. +[6] +Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., ... & Davatzikos, C. (2017). Advancing the +cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific data, +4(1), 1-13. +[7] +Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., ... & Jambawalikar, S. R. (2018). Identifying the +best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival +prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629. +[8] +Heller, N., Sathianathen, N., Kalapara, A., Walczak, E., Moore, K., Kaluzniak, H., ... & Weight, C. (2019). The kits19 +challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes. arXiv +preprint arXiv:1904.00445. +[9] +Roth, H., Xu, Z., Diez, C. T., Jacob, R. S., Zember, J., Molto, J., ... & Linguraru, M. (2021). Rapid Artificial +Intelligence Solutions in a Pandemic-The COVID-19-20 Lung CT Lesion Segmentation Challenge. +[10] An, P., Xu, S., Harmon, S., Turkbey, E., Sanford, T., Amalou, A., ... & Wood, B. (2020). CT Images in Covid-19 [Data +set]. The Cancer Imaging Archive. Mode of access: https://doi. org/10.7937/tcia. +[11] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the +IEEE conference on computer vision and pattern recognition (pp. 770-778). +[12] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. +In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500). +[13] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In +Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). +[14] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with +convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). +[15] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE +conference on computer vision and pattern recognition (pp. 2881-2890). +[16] Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image +segmentation. arXiv preprint arXiv:1706.05587. +[17] Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: +achievements and challenges. Journal of digital imaging, 32(4), 582-596. +[18] Ngo, D. K., Tran, M. T., Kim, S. H., Yang, H. J., & Lee, G. S. (2020). Multi-task learning for small brain tumor +segmentation from MRI. Applied Sciences, 10(21), 7790. +[19] Taghanaki, S. A., Abhishek, K., Cohen, J. P., Cohen-Adad, J., & Hamarneh, G. (2021). Deep semantic segmentation +of natural and medical images: a review. Artificial Intelligence Review, 54(1), 137-178. +[20] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is +all you need. In Advances in neural information processing systems (pp. 5998-6008). +[21] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An +image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. +[22] Valanarasu, J. M. J., Oza, P., Hacihaliloglu, I., & Patel, V. M. (2021). Medical transformer: Gated axial-attention for +medical image segmentation. arXiv preprint arXiv:2102.10662. +[23] Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., ... & Zhou, Y. (2021). Transunet: Transformers make strong +encoders for medical image segmentation. arXiv preprint arXiv:2102.04306. +[24] Xie, Y., Zhang, J., Shen, C., & Xia, Y. (2021). CoTr: Efficiently Bridging CNN and Transformer for 3D Medical +Image Segmentation. arXiv preprint arXiv:2103.03024. +[25] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings +of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440). +[26] Fan, D. P., Ji, G. P., Zhou, T., Chen, G., Fu, H., Shen, J., & Shao, L. (2020, October). Pranet: Parallel reverse attention +network for polyp segmentation. In International Conference on Medical Image Computing and Computer-Assisted + + +15 + +Intervention (pp. 263-273). Springer, Cham. +[27] Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2011). Context-dependent pre-trained deep neural networks for large- +vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing, 20(1), 30-42. +[28] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2020). Imagenet: A large-scale hierarchical image +database, 2009. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 248-255). +[29] Gao, S., Cheng, M. M., Zhao, K., Zhang, X. Y., Yang, M. H., & Torr, P. H. (2019). Res2net: A new multi-scale +backbone architecture. IEEE transactions on pattern analysis and machine intelligence. +[30] Wu, Z., Su, L., & Huang, Q. (2019). Cascaded partial decoder for fast and accurate salient object detection. In +Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3907-3916). +[31] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE +conference on computer vision and pattern recognition (pp. 2881-2890). +[32] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object +detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). +[33] Lou, A., & Loew, M. (2021). CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation. arXiv +preprint arXiv:2103.12212. +[34] Lou, A., Guan, S., & Loew, M. (2021). CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal +Biomedical Image Real-Time Segmentation. arXiv preprint arXiv:2105.04075. +[35] Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., & Hajishirzi, H. (2018). Espnet: Efficient spatial pyramid of dilated +convolutions for semantic segmentation. In Proceedings of the european conference on computer vision (ECCV) (pp. +552-568). +[36] Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., & Chen, L. C. (2020, August). Axial-deeplab: Stand-alone axial- +attention for panoptic segmentation. In European Conference on Computer Vision (pp. 108-126). Springer, Cham. +[37] Chen, S., Tan, X., Wang, B., & Hu, X. (2018). Reverse attention for salient object detection. In Proceedings of the +European Conference on Computer Vision (ECCV) (pp. 234-250). +[38] Silva, J., Histace, A., Romain, O., Dray, X., & Granado, B. (2014). Toward embedded detection of polyps in wce +images for early diagnosis of colorectal cancer. International journal of computer assisted radiology and surgery, 9(2), +283-293. +[39] Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., & Vilariño, F. (2015). WM-DOVA maps +for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical +Imaging and Graphics, 43, 99-111. +[40] Tajbakhsh, N., Gurudu, S. R., & Liang, J. (2015). Automated polyp detection in colonoscopy videos using shape and +context information. IEEE transactions on medical imaging, 35(2), 630-644. +[41] Vázquez, D., Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., López, A. M., Romero, A., ... & Courville, A. (2017). +A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of healthcare engineering, 2017. +[42] Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., & Johansen, H. D. (2020, January). +Kvasir-seg: A segmented polyp dataset. In International Conference on Multimedia Modeling (pp. 451-462). Springer, +Cham. +[43] Zhang, Z., Liu, Q., & Wang, Y. (2018). Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing +Letters, 15(5), 749-753. +[44] Fang, Y., Chen, C., Yuan, Y., & Tong, K. Y. (2019, October). Selective feature aggregation network with area- +boundary constraints for polyp segmentation. In International Conference on Medical Image Computing and +Computer-Assisted Intervention (pp. 302-310). Springer, Cham. +[45] Fan, D. P., Gong, C., Cao, Y., Ren, B., Cheng, M. M., & Borji, A. (2018). Enhanced-alignment measure for binary +foreground map evaluation. arXiv preprint arXiv:1805.10421. +[46] Fan, D. P., Cheng, M. M., Liu, Y., Li, T., & Borji, A. (2017). Structure-measure: A new way to evaluate foreground +maps. In Proceedings of the IEEE international conference on computer vision (pp. 4548-4557). +[47] Zhou, Z., Sodha, V., Pang, J., Gotway, M. B., & Liang, J. (2021). Models genesis. Medical image analysis, 67, 101840. +[48] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. (2015). "The Multimodal Brain +Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 DOI: +10.1109/TMI.2014.2377694 +[49] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al. (2017). "Advancing The Cancer Genome +Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, +4:170117 DOI: 10.1038/sdata.2017.117 +[50] Nguyen, T. C., Nguyen, T. P., Diep, G. H., Tran-Dinh, A. H., Nguyen, T. V., & Tran, M. T. (2021, September). Ccbanet: + + +16 + +Cascading context and balancing attention for polyp segmentation. In International Conference on Medical Image +Computing and Computer-Assisted Intervention (pp. 633-643). Springer, Cham. +[51] Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., & Zhang, D. (2022). Ds-transunet: Dual swin transformer u-net for +medical image segmentation. IEEE Transactions on Instrumentation and Measurement. + diff --git a/kdFQT4oBgHgl3EQfmjaf/content/tmp_files/load_file.txt b/kdFQT4oBgHgl3EQfmjaf/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..db2bf6717b84b489e70adf173b1e53221d30a9b8 --- /dev/null +++ b/kdFQT4oBgHgl3EQfmjaf/content/tmp_files/load_file.txt @@ -0,0 +1,1253 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf,len=1252 +page_content='1 CaraNet: Context Axial Reverse Attention Network for Segmentation of Small Medical Objects Ange Lou1, Shuyue Guan2, Murray Loew2 Vanderbilt University1, Nashville TN, USA ange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='lou@vanderbilt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='edu The George Washington University2, Washington DC, USA {frankshuyueguan, loew}@gwu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='edu Abstract Purpose: Segmenting medical images accurately and reliably is important for disease diagnosis and treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' It is a challenging task because of the wide variety of objects’ sizes, shapes, and scanning modalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Recently, many convolutional neural networks (CNN) have been designed for segmentation tasks and achieved great success.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Few studies, however, have fully considered the sizes of objects, and thus most demonstrate poor performance for small objects segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' This can have a significant impact on the early detection of diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Approach: This paper proposes a Context Axial Reverse Attention Network (CaraNet) to improve the segmentation performance on small objects compared with several recent state-of-the-art models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' CaraNet applies axial reserve attention (ARA) and channel-wise feature pyramid (CFP) module to dig feature information of small medical object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' And we evaluate our model by six different measurement metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Results: We test our CaraNet on brain tumor (BraTS 2018) and polyp (Kvasir-SEG, CVC-ColonDB, CVC-ClinicDB, CVC-300, and ETIS-LaribPolypDB) segmentation datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Our CaraNet achieves the top-rank mean Dice segmentation accuracy, and results show a distinct advantage of CaraNet in the segmentation of small medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Conclusion: We proposed CaraNet to segment small medical objects and outperform other state-of-the-art methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Codes available: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='com/AngeLouCN/CaraNet Keywords: Small object segmentation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Brain tumor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Colonoscopy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Attention;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Context axial reverse 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' INTRODUCTION Deep learning has had a tremendous impact on various fields in science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Our focus of the current study in deep learning is on one of the most critical areas of computer vision: medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Recently, various convolutional neural networks (CNNs) have shown great performance on medical image segmentation [1,2,3,4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Those CNNs have been introduced for various medical imaging modalities, including X-ray, visible-light imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' They all achieved excellent performance on medical image segmentation challenges from different modalities, like BraTS [5,6,7], KiTS19 [8], and COVID19-20 [9,10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' To obtain more accurate segmentation results, many works introduced improvements of network architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Those improvements are mostly attributed to exploring new neural architectures by designing networks with varying depths (ResNet [11]), widths (ResNeXt [12]), connectivity (DenseNet [13] and GoogLeNet [14]), or new types of components (pyramid scene [15] and atrous convolution [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Although those new architectures improve the overall segmentation results, they are less sensitive to detecting small medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' And it is very common in medical image segmentation that the anatomy of interest occupies only a very small portion of the image [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Most extracted features belong to the background, while these small lesion areas are important for early detection and diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For example, the survival rate decreases with the growing size of a brain tumor [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Thus, it has clinical significance to build an effective network to detect tiny medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The attention mechanism plays a dominant role in neural network research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' It can effectively use information transferred from several subsequent feature maps to detect the salience features [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Many attention methods such as self-attention and multi-head attention have been verified to have high performance in applications of natural language processing [20] and computer vision [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Those attention methods also have been successfully used for medical image segmentation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' for example, the Medical Transformer [22] (MedT) used a gated axial self-attention layer to build a Local-Global (LoGo) network for ultrasound and microscopy image segmentation, TransUNet [23] 2 stacked self-attention as a transformer in the encoder for CT image segmentation, and CoTr [24] bridged two CNN encoder and decoder by the transformer encoder for multi-organ segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' All those attention-based segmentations achieve significant improvement compared with purely convolutional neural networks like U-Net [1] and FCN [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Although those new types of neural networks show good performance on many medical segmentation tasks, they seldom consider the small object segmentation, especially in the medical image area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We propose here a novel attention-based deep neural network, called Context Axial Reverse Attention Network (CaraNet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The contribution of the paper can be summarized as follows: 1) We propose a novel neural network – CaraNet -- to solve the problem of segmentation of small medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2) We introduce a method to evaluate the network’s performance on small medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3) Our experiments show that CaraNet outperforms most current models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', DS-TransUNet from TMI ’22, CCBANet from MICCAI ‘21and PraNet from MICCAI ’20) and advances the state-of-the-art by a large margin, both overall and on small objects, in segmentation performance on polyps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' METHOD Figure 1 shows the architecture of our CaraNet, which uses a parallel partial decoder [26] to generate the high- level semantic global map and a set of context and axial reverse attention operations to detect global and local feature information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We introduce main components of the CaraNet architecture in the following subsections with explanation of the motivation, purpose, or effectiveness to add these components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Overview of CaraNet, which contains pretrained backbone, partial decoder, channel-wise feature pyramid (CFP) module and axial reverse attention (A-RA) module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 Backbone Transfer learning provides a feasible method for alleviating the challenge of data-hunger, and it has been widely applied to the field of computer vision [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Benefiting from the strong visual knowledge distributed in ImageNet [28], the pre-trained CNNs can be fine-tuned with a small amount of task-specific data and can perform well on f1 f2 PD Sg f3 f4 fs CFP CFP CFP Down-sampling Axial-attention fi 8=P 8=p 8=P Height Width f1 f2 f3 axis axis Si A-RA A-RA A-RA S ARA3 ARA4 ARA5 + + + Up-sampling Deep supervision Partial decoder Featureflow Mapflow GT Prediction S3 S4 I Ss S Sigmoid 3 downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Since Res2Net [29] can construct hierarchical residual-like connections within one single residual block that has stronger multi-scale representation ability, we applied the pre-trained Res2Net as the backbone of CaraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 Partial decoder Existing state-of-the-art segmentation networks rely on aggregating multi-level features from the encoder (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', U- Net aggregates all level features extracted from an encoder).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Compared to the high-level features, however, low-level features contribute less to performance but have higher computational cost because of their larger spatial resolution [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Thus, we applied the parallel partial decoder [26] as shown in Figure 2 to aggregate high-level features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We feed the original image which size is ℎ × 𝑤 × 𝑐 (ℎ, 𝑤, and 𝑐 represent the height, width, and channel) into Res2Net, and we can get five different level features {𝑓𝑖, 𝑖 = 1, … , 5} with resolution { ℎ 2𝑖−1 , 𝑤 2𝑖−1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We aggregated the high-level features {𝑓3, 𝑓4, 𝑓5} from Res2Net by using the partial decoder with a parallel connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Then, we can get a global map 𝑆𝑔 = 𝑃𝐷(𝑓3, 𝑓4, 𝑓5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Overview of partial decoder with parallel connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 Channel-wise feature pyramid module The Feature Pyramid (FP) has been widely used in deep learning models for computer vision tasks due to its ability to represent multi-scale features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For example, PSPNet [31] builds a pyramid pooling module with different sizes’ pooling layers to extract multi-scale features, and the Feature Pyramid Network (FPN) [32] takes different strides with convolution kernels to obtain a FP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Although those FP-based methods perform well in the computer vision area, they cannot avoid using large numbers of parameters, which consume a large amount of computation resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In addition, their receptive fields are usually small and do not perform well in datasets with sharply varying object sizes [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Alternatively, our previous works [33, 34] proposed a lightweight Channel-wise Feature Pyramid (CFP) module and successfully applied it to both nature and medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The architecture of this CFP module is shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 3(a) shows the architecture of the CFP module;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' it contains total 𝐾 channels and each channel has its own dilation rate 𝑟𝐾 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Typically, we choose the 𝐾 = 4 for CaraNet and the dilation rates for each channel {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {1,2,4,8} which has been verified as the best dilation rates combination for CaraNet in Table 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' thus, each channel’s dimension is 𝑀/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Simple feature fusion method sometimes introduces some unwanted checkboard or gridding artifacts that greatly influence the accuracy and quality of segmentation masks [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Thus, we applied hierarchical feature fusion [35] (HFF) to sum the outputs of all channels step by step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the FP channel, we provide two versions with regular convolution and asymmetric convolution as shown in Figure 3(b) and (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We connected the outputs of each convolutional module by using skip connection, and thus each channel can be considered as a sub-pyramid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We selected the regular convolution as FP channel for CaraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The overall FP is obtained from concatenating those sub-pyramids from the hierarchical feature fusion operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The final FP contains four levels of feature stacks as shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' These four levels of feature stacks {𝑙𝑒𝑣𝑒𝑙𝑖, 𝑖 = 1, … ,4} are computed by: Aggregation Aggregation 13 Node l-1 Node3-2 Aggregation Aggregation Node 1-2 Node2-2 Aggregation f5 Node1-3 Upsampling 4 { 𝑙𝑒𝑣𝑒𝑙1 = 𝑜𝑢𝑡𝐹𝑃1 𝑙𝑒𝑣𝑒𝑙2 = 𝑙𝑒𝑣𝑒𝑙1 + 𝑜𝑢𝑡𝐹𝑃2 𝑙𝑒𝑣𝑒𝑙3 = 𝑙𝑒𝑣𝑒𝑙2 + 𝑜𝑢𝑡𝐹𝑃3 𝑙𝑒𝑣𝑒𝑙4 = 𝑙𝑒𝑣𝑒𝑙3 + 𝑜𝑢𝑡𝐹𝑃4 (1) And the final FP is computed by ∑ 𝑙𝑒𝑣𝑒𝑙𝑖 𝑖 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Based on our split-merge feature pyramid strategy, the receptive fields of a single CFP module with dilation rates {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {1,2,4,8} varies from 3 × 3 to 55 × 55 , which successfully overcomes the challenge from sharply varying object sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (a) (b) (c) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (a) CFP module, (b) FP channel with regular convolution, (c) FP channel with asymmetric convolution Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Final feature pyramid obtained from CFP module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 Axial reverse attention module The previous partial decoder that generates the global map 𝑆𝑔 (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2) could roughly locate the position of medical objects, and the CFP module extracted only multi-scale features from the pre-trained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' To obtain more accurate feature information, we designed the Axial Reverse Attention (A-RA) module to refine localization information and multi- scale features efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The overview and detail of the A-RA module can be seen in Figure 1 and Figure 5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The input of the top line is the multi-scale feature maps 𝑓𝑖 ′ from the CFP module and we used axial attention to analyze the salience information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The axial attention is based on self-attention, which maps a query and a set of key-value pairs to an output and the operation: Input M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1×1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='M/K FP channel, r FP channel, r2 FP channel, rk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' FP channel, rk Add PpV HFF Add Concatenation M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 1x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='M Add3x3 convolution 3x3convolution 3x3convolution concatenation3x1convolution 1x3convolution 3x1 convolution 1x3convolution 3x1 convolution 1x3convolution concatenationLevel l: Level 3: Level2: Level4: Output: 5 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ( 𝑄𝐾𝑇 √𝑑𝐾) (2) where 𝑄, 𝐾, 𝑉, and 𝑑𝐾 represent query, key, value, and dimension of key, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' However, self-attention consumes great computational resources, especially when the spatial dimension of the input is large [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Therefore, we applied axial attention, which factorizes 2D attention into two 1D attention along height and width axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Here we replace the softmax activation function with a sigmoid, based on the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the second line, we applied the reverse operation [37] to detect the salience features from the side-output 𝑆𝑖, which is obtained from the output of the previous A-RA module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The reverse operation is: 𝑅𝑖 = 1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝑖).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (3) The total axial reverse attention operation is: 𝐴𝑅𝐴𝑖 = 𝐴𝐴𝑖⨀𝑅𝑖 (4) where ⊙ is element-wise multiplication, and the 𝐴𝐴𝑖 is feature from the axial attention route.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Structure of Axial Reverse Attention module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 Deep supervision We apply weighted intersection over union (IoU) and weighted binary cross-entropy (BCE) in our loss function: ℒ = ℒ𝐼𝑜𝑈 𝑤 + ℒ𝐵𝐶𝐸 𝑤 to calculate the global loss and local (pixel-level) loss, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' To train CaraNet, we apply deep supervision for the three side-outputs (𝑆1, 𝑆2, 𝑆3) and the global map 𝑆𝑔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Before calculating the loss, we up-sampled them to the same size as ground truth 𝐺.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Thus, the total loss: ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ(𝐺, 𝑆𝑔 𝑢𝑝) + ∑ ℒ(𝐺, 𝑆𝑖 𝑢𝑝) 5 𝑖=3 (5) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 Small object segmentation analysis Since the size of all images input to the segmentation models must be fixed, the size of an object is determined by the number of pixels in the object m and the number of total pixels in the image N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Thus, we consider the object’s size using the size ratio (proportion) = m/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Then, we evaluate the performance of segmentation models according to the sizes of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Especially, we mainly focus on the small areas whose size ratios are smaller than 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' To define the watershed of small size is a question;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' it depends on data and model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We further discuss this question in Discussion section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' To evaluate the performance of segmentation models according to the sizes of objects, we first obtain the mean-Dice coefficients and size ratios of segmentations from the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Similar to computing the histogram, we plot the results in a curve whose y-axis is mean-Dice coefficients and x-axis is increasingly sorted size ratios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' To smooth the curve, we Axialattcntion Height Wcight Convolutionalfeature Weighted convolutionalfeature S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Sigmoid Reverse weight W=1-Sigmoid(Si) Up-sampledfeature 6 take interval-averaged mean-Dice coefficients by sorted size ratios: we divide the entire range of size ratios into a consecutive, non-overlapping, and of equal length series of intervals, and then calculate the average mean-Dice coefficients of size ratios in each interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The interval-averaged coefficients have a smooth curve and are more stable in the presence of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' EXPERIMENT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 Implementation details We implemented our model in PyTorch accelerated by the NVIDIA RTX 2070Ti GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We resized input images to 352 × 352 for polyp segmentation and 256 × 256 for brain tumor segmentation and employed a multi-scale training strategy {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='75, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='25} instead of data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We used Adam optimizer with the initial learning rate 1𝑒−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 Dataset We test our CaraNet on five polyp segmentation datasets: ETIS [38], CVC-ClinicDB [39], CVC-ColonDB [40], EndoScene [41], and Kvasir [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The first four are standard benchmarks, and the last one is the largest dataset, which was released recently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We also test our model on the Brain Tumor Segmentation 2018 (BraTS 2018) dataset [48, 49], which contains more extremely small medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Table 1 shows the details of these datasets: image size, scale of testing set, and size ratios of medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The data of brain tumor segmentation is from the multimodal brain tumor segmentation challenge 2018 (BraTS 2018) built by the Section for Biomedical Image Analysis (SBIA) at the University of Pennsylvania.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' It contains the multimodal brain MRI scans and manual ground truth labels of glioblastoma from 285 cases (patients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Each case includes four scan- modals: 1) native (T1), 2) T1 contrast enhanced (T1ce), 3) T2-weighted (T2), and 4) T2 Fluid Attenuated Inversion Recovery (FLAIR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' And each case includes three types of ground truth labels: necrotic and non-enhancing tumor core (NET), gadolinium-enhancing tumor (ET), and peritumoral edema (Ed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In this study, T1ce is selected as our input images and ground truth labels use NET type because it delineates the minimum areas for small object segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The MRI scans for each case are sliced to 2-D images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' As shown in Table 1, the test samples are chosen by the sizes of objects in images (by examining the areas of truth labels) ranging in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='01% - 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='91%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Details of datasets Image size Number of test samples Object size ratio ETIS 966 × 1225 196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='11% - 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='05% CVC-ClinicDB 288 × 384 62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='34 % - 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='88% CVC-ColonDB 500 × 574 380 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='30% - 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='15% CVC-300 500 × 574 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='55% - 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='42% Kvasir 1070 × 1348 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='79% - 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='13% BraTS 2018 256 × 256 3231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='01% - 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='91% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 Baseline We compared CaraNet with six medical image segmentation models, including state-of-the-art models: U-Net [1], U- Net++ [2], ResUNet-mod [43], ResUNet++ [3], SFA [44], PraNet [27], CCBANet [50] and DS-TransUNet [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 Training and measurement metrics We randomly split 80% of images from Kvasir and CVC-ClinicDB as training set and the remainder as a testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In addition to mean Dice and mean IoU, we also apply four other measurement metrics: weighted dice metric 𝐹𝛽 𝑤, MAE, enhanced alignment metric Ε𝜙 𝑚𝑎𝑥 [45], and structural measurement 𝑆𝛼 [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Table 2 shows the polyp segmentation on the five datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The weighted dice metric 𝐹𝛽 𝑤 is used to amend the “equal importance flaw” in dice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 7 The MAE is used to measure the pixel-to-pixel accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The recently released enhanced alignment metric Ε𝜙 𝑚𝑎𝑥 is utilized to evaluate the pixel-level and global-level similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' And 𝑆𝛼 is used to measure the structure similarity between predictions and ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 Results We first report the polyp segmentation results and compare with state-of-the-arts such as DS-TransUNet, CCBANet and PraNet in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Among all five public endoscopy segmentation datasets, our proposed CaraNet achieves best performance, especially in the ETIS dataset which contains more small polyps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We also show some polyp segmentation results in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the five polyp datasets, CaraNet not only outperforms the compared models in overall performance, but also on samples with small polyps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 7 shows the segmentation performance of CaraNet and PraNet for small objects (proportions ≤ 5%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the extremely small object segmentation analysis on the BraTS 2018 dataset, we compare only CaraNet with PraNet because PraNet has the closest performance to ours, and the overall accuracies of the other segmentation models are clearly lower than those of CaraNet and PraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (Note: the fluctuations with size in colonoscopy datasets are caused by types and boundary of polyps, and quality of imaging) Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Quantitative results on Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and CVC-T (test dataset of EndoScene).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Note: mDice: mean Dice, mIoU: mean IoU, 𝐹𝛽 𝑤: weighted dice, 𝑆𝛼: structural measurement [46], Ε𝜙 𝑚𝑎𝑥: enhanced alignment [45] and MAE: mean absolute error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' ↑ denotes higher the better and ↓ denotes lower the better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Methods mDice ↑ mIoU ↑ 𝑭𝜷 𝒘 ↑ 𝑺𝜶 ↑ 𝚬𝝓 𝒎𝒂𝒙 ↑ MAE ↓ Kvasir UNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='818 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='746 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='858 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='055 UNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='821 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='808 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='048 ResUNet-mod 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='791 n/a n/a n/a n/a n/a ResUNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='793 n/a n/a n/a n/a SFA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='723 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='611 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='782 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='075 PraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='898 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='030 CCBANet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='916 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='032 DS-TransUNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='857 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='963 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='023 CaraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='929 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='968 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='023 CVC-ClinicDB UNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='755 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='811 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='954 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='019 UNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='785 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='022 ResUNet-mod 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='779 n/a n/a n/a n/a n/a ResUNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='796 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='796 n/a n/a n/a n/a SFA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='647 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='793 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='042 PraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='896 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='979 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='009 CCBANet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='010 DS-TransUNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 CaraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='954 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='991 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 ColonDB UNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='444 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='498 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='712 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='061 UNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='483 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='691 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='064 SFA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='469 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='379 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='634 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='765 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='094 PraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='696 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='819 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='869 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='045 CCBANet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='758 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='736 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='042 DS-TransUNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='762 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='682 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='829 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='872 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='053 CaraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='689 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='042 ETIS UNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='398 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='335 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='366 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='684 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='036 UNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='401 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='390 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='035 SFA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='297 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='217 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='557 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='109 PraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='628 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='567 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='841 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='031 CCBANet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='677 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='610 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='838 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='028 DS-TransUNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='592 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='802 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='023 CaraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='747 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='894 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='017 CVC-T UNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='627 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='684 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='843 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='022 UNet++ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='687 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='898 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='018 SFA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='329 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='341 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='817 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='065 PraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='797 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='843 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='010 CCBANet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='881 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='933 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='986 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 DS-TransUNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='798 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 CaraNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='838 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='989 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 8 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Polyp segmentation results CVC-300 CVC-ClinicDB CVC-ColonDB ETIS Kvasir Images Ground truth UNet UNet++ SFA PraNet CCBANet DSTransUNet CaraNet 9 Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The performance of CaraNet and PraNet for small object segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' More discussion about small object segmentation analysis is in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For each subfigure, the x-axis is the proportion size (%) of polyp and the y-axis is the averaged mean Dice coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Subfigures show performance vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' size on the five polyp datasets, which are Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and CVC-300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Blue line is for our CaraNet and orange is for the PraNet, showing only the results of small polyp sizes (<6%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We can find that our CaraNet overperforms the PraNet for most cases of small size polyps from the five datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Quantitative results on brain tumor (BraTS 2018) dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Methods mean Dice mean IoU 𝑭𝜷 𝒘 𝑺𝜶 𝚬𝝓 𝒎𝒂𝒙 MAE CaraNet (Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='507 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='629 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='927 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='003 PraNet (MICCAI’20) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='494 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='606 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='003 Kvasir 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0 1 2 3 4 5 6CVC-ClinicDB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0 1 2 3 4 5 6CVC-ColonDB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0 2 3 4 5ETIS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 : 2 3 4 6CVC-300 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0 1 2 3 4 5 6 CaraNet (Ours) PraNet 10 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Performance vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Size on brain tumor datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The x-axis is the proportion size (%) of tumor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Upper figure: y-axis is the mean Dice coefficient results of our CaraNet and PraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the very small tumor sizes (≤1%), almost all results of CaraNet are better than PraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Lower figure: the y-axis is the difference between the averaged mean Dice coefficient results of CaraNet and PraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Red indicates the Dice value of CaraNet is greater than that of PraNet;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' blue shows the opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' BrainTumor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 Dice 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='0 Tumor Sizes (%) CaraNet (Ours) --PraNet0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='02 ice +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7630 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='01 0 Car 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='03 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 5 TumorSizes(%) 11 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Brain tumor segmentation results To further evaluate the effectiveness of CaraNet for small-object segmentation, we conducted another experiment using the brain tumor dataset (BraTS 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The polyp datasets lack extremely small objects (the minimum is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='11%) and do not have enough small samples (like Kvasir and CVC-ClinicDB, in Figure 7, there are fewer samples in the range of small sizes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The brain tumor dataset was created from the BraTS 2018 database by slicing 2D images from the “T1ce” source with “NET” type labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We randomly select 60% of the images as the training set and the remainder as the testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Altogether, 3231 images with proportions of tumor sizes ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='01% – 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='91% were in the testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Table 3, Figure 8, and Figure 9 show the comparison result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We compared CaraNet with only PraNet for the same reason stated above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Clearly, our CaraNet performed better, especially for the extremely small cases (range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='01% – 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1% in Figure 8 and the red area indicates that the Dice value of CaraNet is greater than that of PraNet;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' blue area shows the opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Values on the right show the summations of all red and blue differential values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='5 Ablation study Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Quantitative results on Kvasir for different dilation rate Dilation Rate Mean Dice 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='909 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='908 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='918 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='913 32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='907 To search the best dilation rate for our CFP module, we set up experiments and choose different dilation rates from 0 to 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The performance of CaraNet with different dilation rate are testing on Kvasir testing set as shown in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' When we choose small dilation rates like 0 and 4, the dilations rates for each channel are {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,0,0,0} and {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,1,2,4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The CFP module focuses on local information but ignore the global one, thus the accuracy is about 1% lower than the best one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' When large dilation rates are chosen like 16 and 32, the dilation rates for each channel are {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,4,8,16} and {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,8,16,32}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' There only one channel focus on local features which is unreasonable for small medical object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' When we choose a fairish dilation rate like 8 which {𝑟1, 𝑟2, 𝑟3, 𝑟4} = {0,2,4,8}, the weights of local and global information can be balanced and then achieves best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We further conduct ablation studies to demonstrate the effectiveness of our proposed CFP module and Axial Reverse Attention (A-RA) module five public endoscopy segmentation datasets, and we choose same six measurement metrics as in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='4 for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Images Ground truth PraNet CaraNet 12 We first conduct an experiment to evaluate CaraNet without CFP module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' As shown in Table 5, the performance without CFP module drops sharply on five public datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In particular, the mDice achieves about 8% reduction on ETIS dataset, which strongly verifies that CFP module can effectively detect local-to-global feature due to its various sizes receptive field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Then, we evaluate the CaraNet without both CFP module and A-RA module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The mDice continued to decrease about 2%-3%, indicating that our A-RA module enables our CaraNet to accurately distinguish true polyp tissues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Ablation study for CaraNet on Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and CVC-T (test dataset of EndoScene).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Note: mDice: mean Dice, mIoU: mean IoU, 𝐹𝛽 𝑤: weighted dice, 𝑆𝛼: structural measurement [46], Ε𝜙 𝑚𝑎𝑥: enhanced alignment [45] and MAE: mean absolute error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' ↑ denotes higher the better and ↓ denotes lower the better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Dataset CFP A-RA mDice ↑ mIoU ↑ 𝑭𝜷 𝒘 ↑ 𝑺𝜶 ↑ 𝚬𝝓 𝒎𝒂𝒙 ↑ MAE ↓ Kvasir \uf0fb \uf0fb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='798 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='938 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='043 \uf0fb ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='888 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='830 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='032 ✓ ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='929 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='968 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='023 CVC-ClinicDB \uf0fb \uf0fb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='789 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='841 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='021 \uf0fb ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='830 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='874 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='928 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='012 ✓ ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='954 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='991 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 ColonDB \uf0fb \uf0fb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='595 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='797 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='063 \uf0fb ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='636 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='689 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='048 ✓ ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='689 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='042 ETIS \uf0fb \uf0fb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='646 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='790 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='055 \uf0fb ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='662 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='580 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='869 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='032 ✓ ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='747 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='709 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='894 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='017 CVC-T \uf0fb \uf0fb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='765 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='802 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='943 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='022 \uf0fb ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='917 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='965 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='009 ✓ ✓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='838 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='989 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='007 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' DISCUSSION We propose a novel deep-learning based segmentation model – CaraNet, by combining the Axial Reverse Attention and Channel-wise Feature Pyramid (CFP) modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' This new method can help improve the performance of the segmentation of small medical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Through the experiments, we show that CaraNet outperforms the most famous models by a large margin overall for six measurement metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' As shown by the polyp segmentation results, CaraNet not only produces high quality segmentation on samples of large polyps, but also performs well for small and multi small- object segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 9 shows some results of extremely small tumor segmentation from the BraTS 2018 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The advantage of the CaraNet in segmenting small single- and multi-objects is evident.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In addition, compared with the recent state-of-the-art network, PraNet, CaraNet provides a more precise prediction for the most-challenging cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We also introduce the process to evaluate segmentation models according to the size of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We consider the object’s size using the size ratio including the sizes of objects and the whole image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In this study, we assume the size ratios of “small objects” are less than 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' However, the definition of “small objects” is not specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Since few studies have fully considered the sizes of objects and the small-object problems in medical imaging, we could further study this question in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Preliminarily, the small size (watershed) could be defined by the Performance vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Size curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 10 shows an example on ETIS datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The watershed of small size could be defined at 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='8%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' After that point, the performance generally increase/change slower and is more stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The definition of small area may depend on datasets, segmentation models, and object shapes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' but if these conditions are fixed, it is feasible to make fair comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The definition of small area discussed here may not be perfect, but it is worth paying attention to the model’s performance on small size cases besides the whole dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Figure 10 also indicates that the overall performance of segmentation depends on size ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' If we remove the small size cases, the overall performance will be greatly improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 13 Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Performance vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Size on ETIS datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The x-axis is the proportion size (%) of polyp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' y-axis is the mean Dice coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Blue is for our CaraNet and orange is for the SFA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Unlike Figure 7, it shows the results of all sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Although CaraNet achieves good improvement on medical image segmentation tasks, there are still some limitations and potentials to optimize the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For example, using bilinear interpolation to up-sample feature maps cannot avoid the loss of some useful information and lead to a coarse boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' It can be improved by applying a deconvolutional layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In addition, the backbone of CaraNet is pre-trained on ImageNet, which contains natural images that are very different from medical images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Moreover, the sliced brain MRI data also cause loss of spatial information between the voxels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' that may influence the accuracy of small tumor detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In our future work, we will use the Model Genesis [47] as a 3-D backbone to replace the Res2Net (2-D backbone) and adjust the CaraNet to employ it on 3-D medical imaging segmentation to build a 3-D version CaraNet for more accurate CT or MRI image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Segmentation of 3-D medical images is of growing interest;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' we believe CaraNet will address that problem successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' CONCLUSION We have proposed a novel neural network, CaraNet, for small medical object segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' We use a partial decoder to roughly localize polyp position, improve the adaptability of the CaraNet to detect different sizes objects by using a CFP module and finally refine the polyp segmentation by A-RA module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' From the overall segmentation accuracy, we can find that CaraNet outperforms all state-of-the-art approaches by at least 2% (mean dice accuracy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the early diagnosis dataset (ETIS) which contains many small polyps, however, CaraNet can reach 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7% mean dice accuracy, which is about 12% higher than PraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' For the extremely small object segmentation dataset (BraTS 2018), CaraNet can achieve 3% higher than PraNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' When evaluating segmentation models according to the size of objects, CaraNet outperforms PraNet for small objects in all six datasets we used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In addition to the average accuracy through the whole dataset, to evaluate/compare segmentation models according to sizes of objects could show more characteristics of models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' especially, their performance on small areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' And this method can find or verify models that are good for small objects segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' DISCLOSURES No conflicts of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' References [1] Ronneberger, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Fischer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Brox, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2015, October).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' U-net: Convolutional networks for biomedical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In International Conference on Medical image computing and computer-assisted intervention (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 234- 241).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [2] Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Siddiquee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Tajbakhsh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Liang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Unet++: A nested u-net architecture for medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Deep learning in medical image analysis and multimodal learning for clinical decision support (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3-11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 14 [3] Jha, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Smedsrud, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Riegler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Johansen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', De Lange, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Halvorsen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Johansen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2019, December).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Resunet++: An advanced architecture for medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In 2019 IEEE International Symposium on Multimedia (ISM) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 225-2255).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [4] Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Ji, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Fu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Shao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020, October).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Pranet: Parallel reverse attention network for polyp segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 263-273).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [5] Menze, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Jakab, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Bauer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kalpathy-Cramer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Farahani, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kirby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Van Leemput, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The multimodal brain tumor image segmentation benchmark (BRATS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE transactions on medical imaging, 34(10), 1993-2024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [6] Bakas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Akbari, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sotiras, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Bilello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Rozycki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kirby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Davatzikos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Scientific data, 4(1), 1-13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [7] Bakas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Reyes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Jakab, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Bauer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Rempfler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Crimi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Jambawalikar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='02629.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [8] Heller, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sathianathen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kalapara, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Walczak, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Moore, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kaluzniak, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Weight, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='00445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [9] Roth, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Diez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Jacob, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zember, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Molto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Linguraru, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Rapid Artificial Intelligence Solutions in a Pandemic-The COVID-19-20 Lung CT Lesion Segmentation Challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [10] An, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Harmon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Turkbey, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sanford, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Amalou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Wood, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' CT Images in Covid-19 [Data set].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' The Cancer Imaging Archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Mode of access: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='7937/tcia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [11] He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Ren, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 770-778).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [12] Xie, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Girshick, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Dollár, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Tu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Aggregated residual transformations for deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 1492-1500).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [13] Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Van Der Maaten, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Weinberger, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Densely connected convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 4700-4708).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [14] Szegedy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Jia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sermanet, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Reed, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Anguelov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Rabinovich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Going deeper with convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 1-9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [15] Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Qi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Jia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Pyramid scene parsing network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2881-2890).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [16] Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Papandreou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Schroff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Adam, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Rethinking atrous convolution for semantic image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='05587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [17] Hesamian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Jia, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Kennedy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Deep learning techniques for medical image segmentation: achievements and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Journal of digital imaging, 32(4), 582-596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [18] Ngo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Tran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Lee, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Multi-task learning for small brain tumor segmentation from MRI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Applied Sciences, 10(21), 7790.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [19] Taghanaki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Abhishek, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Cohen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Cohen-Adad, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Hamarneh, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Deep semantic segmentation of natural and medical images: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Artificial Intelligence Review, 54(1), 137-178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [20] Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Advances in neural information processing systems (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 5998-6008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [21] Dosovitskiy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Beyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Kolesnikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Weissenborn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Unterthiner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Houlsby, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' An image is worth 16x16 words: Transformers for image recognition at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='11929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [22] Valanarasu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Oza, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Hacihaliloglu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Patel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Medical transformer: Gated axial-attention for medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='10662.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [23] Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Lu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Yu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Luo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Adeli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Transunet: Transformers make strong encoders for medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='04306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [24] Xie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Xia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='03024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [25] Long, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shelhamer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Darrell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Fully convolutional networks for semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3431-3440).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [26] Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Ji, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Fu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Shao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020, October).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Pranet: Parallel reverse attention network for polyp segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In International Conference on Medical Image Computing and Computer-Assisted 15 Intervention (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 263-273).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [27] Dahl, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Yu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Deng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Acero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Context-dependent pre-trained deep neural networks for large- vocabulary speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE Transactions on audio, speech, and language processing, 20(1), 30-42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [28] Deng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Dong, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Socher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Fei-Fei, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Imagenet: A large-scale hierarchical image database, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 248-255).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [29] Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Cheng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Yang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Torr, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Res2net: A new multi-scale backbone architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE transactions on pattern analysis and machine intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [30] Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Su, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Huang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Cascaded partial decoder for fast and accurate salient object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 3907-3916).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [31] Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Qi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Jia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Pyramid scene parsing network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2881-2890).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [32] Lin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Dollár, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Girshick, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Hariharan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Belongie, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Feature pyramid networks for object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 2117-2125).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [33] Lou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Loew, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='12212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [34] Lou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Guan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Loew, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='04075.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [35] Mehta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Rastegari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Caspi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Shapiro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Hajishirzi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the european conference on computer vision (ECCV) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 552-568).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [36] Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Green, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Adam, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Yuille, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020, August).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Axial-deeplab: Stand-alone axial- attention for panoptic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In European Conference on Computer Vision (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 108-126).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [37] Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Tan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Reverse attention for salient object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the European Conference on Computer Vision (ECCV) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 234-250).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [38] Silva, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Histace, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Romain, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Dray, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Granado, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' International journal of computer assisted radiology and surgery, 9(2), 283-293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [39] Bernal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sánchez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Fernández-Esparrach, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Gil, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Rodríguez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Vilariño, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' saliency maps from physicians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Computerized Medical Imaging and Graphics, 43, 99-111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [40] Tajbakhsh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Gurudu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Liang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Automated polyp detection in colonoscopy videos using shape and context information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE transactions on medical imaging, 35(2), 630-644.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [41] Vázquez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Bernal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sánchez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Fernández-Esparrach, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', López, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Romero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' & Courville, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' A benchmark for endoluminal scene segmentation of colonoscopy images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Journal of healthcare engineering, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [42] Jha, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Smedsrud, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Riegler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Halvorsen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', de Lange, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Johansen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Johansen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2020, January).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Kvasir-seg: A segmented polyp dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In International Conference on Multimedia Modeling (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 451-462).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [43] Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Road extraction by deep residual u-net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE Geoscience and Remote Sensing Letters, 15(5), 749-753.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [44] Fang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Yuan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Tong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2019, October).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Selective feature aggregation network with area- boundary constraints for polyp segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 302-310).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [45] Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Gong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Cao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Ren, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Cheng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Borji, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Enhanced-alignment measure for binary foreground map evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' arXiv preprint arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='10421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [46] Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Cheng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Borji, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Structure-measure: A new way to evaluate foreground maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In Proceedings of the IEEE international conference on computer vision (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 4548-4557).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [47] Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Sodha, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Pang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Gotway, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Liang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Models genesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Medical image analysis, 67, 101840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [48] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Menze, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Jakab, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Bauer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Kalpathy-Cramer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Farahani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Kirby, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1109/TMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2377694 [49] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Bakas, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Akbari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Sotiras, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Bilello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Rozycki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Kirby, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='1038/sdata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content='117 [50] Nguyen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Nguyen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Diep, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Tran-Dinh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Nguyen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Tran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2021, September).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Ccbanet: 16 Cascading context and balancing attention for polyp segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' 633-643).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' [51] Lin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', Lu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=', & Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' Ds-transunet: Dual swin transformer u-net for medical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} +page_content=' IEEE Transactions on Instrumentation and Measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kdFQT4oBgHgl3EQfmjaf/content/2301.13366v1.pdf'} diff --git a/l9FPT4oBgHgl3EQf3jX-/vector_store/index.faiss b/l9FPT4oBgHgl3EQf3jX-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d0ac550f692fa3904216904f056c453d6ae6202a --- /dev/null +++ b/l9FPT4oBgHgl3EQf3jX-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e7d8e4b9e2d3422d8d781afd04e9e05ba589ee65faddb4c59aa3c36e43a45dc6 +size 5570605 diff --git a/m9E1T4oBgHgl3EQf1QUs/content/tmp_files/load_file.txt b/m9E1T4oBgHgl3EQf1QUs/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..07b76ca27e25ff113787bd5d32e0f04fdb21f5c0 --- /dev/null +++ b/m9E1T4oBgHgl3EQf1QUs/content/tmp_files/load_file.txt @@ -0,0 +1,1148 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf,len=1147 +page_content='1 Deep Learning for Short-Latency Epileptic Seizure Detection with Probabilistic Classification Yankun Xu, Jie Yang, Wenjie Ming, Shuang Wang, and Mohamad Sawan, Fellow, IEEE Abstract—In this manuscript, we propose a novel deep learning (DL)-based framework intended for obtaining short latency in real-time electroencephalogram-based epileptic seizure detection using multiscale 3D convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We pioneer converting seizure detection task from traditional binary classifi- cation of samples from ictal and interictal periods to probabilistic classification of samples from interictal, ictal, and crossing peri- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We introduce a crossing period from seizure-oriented EEG recording and propose a labelling rule using soft-label for samples from the crossing period to build a probabilistic classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A novel multiscale short-time Fourier transform feature extraction method and 3D convolution neural network architec- ture are proposed to accurately capture predictive probabilities of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Furthermore, we also propose rectified weighting strategy to enhance predictive probabilities, and accumulative decision-making rule to achieve short detection latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We implement leave-one-seizure-out cross validation on two prevalent datasets – CHB-MIT scalp EEG dataset and SWEC-ETHZ intracranial EEG dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Eventually, the proposed algorithm achieved 94 out of 99 seizures detected during the crossing period, averaged 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='84% rectified predictive ictal probability (RPIP) errors of crossing samples, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 s detection latency, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='32/h false detection rate on CHB-MIT dataset, meanwhile 84 out of 89 detected seizures, 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='17% RPIP errors, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 s detection latency, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='75/h FDR are achieved on SWEC-ETHZ dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The obtained detection latencies are at least 50% faster than state- of-the-art results reported in previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Index Terms—Epilepsy, seizure detection, EEG, brain- computer interface, detection latency, probabilistic classification, deep learning I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' INTRODUCTION E PILEPTIC patients suffering from unprovoked recurrent seizures occupy approximately 1% population worldwide [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Seizure is originated from abnormal discharged neu- ron inside small brain region, then discharging current is spread to other regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Two main seizure types, named focal and generalized seizure, depend on seizures begin in one area then spread to other areas or seizures begin throughout brain cortex simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Long-term drug therapy is one of the major treatment intended for epileptic patients, however, one- third of patients face drug-resistant epilepsy [3], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' This work was supported in part by the Westlake University, in part by the Zhejiang Key R&D Program under Grant 2021C03002, and in part by the Zhejiang Leading Innovative and Entrepreneur Team Introduction under Grant 2020R01005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (Corresponding authors: Jie Yang;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Mohamad Sawan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=') Yankun Xu, Jie Yang and Mohamad Sawan are with the Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neu- rotechnologies (CenBRAIN Neurotech), School of Engineering, Westlake University, Hangzhou, Zhejiang, China, (e-mail: yangjie@westlake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' sawan@westlake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wenjie Ming and Shuang Wang are with the Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' EEG Onset Clinical Onset Many seconds Samples … … … 1 0 Times (s) 0 Times (s) EEG Recordings : True Label : Binary Detection Labelling Decision 1 Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' : ∑ ������������������������ (Sum of Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=') : ������������������������ (Predictive Ictal Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=') Decision Threshold Interictal Crossing Ictal Latency ������������������������ ������������������������ ������������������������ : Expected Detection Latency ������������������������ : Latency in Binary Way Alarm Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schematic figure for illustrating EEG recordings, segmented samples, traditional seizure detection challenges, and expected decision-making system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Recently, brain-computer interface (BCI) has been broadly applied to healthcare and neuroscience domain, such as re- habilitation, brain stimulation, prosthetic control, and brain activity diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [5]–[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A BCI-based closed-loop seizure detection system that consists of recording, detection, stim- ulation elements, can heavily support epileptic patients [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Especially for patients with tonic-clonic seizures because electrical stimulation intervenes can be operated in time prior to the beginning of convulsions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hence, an accurate real-time epileptic seizure onset detection algorithm becomes a critical factor to alarm the occurrence of seizure promptly [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As typical BCI monitoring modalities, scalp electroen- cephalogram (EEG) and intracranial EEG (iEEG) are widely applied to supervise epileptic patients by recording brain activ- ities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Usually, patients suffer from a couple of seizures per day, and seizure onsets and endings are identified by an experienced epileptologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Clinically the period between seizure onset and seizure end is defined as ictal period usually lasting 30 s to 2 min, followed by a postictal period usually lasting 5-30 min [11]–[13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The other period appearing in the health state is defined as interictal period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Medical experts annotate the EEG onset time according to the aberrant signs occurred in the EEG recordings from epileptic patients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, patients do not behave abnormally at EEG onset time immediately, usually unequivocal EEG onset precedes clinical onset by arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='03465v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='SP] 4 Jan 2023 2 several seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Litt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [14], [15] announced this gap would be 7-10 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The clinical onset refers to the appearance of relevant symptoms, such as convulsion and jerking, that can be obviously reflected on the EEG recordings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hence, a reliable seizure detection algorithm is required to obtain short enough detection latency, thereby being capable of recognizing the seizure occurred during the period between EEG onset and clinical onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As shown in the top of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, EEG Recordings part displays a real EEG recording example of a patient around the time of EEG onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Over the past decades, numerous algorithm-based seizure detection studies have been published, and most of works an- nounced they achieved high sensitivity and low false detection rate (FDR) at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, high sensitivity alone is still far away from actual seizure intervention usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Because in terms of practical epileptic patients supervision scenarios, short enough detection latency is crucial to guarantee the risk alarms promptly and intervenes can be effectively operated prior to serious onset symptoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Unfortunately, most previous studies overlooked this important metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According to our best knowledge, most previous seizure detection studies trained the machine learning (ML)-based or DL-based seizure detection algorithm as a binary classification model to distinguish the segmented interictal and ictal samples extracted from corre- sponding periods, which is shown in Samples part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, this strategy remains a drawback that the trained binary classification model cannot correctly detect the crossing samples consisting of partial interictal and ictal components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As shown in Labelling part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, interictal and ictal samples are labelled as 0 or 1 in traditional binary way for training and trained binary model can recognize them as 0 or 1 correctly, but trained binary model would wrongly detect the crossing samples as 0 or 1 randomly according to our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The reason is that crossing samples are significantly different from the major part of ictal period because they are closed to the interictal period, if crossing samples are directly considered as ictal periods in binary way, the binary classification model would only learn the ictal samples with obvious oscillation characteristics mainly instead of crossing samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' It should be noted that the time of each detected dot in the figure is consistent with the end of detected samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' An accurate and prompt seizure detection system is ex- pected to detect crossing samples in linearly increasing prob- abilistic format according to the corresponding percentage of ictal component, meanwhile to keep the complete interictal or ictal samples in binary format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then, an accumulative decision-making rule can be used to alarm the seizure oc- currence in short latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In Decision part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, gray dots represent predictive probabilities of samples in real-time, and the blue line shows accumulative probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' When the accumulative probability reaches the decision threshold, the detection system would alarm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Therefore, as shown in Latency part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, the expected detection latency 𝐿1 can be shorter than the length of segmented samples, while the binary classification model can only achieve the latency 𝐿2 at least longer than the length of segmented samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this manuscript, we propose a novel DL-based framework intended for real-time detection of epileptic seizures with short latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The main innovative contributions aiming to address the challenges and limitations mentioned above are as follows: We pioneer introducing crossing period and convert seizure detection task from traditional binary classifica- tion to probabilistic classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We propose a novel DL model based on multiscale 3D convolution neural networks (M-3D-CNN) to accurately capture predictive probabilities of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A rectified probability weighting strategy is proposed to further enhance the probabilistic results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' And an accumulative decision-making rule is proposed to achieve short latency and low FDR simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The remaining content of this manuscript is organized as: We describe in Section II recent related works about seizure detection field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Section III elaborates on utilized materials, data processing, and the proposed framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Section IV illustrates experimental settings and achieved performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sections V and VI are the objects of discussion and conclusion, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' RELATED WORK Over the past decades, algorithm-based seizure detection study is a hot topic attracted by numerous researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shoeb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [16] initially detected 131 of 139 seizure events with 8 s detection latency and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='25/h FDR on 36 clinical pediatric subjects in 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then they published significant performance that 96% detection sensitivity with averaged 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 s latency on 24 pediatric subjects in 2010 [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' They took advantage of spectral and spatial features combined with support vector machine (SVM) classifier to achieve advanced results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As pioneers of this field, Shoeb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [17] also published CHB- MIT scalp dataset, it has become one of the most famous and important resource intended for seizure-related study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In 2011, from the same group, researchers applied similar approaches to the clinical iEEG dataset from 10 patients and achieved 97% detection sensitivity, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='03/h FDR and 5 s detection latency [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In 2017, Vidyaratne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [19] used an improved wavelet method known as harmonic wavelet packet transform to extract higher frequency information as features, then SVM is used as classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' They achieved 96% sensitivity, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1/h FDR, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='89 s detection latency on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In [20], authors applied statistical and morphological features combined with an adaptive distance-based change point detector to achieve 96% sensitivity, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='12/h FDR, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='21 detection latency, respectively on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The empirical mode de- composition method is a prevalent technique broadly applied to seizure detection applications, numerous authors utilized it and its variation to achieve satisfactory performance over the past decade [21]–[24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The short-time Fourier transform (STFT) is an effective method widely used to extract seizure- related features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Yuan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [25] proposed a multi-view deep learning framework for EEG seizure detection based on STFT and convolution neural network (CNN), they achieved 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='37% accuracy using 5-fold patient-specific cross validation on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Different from traditional convolutional 3 operation that considers EEG signal or STFT features as 2D image-like features, 1D-CNN architecture is also applied to seizure-related studies to [26]–[29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In [27], authors achieved sensitivity, FDR, and detection latency of 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='31%, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2/h, and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 s from event-based level on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [30] proposed a novel channel-embedding spectral-temporal squeeze-and-excitation network using wavelet features to rec- ognize epileptic EEG signals, they achieved 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='41% sensitivity and 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='05% specificity on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Burrello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [31]–[33] from Swiss research group pub- lished a seizure-oriented iEEG database, known as SWEC- ETHZ database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' They achieved 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='84% specificity and 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='42% accuracy on short-term dataset, and detected 79 out of 92 unseen seizures without any false alarms across all the patients on long-term dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Afterwards, Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [27] and Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [34] obtained sensitivity, FDR, detection latency of 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='52%, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='07/h FDR, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 s and 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5%, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='06/h FDR, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 s, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' From our point of view, there is a remained controversy in measuring detection latency metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As we depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, binary classification model cannot achieve the latency shorter than the length of segmented samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According to prior-art publications, they segmented EEG samples in at least 5 s, however, most of them announced their proposed algorithms can achieve less than 5 s detection latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hence, we doubt that previous researchers overlooked the crossing samples from real-time perspectives, leading to compute the detection latency by measuring the distance between EEG onset and begin of detected sample instead of end of detected sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this manuscript, we pioneer introducing crossing period and probabilistic classification in real-time seizure detection task to achieve short latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' METHODOLOGY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Materials In this work, EEG and iEEG datasets are both considered to validate the proposed framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The CHB-MIT scalp EEG dataset is one of the most prevalent open access datasets intended for seizure-related research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' There are 23 pediatric patients monitored by 22 electrode channels with 256 Hz sampling rate, and each subject obtains various numbers of seizure and non-seizure EEG recording files in 1h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The earliest change associated with the clinical seizure is annotated as EEG onset by clinical experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We ignored the subjects with changing electrode placement, thereby 19 subjects are selected for the following experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The SWEC-ETHZ dataset is an emerging and open-access iEEG dataset collected from pre-surgical evaluations of pa- tients with pharmacoresistant epilepsies, it was published in 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' This database contains two versions according to differ- ent recording durations – long-term and short-term versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this work, we use short-term version to test our proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of short-term dataset, each patient obtains several seizure files, and each file consists of a 3-min interictal period immediately followed by an ictal period and a 3- min postictal period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The EEG onset time is identified by an experienced epileptologist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Because there is insufficient TABLE I SUMMARY OF TWO DATASETS USED IN THIS WORK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' dataset EEG type # of selected patients # of channels # of seizures Interictal duration CHB-MIT sEEG 19 22 99 335.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5h SWEC-ETHZ iEEG 11 42∼100 89 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='45h sEEG: scalp EEG iEEG: intracranial EEG interictal duration for model training on short-term dataset, we only select patients with no less than 4 seizures in this dataset, so that 11 of 16 patients are selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Furthermore, the number of implanted electrode channels used in these patients varies from 42 to 100, and 512 Hz sampling rate is chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Table I summarizes the characteristics of two datasets used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Definitions of different periods DL algorithms cannot train the model directly on the suc- cessive EEG recordings, so that we need to extract successive segmented samples from the recording in advance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Firstly, we need to identify the interictal, ictal and crossing periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According to the seizure file of CHB-MIT dataset, beginning and ending time of each seizure is provided, and we manually set a 30 min postictal period following seizure ending, then left part is belong to interictal period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of short-term version of SWEC-ETHZ dataset, each patient obtains several seizure recording files, each file consists of a 3 min interictal segment immediately followed by an ictal segment and a 3min postictal segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The schematic figure for definition of crossing period is shown as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2, where 𝐿𝑖𝑐𝑡𝑎𝑙 𝐿𝑐𝑟𝑜𝑠𝑠 denotes the length of ictal component occupying the whole length of crossing sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The crossing period is defined as ending of extracted samples begins at EEG onset time (the last time for 𝐿𝑖𝑐𝑡𝑎𝑙 𝐿𝑐𝑟𝑜𝑠𝑠 = 0) and ends at a duration of extracted sample after EEG onset (the first time for 𝐿𝑖𝑐𝑡𝑎𝑙 𝐿𝑐𝑟𝑜𝑠𝑠 = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In experiments, samples are extracted in 5 s and 10 s segments for CHB-MIT dataset and SWEC- ETHZ dataset, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Data preparation Furthermore, duration of interictal period is much longer than duration of ictal period on CHB-MIT dataset, so that we overcome this unbalanced data issue by extracting interictal samples without any overlaps, and ictal samples with 80% overlaps, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' And we data-point-wisely extracted crossing samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Because the duration of crossing period for each seizure equals to the length of segmented samples, the duration of crossing period should be 5 s, and the number of extracted crossing samples for each seizure is computed by duration of segmented samples multiplying sampling rate (5 (s) × 256 (Hz) = 1280 (samples)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As for SWEC-ETHZ dataset, we directly extracted samples of all three periods with 80% overlaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Explanation of crossing period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In crossing period, extracted sample consists of partial interictal and ictal component simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The duration of crossing period depends on the length of segmented samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Probabilistic labelling rule In terms of traditional binary classification, interictal and ictal samples are annotated by [1, 0] and [0, 1] according to the one-hot encoding rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, the label of crossing sample should contain probabilistic information rather than simple one-hot information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The intuitive operation is to directly label crossing samples as a single probability as a regression task required, but this type of labelling would cause crossing samples cannot be trained with interictal and ictal samples together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We aim to train the M-3D-CNN model using interictal, ictal, and crossing samples together, because crossing samples are comprised of partial interictal and ictal parts, and M-3D-CNN model is expected to learn the unique crossing samples characteristics from complete interictal and ictal samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this work, we keep labelling ictal and interictal sam- ples as binary format, and take soft-label strategy to an- notate the crossing samples in probabilistic format [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Compared to traditional regression task training, soft-label annotation replace the output vector with the shape of (1, ) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=', 𝑃𝑖𝑐𝑡𝑎𝑙 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' ) with the output vec- tor with the shape of (1, 2) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=', [𝑃𝑖𝑛𝑡𝑒𝑟𝑖𝑐𝑡𝑎𝑙, 𝑃𝑖𝑐𝑡𝑎𝑙] = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3], [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6], [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' There are several advan- tages of soft-label strategy compared to the regression training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Firstly, the soft-label strategy makes networks can train the crossing samples, complete interictal and ictal samples simul- taneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Secondly, soft-label enables usage of cross entropy loss function, which takes both interictal and ictal information into account rather than only ictal probability provided with simple mean square error loss function in regression task .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of experimental training setting, we keep la- bels of interictal and ictal samples in the traditional way (𝐿𝑎𝑏𝑒𝑙𝑖𝑛𝑡𝑒𝑟𝑖𝑐𝑡𝑎𝑙 = [1, 0], 𝐿𝑎𝑏𝑒𝑙𝑖𝑐𝑡𝑎𝑙 = [0, 1]) and label cross- ing samples into 20 probability pairs as following rules: 𝐿𝑎𝑏𝑒𝑙𝑐𝑟𝑜𝑠𝑠 = [𝑃𝑖𝑛𝑡𝑒𝑟𝑖𝑐𝑡𝑎𝑙, 𝑃𝑖𝑐𝑡𝑎𝑙] 𝑤ℎ𝑒𝑟𝑒, 𝑃𝑖𝑐𝑡𝑎𝑙 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='05𝑝 𝑖 𝑓 𝐿𝑖𝑐𝑡𝑎𝑙 𝐿𝑐𝑟𝑜𝑠𝑠 ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='05𝑝 𝑃𝑖𝑛𝑡𝑒𝑟𝑖𝑐𝑡𝑎𝑙 = 1 − 𝑃𝑖𝑐𝑡𝑎𝑙, 𝑝 = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='19 (1) where, 𝐿𝑖𝑐𝑡𝑎𝑙 𝐿𝑐𝑟𝑜𝑠𝑠 ranges from 0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of loss function utilized for model training, we take binary cross entropy loss function which is defined as: L(𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙, ˆ𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙) = − (𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙 · 𝑙𝑜𝑔( ˆ𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙) + (1 − 𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙) · 𝑙𝑜𝑔(1 − ˆ𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙)) (2) where, ˆ𝑃𝑖𝑐𝑡𝑎𝑙 denotes predictive 𝑃𝑖𝑐𝑡𝑎𝑙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A Sigmoid activation function is used to scale the ˆ𝑃𝑖𝑐𝑡𝑎𝑙 from 0 to 1 before computing the loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Multiscale 3D convolution neural network architecture As a multiscale architecture, proposed model aims to ad- dress the challenge that recognition of target samples in probabilistic way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 3 shows the detailed architecture of M-3D-CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Each segmented sample input is a period of multichannel EEG signals, we implement multiscale STFT feature extraction at first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As a prevalent and effective signal analysis tool in frequency domain, STFT method is widely used in seizure detection studies [36]–[38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Different from previous works, we propose to extract channel-wise STFT features in different scales simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The computation method is elaborated as follows: 𝑋𝑠𝑐𝑎𝑙𝑒[𝜔, 𝑚] = 𝑊 𝐿−1 ∑︁ 𝑘=0 𝑤[𝑘] · 𝑥[𝑚 × 𝑊𝐿 2 + 𝑘] · 𝑒− 𝑗2𝜋𝜔𝑘 𝑊𝐿 = 𝐿𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑐𝑎𝑙𝑒 , 𝑠𝑐𝑎𝑙𝑒 = 1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (3) where 𝑚 and 𝜔 are the index of the sliding window and frequency coefficient, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 𝑊𝐿 and 𝐿𝑠𝑖𝑔𝑛𝑎𝑙 denote window length and length of EEG signal, and 𝑊 𝐿 2 refers to the overlapping length is set to half of window length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Various scales of STFT in M-3D-CNN model stand for the chosen length of sliding window in STFT indeed, mean- while we set 50% overlapping for sliding window, thus the number of detecting windows in time axis of STFT result is 𝑁𝑤𝑖𝑛𝑑𝑜𝑤 = 2𝑛 − 1 at scale 𝑛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Meanwhile, the size of fast Fourier transform (FFT) is set to 64, so that 32 informative coefficients are left in the frequency dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4 displays STFT result of the single-channel signal at different scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In M-3D-CNN, we take 5 different scales from 1 to 5, each scale would generate a 3D STFT feature tensor (channel × frequency × time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Previously, most studies considered this type of feature as a 2D image in the shape of H (time) × W (frequency) with depth whose size is equal to the number of channels, then implemented 2D convolution operation [39]– [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' It is an intuitive operation, however, this way cannot take time step information into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In M-3D-CNN model, we consider 3D STFT feature as a 2D image in the shape of H (channel) × W (frequency) with time step Depth, then 3D convolution operation is utilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5 shows the difference between 2D and 3D convolution operations for STFT features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The values from achieved 3D STFT result need to be channel- wisely normalized from 0 to 1 at each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then, extracted 3D features in different scales are fed to 3 same 3D convolution blocks, and each block contains a 3D convolution module with kernel size in the shape of 3 × 3 × 3 and a max-pooling module with kernel size in 2 × 2 × 1 for the first two scales, and 2 × 2 × 2 for the rest three scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The 5 Multichannel Sample Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 3×3×1 Convolution ReLU 2×2×1 Pooling 3× 3×3×3 Convolution ReLU 2×2×2 Pooling 3× 1×512 + 5×512 5×5 Conv ReLU 2×2 Pooling 3× 3D Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Blocks W(Chs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=')×H(Freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' )×D(Time) Multiscale STFT Feature Extraction Probabilistic Output: ������������������������������������������������������������������������������������������������������������������������������������ , ������������������������������������������������������������������������ chs×32×31 chs×32×1 chs×32×3 chs×32×7 chs×32×15 Normalization in Frequency Dimension FC Layer Flatten Flatten Flatten Flatten Flatten FC FC FC Flatten 1024 256 64 Sigmoid 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Architecture of proposed multiscale 3D convolution neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The input is a multichannel EEG sample, we extract short-time Fourier transform (STFT) features of the input at scale 1 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then a FreqNorm layer is used to channel-wisely normalize 3D STFT values from 0 to 1 in frequency dimension at each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The 3D STFT feature is fed to 3× same 3D convolution (Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=') blocks comprising of 3D Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=', ReLU activation function, and 3D max-pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The last layer generated by Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' block is flattened and connected to a fully connected (FC) layer with 512 nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5 vectors obtained from 5 different scales are concatenated to a 5×512 matrix, then 3× traditional 2D Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' blocks and 3× FC layers with ReLU are used to make classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The last output FC layer with 2 nodes utilizes a sigmoid activation function to guarantee the output in probability ranged from 0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Multiscale STFT feature extraction scheme for single-channel sample Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schematic figure for difference between traditional 2D and proposed 3D convolution operation for multichannel STFT feature at each scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' output generated after 3× convolution blocks is flattened, then a multilayer perceptron (MLP) layer with a shape of 1 × 512 is connected to this flattened output to achieve a 1D vector with the same shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' This operation aims to unify the shape, thereby eliminating the effects of inconsistent vector dimension due to input multichannel EEG signals with different numbers of channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' These 5 vectors originated from 3D feature tensors at 5 different scales are concatenated together to build a 2D matrix in the shape of 5 × 512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then successive three same 2D convolution blocks with 5 × 5 kernel size convolution operation and 2 × 2 kernel size max-pooling operation, are connected to the 2D matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The output is also flattened to a vector, and 3 MLP layers are followed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Eventually, we achieve the output in the last MLP layer in the shape of 1 × 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' It is important to note that except for the last layer Sigmoid activation function is used to generate probabilistic output, ReLU activation function is used in the M-3D-CNN model everywhere else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' This novel architecture is inspired by the fact that probabilis- tic crossing samples are comprised of short complete interictal and ictal periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 𝑃𝑖𝑐𝑡𝑎𝑙 is the percentage of a complete ictal period occupying the crossing sample, rather than uniformly distributed in the crossing sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, traditional feature extraction approaches either implement FFT for the whole duration or STFT with a single specific scale, which cannot meet the situation that the probability pairs of crossing samples are dynamically changing in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Furthermore, 5 scales setting is applicable for most situations, because we already set 50% overlapping for the STFT time window and the duration of segmented samples is usually less than 10 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rectified weighting strategy According to the Labelling part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (1), 𝑃𝑖𝑐𝑡𝑎𝑙 of crossing samples is expected to be linearly increased from 0 to 1 along with the linearly increasing percentage of .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='.6 ictal period occupying the whole crossing sample ( 𝐿𝑖𝑐𝑡𝑎𝑙 𝐿𝑐𝑟𝑜𝑠𝑠 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In practical experiments, however, predictive ictal probabilities (PI) cannot be always precise or perfectly linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Thus, we propose a rectified weighting strategy to enhance the predic- tive ictal probability (PIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The principle of this strategy is that previously achieved PIPs are used to rectify the current achieved PIP at time 𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Due to real-time scenario, we store the PIPs every 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 s generated from previous 5 s, then we utilize PIPs from previous 5 s, 3 s, and 1 s to fit three linear regression (LR) functions, in order to generate three new PIPs (PIP𝐿𝑅5𝑠, PIP𝐿𝑅3𝑠, PIP𝐿𝑅1𝑠) only based on previous PIPs from different durations instead of current PIP𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Eventually, we can achieve rectified PIP at time 𝑡 (RPIP𝑡) that is computed as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The weights 𝜆1, 𝜆2, 𝜆3, 𝜆4 are experimentally set to adjust the weighting of different PIPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In short, rectified weighting strategy aims to enhance the current PIP by rendering it more relevant to previous PIPs, this can help reduce the impact of abnormal PIPs which are might be generated by noises, artifacts, or model limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 𝑅𝑃𝐼𝑃𝑡 = � 𝜆1 𝜆2 𝜆3 𝜆4 � �������� 𝑃𝐼𝑃𝐿𝑅5𝑠 𝑃𝐼𝑃𝐿𝑅3𝑠 𝑃𝐼𝑃𝐿𝑅1𝑠 𝑃𝐼𝑃𝑡 �������� (4) G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Decision-making rule We do not make decision only based on a single PIP because it is difficult to significantly shorten the detection latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The reason is that if the decision threshold is high, the detection latency is inevitably longer than the duration of segmented samples, meanwhile FDR would be high if we set a low decision threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Therefore, in this work, we also propose an accumulative decision-making rule, whose schematic figure is shown in the Decision part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Same as rectified weighting strategy, we store the RPIPs from previous 5 s with detection rate 𝑟, which means we store the RPIPs in a time step of 1 𝑟 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then we compute the accumulative probability (AP) at current time 𝑡 (𝐴𝑃𝑡) as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In short, we only accumulate increased RPIPs during the period of previous 5 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' And the detection system would alarm at time 𝑡𝑑 when 𝐴𝑃𝑡𝑑 ≥ 𝑇ℎ𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=', where 𝑇ℎ𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' represents the decision threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Eventually, Algorithm 1 illustrates the detailed decision-making rule of proposed framework intended to detect seizures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 𝐴𝑃𝑡 = �𝑡 𝑖=𝑡−5 𝑅𝑃𝐼𝑃𝑖+1 𝑟 (if 𝑅𝑃𝐼𝑃𝑖+1 > 𝑅𝑃𝐼𝑃𝑖) (5) H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Performance metrics In this work, there are four metrics - sensitivity, errors, de- tection latency, and FDR, used to investigate the performance of proposed DL-based framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (6) reveals how we compute these four metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The sensitivity is computed as the number of seizures detected during the crossing period over the total number of seizures in each patient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' RPIP errors are computed as the second equation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (6), we only consider RPIP errors of crossing samples to figure out the capacity of Algorithm 1: Decision-making rule of proposed framework intended to detect seizures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Input: Sample at time 𝑡: 𝑆𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Output: Detection time: 𝑡𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Initialize: Detection rate: 𝑟;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Decision threshold: 𝑇ℎ𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='. Stacking vector with zeros for previous 5s RPIPs: ℙ = [𝑃𝑡−5, 𝑃𝑡−5+ 1 𝑟 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=', 𝑃𝑡− 1 𝑟 , 𝑃𝑡] = 𝟘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' while True do [1 − 𝑃𝐼𝑃𝑡, 𝑃𝐼𝑃𝑡] ← M-3D-CNN(𝑆𝑡);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 𝑅𝑃𝐼𝑃𝑡 ← 𝑅𝑊𝑆(𝑃𝐼𝑃𝑡);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' ℙ ← 𝑎𝑝𝑝𝑒𝑛𝑑(ℙ[𝑃𝑡−5+ 1 𝑟 : 𝑒𝑛𝑑], 𝑅𝑃𝐼𝑃𝑡) 𝐴𝑃𝑡 ← �𝑡 𝑖=𝑡−5 ℙ (if 𝑅𝑃𝐼𝑃𝑖+1 > 𝑅𝑃𝐼𝑃𝑖) if 𝐴𝑃𝑡𝑑 > 𝑇ℎ𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' then Alarm at time 𝑡𝑑;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Refresh ℙ = 𝟘 end end Abbr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' : RPIP: Rectified Predictive Ictal Probability M-3D-CNN: Multiscale 3D Convolution Neural Networks RWS: Rectified Weighting Strategy AP: Accumulative Probability M-3D-CNN model combined with rectified weighting strategy to recognize crossing samples in probabilistic way, the 𝑡 denotes the sample detected at time 𝑡 and the 𝑇 refers to the duration of crossing period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of detection latency, we implement Algorithm 1 and mark the time (𝑡𝑑) when 𝐴𝑃𝑡𝑑 larger than and equal to decision threshold (𝑇ℎ𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' ), then compute the detection latency by calculating distance between 𝑡𝑑 and EEG onset time (𝑡𝑜𝑛𝑠𝑒𝑡).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The last metric is false detection rate (FDR), we directly count the number of false detection according to Algorithm 1 during the interictal period per hour as FDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sensitivity = 𝑁𝐷𝐶 𝑁𝑇 𝑜𝑡𝑎𝑙 RPIP Errors = �𝑇 −1 𝑡=0 √︃ (𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙 − ˆ𝑃(𝑡) 𝑖𝑐𝑡𝑎𝑙)2 𝑇 Detection Latency = 𝑡𝑑 − 𝑡𝑜𝑛𝑠𝑒𝑡 if 𝐴𝑃𝑡𝑑 ≥ 𝑇ℎ𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' FDR = 𝑁𝐹𝐷/ℎ (6) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' EXPERIMENTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Experimental setting The experiments were implemented by Python with Pytorch deep learning framework, and M-3D-CNN model training and inference works are carried out on the single NVIDIA 2080Ti GPU machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this work, we trained patient-specific model training and implemented the leave-one-seizure-out cross validation (LOSOCV) scheme, which means we select one seizure for validation, and the rest seizures are used to train the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' LOSOCV is meaningful from clinical perspective because the selected validated seizure can be regarded as a fresh seizure unseen by the model yet, if the model performs well in this scheme, we can believe that the trained model can also accurately and promptly alarm seizures in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Experimentally, all interictal, ictal and crossing samples are used to train the model, and only errors of crossing samples are 7 (a) (b) (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Performance of rectified probability weighting strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Here are 3 representative examples, each figure refers to crossing period of a seizure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Red, blue and orange dots stand for true, predictive, and rectified probabilities, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The original errors achieved by PIPs and rectified errors achieved by RPIPs are also highlighted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' TABLE II PERFORMANCE OF PROPOSED ALGORITHM ON TWO DATASETS IN THE PATIENT-SPECIFIC AND LEAVE-ONE-SEIZURE-OUT CROSS VALIDATION SCHEME.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' RECTIFIED PREDICTIVE ICTAL PROBABILITY (RPIP) IS GENERATED BY M-3D-CNN MODEL FOLLOWED BY RECTIFIED WEIGHTING STRATEGY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' DETECTION LATENCY AND FALSE DETECTION RATE ARE (FDR) OBTAINED BY ACCUMULATIVE DECISION-MAKING RULE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' THERE ARE 19 AND 11 CASES IN CHB-MIT AND SWEC-ETHZ DATASETS, RESPECTIVELY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' WE PROVIDE MEAN AND STANDARD DEVIATION VALUES FROM EVERY SEIZURE OF EACH PATIENT FOR RPIP ERRORS, DETECTION LATENCY, AND FDR METRICS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' CHB-MIT dataset SWEC-ETHZ dataset Patient ID Sensitivity (NDC / NT) RPIP Errors of Crossing Samples (%) Detection Latency (s) FDR (/h) Patient ID Sensitivity (NDC / NT) RPIP Errors of Crossing Samples (%) Detection Latency (s) FDR (/h) chb01 7/7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='85 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 0 ID1 13/13 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='18 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='27 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='26 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='44 chb02 2/3 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='76 ± 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='49 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='10 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='82 ID2 4/4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='90 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='98 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='94 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='62 chb03 7/7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='10 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='74 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 0 ID4 14/14 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='35 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='29 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='81 chb04 3/4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='09 ± 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='80 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='60 ID5 10/10 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='63 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='55 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='94 chb05 5/5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='33 ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='32 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 0 ID6 4/4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='76 ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='56 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='11 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='28 chb06 7/7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='85 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='22 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 0 ID9 9/9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='42 ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='53 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='74 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='11 chb07 3/3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='57 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='71 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 0 ID10 4/5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='31 ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='46 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='22 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='50 chb08 4/5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='44 ± 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='72 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='80 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='26 ID12 10/10 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='86 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='70 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='35 chb09 4/4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='31 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='51 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='50 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='02 ID13 6/7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='96 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='53 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='79 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='54 chb10 7/7 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='80 ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='44 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='20 ID14 5/7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='07 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='95 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='76 chb11 3/3 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='82 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='59 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='48 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='82 ID16 5/6 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='75 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='44 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='37 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='57 chb14 8/8 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='46 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='97 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 0 chb17 2/3 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='86 ± 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='90 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6 0 chb18 5/6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='05 ± 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='51 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 0 chb19 3/3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='03 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='11 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 0 chb20 8/8 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='15 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='72 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='04 chb21 4/4 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='93 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='45 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 0 chb22 3/3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='26 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='01 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='24 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='92 chb23 7/7 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='60 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='70 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 0 Overall 94/99 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='84 ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='80 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='34 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='11 Overall 84/89 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='17 ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='26 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='75 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='04 RPIP: Rectified Predictive Ictal Probability FDR: False Detection Rate NDC: Number of Seizures Detected during the Crossing Period NT: Number of Total Seizures considered as the most crucial metric to quantify the quality of the model because the trained model can perfectly recognize accurate probabilities of complete interictal and ictal samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' During the phase of model training, we set 20 training epochs and used optimizer is Nesterov-accelerated Adam, known as Nadam, with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0001 learning rate, 𝛽1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9, 𝛽2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='999 [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We implement the LOSOCV scheme and only save the best model performing the lowest RPIP errors of crossing samples on the validated seizure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of rectified weight- ing strategy, weights 𝜆1, 𝜆2, 𝜆3, 𝜆4 are experimentally set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The detection rate and decision threshold used to make decision are 10 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='5 for both datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Original Errors :-6% Rectified Errors : 4% TrueProb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Predictive Prob Rectified ProbOriginal Errors : 23% Rectified Errors : 7% True Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Predictive Prob Rectified ProbOriginal Errors :-7% Rectified Errors : 9% TrueProb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Predictive Prob Rectified Prob8 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Boxplot for rectified predictive ictal probability of each seizure on two datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (RPIP: Rectified Predictive Ictal Probability) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Boxplot for detection latency of each seizure on two datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The averaged latencies of two datasets are 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 s and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 s, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Results At first, we need prove the effectiveness of rectified weight- ing strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 6 shows 3 representative examples of PIP and RPIP performance from CHB-MIT dataset, where red, blue, and orange dots stand for true, predictive, and rectified probabilities, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The x-axis represents percentage of ictal period in crossing sample, and y-axis refers to probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As mentioned in Section III-B and III-C, there are 1280 extracted crossing samples in crossing period for each seizure, and there are divided into 20 probability pairs annotation as true labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Thus, every 5% ictal period contains 64 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We can see that even though original PIPs perform well according to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4(a), rectified weighting strategy still can enhance the results from 6% to 4%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4(b), original PIPs show worse fitting result with 23% errors, while rectified weighting strategy can significantly decrease the errors to 7%, and the overall probabilities are increasing more linearly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4(c) is another type of representative example that RPIPs seem to achieve increased errors compared to original PIPs (from 7% to 9%), but we can see that RPIPs increase more linearly than PIPs, so that we still keep the results of RPIPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According to these three representative examples, we can conclude that rectified weighting strategy is effective to rectify the PIPs by decreasing errors further and making PIPs increase more linearly as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' This operation aims to help detection system can recognize samples more accurately and meanwhile decrease FDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Table II shows performance of proposed M-3D-CNN model on CHB-MIT and SWEC-ETHZ datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this table, we only consider RPIPs after implementing rectified weighting strategy, then compute detection latency and FDR based on RPIPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We achieved overall 94 of 99 and 84 of 89 seizures detected during the crossing period, 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='84% ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='80% and 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='17% ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='26% RPIP errors of crossing samples, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 s and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 s ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0 s detection latency and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='34/h ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='11/h and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='75/h ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='04/h FDR on CHB-MIT scalp dataset and SWEC-ETHZ iEEG dataset, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' These mean and standard deviation values are calculated based on results attained from various numbers of seizures in each patient according to LOSOCV scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of performance on CHB-MIT dataset, M-3D-CNN model performs well on 8 CHB-MIT SWEC-ETHZ 10 T 9987 S Latency 654321 DB- cr PatientIDCHB-MIT SWEC-ETHZ 50 45 40 (% 535250 Errors( RPIP 5 chl ch PatientID9 TABLE III PERFORMANCE COMPARISON BETWEEN THIS WORK AND PRIOR-ART STUDIES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Year Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Dataset EEG type # of pat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Feature extraction method Len.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' of Sample Model Sen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' (%) FDR (/h) Detection Latency LOSO- CV scheme Probabi- listic task 2010 [17] CHB-MIT sEEG 24 FFT 6s SVM 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='08 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6s (+6s) ✓ – 2011 [18] Clinical iEEG 10 FFT 3s SVM 97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='03 5s (+3s) ✓ – 2017 [19] CHB-MIT sEEG 22 Wavelet 6s SVM 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='89s (+6s) ✓ – 2018 [20] CHB-MIT sEEG 22 Statistical 6s ADCD 96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='21s (+3s) ✓ – 2019 [25] CHB-MIT sEEG 22 STFT 3s 2D-CNN 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9 – – – – 2019 [26] CHB-MIT sEEG 23 Raw 2s 2D-CNN 90 – – – – 2020 [30] CHB-MIT sEEG 21 Wavelet – 2D-CNN 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 – – – – 2020 [33] SWEC-ETHZ iEEG 11 LBP + LGP 6-bit SVM MLP 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8 0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9s – – 2021 [24] CHB-MIT sEEG 24 Wavelet + EMD 4s SVM 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='64 – – – 2021 [27] CHB-MIT SWEC-ETHZ sEEG iEEG 24 18 Raw 2s 1D-CNN 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='07 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1s (+2s) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2s (+2s) – – 2021 [43] SWEC-ETHZ iEEG 16 Statistical 2s 1D-CNN 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='4 – 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8s (+2s) – – 2023 This work CHB-MIT SWEC-ETHZ sEEG iEEG 19 11 Multiscale STFT 5s 10s 3D-CNN 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='0 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7s � � –: N/A Len.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' : Length Sen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=': Sensitivity FDR: False Detection Rate LOSOCV: Leave-One-Seizure-Out Cross Validation sEEG: scalp EEG iEEG: intracranial EEG FFT: Fast Fourier Transform SVM: Support Vector Machine STFT: Short-Time Fourier Transform ADCD: Adaptive Distance-based Change Point Detector LBP: Local Binary Pattern LGP: Local Gradient Pattern MLP: Multilayer Perception EMD: Empirical Mode Decomposition cases (chb01,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb03,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb05,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb06,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb07,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb14,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' chb23),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' all seizures are detected during the crossing period,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' low RPIP errors of crossing samples (≤15%),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' short detection latency (≤2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 s) and none false detection are attained on these patients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The rest subjects show slight drawbacks on one or two performance metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' There are 5 patients (chb02, chb04, chb08, chb17, chb18) containing 1 seizure do not be detected by M-3D-CNN model during the crossing period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, these miss-detected seizures still can be detected after crossing period, so that we set the detection latency of them to 5 s and 10 s which equals to the length of crossing period for CHB- MIT and SWEC-ETHZ datasets, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We can see from table that 1 miss-detected seizure leads to high RPIP and FDR, except for chb18, M-3D-CNN model obtains larger than 20% even close to 30% mean and larger than 10% standard deviation RPIP errors, and larger than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8/h FDR on the rest 4 patients (chb02, chb04, chb08, chb17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As for chb22 patient, even though there is no miss-detected seizure, we still achieved slightly higher RPIP errors and FDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of SWEC- ETHZ dataset, except for ID13 and ID14 subjects, proposed model performs well on the rest 8 patients, where ≤20% RPIP errors of crossing samples and ≤5 s detection latency are achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' There are 4 patients (ID10, ID13, ID14, ID16) containing miss-detected seizures during the crossing period, correspondingly worse performance metrics are achieved on these patients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Especially for ID14 case where M-3D-CNN model performs worst, there are two miss-detected seizures and the highest RPIP errors, detection latency, and FDR are attained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 7 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 8 display boxplots specifying every seizure performance of RPIP errors and detection latency on two datasets, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 7, it is obvious that most seizures achieved less than 30% RPIP errors and the majority is less than 20%, meanwhile there only 8 out of 99 seizures achieved larger than 30%, and 4 of them achieved larger than 40% on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Each of these seizures obtaining higher RPIP errors appears in different subjects, this phenomenon indicates that worse RPIP errors are not generated by the poor model or abnormal patient, this may be caused by a single abnormal seizure among these correspond- ing patients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' And these possible abnormal seizures lead to a large standard deviation as shown in reverent cases from Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In terms of SWEC-ETHZ dataset, all seizures obtained less than 30% RPIP errors except for the aforementioned worst- performing case ID14, we suspect ID14 is an abnormal patient different from others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' As for Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 8, we can see from CHB- MIT dataset that except for 5 miss-detected seizures during the crossing period set to 5 s latency, all rest seizures achieve less than 4 s latency, and the averaged latency is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' From SWEC-ETHZ dataset, there are also 5 miss-detected seizures set to 10 s latency, among the rest seizures, around 10% seizures are larger than 8 s, and the majority is less than 6s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The averaged detection latency among 89 seizures is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Table III shows performance comparisons between prior-art publications and this work, we list several characteristics of the used dataset and proposed method to make comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' There 10 are 10 previous highly cited works with prior-art performance selected to prove the advantages of our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' It should be noted that in terms of detection latency item, we add the length of detected sample to previously reported latencies because we doubt previous works did not compute the latency by measuring the distance between EEG onset and the end of detected sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According prior publications, the state- of-the-art detection latencies on two datasets are 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2 s and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1 s respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The latencies obtained by our proposed algorithm are 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='3 s and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='7 s which are significantly faster than prior-art results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' And we can see that several previous studies even if utilized the naive FFT feature extraction method and SVM classifier, they still achieved good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, numerous recent emerging studies took advantage of advanced feature extraction methods and deep learning models, they cannot significantly enhance the seizure detection performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Furthermore, less recent studies focused on testing meaningful metrics from clinical perspectives, such as FDR, detection latency, and LOSOCV scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In the last three columns of the table, we highlight three innovations of this work, which are whether or not implementing LOSOCV scheme and probabilistic classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' DISCUSSION In this section, we discuss several issues, including further clarification of achieved performance, model comparison from hardware and performance perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Performance clarification Firstly, we will clarify the sensitivity metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In this work, we only consider the number of seizures detected during the crossing period as effectively detected seizures instead of seizures detected at any time as previous works did [16], [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Because we think the seizure can be detected during the crossing period means detection latency of this seizure is short enough to guarantee detection time can precede clinical onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Experimentally, M-3D-CNN model can detect all seizures after crossing period (during the ictal period), so that sensitivity would be 100% as the way previous researchers measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' But we think such 100% sensitivity would not be clinically beneficial for epileptic patients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Secondly, in Table III we only displayed RPIP errors of crossing samples instead of all three kinds of samples (interictal, ictal, and crossing samples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The reason is that proposed M-3D-CNN model is capable of recognizing com- plete interictal and ictal samples perfectly, and the errors are less than 3% stably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We believe that such good results on complete samples cannot lead to short detection latency, only accurately predicted interictal samples can help us to reduce FDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Therefore, we showed errors of crossing samples, detection latency, and FDR to investigate the performance of proposed M-3D-CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Thirdly, the lengths of extracted samples for two datasets are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We empirically and experimentally set 5 s and 10 s for CHB-MIT and SWEC-ETHZ datasets, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We initially learn from previous studies that achieved detection latency of two datasets were around 5 s and larger than 10 TABLE IV PERFORMANCE COMPARISONS OF VARIOUS MODELS ON CHB03 SUBJECT WITH 7 SEIZURES FROM CHB-MIT DATASET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Model Name PIP Errors of Crossing Samples (%) Number of Parameters Model Size M-3D-CNN 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='14 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='38 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='8M 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='46MB M-2D-CNN 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='41 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='6M 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='42MB 5-2D-CNN 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='07 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='34 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='2M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='65MB M-LSTM 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='53 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='61 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1M 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='56MB 5-LSTM 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='13 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='1M 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='56MB M-ViT 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='87 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='28 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9M 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='32MB 5-ViT 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='65 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='00 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='9M 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='32MB PIP: Predictive Ictal Probability M: Multiscale 5: Scale 5 ViT: Vision Transformer CNN: Convolution Neural Network LSTM: Long Short-Term Memory s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then we experimentally tuned this parameter, we found that longer extracted samples would bring longer detection latency and lower FDR, while shorter extracted samples would cause shorter detection latency and higher FDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Thus, this is a kind of trade-off parameter tuning work, eventually the length of extracted sample making the first ictal sample (or the last crossing sample) just contain the obvious EEG signal oscillations is expected, thereby we set 5 s and 10 s for two datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fourthly, achieved detection latency on SWEC-ETHZ is ob- viously longer than the latency achieved on CHB-MIT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' There are two possible reasons to answer this phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The first is that the criterion of annotating EEG onset time is implemented by different clinical experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The second is that iEEG modality is more sensitive to the abnormal discharging inside brain, thereby can detect the slight EEG abnormality more earlier than scalp EEG [44], [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' However, such earlier slight abnormality appearing in EEG signal is difficult to be detected by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Model comparison In this manuscript, we proposed a novel M-3D-CNN model deep learning architecture based on multiscale STFT features and 3D convolution operation in CNN backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' In Table IV, we change three innovative parameters - multiscale or not, 3D or 2D, CNN or other DL backbone architectures, then generate several variant DL models to make comparisons with proposed M-3D-CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' The original PIP errors of crossing samples and the model size achieved on the chb03 patient from CHB-MIT dataset are used to compare the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' According to the table, M-3D-CNN architecture performs best among all variant models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' We can also conclude that multiscale is better than single-scale STFT features, and 3D-CNN outperforms 2D-CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Although 5-2D-CNN model shows advantages in model size, it obtains the worst PIP er- rors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Furthermore, long short-term memory (LSTM) recurrent neural networks and vision transformer (ViT) also achieve satisfactory performance, but their model sizes are quite large compared to the M-3D-CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' ViT is an emerging and 11 powerful deep learning model applied to various applications, but ViT model is too large to fit this real-time seizure detection application even if we already tried our best to shrink the model parameters, and eventually model size is still doubled as M-3D-CNN architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' It should be noted that we flatten the time axis of all STFT features as various time steps for both LSTM and ViT models, which makes multiscale or single- scale features only change the length of time steps, and would not change the number of trainable parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' CONCLUSION The proposed framework uses a deep M-3D-CNN model intended to address several challenges and limitations in the field of seizure detection study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' It consists of a novel proba- bilistic classification concept to accurately recognize crossing samples simultaneously containing partial interictal and ictal components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Then we also propose rectified weighting strategy and accumulative decision-making rule to significantly shorten the detection latency of seizure onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Furthermore, although proposed framework is intended for seizure detection application, the concept of probabilistic classification, rectified weighting strategy and accumulative decision-making rule can be applied to other electrophys- iological signal based real-time BCI applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Also, it can benefit other detection systems to make decisions more promptly and accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' REFERENCES [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kissani, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Lengan´e, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Patterson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Mesraoua, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Dawn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ozkara, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shears, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Riphagen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Asadi-Pooya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Bogacz, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Aarrouni, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Nair, “Telemedicine in epilepsy: How can we improve care, teaching, and awareness?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Epilepsy & Behavior, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 103, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 106854, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Yang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sawan, “Trends and challenges of processing measurements from wearable devices intended for epileptic seizure prediction,” Journal of signal processing systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 94, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 527–542, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ramgopal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Thome-Souza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jackson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kadish, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S´anchez Fern´andez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Klehm, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Bosl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Reinsberger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schachter, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Loddenkemper, “Seizure detection, seizure prediction, and closed- loop warning systems in epilepsy,” Epilepsy & Behavior, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 37, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 291–307, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Assi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Nguyen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rihana, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sawan, “Towards accurate prediction of epileptic seizures: A review,” Biomedical Signal Processing and Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 144–157, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [5] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Gu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Cao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jolfaei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Xu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jung, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Lin, “EEG- based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1645–1666, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhuang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hu, “State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review,” Journal of Neurorestoratology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 12–25, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Vilela and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hochberg, “Chapter 8 - applications of brain- computer interfaces to the control of robotic and prosthetic arms,” in Brain-Computer Interfaces, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Handbook of Clinical Neurology, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ramsey and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' del R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Mill´an, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Elsevier, 2020, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 168, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 87–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' AL-Quraishi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Elamvazuthi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Daud, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Parasuraman, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Borboni, “EEG-based control for upper and lower limb exoskeletons and prostheses: A systematic review,” Sensors, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 10, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Yang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sawan, “From seizure detection to smart and fully embedded seizure prediction engine: A review,” IEEE Transactions on Biomedical Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1008–1023, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ulate-Campos, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Coughlin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ga´ınza-Lein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fern´andez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Pearl, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Loddenkemper, “Automated seizure detection systems and their effectiveness for each type of seizure,” Seizure, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 40, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 88–101, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Scher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hamid, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Steppe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Beggarly, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Painter, “Ictal and interictal electrographic seizure durations in preterm and term neonates,” Epilepsia, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 284–288, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fisher, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Scharfman, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' deCurtis, How Can We Identify Ic- tal and Interictal Abnormal Activity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Dordrecht: Springer Netherlands, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 3–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Fisher and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Engel Jr, “Definition of the postictal state: when does it start and end?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Epilepsy & Behavior, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 100–104, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [14] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Litt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Esteller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Echauz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' D’Alessandro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shor, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Henry, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Pennell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Epstein, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Bakay, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Dichter, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Vachtsevanos, “Epileptic seizures may begin hours in advance of clinical onset: A report of five patients,” Neuron, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 51–64, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [15] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Litt and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Echauz, “Prediction of epileptic seizures,” The Lancet Neurology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 22–30, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shoeb, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Edwards, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Connolly, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Bourgeois, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ted Treves, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Guttag, “Patient-specific seizure onset detection,” Epilepsy & Behavior, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 483–498, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shoeb and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Guttag, “Application of machine learning to epileptic seizure detection,” in ICML, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 975–982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kharbouch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shoeb, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Guttag, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Cash, “An algorithm for seizure onset detection using intracranial EEG,” Epilepsy & Behavior, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 22, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S29–S35, 2011, the Future of Automated Seizure Detection and Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Vidyaratne and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Iftekharuddin, “Real-time epileptic seizure detection using EEG,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2146–2156, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khanmohammadi and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Chou, “Adaptive seizure onset detection framework using a hybrid pca–csp approach,” IEEE Journal of Biomed- ical and Health Informatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 154–160, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hassan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Subasi, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhang, “Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise,” Knowledge-Based Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 191, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 105333, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [22] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Alickovic, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kevric, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Subasi, “Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction,” Biomedical Signal Processing and Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 39, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 94– 102, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [23] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Daoud, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Abdelhameed, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Bayoumi, “Automatic epileptic seizure detection based on empirical mode decomposition and deep neural network,” in 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 182–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [24] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Geng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shang, “Seizure onset detection using empirical mode decomposition and common spatial pattern,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 29, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 458–467, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [25] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Yuan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Xun, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jia, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhang, “A multi-view deep learning framework for EEG seizure detection,” IEEE Journal of Biomedical and Health Informatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 83–94, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hossain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Amin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Alsulaiman, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Muhammad, “Ap- plying deep learning for epilepsy seizure detection and brain mapping visualization,” ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Multimedia Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1s, feb 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [27] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Chang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' K¨arkk¨ainen, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Cong, “One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG,” Neurocomputing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 459, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 212–222, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Yang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sawan, “Multichannel synthetic preictal EEG signals to enhance the prediction of epileptic seizures,” IEEE Transac- tions on Biomedical Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 3516–3525, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jana, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sharma, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Agrawal, “A 1d-cnn-spectrogram based approach for seizure detection from EEG signal,” Procedia Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 167, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 403–412, 2020, international Conference on Computational Intelligence and Data Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Cui, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Huang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hu, “Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 782–794, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Burrello, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schindler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Benini, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rahimi, “One-shot learning for iEEG seizure detection using end-to-end binary operations: Lo- cal binary patterns with hyperdimensional computing,” in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Burrello, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Cavigelli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schindler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Benini, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rahimi, “Laelaps: An energy-efficient seizure detection algorithm from long- term human iEEG recordings without false alarms,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 752–757.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 12 [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Burrello, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schindler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Benini, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rahimi, “Hyperdimensional computing with local binary patterns: One-shot learning of seizure onset and identification of ictogenic brain regions using short-time iEEG recordings,” IEEE Transactions on Biomedical Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 601–613, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [34] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sun, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Si, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Cao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Yin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ming, “Continuous seizure detection based on transformer and long-term iEEG,” IEEE Journal of Biomedical and Health Informatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 5418–5427, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [35] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Valizadegan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hauskrecht, “Learning classification models with soft-label information,” Journal of the American Medical Informatics Association, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 501–508, 11 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [36] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Samiee, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kov´acs, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Gabbouj, “Epileptic seizure classification of eeg time-series using rational discrete short-time fourier transform,” IEEE Transactions on Biomedical Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 62, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 541– 552, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [37] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shi, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Choy, “Hardware design of real time epileptic seizure detection based on stft and svm,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 67 277–67 290, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sameer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Gupta, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Chakraborty, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Gupta, “Epileptical seizure detection: Performance analysis of gamma band in eeg signal using short-time fourier transform,” in 2019 22nd International Sympo- sium on Wireless Personal Multimedia Communications (WPMC), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [39] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shoeibi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khodatars, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ghassemi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jafari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Moridian, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Al- izadehsani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Panahiazar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khozeimeh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zare, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hosseini-Nejad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khosravi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Atiya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Aminshahidi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hussain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rouhani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Nahavandi, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Acharya, “Epileptic seizures detection using deep learning techniques: A review,” International Journal of Environ- mental Research and Public Health, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 11, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [40] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ahmad, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Zhu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Pi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khan, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Samuel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Chen, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Li, “Eeg-based epileptic seizure detection via machine/deep learning approaches: A systematic review,” Computational Intelligence and Neuroscience, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 2022, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Shoeibi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Moridian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khodatars, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ghassemi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Jafari, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Al- izadehsani, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Gorriz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ram´ırez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Khosravi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Naha- vandi, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Acharya, “An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works,” Computers in Biol- ogy and Medicine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 149, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 106053, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [42] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Dozat, “Incorporating nesterov momentum into adam,” ICLR Work- shop, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [43] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Burrello, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Benatti, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schindler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Benini, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Rahimi, “An ensemble of hyperdimensional classifiers: Hardware-friendly short- latency seizure detection with automatic ieeg electrode selection,” IEEE Journal of Biomedical and Health Informatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 935– 946, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [44] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Ball, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Kern, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Mutschler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Aertsen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schulze-Bonhage, “Signal quality of simultaneously recorded invasive and non-invasive EEG,” NeuroImage, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 46, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 708–716, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' [45] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Stefan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Sch¨uler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Abraham-Fuchs, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Schneider, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Gebhardt, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Neubauer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Hummel, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Huk, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' Thierauf, “Magnetic source localization and morphological changes in temporal lobe epilepsy: comparison of MEG/EEG, ECoG and volumetric MRI in presurgical evaluation of operated patients,” Acta Neurologica Scandinavica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 89, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' S152, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} +page_content=' 83–88, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9E1T4oBgHgl3EQf1QUs/content/2301.03465v1.pdf'} diff --git a/n9E0T4oBgHgl3EQfZgDd/content/tmp_files/2301.02323v1.pdf.txt b/n9E0T4oBgHgl3EQfZgDd/content/tmp_files/2301.02323v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..287ba588d8388e43db7c41c0234c7d438edb2704 --- /dev/null +++ b/n9E0T4oBgHgl3EQfZgDd/content/tmp_files/2301.02323v1.pdf.txt @@ -0,0 +1,2420 @@ +Ab initio calculation of carrier mobility in semiconductors +including ionized-impurity scattering +Joshua Leveillee,1, 2 Xiao Zhang,3 Emmanouil Kioupakis,3 and Feliciano Giustino1, 2 +1Oden Institute for Computational Engineering and Sciences, +The University of Texas at Austin, Austin, Texas 78712, USA +2Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA∗ +3Department of Materials Science and Engineering, +University of Michigan, Ann Arbor, Michigan, 48109, USA +(Dated: January 9, 2023) +The past decade has seen the emergence of ab initio computational methods for calculating +phonon-limited carrier mobilities in semiconductors with predictive accuracy. More realistic calcu- +lations ought to take into account additional scattering mechanisms such as, for example, impurity +and grain-boundary scattering. In this work, we investigate the effect of ionized-impurity scattering +on the carrier mobility. We model the impurity potential by a collection of randomly distributed +Coulomb scattering centers, and we include this relaxation channel into the ab initio Boltzmann +transport equation, as implemented in the EPW code. We demonstrate this methodology by con- +sidering silicon, silicon carbide, and gallium phosphide, for which detailed experimental data are +available. Our calculations agree reasonably well with experiments over a broad range of tempera- +tures and impurity concentrations. For each compound investigated here, we compare the relative +importance of electron-phonon scattering and ionized-impurity scattering, and we critically assess +the reliability of Matthiessen’s rule. We also show that an accurate description of dielectric screening +and carrier effective masses cam improve quantitative agreement with experiments. +I. +INTRODUCTION +The ability to predict the charge transport properties +of semiconductors using non-empirical ab initio meth- +ods is of paramount importance for the design of next- +generation electronics, neuromorphic computing, energy- +efficient lighting, and energy conversion and storage. For +example, as beyond-silicon materials for next-generation +field-effect transistors are being explored, such as wide- +gap semiconductors like GaN [1], SiC [2], and Ga2O3 [3], +or high-mobility materials such as GaAs [4], ab initio +methods for calculating transport properties with pre- +dictive accuracy are acquiring an increasingly important +role. +The past decade has seen numerous developments +in first-principles calculations of phonon-limited charge +transport coefficients such as the electrical conductivity +in metals, and the drift and Hall mobilities in semicon- +ductors [5–11]. More recently, several groups turned their +attention to ab initio calculations of additional scattering +mechanisms [5, 12–16]. Among the various mechanisms, +impurity scattering is of particular interest since ionized +donors and acceptors are ubiquitous in high-purity doped +semiconductors, and intrinsic point defects are unavoid- +able in all other materials [17–19]. In this work we fo- +cus on ionized-impurity scattering, which is expected to +provide the most significant contribution to the carrier +relaxation rates beyond phonons, given the long-ranged +nature of the Coulomb potential. +Ionized-impurity scattering in semiconductors has first +been studied via the Conwell-Weisskopf model. In this +∗ fgiustino@oden.utexas.edu +model, the scattering potential of the impurity is de- +scribed using a Coulomb monopole immersed in the di- +electric background of the semiconductor [20]. The long- +range nature of this potential makes it ill-behaved at +long-wavelength, and the singularity at long wavelengths +is removed using an ad hoc infrared cutoff. +A better +handling of this singularity is achieved in the Brooks- +Herring model by considering free-carrier screening [21]. +This latter model proved very successful [22], and is still +widely used owing to its simplicity as it only requires +the electronic density of states, the carrier effective mass, +the high-frequency dielectric constant, and the impurity +concentration. Further improvements upon these models +were subsequently introduced, e.g., carrier statistics, dis- +persive electronic screening, two-impurity scattering, and +atomic form factors [23]. While this class of models en- +joyed considerable success with calculations of the carrier +mobility of silicon, they do not perform as well with other +semiconductors [24, 25]. These and similar other empir- +ical adjustments make it harder to quantify the role of +each scattering channels, and most importantly decrease +the transferability of the models and ultimately their use- +fulness in materials design. +During the past decade, considerable progress has been +achieved in ab initio calculations of charge carrier mo- +bilities [5–8, 14, 26]. +These approaches are based on +the use of electronic band structures from density func- +tional theory (DFT) [27, 28], as well as phonon disper- +sion relations and electron-phonon matrix elements from +supercell calculations or from density-functional pertur- +bation theory (DFPT) [29–32]. To achieve a numerically +converged sampling of the Brillouin zone, most calcula- +tions by now employ Wannier-Fourier interpolation [33– +35]. Mobilities are then obtained by solving the ab initio +arXiv:2301.02323v1 [cond-mat.mtrl-sci] 5 Jan 2023 + +2 +Boltzmann transport equation (aiBTE) [26]. The first +study of ionized-impurity scattering from first principles +was reported by Restrepo and Pantelides [5], and more +recent, state-of-the-art calculations have been reported +by Lu and coworkers [14]. In this latter work, the au- +thors find good agreement between calculated mobilities +and experimental data for silicon. Additional work using +a semi-empirical approach combining DFT calculations +and models was also reported recently [36, 37]. +In this work, we investigate from first principles the +effect of ionized-impurity scattering on the carrier mobil- +ity of semiconductors. To this aim, we take into account +both carrier-phonon and carrier-impurity scattering on +the same footing, within the aiBTE formalism as imple- +mented in the EPW code. [38] Given that the shape of +the impurity potential depends on the details of the crys- +tal structure and its evaluation would require thermody- +namic calculations of defects and defect levels [39], we +limit ourselves to consider the monopole term of the scat- +tering potential and a random distribution of impurities. +This simplification allows us to achieve an elegant and +compact formalism, and to compute carrier mobilities by +using solely the concentration of ionized impurities as +input. To validate our methodology, we perform calcu- +lations for three test systems: Si, 3C-SiC, and GaP. For +Si there is an abundance of experimental data and previ- +ous calculations to compare with. 3C-SiC, which is also +referred to as cubic SiC or β-SiC in the literature, is con- +sidered a promising candidate for next-generation power +electronics [40–42]. Several experimental data sets are +available for carrier mobility in 3C-SiC, especially for n- +type (N) doping and less so for p-type doping (Al). GaP +is a standard optoelectronic semiconductor which is of in- +terest in non-linear optical switching [43–45]; experimen- +tal mobility data for GaP are available both for n-type +doping (Sn) and p-type doping (Zn). For each of these +compounds we calculate the temperature-dependent car- +rier mobility at variable impurity concentration. We in- +vestigate the relative importance of carrier-phonon and +carrier-impurity scattering, and we examine the validity +of the classic Matthiessen’s rule [46]. +The manuscript is organized as follows. In Sec. II we +briefly summarize the aiBTE formalism, we provide a +detailed derivation of the matrix elements for carrier- +impurity scattering, and we discuss the key approxima- +tions involved. In this section we also discuss free-carrier +screening, and we examine under which conditions the +Matthiessen rule can reliably be used in transport cal- +culations. +Section III is devoted to the implementa- +tion details and the calculation parameters used in this +work. +In Sec. IV we discuss our results for Si, SiC, +and GaP. In particular, in Sec. IV B we present our cal- +culated temperature- and concentration-dependent mo- +bilities and compare our data with experiments. +In +Sec. IV C we analyze the relative importance of phonon- +and impurity-mediated scattering processes in the carrier +relaxation rates. In Sec. IV D we test Matthiessen’s rule +by comparing full aiBTE calculations with the results +of separate calculations including only phonon-limited or +impurity-limited mobilities. In Sec. IV E we investigate +how the DFT dielectric screening and carrier effective +masses influence calculated mobilities, and we test sim- +ple correction schemes along the lines of Ref. [10]. +In +Sec. V we summarize our findings and offer our conclu- +sions. Additional details on the calculation procedure are +discussed in the Appendices. +II. +THEORETICAL APPROACH +A. +Carrier mobility from the ab initio Boltzmann +transport equation +A detailed derivation of the aiBTE formalism is given +in Ref. [38]. Here we limit ourselves to summarize the key +equations in order to keep this manuscript self-contained. +Within the linearized Boltzmann transport equation, the +carrier mobility tensor is obtained as: +µαβ = − +2 +Ωucnc +1 +Nuc +� +nk +vα +nk∂Eβfnk, +(1) +where the factor of 2 is for the spin degeneracy, Greek +indices indicate Cartesian directions, Eβ indicate the +Cartesian components of the electric field, and ∂Eβfnk +is the linear variation of the electronic occupation of the +state with band index n and wavevector k in response +to the applied field. vα +nk represents the expectation value +of the velocity operator along the direction α, for the +Kohn-Sham state nk. e, nc, Ωuc, and Nuc indicate the +electron charge, the carrier density, the volume of the +unit cell, and the number of unit cells in the Born-von +K´arm´an (BvK) supercell, respectively. The n-summation +extends over all Kohn-Sham states, although in practice +only those states near the chemical potential contribute +to the mobility. The k-summation is over a uniform Bril- +louin zone grid. +The variation ∂Eβfnk is obtained from the self- +consistent solution of the equation: +−evβ +nk +∂f 0 +nk +∂ϵnk += +� +mq +� +τ −1 +mk+q→nk ∂Eβfmk+q +−τ −1 +nk→mk+q ∂Eβfnk +� +, +(2) +where f 0 +nk denotes the Fermi-Dirac occupation of the +state nk in the absence of electric field. The quantity +τ −1 +nk→mk+q is the partial scattering rate from the Kohn- +Sham state nk to the state mk + q. In many-body per- +turbation theory, this rate is derived from the imaginary +parts of the electron self-energy, therefore different scat- +tering mechanisms simply add up to the lowest order in +perturbation theory. In this work, we write the scattering +rate as the sum of the rates of carrier-phonon scattering +(ph) and carrier-impurity (imp) scattering: +1 +τnk→mk+q += +1 +τ ph +nk→mk+q ++ +1 +τ imp +nk→mk+q +. +(3) + +3 +The partial carrier-phonon scattering rate is given +by [26]: +1 +τ ph +nk→mk+q += +1 +Nuc +� +ν +2π +¯h |gmnν(k, q)|2 +× +� +(nqν + 1 − f 0 +mk+q)δ(ϵnk−ϵmk+q − ¯hωqν) ++(nqν + f 0 +mk+q)δ(ϵnk−ϵmk+q + ¯hωqν) +� +, +(4) +where ϵnk denote Kohn-Sham eigenstates, +and ωqν +stands for the frequency of a phonon with branch in- +dex ν, wavevector q, and Bose-Einstein occupation nqν. +The matrix elements gmnν(k, q) indicate the probability +amplitude for the scattering of an electron from state nk +to state mk+q via a phonon qν [35]. The partial rate in +Eq. (4) can be obtained either from Fermi’s golden rule or +from many-body perturbation theory [35]. The carrier- +impurity scattering rate required in Eq. (3) is derived in +the next section and is given by Eq. (17). +Together, Eqs. (1)-(4) and (17) define the aiBTE +framework employed in this work. This approach consis- +tently captures back-scattering and Umklapp processes, +with a computational cost that is similar to more ap- +proximate approaches based on various relaxation-time +approximations. We refer the reader to Ref. [26] for a +comprehensive review of common approximations to the +Boltzmann transport equation. +B. +Scattering of Carriers by ionized impurities in +the monopole approximation +To +obtain +the +carrier-impurity +scattering +rate +1/τ imp +nk→mk+q we proceed as follows: (i) We derive the +matrix element of the scattering potential for a single +impurity in a periodic BvK supercell of the crystal unit +cell; (ii) We generalize the matrix element to consider +a number Nimp of impurities in the BvK supercell; (iii) +From this matrix element, we obtain the scattering rate +corresponding to the Nimp impurities by using the first +Born approximation; (iv) We average the resulting rate +over a random uniform distribution of impurity positions +using a method due to Kohn and Luttinger. +1. +Scattering potential and matrix element for single +impurity +We employ the monopole approximation to describe +the potential of an impurity of charge Ze located at the +position r0 in the BvK supercell. A more refined choice +would entail explicitly calculating the impurity poten- +tial in DFT and its matrix elements. This approach was +pursued in Refs. [5] and [14], but it carries the disadvan- +tage that one needs to compute defect energetics prior +to mobility calculations, and then perform rotational av- +erages to account for the randomness of the impurity +orientation. Our simpler approach is useful for system- +atic transport calculations when detailed knowledge of +the atomic-scale structure of impurities is lacking, and +can be made more accurate by incorporating dipole and +quadrupole terms along the lines of Refs. [47–49]. +By solving the Poisson equation in the BvK supercell +and considering a background anisotropic static dielec- +tric constant tensor ε0 = ε0 +αβ, the potential of this point +charge is found to be [see Eq. (S3) of Ref. [47]]: +φ(r; r0) = 4π +Ωsc +Ze +4πε0 +� +q +� +G̸=−q +ei(q+G)·(r−r0) +(q + G)·ε0· (q + G), +(5) +modulo an inessential constant that reflects the compen- +sating background charge. In this expression, ε0 is the +vacuum permittivity, G is a reciprocal lattice vector, +and the wavevector q belongs to a uniform Brillouin- +zone grid. Here an in the following, we consider that the +BvK cell consists of Nuc unit cells, so that its volume is +Ωsc = NucΩuc, and that the Brillouin zone is discretized +in a uniform grid of Nuc points. The potential φ(r, r0) is +periodic over the BvK supercell. +The perturbation potential resulting from this impu- +rity is V = ∓eφ for electrons and holes, respectively. +For definiteness, we consider electrons in the following. +The matrix elements of the perturbation V between the +Kohn-Sham states ψnk and ψmk+q is given by: +gimp +mn (k, q; r0) = ⟨ψmk+q|V (r; r0)|ψnk⟩sc, +(6) +where the integral is over the supercell. The states can +be written as ψnk = N −1/2 +uc +eik·runk, where unk is the +Bloch-periodic part and is normalized in the unit cell. +The combination of Eqs. (5) and (6) yields: +gimp +mn (k, q; r0) = −e2 +4πε0 +4πZ +Ωsc +� +G̸=−q +e−i(q+G)·r0Bmn,G(k, q) +(q + G)·ε0· (q + G) , +(7) +having defined the overlap integral: +Bmn,G(k, q) = ⟨umk+q|eiG·r|unk⟩uc, +(8) +which is evaluated over the unit cell. +2. +Scattering rate from multiple impurities within the first +Born approximation +We now consider N sc +imp impurities located at the po- +sitions r1, r2, · · · , rNimp in the BvK supercell. +The +corresponding perturbation potential is the sum of +the potentials obtained in the previous section, V += +�N sc +imp +I=1 V (r; rI), therefore the generalization of Eq. (7) +to the case of multiple identical impurities reads: +gimp +mn (k, q; {rI}) = −e2 +4πε0 +4πZ +Ωsc +� +G̸=−q +Bmn,G(k, q) +(q + G)·ε0· (q + G) +× +�N sc +imp +I=1 e−i(q+G)·rI. +(9) + +4 +The total scattering rate out of state nk associated +with this matrix element can be written using the first +Born approximation for the scattering matrix [50] [Eqs. +(6.1.16) and (6.1.32)]: +1 +τ imp +nk += +� +mq +2π +¯h |gimp +mn (k, q; {rI})|2δ(ϵnk − ϵmk+q). +(10) +We note that this expression is an intensive quantity, +as expected, i.e. it does not scale with the size of the +BvK supercell [see discussion after Eq. (17)]. The partial +scattering rate needed in Eq. (3) is then defined as: +1 +τ imp +nk→mk+q += 2π +¯h |gimp +mn (k, q; {rI})|2δ(ϵnk−ϵmk+q). (11) +Unlike Eq. (4), in this expressions we do not have the +Fermi-Dirac occupations. These occupations drop out in +the linearized Boltzmann transport equation, as it can +be verified, for example, by setting nqν = 0 and ωqν = 0 +in Eq. (4). In Eq. (11) the Dirac delta function ensures +energy conservation, consistent with the fact that we are +considering the scattering by a fixed potential, i.e. we +are neglecting the recoil of the impurity upon collision. +By combining Eqs. (9) and (11) we find: +1 +τ imp +nk→mk+q +({ri}) = 2π +¯h +� e2 +4πε0 +4πZ +Ωsc +�2 +δ(ϵnk − ϵmk+q) +× +� +G,G′̸=−q +Bmn,G(k, q)B∗ +mn,G′(k, q) +(Q ·ε0· Q)(Q′ ·ε0· Q′) +�N sc +imp +I,J=1ei(Q′·rJ−Q·rI), +(12) +having defined Q = q + G and Q′ = q + G′ for conve- +nience. +3. +Kohn-Luttinger ensamble averaging of the scattering rate +In order to account for the randomness in the dis- +tribution of impurities, we perform a configuration av- +erage of the scattering rate in Eq. (12) by considering +a uniform probability distribution, following the Kohn- +Luttinger approach [51]: +1 +τ imp,ave +nk→mk+q += +� +sc +dr1 · · · drN sc +imp +Ω +N sc +imp +sc +1 +τ imp +nk→mk+q +({ri}). (13) +The only term that depends on the impurity positions in +Eq. (12) is the sum over I, J on the second line. Below we +evaluate the ensemble average of this sum by separating +the I = J and I ̸= J terms: +� +sc +dr1 · · · drN sc +imp +ΩNimp +sc +�N sc +imp +I,J=1ei(Q′·rJ−Q·rI) += N sc +imp +Ωsc +� +sc +dr ei(Q′−Q)·r ++N sc +imp(N sc +imp − 1) +Ω2sc +�� +sc +dr eiQ′·r +��� +sc +dr e−iQ·r +� +. (14) +Both terms on the r.h.s. require the evaluation of an in- +tegral of the type: +� +sc +dr eiQ·r. +(15) +This integral equals Ωsc for Q = 0; for finite Q, we note +that the integral becomes the Fourier representation of +the Dirac delta when Nuc → ∞, therefore it vanishes. In +this limit, Eq. (14) reduces to: +� +sc +dr1 · · · drNimp +Ω +N sc +imp +sc +�N sc +imp +I,J=1ei(Q′·rJ−Q·rI) += N sc +imp δG,G′ + N sc +imp(N sc +imp − 1) δG,−qδG′,−q, +(16) +Using Eqs. (16) and (12) inside Eq. (13), we obtain: +1 +τ imp,ave +nk→mk+q += +1 +Nuc +N uc +imp +2π +¯h +� e2 +4πε0 +4πZ +Ωuc +�2 +× +� +G̸=−q +|Bmn,G(k, q)|2 +|(q + G) ·ε0· (q + G)|2 δ(ϵnk − ϵmk+q), (17) +where we use N uc +imp = N sc +imp/Nuc to denote the number +of impurities per unit cell; N uc +imp is a dimensionless quan- +tity. We note that, in practical calculations, the prefac- +tor 1/Nuc in Eq. (17), which also appears in the partial +carrier-phonon scattering rate in Eq. (4), is included as +a k-point weight in Brillouin zone summations, so that +the sum in Eq. (2) becomes N −1 +uc +� +q and is independent +of the size of the BvK supercell. +The scattering rate given in Eq. (17) is similar but not +identical to alternative forms used in previous work. For +example, it differs from classic approaches such as the +Conwell-Weisskopf formula [20] and the Brooks-Herring +formula [21] in that here the details of band structures, +Kohn-Sham orbital overlaps, and anisotropic dielectric +screening are fully taken into account. Furthermore, it +differs from more recent ab initio approaches such as +Ref. [5] in that the long-range nature of the Coulomb in- +teraction is taken into account from the start, as opposed +to being included as an ad hoc correction. Our expression +is similar to the formula provided in Ref. [14], except that +here we take into account the periodicity of the impurity +potential over the BvK supercell and the anisotropy of +the dielectric tensor. The fact that we reached a similar +expression as in Ref. [14] starting from a rather different +viewpoint involving the Kohn-Luttinger ensemble aver- +age lends support to both approaches. +C. +Free-carrier screening of the impurity potential +The carrier-impurity scattering rate given by Eq. (17) +contains a singular q−4 term that is not integrable (with +q = |q|), and leads to incorrect results when used in the +aiBTE of Eq. (2). This problem was already identified by + +5 +Conwell and Weisskopf [20], who introduced an infrared +cutoff to suppress the Coulomb singularity. +The formal way to overcome this difficulty is to observe +that ionized impurities are accompanied by free-carriers, +which introduce metallic-like screening of the impurity +potentials. In the Thomas-Fermi model, free-carriers in- +troduce an additional screening +εTF(q) = 1 + q2 +TF +q2 , +(18) +where qTF is the Thomas-Fermi wavevector. When used +in combination with the impurity potential appearing in +Eq. (17), this additional screening lifts the Coulomb sin- +gularity. In fact, by temporarily ignoring the G vectors +and the anisotropy of the dielectric tensor, free-carrier +screening modifies the denominator of Eq. (17) as fol- +lows: +1 +(ε0q2)2 +−−→ +1 +[εTF(q)ε0q2]2 = +1 +[ε0(q2 + q2 +TF)]2 , (19) +which tends to the finite value 1/(ε0q2 +TF)2 at long wave- +length. +To incorporate free-carrier screening in our calcula- +tions, while taking into account all details of band struc- +tures and effective masses, we employ the Lindhard di- +electric function instead of the Thomas-Fermi model, fol- +lowing Ref. [52]. The same approach was employed in +Ref. [14]. The Lindhard dielectric function is given by: +εL(q) = 1 − +e2 +4πε0 +4π +q2 +2 +NucΩuc +� +nk +f 0 +nk+q − f 0 +nk +ϵnk+q − ϵnk +. +(20) +Since the density of free-carriers is typically low in doped +semiconductors, we only need the long wavelength limit +of this expression. In this limit, (f 0 +nk+q − f 0 +nk)/(ϵnk+q − +ϵnk) = ∂f 0 +nk/∂ϵnk, therefore we can write: +εL(q) = 1 + q2 +TF +q2 , +(21) +having introduced the effective Thomas-Fermi vector: +qTF = +e2 +4πε0 +2 · 4π +NucΩuc +� +nk +���� +∂f 0 +nk +∂ϵnk +���� . +(22) +For parabolic bands, Eq. (21) reduces to the Thomas- +Fermi or Debye model in the respective temperature lim- +its. +The free-carrier screening provides an additional +screening mechanism to the dielectric screening of the +insulating semiconductors, and is included in our calcu- +lations by replacing ε0 in Eq. (17) by the total dielectric +function: +ε0 +−−→ +ε0 + 1q2 +TF +q2 , +(23) +where 1 denotes the 3 × 3 identity matrix. We note that +this improved description of the screening includes tem- +perature effects via the Fermi-Dirac occupations entering +the definition of the effective Thomas-Fermi wavevector, +Eq. (22). +D. +Matthiessen’s Rule +Matthiessen’s rule [46] is widely employed to interpret +transport measurements. In the context of carrier trans- +port in semiconductors, this rule can be stated as follows: +the contributions of different scattering channels to the +mobility can be obtained by adding the reciprocals of the +individual mobilities. In the case of carrier-phonon and +impurity-phonon scattering, we would have: +1 +µ = +1 +µph ++ +1 +µimp +. +(24) +In Sec. IV we proceed to quantify the reliability of this +approximation by comparing mobility data calculated us- +ing the complete aiBTE including both phonons and im- +purities with the prediction of Eq. (24) obtained by cal- +culating the mobility with these two scattering channels +taken individually. We will show that this rule does not +carry predictive power for the examples considered in this +work. +From a formal standpoint, the rule expressed by +Eq. (24) is obviously related to the choice of expressing +the total scattering rates as the sum or the individual +rates, see Eq. (3). +That choice was motivated by the +observation that, to first order in perturbation theory, +different scattering channels do not mix. However, it is +easy to see that, even when Eq. (3) is a good approx- +imation, the additivity of the rates does not imply the +Matthiessen rule as expressed by Eq. (24). To appreciate +this point, we observe that the aiBTE in Eq. (2) can be +recast as a linear system of the type: +A × {∂Eβfnk} = b, +(25) +where the matrix A contains the partial scattering rates +τ −1 +nk→n′k′, the vector b contains the drift term on the left +hand side of Eq. (2), and {∂Eβfnk} denotes the vector of +solutions. If we break down the matrix A into its contri- +butions from carrier-phonon and carrier-impurity scat- +tering, Aph and Aimp respectively, we see immediately +that +{∂Eβfnk} = (Aph + Aimp)−1b ̸= A−1 +ph b + A−1 +impb, +(26) +therefore the additivity of the scattering rates does not +imply the Matthiessen rule. +This point can be made +even more explicit by considering the self-energy relax- +ation time approximation to the aiBTE. The approxi- +mation consists of neglecting the first term on the r.h.s. +of Eq. (2), and yields the following expression for the +mobility: +µαβ = − +e +Ωucnc +2 +Nuc +� +nk +∂f 0 +nk +∂ϵnk +vα +nkvβ +nk +× +1 +1 +τ ph +nk ++ +1 +τ imp +nk +. +(27) + +6 +TABLE I. Calculation parameters used in this work: Experi- +mental lattice constant, plane wave kinetic energy cutoff, and +non-vanishing elements of the quadrupole tensor are chosen +to be consistent with Ref. [58]. +Si 3C-SiC GaP +Lattice constant (˚A) +5.43 +4.36 +5.45 +Plane wave kinetic energy cutoff (eV) +544 +1088 1088 +Qκ1 +11.83 +7.41 13.72 +Qκ2 +-11.83 +-2.63 -6.92 +Coarse k and q grids +123 +123 +123 +Fine k and q electron grid +1003 +1803 +1003 +Fine k and q hole grid +1003 +1003 +1003 +For this expression to be amenable to Matthiessen’s rule, +the scattering rates would need to be independent of the +electronic state, say τ ph +nk = τ ph and τ imp +nk += τ imp. This is +typically not the case in most semiconductors. Another +special case where Matthiessen’s formula is meaningful +occurs when one scattering mechanism dominates over +the others. For example, in Eq. (27), when τ ph +nk ≫ τ imp +nk , +the expression reduces to the phonon-limited mobility. In +this sense, Matthiessen’s rule constitutes a simple inter- +polation formula between the limiting cases of phonon- +limited and impurity-limited mobilities. We will analyze +these aspects quantitatively in Sec. IV. +III. +COMPUTATIONAL METHODS +All calculations are performed using the Quantum +ESPRESSO materials simulation suite [53], the EPW +code [38], and the Wannier90 code [54]. We employ the +PBE exchange and correlation functional [55] and op- +timized norm-conserving Vanderbilt (ONCV) pseudopo- +tentials from the PseudoDojo repository [56, 57]. +For +consistency with previous work, we use the experimental +lattice constant of Si, SiC, and GaP at room temperature, +and the plane-wave kinetic energy cutoff and quadrupole +tensors reported in Ref. [58]. We include spin-orbit cou- +pling for the valence bands only, to capture the splitting +of the valence band top. Key calculation parameters are +summarized in Tab. I. +We calculate effective mass tensors by finite differences, +using a wavevector increment of 0.01 × 2π/a, where a +is the lattice constant reported in Tab. I. The dynam- +ical matrix, the variations of the self-consistent poten- +tial, and the vibrational eigenfrequencies and eigenmodes +are calculated using a square convergence threshold of +10−16 Ry2. This threshold refers to the change of the +potential variation between two successive iterations, av- +eraged over the unit cell. +Electron energies, phonon +frequencies, and electron-phonon matrix elements are +initially computed on a coarse wavevector mesh using +the EPW code. The electron Hamiltonian, the dynam- +ical matrix, and the electron-phonon matrix elements +are then interpolated onto fine Brillouin zone grids us- +ing Wannier-Fourier interpolation [33, 34]. Long-range +dipole and quadrupole corrections are employed for im- +proved interpolation of the electron-phonon matrix ele- +ments [47–49, 58, 59]. +To compute carrier mobilities, only states within a nar- +row energy window of the band extrema are necessary. +We find that, for the range of temperatures considered in +this work (up to 500 K), a window of 400 meV is sufficient +to obtain converged electron mobilities, and a window +of 300 meV is sufficient for hole mobilities. At 300 K, +converged results can be obtained by using a 200 meV +window for both electrons and holes. +To evaluate the overlap matrices Bmn,G(k, q) required +in Eq. (17) in the fine Brillouin zone grid, we follow the +procedure of Ref. [47] and approximate them as: +Bmn,G(k, q) ≈ +� +U(k + q)U †(k) +� +mn , +(28) +where the unitary matrix Umn(k) is the diagonalizer of +the interpolated Hamiltonian into the wavevector k of +the fine grid. This approximation is motivated by the +fact that the carrier-impurity matrix element in Eq. (17) +is strongly peaked at q + G = 0. +The Dirac delta functions appearing in Eqs. (4) and +(17) are computed using Gaussian functions with a small +broadening parameter. The results are sensitive to the +choice of this parameter, therefore we accelerate the con- +vergence by employing adaptive smearing. The proce- +dure for the adaptive smearing of the carrier-phonon scat- +tering rate, which involves a so-called type-III integral, +is discussed in Refs. [6, 58, 60]. The calculation of the +carrier-impurity scattering rates involves instead a type- +II integral of the form: +III +nk = +� +m +� +dq +ΩBZ +fmn(k, q) δ(ϵmk+q − ϵnk), +(29) +where ΩBZ is the volume of the Brillouin zone. In this +case, adaptive broadening can be achieved by using a +state-dependent width σmk+q. We follow the procedure +by Ref. [60], which gives: +σmk+q = α +3 +3 +� +i=1 +vmk+q · bi +Ni +, +(30) +where vmk+q is the band velocity, bi is a primitive vector +of the reciprocal lattice, and Ni denotes the number of +k-points along the direction of bi. The coefficient α is a +tunable parameter. +Previous work has used α = 0.29 +for electron-phonon scattering rates [6, 58]. +We have +performed a detailed converged test by comparing fixed- +smearing and variable-smearing calculations, and found +that values α = 0.1-0.3 provide similar results. For sim- +plicity, in this work we use α = 0.29 as in previous work. +In principle we could perform calculations of carrier +mobilities by setting the impurity concentration and the +carrier concentration separately. This would be required, +for example, for the investigation of compensation dop- +ing of semiconductors. To keep our results are general + +7 +as possible, in this work we choose to focus on the sim- +pler scenario where each impurity creates one free car- +rier, therefore we set the carrier density to be equal to +the impurity concentration. We do not consider carrier +freeze-out at low temperature, since this would require +the knowledge of defect energy levels. +In our calcula- +tions, the role of the carrier concentration is mainly to +modulate the effective Thomas-Fermi screening wavevec- +tor in Eq. (22). +IV. +RESULTS AND DISCUSSION +A. +Electronic structure +Given the importance of effective masses in mobility +calculations, in this section we review briefly the band +structures and effective masses of Si, SiC, and GaP. Ta- +ble II shows our calculated directional effective masses. +Hole masses are given for the heavy-hole (hh) band, light +hole (lh) band, and the spin-orbit split-off (so) band. The +longitudinal (∥) and transverse (⊥) electron masses cor- +respond to the principal axes of the ellipsoidal conduction +band extrema. +In Tab. II we see that the light hole and split-off +hole masses are fairly isotropic for all compounds con- +sidered in this work. For the heavy hole masses, the Γ-X +direction ([100] crystallographic direction) exhibits the +lightest masses, whereas considerably heavier masses are +found along the Γ-K ([110]) and Γ-L ([111]) directions. +Similarly, in all compounds considered here the longitu- +dinal electron masses are considerably heavier than the +corresponding transverse masses, as expected. SiC ex- +hibits the heaviest hole masses among SiC, GaP, and Si; +while GaP exhibits the heaviest electron masses. +Our calculated effective masses are in good agreement +with previous calculations at the DFT level [10] as well as +previous calculations at the GW level [10]. When com- +paring to experimental data, we see from Tab. II that +our electron effective masses are within 10% of the corre- +sponding experimental values, which is remarkable con- +sidering that we are using DFT/PBE. +In the case of the hole masses, our calculations are also +in good agreement with experiments. Here we emphasize +that the experimental values usually quoted are not the +effective masses, but the cyclotron masses, which depend +on the direction of the magnetic field and are reported +in Tab. II. These cyclotron masses correspond to aver- +ages of the directional masses and cannot be compared +directly to DFT calculations. To extract the correct di- +rectional effective masses, in the case of silicon we used +the Dresselhaus k · p model which was fitted to experi- +mental cyclotron data. In this model the heavy hole and +TABLE II. +Calculated band effective masses, band gaps, +high-frequency and static dielectric constants of Si, 3C-SiC, +and GaP. All calculations performed within DFT/PBE. Ex- +perimental data are from (a) [61] and [62], (b) [63], (c) [64], +(d) [65], (e) [66], (f) [67], (g) [68], (h) [69], (i) [70], (j) [71], (k) +[72], (l) [73]. All masses are give in units of the electron mass. +The band gaps are in eV. The lines tagged “Dresselhaus” refer +to the effective masses obtained from the Dresselhaus model +fitted to experimental cyclotron data, from Ref. [61]. +This work +Si +SiC +GaP +Γ-X +0.260 +0.592 0.374 +m∗ +hh +Γ-K +0.550 +1.412 0.837 +Γ-L +0.655 +1.646 1.091 +Γ-X +0.189 +0.423 0.143 +m∗ +lh +Γ-K +0.143 +0.328 0.125 +Γ-L +0.134 +0.309 0.117 +Γ-X +0.225 +0.490 0.213 +m∗ +so +Γ-K +0.223 +0.472 0.217 +Γ-L +0.214 +0.436 0.206 +m∗ +e,∥ +0.959 +0.672 1.069 +m∗ +e,⊥ +0.196 +0.230 0.232 +Eg +0.554 +1.359 1.566 +ε∞ +13.00 +6.93 10.53 +ε0 +13.00 +10.23 12.57 +Experiment +Si +SiC +GaP +B along [001] +0.46a +m∗ +hh +B along [110] +0.53a +B along [111] +0.56a +0.54c +Dresselhaus Γ-X 0.40 +Dresselhaus Γ-K 0.56 +Dresselhaus Γ-L 0.62 +B along [001] +0.171a 0.45b +m∗ +lh +B along [110] +0.163a +B along [111] +0.160a +0.16c +Dresselhaus Γ-X 0.18 +Dresselhaus Γ-K 0.16 +Dresselhaus Γ-L 0.15 +m∗ +e,∥ +0.97a +0.68d 1.15c, 2.0k +m∗ +e,⊥ +0.19a +0.25d 0.21c, 0.25k +Eg +1.13f +2.42g 2.26h +ε∞ +11.7i +6.52j 9.11j +ε0 +11.7i +9.72j 11.1j +light hole masses are parameterized as: +ϵhh(k) =Ak2 + [B2k4 + C2(k2 +xk2 +y + k2 +yk2 +z + k2 +zk2 +x)]1/2, +(31) +ϵlh(k) =Ak2 − [B2k4 + C2(k2 +xk2 +y + k2 +yk2 +z + k2 +zk2 +x)]1/2, +(32) +where k += +|k| and the coefficients A, B, and C +are −4.1 ¯h2/2me, −1.6 ¯h2/2me, and 3.3 ¯h2/2me, respec- +tively [61]. From this parameterization we obtained the +effective masses reported in Tab. II under the keyword +“Dresselhaus”. From this table we can see that, in the + +8 +case of silicon, the light hole and heavy hole masses are +close to our calculated results, with the exception of the +Γ − X heavy-hole effective mass which is 65% of the ex- +perimental value[10]. +Our calculated dielectric constants overestimate the +experimental values by 15% at most, as expected from +the underestimation of the band gaps [70, 71]. +In +Sec. IV E we discuss how one can improve the calculated +mobilities by introducing a posteriori corrections to the +theoretical effective masses and dielectric constants. +B. +Carrier mobilities +1. +Silicon +Figure 1 shows a comparison between our calculated +mobilities of silicon and available experimental data, as +a function of temperature and impurity concentration. +The mobilities without carrier-impurity scattering [black +lines in panels (a) and (b)] decrease rapidly with tem- +perature, as expected. We find temperature slopes (the +β in µ ∼ T β) of −2.1 for electrons and −2.4 for holes, +in agreement with previous work [10, 58]. As we include +carrier-impurity scattering, the room-temperature elec- +tron mobility of silicon reduces from 1381 cm2/Vs to +1153 cm2/Vs at 1.75×1016 cm−3 [blue line in panel (a)] +and to 812 cm2/Vs at 1.3×1017 cm−3 [red line in panel +(a)]. +Similarly, the room-temperature hole mobility of +silicon decreases from 600 cm2/Vs in the absence of im- +purities to 517 cm2/Vs for an impurity concentration of +2.4×1016 cm−3[blue line in panel (b)], and to 359 cm2/Vs +at the impurity concentration of 2.0×1017 cm2/Vs [red +line in panel (b)]. +Our calculations for the temperature-dependent elec- +tron and hole mobilities show that a single power law be- +comes inadequate in the presence of impurity scattering. +This is also seen in the experimental data from Refs. [74– +77], which are shown as open circles in Fig. 1. We note +that our calculations are in good agreement with the ex- +periments over a broad temperature range. The agree- +ment worsens slightly at low temperature, where carrier- +impurity scattering dominates. This effect likely relates +to the fact that in our calculations all donors and ac- +ceptors are assumed to be fully ionized at all tempera- +tures; as a result of this approximation, we are neglecting +carrier freeze-out and hence we are likely overestimating +the impurity concentration at low temperature. In Ap- +pendix A we show that, by taking into account the the +effects of partial impurity ionization, the agreement with +experiments improves at low temperature and high im- +purity concentration. +Panel (c) of Fig. 1 shows the room temperature elec- +tron mobility of silicon, as a function of impurity con- +centration. The electron mobility is relatively insensitive +to the impurity concentration up to 1016 cm−3. A steep +decrease in the electron mobility is seen as we approach +a doping density of 1017 cm−3. +Up to this concentra- +tion, our calculations (blue line) are in excellent agree- +ment with experimental data (open black circles). Above +1018 cm−3, while the agreement with experiment is still +good, we tend to slightly overestimate the measured elec- +tron mobility. This is likely due to two effects: (i) our +formalism does not take into account multiple scattering +events that become important at high impurity concen- +tration, and (ii) our calculations do not include scattering +by free-carrier plasmons, which dominate the mobility at +high carrier density, as shown in Refs. [12, 23]. A similar +overestimation was observed in Ref. [14]. +Panel (d) of Fig. 1 shows the room temperature hole +mobility of silicon as a function of impurity concentra- +tion. As for the electrons, we find generally good agree- +ment between calculations (blue line) and experiments +(open black circles) throughout the doping range. We +emphasize that the vertical scales in panels (c) and (d) +are different, and that the theory/experiment deviation +at high impurity concentration is similar in both panels +in absolute terms. At low impurity concentration, our +calculations slightly overestimate the experimental data. +This effect can be ascribed to the fact that our light hole +effective masses are smaller than in experiments. +2. +Silicon carbide +In Fig. 2 we show our calculated mobilities of 3C-SiC +as a function of temperature and impurity concentration, +and we compare to experimental data from Refs. [24, 78– +84]. In the case of 3C-SiC, the comparison with exper- +iments is complicated by the high concentration of line +defects that nucleate at lattice-mismatched growth sub- +strates such as Si or 6H-SiC [83, 85], which makes it diffi- +cult to obtain data for defect-free samples. Furthermore, +most experimental data are for co-doped samples, for +which the impurity and carrier concentrations are more +difficult to estimate. +In the absence of impurity scattering [black line in +panel (a)], the low electron effective mass of SiC leads +to very high theoretical mobilities, up to 33000 cm2/Vs +at 100 K and up to 2000 cm2/Vs at room temperature. +These high mobilities are in agreement with previous the- +oretical results [58]. In this case, we calculate an electron +temperature exponent β = −2.9. +In panel (a) of Fig. 2 we compare our calculations (blue +line) with the data reported in Ref. [78] (red open cir- +cles). +In that work, they synthesized 3C-SiC with n- +type impurity density of 5.0×1016 cm−3, and obtained +electron mobilities at 100 K and 300 K of 2040 cm2/Vs +and 584 cm2/Vs, respectively. In our calculations, when +we consider the same impurity concentration, we find +2773 cm2/Vs and 1369 cm2/Vs at 100 K and 300 K, +respectively; therefore we overestimate the experimental +data by a factor of 30%-230%. +In panel (b) of Fig. 2 we show our calculated hole mo- +bility of 3C-SiC as a function of temperature. +In the +absence of impurities (black line), the mobility decreases + +9 +with a temperature exponent β = −2.1. +In this case +we could not find experimental data for uncompensated +samples to compare with. Upon including impurity scat- +tering with an impurity concentration of 1018 cm−3, we +find a significant reduction of the mobility at low tem- +perature (blue line), from 1373 cm2/Vs to 148 cm2/Vs. +At 300 K, the mobility is reduced from 165 cm2/Vs with- +out impurities to 81 cm2/Vs, in good agreement with the +measured value of 50 cm2/Vs reported in Ref. [84]. +Panels (c) and (d) of Fig. 2 show the room temper- +ature electron and hole mobilities as a function of im- +purity concentration, respectively. The electron mobility +calculated (blue line) at low ionized donor concentration +(1014 cm−3) is 2048 cm2/Vs, and significantly overesti- +mates the measured value 1000 cm2/Vs by Ref. [79] (open +black symbols). However, our calculations get closer to +experimental data in the range of concentrations above +1018 cm−3 [24, 80, 86]. +The hole mobility of 3C-SiC is significantly lower than +the electron mobility, as expected from much heavier hole +masses shown in Tab II. Our calculations (blue line) at +low doping yield a mobility of 164 cm2/Vs, to be com- +pared to 220 cm2/Vs measured in p-channel 3C-SiC de- +vices [82] (open black symbols). We note that the vertical +scales in panels (c) and (d) differ, and that our calculated +hole mobilities are in better agreement with experiment +in relative terms. In particular, our data for the hole mo- +bility fall right in the middle of the experimental trend +shown in panel (d). +3. +Gallium phosphide +Figure 3 shows our mobility calculations for GaP and a +comparison with experimental data. In panel (a) we have +the calculated electron mobilities as a function of temper- +ature. In the absence of impurities, the calculated elec- +tron mobility (black line) decreases with a temperature +exponent β = −2.2; the calculated mobilities at 100 K +and 300 K are 4293 cm2/Vs and 328 cm2/Vs, respec- +tively. Upon including the effect of impurity scattering +(blue line), the mobility decreases significantly, reach- +ing 157 cm2/Vs at room temperature for an impurity +concentration of 2.5×1018 cm−3. This value is in good +agreement with the measured mobility of 100 cm2/Vs by +Ref. [87] (blue open circles). We note that the electron +mobility of GaP is significantly lower than in silicon, de- +spite the electron effective masses being comparable. In +Sec. IV C we show that this effect arises from the addi- +tional polar phonon scattering that electrons experience +in GaP, which is absent in silicon. +Panel (b) of Fig. 3 shows the calculated phonon-limited +hole mobility (black line), the mobility calculated by in- +cluding impurity scattering (blue line), and experimen- +tal data (open red circles). +The phonon-limited hole +mobility decreases with temperature with an exponent +β = −2.5. The calculated mobilities in the absence of +impurities are 5096 cm2/Vs and 252 cm2/Vs at 100 K +and 300 K, respectively. Upon including impurity scat- +tering with a concentration of 2×1018 cm−3, the mobil- +ity at room temperature decreases to 124 cm2/Vs, in +good agreement with the measured value of 90 cm2/Vs +by Ref. [87]. +Panel (c) of Fig. 3 shows the room temperature elec- +tron mobility of GaP as a function of impurity concentra- +tion. In the absence of impurity scattering, we calculate +a mobility of 328 cm2/Vs(blue line), which compares well +with the maximum value 258 cm2/Vs measured in ultra- +pure samples in Ref. [88] (open black symbols). In the +intermediate doping regime, our calculated electron mo- +bilities overestimate the experimental data by a factor of +two [87–90], but the agreement improves at high doping +levels. +Figure 3(d) shows the room temperature hole mobil- +ity of GaP as a function of impurity concentration. The +calculated hole mobility is 269 cm2/Vs at low impurity +concentration, and decreases to 94 cm2/Vs at a concen- +tration of 1019 cm−3 (blue line). +Our calculations are +within a factor of two from the highest measured hole +mobilities across the same doping range [87, 91, 92] (open +black symbols). We note that electron and hole mobilities +in GaP are very similar across a wide range of tempera- +tures and impurity concentrations (both in experiments +and in our calculations), therefore GaP is an ambipo- +lar semiconductor with well-balanced electron and hole +transport. +C. +Carrier scattering rates +In this section we analyze and compare the scattering +rates resulting from carrier-phonon and carrier-impurity +processes in Si, SiC, and GaP. The Brooks-Herring model +for carrier-impurity scattering [21], which is based on the +parabolic band approximation, predicts a scattering rate +that scales as ϵ−3/2, where ϵ is the electron eigenvalue +referred to the band extremum. This trend is a result of +two competing effects: as the energy of the initial state +increases above the band bottom, the scattering phase +space increases as ϵ1/2, while at the same time the square +modulus of the carrier-impurity matrix element given in +Eq. (17) decreases as 1/q4, which is of the order of ϵ−2. +This simple trend is opposite to what is expected from +non-polar optical scattering and acoustic phonon scatter- +ing, which tend to increase with energy. +Figure 4 shows the scattering rates τ −1 +nk of holes and +electrons in Si [panels (a) and (b)], SiC [panels (c) and +(d)], and GaP [panels (e) and (f)]. For consistency, we +set the impurity concentration to 1017 cm−3 in all cases, +which is in the middle of the range considered in Figs. 1-3, +and the temperature to 300 K. In line with the above dis- +cussion, the carrier-impurity scattering rates decrease as +we move away from the band extrema, while the carrier- +phonon scattering rates increase. In the two polar semi- +conductors that we are considering, SiC and GaP, we +also see a sudden jump in the carrier-phonon scatter- + +10 +ing rates. This effect happens when the carrier energy +reaches the threshold for the emission of a longitudinal +optical phonon, thereby activating polar phonon scatter- +ing [47]. +Panels (a) and (b) of Fig. 4 show that, in the case of +silicon, the carrier-ionized-impurity scattering rates near +the band edges are an order of magnitude higher than +carrier-phonon rates (for an impurity concentration of +1017 cm−3). The additional scattering by carriers causes +a reduction of the mobility by ∼ 30% for both electrons +and holes, indicating that impurity scattering is a sig- +nificant effect at this impurity concentration. The rise +of the carrier-electron scattering rates at energies around +150 meV that can be seen in panel (b) correspond to +interband scattering between the two lowest conduction +bands. +Panels (c) and (d) of Fig. 4 show the scattering rates +in SiC. Unlike in silicon, here the electron and hole scat- +tering rates differ considerably. +In the case of holes, +the carrier-phonon and carrier-impurity scattering rates +are comparable in magnitude near the band edge, while +in the case of electrons the carrier-impurity scattering +dominates. +This difference is reflected in the calcu- +lated mobilities, where carrier-impurity scattering re- +duces the phonon-limited mobility of holes by ∼ 20% +and of electrons by ∼ 50% (for the impurity concentra- +tion 1017 cm−3). +Data for GaP are shown in panels (e) and (f) of Fig. 4. +In this case the carrier-phonon scattering rates are com- +parable to the carrier-impurity scattering rates. Accord- +ingly, the mobilities are reduced by ∼10% from their val- +ues without impurity scattering. +D. +Deviations from Matthiessen’s Rule +In Sec. IV D we discussed how Matthiessen’s rule is for- +mally justified only when the scattering rates are state- +independent constants, or when one scattering mecha- +nism dominates over all other mechanisms. To place that +reasoning on a quantitative footing, in Fig. 5 we explicitly +assess the predictive accuracy of the Matthiessen rule. +For this test, we compute the mobilities of Si, SiC, +and GaP by considering the following four scenarios: +(i) phonon-limited mobility µph (i.e., without including +carrier-impurity scattering); (ii) impurity-limited mobil- +ity µimp (i.e., without including carrier-phonon scatter- +ing); (iii) the mobility according to Matthiessen’s rule, +as obtained by combining (i) and (ii) using 1/µM = +1/µph + 1/µimp; (iv) the mobility µ calculated by includ- +ing both carrier-phonon scattering and carrier-impurity +scattering using the aiBTE. +In panels (a), (c), and (e) we see this comparison for +Si, SiC, and GaP, respectively, as a function of temper- +ature. As expected, in all cases the phonon-limited mo- +bilities (black lines) decrease with temperature while the +impurity-limited mobilities (red lines) do increase. Their +combination results into the characteristic smooth peak +which is best seen in the cases of Si and SiC. In these pan- +els, the dashed blue lines are from Matthiessen’s rule, +and the solid blue lines are the complete aiBTE solu- +tions. We see that the Matthiessen rule tends to overes- +timate the aiBTE mobility, and the deviation is partic- +ularly pronounced when the phonon and impurity con- +tributions to the mobility reduction are comparable. To +quantify the deviation between aiBTE calculations and +the Matthiessen results, in panels (b), (d), and (f) of +Fig. 5 we show the ratio between the two values, as a +function of temperature. +In all cases we see that the +use of Matthiessen’s rule leads to an overestimation of +the mobilities by up to 50%, which is significant in the +context of predictive calculations of transport properties. +More importantly, for the compounds considered in this +work (Si, SiC, and GaP), the use of Matthiessen’s rule +would worsen the agreement between calculated mobili- +ties and experimental data. +Based on these findings, we caution against the use +of Matthiessen’s rule in future ab initio calculations of +carrier mobilities. +E. +Improving the predictive power of the aiBTE +In this section we investigate simple approaches to im- +prove the predictive accuracy of the aiBTE by overcom- +ing two standard limitations of DFT. +The first limitation is that the DFT band gap prob- +lem typically leads to an overestimation of the dielectric +screening. As a result, both carrier-phonon and carrier- +impurity matrix elements tend to be underestimated in +DFT [35, 93], and mobilities tend to be overestimated. In +Ref. [58] it was shown that, for a set of ten semiconduc- +tors, this effect leads to mobilities which can overestimate +experimental data by as much as a factor of two. To miti- +gate this effect, we investigate a simple scaling correction +to the matrix elements as follow: +gcorr +mnν(k, q) = εDFT +εexp +gDFT +mnν (k, q), +(33) +where ϵDFT is our calculated value, and ϵexp is the exper- +imental value. We use the high-frequency dielectric con- +stant for the carrier-phonon matrix elements, as it was +done in Ref. [10], and the static dielectric constants for +the carrier-impurity matrix elements [see Eq. (9)]. This +approach is meaningful for the systems considered in this +work, because the majority of scattering processes oc- +cur near the band extrema, and therefore involve small +scattering wavevectors q, thus justifying the re-scaling of +screening at long wavelength only. +The second limitation of DFT calculations lies in the +inaccurate curvature of the bands, which is also linked +to the band gap problem, leading to slightly inaccurate +carrier effective masses. This limitation could be over- +come by performing GW calculations, but in this work +we investigate a simpler mass scaling. +According to Drude’s formula, carrier mobilities are +inversely proportional to the effective masses. Based on + +11 +this observation, we consider the following scaling correc- +tion, which is directly applied to the calculated mobility: +µcorr = m∗ +DFT +m∗exp +µDFT, +(34) +where all masses are isotropic averages. +The three compounds considered in this work all have +ellipsoidal conduction band extrema, therefore we can +evaluate the average isotropic mass as follows: +m∗ = 3(1/m∗ +∥ + 2/m∗ +⊥)−1. +(35) +Evaluating the average hole mass is more complicated +owing to the band degeneracy at Γ and the fact that ex- +perimental data usually are reported for a given magnetic +field direction as opposed to a crystallographic direction +(see Sec. IV A). In the case of silicon, we evaluate the av- +erage mass using the values extracted from Dresselhaus’ +model (see Sec. IV A). After this averaging procedure, +the hole mass is calculated following Ref. [58]: +m∗ = m∗,5/2 +hh ++ m∗,5/2 +lh +m∗,3/2 +hh ++ m∗,3/2 +lh +, +(36) +where all quantities on the r.h.s. are spherical averages in +k-space. In the case of SiC and GaP we are not aware of +a parametrization similar to Dresselhaus’, therefore we +do not investigate mass corrections in these cases. +The carrier mobilities obtained by applying the above +corrections are shown in Fig. 6. In all cases we use the +experimental dielectric constants reported in Tab. II. +Panels (a) and (b) show our results for silicon. The +screening correction to the electron mobilities of Si re- +duces the calculated value at low impurity concentra- +tion from 1381 cm2/Vs to 1133 cm2/Vs. This reduction +causes an underestimation of the experimental value by +approximately 20%. At higher impurity concentration, +the corrected mobility agrees again well with experimen- +tal results. The corrections to the electron effective mass +of Si are minor and do not affect the mobility. In the +case of holes, the screening and mass corrections improve +considerably the agreement between theory and experi- +ment (our calculated average hole mass is 0.43 me while +the experimental value is 0.48 me). In fact, we obtain a +hole mobility of 463 cm2/Vs at low impurity concentra- +tion, which is within the measured value between 450 and +500 cm2/Vs[76, 77]. The improvement is also noticeable +at higher impurity concentration. +Results for SiC are shown in panels (c) and (d) of +Fig. 6. +In this case, we find that screening and mass +corrections do not significantly improve the agreement +with experiments at low impurity concentration. In par- +ticular, the screening correction reduces the electron mo- +bility from 2047 cm2/Vs to 1815 cm2/Vs, and the mass +correction further reduces this value to 1688 cm2/Vs. De- +spite these corrections, the calculated electron mobility +remains too high by about a factor of two. It is possible +that additional scattering mechanisms such as disloca- +tions could contribute to reduce this difference. In the +case of the hole mobility, the screening correction reduces +the calculated value at low impurity concentration from +164 cm2/Vs to 148 cm2/Vs, which is not significant when +compared to the large spread of experimental values [81– +84]. +The screening correction appears to be successful in +the case of GaP, as seen in panels (e) and (f) of Fig. 6. +The electron mobility at low impurity concentration re- +duces from 326 cm2/Vs to 243 cm2/Vs upon applying +the screening correction. This value is in better agree- +ment with the experimental data. Improved agreement +with experiments is also found at higher impurity con- +centration. The correction to the electron effective mass +of GaP is small, and as a result the change in mobility is +not significant. The screening correction for holes brings +the calculated data closer to the experiments. In partic- +ular, at low impurity concentration the hole mobility is +reduced from 269 cm2/Vs to 226 cm2/Vs. +The key takeaway from this analysis is that the screen- +ing correction to the scattering matrix elements improves +the agreement between theory and experiment for the +compounds considered in this work. Based on the above +observations, we suggest that screening and mass cor- +rections could be used for the purpose of uncertainty +quantification in future ab initio calculations of trans- +port properties. +V. +CONCLUSIONS +In this work we have demonstrated non-empirical cal- +culations of carrier mobilities in semiconductors using the +ab initio Boltzmann transport equations, including car- +rier scattering by phonons and by ionized impurities. To +this end, we developed an ab initio formalism to incor- +porate ionized-impurity scattering within the transport +workflow based on Wannier-Fourier interpolation and im- +plemented in the EPW code. +We described ionized impurities by randomly dis- +tributed Coulomb scatters, and we obtained the carrier +relaxation time by using the Kohn-Luttinger ensemble +averaging procedure. We also incorporated the screen- +ing of the impurity potential by free-carriers, within a +parameter-free effective Thomas-Fermi model. +We validated our approach by performing an extensive +set of calculations of the electron and hole mobilities of +three common semiconductors, namely Si, 3C-SiC, and +GaP. In all cases we find a reasonably good agreement +with experimental data, except possibly for the electron +mobility in SiC which is probably reduced by additional +scattering at line defects in real samples. Our calcula- +tions follow closely the experimental data both as a func- +tion of temperature (at fixed impurity concentration) and +as a function of impurity concentration (at fixed temper- +ature). +Impurity scattering is found to dominate over phonon +scattering at high impurity concentration and at low tem- +perature. In the former case, the thermal distribution + +12 +function of the carrier is peaked near the band edges, +therefore small-q elastic scattering by impurities dom- +inates. +In the latter case, the phonon population be- +comes negligible at low temperature, therefore impurities +remain the only active scattering channel. These trends +are fully consistent with the general understanding of car- +rier transport in semiconductors [94]. We also found that +the energy-dependent carrier scattering rates are strongly +dependent on the detailed mechanisms at play in each +compound, and vary significantly over the energy range +of relevance for transport phenomena. This finding un- +derlines the importance of detailed ab initio calculations +to achieve predictive accuracy in the description of trans- +port phenomena of real materials. +In the presence of multiple scattering channels, it +is common to analyze mobility data using the clas- +sic Matthiessen rule. +However, by directly comparing +aiBTE calculations including both phonon and impurity +scattering with estimates based on Matthiessen’s rule, we +found that the latter lead to inaccurate results, with de- +viations of up to 50% with respect to aiBTE calculations. +This finding indicates that Matthiessen’s rule should not +be employed in predictive calculations of transport prop- +erties. +Lastly, we investigated simple corrections to DFT cal- +culations of carrier mobilities, by scaling the calculated +dielectric screening and the effective masses via their +corresponding experimental values. We found that the +screening correction generally improves agreement with +experiments. +Overall, our present approach offers a powerful tool for +calculating transport properties in a variety of semicon- +ducting materials of immediate interest, as well as for +screening new putative semiconductors in the context of +materials discovery. +Several improvements upon this work are possible. For +one, we do not account for neutral impurity scatter- +ing. +This additional channel could be added by gen- +eralizing our monopole model to account for dipoles +and quadrupoles, following similar work performed in +the context of electron-phonon interactions [47–49, 59]. +Generalizations to the case of two-dimensional materi- +als should also be possible, for example by following the +related generalization of the Fr¨ohlich matrix element to +two-dimensional systems [95, 96]. At high impurity con- +centration one should also account for carrier-plasmon +scattering, for example as discussed in Ref. [12]. And of +course, any improvement in the DFT band structures and +electron-phonon matrix elements would be highly bene- +ficial to further enhance the predictive power of these +calculations [93]. We hope that this study will stimulate +further work along these and other promising directions. +ACKNOWLEDGMENTS +This research is primarily supported by the Compu- +tational Materials Sciences Program funded by the U.S. +Department of Energy, Office of Science, Basic Energy +Sciences, under Award No. +DE-SC0020129. +This re- +search used resources of the National Energy Research +Scientific Computing Center, a DOE Office of Science +User Facility supported by the Office of Science of the +U.S. Department of Energy under Contract No. +DE- +AC02-05CH11231. The authors acknowledge the Texas +Advanced Computing Center (TACC) at The University +of Texas at Austin for providing HPC resources that have +contributed to the research results reported within this +paper: https://www.tacc.utexas.edu. +Appendix A: Incomplete ionization of dopant +In all calculations presented in this work, we have con- +sidered that the carrier density coincides with the impu- +rity concentration. The implicit assumption underlying +this choice is that all impurities are ionized at all temper- +atures. This is obviously a simplification, since the frac- +tion of ionized impurities depends on the defect energy, +the quasi Fermi level of the system, and the temperature. +These aspects have already been discussed in the case of +silicon in Ref. [14]. +In this Appendix we analyze the effect of incomplete +ionization for the case of silicon. To estimate the fraction +f of ionized impurities at a given temperature, we use the +Fermi-Dirac distribution evaluated at the defect level of +the impurity atom, ϵd [52]: +f = +1 +N uc +imp +� +N uc +imp +� +n,k +1 +e(ϵnk−ϵd)/kBT + 1. +(A1) +Here, N uc +imp is the number of impurities per unit cell. This +fraction vanishes when the temperature goes to zero, and +approaches unity at high temperature. +In Fig. 7 we show the influence of incomplete impu- +rity ionization on the electron mobility of Si. In these +calculations, we used ϵd =45 meV as measured from the +conduction band bottom [97]. By comparing these curves +with Fig. 1(a), we see that the effect of incomplete ion- +ization improves the agreement with experiments at low +temperature and high doping (red curves in both figures). +This is precisely the range where carrier-impurity scatter- +ing tends to dominate over phonon scattering, therefore +it is important to have a precise determination of the +impurity concentration in this range. A more systematic +assessment of these effects will require a broader database +of experimental mobilities to compare with. + +13 +FIG. 1. Comparison between our calculated carrier mobilities in Si with experimental data. (a) Electron mobility of Si as a +function of temperature. The black line and symbols are for low impurity concentration (no impurities in the calculations; +< 1012 cm−3 impurities in the experiment); the blue line and symbols are for an impurity concentration of 1.75×1016 cm−3; the +red line and symbols are for a concentration of 1.3×1017 cm−3. Filled disks are calculated values, open circles are experimental +data from Ref. [75] (black) and [74] (blue and red). (b) Hole mobility of Si as a function of temperature. The black line and +symbols are for low impurity concentration (no impurities in the calculations; 1012 cm−3 impurities in the experiment); the +blue line and symbols are for an impurity concentration of 2.4×1016 cm−3; the red line and symbols are for a concentration +of 2.0·1017 cm−3. Filled disks are calculated values, open circles are experimental data from Ref. [98] (black) and [74] (blue +and red). (c) Room temperature electron mobility of Si as a function of impurity concentration. Blue line and filled disks are +calculated data, open black circles are experimental data from Ref. [76]. + +104 +electron mobility (cm?Ns) +1500 +1250 +1000 +750 +103 +500 +250 +(a) +(c) +0 +104 +600 +500 +400 +103 +300 +O +200 +100 +000 +(b) +(d) +102, +0 +15 +100 +200 +300 +400 +500 +4 +16 +17 +18 +19 +10 +10 +10 +10 +10 +10 +temperature (K) +ionized impurity density (cm-3)14 +FIG. 2. Comparison between our calculated carrier mobilities in 3C-SiC with experimental data. (a) Electron mobility of Si +as a function of temperature. The black line and symbols are phonon-limited mobilities (no impurities in the calculations); the +blue line and symbols are for an impurity concentration of 5×1016 cm−3. Filled disks are calculated values, open circles are +experimental data from Ref. [78]. (b) Hole mobility of 3C-SiC as a function of temperature. The black line and symbols are +phonon-limited mobilities (no impurities); the blue line and symbols are for an impurity concentration of 1018 cm−3. All data +are calculated values. (c) Room temperature electron mobility of 3C-SiC as a function of impurity concentration. Blue line +and filled disks are calculated data, open symbols are experimental data from Ref. [24], Ref. [79], Ref. [86], and Ref. [80]. (d) +Room temperature hole mobility of 3C-SiC as a function of impurity concentration. Blue line and filled disks are calculated +data, open symbols are experimental data from Ref. [81], Ref. [82], Ref. [83], and Ref. [84]. + +2000 +(a) +electron mobility (cm?Ns) +104 +1500 +1000 +103. +8 +500 +(c) +0 +102 +250 +O +(b) +103 +hole mobility (cm?/Ns) +200 +150 +102 +100 +50 +00 +(d) +101 +0 +200 +300 +100 +400 +500 +14 +15 +16 +17 +18 +19 +10 +10 +10 +10 +10 +10 +temperature (K) +lonized Dopant Density (cm-3)15 +FIG. 3. Comparison between our calculated carrier mobilities in GaP with experimental data. (a) Electron mobility of GaP +as a function of temperature. The black line and symbols are phonon-limited mobilities (no impurities in the calculations); +the blue line and symbols are for an impurity concentration of 2.5×1018 cm−3. Filled disks are calculated values, open circles +are experimental data from Ref. [87]. (b) Hole mobility of GaP as a function of temperature. The black line and symbols +are phonon-limited mobilities (no impurities); the blue line and symbols are for an impurity concentration of 2 × 1018 cm−3. +Filled disks are calculated values, open circles are experimental data from Ref. [87]. (c) Room temperature electron mobility +of GaP as a function of impurity concentration. Blue line and filled disks are calculated data, open symbols are experimental +data from Ref. [87], Ref. [88], Ref. [90], and Ref. [89]. (d) Room temperature hole mobility of GaP as a function of impurity +concentration. Blue line and filled disks are calculated data, open symbols are experimental data from Ref. [87], Ref. [91], and +Ref. [92]. + +300 +500 +250 +400 +electron mobility +200 +300 +150- +200 +100 +100 +50 +(a) +(c) +0 +0 +500 +250 +400 +200 +300 +150 +200 +100 +100 +000000 +50 +(b) +(d) +0 +0 +200 +400 +100 +300 +500 +14 +15 +16 +17 +18 +19 +10 +10 +10 +10 +10 +10 +temperature (K) +ionized impurity density (cm-3)16 +FIG. 4. +Calculated carrier scattering rates at 300 K, for an impurity concentration of 1017 cm−3. (a) Hole scattering rates +in Si: carrier-phonon scattering rates (black disks) and carrier-impurity scattering rates (blue disks), as a function of energy +referred to the valence band maximum (VBM). The dashed line and the shaded area represents the thermal distribution of +carriers. (b) Electron scattering rates in Si: carrier-phonon scattering rates (black disks) and carrier-impurity scattering rates +(blue disks), as a function of energy referred to the conduction band minimum (CBM). (c) and (d): same as (a) and (b), but +for 3C-SiC. (e) and (f): same as (a) and (b), but for GaP. + +60 +60 +(a) +(b) +carrier-ph +50 +50 +carrier-i Ni=1017 cm-3 +electrons +40 +40 +les +hol +30 +30 +S +20 +S 20 +10 +10 +60 +60 +(d) +(C) +50 +50 +(zHI) +electrons +es +40 +40 +rate +loy +BC-Sic +30 +30 +scattering +-SiC +20 +20 +3 +10 +10 +60 +60 +(e) +(f) +50 +50 +lectrons +40 +40 +holes +30 +30 +e +R +20 +20 +10 +10 +-0.20 +-0.05 +-0.15 +-0.10 +0.00 +0.00 +0.05 +0.10 +0.15 +0.20 +energy below VBM (eV) +energy above CBM (eV)17 +FIG. 5. +Comparison between mobility calculations performed using the aiBTE by including both carrier-phonon and carrier- +impurity scattering, and mobilities obtained by using the Matthiessen’s rule. (a) Temperature-dependent electron mobility +of Si. The black line and symbols indicate the phonon-limited mobility; the red line is the impurity-limited mobility, for an +impurity concentration of 1.3 × 1017 cm−3; the dashed blue line is the mobility obtained from Matthiessen’s rule; the solid blue +line is the aiBTE calculation including both phonons and impurities. (b) Ratio between the electron mobility of Si calculated +using Matthiessen’s rule and the result of the aiBTE calculation with phonon and impurities, as a function of temperature. (c) +and (d): Same as in (a), for for 3C-SiC with an impurity concentration of 2.5 × 1018 cm−3. (e) and (f): Same as in (a), for for +3C-SiC with an impurity concentration of 5 × 1016 cm−3. + +(a) +(b) +1.5 +104 +1.4 +μaiBT +S +1.3 +103 +phonon only +impurity only +1.1 +Matthiessen +phonon+impurity +1.0 +(d) +(c) +1.5 +104 +μaiBTE +1.4 +1.3 +latt. +3 +103 +1.2 +3 +phonon only +impurity only +1.1 +Matthiessen +phonon+impurity +102 +1.0 +(e) +(f) +1.5 +μaiBTE +103 +1.4 +P +Gal +1.3 +μMatt. +1.2 +O- phonon only +102 +impurity only +1.1 +Matthiessen +phonon+impurity +1.0 +100 +200 +300 +400 +500 +100 +200 +300 +400 +500 +temperature (K) +temperature (K)18 +FIG. 6. +Comparison of correction schemes for improving the predictive accuracy of aiBTE calculations of mobilities. (a) +Room-temperature electron mobility of Si, as a function of impurity concentration. Blue lines and disks indicate the uncorrected +aiBTE results; green lines and disks indicate calculations with matrix elements corrected for screening; purple lines and disks +are calculations corrected for the effective masses; yellow lines and disks include corrections for both the screening and the +effective masses. Open black circles are experimental data. (b) Room temperature hole mobility of Si as a function of impurity +concentration: uncorrected (blue); with screening correction (green); with effective mass correction (purple); and with both +screening and mass correction (yellow). (c) and (d): Same as in (a) and (b) but for 3C-SiC. (e) and (f): Same as in (a) and +(b) but for GaP. The experimental data are the same as those reported in Figs. 1, 2, and 3 [24, 76, 79–84, 86–92]. + +1500 +exp +exp. +600 +calculated +calculated +scr. scaled +scr. scaled +1250 +500 +mass scaled +mass scaled + (cm²Ns) +2Ns) +scr. + mass scaled +scr. + mass scaled +1000 +400 +o) +750 +300 +an! +500 +S 200 +S +250 +100 +(b) +(a) +250 +2000 +exp. +exp. +calculated +calculated + (cm²/Ns) +scr. scaled +scr. scaled +mass scaled +1500 +scr. + mass scaled +150 +100 +500 +50 +(c) +(d) +0 +0 +exp. +250 +300 +calculated +scr. scaled +250 +200 +200 +.150 +urd +GaP +100 +des +exp. +100 +calculated +scr. scaled +50 +50 +mass scaled +(f) +scr. + mass scaled +(e) +0- +0 +14 +17 +15 +19 +15 +16 +18 +19 +14 +16 +17 +18 +10 +10 +10 +10 +10 +10 +10 +10 +10 +10 +10 +10 +ionized impurity density (cm-3) +ionized impurity density (cm-3)19 +FIG. 7. Electron mobility in Si as a function of temperature, including the effect of incomplete ionization of the dopants. The +black line and disks are the calculated phonon-limited mobilities. These data are compared to measurements for pristine silicon +(impurity concentration < 1012cm−3), from Ref. [75]. The blue disks and line are calculations for an impurity concentration of +1.75 × 1016 cm−3, taking into account incomplete dopant ionization as described in Appendix A. Experimental data are from +Ref. [74]. The red disks and line are for an impurity concentration of 1.3 × 1017 cm−3, taking into account incomplete dopant +ionization. Experimental data are from Ref. [74]. + +104 +Si μe (cm?Ns) +103 +100 +200 +300 +400 +500 +temperature (K)20 +[1] B. N. Pushpakaran, A. S. Subburaj, and S. B. Bayne, J. +Electron. Mater. 49, 6247 (2020). +[2] M. S. Ramkumar, R. Priya, R. F. Rajakumari, P. Val- +salan, M. K. Chakravarthi, G. C. P. Latha, S. Math- +upriya, and K. Rajan, J. Nanomater. 2022, 8648284 +(2022). +[3] A. J. Green, J. Speck, G. Xing, P. Moens, F. Allerstam, +K. Gumaelius, T. Neyer, A. Arias-Purdue, V. Mehro- +tra, A. Kuramata, K. Sasaki, S. Watanabe, K. Koshi, +J. Blevins, O. Bierwagen, S. Krishnamoorthy, K. Leedy, +A. R. Arehart, A. T. Neal, S. Mou, S. A. Ringel, +A. Kumar, A. Sharma, K. Ghosh, U. Singisetti, W. Li, +K. Chabak, K. Liddy, A. Islam, S. Rajan, S. Graham, +S. Choi, Z. Cheng, and M. Higashiwaki, APL Mater. 10, +029201 (2022). +[4] N. Papez, R. Dallaev, S. T¸alu, and J. Kastyl, Materials +14, 10.3390/ma14113075 (2021). +[5] O. D. Restrepo, K. Varga, and S. T. Pantelides, Appl. +Phys. Lett. 94, 212103 (2009). +[6] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comput. +Phys. Commun. 185, 1747 (2014). +[7] M. Fiorentini and N. Bonini, Phys. Rev. B 94, 085204 +(2016). +[8] T. Y. Kim, C.-H. Park, and N. Marzari, Nano Letters +16, 2439 (2016), pMID: 26907524. +[9] J. I. Mustafa, M. Bernardi, J. B. Neaton, and S. G. Louie, +Phys. Rev. B 94, 155105 (2016). +[10] S. Ponc´e, E. R. Margine, and F. Giustino, Phys. Rev. B +97, 121201 (2018). +[11] N. H. Protik and B. Kozinsky, Phys. Rev. B 102, 245202 +(2020). +[12] F. Caruso and F. Giustino, Phys. Rev. B 94, 115208 +(2016). +[13] I.-T. Lu, J.-J. Zhou, and M. Bernardi, Phys. Rev. Mate- +rials 3, 033804 (2019). +[14] I.-T. Lu, J.-J. Zhou, J. Park, and M. Bernardi, Phys. +Rev. Materials 6, L010801 (2022). +[15] C. Q. Xia, J. Peng, S. Ponc´e, J. B. Patel, A. D. Wright, +T. W. Crothers, M. Uller Rothmann, J. Borchert, R. L. +Milot, H. Kraus, Q. Lin, F. Giustino, L. M. Herz, and +M. B. Johnston, J. Phys. Chem. Lett. 12, 3607 (2021). +[16] N. Sanders and E. Kioupakis, Appl. Phys. Lett. 119, +062101 (2021). +[17] G. Slavcheva, J. H. Davies, A. R. Brown, and A. Asenov, +J. Appl. Phys. 91, 4326 (2002). +[18] H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. +Reno, Appl. Phys. Lett. 84, 645 (2004). +[19] F. R omer and B. Witzigmann, Phys. Status Solidi A +214, 1600297 (2017). +[20] E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 +(1950). +[21] H. Brooks (Academic Press, 1955) pp. 85–182. +[22] D. Long and J. Myers, Phys. Rev. 115, 1107 (1959). +[23] H. Kosina, G. Kaiblinger-Grujin, and S. Selberherr, in +SISPAD ’97. 1997 International Conference on Simula- +tion of Semiconductor Processes and Devices. Technical +Digest (1997) pp. 205–208. +[24] M. Roschke and F. Schwierz, IEEE Trans. Electron De- +vices 48, 1442 (2001). +[25] A. +Arvanitopoulos, +N. +Lophitis, +K. +N. +Gyftakis, +S. Perkins, and M. Antoniou, Semicond. Sci. Technol. +32, 104009 (2017). +[26] S. Ponc´e, W. Li, S. Reichardt, and F. Giustino, Rep. +Prog. Phys. 83, 036501 (2020). +[27] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 +(1964). +[28] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). +[29] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. +58, 1861 (1987). +[30] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, +Phys. Rev. B 43, 7231 (1991). +[31] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997). +[32] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gian- +nozzi, Rev. Mod. Phys. 73, 515 (2001). +[33] F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. +B 76, 165108 (2007). +[34] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, +D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. +185, 2309 (2014). +[35] F. Giustino, Rev. Mod. Phys. 89, 015003 (2017). +[36] P. Graziosi, C. Kumarasinghe, and N. Neophytou, ACS +Appl. Energy Mater. 3, 5913 (2020). +[37] A. M. Ganose, J. Park, A. Faghaninia, R. Woods- +Robinson, K. A. Persson, and A. Jain, Nat. Commun. +12, 2222 (2021). +[38] S. Ponc´e, E. Margine, C. Verdi, and F. Giustino, Comp. +Phys. Comm. 209, 116 (2016). +[39] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, +G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. +Mod. Phys. 86, 253 (2014). +[40] M. Bhatnagar and B. Baliga, IEEE Trans. Electron De- +vices 40, 645 (1993). +[41] F. Li, F. Roccaforte, G. Greco, P. Fiorenza, F. La Via, +A. P´erez-Tomas, J. E. Evans, C. A. Fisher, F. A. Mon- +aghan, P. A. Mawby, and M. Jennings, Materials 14, +10.3390/ma14195831 (2021). +[42] F. Li, A. B. Renz, A. P´erez-Tom´as, V. Shah, P. Gammon, +F. L. Via, M. Jennings, and P. Mawby, Appl. Phys. Lett. +118, 242101 (2021). +[43] T. E. Zipperian, R. J. Chaffin, and L. R. Dawson, IEEE +Trans. Ind. Electron. IE-29, 129 (1982). +[44] R. C. Hughes, T. E. Zipperian, L. R. Dawson, R. M. +Biefeld, R. J. Walko, and M. A. Dvorack, J. Appl. Phys. +69, 6500 (1991). +[45] J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, +L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, +F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, +J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, and +J. Tang, Nature 563, 541 (2018). +[46] S. Reif-Acherman, Proc. IEEE 103, 713 (2015). +[47] C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 +(2015). +[48] G. Brunin, H. P. C. Miranda, M. Giantomassi, M. Royo, +M. Stengel, M. J. Verstraete, X. Gonze, G.-M. Rignanese, +and G. Hautier, Phys. Rev. Lett. 125, 136601 (2020). +[49] J. Park, J.-J. Zhou, V. A. Jhalani, C. E. Dreyer, and +M. Bernardi, Phys. Rev. B 102, 125203 (2020). +[50] J. Sakurai and J. Napolitano, Modern Quantum Mechan- +ics (2nd Edition) (Pearson; 2nd edition, 2010). +[51] W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 +(1957). +[52] N. Ashcroft and N. Mermin, Solid State Physics (Saun- + +21 +ders College Publishing: Fort Worth, TX, USA;, 1976). +[53] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, +M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, +D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, +A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, +A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, +U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa- +mura, H.-Y. Ko, A. Kokalj, E. K¨u¸c¨ukbenli, M. Lazzeri, +M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.- +V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Ponc´e, +D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitso- +nen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, +N. Vast, X. Wu, and S. Baroni, J. Phys. Condens. Matter +29, 465901 (2017). +[54] G. Pizzi, V. Vitale, R. Arita, S. Bl¨ugel, F. Freimuth, +G. G´eranton, M. Gibertini, D. Gresch, C. Johnson, +T. Koretsune, J. Iba˜nez-Azpiroz, H. Lee, J.-M. Lihm, +D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, +Y. Nohara, Y. Nomura, L. Paulatto, S. Ponc´e, T. Pon- +weiser, J. Qiao, F. Th¨ole, S. S. Tsirkin, M. Wierzbowska, +N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and +J. R. Yates, Journal of Physics: Condensed Matter 32, +165902 (2020). +[55] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. +Lett. 77, 3865 (1996). +[56] D. R. Hamann, Phys. Rev. B 88, 085117 (2013). +[57] M. van Setten, M. Giantomassi, E. Bousquet, M. Ver- +straete, D. Hamann, X. Gonze, and G.-M. Rignanese, +Comp. Phys. Comm. 226, 39 (2018). +[58] S. Ponc´e, F. Macheda, E. R. Margine, N. Marzari, +N. Bonini, and F. Giustino, Phys. Rev. Research 3, +043022 (2021). +[59] J. Sjakste, N. Vast, M. Calandra, and F. Mauri, Phys. +Rev. B 92, 054307 (2015). +[60] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. +Rev. B 75, 195121 (2007). +[61] G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, +368 (1955). +[62] R. N. Dexter and B. Lax, Phys. Rev. 96, 223 (1954). +[63] J. Kono, S. Takeyama, H. Yokoi, N. Miura, M. Ya- +manaka, M. Shinohara, and K. Ikoma, Phys. Rev. B 48, +10909 (1993). +[64] C. Bradley, P. Simmonds, J. Stockton, and R. Stradling, +Solid State Commun. 12, 413 (1973). +[65] R. Kaplan, R. Wagner, H. Kim, and R. Davis, Solid State +Commun. 55, 67 (1985). +[66] P. J. Dean and D. G. Thomas, Phys. Rev. 150, 690 +(1966). +[67] P. J. Collings, Am. J. Phys. 48, 197 (1980). +[68] D. Bimberg, M. Altarelli, and N. Lipari, Solid State Com- +mun. 40, 437 (1981). +[69] M. R. Lorenz, G. D. Pettit, and R. C. Taylor, Phys. Rev. +171, 876 (1968). +[70] L. Patrick and W. J. Choyke, Phys. Rev. B 2, 2255 +(1970). +[71] Gallium phosphide (gap), refractive index, absorption, +reflection, dielectric constants (2002). +[72] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. +Appl. Phys. 89, 5815 (2001). +[73] T. Kimoto and J. A. Cooper, Appendix c: Major physical +properties of common sic polytypes, in Fundamentals of +Silicon Carbide Technology (John Wiley and Sons, Ltd, +2014) pp. 521–524. +[74] F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954). +[75] C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and +A. Alberigi-Quaranta, Phys. Rev. B 12, 2265 (1975). +[76] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi +Quaranta, Solid State Electron. 20, 77 (1977). +[77] K. Misiakos and D. Tsamakis, J. Appl. Phys. 74, 3293 +(1993). +[78] M. Shinohara, M. Yamanaka, H. Daimon, E. Sakuma, +H. Okumura, S. Misawa, K. Endo, and S. Yoshida, Jpn. +J. Appl. Phys. 27, L434 (1988). +[79] Y. Hirano and T. Inada, J. Appl. Phys. 77, 1020 (1995). +[80] W. E. Nelson, F. A. Halden, and A. Rosengreen, J. Appl. +Phys. 37, 333 (1966). +[81] J. Wan, M. Capano, M. Melloch, and J. Cooper, IEEE +Electron Device Lett. 23, 482 (2002). +[82] K. K. Lee, Y. Ishida, T. Ohshima, K. Kojima, Y. Tanaka, +T. Takahashi, H. Okumura, K. Arai, and T. Kamiya, +IEEE Electron Device Lett. 24, 466 (2003). +[83] A. Sch¨oner, M. Krieger, G. Pensl, M. Abe, and H. Naga- +sawa, Chem. Vap. Depos. 12, 523 (2006). +[84] H. Nagasawa, M. Abe, K. Yagi, T. Kawahara, and +N. Hatta, Phys. Status Solidi B Basic Res. 245, 1272 +(2008). +[85] P. A. Ivanov and V. E. Chelnokov, Semicond. Sci. Tech- +nol. 7, 863 (1992). +[86] R. S. Kern and R. F. Davis, Appl. Phys. Lett. 71, 1356 +(1997). +[87] Y. C. Kao and O. Eknoyan, J. Appl. Phys. 54, 2468 +(1983). +[88] T. Miyauchi, H. Sonomura, and N. Yamamoto, Jpn. J. +Appl. Phys. 6, 1409 (1967). +[89] M. G. Craford, W. O. Groves, A. H. Herzog, and D. E. +Hill, J. Appl. Phys. 42, 2751 (1971). +[90] T. Hara and I. Akasaki, J. Appl. Phys. 39, 285 (1968). +[91] G. F. Alfrey and C. S. Wiggins, Z. Naturforsch. A 15, +267 (1960). +[92] M. M. Cohen and F. D. Bedard, J. Appl. Phys. 39, 75 +(1968). +[93] Z. Li, G. Antonius, M. Wu, F. H. da Jornada, and S. G. +Louie, Phys. Rev. Lett. 122, 186402 (2019). +[94] M. Lundstrom, Fundamentals of Carrier Transport (2nd +Edition) (Cambridge University Press, 2009). +[95] T. Sohier, M. Calandra, and F. Mauri, Phys. Rev. B 94, +085415 (2016). +[96] W. H. Sio and F. Giustino, Phys. Rev. B 105, 115414 +(2022). +[97] H. Wu, K. Li, X. Gao, and Y. Dan, AIP Advances 7, +105310 (2017). +[98] G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and +A. Alberigi-Quaranta, Phys. Rev. B 12, 3318 (1975). + diff --git a/n9E0T4oBgHgl3EQfZgDd/content/tmp_files/load_file.txt b/n9E0T4oBgHgl3EQfZgDd/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6acf3c1dfa7545e5a9bb1ea38e5377ab762d30d0 --- /dev/null +++ b/n9E0T4oBgHgl3EQfZgDd/content/tmp_files/load_file.txt @@ -0,0 +1,1776 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf,len=1775 +page_content='Ab initio calculation of carrier mobility in semiconductors including ionized-impurity scattering Joshua Leveillee,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2 Xiao Zhang,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 Emmanouil Kioupakis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 and Feliciano Giustino1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2 1Oden Institute for Computational Engineering and Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The University of Texas at Austin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Austin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Texas 78712,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' USA 2Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The University of Texas at Austin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Austin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Texas 78712,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' USA∗ 3Department of Materials Science and Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' University of Michigan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ann Arbor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Michigan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 48109,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' USA (Dated: January 9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2023) The past decade has seen the emergence of ab initio computational methods for calculating phonon-limited carrier mobilities in semiconductors with predictive accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' More realistic calcu- lations ought to take into account additional scattering mechanisms such as, for example, impurity and grain-boundary scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this work, we investigate the effect of ionized-impurity scattering on the carrier mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We model the impurity potential by a collection of randomly distributed Coulomb scattering centers, and we include this relaxation channel into the ab initio Boltzmann transport equation, as implemented in the EPW code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We demonstrate this methodology by con- sidering silicon, silicon carbide, and gallium phosphide, for which detailed experimental data are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calculations agree reasonably well with experiments over a broad range of tempera- tures and impurity concentrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For each compound investigated here, we compare the relative importance of electron-phonon scattering and ionized-impurity scattering, and we critically assess the reliability of Matthiessen’s rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We also show that an accurate description of dielectric screening and carrier effective masses cam improve quantitative agreement with experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' INTRODUCTION The ability to predict the charge transport properties of semiconductors using non-empirical ab initio meth- ods is of paramount importance for the design of next- generation electronics, neuromorphic computing, energy- efficient lighting, and energy conversion and storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For example, as beyond-silicon materials for next-generation field-effect transistors are being explored, such as wide- gap semiconductors like GaN [1], SiC [2], and Ga2O3 [3], or high-mobility materials such as GaAs [4], ab initio methods for calculating transport properties with pre- dictive accuracy are acquiring an increasingly important role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The past decade has seen numerous developments in first-principles calculations of phonon-limited charge transport coefficients such as the electrical conductivity in metals, and the drift and Hall mobilities in semicon- ductors [5–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' More recently, several groups turned their attention to ab initio calculations of additional scattering mechanisms [5, 12–16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Among the various mechanisms, impurity scattering is of particular interest since ionized donors and acceptors are ubiquitous in high-purity doped semiconductors, and intrinsic point defects are unavoid- able in all other materials [17–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this work we fo- cus on ionized-impurity scattering, which is expected to provide the most significant contribution to the carrier relaxation rates beyond phonons, given the long-ranged nature of the Coulomb potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ionized-impurity scattering in semiconductors has first been studied via the Conwell-Weisskopf model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this ∗ fgiustino@oden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='edu model, the scattering potential of the impurity is de- scribed using a Coulomb monopole immersed in the di- electric background of the semiconductor [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The long- range nature of this potential makes it ill-behaved at long-wavelength, and the singularity at long wavelengths is removed using an ad hoc infrared cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A better handling of this singularity is achieved in the Brooks- Herring model by considering free-carrier screening [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This latter model proved very successful [22], and is still widely used owing to its simplicity as it only requires the electronic density of states, the carrier effective mass, the high-frequency dielectric constant, and the impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Further improvements upon these models were subsequently introduced, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=', carrier statistics, dis- persive electronic screening, two-impurity scattering, and atomic form factors [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' While this class of models en- joyed considerable success with calculations of the carrier mobility of silicon, they do not perform as well with other semiconductors [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These and similar other empir- ical adjustments make it harder to quantify the role of each scattering channels, and most importantly decrease the transferability of the models and ultimately their use- fulness in materials design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' During the past decade, considerable progress has been achieved in ab initio calculations of charge carrier mo- bilities [5–8, 14, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These approaches are based on the use of electronic band structures from density func- tional theory (DFT) [27, 28], as well as phonon disper- sion relations and electron-phonon matrix elements from supercell calculations or from density-functional pertur- bation theory (DFPT) [29–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To achieve a numerically converged sampling of the Brillouin zone, most calcula- tions by now employ Wannier-Fourier interpolation [33– 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mobilities are then obtained by solving the ab initio arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='02323v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='mtrl-sci] 5 Jan 2023 2 Boltzmann transport equation (aiBTE) [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The first study of ionized-impurity scattering from first principles was reported by Restrepo and Pantelides [5], and more recent, state-of-the-art calculations have been reported by Lu and coworkers [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this latter work, the au- thors find good agreement between calculated mobilities and experimental data for silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Additional work using a semi-empirical approach combining DFT calculations and models was also reported recently [36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this work, we investigate from first principles the effect of ionized-impurity scattering on the carrier mobil- ity of semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To this aim, we take into account both carrier-phonon and carrier-impurity scattering on the same footing, within the aiBTE formalism as imple- mented in the EPW code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [38] Given that the shape of the impurity potential depends on the details of the crys- tal structure and its evaluation would require thermody- namic calculations of defects and defect levels [39], we limit ourselves to consider the monopole term of the scat- tering potential and a random distribution of impurities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This simplification allows us to achieve an elegant and compact formalism, and to compute carrier mobilities by using solely the concentration of ionized impurities as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To validate our methodology, we perform calcu- lations for three test systems: Si, 3C-SiC, and GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For Si there is an abundance of experimental data and previ- ous calculations to compare with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3C-SiC, which is also referred to as cubic SiC or β-SiC in the literature, is con- sidered a promising candidate for next-generation power electronics [40–42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Several experimental data sets are available for carrier mobility in 3C-SiC, especially for n- type (N) doping and less so for p-type doping (Al).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' GaP is a standard optoelectronic semiconductor which is of in- terest in non-linear optical switching [43–45];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' experimen- tal mobility data for GaP are available both for n-type doping (Sn) and p-type doping (Zn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For each of these compounds we calculate the temperature-dependent car- rier mobility at variable impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We in- vestigate the relative importance of carrier-phonon and carrier-impurity scattering, and we examine the validity of the classic Matthiessen’s rule [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The manuscript is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II we briefly summarize the aiBTE formalism, we provide a detailed derivation of the matrix elements for carrier- impurity scattering, and we discuss the key approxima- tions involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this section we also discuss free-carrier screening, and we examine under which conditions the Matthiessen rule can reliably be used in transport cal- culations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Section III is devoted to the implementa- tion details and the calculation parameters used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV we discuss our results for Si, SiC, and GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In particular, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV B we present our cal- culated temperature- and concentration-dependent mo- bilities and compare our data with experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV C we analyze the relative importance of phonon- and impurity-mediated scattering processes in the carrier relaxation rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV D we test Matthiessen’s rule by comparing full aiBTE calculations with the results of separate calculations including only phonon-limited or impurity-limited mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV E we investigate how the DFT dielectric screening and carrier effective masses influence calculated mobilities, and we test sim- ple correction schemes along the lines of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' V we summarize our findings and offer our conclu- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Additional details on the calculation procedure are discussed in the Appendices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' THEORETICAL APPROACH A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Carrier mobility from the ab initio Boltzmann transport equation A detailed derivation of the aiBTE formalism is given in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Here we limit ourselves to summarize the key equations in order to keep this manuscript self-contained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Within the linearized Boltzmann transport equation, the carrier mobility tensor is obtained as: µαβ = − 2 Ωucnc 1 Nuc � nk vα nk∂Eβfnk, (1) where the factor of 2 is for the spin degeneracy, Greek indices indicate Cartesian directions, Eβ indicate the Cartesian components of the electric field, and ∂Eβfnk is the linear variation of the electronic occupation of the state with band index n and wavevector k in response to the applied field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' vα nk represents the expectation value of the velocity operator along the direction α, for the Kohn-Sham state nk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' e, nc, Ωuc, and Nuc indicate the electron charge, the carrier density, the volume of the unit cell, and the number of unit cells in the Born-von K´arm´an (BvK) supercell, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The n-summation extends over all Kohn-Sham states, although in practice only those states near the chemical potential contribute to the mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The k-summation is over a uniform Bril- louin zone grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The variation ∂Eβfnk is obtained from the self- consistent solution of the equation: −evβ nk ∂f 0 nk ∂ϵnk = � mq � τ −1 mk+q→nk ∂Eβfmk+q −τ −1 nk→mk+q ∂Eβfnk � , (2) where f 0 nk denotes the Fermi-Dirac occupation of the state nk in the absence of electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The quantity τ −1 nk→mk+q is the partial scattering rate from the Kohn- Sham state nk to the state mk + q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In many-body per- turbation theory, this rate is derived from the imaginary parts of the electron self-energy, therefore different scat- tering mechanisms simply add up to the lowest order in perturbation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this work, we write the scattering rate as the sum of the rates of carrier-phonon scattering (ph) and carrier-impurity (imp) scattering: 1 τnk→mk+q = 1 τ ph nk→mk+q + 1 τ imp nk→mk+q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (3) 3 The partial carrier-phonon scattering rate is given by [26]: 1 τ ph nk→mk+q = 1 Nuc � ν 2π ¯h |gmnν(k, q)|2 × � (nqν + 1 − f 0 mk+q)δ(ϵnk−ϵmk+q − ¯hωqν) +(nqν + f 0 mk+q)δ(ϵnk−ϵmk+q + ¯hωqν) � , (4) where ϵnk denote Kohn-Sham eigenstates, and ωqν stands for the frequency of a phonon with branch in- dex ν, wavevector q, and Bose-Einstein occupation nqν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The matrix elements gmnν(k, q) indicate the probability amplitude for the scattering of an electron from state nk to state mk+q via a phonon qν [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The partial rate in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (4) can be obtained either from Fermi’s golden rule or from many-body perturbation theory [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The carrier- impurity scattering rate required in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (3) is derived in the next section and is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Together, Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (1)-(4) and (17) define the aiBTE framework employed in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This approach consis- tently captures back-scattering and Umklapp processes, with a computational cost that is similar to more ap- proximate approaches based on various relaxation-time approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We refer the reader to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [26] for a comprehensive review of common approximations to the Boltzmann transport equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Scattering of Carriers by ionized impurities in the monopole approximation To obtain the carrier-impurity scattering rate 1/τ imp nk→mk+q we proceed as follows: (i) We derive the matrix element of the scattering potential for a single impurity in a periodic BvK supercell of the crystal unit cell;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (ii) We generalize the matrix element to consider a number Nimp of impurities in the BvK supercell;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (iii) From this matrix element, we obtain the scattering rate corresponding to the Nimp impurities by using the first Born approximation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (iv) We average the resulting rate over a random uniform distribution of impurity positions using a method due to Kohn and Luttinger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Scattering potential and matrix element for single impurity We employ the monopole approximation to describe the potential of an impurity of charge Ze located at the position r0 in the BvK supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A more refined choice would entail explicitly calculating the impurity poten- tial in DFT and its matrix elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This approach was pursued in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [5] and [14], but it carries the disadvan- tage that one needs to compute defect energetics prior to mobility calculations, and then perform rotational av- erages to account for the randomness of the impurity orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our simpler approach is useful for system- atic transport calculations when detailed knowledge of the atomic-scale structure of impurities is lacking, and can be made more accurate by incorporating dipole and quadrupole terms along the lines of Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [47–49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' By solving the Poisson equation in the BvK supercell and considering a background anisotropic static dielec- tric constant tensor ε0 = ε0 αβ, the potential of this point charge is found to be [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (S3) of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [47]]: φ(r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' r0) = 4π Ωsc Ze 4πε0 � q � G̸=−q ei(q+G)·(r−r0) (q + G)·ε0· (q + G), (5) modulo an inessential constant that reflects the compen- sating background charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this expression, ε0 is the vacuum permittivity, G is a reciprocal lattice vector, and the wavevector q belongs to a uniform Brillouin- zone grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Here an in the following, we consider that the BvK cell consists of Nuc unit cells, so that its volume is Ωsc = NucΩuc, and that the Brillouin zone is discretized in a uniform grid of Nuc points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The potential φ(r, r0) is periodic over the BvK supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The perturbation potential resulting from this impu- rity is V = ∓eφ for electrons and holes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For definiteness, we consider electrons in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The matrix elements of the perturbation V between the Kohn-Sham states ψnk and ψmk+q is given by: gimp mn (k, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' r0) = ⟨ψmk+q|V (r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' r0)|ψnk⟩sc, (6) where the integral is over the supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The states can be written as ψnk = N −1/2 uc eik·runk, where unk is the Bloch-periodic part and is normalized in the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The combination of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (5) and (6) yields: gimp mn (k, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' r0) = −e2 4πε0 4πZ Ωsc � G̸=−q e−i(q+G)·r0Bmn,G(k, q) (q + G)·ε0· (q + G) , (7) having defined the overlap integral: Bmn,G(k, q) = ⟨umk+q|eiG·r|unk⟩uc, (8) which is evaluated over the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Scattering rate from multiple impurities within the first Born approximation We now consider N sc imp impurities located at the po- sitions r1, r2, · · · , rNimp in the BvK supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The corresponding perturbation potential is the sum of the potentials obtained in the previous section, V = �N sc imp I=1 V (r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' rI), therefore the generalization of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (7) to the case of multiple identical impurities reads: gimp mn (k, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' {rI}) = −e2 4πε0 4πZ Ωsc � G̸=−q Bmn,G(k, q) (q + G)·ε0· (q + G) × �N sc imp I=1 e−i(q+G)·rI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (9) 4 The total scattering rate out of state nk associated with this matrix element can be written using the first Born approximation for the scattering matrix [50] [Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='16) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='32)]: 1 τ imp nk = � mq 2π ¯h |gimp mn (k, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' {rI})|2δ(ϵnk − ϵmk+q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (10) We note that this expression is an intensive quantity, as expected, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' it does not scale with the size of the BvK supercell [see discussion after Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The partial scattering rate needed in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (3) is then defined as: 1 τ imp nk→mk+q = 2π ¯h |gimp mn (k, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' {rI})|2δ(ϵnk−ϵmk+q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (11) Unlike Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (4), in this expressions we do not have the Fermi-Dirac occupations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These occupations drop out in the linearized Boltzmann transport equation, as it can be verified, for example, by setting nqν = 0 and ωqν = 0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (11) the Dirac delta function ensures energy conservation, consistent with the fact that we are considering the scattering by a fixed potential, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' we are neglecting the recoil of the impurity upon collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' By combining Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (9) and (11) we find: 1 τ imp nk→mk+q ({ri}) = 2π ¯h � e2 4πε0 4πZ Ωsc �2 δ(ϵnk − ϵmk+q) × � G,G′̸=−q Bmn,G(k, q)B∗ mn,G′(k, q) (Q ·ε0· Q)(Q′ ·ε0· Q′) �N sc imp I,J=1ei(Q′·rJ−Q·rI), (12) having defined Q = q + G and Q′ = q + G′ for conve- nience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kohn-Luttinger ensamble averaging of the scattering rate In order to account for the randomness in the dis- tribution of impurities, we perform a configuration av- erage of the scattering rate in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (12) by considering a uniform probability distribution, following the Kohn- Luttinger approach [51]: 1 τ imp,ave nk→mk+q = � sc dr1 · · · drN sc imp Ω N sc imp sc 1 τ imp nk→mk+q ({ri}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (13) The only term that depends on the impurity positions in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (12) is the sum over I, J on the second line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Below we evaluate the ensemble average of this sum by separating the I = J and I ̸= J terms: � sc dr1 · · · drN sc imp ΩNimp sc �N sc imp I,J=1ei(Q′·rJ−Q·rI) = N sc imp Ωsc � sc dr ei(Q′−Q)·r +N sc imp(N sc imp − 1) Ω2sc �� sc dr eiQ′·r ��� sc dr e−iQ·r � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (14) Both terms on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' require the evaluation of an in- tegral of the type: � sc dr eiQ·r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (15) This integral equals Ωsc for Q = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' for finite Q, we note that the integral becomes the Fourier representation of the Dirac delta when Nuc → ∞, therefore it vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this limit, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (14) reduces to: � sc dr1 · · · drNimp Ω N sc imp sc �N sc imp I,J=1ei(Q′·rJ−Q·rI) = N sc imp δG,G′ + N sc imp(N sc imp − 1) δG,−qδG′,−q, (16) Using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (16) and (12) inside Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (13), we obtain: 1 τ imp,ave nk→mk+q = 1 Nuc N uc imp 2π ¯h � e2 4πε0 4πZ Ωuc �2 × � G̸=−q |Bmn,G(k, q)|2 |(q + G) ·ε0· (q + G)|2 δ(ϵnk − ϵmk+q), (17) where we use N uc imp = N sc imp/Nuc to denote the number of impurities per unit cell;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' N uc imp is a dimensionless quan- tity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We note that, in practical calculations, the prefac- tor 1/Nuc in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17), which also appears in the partial carrier-phonon scattering rate in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (4), is included as a k-point weight in Brillouin zone summations, so that the sum in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (2) becomes N −1 uc � q and is independent of the size of the BvK supercell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The scattering rate given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) is similar but not identical to alternative forms used in previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For example, it differs from classic approaches such as the Conwell-Weisskopf formula [20] and the Brooks-Herring formula [21] in that here the details of band structures, Kohn-Sham orbital overlaps, and anisotropic dielectric screening are fully taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Furthermore, it differs from more recent ab initio approaches such as Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [5] in that the long-range nature of the Coulomb in- teraction is taken into account from the start, as opposed to being included as an ad hoc correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our expression is similar to the formula provided in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [14], except that here we take into account the periodicity of the impurity potential over the BvK supercell and the anisotropy of the dielectric tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The fact that we reached a similar expression as in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [14] starting from a rather different viewpoint involving the Kohn-Luttinger ensemble aver- age lends support to both approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Free-carrier screening of the impurity potential The carrier-impurity scattering rate given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) contains a singular q−4 term that is not integrable (with q = |q|), and leads to incorrect results when used in the aiBTE of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This problem was already identified by 5 Conwell and Weisskopf [20], who introduced an infrared cutoff to suppress the Coulomb singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The formal way to overcome this difficulty is to observe that ionized impurities are accompanied by free-carriers, which introduce metallic-like screening of the impurity potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the Thomas-Fermi model, free-carriers in- troduce an additional screening εTF(q) = 1 + q2 TF q2 , (18) where qTF is the Thomas-Fermi wavevector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' When used in combination with the impurity potential appearing in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17), this additional screening lifts the Coulomb sin- gularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In fact, by temporarily ignoring the G vectors and the anisotropy of the dielectric tensor, free-carrier screening modifies the denominator of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) as fol- lows: 1 (ε0q2)2 −−→ 1 [εTF(q)ε0q2]2 = 1 [ε0(q2 + q2 TF)]2 , (19) which tends to the finite value 1/(ε0q2 TF)2 at long wave- length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To incorporate free-carrier screening in our calcula- tions, while taking into account all details of band struc- tures and effective masses, we employ the Lindhard di- electric function instead of the Thomas-Fermi model, fol- lowing Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The same approach was employed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The Lindhard dielectric function is given by: εL(q) = 1 − e2 4πε0 4π q2 2 NucΩuc � nk f 0 nk+q − f 0 nk ϵnk+q − ϵnk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (20) Since the density of free-carriers is typically low in doped semiconductors, we only need the long wavelength limit of this expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this limit, (f 0 nk+q − f 0 nk)/(ϵnk+q − ϵnk) = ∂f 0 nk/∂ϵnk, therefore we can write: εL(q) = 1 + q2 TF q2 , (21) having introduced the effective Thomas-Fermi vector: qTF = e2 4πε0 2 · 4π NucΩuc � nk ���� ∂f 0 nk ∂ϵnk ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (22) For parabolic bands, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (21) reduces to the Thomas- Fermi or Debye model in the respective temperature lim- its.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The free-carrier screening provides an additional screening mechanism to the dielectric screening of the insulating semiconductors, and is included in our calcu- lations by replacing ε0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) by the total dielectric function: ε0 −−→ ε0 + 1q2 TF q2 , (23) where 1 denotes the 3 × 3 identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We note that this improved description of the screening includes tem- perature effects via the Fermi-Dirac occupations entering the definition of the effective Thomas-Fermi wavevector, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Matthiessen’s Rule Matthiessen’s rule [46] is widely employed to interpret transport measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the context of carrier trans- port in semiconductors, this rule can be stated as follows: the contributions of different scattering channels to the mobility can be obtained by adding the reciprocals of the individual mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of carrier-phonon and impurity-phonon scattering, we would have: 1 µ = 1 µph + 1 µimp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (24) In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV we proceed to quantify the reliability of this approximation by comparing mobility data calculated us- ing the complete aiBTE including both phonons and im- purities with the prediction of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (24) obtained by cal- culating the mobility with these two scattering channels taken individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We will show that this rule does not carry predictive power for the examples considered in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' From a formal standpoint, the rule expressed by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (24) is obviously related to the choice of expressing the total scattering rates as the sum or the individual rates, see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' That choice was motivated by the observation that, to first order in perturbation theory, different scattering channels do not mix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' However, it is easy to see that, even when Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (3) is a good approx- imation, the additivity of the rates does not imply the Matthiessen rule as expressed by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To appreciate this point, we observe that the aiBTE in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (2) can be recast as a linear system of the type: A × {∂Eβfnk} = b, (25) where the matrix A contains the partial scattering rates τ −1 nk→n′k′, the vector b contains the drift term on the left hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (2), and {∂Eβfnk} denotes the vector of solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' If we break down the matrix A into its contri- butions from carrier-phonon and carrier-impurity scat- tering, Aph and Aimp respectively, we see immediately that {∂Eβfnk} = (Aph + Aimp)−1b ̸= A−1 ph b + A−1 impb, (26) therefore the additivity of the scattering rates does not imply the Matthiessen rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This point can be made even more explicit by considering the self-energy relax- ation time approximation to the aiBTE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The approxi- mation consists of neglecting the first term on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (2), and yields the following expression for the mobility: µαβ = − e Ωucnc 2 Nuc � nk ∂f 0 nk ∂ϵnk vα nkvβ nk × 1 1 τ ph nk + 1 τ imp nk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (27) 6 TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Calculation parameters used in this work: Experi- mental lattice constant, plane wave kinetic energy cutoff, and non-vanishing elements of the quadrupole tensor are chosen to be consistent with Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Si 3C-SiC GaP Lattice constant (˚A) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='43 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='45 Plane wave kinetic energy cutoff (eV) 544 1088 1088 Qκ1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='83 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='41 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='72 Qκ2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='83 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='63 -6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='92 Coarse k and q grids 123 123 123 Fine k and q electron grid 1003 1803 1003 Fine k and q hole grid 1003 1003 1003 For this expression to be amenable to Matthiessen’s rule, the scattering rates would need to be independent of the electronic state, say τ ph nk = τ ph and τ imp nk = τ imp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This is typically not the case in most semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Another special case where Matthiessen’s formula is meaningful occurs when one scattering mechanism dominates over the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For example, in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (27), when τ ph nk ≫ τ imp nk , the expression reduces to the phonon-limited mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this sense, Matthiessen’s rule constitutes a simple inter- polation formula between the limiting cases of phonon- limited and impurity-limited mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We will analyze these aspects quantitatively in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' COMPUTATIONAL METHODS All calculations are performed using the Quantum ESPRESSO materials simulation suite [53], the EPW code [38], and the Wannier90 code [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We employ the PBE exchange and correlation functional [55] and op- timized norm-conserving Vanderbilt (ONCV) pseudopo- tentials from the PseudoDojo repository [56, 57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For consistency with previous work, we use the experimental lattice constant of Si, SiC, and GaP at room temperature, and the plane-wave kinetic energy cutoff and quadrupole tensors reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We include spin-orbit cou- pling for the valence bands only, to capture the splitting of the valence band top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Key calculation parameters are summarized in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We calculate effective mass tensors by finite differences, using a wavevector increment of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='01 × 2π/a, where a is the lattice constant reported in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The dynam- ical matrix, the variations of the self-consistent poten- tial, and the vibrational eigenfrequencies and eigenmodes are calculated using a square convergence threshold of 10−16 Ry2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This threshold refers to the change of the potential variation between two successive iterations, av- eraged over the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electron energies, phonon frequencies, and electron-phonon matrix elements are initially computed on a coarse wavevector mesh using the EPW code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The electron Hamiltonian, the dynam- ical matrix, and the electron-phonon matrix elements are then interpolated onto fine Brillouin zone grids us- ing Wannier-Fourier interpolation [33, 34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Long-range dipole and quadrupole corrections are employed for im- proved interpolation of the electron-phonon matrix ele- ments [47–49, 58, 59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To compute carrier mobilities, only states within a nar- row energy window of the band extrema are necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We find that, for the range of temperatures considered in this work (up to 500 K), a window of 400 meV is sufficient to obtain converged electron mobilities, and a window of 300 meV is sufficient for hole mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' At 300 K, converged results can be obtained by using a 200 meV window for both electrons and holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To evaluate the overlap matrices Bmn,G(k, q) required in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) in the fine Brillouin zone grid, we follow the procedure of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [47] and approximate them as: Bmn,G(k, q) ≈ � U(k + q)U †(k) � mn , (28) where the unitary matrix Umn(k) is the diagonalizer of the interpolated Hamiltonian into the wavevector k of the fine grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This approximation is motivated by the fact that the carrier-impurity matrix element in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) is strongly peaked at q + G = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The Dirac delta functions appearing in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (4) and (17) are computed using Gaussian functions with a small broadening parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The results are sensitive to the choice of this parameter, therefore we accelerate the con- vergence by employing adaptive smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The proce- dure for the adaptive smearing of the carrier-phonon scat- tering rate, which involves a so-called type-III integral, is discussed in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [6, 58, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The calculation of the carrier-impurity scattering rates involves instead a type- II integral of the form: III nk = � m � dq ΩBZ fmn(k, q) δ(ϵmk+q − ϵnk), (29) where ΩBZ is the volume of the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this case, adaptive broadening can be achieved by using a state-dependent width σmk+q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We follow the procedure by Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [60], which gives: σmk+q = α 3 3 � i=1 vmk+q · bi Ni , (30) where vmk+q is the band velocity, bi is a primitive vector of the reciprocal lattice, and Ni denotes the number of k-points along the direction of bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The coefficient α is a tunable parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Previous work has used α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='29 for electron-phonon scattering rates [6, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We have performed a detailed converged test by comparing fixed- smearing and variable-smearing calculations, and found that values α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 provide similar results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For sim- plicity, in this work we use α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='29 as in previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In principle we could perform calculations of carrier mobilities by setting the impurity concentration and the carrier concentration separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This would be required, for example, for the investigation of compensation dop- ing of semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To keep our results are general 7 as possible, in this work we choose to focus on the sim- pler scenario where each impurity creates one free car- rier, therefore we set the carrier density to be equal to the impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We do not consider carrier freeze-out at low temperature, since this would require the knowledge of defect energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In our calcula- tions, the role of the carrier concentration is mainly to modulate the effective Thomas-Fermi screening wavevec- tor in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' RESULTS AND DISCUSSION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electronic structure Given the importance of effective masses in mobility calculations, in this section we review briefly the band structures and effective masses of Si, SiC, and GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ta- ble II shows our calculated directional effective masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hole masses are given for the heavy-hole (hh) band, light hole (lh) band, and the spin-orbit split-off (so) band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The longitudinal (∥) and transverse (⊥) electron masses cor- respond to the principal axes of the ellipsoidal conduction band extrema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II we see that the light hole and split-off hole masses are fairly isotropic for all compounds con- sidered in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For the heavy hole masses, the Γ-X direction ([100] crystallographic direction) exhibits the lightest masses, whereas considerably heavier masses are found along the Γ-K ([110]) and Γ-L ([111]) directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Similarly, in all compounds considered here the longitu- dinal electron masses are considerably heavier than the corresponding transverse masses, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' SiC ex- hibits the heaviest hole masses among SiC, GaP, and Si;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' while GaP exhibits the heaviest electron masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calculated effective masses are in good agreement with previous calculations at the DFT level [10] as well as previous calculations at the GW level [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' When com- paring to experimental data, we see from Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II that our electron effective masses are within 10% of the corre- sponding experimental values, which is remarkable con- sidering that we are using DFT/PBE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of the hole masses, our calculations are also in good agreement with experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Here we emphasize that the experimental values usually quoted are not the effective masses, but the cyclotron masses, which depend on the direction of the magnetic field and are reported in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These cyclotron masses correspond to aver- ages of the directional masses and cannot be compared directly to DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To extract the correct di- rectional effective masses, in the case of silicon we used the Dresselhaus k · p model which was fitted to experi- mental cyclotron data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this model the heavy hole and TABLE II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Calculated band effective masses, band gaps, high-frequency and static dielectric constants of Si, 3C-SiC, and GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' All calculations performed within DFT/PBE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ex- perimental data are from (a) [61] and [62], (b) [63], (c) [64], (d) [65], (e) [66], (f) [67], (g) [68], (h) [69], (i) [70], (j) [71], (k) [72], (l) [73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' All masses are give in units of the electron mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The band gaps are in eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The lines tagged “Dresselhaus” refer to the effective masses obtained from the Dresselhaus model fitted to experimental cyclotron data, from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This work Si SiC GaP Γ-X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='592 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='374 m∗ hh Γ-K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='550 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='412 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='837 Γ-L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='655 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='646 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='091 Γ-X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='189 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='143 m∗ lh Γ-K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='328 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='125 Γ-L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='134 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='309 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='117 Γ-X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='490 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='213 m∗ so Γ-K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='223 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='472 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='217 Γ-L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='214 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='436 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='206 m∗ e,∥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='959 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='672 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='069 m∗ e,⊥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='230 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='232 Eg 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='554 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='359 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='566 ε∞ 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='00 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='93 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='53 ε0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='00 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='23 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='57 Experiment Si SiC GaP B along [001] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='46a m∗ hh B along [110] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='53a B along [111] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='56a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='54c Dresselhaus Γ-X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='40 Dresselhaus Γ-K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='56 Dresselhaus Γ-L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='62 B along [001] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='171a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='45b m∗ lh B along [110] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='163a B along [111] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='160a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='16c Dresselhaus Γ-X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='18 Dresselhaus Γ-K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='16 Dresselhaus Γ-L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='15 m∗ e,∥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='97a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='68d 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='15c, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0k m∗ e,⊥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='19a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='25d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='21c, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='25k Eg 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='13f 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='42g 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='26h ε∞ 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='7i 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='52j 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='11j ε0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='7i 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='72j 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1j light hole masses are parameterized as: ϵhh(k) =Ak2 + [B2k4 + C2(k2 xk2 y + k2 yk2 z + k2 zk2 x)]1/2, (31) ϵlh(k) =Ak2 − [B2k4 + C2(k2 xk2 y + k2 yk2 z + k2 zk2 x)]1/2, (32) where k = |k| and the coefficients A, B, and C are −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1 ¯h2/2me, −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='6 ¯h2/2me, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 ¯h2/2me, respec- tively [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' From this parameterization we obtained the effective masses reported in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II under the keyword “Dresselhaus”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' From this table we can see that, in the 8 case of silicon, the light hole and heavy hole masses are close to our calculated results, with the exception of the Γ − X heavy-hole effective mass which is 65% of the ex- perimental value[10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calculated dielectric constants overestimate the experimental values by 15% at most, as expected from the underestimation of the band gaps [70, 71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV E we discuss how one can improve the calculated mobilities by introducing a posteriori corrections to the theoretical effective masses and dielectric constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Carrier mobilities 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Silicon Figure 1 shows a comparison between our calculated mobilities of silicon and available experimental data, as a function of temperature and impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The mobilities without carrier-impurity scattering [black lines in panels (a) and (b)] decrease rapidly with tem- perature, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We find temperature slopes (the β in µ ∼ T β) of −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1 for electrons and −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='4 for holes, in agreement with previous work [10, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' As we include carrier-impurity scattering, the room-temperature elec- tron mobility of silicon reduces from 1381 cm2/Vs to 1153 cm2/Vs at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='75×1016 cm−3 [blue line in panel (a)] and to 812 cm2/Vs at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3×1017 cm−3 [red line in panel (a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Similarly, the room-temperature hole mobility of silicon decreases from 600 cm2/Vs in the absence of im- purities to 517 cm2/Vs for an impurity concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='4×1016 cm−3[blue line in panel (b)], and to 359 cm2/Vs at the impurity concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0×1017 cm2/Vs [red line in panel (b)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calculations for the temperature-dependent elec- tron and hole mobilities show that a single power law be- comes inadequate in the presence of impurity scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This is also seen in the experimental data from Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [74– 77], which are shown as open circles in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We note that our calculations are in good agreement with the ex- periments over a broad temperature range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The agree- ment worsens slightly at low temperature, where carrier- impurity scattering dominates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This effect likely relates to the fact that in our calculations all donors and ac- ceptors are assumed to be fully ionized at all tempera- tures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' as a result of this approximation, we are neglecting carrier freeze-out and hence we are likely overestimating the impurity concentration at low temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Ap- pendix A we show that, by taking into account the the effects of partial impurity ionization, the agreement with experiments improves at low temperature and high im- purity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panel (c) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1 shows the room temperature elec- tron mobility of silicon, as a function of impurity con- centration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The electron mobility is relatively insensitive to the impurity concentration up to 1016 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A steep decrease in the electron mobility is seen as we approach a doping density of 1017 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Up to this concentra- tion, our calculations (blue line) are in excellent agree- ment with experimental data (open black circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Above 1018 cm−3, while the agreement with experiment is still good, we tend to slightly overestimate the measured elec- tron mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This is likely due to two effects: (i) our formalism does not take into account multiple scattering events that become important at high impurity concen- tration, and (ii) our calculations do not include scattering by free-carrier plasmons, which dominate the mobility at high carrier density, as shown in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [12, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A similar overestimation was observed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panel (d) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1 shows the room temperature hole mobility of silicon as a function of impurity concentra- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' As for the electrons, we find generally good agree- ment between calculations (blue line) and experiments (open black circles) throughout the doping range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We emphasize that the vertical scales in panels (c) and (d) are different, and that the theory/experiment deviation at high impurity concentration is similar in both panels in absolute terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' At low impurity concentration, our calculations slightly overestimate the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This effect can be ascribed to the fact that our light hole effective masses are smaller than in experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Silicon carbide In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2 we show our calculated mobilities of 3C-SiC as a function of temperature and impurity concentration, and we compare to experimental data from Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [24, 78– 84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of 3C-SiC, the comparison with exper- iments is complicated by the high concentration of line defects that nucleate at lattice-mismatched growth sub- strates such as Si or 6H-SiC [83, 85], which makes it diffi- cult to obtain data for defect-free samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Furthermore, most experimental data are for co-doped samples, for which the impurity and carrier concentrations are more difficult to estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the absence of impurity scattering [black line in panel (a)], the low electron effective mass of SiC leads to very high theoretical mobilities, up to 33000 cm2/Vs at 100 K and up to 2000 cm2/Vs at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These high mobilities are in agreement with previous the- oretical results [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this case, we calculate an electron temperature exponent β = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In panel (a) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2 we compare our calculations (blue line) with the data reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [78] (red open cir- cles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In that work, they synthesized 3C-SiC with n- type impurity density of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0×1016 cm−3, and obtained electron mobilities at 100 K and 300 K of 2040 cm2/Vs and 584 cm2/Vs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In our calculations, when we consider the same impurity concentration, we find 2773 cm2/Vs and 1369 cm2/Vs at 100 K and 300 K, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' therefore we overestimate the experimental data by a factor of 30%-230%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In panel (b) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2 we show our calculated hole mo- bility of 3C-SiC as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the absence of impurities (black line), the mobility decreases 9 with a temperature exponent β = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this case we could not find experimental data for uncompensated samples to compare with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Upon including impurity scat- tering with an impurity concentration of 1018 cm−3, we find a significant reduction of the mobility at low tem- perature (blue line), from 1373 cm2/Vs to 148 cm2/Vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' At 300 K, the mobility is reduced from 165 cm2/Vs with- out impurities to 81 cm2/Vs, in good agreement with the measured value of 50 cm2/Vs reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panels (c) and (d) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2 show the room temper- ature electron and hole mobilities as a function of im- purity concentration, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The electron mobility calculated (blue line) at low ionized donor concentration (1014 cm−3) is 2048 cm2/Vs, and significantly overesti- mates the measured value 1000 cm2/Vs by Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [79] (open black symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' However, our calculations get closer to experimental data in the range of concentrations above 1018 cm−3 [24, 80, 86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The hole mobility of 3C-SiC is significantly lower than the electron mobility, as expected from much heavier hole masses shown in Tab II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calculations (blue line) at low doping yield a mobility of 164 cm2/Vs, to be com- pared to 220 cm2/Vs measured in p-channel 3C-SiC de- vices [82] (open black symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We note that the vertical scales in panels (c) and (d) differ, and that our calculated hole mobilities are in better agreement with experiment in relative terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In particular, our data for the hole mo- bility fall right in the middle of the experimental trend shown in panel (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gallium phosphide Figure 3 shows our mobility calculations for GaP and a comparison with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In panel (a) we have the calculated electron mobilities as a function of temper- ature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the absence of impurities, the calculated elec- tron mobility (black line) decreases with a temperature exponent β = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the calculated mobilities at 100 K and 300 K are 4293 cm2/Vs and 328 cm2/Vs, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Upon including the effect of impurity scattering (blue line), the mobility decreases significantly, reach- ing 157 cm2/Vs at room temperature for an impurity concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5×1018 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This value is in good agreement with the measured mobility of 100 cm2/Vs by Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87] (blue open circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We note that the electron mobility of GaP is significantly lower than in silicon, de- spite the electron effective masses being comparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV C we show that this effect arises from the addi- tional polar phonon scattering that electrons experience in GaP, which is absent in silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panel (b) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3 shows the calculated phonon-limited hole mobility (black line), the mobility calculated by in- cluding impurity scattering (blue line), and experimen- tal data (open red circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The phonon-limited hole mobility decreases with temperature with an exponent β = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The calculated mobilities in the absence of impurities are 5096 cm2/Vs and 252 cm2/Vs at 100 K and 300 K, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Upon including impurity scat- tering with a concentration of 2×1018 cm−3, the mobil- ity at room temperature decreases to 124 cm2/Vs, in good agreement with the measured value of 90 cm2/Vs by Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panel (c) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3 shows the room temperature elec- tron mobility of GaP as a function of impurity concentra- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the absence of impurity scattering, we calculate a mobility of 328 cm2/Vs(blue line), which compares well with the maximum value 258 cm2/Vs measured in ultra- pure samples in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [88] (open black symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the intermediate doping regime, our calculated electron mo- bilities overestimate the experimental data by a factor of two [87–90], but the agreement improves at high doping levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Figure 3(d) shows the room temperature hole mobil- ity of GaP as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The calculated hole mobility is 269 cm2/Vs at low impurity concentration, and decreases to 94 cm2/Vs at a concen- tration of 1019 cm−3 (blue line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calculations are within a factor of two from the highest measured hole mobilities across the same doping range [87, 91, 92] (open black symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We note that electron and hole mobilities in GaP are very similar across a wide range of tempera- tures and impurity concentrations (both in experiments and in our calculations), therefore GaP is an ambipo- lar semiconductor with well-balanced electron and hole transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Carrier scattering rates In this section we analyze and compare the scattering rates resulting from carrier-phonon and carrier-impurity processes in Si, SiC, and GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The Brooks-Herring model for carrier-impurity scattering [21], which is based on the parabolic band approximation, predicts a scattering rate that scales as ϵ−3/2, where ϵ is the electron eigenvalue referred to the band extremum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This trend is a result of two competing effects: as the energy of the initial state increases above the band bottom, the scattering phase space increases as ϵ1/2, while at the same time the square modulus of the carrier-impurity matrix element given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (17) decreases as 1/q4, which is of the order of ϵ−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This simple trend is opposite to what is expected from non-polar optical scattering and acoustic phonon scatter- ing, which tend to increase with energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Figure 4 shows the scattering rates τ −1 nk of holes and electrons in Si [panels (a) and (b)], SiC [panels (c) and (d)], and GaP [panels (e) and (f)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For consistency, we set the impurity concentration to 1017 cm−3 in all cases, which is in the middle of the range considered in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1-3, and the temperature to 300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In line with the above dis- cussion, the carrier-impurity scattering rates decrease as we move away from the band extrema, while the carrier- phonon scattering rates increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the two polar semi- conductors that we are considering, SiC and GaP, we also see a sudden jump in the carrier-phonon scatter- 10 ing rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This effect happens when the carrier energy reaches the threshold for the emission of a longitudinal optical phonon, thereby activating polar phonon scatter- ing [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panels (a) and (b) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 4 show that, in the case of silicon, the carrier-ionized-impurity scattering rates near the band edges are an order of magnitude higher than carrier-phonon rates (for an impurity concentration of 1017 cm−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The additional scattering by carriers causes a reduction of the mobility by ∼ 30% for both electrons and holes, indicating that impurity scattering is a sig- nificant effect at this impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The rise of the carrier-electron scattering rates at energies around 150 meV that can be seen in panel (b) correspond to interband scattering between the two lowest conduction bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panels (c) and (d) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 4 show the scattering rates in SiC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Unlike in silicon, here the electron and hole scat- tering rates differ considerably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of holes, the carrier-phonon and carrier-impurity scattering rates are comparable in magnitude near the band edge, while in the case of electrons the carrier-impurity scattering dominates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This difference is reflected in the calcu- lated mobilities, where carrier-impurity scattering re- duces the phonon-limited mobility of holes by ∼ 20% and of electrons by ∼ 50% (for the impurity concentra- tion 1017 cm−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Data for GaP are shown in panels (e) and (f) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this case the carrier-phonon scattering rates are com- parable to the carrier-impurity scattering rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Accord- ingly, the mobilities are reduced by ∼10% from their val- ues without impurity scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Deviations from Matthiessen’s Rule In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV D we discussed how Matthiessen’s rule is for- mally justified only when the scattering rates are state- independent constants, or when one scattering mecha- nism dominates over all other mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To place that reasoning on a quantitative footing, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 5 we explicitly assess the predictive accuracy of the Matthiessen rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For this test, we compute the mobilities of Si, SiC, and GaP by considering the following four scenarios: (i) phonon-limited mobility µph (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=', without including carrier-impurity scattering);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (ii) impurity-limited mobil- ity µimp (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=', without including carrier-phonon scatter- ing);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (iii) the mobility according to Matthiessen’s rule, as obtained by combining (i) and (ii) using 1/µM = 1/µph + 1/µimp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (iv) the mobility µ calculated by includ- ing both carrier-phonon scattering and carrier-impurity scattering using the aiBTE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In panels (a), (c), and (e) we see this comparison for Si, SiC, and GaP, respectively, as a function of temper- ature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' As expected, in all cases the phonon-limited mo- bilities (black lines) decrease with temperature while the impurity-limited mobilities (red lines) do increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Their combination results into the characteristic smooth peak which is best seen in the cases of Si and SiC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In these pan- els, the dashed blue lines are from Matthiessen’s rule, and the solid blue lines are the complete aiBTE solu- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We see that the Matthiessen rule tends to overes- timate the aiBTE mobility, and the deviation is partic- ularly pronounced when the phonon and impurity con- tributions to the mobility reduction are comparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To quantify the deviation between aiBTE calculations and the Matthiessen results, in panels (b), (d), and (f) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 5 we show the ratio between the two values, as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In all cases we see that the use of Matthiessen’s rule leads to an overestimation of the mobilities by up to 50%, which is significant in the context of predictive calculations of transport properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' More importantly, for the compounds considered in this work (Si, SiC, and GaP), the use of Matthiessen’s rule would worsen the agreement between calculated mobili- ties and experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Based on these findings, we caution against the use of Matthiessen’s rule in future ab initio calculations of carrier mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Improving the predictive power of the aiBTE In this section we investigate simple approaches to im- prove the predictive accuracy of the aiBTE by overcom- ing two standard limitations of DFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The first limitation is that the DFT band gap prob- lem typically leads to an overestimation of the dielectric screening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' As a result, both carrier-phonon and carrier- impurity matrix elements tend to be underestimated in DFT [35, 93], and mobilities tend to be overestimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [58] it was shown that, for a set of ten semiconduc- tors, this effect leads to mobilities which can overestimate experimental data by as much as a factor of two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To miti- gate this effect, we investigate a simple scaling correction to the matrix elements as follow: gcorr mnν(k, q) = εDFT εexp gDFT mnν (k, q), (33) where ϵDFT is our calculated value, and ϵexp is the exper- imental value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We use the high-frequency dielectric con- stant for the carrier-phonon matrix elements, as it was done in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [10], and the static dielectric constants for the carrier-impurity matrix elements [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (9)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This approach is meaningful for the systems considered in this work, because the majority of scattering processes oc- cur near the band extrema, and therefore involve small scattering wavevectors q, thus justifying the re-scaling of screening at long wavelength only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The second limitation of DFT calculations lies in the inaccurate curvature of the bands, which is also linked to the band gap problem, leading to slightly inaccurate carrier effective masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This limitation could be over- come by performing GW calculations, but in this work we investigate a simpler mass scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' According to Drude’s formula, carrier mobilities are inversely proportional to the effective masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Based on 11 this observation, we consider the following scaling correc- tion, which is directly applied to the calculated mobility: µcorr = m∗ DFT m∗exp µDFT, (34) where all masses are isotropic averages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The three compounds considered in this work all have ellipsoidal conduction band extrema, therefore we can evaluate the average isotropic mass as follows: m∗ = 3(1/m∗ ∥ + 2/m∗ ⊥)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (35) Evaluating the average hole mass is more complicated owing to the band degeneracy at Γ and the fact that ex- perimental data usually are reported for a given magnetic field direction as opposed to a crystallographic direction (see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of silicon, we evaluate the av- erage mass using the values extracted from Dresselhaus’ model (see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IV A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' After this averaging procedure, the hole mass is calculated following Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [58]: m∗ = m∗,5/2 hh + m∗,5/2 lh m∗,3/2 hh + m∗,3/2 lh , (36) where all quantities on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' are spherical averages in k-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of SiC and GaP we are not aware of a parametrization similar to Dresselhaus’, therefore we do not investigate mass corrections in these cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The carrier mobilities obtained by applying the above corrections are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In all cases we use the experimental dielectric constants reported in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Panels (a) and (b) show our results for silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The screening correction to the electron mobilities of Si re- duces the calculated value at low impurity concentra- tion from 1381 cm2/Vs to 1133 cm2/Vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This reduction causes an underestimation of the experimental value by approximately 20%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' At higher impurity concentration, the corrected mobility agrees again well with experimen- tal results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The corrections to the electron effective mass of Si are minor and do not affect the mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of holes, the screening and mass corrections improve considerably the agreement between theory and experi- ment (our calculated average hole mass is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='43 me while the experimental value is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='48 me).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In fact, we obtain a hole mobility of 463 cm2/Vs at low impurity concentra- tion, which is within the measured value between 450 and 500 cm2/Vs[76, 77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The improvement is also noticeable at higher impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Results for SiC are shown in panels (c) and (d) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this case, we find that screening and mass corrections do not significantly improve the agreement with experiments at low impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In par- ticular, the screening correction reduces the electron mo- bility from 2047 cm2/Vs to 1815 cm2/Vs, and the mass correction further reduces this value to 1688 cm2/Vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' De- spite these corrections, the calculated electron mobility remains too high by about a factor of two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' It is possible that additional scattering mechanisms such as disloca- tions could contribute to reduce this difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the case of the hole mobility, the screening correction reduces the calculated value at low impurity concentration from 164 cm2/Vs to 148 cm2/Vs, which is not significant when compared to the large spread of experimental values [81– 84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The screening correction appears to be successful in the case of GaP, as seen in panels (e) and (f) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The electron mobility at low impurity concentration re- duces from 326 cm2/Vs to 243 cm2/Vs upon applying the screening correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This value is in better agree- ment with the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Improved agreement with experiments is also found at higher impurity con- centration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The correction to the electron effective mass of GaP is small, and as a result the change in mobility is not significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The screening correction for holes brings the calculated data closer to the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In partic- ular, at low impurity concentration the hole mobility is reduced from 269 cm2/Vs to 226 cm2/Vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The key takeaway from this analysis is that the screen- ing correction to the scattering matrix elements improves the agreement between theory and experiment for the compounds considered in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Based on the above observations, we suggest that screening and mass cor- rections could be used for the purpose of uncertainty quantification in future ab initio calculations of trans- port properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' CONCLUSIONS In this work we have demonstrated non-empirical cal- culations of carrier mobilities in semiconductors using the ab initio Boltzmann transport equations, including car- rier scattering by phonons and by ionized impurities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To this end, we developed an ab initio formalism to incor- porate ionized-impurity scattering within the transport workflow based on Wannier-Fourier interpolation and im- plemented in the EPW code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We described ionized impurities by randomly dis- tributed Coulomb scatters, and we obtained the carrier relaxation time by using the Kohn-Luttinger ensemble averaging procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We also incorporated the screen- ing of the impurity potential by free-carriers, within a parameter-free effective Thomas-Fermi model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We validated our approach by performing an extensive set of calculations of the electron and hole mobilities of three common semiconductors, namely Si, 3C-SiC, and GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In all cases we find a reasonably good agreement with experimental data, except possibly for the electron mobility in SiC which is probably reduced by additional scattering at line defects in real samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Our calcula- tions follow closely the experimental data both as a func- tion of temperature (at fixed impurity concentration) and as a function of impurity concentration (at fixed temper- ature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Impurity scattering is found to dominate over phonon scattering at high impurity concentration and at low tem- perature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the former case, the thermal distribution 12 function of the carrier is peaked near the band edges, therefore small-q elastic scattering by impurities dom- inates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the latter case, the phonon population be- comes negligible at low temperature, therefore impurities remain the only active scattering channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These trends are fully consistent with the general understanding of car- rier transport in semiconductors [94].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We also found that the energy-dependent carrier scattering rates are strongly dependent on the detailed mechanisms at play in each compound, and vary significantly over the energy range of relevance for transport phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This finding un- derlines the importance of detailed ab initio calculations to achieve predictive accuracy in the description of trans- port phenomena of real materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In the presence of multiple scattering channels, it is common to analyze mobility data using the clas- sic Matthiessen rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' However, by directly comparing aiBTE calculations including both phonon and impurity scattering with estimates based on Matthiessen’s rule, we found that the latter lead to inaccurate results, with de- viations of up to 50% with respect to aiBTE calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This finding indicates that Matthiessen’s rule should not be employed in predictive calculations of transport prop- erties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lastly, we investigated simple corrections to DFT cal- culations of carrier mobilities, by scaling the calculated dielectric screening and the effective masses via their corresponding experimental values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We found that the screening correction generally improves agreement with experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Overall, our present approach offers a powerful tool for calculating transport properties in a variety of semicon- ducting materials of immediate interest, as well as for screening new putative semiconductors in the context of materials discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Several improvements upon this work are possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' For one, we do not account for neutral impurity scatter- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This additional channel could be added by gen- eralizing our monopole model to account for dipoles and quadrupoles, following similar work performed in the context of electron-phonon interactions [47–49, 59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Generalizations to the case of two-dimensional materi- als should also be possible, for example by following the related generalization of the Fr¨ohlich matrix element to two-dimensional systems [95, 96].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' At high impurity con- centration one should also account for carrier-plasmon scattering, for example as discussed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' And of course, any improvement in the DFT band structures and electron-phonon matrix elements would be highly bene- ficial to further enhance the predictive power of these calculations [93].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' We hope that this study will stimulate further work along these and other promising directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' ACKNOWLEDGMENTS This research is primarily supported by the Compu- tational Materials Sciences Program funded by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Department of Energy, Office of Science, Basic Energy Sciences, under Award No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' DE-SC0020129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This re- search used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Department of Energy under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' DE- AC02-05CH11231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='tacc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appendix A: Incomplete ionization of dopant In all calculations presented in this work, we have con- sidered that the carrier density coincides with the impu- rity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The implicit assumption underlying this choice is that all impurities are ionized at all temper- atures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This is obviously a simplification, since the frac- tion of ionized impurities depends on the defect energy, the quasi Fermi level of the system, and the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These aspects have already been discussed in the case of silicon in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In this Appendix we analyze the effect of incomplete ionization for the case of silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' To estimate the fraction f of ionized impurities at a given temperature, we use the Fermi-Dirac distribution evaluated at the defect level of the impurity atom, ϵd [52]: f = 1 N uc imp � N uc imp � n,k 1 e(ϵnk−ϵd)/kBT + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (A1) Here, N uc imp is the number of impurities per unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This fraction vanishes when the temperature goes to zero, and approaches unity at high temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 7 we show the influence of incomplete impu- rity ionization on the electron mobility of Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' In these calculations, we used ϵd =45 meV as measured from the conduction band bottom [97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' By comparing these curves with Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1(a), we see that the effect of incomplete ion- ization improves the agreement with experiments at low temperature and high doping (red curves in both figures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' This is precisely the range where carrier-impurity scatter- ing tends to dominate over phonon scattering, therefore it is important to have a precise determination of the impurity concentration in this range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A more systematic assessment of these effects will require a broader database of experimental mobilities to compare with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comparison between our calculated carrier mobilities in Si with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) Electron mobility of Si as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols are for low impurity concentration (no impurities in the calculations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' < 1012 cm−3 impurities in the experiment);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the blue line and symbols are for an impurity concentration of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='75×1016 cm−3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the red line and symbols are for a concentration of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3×1017 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Filled disks are calculated values, open circles are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [75] (black) and [74] (blue and red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (b) Hole mobility of Si as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols are for low impurity concentration (no impurities in the calculations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1012 cm−3 impurities in the experiment);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the blue line and symbols are for an impurity concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='4×1016 cm−3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the red line and symbols are for a concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0·1017 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Filled disks are calculated values, open circles are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [98] (black) and [74] (blue and red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (c) Room temperature electron mobility of Si as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blue line and filled disks are calculated data, open black circles are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [76].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 104 electron mobility (cm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='Ns) 1500 1250 1000 750 103 500 250 (a) (c) 0 104 600 500 400 103 300 O 200 100 000 (b) (d) 102, 0 15 100 200 300 400 500 4 16 17 18 19 10 10 10 10 10 10 temperature (K) ionized impurity density (cm-3)14 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comparison between our calculated carrier mobilities in 3C-SiC with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) Electron mobility of Si as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols are phonon-limited mobilities (no impurities in the calculations);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the blue line and symbols are for an impurity concentration of 5×1016 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Filled disks are calculated values, open circles are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (b) Hole mobility of 3C-SiC as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols are phonon-limited mobilities (no impurities);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the blue line and symbols are for an impurity concentration of 1018 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' All data are calculated values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (c) Room temperature electron mobility of 3C-SiC as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blue line and filled disks are calculated data, open symbols are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [24], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [79], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [86], and Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (d) Room temperature hole mobility of 3C-SiC as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blue line and filled disks are calculated data, open symbols are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [81], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [82], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [83], and Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2000 (a) electron mobility (cm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='Ns) 104 1500 1000 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 8 500 (c) 0 102 250 O (b) 103 hole mobility (cm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='/Ns) 200 150 102 100 50 00 (d) 101 0 200 300 100 400 500 14 15 16 17 18 19 10 10 10 10 10 10 temperature (K) lonized Dopant Density (cm-3)15 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comparison between our calculated carrier mobilities in GaP with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) Electron mobility of GaP as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols are phonon-limited mobilities (no impurities in the calculations);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the blue line and symbols are for an impurity concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5×1018 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Filled disks are calculated values, open circles are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (b) Hole mobility of GaP as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols are phonon-limited mobilities (no impurities);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the blue line and symbols are for an impurity concentration of 2 × 1018 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Filled disks are calculated values, open circles are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (c) Room temperature electron mobility of GaP as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blue line and filled disks are calculated data, open symbols are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [88], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [90], and Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (d) Room temperature hole mobility of GaP as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blue line and filled disks are calculated data, open symbols are experimental data from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87], Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [91], and Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 300 500 250 400 electron mobility 200 300 150- 200 100 100 50 (a) (c) 0 0 500 250 400 200 300 150 200 100 100 000000 50 (b) (d) 0 0 200 400 100 300 500 14 15 16 17 18 19 10 10 10 10 10 10 temperature (K) ionized impurity density (cm-3)16 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Calculated carrier scattering rates at 300 K, for an impurity concentration of 1017 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) Hole scattering rates in Si: carrier-phonon scattering rates (black disks) and carrier-impurity scattering rates (blue disks), as a function of energy referred to the valence band maximum (VBM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The dashed line and the shaded area represents the thermal distribution of carriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (b) Electron scattering rates in Si: carrier-phonon scattering rates (black disks) and carrier-impurity scattering rates (blue disks), as a function of energy referred to the conduction band minimum (CBM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (c) and (d): same as (a) and (b), but for 3C-SiC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (e) and (f): same as (a) and (b), but for GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 60 60 (a) (b) carrier-ph 50 50 carrier-i Ni=1017 cm-3 electrons 40 40 les hol 30 30 S 20 S 20 10 10 60 60 (d) (C) 50 50 (zHI) electrons es 40 40 rate loy BC-Sic 30 30 scattering SiC 20 20 3 10 10 60 60 (e) (f) 50 50 lectrons 40 40 holes 30 30 e R 20 20 10 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='20 energy below VBM (eV) energy above CBM (eV)17 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comparison between mobility calculations performed using the aiBTE by including both carrier-phonon and carrier- impurity scattering, and mobilities obtained by using the Matthiessen’s rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) Temperature-dependent electron mobility of Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and symbols indicate the phonon-limited mobility;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the red line is the impurity-limited mobility, for an impurity concentration of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 × 1017 cm−3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the dashed blue line is the mobility obtained from Matthiessen’s rule;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' the solid blue line is the aiBTE calculation including both phonons and impurities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (b) Ratio between the electron mobility of Si calculated using Matthiessen’s rule and the result of the aiBTE calculation with phonon and impurities, as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (c) and (d): Same as in (a), for for 3C-SiC with an impurity concentration of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5 × 1018 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (e) and (f): Same as in (a), for for 3C-SiC with an impurity concentration of 5 × 1016 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5 104 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='4 μaiBT S 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 103 phonon only impurity only 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1 Matthiessen phonon+impurity 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0 (d) (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5 104 μaiBTE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 latt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3 103 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='2 3 phonon only impurity only 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1 Matthiessen phonon+impurity 102 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0 (e) (f) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='5 μaiBTE 103 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='4 P Gal 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 μMatt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='2 O- phonon only 102 impurity only 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='1 Matthiessen phonon+impurity 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='0 100 200 300 400 500 100 200 300 400 500 temperature (K) temperature (K)18 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comparison of correction schemes for improving the predictive accuracy of aiBTE calculations of mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (a) Room-temperature electron mobility of Si, as a function of impurity concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blue lines and disks indicate the uncorrected aiBTE results;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' green lines and disks indicate calculations with matrix elements corrected for screening;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' purple lines and disks are calculations corrected for the effective masses;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' yellow lines and disks include corrections for both the screening and the effective masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Open black circles are experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (b) Room temperature hole mobility of Si as a function of impurity concentration: uncorrected (blue);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' with screening correction (green);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' with effective mass correction (purple);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' and with both screening and mass correction (yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (c) and (d): Same as in (a) and (b) but for 3C-SiC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' (e) and (f): Same as in (a) and (b) but for GaP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The experimental data are the same as those reported in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1, 2, and 3 [24, 76, 79–84, 86–92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1500 exp exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 600 calculated calculated scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' scaled scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' scaled 1250 500 mass scaled mass scaled (cm²Ns) 2Ns) scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' + mass scaled scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' + mass scaled 1000 400 o) 750 300 an!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 500 S 200 S 250 100 (b) (a) 250 2000 exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' calculated calculated (cm²/Ns) scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' scaled scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' scaled mass scaled 1500 scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' + mass scaled 150 100 500 50 (c) (d) 0 0 exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 250 300 calculated scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' scaled 250 200 200 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='150 urd GaP 100 des exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 100 calculated scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' scaled 50 50 mass scaled (f) scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' + mass scaled (e) 0- 0 14 17 15 19 15 16 18 19 14 16 17 18 10 10 10 10 10 10 10 10 10 10 10 10 ionized impurity density (cm-3) ionized impurity density (cm-3)19 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electron mobility in Si as a function of temperature, including the effect of incomplete ionization of the dopants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The black line and disks are the calculated phonon-limited mobilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' These data are compared to measurements for pristine silicon (impurity concentration < 1012cm−3), from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The blue disks and line are calculations for an impurity concentration of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='75 × 1016 cm−3, taking into account incomplete dopant ionization as described in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Experimental data are from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' The red disks and line are for an impurity concentration of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3 × 1017 cm−3, taking into account incomplete dopant ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Experimental data are from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 104 Si μe (cm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='Ns) 103 100 200 300 400 500 temperature (K)20 [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pushpakaran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Subburaj, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bayne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 49, 6247 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ramkumar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Priya, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rajakumari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Val- salan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Chakravarthi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Latha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Math- upriya, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rajan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nanomater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2022, 8648284 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Green, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Speck, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Xing, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Moens, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Allerstam, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gumaelius, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Neyer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Arias-Purdue, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mehro- tra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kuramata, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sasaki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Watanabe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Koshi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Blevins, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bierwagen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Krishnamoorthy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Leedy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Arehart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Neal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ringel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sharma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ghosh, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Singisetti, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Chabak, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Liddy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Islam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rajan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Graham, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Choi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cheng, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Higashiwaki, APL Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 10, 029201 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Papez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dallaev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' T¸alu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kastyl, Materials 14, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3390/ma14113075 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [5] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Restrepo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Varga, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pantelides, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 94, 212103 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [6] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Carrete, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Katcho, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mingo, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 185, 1747 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Fiorentini and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bonini, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 94, 085204 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Park, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marzari, Nano Letters 16, 2439 (2016), pMID: 26907524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mustafa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bernardi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Neaton, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Louie, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 94, 155105 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Margine, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 97, 121201 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [11] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Protik and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kozinsky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 102, 245202 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Caruso and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 94, 115208 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [13] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zhou, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bernardi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mate- rials 3, 033804 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [14] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Park, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bernardi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Materials 6, L010801 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Patel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wright, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Crothers, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Uller Rothmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Borchert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Milot, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kraus, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Herz, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Johnston, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 12, 3607 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sanders and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kioupakis, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 119, 062101 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Slavcheva, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Davies, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Brown, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Asenov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 91, 4326 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Callebaut, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kumar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Williams, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Reno, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 84, 645 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [19] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R omer and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Witzigmann, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Status Solidi A 214, 1600297 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Conwell and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Weisskopf, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 77, 388 (1950).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [21] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Brooks (Academic Press, 1955) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 85–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [22] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Long and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Myers, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 115, 1107 (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [23] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kosina, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kaiblinger-Grujin, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Selberherr, in SISPAD ’97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 1997 International Conference on Simula- tion of Semiconductor Processes and Devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Technical Digest (1997) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 205–208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Roschke and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Schwierz, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electron De- vices 48, 1442 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Arvanitopoulos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lophitis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gyftakis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Perkins, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Antoniou, Semicond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 32, 104009 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Reichardt, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 83, 036501 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [27] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hohenberg and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kohn, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 136, B864 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [28] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kohn and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sham, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 140, A1133 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [29] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Baroni, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giannozzi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Testa, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 58, 1861 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [30] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giannozzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' de Gironcoli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pavone, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Baroni, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 43, 7231 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [31] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gonze and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lee, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 55, 10355 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Baroni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' de Gironcoli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dal Corso, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gian- nozzi, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 73, 515 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [33] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cohen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Louie, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 76, 165108 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mostofi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yates, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pizzi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lee, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Souza, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vanderbilt, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marzari, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 185, 2309 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [35] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 89, 015003 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [36] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Graziosi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kumarasinghe, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Neophytou, ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Energy Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 3, 5913 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ganose, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Park, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Faghaninia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Woods- Robinson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Persson, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jain, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 12, 2222 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Margine, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Verdi, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 209, 116 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [39] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Freysoldt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Grabowski, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hickel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Neugebauer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kresse, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Janotti, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Van de Walle, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 86, 253 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bhatnagar and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Baliga, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electron De- vices 40, 645 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [41] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Roccaforte, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Greco, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Fiorenza, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' La Via, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P´erez-Tomas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Evans, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Fisher, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mon- aghan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mawby, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jennings, Materials 14, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='3390/ma14195831 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [42] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Renz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P´erez-Tom´as, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Shah, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gammon, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Via, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jennings, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mawby, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 118, 242101 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [43] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zipperian, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Chaffin, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dawson, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IE-29, 129 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [44] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hughes, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zipperian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dawson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Biefeld, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Walko, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dvorack, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 69, 6500 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [45] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Luo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Guo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Niu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Fu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zhao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Leng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ma, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Liang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Han, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Etheridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sargent, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Tang, Nature 563, 541 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Reif-Acherman, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' IEEE 103, 713 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [47] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Verdi and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 115, 176401 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [48] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Brunin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Miranda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giantomassi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Royo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Stengel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Verstraete, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gonze, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rignanese, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hautier, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 125, 136601 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [49] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Zhou, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jhalani, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dreyer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bernardi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 102, 125203 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [50] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sakurai and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Napolitano, Modern Quantum Mechan- ics (2nd Edition) (Pearson;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 2nd edition, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [51] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kohn and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Luttinger, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 108, 590 (1957).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [52] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ashcroft and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mermin, Solid State Physics (Saun- 21 ders College Publishing: Fort Worth, TX, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=', 1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [53] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giannozzi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Andreussi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Brumme, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bunau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nardelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Calandra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Car, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cavazzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ceresoli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cococcioni, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Colonna, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Carnimeo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Corso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' de Gironcoli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Delugas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' DiStasio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ferretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Floris, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Fratesi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Fugallo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gebauer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gerstmann, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gorni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kawa- mura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kokalj, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' K¨u¸c¨ukbenli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lazzeri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marsili, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marzari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mauri, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='- V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nguyen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' de-la Roza, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Paulatto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rocca, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sabatini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Santra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Schlipf, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Seitso- nen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Smogunov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Timrov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Thonhauser, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Umari, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vast, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Baroni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Matter 29, 465901 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [54] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pizzi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vitale, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Arita, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bl¨ugel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Freimuth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G´eranton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gibertini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gresch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Koretsune, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Iba˜nez-Azpiroz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lihm, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marchand, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marrazzo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mokrousov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mustafa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nohara, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nomura, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Paulatto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pon- weiser, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Qiao, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Th¨ole, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Tsirkin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wierzbowska, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marzari, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vanderbilt, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Souza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mostofi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yates, Journal of Physics: Condensed Matter 32, 165902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [55] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Perdew, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Burke, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ernzerhof, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 77, 3865 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [56] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hamann, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 88, 085117 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [57] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' van Setten, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giantomassi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bousquet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ver- straete, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hamann, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gonze, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rignanese, Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 226, 39 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [58] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ponc´e, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Macheda, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Margine, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Marzari, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bonini, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Research 3, 043022 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [59] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sjakste, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vast, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Calandra, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mauri, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 92, 054307 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [60] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yates, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vanderbilt, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Souza, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 75, 195121 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [61] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dresselhaus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kip, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kittel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 98, 368 (1955).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [62] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dexter and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lax, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 96, 223 (1954).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [63] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kono, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Takeyama, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yokoi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Miura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ya- manaka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Shinohara, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ikoma, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 48, 10909 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [64] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bradley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Simmonds, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Stockton, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Stradling, Solid State Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 12, 413 (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [65] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kaplan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wagner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kim, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Davis, Solid State Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 55, 67 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [66] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dean and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Thomas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 150, 690 (1966).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [67] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Collings, Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 48, 197 (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [68] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bimberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Altarelli, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lipari, Solid State Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 40, 437 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [69] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lorenz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pettit, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Taylor, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 171, 876 (1968).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [70] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Patrick and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Choyke, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 2, 2255 (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [71] Gallium phosphide (gap), refractive index, absorption, reflection, dielectric constants (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [72] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vurgaftman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Meyer, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ram-Mohan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 89, 5815 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [73] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kimoto and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cooper, Appendix c: Major physical properties of common sic polytypes, in Fundamentals of Silicon Carbide Technology (John Wiley and Sons, Ltd, 2014) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 521–524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [74] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Morin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Maita, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 96, 28 (1954).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [75] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Canali, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jacoboni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nava, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ottaviani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Alberigi-Quaranta, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 12, 2265 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [76] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Jacoboni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Canali, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ottaviani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Alberigi Quaranta, Solid State Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 20, 77 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [77] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Misiakos and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Tsamakis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 74, 3293 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [78] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Shinohara, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yamanaka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Daimon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sakuma, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Okumura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Misawa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Endo, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yoshida, Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 27, L434 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [79] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hirano and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Inada, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 77, 1020 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [80] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nelson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Halden, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rosengreen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 37, 333 (1966).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [81] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Capano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Melloch, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cooper, IEEE Electron Device Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 23, 482 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [82] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lee, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ishida, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ohshima, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kojima, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Tanaka, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Takahashi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Okumura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Arai, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kamiya, IEEE Electron Device Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 24, 466 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [83] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sch¨oner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Krieger, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Pensl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Abe, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Naga- sawa, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Vap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Depos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 12, 523 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [84] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nagasawa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Abe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yagi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kawahara, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hatta, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Status Solidi B Basic Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 245, 1272 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [85] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ivanov and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Chelnokov, Semicond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Tech- nol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 7, 863 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [86] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kern and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Davis, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 71, 1356 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [87] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Kao and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Eknoyan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 54, 2468 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [88] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Miyauchi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sonomura, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Yamamoto, Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 6, 1409 (1967).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [89] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Craford, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Groves, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Herzog, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hill, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 42, 2751 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [90] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Hara and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Akasaki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 39, 285 (1968).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [91] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Alfrey and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wiggins, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Naturforsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' A 15, 267 (1960).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [92] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Cohen and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Bedard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 39, 75 (1968).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [93] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Antonius, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' da Jornada, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Louie, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' 122, 186402 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [94] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Lundstrom, Fundamentals of Carrier Transport (2nd Edition) (Cambridge University Press, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [95] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sohier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Calandra, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Mauri, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 94, 085415 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [96] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Sio and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Giustino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 105, 115414 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [97] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Wu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Gao, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Dan, AIP Advances 7, 105310 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' [98] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Ottaviani, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Reggiani, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Canali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Nava, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Alberigi-Quaranta, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} +page_content=' B 12, 3318 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9E0T4oBgHgl3EQfZgDd/content/2301.02323v1.pdf'} diff --git a/o9AzT4oBgHgl3EQfAfpB/content/2301.00926v1.pdf b/o9AzT4oBgHgl3EQfAfpB/content/2301.00926v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4cc0b2a28e95492ce0219c18fdefc6a8464689ba --- /dev/null +++ b/o9AzT4oBgHgl3EQfAfpB/content/2301.00926v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:593dbef02f9a19907b367dd6e78615394b8d220e4ea77276127e540e16d90ea8 +size 223219 diff --git a/o9AzT4oBgHgl3EQfAfpB/vector_store/index.faiss b/o9AzT4oBgHgl3EQfAfpB/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0a029eca670442222dcd1aec03a44524fd3abedc --- /dev/null +++ b/o9AzT4oBgHgl3EQfAfpB/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5bb553c5457cf3ced32a35b7a278760aa0df77cb1150fd7fb103bedbdd0f2452 +size 1966125 diff --git a/oNAzT4oBgHgl3EQfqf3Z/content/2301.01631v1.pdf b/oNAzT4oBgHgl3EQfqf3Z/content/2301.01631v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..23d79e7b5b6859486659157b842f3e73c00ed6ee --- /dev/null +++ b/oNAzT4oBgHgl3EQfqf3Z/content/2301.01631v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cf2ff811ae7aed9ce4c8aa5d2c716825cb0c75dd01a040e25c07ce41d73eac6a +size 251107 diff --git a/oNAzT4oBgHgl3EQfqf3Z/vector_store/index.pkl b/oNAzT4oBgHgl3EQfqf3Z/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..085c1ce8ba40b7cef9810a863891c75387dc24ce --- /dev/null +++ b/oNAzT4oBgHgl3EQfqf3Z/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4df9449532ab56d6f9154717b79af7a1de4c81dd8650c9a3722fe5284811e14e +size 144716 diff --git a/oNE5T4oBgHgl3EQfkA8i/content/2301.05659v1.pdf b/oNE5T4oBgHgl3EQfkA8i/content/2301.05659v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7284714b3b130b149f0513601672d1d3d068bb01 --- /dev/null +++ b/oNE5T4oBgHgl3EQfkA8i/content/2301.05659v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4b6dde9ba947a22ce2149facf65deb0876e9f9f261e02edaf4c7463dc1730841 +size 1802881 diff --git a/oNE5T4oBgHgl3EQfkA8i/vector_store/index.pkl b/oNE5T4oBgHgl3EQfkA8i/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..92c806b377a1be74b73257fa4c566c8dd8deea72 --- /dev/null +++ b/oNE5T4oBgHgl3EQfkA8i/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2cc122938a244fe7eaff5bbfc6048bcf465654eef92866db119c2e6d3b5e63ff +size 127958 diff --git a/oNFLT4oBgHgl3EQfgi-Y/content/tmp_files/2301.12099v1.pdf.txt b/oNFLT4oBgHgl3EQfgi-Y/content/tmp_files/2301.12099v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..548cb45a5f22af5de81fdc9e64d70db61e209a6f --- /dev/null +++ b/oNFLT4oBgHgl3EQfgi-Y/content/tmp_files/2301.12099v1.pdf.txt @@ -0,0 +1,1034 @@ +Violation-Aware Contextual Bayesian Optimization for +Controller Performance Optimization with Unmodeled +Constraints +Wenjie Xu∗†, Colin N Jones∗, Bratislav Svetozarevic†, +Christopher R. Laughman‡, Ankush Chakrabarty‡§ +January 31, 2023 +Abstract +We study the problem of performance optimization of closed-loop control systems with unmodeled dynamics. +Bayesian optimization (BO) has been demonstrated to be effective for improving closed-loop performance by +automatically tuning controller gains or reference setpoints in a model-free manner. However, BO methods have +rarely been tested on dynamical systems with unmodeled constraints and time-varying ambient conditions. In +this paper, we propose a violation-aware contextual BO algorithm (VACBO) that optimizes closed-loop perfor- +mance while simultaneously learning constraint-feasible solutions under time-varying ambient conditions. Unlike +classical constrained BO methods which allow unlimited constraint violations, or ‘safe’ BO algorithms that are +conservative and try to operate with near-zero violations, we allow budgeted constraint violations to improve con- +straint learning and accelerate optimization. We demonstrate the effectiveness of our proposed VACBO method +for energy minimization of industrial vapor compression systems under time-varying ambient temperature and +humidity. +1 +INTRODUCTION +Closed-loop systems can often be optimized after deployment by altering controller gains or reference inputs guided +by the performance observed through operational data. Manually tuning these control parameters often requires care +and effort along with considerable task-specific expertise. Algorithms that can automatically adjust these control +parameters to achieve optimal performance are therefore invaluable for saving manual effort, time, and expenditure. +The optimal performance of a control system is generally defined via domain-specific performance functions whose +arguments are outputs measured from the closed-loop system. While the map from measurements to performance may +be clearly defined, the map from control parameters (that can actually be tuned) to performance is often unmodeled +or unknown, since closed-form system dynamics may not be available during tuning [8]. It is thus common to treat +the control parameters-to-performance map as a black-box, and design a data-driven tuning algorithm, where data is +collected by experiments or simulations. However, since both experimentation and high-fidelity software simulations +are expensive, tuning algorithms must be designed to assign a near-optimal set of control parameters with as few +experiments/simulations (equivalently, performance function evaluations) as possible. Therefore, existing data-driven +methods that need a large number of samples, such as genetic algorithms [9], can be impractical. +It is precisely for this reason that Bayesian optimization (BO)1 has received widespread attention in the context +of closed-loop performance optimization. BO is a sample-efficient derivative-free global optimization method [17,35] +that utilizes probabilistic machine learning to intelligently search through parameter spaces. [12] gives a detailed +survey of Bayesian Optimization. In recent work, BO has demonstrated potential in controller gain tuning. For +example, BO has been applied to the tuning of the PI controller of a heat pump [18] and the tuning of PID cascade +controller gains [19]. BO has also been applied to the performance optimization of model predictive control. For +∗Laboratoire +d’Automatique, +´Ecole +polytechnique +f´ed´erale +de +Lausanne, +Lausanne, +Switzerland. +� +{wenjie.xu, +colin.jones}@epfl.ch. +†Swiss Federal Laboratories for Materials Science and Technology, Switzerland. � bratislav.svetozarevic@empa.ch +‡Mitsubishi Electric Research Laboratories, Cambridge, MA, USA. � laughman@merl.com +§Corresponding author. � achakrabarty@ieee.org. � +1 (617) 758-6175. � 201 Broadway, 8th Floor, Cambridge, MA 02139, USA. +1Also known as efficient global optimization (e.g., in [17]) or kriging (e.g., in [16]) in optimization and engineering literature. +1 +arXiv:2301.12099v1 [cs.LG] 28 Jan 2023 + +−10.0 +−7.5 +−5.0 +−2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +x +−4 +−2 +0 +2 +4 +y +predicted mean + f (x) = g(x) +zero constraint +OPT +Local minima +(a) Safe BO [32] +−10.0 +−7.5 +−5.0 +−2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +x +−4 +−3 +−2 +−1 +0 +1 +2 +3 +4 +y +predicted mean + f (x) = g(x) +zero constraint +OPT +Intolerable +(b) Constrained BO [14] +−10.0 +−7.5 +−5.0 +−2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +x +−4 +−2 +0 +2 +4 +y +predicted mean + f (x) = g(x) +zero constraint +OPT +(c) Our violation-aware BO +Figure 1: A motivating example comparing our violation-aware BO to existing state-of-the-art methods. Safe BO +gets stuck in a local minimum and fails to identify the global optimum, while generic constrained BO identifies the +global optimum but can incur large constraint violations during the sampling process. In contrast, our method can +simultaneously identify the global minimum and manages the constraint violation well. +example, BO was applied to optimize the nominal linear model of a predictive controller [3], to tune the parameters +of MPC to optimize the closed-loop performance [29], and to generate candidate parameters for data-driven scenario +optimization [28]. BO has also been proposed to select closed loop kernel based model [4]. BO was used in many other +various real-world control applications, such as wind energy systems parameter tuning [1,2], engine calibration [26], +and space cooling system optimization [8]. +A challenge that has garnered recent interest is that of safe Bayesian optimization; that is, BO in the presence +of safety-critical system constraints. These constraints may also be unmodeled (‘black-box’), as a mathematical +representation of the constraint with respect to the control parameters is not always known or straightforward to +represent. To handle these constraints, safe BO methods have been recently proposed in [32], improved in [31], +and extended to a more general setting in [33]. +These methods either operate on the principle of not allowing +any constraint violations during optimization, or leverage partial model knowledge to ensure safety via Lyapunov +arguments [7]. +In either case, safe BO learns feasible optima without violating unmodeled constraints, or risks +their violation with a predefined small probability. Often, this conservativeness results in obtaining local minima, +slow convergence speeds, and reduced data efficiency. Conversely, generic constrained optimization with BO learns +constraints without paying heed to the amount of constraint violation during the exploration phase [13, 14]. More +recently, a group of works [34, 36] propose an optimistic constrained optimization approach, with applications to +control system tuning. These methods are mostly agnostic to the deleterious consequences of constraint violation, +such as long-term damage to expensive hardware caused by large violations, rendering them impractical for many +industrial applications. Another direction of BO research proposes the use of budgets on the cost of samples (e.g., +neural network training time [30], wall clock time [22], sample number [21] and system failures [23]). However, +in these existing BO settings, the budget considered is usually related to the effort or failure risk for performance +function evaluation, and does not provide a way to manage the magnitude of constraint violations. +For many industrial systems, small constraint violations over a short period are often acceptable if that exploration +improves the convergence rate of optimization, but large violations are strongly discouraged. For example, in vapor +compression systems (VCSs), it is imperative that constraint violation on variables such as compressor discharge +temperature are limited to short time periods. We aim to find a set of near-optimal parameters within as few samples +as possible since performance evaluation is time-consuming and available tuning time can be limited. Therefore, it +may be desirable to systematically trade tolerable constraint violations for faster convergence and potentially skipping +local minima. In other words, for VCSs, the benefits of accelerated global convergence outweigh the cost of short-term +constraint violations. +The performance of control systems are also influenced by exogenous signals such as variations in the environment. +We refer to such signals as context variables. It is often necessary to adapt control policies to maintain the performance +and feasibility of the control system despite changes in the context variables. For instance, a controller designed +for both performance and safety may adapt to prioritize safety over performance if the context variable predicts +an unsafe event about to occur. In order to systematically incorporate contextual information, contextual Bayesian +optimization approaches have been proposed in [20], where the inputs to the learner include the context variables +augmented with the optimization variables. Contextual Bayesian optimization approaches have recently been tested +on controller design applications: for example, safe Bayesian optimization has been extended to the contextual +case in [11] to tune a room temperature controller via PID gain tuning. Furthermore, in [27], contextual Bayesian +optimization is applied to cooperative wind farm control to maximize the efficiency of generated power. However, +2 + +the incorporation of context in our setting, that is: how to simultaneously tune the controlled system efficiently and +manage the constraint violations under a tolerable level with time-varying contexts, has not been studied previously, +to the best of our knowledge. +In this paper, we propose a novel violation-aware contextual Bayesian optimization approach (VACBO 2) that +exhibits accelerated convergence compared to safe BO, while ensuring the violation cost is within a prescribed budget +under time-varying contextual variables. We demonstrate that our VACBO algorithm is less conservative than ‘safe +BO’ algorithms that tend to be sample-inefficient and can get stuck in a local minimum because they cannot allow +any constraint violation. The VACBO algorithm is also more cautious than constrained Bayesian optimization, which +is agnostic to constraint violations and thus, is likely to incur large violation costs. Our VACBO algorithm is based +on the principle of encouraging performance function evaluation at combinations of control parameters that greatly +assist the optimization process, as long as it does not incur high constraint violations likely to result in system failure +or irreversible damage. +Our VACBO algorithm is an extension of the VABO algorithm [37] to the contextual case. We augment the +input space with contextual variables and design a tractable auxiliary acquisition optimization problem specific to +the contextual setting. More specifically, the VABO algorithm can not directly incorporate the impact of contextual +variables, which can be significant in many applications. For example, the impact of ambient temperature and ambient +humidity can be significant in vapor compression system set-point tuning. To incorporate the contextual variables, we +augment the input variables, which we can control, with contextual variables that are measured from the environment. +With this augmentation, our method can learn the joint impact of the input variables and contextual variables based +on Gaussian process learning. Furthermore, the existing constrained expected improvement acquisition function +used in VABO [37] and other constrained BO papers [13, 14] are not readily applicable to the contextual case. To +address this issue, we extend the commonly used Constrained Expected Improvement (CEI) acquisition function to +the contextual case and propose the Constrained Proxy Expected Improvement (CPEI) acquisition function. +Our contributions include: +1. We propose a new variant of constrained BO methods for control parameter tuning that improves global +convergence rates within a prescribed amount of constraint violation with guaranteed high probability under a +time-varying contextual setting; +2. We propose a simple and tractable constrained auxiliary acquisition function optimization problem for trading +off performance improvement and constraint violation; +3. To incorporate the environmental conditions that impact the objective and constraints, we augment the in- +put space by contextual variables and propose a new acquisition function by extending the commonly used +Constrained Expected Improvement (CEI) [13,14] to the contextual setting; and, +4. We validate our algorithms on a set-point optimization problem using a high-fidelity VCS that has been +calibrated on an industrial HVAC system, with ambient temperature and ambient humidity as two context +variables. Simulation results with real-world weather signals as context variables demonstrate that our method +efficiently minimizes the power consumption while simultaneously managing constraint violations within a +tolerable level. +We now state the organization of our paper. In Sec. 2, we present the statement of our problem and our proposed +solution concept. Then in Sec. 3, we present our VACBO algorithm. After that, we give the application result of a +case study on vapor compression system in Sec. 4. Finally, we conclude the paper in Sec. 5. +2 +Preliminaries +2.1 +Problem Statement +We consider closed-loop systems of the form +ξ+ = F(ξ, θ, z), +(1) +where ξ, ξ+ ∈ Rnξ denote the system state and the successor state (respectively), θ ∈ Θ ⊂ Rnθ the control parameters +(e.g., set-points) to be tuned, z ∈ Z ⊂ Rnz the context variables (e.g., ambient temperature) that affect the dynamics, +and F(·, ·, ·) the closed-loop dynamics with initial condition ξ0. We assume that the closed-loop system (1) is designed +such that it is exponentially stable to a control parameter and context dependent equilibrium state ξ∞(θ, z) for every +θ ∈ Θ. We further assume that ξ∞(·) is a continuous map on Θ. +2Code is available at https://github.com/PREDICT-EPFL/VACBO. +3 + +To determine the system performance, we define a continuous cost function ℓ(θ, z) : Rnθ+nz → R to be minimized, +which is an unknown/unmodeled function of the parameters θ and the context variables z. This is not unusual: while +ℓ may be well-defined in terms of system outputs, it is often the case that the map from control parameters and +context variables to cost remains unmodeled; in fact, ℓ may not even admit a closed-form representation on Θ and +Z, c.f. [6,8]. +We also define N unmodeled constraints on the system outputs that require caution during tuning. The i-th +such constraint is given by gi(θ, z) : Rnθ+nz → R, i ∈ [N], where the notation [N] +def += {i ∈ N, 1 ≤ i ≤ N}; we assume +each gi(·, ·) is continuous on Θ × Z. We assume that the cost function ℓ(θ, z) and every constraint gi(θ, z), i ∈ [N] +can be ascertained, either by measurement or estimation, during the hardware/simulation experiment. We introduce +the brief notation g(·, ·) ≤ 0 ≜ gi(·, ·) ≤ 0, i ∈ [N] and assume that an initial feasible set of solutions is available at +design time. +Assumption 1. The designer has access to a non-empty safe set S0 ⊂ Θ × Z such that for any (θ, z) ∈ S0, all +constraints are satisfied; that is, g(θ, z) ≤ 0 for every (θ, z) ∈ S0. +While such an initial set S0 can be derived using domain expertise, it is likely that S0 contains only a few +feasible (θ, z), and at worst could even be a singleton set. Assumption 1 is a common assumption in the literature +of safe optimization (e.g., [32]). Without this assumption, it is possible that in the initial steps, we may already +sample some points with large violations, which makes the problem unlikely to be tractable at all. Furthermore, +we notice that in many applications (e.g., vapor compression system set-points tuning), an initial set of feasible +(maybe suboptimal) set-points are known based on domain knowledge. Therefore, Assumption 1 is a necessary but +not restrictive assumption for our problem. +We cast the control parameter tuning problem as a black-box constrained optimization problem, formally de- +scribed by +min +θ∈Θ +ℓ(θ, z), +(2a) +subject to: +gi(θ, z) ≤ 0, +∀i ∈ [N]. +(2b) +The contextual variable z represents some quantities reflecting the environmental conditions, which we can measure +but not directly control at each step. We give an example in the following. +Example 1. Ambient temperature and ambient humidity are two important contextual variables that impact the +operation of the vapor compression system. Both of them can be measured but not directly controlled during the +operations of the vapor compression systems. +Furthermore, z can be time-varying with its own dynamics. We use zt to denote the value of z at time step t. +Our objective is to solve the constrained optimization problem (2) with limited constraint violations during the +optimization process. Since the constraints are assumed to be unmodeled and a limited set of feasible solutions is +known at design time, we do not expect a guarantee of zero constraint violation. The tolerable amount and duration +of constraint violations are problem-dependent. In some applications, such as vapor compression systems, small +constraint violations over a short-term are acceptable, while large constraint violations are strongly discouraged. +In such cases, instead of being overly cautious and ending up with suboptimal solutions, we allow small constraint +violations as long as the resulting knowledge gathered by evaluating an infeasible (in terms of constraint violation) θ +accelerates the optimization process or helps avoid local minima. +Remark. Our formulation (2) can also optimize batch processes over finite-time horizons, say Th. +This would +involve defining the objective and constraints over a batch trajectory with stage loss ℓ(θ, z) := +1 +Th +� Th +0 +l(τ, θ, z) dτ. +2.2 +Proposed Solution +We propose a modified Bayesian optimization framework to solve the problem (2) that is violation-aware: the +algorithm automatically updates the degree of risk-taking in the current iteration based on the severity of constraint +violations in prior iterations. Concretely, for an infeasible θ, the constraint violation cost is given by +¯ci(θ, z) ≜ ci +� +[gi(θ, z)]+� +, +i ∈ [N] +(3) +where [gi(·, ·)]+ := max{gi(·, ·), 0} and ci : R≥0 → R≥0. Note that gi corresponds to physically meaningful system +outputs that we can measure, e.g., temperature. +This violation cost function ci is user-defined as a means to +explicitly weigh the severity of ‘small’ versus ‘large’ constraint violations. While the function ci is at the discretion +of the designer, it needs to satisfy the following mild assumptions in order to achieve desirable theoretical properties; +see §3. +4 + +Assumption 2. The violation cost function ci satisfies: +(A1) ci(0) = 0, +(A2) ci(s1) ≥ ci(s2), if s1 > s2 ≥ 0, +(A3) ci is left continuous on R≥0. +Assumption 2 captures some intuitive properties required of the violation cost function. +According to (A1), +there is no cost associated with no violation. From (A2), we ensure that the violation cost is monotonically non- +decreasing with increased violations. Finally (A3) ensures that this monotonic increase is smooth and does not +exhibit discontinuous jumps from the left. +To adapt the degree of risk-taking based on prior data obtained, we define a violation budget over a horizon of +T ∈ N optimization iterations. Our goal is to sequentially search over T iterations {θt}T +t=1 while using a prescribed +budget of constraint violations in order to obtain a feasible and optimal set of parameters +min +θt∈Θ; +g(θt,zt)≤0 +ℓ(θt, zt) +subject to: +T +� +t=1 +¯ci(θt, zt) ≤ Bi , +i ∈ [N] +(4) +where Bi denotes a budget allowed for the i-th violation cost. Note that this formulation is a generalization of +well-known constrained/safe Bayesian optimization formulations proposed in the literature. If we set all Bi ≡ 0, +then our formulation is closely related to safe BO [31, 32]. Alternatively, setting Bi ≡ ∞ reduces our problem to +constrained BO agnostic to violation cost [13,14]. +3 +Violation-Aware Contextual Bayesian Optimization +3.1 +Bayesian Optimization Preliminaries +For Bayesian optimization, one models ℓ(x) and g(x) as functions sampled from independent Gaussian processes. +In our case, the input x to the Gaussian process consists of control parameters θ and the context variables z. At +iteration t, conditioned on previous input and function evaluation data D := {(θ, z)1:t, ℓ((θ, z)1:t)}, the posterior +mean and standard deviation of ℓ is given by +µℓ(x|D) = k⊤ +ℓ (x, xD)K−1 +ℓ +∆yℓ + µℓ,0(x) +and +σ2 +ℓ(x|D) = kℓ(x, x) − k⊤ +ℓ (x, xD)K−1 +ℓ +kℓ(xD, x), +where xD = (θ, z)1:t is the set of control parameters and context variables with which previous experiments/simulations +have been performed. Here, +kℓ(x, xD) ≜ [kℓ(x, xi)]xi∈xD, +kℓ(xD, x) ≜ [kℓ(xi, x)]xi∈xD, +Kℓ ≜ (kℓ(xi, xj))xi,xj∈xD , +∆yℓ ≜ [ℓ(xi) − µℓ,0(xi)]xi∈xD, +and kℓ(·, ·) is a user-defined kernel function and µℓ,0 is the prior mean function, both associated with ℓ; see [12] for +more details on kernel and prior mean selection. The above quantities are all column vectors, except Kℓ, which is +a positive-definite matrix. For the constraint functions g, similar expressions for the posterior mean µgi(x|D) and +standard deviation σgi(x|D) can be obtained. +The kernelized functions above provide tractable approximations of the cost of the closed-loop system, along with +the constraint functions, both of which were hitherto unmodeled/unknown. Classical BO methods use the statistical +information embedded within these approximations to intelligently explore the search space Θ via acquisition func- +tions. A specific instance of an acquisition function commonly used in constrained BO is the constrained expected +improved (CEI) function [13]. It is defined as the expectation of the multiplication of improvement as compared +to the incumbent best objective sampled so far and the feasibility indicator. However, in the contextual case, the +5 + +objective may heavily rely on context. The incumbent best objective value under a favorable context may mislead +the parameter search under the adversarial context. +Therefore, instead of using the incumbent best objective, we propose a two-step approach. In the first step, we +use the minimum value of the posterior mean of ℓ to construct a proxy of the best objective sampled so far under a +different context as in (5). +ˆℓmin +t +(z) = min +θ∈Θ µℓ((θ, z)|D) +(5) +In the second step, we use the minimum value of posterior mean ˆℓmin +t +to construct a new acquisition function, the +Constrained Proxy Expected Improvement (CPEI), given by +CPEI((θ, z)|D) = E +� +� � +i∈[N] +1gi(θ,z)≤0 I(θ, z)|D +� +� , +(6) +where 1 denotes the indicator function, E denotes the expectation operator, and I(θ, z) = max{0, ˆℓmin +t +(z) − ℓ(θ, z)} +is the improvement of (θ, z) over the proxy ˆℓmin +t +(z) for the best incumbent solution over t iterations. +As gi(θ, z), ∀i ∈ [N] and ℓ(θ, z) are independent, we deduce +CPEI(θ, z|D) = +� +i∈[N] +P(gi(θ, z) ≤ 0|D)E (I(θ, z)|D) . +(7) +We have P(gi(θ, z) ≤ 0|D) = Φ +� −µgi(θ,z|D) +σgi(θ,z|D) +� +, and the closed-form expression of expected improvement [17], +E (I(θ, z)|D) = ∆l(θ, z|D)Φ (w) + σℓ(θ, z|D)φ (w) , +(8) +where ∆l(θ, z|D) = ˆℓmin +t +(z) − µℓ(θ, z|D), w = +ˆℓmin +t +(z)−µℓ(θ,z|D) +σℓ(θ,z|D) +, Φ(·) and φ(·) are the standard normal cumulative +distribution and probability density functions, respectively. +3.2 +VACBO Algorithm +Our VACBO algorithm proposes an auxiliary optimization problem that leverages the constrained proxy expected +improvement acquisition function to guide the search of feasible points with potentially lower objective to evaluate +while ensuring (with high probability) that the violation cost will remain within a prescribed budget. +Given the total violation cost budget, a question is how to allocate the budget across different samples. Intuitively, +it may be beneficial to dynamically adjust the violation cost budget allocated to a single step. For example, if we +find that we incur no violation cost for several steps, it is possible that we are overly cautious in those steps and +may get stuck in a local minimum. So we can then increase the violation cost budget allocated for the next step. It +is also possible that we incur significant violation in some step due to the over-confidence in the constraint function +prediction by Gaussian process regression. In this case, we need to decrease the violation cost budget allocated to +one single step. To capture this intuition in our algorithm, we design a violation cost budget allocation scheme to +dynamically adjust the violation cost allocated to one single step. We use Bi,t to denote the violation cost budget +allocated to the step t for the i-th constraint. Our violation cost budget allocation scheme is given as, +Bi,t ≜ min +� +max +� +BiSi,t − +t−1 +� +τ=1 +¯ci(θτ, zτ), 0 +� +, Bmax +i +� +, +(9) +where Si,t is a non-negative and non-decreasing sequence that satisfies Si,T = 1 and Bmax +i +is the maximum violation +cost tolerable for the i-th constraint, which is a user-provided parameter that captures the user’s maximum tolerance +for constraint violation in one single step. +At this iteration, after observing the context variables, we solve the following auxiliary problem +θ⋆ +t := arg max +θ∈Θ CPEI(θ, z|D), +(10a) +subject to: +� +i∈[N] +P(¯ci(θ, z) ≤ Bi,t) ≥ 1 − ϵt, +(10b) +6 + +to compute the next control parameter candidate θ⋆ +t , where 0 < ϵt ≪ 1 determines the probability of large constraint +violation. +Note that (10a) involves maximizing the constrained expected improvement type objective, which is +common to cBO algorithms; c.f. [13]. Our modification using the budget, as written in (10b), enforces that the next +sampled point will not use up more than the violation cost budget Bi,t for all constraints with a probability of at +least 1 − ϵt, conditioned on the data seen so far. This modification allows us to trade a prescribed level of violation +risk for more aggressive exploration, leading to faster convergence. Although we use the constrained proxy expected +improvement acquisition function here, we can easily generalize to other acquisition functions by simply replacing +CPEI in the objective (10a). +We now discuss how to efficiently solve the auxiliary problem (10). Recall from Assumption 2 that ci is non- +decreasing on R≥0 for every i ∈ [N]. Therefore, we can define an inverse violation function c−1 +i (s) = sup{r ∈ R≥0 | +ci(r) ≤ s} for any s ∈ R≥0. Therefore, we can write P(¯ci(θ, z) ≤ Bi,t|D) = P([gi(θ, z)]+ ≤ c−1 +i (Bi,t)|D) = P(gi(θ, z) ≤ +c−1 +i (Bi,t)|D). Since gi(θ, z) follows a Gaussian distribution with mean µgi(θ, z|D) and variance σ2 +gi(θ, z|D), we get +P(¯ci(θ, z) ≤ Bi,t|D) = Φ +�c−1 +i (Bi,t) − µgi(θ|D) +σgi(θ|D) +� +. +When the number of control parameters nθ is small (e.g., < 6), we can place a grid on Θ and evaluate the cost +and constraints of (10) at all the grid nodes. The maximum feasible solution can then be used as the solution to +the auxiliary problem. When the number of control parameters is large (e.g., nθ > 6), we can use gradient-based +methods with multiple starting points to solve problem (10), since evaluating the learned GPs approximating ℓ and +g require very little computational time or effort when T is not large (empirically, < 2000). We provide pseudocode +for implementation in Algorithm 1. +The following proposition provides a probabilistic guarantee of keeping the violation cost below the given budget. +It highlights the “violation-awareness” property exhibited by VACBO. +Proposition 1. Fix δ ∈ (0, 1) and T ∈ N. If ϵt, t ∈ [T] are chosen such that δ = 1 − �T +t=1(1 − ϵt), then the VACBO +algorithm satisfies the probability that +� +max +t∈[T ] ¯ci(θt, zt) ≤ Bmax +i +and +T +� +t=1 +¯ci(θt, zt) ≤ Bi, ∀i ∈ [N] +� +is at least 1 − δ. +Proof. Let +E1 +t := +� +max +τ∈[t] ¯ci(θτ, zτ) ≤ Bmax +i +, ∀i ∈ [N] +� +E2 +t := +� +t +� +τ=1 +¯ci(θτ, zτ) ≤ BiSi +t, ∀i ∈ [N] +� +Et := E1 +t ∩ E2 +t , +where t ∈ [T]. Furthermore, we let +∆E1 +t := {¯ci(θt, zt) ≤ Bmax +i +, ∀i ∈ [N]} +Notice that E1 +t+1 = E1 +t ∩ ∆E1 +t+1. We have +P (ET ) ≥ P (ET −1) P (ET | ET −1) += P (ET −1) P +� +E1 +T −1 ∩ ∆E1 +T ∩ E2 +T |ET −1 +� += P (ET −1) P +� +∆E1 +T ∩ E2 +T |ET −1 +� += P (ET −1) P (¯ci(θT , zT ) ≤ Bi,T , ∀i ∈ [N]|ET −1) +≥ P(ET −1)(1 − ϵT ), +(11) +where the last equality follows by that +Bi,T ≜ min +� +BiSi,T − +T −1 +� +τ=1 +¯ci(θτ, zτ), Bmax +i +� +7 + +conditioned on ET −1. By recursion, we have +P (ET ) ≥ P (E1) +T +� +t=2 +(1 − ϵt) ≥ +T +� +t=1 +(1 − ϵt) = 1 − δ, +which concludes the proof since Si +T = 1. +Algorithm 1 Violation-Aware Contextual Bayesian Optimization +1: Require: VACBO horizons T, violation total budget Bi, ∀i ∈ [N], maximum allowed violation cost for a single +step Bmax +i +, ∀i ∈ [N], and an initial safe set of points X0 +2: Evaluate ℓ(θ, z), gi(θ, z), ∀i ∈ [N] for (θ, z) ∈ X0 by performing experiments or simulation, or using historical +data +3: Initialize dataset +D = {(θt, zt), ℓ(θt, zt), g(θt, zt) ∀(θt, zt) ∈ X0} +4: for t ∈ [T] do +5: +Observe the context variables zt for step t +6: +Bi,t ≜ min +� +max +� +BiSi,t − �t−1 +τ=1 ¯ci(θτ, zτ), 0 +� +, Bmax +i +� +7: +Θt = +�� +i∈[N] P(¯ci(θ, zt) ≤ Bi,t|D) ≥ 1 − ϵt|θ ∈ Θ +� +8: +θ⋆ +t = arg maxθ∈Θt CPEI(θ, zt|D) +▷ Solving (10) +9: +ℓ(θ⋆ +t , zt), g(θ⋆ +t , zt) ← perform experiment with θ⋆ +t under the context zt +10: +Update dataset, +D ← D ∪ {(θ⋆ +t , zt), ℓ(θ⋆ +t , zt), g(θ⋆ +t , zt)} +11: +Update Gaussian process posterior +12: end for +4 +Case Study: Constrained VCS Optimization +In this section, we apply the violation-aware contextual Bayesian optimization framework to safely tune the set-points +of a vapor compression system (VCS). As shown in Fig. 2, a VCS typically consists of a compressor, a condenser, an +expansion valve, and an evaporator. While physics-based models of these systems can be formulated as large sets of +nonlinear differential algebraic equations to predict electrical power consumption, there are a variety of challenges in +developing and calibrating these models. This motivates interest in directly using measurements of the power under +different operating conditions to search for optimal set-points to the VCS actuators using data-driven, black-box +optimization methods such as BO, to minimize the power consumption. +During the tuning process, one constraint, considered here, is on the temperature of the refrigerant leaving the +compressor, also referred to as the ‘discharge temperature’ (see Fig. 2). The discharge temperature must be managed +because compressors are designed to operate within specific temperature ranges; excessively high temperatures can +result in the breakdown of refrigerant oils and increase wear and tear. In addition, high temperatures are often +correlated with high pressures, which can cause metal fatigue and compromise the integrity of the pressurized +refrigerant pipes in extreme cases. While managing the constraints mentioned above in the long run is critical, we +also observe that small violations over short periods of time have limited harmful effects. Indeed, it may be beneficial +to take the risk of short-period limited violation to accelerate the tuning process. +Meanwhile, another challenge of tuning comes from the time-varying ambient conditions. Two major ambient +conditions that have significant impact on the performance of vapor compression systems are the ambient temperature +and the ambient humidity. The feasibility and optimality of VCS setpoints may be strongly correlated with these +ambient conditions. For example, one set of fixed setpoints may lead to a feasible discharge temperature with low +ambient temperature, but result in discharge temperature violation when the ambient temperature becomes high. It +is necessary to adapt the set-points to the ambient conditions. +We cast the VCS optimization problem in the same form as (2), with ℓ((θ, z)) denoting the steady-state power +of the VCS with set points θ and contextual variables z. The constraint g ≤ 0 is given by Td((θ, z)) − ˆTd ≤ 0, +where Td((θ, z)) is the steady-state discharge temperature with set points θ and context variables z, and ˆTd is a +safe upper bound. We close a feedback loop from compressor frequency to room temperature, leaving the set of +8 + +Figure 2: Schematic diagram of vapor compression system with our proposed VACBO controlling the EEV (electronic +expansion valve) and the two fans’ speed. For simplicity, we do not show other measurements and controls. +3 tunable set points θ as the expansion valve position and the indoor/outdoor fan speeds. We set the contextual +variables to be ambient temperature and the ambient humidity, which are the two major ambient factors influencing +the performance of vapor compression systems. The effects of these set points and contextual variables on power +and discharge temperature are not easy to model, and no simple closed-form representation exists. In practice, we +assign a setpoint θ under contexts z, wait for an adequate amount of time until the power signal resides within a +95% settling zone, and use that power value as ℓ((θ, z)) and the corresponding discharge temperature as Td((θ, z)). +Implementation Details +We use a high-fidelity model of the dynamics of a prototype VCS3 written in the Modelica language [24] to collect +data and optimize the set-points on-the-fly. A complete model description is available in [8]. The model was first +developed in the Dymola [10] environment, and then exported as a functional mockup unit (FMU) [25]. Its current +version comprises 12,114 differential equations. +We sample the system state each second. To leave enough time +for the system state to converge to the steady state, we update the set-points every 180s. Bayesian optimization is +implemented in GPy [15]. +We define our set-point search space Θ := [200, 350]×[300, 450]×[500, 850], in expansion valve counts, indoor fan +rpm (revolutions per minute), and outdoor fan rpm, respectively. We aim to keep the discharge temperature below +ˆTd = 333 K; these constraints are set according to domain knowledge [6]. We initialize the simulator at an expansion +valve position of 340 counts, an indoor fan speed of 440 rpm, and an outdoor fan speed of 840 rpm, which is known +to be a feasible set-point based on experience. +Constraint violations are penalized with the function ci(s) = s2, s ∈ R+. The quadratic nature of the violation +cost implies that minor violations are not as heavily penalized as larger ones. The reason for this is that small +violations over a small period of time are unlikely to prove deleterious to the long-term health of the VCS, whereas +large violations could have more significant effects, even over short periods of time; for instance, damage to motor +winding insulation or exceeding mechanical limits on the pressure vessel of the compressor. These constraints have +been incorporated into the selection of the thresholds ˆTd. +Of course, the threshold values and a parameterized +violation cost could be considered to be hyperparameters, and could be optimized via further experimentation. We +3Note that while the behavior of this model has been validated against a real VCS, the numerical values and/or performance presented +in this work are not representative of any product. +9 + +VAPOR COMPRESSION SYSTEM (VCS) +comp freq, CF +discharge temp +LNTERNAL VARIABLES TO BE +② +zone temp, T +compressor +ASSIGNED: +evaporator +EXPANSION VALVE POSITION +condenser +2. +INDOOR FAN SPEED +indoor fan +3. +OUTDOOR FAN SPEED +speed, IFS +outdoor fan I +speed, OFS +heat load +EEV position +. ambient air +3 +temp. +VACBO +zone +electronic +expansion valv +POWER (OBJECTIVE) +DISCHARGE TEMPERATURE (CONSTRAINED VARIABLE) +AMBIENT CONDITIONS (TEMPERATURE, HUMIDITY)choose the RBF kernel for our problem, which is commonly used in Bayesian optimization [12], and compare our +method to two other state-of-the-art BO methods, namely, safe BO [5,11] and generic constrained BO (cBO) [14]. To +ensure a fair comparison, we also extend the other two state-of-the-art BO methods to the contextual setting. More +specifically, we augment the input space of Gaussian processes with contextual variables and inherit the algorithms +of both safe BO and generic cBO. Based on our domain experience and prior knowledge, we set the kernel variance to +be 15.0 (2.0, respectively), the kernel lengthscales in control parameters to be [50, 60, 70] ([20, 24, 28], respectively) for +the objective (constraint) and the kernel lengthscales in contextual variables to be [1.0, 0.06] ([1.0, 0.06], respectively) +for the objective (constraint). +We showcase the effect of varying Bi, i = 1 by selecting B1 = 0, 10, and 20, and set S1,t = ai + bi t +T , where +ai + bi = 1 and ai ≥ 0 and bi ≥ 0.This choice allows the algorithm to use an increasing fraction of the total budget +minus the violation cost incurred in the previous steps when approaching the sampling limit T. Intuitively, such a +choice of budget sequence gradually increases the violation risk level without sampling too aggressively in the initial +several steps and allows us to reduce the budget based on the violation cost in the previous steps. Proposition 1 +gives a conservative way of choosing ϵt. In this case study, setting ϵt to a small constant 0.01 works well. We use +“VACBO B” to indicate violation aware contextual BO with budget B1 = B. +Generation of Context Sequences. We consider both artificial recurring contexts and real-world contexts. In +Sec. 4.1, we use artificially generated recurring contexts to showcase the effectiveness of our algorithm in optimizing +the power consumption while managing the discharge temperature violation well. In Sec. 4.2, we apply our algorithm +to more realistic setting with real-world historic context sequences measured in Zurich, Switzerland. +4.1 +Artificial Recurring Contexts +0 +100 +200 +300 +Time/min +302.6 +302.8 +303.0 +303.2 +303.4 +303.6 +Ambient Temperature/K +The First Contextual Variable +0 +100 +200 +300 +Time/min +0.600 +0.625 +0.650 +0.675 +0.700 +0.725 +Ambient Humidity +The Second Contextual Variable +Figure 3: Recurring contexts used in our experiment. +To showcase the performance improvement brought by our method, we first apply an artificial sequence of +recurring contexts. We periodically choose context zt from a pre-defined context list (zp +i )i∈[n] with additive Gaussian +noise. Fig. 3 shows the change of the two contextual variables with respect to time in our experiment. +10 + +0 +100 +200 +300 +Time/min +400 +450 +500 +550 +600 +Power/W +The Objective Value +0 +100 +200 +300 +Time/min +310 +315 +320 +325 +330 +335 +340 +Discharge Temperature/K +The Constraint Variable +Threshold +Fixed +CEI +VACBO +Figure 4: The evolution of power and discharge temperature with respect to time under recurring contexts. +11 + +0 +200 +400 +600 +Average Power/W +0 +50 +100 +150 +200 +Maximum Violation/K +Fixed Solution +VACBO +CEI +Safe BO +Figure 5: Comparison of average power and maximum constraint violation. +Results and Discussion +Fig. 4 illustrates the experimental results of violation-aware contextual Bayesian optimization compared to a fixed +solution, which fixes the tuning parameters to default feasible values. The fixed solution can maintain the feasibility +of discharge temperature constraint all the time. +However, without any set-point exploration and optimization, +the fixed solution maintains a relatively high operating power all the time. +In contrast, our VACBO algorithm +strategically explores the parameter space and optimizes the power function, with only small short-term tolerable +violation. With more and more samples collected, the VACBO algorithm achieves lower and lower power, significantly +reducing the energy consumption as compared to the fixed-parameter solution. +40 +60 +80 +Time/min +301.5 +302.0 +302.5 +303.0 +Ambient Temperature/K +The First Contextual Variable +40 +60 +80 +Time/min +0.500 +0.525 +0.550 +0.575 +0.600 +Ambient Humidity +The Second Contextual Variable +Figure 6: The ambient temperature and the ambient humidity in Zurich, Switzerland, starting at 1:30 PM on 2nd, +July, 2019. +We then compare our VACBO algorithm to two state-of-the-art Bayesian optimization methods with constraints, +safe Bayesian optimization [32] and generic constrained Bayesian optimization [13,14]. Fig. 5 gives the comparison of +average power and the maximum discharge temperature violation. Our VACBO method reduces the average power +12 + +by about 12.2% as compared to fixing the setpoints, while managing the discharge temperature well as shown in +Fig. 4. In comparison, generic constrained BO incurs discharge temperature that violates the constraint by as large +as more than 150K, which is very dangerous for the system. As compared to the fixed solution, safe BO shows a +very minor improvement in terms of the average power. +4.2 +Real-world Contexts +To further demonstrate the effectiveness of our method under real-world contexts, we use the ambient temperature +and the ambient humidity in Zurich, Switzerland as the contexts. +Fig. 6 shows the context data used for the real-world contexts. Fig. 7 shows the evolution of power and discharge +temperature with respect to time under real-world contexts for a set of fixed set-points, the generic constrained +Bayesian optimization method (CEI [13,14]), and VACBO. Similar to the results under recurring contexts, without +exploration and optimization of the set-point parameter space, the fixed solution keeps operating with high power. +We further show the average power and maximum discharge temperature violation in Fig. 8. Again, VACBO achieves +significant power reduction compared to fixed set-point solution and other state-of-the-art method. Furthermore, our +method incurs small and tolerable constraint violation (< 0.5K), in sharp contrast to the significant violation (≥ 2.0K) +of generic contextual constrained BO (CEI method). +2000 +3000 +4000 +5000 +Time/s +400 +450 +500 +550 +Power/W +The Objective Value +2000 +3000 +4000 +5000 +Time/s +326 +328 +330 +332 +334 +Discharge Temperature/K +The Constraint Variable +Fixed +CEI +VACBO +Threshold +Figure 7: The evolution of power and discharge temperature with respect to time under real-world contexts. +5 +Conclusions +In this paper, we design a sample-efficient and violation-aware contextual Bayesian optimization (VACBO) algorithm +13 + +0 +100 +200 +300 +400 +500 +Average Power/W +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +Maximum Violation/K +Fixed Solution +VACBO +CEI +Safe BO +Figure 8: The average power and maximum discharge temperature violation for different methods. +to solve the closed-loop control performance optimization problem with unmodeled constraints and time-varying +contextual factors, by leveraging the fact that small violations over a short period only incur limited costs during the +optimization process in many applications such as for vapor-compression cycles. We strategically trade the budgeted +violations for faster convergence by solving a tractable auxiliary problem with probabilistic budget constraints at +each step. Our experiments on a VCS show that, as compared to existing safe BO and generic constrained BO, our +method simultaneously exhibits improved optimization performance and manages the violation cost well. +Acknowledgements +This research was supported by the Swiss National Science Foundation under NCCR Automation, grant agreement +51NF40 180545, and in part by the Swiss Data Science Center, grant agreement C20-13. +References +[1] Ali Baheri and Chris Vermillion. Waypoint optimization using Bayesian optimization: A case study in airborne +wind energy systems. In 2020 Amer. Control Conf. (ACC), pages 5102–5017. IEEE, 2020. +[2] Ali Baheri and Christopher Vermillion. Altitude optimization of airborne wind energy systems: A Bayesian +optimization approach. In 2017 Amer. Control Conf. (ACC), pages 1365–1370. IEEE, 2017. +[3] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J Tomlin. Goal-driven dynamics learning +via Bayesian optimization. In 2017 IEEE 56th Annu. Conf. on Decis. and Control (CDC), pages 5168–5173. +IEEE, 2017. +[4] Thomas Beckers, Somil Bansal, Claire J Tomlin, and Sandra Hirche. Closed-loop model selection for kernel-based +models using Bayesian optimization. In 2019 IEEE 58th Conf. on Decis. and Control (CDC), pages 828–834. +IEEE, 2019. +[5] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for quadrotors with +Gaussian processes. In 2016 IEEE Int. Conf. on Robot. and Automat. (ICRA), pages 491–496. IEEE, 2016. +[6] Daniel J Burns, Christopher R Laughman, and Martin Guay. Proportional-integral extremum seeking for vapor +compression systems. IEEE Trans. Control Syst. Technol., 28(2):403–412, 2018. +[7] Ankush Chakrabarty and Mouhacine Benosman. Safe learning-based observers for unknown nonlinear systems +using Bayesian optimization. Automatica, 133:109860, 2021. +[8] Ankush Chakrabarty, Claus Danielson, Scott A. Bortoff, and Christopher R. Laughman. +Accelerating self- +optimization control of refrigerant cycles with Bayesian optimization and adaptive moment estimation. Appl. +Therm. Eng., 197:117335, 2021. +[9] Wander G da Silva, Paul P Acarnley, and John W Finch. Application of genetic algorithms to the online tuning +of electric drive speed controllers. IEEE Trans. Ind. Electron., 47(1):217–219, 2000. +14 + +[10] Dassault Systemes. Dymola 2020. 2019. +[11] Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, and Andreas Krause. Safe con- +textual Bayesian optimization for sustainable room temperature PID control tuning. In Proc. 28th Int. Joint +Conference on Artificial Intelligence (IJCAI), pages 5850–5856, 2019. +[12] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018. +[13] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham. Bayesian +optimization with inequality constraints. In ICML, volume 2014, pages 937–945, 2014. +[14] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian optimization with unknown constraints. In +Proc. of the 30th Conf. on Uncertainty in Artif. Intell., UAI’14, page 250–259, Arlington, Virginia, USA, 2014. +AUAI Press. +[15] GPy. GPy: A Gaussian process framework in python. http://github.com/SheffieldML/GPy, since 2012. +[16] Shinkyu Jeong, Mitsuhiro Murayama, and Kazuomi Yamamoto. Efficient optimization design method using +kriging model. Journal of aircraft, 42(2):413–420, 2005. +[17] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box +functions. J. Global Optim., 13(4):455–492, 1998. +[18] Mohammad Khosravi, Annika Eichler, Nicolas Schmid, Roy S Smith, and Philipp Heer. Controller tuning by +Bayesian optimization an application to a heat pump. In 2019 18th Eur. Control Conf. (ECC), pages 1467–1472. +IEEE, 2019. +[19] Christopher K¨onig, +Mohammad Khosravi, +Markus Maier, +Roy S Smith, +Alisa Rupenyan, +and John +Lygeros. +Safety-aware cascade controller tuning using constrained Bayesian optimization. +arXiv preprint +arXiv:2010.15211, 2020. +[20] Andreas Krause and Cheng Ong. Contextual Gaussian process bandit optimization. Advances in Neural Infor- +mation Processing Systems, 24, 2011. +[21] Remi Lam, Karen Willcox, and David H Wolpert. Bayesian optimization with a finite budget: An approximate +dynamic programming approach. Advances in Neural Inf. Process. Syst., 29:883–891, 2016. +[22] Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. Cost-aware Bayesian optimization. +arXiv preprint arXiv:2003.10870, 2020. +[23] Alonso Marco, Alexander von Rohr, Dominik Baumann, Jos´e Miguel Hern´andez-Lobato, and Sebastian Trimpe. +Excursion search for constrained Bayesian optimization under a limited budget of failures. +arXiv preprint +arXiv:2005.07443, 2020. +[24] Modelica Association. Modelica specification, Version 3.4. 2017. +[25] Modelica Association. Functional Mockup Interface for Model Exchange and Co-Simulation, Version 2.0.1. 2019. +[26] Anuj Pal, Ling Zhu, Yan Wang, and Guoming G Zhu. Multi-objective stochastic Bayesian optimization for +iterative engine calibration. In Proc. of the Amer. Control Conf., pages 4893–4898. IEEE, 2020. +[27] Jinkyoo Park. Contextual Bayesian optimization with trust region (CBOTR) and its application to cooperative +wind farm control in region 2. Sustainable Energy Technologies and Assessments, 38:100679, 2020. +[28] Joel A Paulson and Ali Mesbah. Data-driven scenario optimization for automated controller tuning with prob- +abilistic performance guarantees. IEEE Contr. Syst. Lett., 5(4):1477–1482, 2020. +[29] Dario Piga, Marco Forgione, Simone Formentin, and Alberto Bemporad. Performance-oriented model learning +for data-driven MPC design. IEEE Contr. Syst. Lett., 3(3):577–582, 2019. +[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. +Practical Bayesian optimization of machine learning +algorithms. Advances in Neural Inf. Process. Syst., 25, 2012. +[31] Yanan Sui, Joel Burdick, Yisong Yue, et al. Stage-wise safe Bayesian optimization with Gaussian processes. In +Proc. of the Int. Conf. on Mach. Learn., pages 4781–4789, 2018. +15 + +[32] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with Gaussian +processes. In Proc. of the Int. Conf. on Mach. Learn., pages 997–1005, 2015. +[33] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration for interactive machine learning. +Advances in Neural Inf. Process. Syst. 32, 4:2868–2878, 2020. +[34] Wenjie Xu, Yuning Jiang, and Colin N Jones. Constrained efficient global optimization of expensive black-box +functions. arXiv preprint arXiv:2211.00162, 2022. +[35] Wenjie Xu, Yuning Jiang, Emilio T Maddalena, and Colin N Jones. Lower bounds on the worst-case complexity +of efficient global optimization. arXiv preprint arXiv:2209.09655, 2022. +[36] Wenjie Xu, Yuning Jiang, Bratislav Svetozarevic, and Colin N Jones. +CONFIG: Constrained efficient +global optimization for closed-loop control system optimization with unmodeled constraints. arXiv preprint +arXiv:2211.11822, 2022. +[37] Wenjie Xu, Colin N Jones, Bratislav Svetozarevic, Christopher R Laughman, and Ankush Chakrabarty. VABO: +Violation-aware Bayesian optimization for closed-loop control performance optimization with unmodeled con- +straints. In Proc. American Control Conference, pages 5288–5293, 2022. +16 + diff --git a/oNFLT4oBgHgl3EQfgi-Y/content/tmp_files/load_file.txt b/oNFLT4oBgHgl3EQfgi-Y/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d74d6174e1baeb103ae99ca26554bee0d8cec4bc --- /dev/null +++ b/oNFLT4oBgHgl3EQfgi-Y/content/tmp_files/load_file.txt @@ -0,0 +1,650 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf,len=649 +page_content='Violation-Aware Contextual Bayesian Optimization for Controller Performance Optimization with Unmodeled Constraints Wenjie Xu∗†, Colin N Jones∗, Bratislav Svetozarevic†, Christopher R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Laughman‡, Ankush Chakrabarty‡§ January 31, 2023 Abstract We study the problem of performance optimization of closed-loop control systems with unmodeled dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bayesian optimization (BO) has been demonstrated to be effective for improving closed-loop performance by automatically tuning controller gains or reference setpoints in a model-free manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' However, BO methods have rarely been tested on dynamical systems with unmodeled constraints and time-varying ambient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In this paper, we propose a violation-aware contextual BO algorithm (VACBO) that optimizes closed-loop perfor- mance while simultaneously learning constraint-feasible solutions under time-varying ambient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Unlike classical constrained BO methods which allow unlimited constraint violations, or ‘safe’ BO algorithms that are conservative and try to operate with near-zero violations, we allow budgeted constraint violations to improve con- straint learning and accelerate optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We demonstrate the effectiveness of our proposed VACBO method for energy minimization of industrial vapor compression systems under time-varying ambient temperature and humidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 1 INTRODUCTION Closed-loop systems can often be optimized after deployment by altering controller gains or reference inputs guided by the performance observed through operational data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Manually tuning these control parameters often requires care and effort along with considerable task-specific expertise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Algorithms that can automatically adjust these control parameters to achieve optimal performance are therefore invaluable for saving manual effort, time, and expenditure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The optimal performance of a control system is generally defined via domain-specific performance functions whose arguments are outputs measured from the closed-loop system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' While the map from measurements to performance may be clearly defined, the map from control parameters (that can actually be tuned) to performance is often unmodeled or unknown, since closed-form system dynamics may not be available during tuning [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It is thus common to treat the control parameters-to-performance map as a black-box, and design a data-driven tuning algorithm, where data is collected by experiments or simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' However, since both experimentation and high-fidelity software simulations are expensive, tuning algorithms must be designed to assign a near-optimal set of control parameters with as few experiments/simulations (equivalently, performance function evaluations) as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therefore, existing data-driven methods that need a large number of samples, such as genetic algorithms [9], can be impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It is precisely for this reason that Bayesian optimization (BO)1 has received widespread attention in the context of closed-loop performance optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' BO is a sample-efficient derivative-free global optimization method [17,35] that utilizes probabilistic machine learning to intelligently search through parameter spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [12] gives a detailed survey of Bayesian Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In recent work, BO has demonstrated potential in controller gain tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For example, BO has been applied to the tuning of the PI controller of a heat pump [18] and the tuning of PID cascade controller gains [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' BO has also been applied to the performance optimization of model predictive control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For ∗Laboratoire d’Automatique, ´Ecole polytechnique f´ed´erale de Lausanne, Lausanne, Switzerland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' � {wenjie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='xu, colin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='jones}@epfl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' †Swiss Federal Laboratories for Materials Science and Technology, Switzerland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' � bratislav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='svetozarevic@empa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='ch ‡Mitsubishi Electric Research Laboratories, Cambridge, MA, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' � laughman@merl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='com §Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' � achakrabarty@ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' � +1 (617) 758-6175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' � 201 Broadway, 8th Floor, Cambridge, MA 02139, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 1Also known as efficient global optimization (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', in [17]) or kriging (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', in [16]) in optimization and engineering literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='12099v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='LG] 28 Jan 2023 −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 x −4 −2 0 2 4 y predicted mean f (x) = g(x) zero constraint OPT Local minima (a) Safe BO [32] −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 x −4 −3 −2 −1 0 1 2 3 4 y predicted mean f (x) = g(x) zero constraint OPT Intolerable (b) Constrained BO [14] −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 x −4 −2 0 2 4 y predicted mean f (x) = g(x) zero constraint OPT (c) Our violation-aware BO Figure 1: A motivating example comparing our violation-aware BO to existing state-of-the-art methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safe BO gets stuck in a local minimum and fails to identify the global optimum, while generic constrained BO identifies the global optimum but can incur large constraint violations during the sampling process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In contrast, our method can simultaneously identify the global minimum and manages the constraint violation well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' example, BO was applied to optimize the nominal linear model of a predictive controller [3], to tune the parameters of MPC to optimize the closed-loop performance [29], and to generate candidate parameters for data-driven scenario optimization [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' BO has also been proposed to select closed loop kernel based model [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' BO was used in many other various real-world control applications, such as wind energy systems parameter tuning [1,2], engine calibration [26], and space cooling system optimization [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' A challenge that has garnered recent interest is that of safe Bayesian optimization;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' that is, BO in the presence of safety-critical system constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' These constraints may also be unmodeled (‘black-box’), as a mathematical representation of the constraint with respect to the control parameters is not always known or straightforward to represent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To handle these constraints, safe BO methods have been recently proposed in [32], improved in [31], and extended to a more general setting in [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' These methods either operate on the principle of not allowing any constraint violations during optimization, or leverage partial model knowledge to ensure safety via Lyapunov arguments [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In either case, safe BO learns feasible optima without violating unmodeled constraints, or risks their violation with a predefined small probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Often, this conservativeness results in obtaining local minima, slow convergence speeds, and reduced data efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Conversely, generic constrained optimization with BO learns constraints without paying heed to the amount of constraint violation during the exploration phase [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' More recently, a group of works [34, 36] propose an optimistic constrained optimization approach, with applications to control system tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' These methods are mostly agnostic to the deleterious consequences of constraint violation, such as long-term damage to expensive hardware caused by large violations, rendering them impractical for many industrial applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Another direction of BO research proposes the use of budgets on the cost of samples (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', neural network training time [30], wall clock time [22], sample number [21] and system failures [23]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' However, in these existing BO settings, the budget considered is usually related to the effort or failure risk for performance function evaluation, and does not provide a way to manage the magnitude of constraint violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For many industrial systems, small constraint violations over a short period are often acceptable if that exploration improves the convergence rate of optimization, but large violations are strongly discouraged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For example, in vapor compression systems (VCSs), it is imperative that constraint violation on variables such as compressor discharge temperature are limited to short time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We aim to find a set of near-optimal parameters within as few samples as possible since performance evaluation is time-consuming and available tuning time can be limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therefore, it may be desirable to systematically trade tolerable constraint violations for faster convergence and potentially skipping local minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In other words, for VCSs, the benefits of accelerated global convergence outweigh the cost of short-term constraint violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The performance of control systems are also influenced by exogenous signals such as variations in the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We refer to such signals as context variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It is often necessary to adapt control policies to maintain the performance and feasibility of the control system despite changes in the context variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For instance, a controller designed for both performance and safety may adapt to prioritize safety over performance if the context variable predicts an unsafe event about to occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In order to systematically incorporate contextual information, contextual Bayesian optimization approaches have been proposed in [20], where the inputs to the learner include the context variables augmented with the optimization variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Contextual Bayesian optimization approaches have recently been tested on controller design applications: for example, safe Bayesian optimization has been extended to the contextual case in [11] to tune a room temperature controller via PID gain tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Furthermore, in [27], contextual Bayesian optimization is applied to cooperative wind farm control to maximize the efficiency of generated power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' However, 2 the incorporation of context in our setting, that is: how to simultaneously tune the controlled system efficiently and manage the constraint violations under a tolerable level with time-varying contexts, has not been studied previously, to the best of our knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In this paper, we propose a novel violation-aware contextual Bayesian optimization approach (VACBO 2) that exhibits accelerated convergence compared to safe BO, while ensuring the violation cost is within a prescribed budget under time-varying contextual variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We demonstrate that our VACBO algorithm is less conservative than ‘safe BO’ algorithms that tend to be sample-inefficient and can get stuck in a local minimum because they cannot allow any constraint violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The VACBO algorithm is also more cautious than constrained Bayesian optimization, which is agnostic to constraint violations and thus, is likely to incur large violation costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our VACBO algorithm is based on the principle of encouraging performance function evaluation at combinations of control parameters that greatly assist the optimization process, as long as it does not incur high constraint violations likely to result in system failure or irreversible damage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our VACBO algorithm is an extension of the VABO algorithm [37] to the contextual case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We augment the input space with contextual variables and design a tractable auxiliary acquisition optimization problem specific to the contextual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' More specifically, the VABO algorithm can not directly incorporate the impact of contextual variables, which can be significant in many applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For example, the impact of ambient temperature and ambient humidity can be significant in vapor compression system set-point tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To incorporate the contextual variables, we augment the input variables, which we can control, with contextual variables that are measured from the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' With this augmentation, our method can learn the joint impact of the input variables and contextual variables based on Gaussian process learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Furthermore, the existing constrained expected improvement acquisition function used in VABO [37] and other constrained BO papers [13, 14] are not readily applicable to the contextual case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To address this issue, we extend the commonly used Constrained Expected Improvement (CEI) acquisition function to the contextual case and propose the Constrained Proxy Expected Improvement (CPEI) acquisition function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our contributions include: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We propose a new variant of constrained BO methods for control parameter tuning that improves global convergence rates within a prescribed amount of constraint violation with guaranteed high probability under a time-varying contextual setting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We propose a simple and tractable constrained auxiliary acquisition function optimization problem for trading off performance improvement and constraint violation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To incorporate the environmental conditions that impact the objective and constraints, we augment the in- put space by contextual variables and propose a new acquisition function by extending the commonly used Constrained Expected Improvement (CEI) [13,14] to the contextual setting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' and, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We validate our algorithms on a set-point optimization problem using a high-fidelity VCS that has been calibrated on an industrial HVAC system, with ambient temperature and ambient humidity as two context variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Simulation results with real-world weather signals as context variables demonstrate that our method efficiently minimizes the power consumption while simultaneously managing constraint violations within a tolerable level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We now state the organization of our paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2, we present the statement of our problem and our proposed solution concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Then in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3, we present our VACBO algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' After that, we give the application result of a case study on vapor compression system in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Finally, we conclude the paper in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2 Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='1 Problem Statement We consider closed-loop systems of the form ξ+ = F(ξ, θ, z), (1) where ξ, ξ+ ∈ Rnξ denote the system state and the successor state (respectively), θ ∈ Θ ⊂ Rnθ the control parameters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', set-points) to be tuned, z ∈ Z ⊂ Rnz the context variables (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', ambient temperature) that affect the dynamics, and F(·, ·, ·) the closed-loop dynamics with initial condition ξ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We assume that the closed-loop system (1) is designed such that it is exponentially stable to a control parameter and context dependent equilibrium state ξ∞(θ, z) for every θ ∈ Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We further assume that ξ∞(·) is a continuous map on Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2Code is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='com/PREDICT-EPFL/VACBO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3 To determine the system performance, we define a continuous cost function ℓ(θ, z) : Rnθ+nz → R to be minimized, which is an unknown/unmodeled function of the parameters θ and the context variables z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' This is not unusual: while ℓ may be well-defined in terms of system outputs, it is often the case that the map from control parameters and context variables to cost remains unmodeled;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' in fact, ℓ may not even admit a closed-form representation on Θ and Z, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [6,8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We also define N unmodeled constraints on the system outputs that require caution during tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The i-th such constraint is given by gi(θ, z) : Rnθ+nz → R, i ∈ [N], where the notation [N] def = {i ∈ N, 1 ≤ i ≤ N};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' we assume each gi(·, ·) is continuous on Θ × Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We assume that the cost function ℓ(θ, z) and every constraint gi(θ, z), i ∈ [N] can be ascertained, either by measurement or estimation, during the hardware/simulation experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We introduce the brief notation g(·, ·) ≤ 0 ≜ gi(·, ·) ≤ 0, i ∈ [N] and assume that an initial feasible set of solutions is available at design time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The designer has access to a non-empty safe set S0 ⊂ Θ × Z such that for any (θ, z) ∈ S0, all constraints are satisfied;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' that is, g(θ, z) ≤ 0 for every (θ, z) ∈ S0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' While such an initial set S0 can be derived using domain expertise, it is likely that S0 contains only a few feasible (θ, z), and at worst could even be a singleton set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Assumption 1 is a common assumption in the literature of safe optimization (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', [32]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Without this assumption, it is possible that in the initial steps, we may already sample some points with large violations, which makes the problem unlikely to be tractable at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Furthermore, we notice that in many applications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', vapor compression system set-points tuning), an initial set of feasible (maybe suboptimal) set-points are known based on domain knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therefore, Assumption 1 is a necessary but not restrictive assumption for our problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We cast the control parameter tuning problem as a black-box constrained optimization problem, formally de- scribed by min θ∈Θ ℓ(θ, z), (2a) subject to: gi(θ, z) ≤ 0, ∀i ∈ [N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (2b) The contextual variable z represents some quantities reflecting the environmental conditions, which we can measure but not directly control at each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We give an example in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Ambient temperature and ambient humidity are two important contextual variables that impact the operation of the vapor compression system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Both of them can be measured but not directly controlled during the operations of the vapor compression systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Furthermore, z can be time-varying with its own dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We use zt to denote the value of z at time step t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our objective is to solve the constrained optimization problem (2) with limited constraint violations during the optimization process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Since the constraints are assumed to be unmodeled and a limited set of feasible solutions is known at design time, we do not expect a guarantee of zero constraint violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The tolerable amount and duration of constraint violations are problem-dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In some applications, such as vapor compression systems, small constraint violations over a short-term are acceptable, while large constraint violations are strongly discouraged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In such cases, instead of being overly cautious and ending up with suboptimal solutions, we allow small constraint violations as long as the resulting knowledge gathered by evaluating an infeasible (in terms of constraint violation) θ accelerates the optimization process or helps avoid local minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our formulation (2) can also optimize batch processes over finite-time horizons, say Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' This would involve defining the objective and constraints over a batch trajectory with stage loss ℓ(θ, z) := 1 Th � Th 0 l(τ, θ, z) dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='2 Proposed Solution We propose a modified Bayesian optimization framework to solve the problem (2) that is violation-aware: the algorithm automatically updates the degree of risk-taking in the current iteration based on the severity of constraint violations in prior iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Concretely, for an infeasible θ, the constraint violation cost is given by ¯ci(θ, z) ≜ ci � [gi(θ, z)]+� , i ∈ [N] (3) where [gi(·, ·)]+ := max{gi(·, ·), 0} and ci : R≥0 → R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Note that gi corresponds to physically meaningful system outputs that we can measure, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' This violation cost function ci is user-defined as a means to explicitly weigh the severity of ‘small’ versus ‘large’ constraint violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' While the function ci is at the discretion of the designer, it needs to satisfy the following mild assumptions in order to achieve desirable theoretical properties;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' see §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4 Assumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The violation cost function ci satisfies: (A1) ci(0) = 0, (A2) ci(s1) ≥ ci(s2), if s1 > s2 ≥ 0, (A3) ci is left continuous on R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Assumption 2 captures some intuitive properties required of the violation cost function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' According to (A1), there is no cost associated with no violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' From (A2), we ensure that the violation cost is monotonically non- decreasing with increased violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Finally (A3) ensures that this monotonic increase is smooth and does not exhibit discontinuous jumps from the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To adapt the degree of risk-taking based on prior data obtained, we define a violation budget over a horizon of T ∈ N optimization iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our goal is to sequentially search over T iterations {θt}T t=1 while using a prescribed budget of constraint violations in order to obtain a feasible and optimal set of parameters min θt∈Θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' g(θt,zt)≤0 ℓ(θt, zt) subject to: T � t=1 ¯ci(θt, zt) ≤ Bi , i ∈ [N] (4) where Bi denotes a budget allowed for the i-th violation cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Note that this formulation is a generalization of well-known constrained/safe Bayesian optimization formulations proposed in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' If we set all Bi ≡ 0, then our formulation is closely related to safe BO [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Alternatively, setting Bi ≡ ∞ reduces our problem to constrained BO agnostic to violation cost [13,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3 Violation-Aware Contextual Bayesian Optimization 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='1 Bayesian Optimization Preliminaries For Bayesian optimization, one models ℓ(x) and g(x) as functions sampled from independent Gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In our case, the input x to the Gaussian process consists of control parameters θ and the context variables z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' At iteration t, conditioned on previous input and function evaluation data D := {(θ, z)1:t, ℓ((θ, z)1:t)}, the posterior mean and standard deviation of ℓ is given by µℓ(x|D) = k⊤ ℓ (x, xD)K−1 ℓ ∆yℓ + µℓ,0(x) and σ2 ℓ(x|D) = kℓ(x, x) − k⊤ ℓ (x, xD)K−1 ℓ kℓ(xD, x), where xD = (θ, z)1:t is the set of control parameters and context variables with which previous experiments/simulations have been performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Here, kℓ(x, xD) ≜ [kℓ(x, xi)]xi∈xD, kℓ(xD, x) ≜ [kℓ(xi, x)]xi∈xD, Kℓ ≜ (kℓ(xi, xj))xi,xj∈xD , ∆yℓ ≜ [ℓ(xi) − µℓ,0(xi)]xi∈xD, and kℓ(·, ·) is a user-defined kernel function and µℓ,0 is the prior mean function, both associated with ℓ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' see [12] for more details on kernel and prior mean selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The above quantities are all column vectors, except Kℓ, which is a positive-definite matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For the constraint functions g, similar expressions for the posterior mean µgi(x|D) and standard deviation σgi(x|D) can be obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The kernelized functions above provide tractable approximations of the cost of the closed-loop system, along with the constraint functions, both of which were hitherto unmodeled/unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Classical BO methods use the statistical information embedded within these approximations to intelligently explore the search space Θ via acquisition func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' A specific instance of an acquisition function commonly used in constrained BO is the constrained expected improved (CEI) function [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It is defined as the expectation of the multiplication of improvement as compared to the incumbent best objective sampled so far and the feasibility indicator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' However, in the contextual case, the 5 objective may heavily rely on context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The incumbent best objective value under a favorable context may mislead the parameter search under the adversarial context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therefore, instead of using the incumbent best objective, we propose a two-step approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In the first step, we use the minimum value of the posterior mean of ℓ to construct a proxy of the best objective sampled so far under a different context as in (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ˆℓmin t (z) = min θ∈Θ µℓ((θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z)|D) (5) In the second step,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' we use the minimum value of posterior mean ˆℓmin t to construct a new acquisition function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' the Constrained Proxy Expected Improvement (CPEI),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' given by CPEI((θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z)|D) = E � � � i∈[N] 1gi(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='z)≤0 I(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z)|D � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (6) where 1 denotes the indicator function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' E denotes the expectation operator,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' and I(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z) = max{0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ˆℓmin t (z) − ℓ(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z)} is the improvement of (θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z) over the proxy ˆℓmin t (z) for the best incumbent solution over t iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' As gi(θ, z), ∀i ∈ [N] and ℓ(θ, z) are independent, we deduce CPEI(θ, z|D) = � i∈[N] P(gi(θ, z) ≤ 0|D)E (I(θ, z)|D) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (7) We have P(gi(θ, z) ≤ 0|D) = Φ � −µgi(θ,z|D) σgi(θ,z|D) � , and the closed-form expression of expected improvement [17], E (I(θ, z)|D) = ∆l(θ, z|D)Φ (w) + σℓ(θ, z|D)φ (w) , (8) where ∆l(θ, z|D) = ˆℓmin t (z) − µℓ(θ, z|D), w = ˆℓmin t (z)−µℓ(θ,z|D) σℓ(θ,z|D) , Φ(·) and φ(·) are the standard normal cumulative distribution and probability density functions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='2 VACBO Algorithm Our VACBO algorithm proposes an auxiliary optimization problem that leverages the constrained proxy expected improvement acquisition function to guide the search of feasible points with potentially lower objective to evaluate while ensuring (with high probability) that the violation cost will remain within a prescribed budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Given the total violation cost budget, a question is how to allocate the budget across different samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Intuitively, it may be beneficial to dynamically adjust the violation cost budget allocated to a single step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For example, if we find that we incur no violation cost for several steps, it is possible that we are overly cautious in those steps and may get stuck in a local minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' So we can then increase the violation cost budget allocated for the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It is also possible that we incur significant violation in some step due to the over-confidence in the constraint function prediction by Gaussian process regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In this case, we need to decrease the violation cost budget allocated to one single step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To capture this intuition in our algorithm, we design a violation cost budget allocation scheme to dynamically adjust the violation cost allocated to one single step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We use Bi,t to denote the violation cost budget allocated to the step t for the i-th constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our violation cost budget allocation scheme is given as, Bi,t ≜ min � max � BiSi,t − t−1 � τ=1 ¯ci(θτ, zτ), 0 � , Bmax i � , (9) where Si,t is a non-negative and non-decreasing sequence that satisfies Si,T = 1 and Bmax i is the maximum violation cost tolerable for the i-th constraint, which is a user-provided parameter that captures the user’s maximum tolerance for constraint violation in one single step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' At this iteration, after observing the context variables, we solve the following auxiliary problem θ⋆ t := arg max θ∈Θ CPEI(θ, z|D), (10a) subject to: � i∈[N] P(¯ci(θ, z) ≤ Bi,t) ≥ 1 − ϵt, (10b) 6 to compute the next control parameter candidate θ⋆ t , where 0 < ϵt ≪ 1 determines the probability of large constraint violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Note that (10a) involves maximizing the constrained expected improvement type objective, which is common to cBO algorithms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our modification using the budget, as written in (10b), enforces that the next sampled point will not use up more than the violation cost budget Bi,t for all constraints with a probability of at least 1 − ϵt, conditioned on the data seen so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' This modification allows us to trade a prescribed level of violation risk for more aggressive exploration, leading to faster convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Although we use the constrained proxy expected improvement acquisition function here, we can easily generalize to other acquisition functions by simply replacing CPEI in the objective (10a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We now discuss how to efficiently solve the auxiliary problem (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Recall from Assumption 2 that ci is non- decreasing on R≥0 for every i ∈ [N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therefore, we can define an inverse violation function c−1 i (s) = sup{r ∈ R≥0 | ci(r) ≤ s} for any s ∈ R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therefore, we can write P(¯ci(θ, z) ≤ Bi,t|D) = P([gi(θ, z)]+ ≤ c−1 i (Bi,t)|D) = P(gi(θ, z) ≤ c−1 i (Bi,t)|D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Since gi(θ, z) follows a Gaussian distribution with mean µgi(θ, z|D) and variance σ2 gi(θ, z|D), we get P(¯ci(θ, z) ≤ Bi,t|D) = Φ �c−1 i (Bi,t) − µgi(θ|D) σgi(θ|D) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' When the number of control parameters nθ is small (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', < 6), we can place a grid on Θ and evaluate the cost and constraints of (10) at all the grid nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The maximum feasible solution can then be used as the solution to the auxiliary problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' When the number of control parameters is large (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', nθ > 6), we can use gradient-based methods with multiple starting points to solve problem (10), since evaluating the learned GPs approximating ℓ and g require very little computational time or effort when T is not large (empirically, < 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We provide pseudocode for implementation in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The following proposition provides a probabilistic guarantee of keeping the violation cost below the given budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It highlights the “violation-awareness” property exhibited by VACBO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Fix δ ∈ (0, 1) and T ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' If ϵt, t ∈ [T] are chosen such that δ = 1 − �T t=1(1 − ϵt), then the VACBO algorithm satisfies the probability that � max t∈[T ] ¯ci(θt, zt) ≤ Bmax i and T � t=1 ¯ci(θt, zt) ≤ Bi, ∀i ∈ [N] � is at least 1 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Let E1 t := � max τ∈[t] ¯ci(θτ, zτ) ≤ Bmax i , ∀i ∈ [N] � E2 t := � t � τ=1 ¯ci(θτ, zτ) ≤ BiSi t, ∀i ∈ [N] � Et := E1 t ∩ E2 t , where t ∈ [T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Furthermore, we let ∆E1 t := {¯ci(θt, zt) ≤ Bmax i , ∀i ∈ [N]} Notice that E1 t+1 = E1 t ∩ ∆E1 t+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We have P (ET ) ≥ P (ET −1) P (ET | ET −1) = P (ET −1) P � E1 T −1 ∩ ∆E1 T ∩ E2 T |ET −1 � = P (ET −1) P � ∆E1 T ∩ E2 T |ET −1 � = P (ET −1) P (¯ci(θT , zT ) ≤ Bi,T , ∀i ∈ [N]|ET −1) ≥ P(ET −1)(1 − ϵT ), (11) where the last equality follows by that Bi,T ≜ min � BiSi,T − T −1 � τ=1 ¯ci(θτ, zτ), Bmax i � 7 conditioned on ET −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' By recursion, we have P (ET ) ≥ P (E1) T � t=2 (1 − ϵt) ≥ T � t=1 (1 − ϵt) = 1 − δ, which concludes the proof since Si T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Algorithm 1 Violation-Aware Contextual Bayesian Optimization 1: Require: VACBO horizons T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' violation total budget Bi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ∀i ∈ [N],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' maximum allowed violation cost for a single step Bmax i ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ∀i ∈ [N],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' and an initial safe set of points X0 2: Evaluate ℓ(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' gi(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ∀i ∈ [N] for (θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' z) ∈ X0 by performing experiments or simulation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' or using historical data 3: Initialize dataset D = {(θt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ℓ(θt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' g(θt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt) ∀(θt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt) ∈ X0} 4: for t ∈ [T] do 5: Observe the context variables zt for step t 6: Bi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='t ≜ min � max � BiSi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='t − �t−1 τ=1 ¯ci(θτ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zτ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 0 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bmax i � 7: Θt = �� i∈[N] P(¯ci(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt) ≤ Bi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='t|D) ≥ 1 − ϵt|θ ∈ Θ � 8: θ⋆ t = arg maxθ∈Θt CPEI(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt|D) ▷ Solving (10) 9: ℓ(θ⋆ t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' g(θ⋆ t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt) ← perform experiment with θ⋆ t under the context zt 10: Update dataset,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' D ← D ∪ {(θ⋆ t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ℓ(θ⋆ t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' g(θ⋆ t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' zt)} 11: Update Gaussian process posterior 12: end for 4 Case Study: Constrained VCS Optimization In this section,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' we apply the violation-aware contextual Bayesian optimization framework to safely tune the set-points of a vapor compression system (VCS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2, a VCS typically consists of a compressor, a condenser, an expansion valve, and an evaporator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' While physics-based models of these systems can be formulated as large sets of nonlinear differential algebraic equations to predict electrical power consumption, there are a variety of challenges in developing and calibrating these models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' This motivates interest in directly using measurements of the power under different operating conditions to search for optimal set-points to the VCS actuators using data-driven, black-box optimization methods such as BO, to minimize the power consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' During the tuning process, one constraint, considered here, is on the temperature of the refrigerant leaving the compressor, also referred to as the ‘discharge temperature’ (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The discharge temperature must be managed because compressors are designed to operate within specific temperature ranges;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' excessively high temperatures can result in the breakdown of refrigerant oils and increase wear and tear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In addition, high temperatures are often correlated with high pressures, which can cause metal fatigue and compromise the integrity of the pressurized refrigerant pipes in extreme cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' While managing the constraints mentioned above in the long run is critical, we also observe that small violations over short periods of time have limited harmful effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Indeed, it may be beneficial to take the risk of short-period limited violation to accelerate the tuning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Meanwhile, another challenge of tuning comes from the time-varying ambient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Two major ambient conditions that have significant impact on the performance of vapor compression systems are the ambient temperature and the ambient humidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The feasibility and optimality of VCS setpoints may be strongly correlated with these ambient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For example, one set of fixed setpoints may lead to a feasible discharge temperature with low ambient temperature, but result in discharge temperature violation when the ambient temperature becomes high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' It is necessary to adapt the set-points to the ambient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We cast the VCS optimization problem in the same form as (2), with ℓ((θ, z)) denoting the steady-state power of the VCS with set points θ and contextual variables z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The constraint g ≤ 0 is given by Td((θ, z)) − ˆTd ≤ 0, where Td((θ, z)) is the steady-state discharge temperature with set points θ and context variables z, and ˆTd is a safe upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We close a feedback loop from compressor frequency to room temperature, leaving the set of 8 Figure 2: Schematic diagram of vapor compression system with our proposed VACBO controlling the EEV (electronic expansion valve) and the two fans’ speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' For simplicity, we do not show other measurements and controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3 tunable set points θ as the expansion valve position and the indoor/outdoor fan speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We set the contextual variables to be ambient temperature and the ambient humidity, which are the two major ambient factors influencing the performance of vapor compression systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The effects of these set points and contextual variables on power and discharge temperature are not easy to model, and no simple closed-form representation exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In practice, we assign a setpoint θ under contexts z, wait for an adequate amount of time until the power signal resides within a 95% settling zone, and use that power value as ℓ((θ, z)) and the corresponding discharge temperature as Td((θ, z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Implementation Details We use a high-fidelity model of the dynamics of a prototype VCS3 written in the Modelica language [24] to collect data and optimize the set-points on-the-fly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' A complete model description is available in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The model was first developed in the Dymola [10] environment, and then exported as a functional mockup unit (FMU) [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Its current version comprises 12,114 differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We sample the system state each second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To leave enough time for the system state to converge to the steady state, we update the set-points every 180s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bayesian optimization is implemented in GPy [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We define our set-point search space Θ := [200, 350]×[300, 450]×[500, 850], in expansion valve counts, indoor fan rpm (revolutions per minute), and outdoor fan rpm, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We aim to keep the discharge temperature below ˆTd = 333 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' these constraints are set according to domain knowledge [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We initialize the simulator at an expansion valve position of 340 counts, an indoor fan speed of 440 rpm, and an outdoor fan speed of 840 rpm, which is known to be a feasible set-point based on experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Constraint violations are penalized with the function ci(s) = s2, s ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The quadratic nature of the violation cost implies that minor violations are not as heavily penalized as larger ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The reason for this is that small violations over a small period of time are unlikely to prove deleterious to the long-term health of the VCS, whereas large violations could have more significant effects, even over short periods of time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' for instance, damage to motor winding insulation or exceeding mechanical limits on the pressure vessel of the compressor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' These constraints have been incorporated into the selection of the thresholds ˆTd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Of course, the threshold values and a parameterized violation cost could be considered to be hyperparameters, and could be optimized via further experimentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We 3Note that while the behavior of this model has been validated against a real VCS, the numerical values and/or performance presented in this work are not representative of any product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 9 VAPOR COMPRESSION SYSTEM (VCS) comp freq, CF discharge temp LNTERNAL VARIABLES TO BE ② zone temp, T compressor ASSIGNED: evaporator EXPANSION VALVE POSITION condenser 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' INDOOR FAN SPEED indoor fan 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' OUTDOOR FAN SPEED speed, IFS outdoor fan I speed, OFS heat load EEV position .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' ambient air 3 temp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' VACBO zone electronic expansion valv POWER (OBJECTIVE) DISCHARGE TEMPERATURE (CONSTRAINED VARIABLE) AMBIENT CONDITIONS (TEMPERATURE, HUMIDITY)choose the RBF kernel for our problem, which is commonly used in Bayesian optimization [12], and compare our method to two other state-of-the-art BO methods, namely, safe BO [5,11] and generic constrained BO (cBO) [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To ensure a fair comparison, we also extend the other two state-of-the-art BO methods to the contextual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' More specifically, we augment the input space of Gaussian processes with contextual variables and inherit the algorithms of both safe BO and generic cBO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Based on our domain experience and prior knowledge, we set the kernel variance to be 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0, respectively), the kernel lengthscales in control parameters to be [50, 60, 70] ([20, 24, 28], respectively) for the objective (constraint) and the kernel lengthscales in contextual variables to be [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='06] ([1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='06], respectively) for the objective (constraint).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We showcase the effect of varying Bi, i = 1 by selecting B1 = 0, 10, and 20, and set S1,t = ai + bi t T , where ai + bi = 1 and ai ≥ 0 and bi ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='This choice allows the algorithm to use an increasing fraction of the total budget minus the violation cost incurred in the previous steps when approaching the sampling limit T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Intuitively, such a choice of budget sequence gradually increases the violation risk level without sampling too aggressively in the initial several steps and allows us to reduce the budget based on the violation cost in the previous steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Proposition 1 gives a conservative way of choosing ϵt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In this case study, setting ϵt to a small constant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='01 works well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We use “VACBO B” to indicate violation aware contextual BO with budget B1 = B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Generation of Context Sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We consider both artificial recurring contexts and real-world contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='1, we use artificially generated recurring contexts to showcase the effectiveness of our algorithm in optimizing the power consumption while managing the discharge temperature violation well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='2, we apply our algorithm to more realistic setting with real-world historic context sequences measured in Zurich, Switzerland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='1 Artificial Recurring Contexts 0 100 200 300 Time/min 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='6 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='8 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='2 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='4 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='6 Ambient Temperature/K The First Contextual Variable 0 100 200 300 Time/min 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='725 Ambient Humidity The Second Contextual Variable Figure 3: Recurring contexts used in our experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' To showcase the performance improvement brought by our method, we first apply an artificial sequence of recurring contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We periodically choose context zt from a pre-defined context list (zp i )i∈[n] with additive Gaussian noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 3 shows the change of the two contextual variables with respect to time in our experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 10 0 100 200 300 Time/min 400 450 500 550 600 Power/W The Objective Value 0 100 200 300 Time/min 310 315 320 325 330 335 340 Discharge Temperature/K The Constraint Variable Threshold Fixed CEI VACBO Figure 4: The evolution of power and discharge temperature with respect to time under recurring contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 11 0 200 400 600 Average Power/W 0 50 100 150 200 Maximum Violation/K Fixed Solution VACBO CEI Safe BO Figure 5: Comparison of average power and maximum constraint violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Results and Discussion Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4 illustrates the experimental results of violation-aware contextual Bayesian optimization compared to a fixed solution, which fixes the tuning parameters to default feasible values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' The fixed solution can maintain the feasibility of discharge temperature constraint all the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' However, without any set-point exploration and optimization, the fixed solution maintains a relatively high operating power all the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In contrast, our VACBO algorithm strategically explores the parameter space and optimizes the power function, with only small short-term tolerable violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' With more and more samples collected, the VACBO algorithm achieves lower and lower power, significantly reducing the energy consumption as compared to the fixed-parameter solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 40 60 80 Time/min 301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 Ambient Temperature/K The First Contextual Variable 40 60 80 Time/min 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='525 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='575 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='600 Ambient Humidity The Second Contextual Variable Figure 6: The ambient temperature and the ambient humidity in Zurich, Switzerland, starting at 1:30 PM on 2nd, July, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We then compare our VACBO algorithm to two state-of-the-art Bayesian optimization methods with constraints, safe Bayesian optimization [32] and generic constrained Bayesian optimization [13,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 5 gives the comparison of average power and the maximum discharge temperature violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our VACBO method reduces the average power 12 by about 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='2% as compared to fixing the setpoints, while managing the discharge temperature well as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In comparison, generic constrained BO incurs discharge temperature that violates the constraint by as large as more than 150K, which is very dangerous for the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' As compared to the fixed solution, safe BO shows a very minor improvement in terms of the average power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='2 Real-world Contexts To further demonstrate the effectiveness of our method under real-world contexts, we use the ambient temperature and the ambient humidity in Zurich, Switzerland as the contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 6 shows the context data used for the real-world contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 7 shows the evolution of power and discharge temperature with respect to time under real-world contexts for a set of fixed set-points, the generic constrained Bayesian optimization method (CEI [13,14]), and VACBO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Similar to the results under recurring contexts, without exploration and optimization of the set-point parameter space, the fixed solution keeps operating with high power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We further show the average power and maximum discharge temperature violation in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Again, VACBO achieves significant power reduction compared to fixed set-point solution and other state-of-the-art method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Furthermore, our method incurs small and tolerable constraint violation (< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5K), in sharp contrast to the significant violation (≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0K) of generic contextual constrained BO (CEI method).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2000 3000 4000 5000 Time/s 400 450 500 550 Power/W The Objective Value 2000 3000 4000 5000 Time/s 326 328 330 332 334 Discharge Temperature/K The Constraint Variable Fixed CEI VACBO Threshold Figure 7: The evolution of power and discharge temperature with respect to time under real-world contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 5 Conclusions In this paper, we design a sample-efficient and violation-aware contextual Bayesian optimization (VACBO) algorithm 13 0 100 200 300 400 500 Average Power/W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='5 Maximum Violation/K Fixed Solution VACBO CEI Safe BO Figure 8: The average power and maximum discharge temperature violation for different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' to solve the closed-loop control performance optimization problem with unmodeled constraints and time-varying contextual factors, by leveraging the fact that small violations over a short period only incur limited costs during the optimization process in many applications such as for vapor-compression cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' We strategically trade the budgeted violations for faster convergence by solving a tractable auxiliary problem with probabilistic budget constraints at each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Our experiments on a VCS show that, as compared to existing safe BO and generic constrained BO, our method simultaneously exhibits improved optimization performance and manages the violation cost well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Acknowledgements This research was supported by the Swiss National Science Foundation under NCCR Automation, grant agreement 51NF40 180545, and in part by the Swiss Data Science Center, grant agreement C20-13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' References [1] Ali Baheri and Chris Vermillion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Waypoint optimization using Bayesian optimization: A case study in airborne wind energy systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In 2020 Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Control Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (ACC), pages 5102–5017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [2] Ali Baheri and Christopher Vermillion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Altitude optimization of airborne wind energy systems: A Bayesian optimization approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In 2017 Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Control Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (ACC), pages 1365–1370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [3] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J Tomlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Goal-driven dynamics learning via Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In 2017 IEEE 56th Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' on Decis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' and Control (CDC), pages 5168–5173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [4] Thomas Beckers, Somil Bansal, Claire J Tomlin, and Sandra Hirche.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Closed-loop model selection for kernel-based models using Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In 2019 IEEE 58th Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' on Decis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' and Control (CDC), pages 828–834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [5] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safe controller optimization for quadrotors with Gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In 2016 IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' on Robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' and Automat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (ICRA), pages 491–496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [6] Daniel J Burns, Christopher R Laughman, and Martin Guay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Proportional-integral extremum seeking for vapor compression systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Control Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 28(2):403–412, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [7] Ankush Chakrabarty and Mouhacine Benosman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safe learning-based observers for unknown nonlinear systems using Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Automatica, 133:109860, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [8] Ankush Chakrabarty, Claus Danielson, Scott A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bortoff, and Christopher R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Laughman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Accelerating self- optimization control of refrigerant cycles with Bayesian optimization and adaptive moment estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Therm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 197:117335, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [9] Wander G da Silva, Paul P Acarnley, and John W Finch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Application of genetic algorithms to the online tuning of electric drive speed controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Ind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 47(1):217–219, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 14 [10] Dassault Systemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Dymola 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [11] Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, and Andreas Krause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safe con- textual Bayesian optimization for sustainable room temperature PID control tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 28th Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Joint Conference on Artificial Intelligence (IJCAI), pages 5850–5856, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [12] Peter I Frazier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' A tutorial on Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='02811, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [13] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bayesian optimization with inequality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In ICML, volume 2014, pages 937–945, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [14] Michael A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Gelbart, Jasper Snoek, and Ryan P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Adams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bayesian optimization with unknown constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' of the 30th Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' on Uncertainty in Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', UAI’14, page 250–259, Arlington, Virginia, USA, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' AUAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [15] GPy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' GPy: A Gaussian process framework in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' http://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='com/SheffieldML/GPy, since 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [16] Shinkyu Jeong, Mitsuhiro Murayama, and Kazuomi Yamamoto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Efficient optimization design method using kriging model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Journal of aircraft, 42(2):413–420, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [17] Donald R Jones, Matthias Schonlau, and William J Welch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Efficient global optimization of expensive black-box functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Global Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 13(4):455–492, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [18] Mohammad Khosravi, Annika Eichler, Nicolas Schmid, Roy S Smith, and Philipp Heer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Controller tuning by Bayesian optimization an application to a heat pump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In 2019 18th Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Control Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' (ECC), pages 1467–1472.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [19] Christopher K¨onig, Mohammad Khosravi, Markus Maier, Roy S Smith, Alisa Rupenyan, and John Lygeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safety-aware cascade controller tuning using constrained Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='15211, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [20] Andreas Krause and Cheng Ong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Contextual Gaussian process bandit optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Advances in Neural Infor- mation Processing Systems, 24, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [21] Remi Lam, Karen Willcox, and David H Wolpert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Bayesian optimization with a finite budget: An approximate dynamic programming approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Advances in Neural Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 29:883–891, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [22] Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Cost-aware Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='10870, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [23] Alonso Marco, Alexander von Rohr, Dominik Baumann, Jos´e Miguel Hern´andez-Lobato, and Sebastian Trimpe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Excursion search for constrained Bayesian optimization under a limited budget of failures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='07443, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [24] Modelica Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Modelica specification, Version 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [25] Modelica Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Functional Mockup Interface for Model Exchange and Co-Simulation, Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [26] Anuj Pal, Ling Zhu, Yan Wang, and Guoming G Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Multi-objective stochastic Bayesian optimization for iterative engine calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' of the Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Control Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', pages 4893–4898.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [27] Jinkyoo Park.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Contextual Bayesian optimization with trust region (CBOTR) and its application to cooperative wind farm control in region 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Sustainable Energy Technologies and Assessments, 38:100679, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [28] Joel A Paulson and Ali Mesbah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Data-driven scenario optimization for automated controller tuning with prob- abilistic performance guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE Contr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 5(4):1477–1482, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [29] Dario Piga, Marco Forgione, Simone Formentin, and Alberto Bemporad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Performance-oriented model learning for data-driven MPC design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' IEEE Contr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 3(3):577–582, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Practical Bayesian optimization of machine learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Advances in Neural Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', 25, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [31] Yanan Sui, Joel Burdick, Yisong Yue, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Stage-wise safe Bayesian optimization with Gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' of the Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' on Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', pages 4781–4789, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 15 [32] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safe exploration for optimization with Gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' of the Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' on Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=', pages 997–1005, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [33] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Safe exploration for interactive machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Advances in Neural Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 32, 4:2868–2878, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [34] Wenjie Xu, Yuning Jiang, and Colin N Jones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Constrained efficient global optimization of expensive black-box functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='00162, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [35] Wenjie Xu, Yuning Jiang, Emilio T Maddalena, and Colin N Jones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' Lower bounds on the worst-case complexity of efficient global optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='09655, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [36] Wenjie Xu, Yuning Jiang, Bratislav Svetozarevic, and Colin N Jones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' CONFIG: Constrained efficient global optimization for closed-loop control system optimization with unmodeled constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content='11822, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' [37] Wenjie Xu, Colin N Jones, Bratislav Svetozarevic, Christopher R Laughman, and Ankush Chakrabarty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' VABO: Violation-aware Bayesian optimization for closed-loop control performance optimization with unmodeled con- straints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' American Control Conference, pages 5288–5293, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} +page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNFLT4oBgHgl3EQfgi-Y/content/2301.12099v1.pdf'} diff --git a/oNFPT4oBgHgl3EQfKjR1/content/2301.13019v1.pdf b/oNFPT4oBgHgl3EQfKjR1/content/2301.13019v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..01f0a04899b8a3f9fa3c6d1886630dd0d576e9d6 --- /dev/null +++ b/oNFPT4oBgHgl3EQfKjR1/content/2301.13019v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2a6e09994b88ae8af4d903abcfab5f50929ef78e289edd40ecc6bcc0c171071 +size 1004039 diff --git a/oNFPT4oBgHgl3EQfKjR1/vector_store/index.pkl b/oNFPT4oBgHgl3EQfKjR1/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..320a6ad95f9a92588abf9a446ec4c9a6563a9b16 --- /dev/null +++ b/oNFPT4oBgHgl3EQfKjR1/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9286e53c6116e7c8a60f7b17dafc4118ebaf08215a92ed6a2fe966f9c9e1ff6e +size 65340 diff --git a/otE1T4oBgHgl3EQf1wXJ/vector_store/index.faiss b/otE1T4oBgHgl3EQf1wXJ/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9983ec633ed1c49d19a8435b9548bd513adf87b8 --- /dev/null +++ b/otE1T4oBgHgl3EQf1wXJ/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1d5ac40b4af732deeb0a0bbd7e353b41b2a1e0bd0eba87b740872eb526fdee48 +size 4390957 diff --git a/p9E2T4oBgHgl3EQfKgZi/content/2301.03703v1.pdf b/p9E2T4oBgHgl3EQfKgZi/content/2301.03703v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..446f009cf8c684fd1fe861f369dabb804163c293 --- /dev/null +++ b/p9E2T4oBgHgl3EQfKgZi/content/2301.03703v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5fa37f570676610c63e2dbbd53511886748a55973d71a8cb554aa0856a5256cd +size 1143034 diff --git a/p9E2T4oBgHgl3EQfKgZi/vector_store/index.faiss b/p9E2T4oBgHgl3EQfKgZi/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8d977ab2bff3f86fb2046a9d7a26bb6009070157 --- /dev/null +++ b/p9E2T4oBgHgl3EQfKgZi/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:10fcdbfca55ed21152c2de6be897e31639eba1a38f735cd7402c48332820e4f3 +size 2621485 diff --git a/p9E2T4oBgHgl3EQfKgZi/vector_store/index.pkl b/p9E2T4oBgHgl3EQfKgZi/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..1109e441c752829391faf2bb906ae5fc483af818 --- /dev/null +++ b/p9E2T4oBgHgl3EQfKgZi/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1a6a811c6673c1b44ab80ec118b60a871f9f3a790b1baed187e9c850dfaf8561 +size 85260 diff --git a/pNE4T4oBgHgl3EQfvQ0x/content/tmp_files/2301.05239v1.pdf.txt b/pNE4T4oBgHgl3EQfvQ0x/content/tmp_files/2301.05239v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d664d681fa0ab579b0886c036f995542f269d5fa --- /dev/null +++ b/pNE4T4oBgHgl3EQfvQ0x/content/tmp_files/2301.05239v1.pdf.txt @@ -0,0 +1,3159 @@ +Generalized Toric Polygons, T-branes, and 5d SCFTs +Antoine Bourget,1 Andr´es Collinucci,2 Sakura Sch¨afer-Nameki3 +1Universit´e Paris-Saclay, CNRS, CEA, Institut de physique th´eorique, +91191, Gif-sur-Yvette, France +1Laboratoire de Physique de l’´Ecole Normale Sup´erieure, PSL University, +24 rue Lhomond, 75005 Paris, France +2Service de Physique Th´eorique et Math´ematique, Universit´e Libre de Bruxelles and +International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium +3Mathematical Institute, University of Oxford, +Woodstock Road, Oxford, OX2 6GG, United Kingdom +Abstract: 5d Superconformal Field Theories (SCFTs) are intrinsically strongly-coupled +UV fixed points, whose realization hinges on string theoretic methods: they can be con- +structed by compactifying M-theory on local Calabi-Yau threefold singularities or alterna- +tively from the world-volume of 5-brane-webs in type IIB string theory. There is a cor- +respondence between 5-brane-webs and toric Calabi-Yau threefolds, however this breaks +down when multiple 5-branes are allowed to end on a single 7-brane. In this paper, we +extend this connection and provide a geometric realization of brane configurations includ- +ing 7-branes. A web with 7-branes defines a so-called generalized toric polygon (GTP), +which corresponds to combinatorial data that is obtained by removing vertices along exter- +nal edges of a toric polygon. We identify the geometries associated to GTPs as non-toric +deformations of toric Calabi-Yau threefolds and provide a precise, algebraic description +of the geometry, when 7-branes are introduced along a single edge. The key ingredients +in our analysis are T-branes in a type IIA frame, which includes D6-branes. We show +that performing Hanany-Witten moves for the 7-branes on the type IIB side corresponds +to switching on semisimple vacuum expectation values on the worldvolume of D6-branes, +which in turn uplifts to complex structure deformations of the Calabi-Yau geometries. We +test the proposal by computing the crepant resolutions of the deformed geometries, thereby +checking consistency with the expected properties of the SCFTs. +arXiv:2301.05239v1 [hep-th] 12 Jan 2023 + +Contents +1 +Introduction and Summary +1 +2 +T-branes and Kraft-Procesi Transitions +7 +2.1 +T-brane Basics +7 +2.2 +Kraft-Procesi Transitions +10 +3 +Example: GTPs for Tn and Related Models +13 +3.1 +The Setup +13 +3.2 +Tachyon Condensation Picture +15 +3.3 +Example: T2 +17 +3.4 +General Case: Tn +20 +3.5 +Interpretation in terms of Generalized Toric Polygons +22 +3.6 +Hanany-Witten Moves +24 +4 +General Discussion +28 +4.1 +White Dots along a Single Edge +28 +4.2 +Rectangular Box +30 +4.3 +Generic Triangle +31 +5 +Testing the Proposal: Resolution of Singularities +33 +5.1 +Crepant Resolution of Tn +33 +5.2 +Resolution of Deformations of Tn +34 +A Basic algebraic notions for sln +38 +1 +Introduction and Summary +The existence and characterization of interacting superconformal field theories in five space- +time dimensions (5d SCFTs) is a remarkable prediction of string theory [1]. Two approaches +have emerged that allow the construction of 5d SCFTs within the framework of string the- +ory: the low energy limit of M-theory on R1,4 times a local Calabi-Yau threefold [2], and +the world-volume of a brane-web in type IIB string theory [3–12]. The properties of the +theory are encoded in the geometry of the threefold in the first case, and in the charges of +the external (p, q)-5-branes in the second case. A middle ground is the type IIA realization, +which involves both geometry and branes [13]. +When the CY is toric, there is a precise dictionary between the brane-web and M-theory +realization: the charges of the external (p, q)-5-branes can be encoded into an integral +polygon, which in turn can be seen as the intersection of a toric three-dimensional fan in +– 1 – + +←→ +Figure 1. Example of toric polygon (left) and dual brane-web (right) in which lines denote 5-branes +and circles denote 7-branes. The 7-branes on which stacks of 5-branes are spaced to emphasize how +the 5-brane end, here exactly one 5-brane ends on each 7-brane. This geometry encodes a 5d SCFT +of rank 3. +R3 +x,y,z with the plane {z = 1}. The toric threefold X constructed from this fan is such that +the 5d SCFT obtained from M-theory on X coincides with that on the world-volume of +the brane-web [14]. An example is shown in figure 1. +A systematic geometric exploration and classification of 5d SCFTs was started in +[15–38]. These studies reveal many detailed properties of the 5d SCFTs, such as their +UV enhanced flavor symmetry, their Coulomb branch (modeled in terms of the crepant +resolutions of the Calabi-Yau singularities), but also refined information such as their +generalized symmetries [39–44]. +What remains somewhat obscure in this framework is +the derivation of the full quantum corrected Higgs branch – though some progress in the +context of isolated hypersurface Calabi-Yau singularities can be made [32–34, 45, 46]. +Not surprisingly, these explorations reveal that only a small class of 5d SCFTs have a +realization in terms of toric Calabi-Yau threefolds. If such a toric realization exists, then +the geometry of the moduli space of supersymmetric vacua, in particular the Higgs branch +(but also Coulomb branch and mixed branches) can be computed exactly – irrespective of +whether the singularity is isolated or not. The key tool is the connection between the toric +geometries and brane-webs, where in the latter these moduli space questions have been +determined in [47–53]. In this paper, we report progress in generalizing these methods to +a larger class of 5d SCFTs, which have not necessarily a toric description. +In [16], a generalization of toric polygons was introduced: a toric Calabi-Yau threefold +can be described in terms of a convex polygon in a square integral lattice embedded into +a 2-plane. The polygon associated to a toric geometry has the property that all lattice +points along the edges are part of the toric data (corresponding to vertices). We will refer +to these as black dots. Generalizing this, [16] proposed to also allow some vertices along +the edges of the polygon to be unoccupied, which we will refer to as white dots. In the +dual description, allowing such white dots corresponds in the web to several 5-branes that +end on the same 7-brane. For a stack of n 5-branes, the boundary condition is encoded in +an integer partition λ of n. Figure 2 gives an example of a configuration that translates +to the [3, 2, 2, 1] partition of 8. This combinatorial data will be referred to as Generalized +Toric Polygons (GTP), and generalizes the standard toric description. In this framework, +the standard toric case considered in the previous paragraph corresponds to a boundary +condition where for each charge (p, q), there is an equal number of (p, q)-5-branes and +– 2 – + +Figure 2. Correspondence between white dots on GTPs (left) and boundary conditions of (p, q) +5-branes on (p, q) 7-branes (middle). Here we have (p, q) = (1, 0) and the partition λ = [3, 2, 2, 1] +of n = 8. When we draw brane-webs we usually ignore the detached 7-branes and separate the +7-branes on a stack of 5-branes to show the boundary conditions (right). +(p, q)-7-branes, with one 5-brane ending on one 7-brane, i.e. the partition is λ = [1n]. This +generalization and its implications for characterizing the moduli space of supersymmetric +vacua using magnetic quivers were explored in great detail in [32, 45, 53–63]. Note that +O5 orientifold planes can also be included in the webs [8, 64–66], but we do not consider +this possibility here. +Another way of interpreting GTPs is as non-convex would-be toric polygons. These +make sense when certain parameters, which map out the extended Coulomb branch (i.e. +gauge couplings and masses of hypers), are turned on, but the non-convexity prevents one +from considering the SCFT limit (i.e. from passing to the origin of the extended Coulomb +branch). +From the dual brane-web point of view, this is resolved using a combination +of Hanany-Witten moves and 7-brane monodromies, and this plays a prominent role in +the brane-web manipulations of [6, 8, 9, 11, 64, 67–71]. Importantly, not all non-convex +polygons can be transformed into GTPs in this way, and it is in general a hard question +to decide whether a given polygon can be transformed in this way or not. For this reason, +it is simpler to take the GTPs as our starting point. +GTPs can be thought of as generalizations of toric geometries. However, unlike the +precise dictionary between the combinatorial data of a toric polygon and the algebraic +geometry of the corresponding Calabi-Yau, no such dictionary exists thus far for GTPs. +The main purpose of this paper is to develop initial steps in order to close this gap. +See figure 3. In particular, in the following, we will determine the algebraic geometric +description of GTPs, which have white dots along a single edge. +Summary. +We now give a schematic summary of the main ideas involved in our pro- +posal. Consider a length n edge of a toric polygon, which we can assume to have vertical +orientation. In the brane-web, this corresponds to n parallel semi-infinite D5-branes. In the +associated toric threefold, there is an asymptotic region that approaches C2/Zn×C. Indeed +after a transverse T-duality, the D5-branes become D6-branes, which uplift to n-centered +– 3 – + +Convex Integral Polygon +Toric CY3 +Brane-web +5d SCFT +Toric Geometry +Dual +M-theory +Worldvolume +GTP +Non-Toric CY3 +Brane-web with +7-brane b.c. +5d SCFT +Dual +M-theory +Worldvolume +Figure 3. Summary of the main question addressed in this paper. On the left hand side, one +starts from a convex polygon with integral vertices. It defines a 5d SCFT in two distinct ways: +from M-theory on the associated toric CY, and from the dual brane-web. If on the contrary, as +shown on the right hand side, the polygon is not convex, i.e. is a generalized toric polygon (GTP), +the toric description is lost. However there still exists a dual brane-web, which has non-trivial +boundary conditions on 7-branes, and thus a 5d SCFT. The central goal of this paper is to develop +a map (the dashed line in the diagram) from GTPs to (non-toric) geometry. +Taub-NUT spaces. At strong string coupling gs → ∞, this becomes C2/Zn. Denoting +two longitudinal directions as the w-complex plane, we arrive at a local C2/Zn × C patch. +M-theory on this geometry gives us N = 1 7d SYM with SU(n) gauge group, and we can +represent it as the singular hypersurface in C4 given by +uv = zn +(1.1) +with the w-coordinate tagging along. The three adjoint scalars φi=1,2,3 on the worldvolume +of the D6-branes can be grouped into a complex scalar Φ = φ1+iφ2, and the remaining real +one ϕ = φ3. In the M-theory uplift, Φ encodes algebraic deformations to the hypersurface, +and ϕ encodes K¨ahler volumes of resolutions. This grouping is of course arbitrary, and +correlates with the arbitrariness of choosing a complex structure on the noncompact K3 in +M-theory. +Having seen this, we can recast the hypersurface as a spectral equation for the com- +plexified adjoint Higgs field +uv = det(1n z − Φ(w)) . +(1.2) +Switching on constant vevs along the Cartan subalgebra of su(n) will deform the equation +and unfold the singularity into a deformed K3 times the w-plane. However, switching on w- +dependent vevs will turn this into a bona fide noncompact CY threefold. The geometry will +be more or less desingularized, depending on the Casimir invariants of Φ that are switched +on. The claim of this paper, is that white dots correspond to nilpotent elements in Φ. Note, +that switching on a nilpotent Φ means that the spectral equation remains unchanged. In +other words, the D6-branes do not actually move, and the uplifted geometry underlying +the M-theory construction remains undeformed. This phenomenon is known as a T-brane +[72–74]. It is a non-Abelian bound state of branes, whereby the worldvolume gauge group +is (partially) Higgsed, but the geometry of the branes is unaltered. However, the physics +is of course impacted by this T-brane, as we shall see momentarily. +– 4 – + +Figure 4. White dot and brane transition for a length 2 edge of a toric polygon. +To give a simple example, take a vertical edge with n + 1 dots, and replace the second +black dot from the top with a white dot as shown in figure 4. In terms of the 5-branes, this +corresponds to forming a bound state between the two uppermost branes, and sending a +suspended 5-brane segment to infinity. From the D6-brane viewpoint, the bound state is +understood as switching on a vev for Φ along the minimal nilpotent orbit of su(n) +⟨Φ⟩ = +� +� +� +0 1 +0 0 +... +� +� +� . +(1.3) +This binds the first two D6-branes, and partially Higgses +su(n) → s (u(1) ⊕ u(n − 2)) . +(1.4) +More generally, we said above that a distribution of white dots on the edge is encoded in +a partition λ of n. Our claim is that each such partition λ of n translates into a vev for +Φ along an element in the nilpotent orbit Oλ of su(n) that is uniquely characterized by λ. +The unbroken 7d gauge group on the D6-branes, which will correspond to a subgroup of +the total 5d flavor group, is then broken to the commutant of this nilpotent element. +So far, our discussion parallels the picture developed several years ago in [75, 76], in +the 6d SCFT context, whereby geometric data (about elliptic fibrations) was supplemented +by nilpotent orbits, which would partially Higgs an original theory and trigger various +RG flows. At this point, the reader might object that simply claiming that a white dot +translates to a nilpotent vev is not very interesting or verifiable, since that data will be +invisible to the geometry. While this is true, from the 5-brane-web perspective we know +that a white dot opens up the possibility to perform Hanany-Witten type transitions that +were not possible in the presence of black dots only. For instance, the following GTPs are +related by such a transition where one of the three leftmost 7-branes is moved to the right: +↔ +(1.5) +– 5 – + +Such HW type transitions provide non-trivial tests of our proposal: HW moves correspond +to changing the positions of branes, which in turn will impact the dual geometry. We +identify the subset of complex structure deformations that are associated to these nilpotent +vevs of Φ. They are realized in terms of vevs of Φ along a slice transverse to the nilpotent +vev (inside the full Lie algebra, not the nilpotent cone), known as the Slodowy slice. By +switching on such a vev, a subset of possible Casimir invariants will become non-zero, +leading to a deformation of the geometry, which is given by the spectral equation of the +the Higgs field. +For instance, in the simple case of su(2), we take the initial nilpotent vev along the +minimal orbit +Φ0 = +� +0 1 +0 0 +� +. +(1.6) +The M-theory uplifted geometry corresponds to C2/Z2. +The Slodowy slice is given by +matrices of the form +Φ = +� +0 1 +a 0 +� +, +with +a ∈ C . +(1.7) +The characteristic polynomial of this Higgs field is now non-trivial, and the M-theory +geometry deforms as follows +uv = z2 +−→ +uv = z2 + a . +(1.8) +The present paper elucidates this for all GTPs, which allow for a IIA-description, i.e. +whose white dots are along a single edge of the GTP. Dually, all 7-branes are parallel, i.e. +mutually local. The toy-model where Slodowy slices appear is generalized in the following +way. Higgs branches are symplectic singularities [77], to which one can associate a Hasse +diagram of symplectic leaves [78–80]. In terms of this diagram, the T-brane data select a +new, lowest leaf of the foliation, and the transverse slice to that leaf is the total space of a +fibration over the complex structure moduli space of the deformed Calabi-Yau threefold. See +for instance figure 5, where the deformations of the T4 5d SCFT, realized on the threefold +W1W2W3 = Z4, are displayed, along with the effect on the Higgs branches. +In future work we will aim to generalize this to arbitrary GTPs, with mutually non- +local 7-branes. +We conjecture that the above picture of transverse slices in the Higgs +branch extends to this situation. Eventually we hope to develop a succinct description of +the algebraic geometry of GTPs, as they exist for toric polygons: A precise map between +the combinatorial data and the basic algebraic geometry, such as the set of divisors, curves, +intersection numbers. +Plan. +In the rest of the paper, we spell out the details of the construction. An essential +tool is the T-brane, which is reviewed in section 2. The bulk of the construction is then +carried out explicitly in a representative example – that of the Tn SCFTs – in section 3, +before generalizing to any GTP with white dots on a single edge in section 4. As a first +check, we reproduce there the transition (1.5). Finally, in section 5 we provide consistency +checks, by computing the resolutions of the deformed threefold geometries. This shows +– 6 – + +a3 +a1 +a7 +e6 +e7 +α ̸= 0 +a1 +a7 +e6 +e7 +α ̸= 0 +β ̸= 0 +a7 +e6 +e7 +W1W2W3 = Z4 +W1W2W3 = Z2(Z2 + αW1) +W1W2W3 = (Z2 + αW1)(Z2 + βW1) +Figure 5. +Three GTPs are shown on the first line, and below the algebraic equations characterizing +the associated Calabi-Yau threefold geometry. The model on the left is a toric threefold. The other +two, non-toric GTPs, are characterized in terms of deformations. Each of these geometries defines +a 5d SCFT. The Hasse diagrams of symplectic singularities for the Higgs branch of these 5d SCFTs +are shown below. The vertices represent symplectic leaves. For transverse slices we use a standard +notation where the closure of the minimal nilpotent orbit of a simple Lie algebra is denoted using +the lowercase form of the name of the algebra, e.g. e7 for algebra E7. In red are drawn the effects +of the deformations. +agreement of the UV flavor symmetry of the SCFT with the one expected from the brane- +web (and resulting Higgs branch). +2 +T-branes and Kraft-Procesi Transitions +2.1 +T-brane Basics +Consider n parallel D7-branes in type IIB string theory on flat space. +The transverse +space is the complex plane with coordinate z, which has coordinate ring R = C[z]. We +call z1, . . . , zn the positions of the n branes. The stack of branes can be described as a +D9/D9-brane tachyon condensate, which is defined mathematically as the cokernel of the +tachyon map +R⊕n +R⊕n , +T +(2.1) +where T = Diag(z − z1, . . . , z − zn). This means that the D7-branes correspond to the +sheaf1 S in the short exact sequence +0 +R⊕n +R⊕n +S +0 . +T +(2.2) +The matter on the system of D7-branes is described by fluctuations of the tachyon, δT, +which are defined up to linearized gauge transformations. This corresponds to a self-Ext1 +1We will use the formulation of branes modulo tachyon condensation in terms of the derived category +of coherent sheaves throughout this paper. Some introduction to this topic can be found in [81–83]. +– 7 – + +computation for the complex (2.1), i.e. morphisms between the complex and the shifted +version of that same complex, +R⊕n +R⊕n +R⊕n +R⊕n +αL +δT +T +αR +T +(2.3) +up to homotopies, +δT ∼ δT − T · αL + αR · T . +(2.4) +Concretely, this means δT is valued in the quotient ring of n×n matrices Matn(R) modulo +the two matrix ideals in R generated by left and right multiplication by T, +δT ∈ Matn(R)/(T·, ·T) . +(2.5) +Note also that the tachyon map T can be expressed as a matrix given a choice of basis +for the D9 gauge bundle and the D9 gauge bundle. These choices are independent, which +means algebraically that only the equivalence class of T under the equivalence relation +T ∼ GL · T · G−1 +R +GL, GR ∈ GL(n, C[z]) +(2.6) +matters. A canonical representative of each such equivalence class is given by the Smith +Normal Form (SNF) computed in the ring R = C[z], i.e. any matrix T with entries in +polynomials in z is equivalent under (2.6) to a unique diagonal matrix +SNF(T) := diag(p1, . . . , pr, 0, . . . , 0) , +(2.7) +where the pi are monic polynomials2 in z such that p1|p2| . . . |pr. +Example. +To illustrate the discussion of the previous paragraph, consider the case +n = 2. The tachyon matrix is +T = +� +z − z1 +0 +0 +z − z2 +� +(2.8) +and the fluctuations belong to +δT ∈ +� +R +(z−z1) +R +(z−z1,z−z2) +R +(z−z1,z−z2) +R +(z−z2) +� +≃ +� +� +� +� +� +� +� +� +� +� +� +� +� +� +C 0 +0 C +� +z1 ̸= z2 +� +C C +C C +� +z1 = z2 +(2.9) +For any value of z1, z2 there is U(1) adjoint matter on each D7-brane, and for z1 = z2 the +U(1)2 gauge symmetry enhances to U(2), and one can have fluctuations in the adjoint of +U(2). From the U(1)2 perspective this is simply bifundamental matter. +2Unicity is guaranteed up to multiplication by units in the ring; demanding that the polynomials be +monic, i.e. have coefficient 1 for the term of highest degree, fixes this redundancy. +– 8 – + +Consider the case z1 = z2 = 0. We can then activate an off-diagonal term: +T[1,1] = +� +z 0 +0 z +� +�→ +T[2] = +� +z 1 +0 z +� +. +(2.10) +After this activation, the fluctuations are reduced to +δT[2] ∈ +� +0 0 +1 0 +� +C ⊕ +� +1 0 +0 −1 +� +C . +(2.11) +The SNF reveals the same structure in a slightly different guise. Indeed +SNF +� +z − z1 +0 +0 +z − z2 +� += +� +� +� +� +� +� +� +� +� +� +� +� +� +� +1 +0 +0 (z − z1)(z − z2) +� +z1 ̸= z2 +� +z − z1 +0 +0 +z − z1 +� +z1 = z2 +(2.12) +so the fluctuations are valued in +δT ∈ +� +� +� +� +� +� +� +� +� +� +� +� +� +� +0 +0 +0 C ⊕ zC +� +z1 ̸= z2 +� +C C +C C +� +z1 = z2 +. +(2.13) +Activating the off-diagonal term translates using the SNF into +SNF +� +z − z1 +1 +0 +z − z2 +� += +� +1 +0 +0 (z − z1)(z − z2) +� +, +(2.14) +valid for z1 = z2 and z1 ̸= z2 alike. In particular, putting both branes at the origin, +SNF +� +z 1 +0 z +� += +� +1 0 +0 z2 +� +, +(2.15) +where we see the appearance of an infrared trivial complex +R +R +∼= 0 +1 +(2.16) +and a so-called ’thick brane’ +R +R . +z2 +(2.17) +Multivariable polynomials. +The ring of polynomials in one variable C[z] has the prop- +erty that every ideal is principal. In particular, it is a B´ezout ring, which means by definition +that any ideal generated by finitely many generators is principal. The ring C[x1, . . . , xn] +for n > 1 on the other hand is not a B´ezout ring : it has non-principal finitely generated +ideals (for example, the ideal generated by x1 and x2). It turns out the SNF is best defined +in B´ezout rings. By [84, Theorem 2.1] an SNF does not exist for matrices with coefficients +– 9 – + +in C[x1, . . . , xn]. +Thus, at face value it seems not possible to use the SNF to describe +intersecting branes. +However, this is not a weakness but a feature, as we now demonstrate. Consider the +case of two variables, x and z. +Physically, this means we are considering branes that +share an R1,5 and wrap complex curves in the (x, z)-plane. Consider a stack of n branes +at x = 0 and a stack of m branes at z = 0. This is described by the diagonal matrix +diag(x, . . . , x, z, . . . , z). We can activate non-diagonal terms, that we call Q and ˜Q as they +correspond to strings that yield hypermultiplets at low energy +T = +� +x1n +�Q +Q +z1m +� +. +(2.18) +In order to pick a canonical diagonal form for this matrix, we need to make a choice of +main variable. Let us pick z. This means we extend the non-B´ezout ring C[x, z] to the ring +C(x)[z], which is B´ezout as it is a polynomial ring in one variable over the field C(x). This +is simply telling us that poles in x have to be included. We now describe the SNF over this +ring. Assume first that the eigenvalues of Q �Q are all distinct, call them λ1, . . . , λm. Then +the SNF is +diag +� +x, . . . , x, 1, . . . , 1, +m +� +i=1 +� +z − λi +x +�� +. +(2.19) +If some of the eigenvalues coincide, the form of the SNF changes. We can collect this +information, which is insensitive to the detailed properties of the eigenvalues, by simply +stating that the SNF is +� +x1n +0 +0 +z1n − Q � +Q +x +� +λi ̸= λj . +(2.20) +Thus, from the point of view of the stack of m branes at z = 0, the presence of the other +stack is felt as a pole for the complex adjoint-valued Higgs field living on the brane at +z = 0, [85–87]. Note that the situation is symmetric and one could have chosen the other +stack as the base one. This is exactly the same arbitrariness we made when writing the +ring as a B´ezout ring. +2.2 +Kraft-Procesi Transitions +Nilpotent orbits for sln are in one-to-one correspondence with partitions of n, and are +partially ordered by inclusion of their closure [88]. The nilpotent orbit associated to a +partition λ of n is denoted Oλ. The partial order corresponds to the well-known dominance +ordering for partitions,3 and it can be represented by a Hasse diagram, which indicates +the covering relation associated to this partial order. +The diagram thus obtained also +corresponds to the stratification of the nilpotent cone (the set of all nilpotent matrices) +into symplectic leaves [77, 78, 89]. Elementary degenerations between adjacent nilpotent +orbits are called Kraft-Procesi transitions. In the case of sln nilpotent orbits, these can be +3The dominance ordering is defined as follows. If λ and µ are two partitions of n, we say that λ ≥ µ if +and only if for all j, +j� +i=1 +λj ≥ +j� +i=1 +µj. +– 10 – + +either closures of minimal slm nilpotent orbits or Kleinian singularities C2/Zm for m ≤ n. +This can be implemented in brane setups [90, 91], where nilpotent orbit closures are realized +as Higgs or Coulomb branches of 3d N = 4 quiver theories. +Slodowy Slices. +Consider the case where T = z · 1n + M and M is a nilpotent matrix. +Equation (2.4) shows that +δT ∼ δT + (αR − αL)z + (αRM − MαL) , +δT ∈ Matn(R) . +(2.21) +Define α+ := 1 +2(αR + αL) and α− := 1 +2(αR − αL) this gives +δT ∼ δT + 2α−z + [α+, M] + {α−, M} , +δT ∈ Matn(R) . +(2.22) +The image of the map +Matn(R) → Matn(R) +α− �→ 2α−z + {α−, M} +(2.23) +contains all of Matn(zR),4 so we can use α− to eliminate all z-dependence in δT. We still +have the freedom to use α+, which defines an equivalence relation +δT ∼ δT + [α+, M] , +δT ∈ Matn(C) . +(2.24) +The cokernel of the adjoint action by M has dimension +dλ := +� +i +(2i − 1)λi , +(2.25) +where λ is the partition that specifies the nilpotent orbit of M. +If one considers only +traceless matrices, δT then depends only on dλ − 1 parameters. +Note that being in the cokernel of ad(M) corresponds to commuting with the other +nilpotent element in the sl2-triple generated by M. Thus M+δT parameterizes the Slodowy +slice SM transverse to M (see Appendix A for definitions and a proof of this statement). +Note that indeed that +∀M ∈ Oλ(sln) , +dim SM = dλ − 1 . +(2.26) +Kraft-Procesi Transitions. +Consider two partitions λ and µ, which are immediately +adjacent in the partial order – one says that λ covers µ if they are adjacent and λ > µ. +Then λ and µ differ only in two entries, say with indices i < j, with λi − 1 = µi and +λi+1 + 1 = µi+1, and one of the two following transitions occurs: +Condition +Transition name +Transverse slice +j = i + 1 +Aλi−λj−1 +C2/Zλi−λj +µi = µj +ai−j−1 +Omin(sl(i − j, C)) +(2.27) +4This is easily proved by a recursive argument on the degree. +– 11 – + +The first corresponds to a Kleinian singularity, whereas the second is the closure of a +minimal nilpotent orbit. The equivalence class of tachyon matrices for a partition µ = +[µ1, . . . , µr] (with µ1 ≥ · · · ≥ µr) is characterized by a common SNF, i.e. +SNF(Tµ) = +� +� +� +� +� +� +� +� +� +� +� +1 +... +1 +zµr +... +zµ1 +� +� +� +� +� +� +� +� +� +� +� +. +(2.28) +Starting from the SNF of partition µ, the Kraft-Procesi transition is realized using +SNF +� +zµj αzµj−1 +0 +zµi +� += +� +zµj−1 +0 +0 +zµi+1 +� += +� +zλj +0 +0 zλi +� +(2.29) +for α ̸= 0. +Note that this is precisely the tachyon matrix formalism analog of the way Kraft- +Procesi transitions are realized in Hanany-Witten brane systems for 3d N = 4 quiver +theories in [90]. +Examples. +The equality (2.15) corresponds to the covering of partition [1, 1] by [2], +whereby two branes are combined into a thick brane. A less trivial case is the covering of +[2, 2] by [3, 1], where we do not simply have two branes being combined. Rather, one of +the two thick branes needs to be broken. This is realized in our framework using (2.29) as +follows: +SNF +� +z2 αz +0 z2 +� += +� +z1 0 +0 z3 +� +(2.30) +for α ̸= 0. +When the nilpotent orbit Hasse diagram is linear, one can build matrices that encode +all partitions at once. This is the case for n ≤ 5, where the matrices are given by +� +z a1 +0 z +� +, +� +� +� +z a1 0 +0 z a2 +0 0 +z +� +� +� , +� +� +� +� +� +z a1 +0 +0 +0 z za3 + a4 0 +0 0 +z +a2 +0 0 +0 +z +� +� +� +� +� , +(2.31) +� +� +� +� +� +� +� +z +a1 +0 +0 +0 +0 +z +za3 +0 a2a3a4 +0 +0 +z +a2 +0 +−z3a6 +0 +z2a1a3a6 +z +−za4 +−za2a4a5 (a1a2a3a6 + 1) 0 a2 +1a2 +2a2 +3a4a5a6 0 +z +� +� +� +� +� +� +� +. +(2.32) +This means that the SNF of a matrix above with a1, · · · , ar non-zero gives precisely the +r-th partition of n, the partitions being totally ordered. +– 12 – + +3 +Example: GTPs for Tn and Related Models +In this section, we use an intermediate step in correspondence between M-theory on a +CY threefold and IIB 5-brane-webs: IIA on a resolved C2/Zn singularity with D6-branes. +This discussion follows the philosophy of [13]. We start in this section with the instructive +example of Tn, and consider its description as well as GTPs obtained by adding white dots +along a single edge. +3.1 +The Setup +Consider the toric local Calabi-Yau defined by the toric diagram with vertices at coordinates +(0, 0), (n, 0) and (n, n), drawn here for n = 5: +W1 +W3 +W2 +(3.1) +The generators of the dual cone are +(−1, 0, 0) ↔ W1 +(3.2) +(1, −1, n) ↔ W2 +(3.3) +(0, 1, 0) ↔ W3 +(3.4) +(0, 0, 1) ↔ Z . +(3.5) +The first three generators are vectors normal to the 2-dimensional facets on the fan, drawn +in blue arrows when projected on the CY plane in (3.1). As an algebraic variety, the toric +threefold is simply a hypersurface in C4: +W1W2W3 = Zn +⊂ +C4⟨W1, W2, W3, Z⟩ . +(3.6) +This space has non-isolated singularities, specified by the following intersecting ideals: +Ising = (W1, W2, Z) ∩ (W1, W3, Z) ∩ (W2, W3, Z) . +(3.7) +Along each such ideal, there is a family of An−1-singularities. These are in one-to-one +correspondence with the three edges of the toric graph. +The singular threefold admits three different (albeit linearly dependent) C∗-actions +which act on the coordinates with the following weights: +W1 W2 W3 Z +C∗ +1 +0 +1 +−1 0 +C∗ +2 +1 +0 +−1 0 +C∗ +3 +1 +−1 +0 +0 +(3.8) +– 13 – + +As explained in toric language in [13], we can define projections πi, for i = 1, 2, 3, with +respect to these actions, and this will bring us down to IIA. Let (i, j, k) be a permutation of +(1, 2, 3). The way to reduce along a particular C∗-action C∗ +i is to pick the pair of ‘charged’ +coordinates Wj and Wk, and setup a C∗-fibration over an new complex coordinate Vjk as +follows: +C∗ +i : C[W1, W2, W3, Z] ∼= C[W1, W2, W3, Z, Vjk] +(WjWk − Vjk) +. +(3.9) +Now we can rewrite the threefold in the following presentation: +C[W1, W2, W3, Z] +(W1W2W3 − Zn) +∼= +C[W1, W2, W3, Z, Vjk] +(WjWk − Vjk; WiVjk − Zn) . +(3.10) +The IIA reduction is achieved by reducing over the S1 ⊂ C∗ action in each case. The non- +compact part R ⊂ C∗ becomes a transverse direction to the D6-branes. The projection is +simply defined as dropping the pair of coordinates (Wj, Wk), leaving us with a local K3 +with an An−1 Klein singularity +C[Wi, Vjk, Z] +(WiVjk − Zn) . +(3.11) +To simplify the notations, we switch to the more standard +X := Wi +Y := Vjk +(3.12) +so that the An−1 singularity (a local K3) is described by +XY = Zn . +(3.13) +There are D6-branes on the locus defined by the ideal +ID6 = (Y, Zn) , +(3.14) +which we call the D6 ideal. It is, first of all a stack of n non-compact D6-branes. However, +since this passes through the singularity, more is at play here, and we need to resolve the +local K3 to refine our understanding. +In order to describe the resolution of the An−1 orbifold (3.13), we introduce homoge- +neous coordinates (z1, e1, . . . , en−1, z2) with n − 1 C∗-actions +z1 e1 e2 e3 . . . en−3 en−2 en−1 z2 +C∗ +1 +1 −2 1 +0 . . . +0 +0 +0 +0 +C∗ +2 +0 +1 −2 1 . . . +0 +0 +0 +0 +... +C∗ +n−2 0 +0 +0 +0 . . . +1 +−2 +1 +0 +C∗ +n−1 0 +0 +0 +0 . . . +0 +1 +−2 +1 +(3.15) +The coordinates are homogeneous with respect to the n − 1 projective actions, by which +the space is quotiented. Each row gives the list of weights of the coordinate with respect to +each such action. Just as one must excise particular loci when creating standard projective +space, so must one excise a number of loci here. +– 14 – + +· · · +e1 = 0 +e2 = 0 +en−2 = 0 +en−1 = 0 +z1 = 0 +z2 = 0 +Figure 6. Geometry of the resolved An−1 singularity. Each curved line is a P1 while the straight +lines are the non compact divisors z1,2 = 0. +Specifically, if a coordinate is set to zero, then only one its two ‘neighbors’ are allowed +to vanish. See figure 6. For example, we can have e2 = 0, and e3 = 0, or e2 = 0 and +e1 = 0, but the pair (e1, e3) does not form a valid ideal for a vanishing locus. In terms of +the coordinates (X, Y, Z), we have +X = +n +� +i=0 +en−i +i +, +Y = +n +� +i=0 +ei +i , +Z = +n +� +i=0 +ei +(3.16) +where we have introduced e0 := z1 and en := z2. The locus ei = 0 corresponds to the +i-th exceptional P1. The loci z1 = 0 and z2 = 0 correspond to noncompact holomorphic +curves intersecting the first and last P1, respectively. +Line bundles over this space are +characterized by their first Chern class, which is encoded as O(k1, . . . , kn−1). A section of +this bundle is a polynomial of homogeneous multi-degree (k1, . . . , kn−1). +The brane locus (3.14) is now given by +ID6 = +� n +� +i=0 +ei +i, +n +� +i=0 +en +i +� += +� n +� +i=0 +ei +i +� +. +(3.17) +The interpretation is as follows: there are i D6-brane wrapping the i-th P1, and n non- +compact D6-branes on the curve z2 = 0, which intersects the (n−1)-th sphere at one point. +At the SCFT point, all the P1’s shrink to zero size. On the Coulomb branch, where the +K¨ahler volumes are non zero, the effective theory can be read from the ideal (3.17). It is +described by the quiver: +U(1) +U(2) +· · · +U(n − 2) +U(n − 1) +n +(3.18) +3.2 +Tachyon Condensation Picture +The theory (3.18) is encoded by via the tachyon condensation/coherent sheaf language as +follows. First recall that in terms of complexes, one can describe the branes as follows: +• A brane Bi wrapped on the i-th P1 given by ei = 0 can be described as the cokernel +of the complex of line bundles: +Bi : +O(−ei) +O , +ei +(3.19) +– 15 – + +where O is the structure sheaf over the local K3, and O(−ei) is the dual of the line +bundle O(ei), of which ei is a section. For instance, O(−e1) = O(2, −1, 0, . . . , 0). +• A noncompact ‘flavor brane’ BF at the locus z2 = 0, intersecting the rightmost P1 +(given by en−1 = 0), is given by the following complex: +Bn : +O(−z2) +O . +z2 +(3.20) +• More generally, a noncompact D6-brane intersecting the i-th exceptional P1 will be +given by the zero-locus of a section of O(0, . . . , 0, 1, 0, . . . , 0), where the ‘1’ is the i-th +entry. +Define N = 1 +2n(n+1) D8-branes with gauge bundle FD8 := O⊕N and N anti-D8-branes +with gauge bundle +FD8 := O(2, −1, 0, · · · , 0) ⊕ O(−1, 2, −1, · · · , 0)⊕2 ⊕ · · · ⊕ O(0, · · · , 0, −1)⊕n . +(3.21) +We then define the tachyon map +T : FD8 → FD8 +(3.22) +as a diagonal matrix +T = Diag(e1 · 11, e2 · 12, . . . , en−1 · 1n−1, z2 · 1n) . +(3.23) +Note that det T = Y , so that the equations of the threefold are +WjWk = det T = Y , +XY = Zn . +(3.24) +from which one recover the original equation WiWjWk = Zn. +The resulting D6-brane +system is defined as the cokernel S := cok(T) of this map, which is the locus where T fails +to be invertible. So S is reducible: +S = +n +� +i=1 +O⊕i +ei , +(3.25) +where Op means the structure sheaf with support over p = 0. There is an exact sequence +FD8 +FD8 +S +0 . +T +(3.26) +Fluctuations. +The fluctuations around this background are computed as self-extensions, +in the same way as in section 2. This means that the fluctuations δT of the tachyon T +belong to the self-extension group, +δT ∈ Ext1(S, S) = HomD(K3)(S, S[1]) , +(3.27) +where we consider the Homs in the derived category of coherent sheaves on K3 D(K3), +and the [1] means that we shift the complex one step to the left. The matrix δT can be +decomposed in blocks, and there will be non-zero fluctuations just above and below the +diagonal. +In practice, the fluctuations are subjected to three conditions, that we will be using +repeatedly in the following sections: +– 16 – + +(i) The C∗ weights of the columns of T and δT need to be compatible with (3.23) ; +(ii) The fluctuations are regular sections of the relevant sheaves (no pole on the support +locus) ; +(iii) The components of δT are subject to the identifications (2.5). +3.3 +Example: T2 +For concreteness we work out in detail the case n = 2 for Tn before treating the general +case. The tachyon matrix is +O(2) ⊕ O(−1)⊕2 +O⊕3 +T +, +T = +� +e1 +0 +0 +z2 · 12 +� +(3.28) +and we give names to the blocks in the fluctuation δT in correspondence with the quiver +δT = +� +Φ1 �Q1 +Q1 Φ2 +� +1 +2 +Q1 +�Q1 +Φ1 +Φ2 +(3.29) +The three conditions listed above give +δT ∈ +� +Γ(O(−2)(e1)) +Γ(O(1)(e1,z2)) · C1×2 +Γ(O(−2)(e1,z2)) · C2×1 +Γ(O(1)(z2)) · C2×2 +� += +� +0 +C1×2 · z1 +C2×1 · 1 +z2 +1 C2×2 · z1 +� +. +(3.30) +Here, Γ indicates that we take sections of the bundles, and Cn×m is the set of n×m matrix +of complex numbers. The last equality is easily checked, e.g. for the lower-left entry, the +regular sections are generated by rational functions in z1 alone, having C∗-weight −2, and +poles are allowed as the support is the intersection between two curves where z1 ̸= 0. In +terms of Ext groups between B1 (see (3.19)) and B2 (see (3.20)), we can write (using e.g. +a spectral sequence argument) +Q1 ∈ Ext1(B1, B2) = H0(O(e1)e1,z2) = +� 1 +z2 +1 +� +. +(3.31) +�Q1 ∈ Ext1(B2, B1) = H0(O(z2)e1,z2) = ⟨z1⟩ . +(3.32) +To summarize, the background tachyon plus fluctuation is given by +T + δT = +� +e1 +�q1z1 +q1 +z2 +1 +z2 · 12 + z1ϕ2 +� +, +(3.33) +where we have pulled out all dependencies in z1, e1 and z2, so that �q1 ∈ C1×2, q1 ∈ C2×1 +and ϕ2 ∈ C2×2 are pure constants: +Q1 = q1 +z2 +1 +, +�Q1 = �q1z1 , +Φ2 = ϕ2z1 . +(3.34) +– 17 – + +e1 = 0 +z1 = 0 +z2 = 0 +Φ +ϕ1 +Q1, ˜Q1 +e1 = 0 +z1 = 0 +z2 = 0 +ϕ2 = − M +X +ϕ1 +Figure 7. Intersecting branes before and after the transformation that maps the off-diagonal Higgs- +field entries Q1, ˜Q1 to diagonal ones with a pole. The orange dot signals the pole in the Higgs field +at X = 0. +Note that the term q1 +z2 +1 ensures that (3.33) is defined on the locus z1 ̸= 0 +We can perform basis changes from the left and right, using (2.6), as follows: +� +1 +0 +− q1 +z2 +1e1 +12 +� +· +� +e1 +�q1z1 +q1 +z2 +1 +z2 · 12 +� +· +� +1 +− �q1z1 +e1 +0 +12 +� += +� +e1 +0 +0 +z2 · 12 − +M +z1e1 +� +(3.35) +In the last step we have introduced the meson matrix +M := q1�q1 . +(3.36) +In the 5d effective field theory, F-term conditions impose that M be nilpotent. This can +also be demonstrated mathematically via the so-called cone construction in the derived +category of coherent sheaves. See [83] for examples of this mechanism. +This diagonalization shows that giving a vev to the meson field can be subsumed into +a shift of vev of the adjoint field φ on the flavor branes, with a pole. Using the coordinate +X = z2 +1e1 (see (3.16)) on the z2 = 0 plane, we can write this as +T + δT ∼ +� +e1 +0 +0 +z2 · 12 + z1 · ϕ2 +� +with +ϕ2 = −M +X . +(3.37) +The transformation from (3.33) to (3.37) means that we can regard in an appropriate +regime the intersecting branes in figure 7 as a stack of two branes on z2 = 0 with a +complex codimension-one defect on its world-volume at e1 = 0. This is in agreement with +the findings of [85, 87], where the authors find that a vev of bifundamental fields at the +intersection of two branes can be subsumed into a pole for the adjoint of one of the two +branes. In the picture, we trade the description in figure 7 on the left with the right. +Up to a change of basis we can take M in canonical Jordan form. +There are two +possibilities, corresponding to the two partitions of n = 2: +M[12] = +� +0 0 +0 0 +� +and +M[2] = +� +0 1 +0 0 +� +. +(3.38) +– 18 – + +Consider the latter case, +T[2] := +� +e1 +t[2] +� +:= +� +� +� +e1 0 +0 +0 z2 − +1 +z1e1 +0 0 +z2 +� +� +� . +(3.39) +We still have det T[2] = ez2 +2 = Y . So the brane configuration has not changed geometrically. +Accordingly, the M-theory uplift is still given by (3.24). However, the tachyon matrix shows +us that the flavor brane no longer carries an SU(2) group. This is the hallmark of a T- +brane: A non-abelian bound state of branes that does not realize the gauge group that it +would naively have given its geometry. This T-brane effect is the IIA counterpart of the +change in boundary conditions in the dual type IIB brane-webs +(3.40) +In this particular case, once the D5-segment has been sent away, a Hanany-Witten move +where the 7-brane detaches completely becomes possible: +(3.41) +How does this translate into the IIA language, i.e. in terms of the tachyon field? Let +us see what deformations are available, starting from the new vacuum defined by (3.39). +Using the results of section 2, the fluctuations of t[2] are +δt[2] = z1 · +� +0 0 +α 0 +� +, +α ∈ C . +(3.42) +Now in order to see how this affects the geometry, we add this perturbation to T[2] +T[2] + δt[2] = +� +� +� +e +0 +0 +0 z2 − 1 +z1e +0 αz1 +z2 +� +� +� . +(3.43) +Now the geometry (3.24) is deformed to +WjWk = det T = Y + α , +XY = Z2 . +(3.44) +– 19 – + +which reduces to the hypersurface +W1W2W3 = Z2 + αWi . +(3.45) +So the CY threefold is fully desingularized. From the IIA perspective, we see that two flavor +branes have recombined with one gauge brane, to give rise to a noncompact brane that can +escape the singular locus. This is in full agreement with the 5-brane-web picture, whereby +the 7-brane moves off to the left, becomes fully detached from the NS5-branes, and can +escape to infinity, see (3.41). This corresponds precisely to removing the A1 singularity. +To summarize, the white dot is represented in the IIA picture as a nilpotent vev with +poles on the flavor D6-stack. The further Hanany-Witten move that actually deforms the +M-theory geometry is implemented by switching on a further vev on the flavor stack along +the Slodowy slice with respect to the initial singular nilpotent vev. +3.4 +General Case: Tn +The general Tn case is very similar to the T2 example treated above. The fluctuations +around the tachyon background are denoted by fields as follows: +1 +2 +. . . +n − 2 +n − 1 +n +Q1 +Qn−2 +Qn−1 +�Q1 +�Qn−2 +�Qn−1 +Φ1 +Φ2 +Φn−2 +Φn−1 +(3.46) +Generalizing (3.31) and (3.32), we find that the 5d hypermultiplets that reside at the +intersection of the curves ei = 0 and ei+1 = 0 are described by +Qi ∈ Ext1(Bi, Bi+1) = H0(O(ei)(ei,ei+1)) = +� Y +Zi+1 ei +� += +�� +j̸=i +ej−i−1 +j +� +. +(3.47) +and +˜ +Qi ∈ Ext1(Bi+1, Bi) = H0(O(ei+1)(ei,ei+1)) = +�Zi +Y ei+1 +� += +� � +j̸=i+1 +ei−j +j +� +. +(3.48) +On the other hand, one can check that Ext1(Bi, Bj) = 0 for |i − j| > 1. Therefore the +tachyon matrix T, plus the fluctuations δT, fit schematically (we will provide the explicit +form below) into the matrix +T + δT = +� +� +� +� +� +� +� +� +� +e1 · 11 +�Q1 +Q1 +e2 · 12 ... +... ... ... +en−1 · 1n−1 +�Qn−1 +Qn−1 +z2 · 1n +� +� +� +� +� +� +� +� +� +. +(3.49) +As in (3.34), we introduce the notation +Qi = qi · +Y +Zi+1 ei +˜Qi = ˜qi · Zi +Y ei+1 , +(3.50) +– 20 – + +such that qi and ˜qi are constants. We can also have fluctuations on the diagonal, which we +write as +Φi = ϕi · +Y +Zi+1 ei . +(3.51) +With this notation the F-terms at the ith node can be written +�q1q1 = 0, +and +qi�qi = �qi+1qi+1 +i = 1, . . . , n − 2 . +(3.52) +We now come back to the reason why (3.49) is only a schematic form. +The i-the +hyper (Qi, �Qi) is only well defined at the (ei, ei+1) intersection, but has poles in the nearby +patches. Hence, (3.49) is not well-defined over the whole target space. This is due to the +projective nature of the resolved K3. Therefore, we must study it patch by patch. A good +local affine coordinate on the locus ei = 0 for the hemisphere where ei+1 (respectively ei−1) +does not vanish is Y +Zi (respectively Zi +Y ): +ei = 0 +ei+1 = 0 +Coordinate Y +Zi +Coordinate Zi+1 +Y +(3.53) +Note in particular that for i = N (respectively i = 0), this is compatible with the affine +coordinate on the locus z2 = 0 (resp. z1 = 0) being simply X (resp. Y ), as chosen in +(3.37). +In the patch that contains the intersection {ei = 0} ∩ {ei+1 = 0}, the tachyon fluctua- +tion is expressed as +δT = +� +Φi +�Qi +Qi Φi+1 +� +∈ +� +Ci×i · +Y +Zi+1 ei +Ci×(i+1) · Zi +Y ei+1 +C(i+1)×i · +Y +Zi+1 ei C(i+1)×(i+1) · Zi +Y ei+1 +� +(3.54) +Using line and row transformations, one finds +� +1i +�qi Zi +Y +−qi +Y +Zi+1 1i+1 − qi�qi +Z +� � +ei +� +1i − �qiqi +Z +� +0 +0 +ei+1 · 1i+1 +� � +1i +−�qi +Ziei+1 +Y ei +qi +Y ei +Zi+1ei+1 1i+1 − qi�qi +Z +� += +� +ei · 1i +0 +0 +ei+1 +� +1i+1 − qi�qi +Z +� +� +. +(3.55) +Effectively, this transforms a pole of the form +� +ei · 1i + +Y +Zi+1 eiϕi +0 +0 +ei+1 · 1i+1 +� +, +ϕi = −�qiqi +(Y/Zi) +(3.56) +into a pole of the form +� +ei · 1i +0 +0 +ei+11i+1 + Zi +Y ei+1ϕi+1 +� +, +ϕi+1 = +−qi�qi +(Zi+1/Y ) . +(3.57) +– 21 – + +Let us introduce the n × n meson matrix +M = qn−1�qn−1 . +(3.58) +As argued for the T2 previously, this meson matrix must be nilpotent. We can characterize +the tachyon fluctuation entirely by the last pole (3.57) for i = n − 1, which gives +ϕn = −M +X , +(3.59) +consistently with what we found for the n = 2 case in (3.37). In summary, the bifun- +damental matter between the various branes can be subsumed under a shift of the 7d +SU(n)-adjoint Higgs ϕn, as a simple pole with residue equal to a nilpotent element M. +Since Mn = 0, we still have +det T = +n +� +i=1 +ei +i = Y . +(3.60) +Hence, the brane locus remains unscathed despite the activation of the matter fields. +3.5 +Interpretation in terms of Generalized Toric Polygons +We saw in the last subsection that the geometry of the threefold can be affected by the +presence of a pole of the form (3.59). +This pole can be encoded in two ways: in the +nilpotent meson matrix M, or in the list of hypermultiplet deformations qi and �qi satisfying +the relations (3.52). Let us call Q the set +Q = {q = (q1, �q1, . . . , qn−1, �qn−1) ∈ C2×1 × . . . C(n−1)×n|(3.52)} . +(3.61) +We also call N the set of nilpotent n × n complex matrices. The map +m : Q → N +(3.62) +q �→ M = qn−1�qn−1 +is certainly not injective, as given a nilpotent matrix M, there are infinitely many families +{qi, �qi}i=1,...,n−1 mapping to it. Let us define +r : Q → Nn−1 +(3.63) +q �→ (ri = rank(qi�qi))i=1,...,n−1 . +For a given M ∈ N, the ranks of the bilinears in qi�qi that map to M are not fixed. +In other words, r(m−1(M)) contains more than one element. However, there is a unique +element of rmin ∈ r(m−1(M)) that minimizes the sum of the entries. If M ∈ Oλ, then r0 +is given by the partial sums of the transpose of λ, +rmin = +� +� +n +� +j=n+1−i +λT +j +� +� +i=1,...,n−1 +. +(3.64) +– 22 – + +Figure 8. On top, we depict a part of the resolved GTP for the T9 theory, with white dots on +the right edge, along with an internal triangulation consistent with the white dots. The presence of +white dots propagates into the interior of the GTP, thereby limiting the possible resolutions. Each +column in the GTP corresponds to a boundary condition for D5-branes ending on D7-branes. This +information is encoded in the ranks ri of the matrices appearing in δT. On the bottom, we show +the associated D5-brane boundary conditions (where each circle denotes a D7-brane). +Note that this coincides with the ranks of the linear quiver +rmin +1 +rmin +2 +· · · +rmin +n−1 +n +(3.65) +whose 3d N = 4 Coulomb branch is the corresponding nilpotent orbit closure. The ranks +in (3.64) represent the minimal deformations needed in δT to produce the pole (3.59). In +simple cases, the quivers (3.65) appear as embedded in the magnetic quiver describing the +Higgs branch of the 5d theory. For a more precise statement about the embedding, the +reader is referred to [55]. +In the GTP, these ranks can be encoded with white dots inside the polygon, using +again the notation introduced in [16]. For instance, for n = 9 and partition λ = [4, 3, 2], we +can draw the configuration shown in figure 8. The minimal ranks correspond to the number +of white dots in each column: here we get rmin = (0, 0, 0, 0, 0, 1, 3, 6). These numbers give +the brane configuration which saturates the s-rule, as illustrated in the lower part of figure +8. +– 23 – + +... +... +H +H′ +Pole +Figure 9. +Schematic form of a Hasse diagram of the Higgs branch H viewed as a symplectic +singularity. +The effect of the pole prescription corresponds geometrically to imposing a higher +dimensional base leaf (the transverse slice is shown in red – here it is minimal, but it does not have +to be in general). The remaining Higgs branch H′ is the transverse slice. +Impact on the Hasse diagram. +The vevs of Higgs branch operators in the 5d theory +can be projected on the space of complex structure deformations of the geometry. The +fact that the pole (3.59) freezes some of these deformations means geometrically that the +resulting pole-deformed Higgs branch is the slice in the initial Higgs branch transverse to +these imposed deformations. This can be represented as follows. +The Higgs branch H with no pole is a symplectic singularity, which can be depicted +using its Hasse diagram of singularities. The effect of the pole is to freeze certain defor- +mations, represented here as a forced choice of a higher dimensional bottom symplectic +leaf. The resulting Higgs branch H′ is the transverse slice to that leaf. See figure 9 for a +schematic depiction. +The analysis above applies to the theory in any phase. In the case of the IIA reduction +on the resolved An−1 singularity shown in figure 6, the Higgs branch of the Tn theory +becomes the nilpotent cone of sln. The transverse slices are then identified with the Slodowy +slices. The example n = 4 is illustrated in figure 10. If M ∈ Oλ for λ some partition of n, +then the corresponding Higgs branch is the Slodowy slice Sλ ∩ N. Moving on to the SCFT +phase, the Higgs branch is no longer a nilpotent orbit closure, but the general picture stays +the same: the Higgs branch is restricted to a transverse slice. This is what we already +mentioned in the introduction, see figure 5. The Hasse diagrams drawn in figure 5 can be +reproduced independently using the quiver subtraction algorithm [92, 93] on the magnetic +quivers extracted from the GTPs. +3.6 +Hanany-Witten Moves +In the previous section, we defined the IIA counterpart of a ‘white dot’ as a nilpotent +residue for the adjoint complex scalar on the flavor D6-branes. The nilpotency implies +– 24 – + +0 +3 +4 +5 +6 +a3 +a1 +A1 +A3 +M ∈ O[14] +M ∈ O[2,12] +M ∈ O[22] +M ∈ O[3,1] +Figure 10. Diagram for the nilpotent cone of sl4. The dots are nilpotent orbits. When M belongs +to a given orbit, the Higgs branch of the resulting theory is the transverse Slodowy slice, represented +by a bracket on the right. +that there will be no repercussions on the geometry of the branes, and hence, the M-theory +CY will not be deformed. This is the hallmark of a ‘T-brane’ [74]. +We would now like to determine how the T-brane configuration impacts the physics +of the 5d theory. This is done using the brane-web language, with Hanany-Witten moves, +as we have explained in detail in section 3.3. The key point is that the nilpotent orbit of +M determines which Hanany-Witten move can be performed in order to detach any of the +7-branes. +In the IIA setup, flavor D6-branes are now allowed to move across exceptional P1s, +thereby changing the quiver structure. The way this is seen at the level of the Higgs field, +is that by activating vevs along the Slodowy (transverse) slice to the nilpotent vev with +poles, the characteristic polynomial of the tachyon matrix actually becomes deformed. +This can be seen by computing the self-Ext group Ext1 � +B(nil) +F +, B(nil) +F +� +of the nilpotent +configuration on the flavor brane. Using the computation from section 2, we are looking +for δTF such that +δTF ∼ δTF + z2 +Z [M, g] . +(3.66) +This is equivalent to requiring that δTF be on a transverse slice to M, gauge equivalent +to the Slodowy slice. We will choose a gauge such that δTF be the companion matrix to +M as in [94], which is referred to as a ‘reconstructible Higgs’ in [74]. The details on how +this is done are given in Appendix A. Say Tnil is in the maximal nilpotent orbit, then the +‘Hanany-Witten’ tachyon will take the form +THW = Tnil + δTF = z2 +Z +� +� +� +� +� +� +� +� +Z +1 +Z +1 +... ... ... +Z +1 +(−)n−1anX (−)n−2an−1X +−a2X Z +� +� +� +� +� +� +� +� +, +(3.67) +– 25 – + +where the ai are constants (the fluctuation δTF is proportional to X as a consequence of +(3.54) with i = N − 1). This matrix has determinant +det(THW) = +�z2 +Z +�n � +Zn + a2XZn−2 + . . . + anX +� +. +(3.68) +More generally, for M in the [λ1, λ2, . . . , λr] partition, we take a block diagonal matrix +where each block will take the form: +(THW)i = z2 +Z +� +� +� +� +� +� +� +� +Z +1 +Z +1 +... ... ... +Z +1 +(−)λi−1a(i) +λi X (−)λi−2a(i) +λi−1X +−a(i) +2 X Z +� +� +� +� +� +� +� +� +. +(3.69) +Note that by doing so, we are not using the full Slodowy slice Sλ (which contains non- +block-diagonal matrices) but instead restrict to the intersection S0 +λ = Sλ ∩ lλ with the Levi +subalgebra lλ, see Appendix A. This is physically justified, as it guarantees that the flavor +symmetry will not be further broken by the Hanany-Witten moves than it already has been +by the white dots. The missing parameters, in Sλ − S0 +λ, are associated to the non splitting +of the flavor branes, illustrated on an example below in (3.77). +Putting together all these blocks, and the non-flavor part of the tachyon matrix, the +end result of the full deformation is +Y �→ 1 +X · +r +� +i=1 +� +�Zλi + X +� +� +λi−2 +� +j=0 +a(i) +λi−jZj +� +� +� +� , +(3.70) +where � +i λi = n. +Actually it can be argued that only the coefficients a(i) +λi affect the physics near the +singularity: coefficient a(i) +λi−j for j ̸= 0 correspond to a shift of +Zλi−j +X +, which is using +(3.53) the coordinate along a P1 with which the brane has zero intersection. Therefore the +equation simplifies to +Y �→ 1 +X · +r +� +i=1 +� +Zλi + Xa(i)� +, +(3.71) +where we have renamed a(i) := a(i) +λi . Reverting to the original notations (W1, W2, W3, Z) +for the coordinates in C4, see (3.12), one finally gets +W1W2W3 = +r +� +i=1 +� +Zλi + a(i)W1 +� +. +(3.72) +Examples. +Let us work out a few examples. Equation (3.70) is worked out explicitly +for T3 and T4 in table 1. The factorization allows to read off the corresponding quivers, +which are the magnetic quivers for nilpotent orbits of sl(3) and sl(4) [95], as expected. +– 26 – + +Partition +det T +Factorization +[13] +Y +e1e2 +2(z3 +2) +[2, 1] +Y + a2Z +e1e2(z2)(e2z2 +2 + a2z1) +[3] +Y + a2Z + a3 +smooth +Partition +det T +Factorization +[14] +Y +e1e2 +2e3 +3(z4 +2) +[2, 12] +Y + a2Z2 +e1e2 +2e2 +3(e3z2 +2 + a2z2 +1e1)(z2 +2) +[22] +Y + (a(1) +2 ++ a(2) +2 )Z2 + a(1) +2 a(2) +2 X +e1e2 +2e3(e3z2 +2 + a(1) +2 z2 +1e1)(e3z2 +2 + a(2) +2 z2 +1e1) +[3, 1] +Y + a2Z2 + a3Z +e1e2e3(e2e2 +3z3 +2 + a2z2 +1e1e2e3z2 + a3z1)(z2) +[4] +Y + a2Z2 + a3Z + a4 +smooth +Table 1. Equations defining the brane configurations in T3 and T4 with white dots on one edge +after HW moves. In the last column, the equation is rewritten in terms of the toric variables for the +resolution, and maximally factorized. The factor in orange give the ranks of the low energy quiver +while the terms within brackets give the flavor ranks. +We can illustrate the problem discussed in the previous paragraph with partition [2, 1]. +The generic matrix in the Slodowy slice would give rise to the final block for the tachyon +matrix given by +� +� +� +Z +1 +0 +−a2X Z +αX +βX +0 Z + γX +� +� +� , +(3.73) +The resulting, deformed, equation then reads +det T = e1e2 +� +a2γe1z3 +1 + a2z1z2 + γe1e2z2 +1z2 +2 + αβe1z3 +1 + e2z3 +2 +� +, +(3.74) +from which one reads off a quiver with two abelian nodes and a single flavor brane system: +e1 = 0 +e2 = 0 +z1 = 0 +z2 = 0 +(3.75) +This system, drawn in teal, intersects both P1 divisors at e1 = 0 and e2 = 0. This breaks +the global isometry u(1) of the nilpotent Slodowy slice S[2,1] ∩ N. By restricting to the +Levi subalgebra, i.e. sending α, β and γ to zero, one gets one more factorization: +det T = e1e2(z2) +� +a2z1 + e2z2 +2 +� +. +(3.76) +– 27 – + +e1 = 0 +e2 = 0 +z1 = 0 +z2 = 0 +(3.77) +The flavor branes are now disjoint and can be moved independently: +e1 = 0 +e2 = 0 +z1 = 0 +z2 = 0 +(3.78) +Each flavor brane intersects a single P1, and the global symmetry of the resulting Higgs +branch (still in the resolved phase) is read to be s(u(1) ⊕ u(1)) = u(1). +4 +General Discussion +4.1 +White Dots along a Single Edge +Having discussed the case of Tn in detail, we move to a generic toric polygon and its GTP +deformations. Let P be a convex polygon in R2 with vertices in Z2. Pick an edge on P, +and denote by n its length (i.e. the edge contains exactly n + 1 points in Z2). Using an +SL(2, Z) transformation, one can assume without loss of generality that this edge extends +between the vertices (0, 0) and (0, n), and that all vertices of P other than (0, 0) and (0, n) +have coordinates (i, j) with i < 0: +· · · +· · · +(0, 0) +(0, n) +(4.1) +In the toric threefold, the length n edge is translated into the presence of a dimension 1 +singular stratum with transverse slice of type An−1. In the brane-web picture, this means +that n D5-branes extend to infinity, and the boundary condition, encoded in how they end +on D7-branes, can again be encoded in a T-brane datum. This can be done explicitly using +the IIA reduction as in section 3 for any given polygon (and we do so for the example of a +– 28 – + +rectangular P in the next section), even though it would be extremely cumbersome to try +to give general formulas that would apply to any polygon. The general idea, however, is +clear: in the Tn example discussed in section 3, the undeformed equation W1W2W3 = Zn +yields the An−1 singularity transverse to the line W2 = W3 = Z = 0 by setting W1 equal +to a constant, say W1 = c, giving +cW2W3 = Zn . +(4.2) +It is then this equation that is modified by (i) adding a nilpotent pole of the form (3.59) +with M in the prescribed nilpotent orbit, and (ii) performing HW moves to deform the +geometry, in effect replacing +Zn → +� +i +(Zλi + a(i)W1) . +(4.3) +The general case is obtained by mimicking this procedure: among the equations for the +toric threefold corresponding to the polygon P, the line with transverse singularity An−1 +can be parametrized by a coordinate W1, and the transverse slice is again given by (4.2). +This is one of the equations defining the toric threefold, called a ”boundary equation” in +[96]. This equation should then be replaced by +cW2W3 = +� +i +(Zλi + a(i)W1) . +(4.4) +This is in agreement with [96, Theorem 4.8]. A useful mnemonic is that in the toric diagram +(3.1), the deformation of the edge labelled by W1 involves an An−1 equation involving the +coordinates labelling the adjacent edges, here W2 and W3, with the degree n polynomial in +Z deformed by powers of W1. In the following subsections, we give examples to illustrate +the scope of our results, and also show certain limitations. +Successive deformations. +Before discussing the examples, we want to address a +natural question: given a GTP with white dots on an edge of length n characterized by +a partition µ, is it possible to deform it to the same GTP with partition λ instead? One +necessary condition is that λ > µ, and it is also sufficient if the polygon is large enough.5 +In this case, one can deform the nilpotent pole according to the general rules spelled out +in section 2. +For instance, if n = 4, we can use the explicit form (2.31). Going from partition [2, 12] +to [22] is straightforward as it just involves merging two Jordan blocks, while going from +5If the GTP is small, then certain deformations could lead to violations of the S-rule. +– 29 – + +[22] to [3, 1] requires using higher powers of z (recall (2.29)): +� +� +� +� +� +z 1 0 0 +0 z 0 0 +0 0 z 0 +0 0 0 z +� +� +� +� +� +� +� +� +� +� +z 1 0 0 +0 z 0 0 +0 0 z α +0 0 0 z +� +� +� +� +� +� +� +� +� +� +z 1 0 0 +0 z zβ 0 +0 0 z α +0 0 0 z +� +� +� +� +� +α ̸= 0 +β ̸= 0 +(4.5) +However it is worth mentioning that this can be done on the T-brane before HW defor- +mations are added. Crucially, the two operations do not commute in general. Here for +instance the deformed equations for T4 with partition [2, 2] and [3, 1], given in table 1, +cannot be deformed from one to the other. +4.2 +Rectangular Box +Consider a rectangular box of size n × m, +m +n +W1 +W3 +W2 +W4 +(4.6) +The 5d SCFT this describes admits several well-known low energy gauge theory deforma- +tions. The toric threefold singularity is not a hypersurface, but it is described by the pair +of equations +W1W3 = Zm , +W2W4 = Zn . +(4.7) +We can add white dots on the right segment, labeled by W1, exactly as in section 3. The +deformed equations are +W1W3 = Zm , +W2W4 = +� +i +(Zλi + a(i)W1) . +(4.8) +Note that again, the coordinate W1 is used to deform the An−1 equation involving the +coordinates labeling the adjacent edges W2 and W4. +– 30 – + +Example. +The following example is a useful check of this proposal, as the resulting +model is related to T3. Consider the case m = 3, n = 2. Placing a white dot on the length +2 edge yields the equations +W1W3 = Z3 , +W2W4 = Z3 + aW1 . +(4.9) +We can now use the second equation to solve for W1, and we get the hypersurface +W2W3W4 = Z2(aZ + W3) . +(4.10) +In the limit where a → ∞, the D7-brane, in the web interpretation, has crossed the whole +brane system from right to left. We are left with +W2W3W4 = Z3 , +(4.11) +and we have reproduced the prediction (1.5) +↔ +(4.12) +This is a consistency check on the validity of our proposal. +4.3 +Generic Triangle +In this subsection we consider more examples which involve threefolds what are not hyper- +surfaces in C4. Consider the case where the toric polygon is a triangle, of arbitrary shape. +Pick one edge of length n. Then an SL(2, Z) transformation can bring the triangle to a +frame where its three vertices are: +{(0, 0); (0, n); (−a, b)} , +a ∈ Z>0, b ∈ Z . +(4.13) +This means the toric fan is generated by the three vectors (0, 0, 1), (0, n, 1) and (−a, b, 1). +Among the generators of the dual cone we have +(−1, 0, 0) ↔ W1 +(4.14) +�n − b +d2 +, − a +d2 +, an +d2 +� +↔ W2 +(4.15) +� b +d1 +, a +d1 +, 0 +� +↔ W3 +(4.16) +(0, 0, 1) ↔ Z . +(4.17) +In order to write the equation of the threefold, we have introduced d1 = gcd(a, b), d2 = +gcd(a, n − b) and d3 = gcd(a, b, n − b). One of the equations for the toric threefold is +W n/d3 +1 +W d2/d3 +2 +W d1/d3 +3 += Zan/d3 , +(4.18) +but in general there are other equations, as there are other generators in the dual cone. In +the case of Tn (3.1), equation (4.18) is sufficient and reduces to (3.6), but this is a special +case. To illustrate this phenomenon, we consider an example. +– 31 – + +Example. +We take the case a = 2 and b = 0. +2 +2n +W1 +W2 +W3 +(4.19) +The dual cone is generated by 5 vectors:6 +(−1, 0, 0) ↔ W1 +(4.20) +(n, −1, 2n) ↔ W2 +(4.21) +(0, 1, 0) ↔ W3 +(4.22) +(0, 0, 1) ↔ Z +(4.23) +(1, 0, 2) ↔ T +(4.24) +and the threefold is described by two equations in C5: +W n +1 W2W3 = Z2n , +W1T = Z2 . +(4.25) +The first equation corresponds to (4.18). The singular locus associated to the length 2n +edge is Z = W2 = W3 = T = 0, parametrized by W1. Setting as before W1 = c, we +can eliminate T and we find as expected an equation cnW2W3 = Z2n that we can deform. +Therefore, the system of equations for the triangle (4.19) with one white dot on the long +edge according to our conjecture is +↔ +� +W n +1 W2W3 = Z2n−2(Z2 + aW1) +W1T = Z2 +(4.26) +6There is an algorithmic way to see that the fifth vector (1, 0, 2) is needed, an no other. This is the +computation of the Hilbert basis of the semi-group σ∨ ∩M, using standard notation in toric geometry. This +Hilbert basis is unique, and in the present case it has 5 elements, given here. +– 32 – + +5 +Testing the Proposal: Resolution of Singularities +To test the proposal for the deformation of singularities, we compute the resolutions for +the deformed singularities. For the starting point, which we take to be a toric variety, the +resolution is easily obtained in a combinatorial fashion, by a complete triangulation of the +toric polygon. However, no such computational simplification exists yet for the resolution +of GTPs. In view of this, we therefore need to revert to resolving the actual algebraic +varieties. We will carry this out for the Tn theories. +5.1 +Crepant Resolution of Tn +The simplest type of singularities are the hypersurfaces that realize the Tn theories. The +flavor symmetry algebra is su(n)3 except for n = 3, where we expect e6. This can be +easily detected from the toric geometry by extracting the set of curves that are complete +intersections between compact and non-compact (i.e. flavor) divisors. The resulting so- +called combined fiber diagram (CFD) [26–28] is easily read off from the toric polygon [80]. +Here we will take the more laborious path of resolving the hypersurface singularity, in +preparation for resolving the deformed singularities. The hypersurface in C4 is +W1W2W3 = Zn . +(5.1) +The first resolution for all of these singularities is simply to remove the locus W1 = +W2 = W3 = Z = 0, which is achieved by inserting a P3 with projective coordinates +[W1, W2, W3, Z] (for a detailed exposition of resolutions from a physicist’s perspective, see +[97]). Denoting the exceptional section of the blowup by δ1 the equation, after proper +transform, which ensures that the resolution is crepant, becomes +W1W2W3 = Znδn−3 +1 +. +(5.2) +This can be further resolved by consecutively blowing up the loci W1 = W2 = W3 = δi = 0 +i.e. by inserting another projective space with coordinates +[W1, W2, W3, δi] , +i = 1, · · · , ⌊n − 3i⌋ , +(5.3) +which implies that the coordinates cannot vanish at the same time (and thus the above is +a relation in the Stanley-Reissner ideal of the hypersurface). This is iterated until we reach +W1W2W3 = Zn +⌊n−3i⌋ +� +i=1 +δn−3i +i +. +(5.4) +The remaining blowups will resolve the local singularities along W1 = 0, W2 = 0 and +W3 = 0 respectively, by small resolutions, i.e. +[Wi, Z] , +or +[Wi, δi] . +(5.5) +Let us denote the compact divisors by Si and the non-compact divisors by Da. We then +find from these resolutions the intersection matrix +Ga = +� +i +Si · Da · Da +(5.6) +– 33 – + +T3 +T3 with deformation [1, 2] +Figure 11. +CFDs: The intersection graph for T3 (left hand side) and the deformation of T3 +described by the partition [1, 2] (right). +The nodes are curves that are complete intersections +between � Si (i.e. the sum of all compact divisors) and the non-compact divisors. The green nodes +are −2 self-intersection curves, which correspond to roots of the flavor symmetry algebra, white are +−1 curves, which can be thought of as bifundamental matter. On the left we see the su(3)3 flavor +symmetry and the matter in the (3, 3, 1) etc, which enhances to e6. On the right the theory is rank +0. +to be precisely the adjacency matrix of the CFD for Tn: i.e. three su(n) Cartan matrices, +pairwise connected by −1 curves. We have shown examples in figures 11 and 12. +5.2 +Resolution of Deformations of Tn +Deformations of T3. +By including the deformations, some of the above resolutions get +obstructed. Lets consider the simplest case of T3, which itself is the rank 1 Seiberg theory +with flavor symmetry e6. After a single blowup [W1, W2, W3, Z] we get one compact divisor +δ1 = 0, and three A2 singularities. Resolving yields the CFD shown in figure 11 on the left +hand side. The representations are (3, 3, 1), and cyclic permutations, and thus we get the +known enhancement to e6 7, +(3, 3, 1) ⊕ (1, 3, 3) ⊕ (3, 1, 3) −→ +27 . +(5.7) +Adding the deformation results in W1W2W3 = Z(Z2 + W1), which does not allow for a big +resolution. There are small resolutions, along e.g. W1 = Z = 0, indicating that this is a +rank 0 theory. +Deformations of T4. +More interestingly we can start with T4. All deformations involving +a single edge and yielding a positive rank theory are shown in table 2. The deformation +that is associated to the partition [2, 12] along one edge is the hypersurface +W1W2W3 = Z2(Z2 + W1) . +(5.8) +7From the geometry we are also able to extract the flavor symmetry group [42, 98], which however will +not play a role in the present paper. +– 34 – + +Partitions +Rank +Free +Symmetry +Equation +Fig. +[14] +3 +0 +su(4)3 +W1W2W3 = Z4 +12 +[2, 12] +2 +0 +su(8) ⊕ su(2) +W1W2W3 = Z2(Z2 + W1) +12 +[22] +1 +0 +e7 +W1W2W3 = (Z2 + aW1)(Z2 + bW1) +12 +Table 2. The partition that defines the distribution of white dots in the GTP, the rank of the 5d +SCFT, the flavor symmetry algebra, as well as hypersurface equation for the deformations of T4. +The first resolution (5.3) results in +W1W2W3 = δ2Z4 + Z2W1 . +(5.9) +Continuing the blowup results in the intersection matrix between the sum of compact +divisors � +i Si and each of the non-compact ones +�� +i +Si +� +· Da · Db = +� +� +� +� +� +� +� +� +� +−1 1 +0 +0 +0 +0 +0 +0 +1 +0 +0 +0 +1 −1 0 +0 +0 +0 +0 +0 +0 +0 +0 +1 +0 +0 −2 1 +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +1 −1 1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 −2 0 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 −2 0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 −2 1 +0 +0 +0 +1 +0 +0 +0 +0 +0 +1 +1 −1 0 +0 +0 +0 +1 +0 +0 +0 +1 +1 +0 +0 −2 0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +0 −1 1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 −2 1 +0 +1 +0 +0 +0 +0 +1 +0 +0 +0 +1 −2 +� +� +� +� +� +� +� +� +� +ab +. +(5.10) +This is shown in figure 12, from which the manifest flavor symmetry algebra is read off +from the collection of −2 curves +su(4)2 ⊕ su(2) ⊕ u(1) . +(5.11) +The additional u(1) follows from the general rule on flavor symmetry algebras from CFDs +as laid out in [31]. The matter is in the representations, which combine naturally into the +representations of the enhanced symmetry algebra as follows +(4, 4, 1) ⊕ (6, 1, 1) ⊕ (1, 6, 1) ⊕ (4, 1, 2) ⊕ (1, 4, 2) +−→ +(28, 1) ⊕ (8, 2) , +(5.12) +where we identify the enhanced flavor symmetry algebra as +gUV = su(8) ⊕ su(2) . +(5.13) +Similarly for the partition [22], the manifest symmetry is su(4)2, while the actual +symmetry is e7. In the resolution, see figure 12 on the right hand side, where we see the +representation +(4, 4) ⊕ (4, 4) ⊕ 2 × (6, 1) ⊕ 2 × (1, 6) +−→ +56 . +(5.14) +These indeed arise from the branching of the 56 of e7 to su(4)2. +– 35 – + +T4 +T4 with deformation [12, 2] +T4 with deformation [22] +Figure 12. +CFDs: The intersection graph for T4 (left hand side) and the deformation of T4 +described by the partition [122] (middle) and deformation of T4 with partition [22]. The nodes are +curves that are complete intersections between � Si (i.e. the sum of all compact divisors) and the +non-compact divisors. The green nodes are −2 self-intersection curves, which correspond to roots of +the flavor symmetry algebra, white are −1 curves, which can be thought of as bifundamental matter. +On the left we see the su(4)3 flavor symmetry and the matter in the (4, 4, 1) etc representations. +In the middle, we see the manifest flavor symmetry su(4)2 ⊕ su(2) ⊕ u(1), but the matter shown +results in the enhancement to su(8) ⊕ u(1). On the right the flavor symmetry enhances to e7. +Partitions +Rank +Symmetry +Equation +Fig. +[15] +6 +su(5)3 +W1W2W3 = Z5 +13 +[2, 13] +5 +su(5)2 ⊕ su(3) ⊕ u(1) +W1W2W3 = Z3(Z2 + W1) +13 +[22, 1] +4 +su(5)2 ⊕ su(2) ⊕ u(1) +W1W2W3 = Z(Z2 + W1)2 +15 +[3, 12] +3 +su(10) ⊕ su(2) +W1W2W3 = Z2(Z3 + W1) +13 +[3, 2] +2 +su(10) +W1W2W3 = (Z2 + W1)(Z3 + W1) +14 +Table 3. +Deformations of the T5 model: the partition that defines the GTP, the rank of the +expected 5d SCFT, the flavor symmetry algebra, and the deformed hypersurface equation. +Deformations of T5. +Finally consider the T5 model with deformations added along a +single edge. These are summarized in table 3. +First we recompute the resolution of the undeformed T5 model, which is given in figure +13. The flavor symmetry algebra and the representation of the hypers is +gUV = su(5)3 : +(5, 5, 1) ⊕ (1, 5, 5) ⊕ (5, 1, 5) . +(5.15) +The CFD is shown in figure 13. Adding a single white dot results in a theory with flavor +algebra su(5)2 ⊕ su(3) ⊕ u(1), with the CFD shown in the middle in figure 13, which has +bifundamental matter consistent with these flavor symmetry algebras. +Adding two white dots along a single edge in the partition [3, 12] we obtain the right +hand figure 13. The representations under su(5)2 ⊕ su(2) are +(5, 5, 1) ⊕ (1, 5, 2) ⊕ (5, 1, 2) ⊕ (10, 1, 1) ⊕ (1, 10, 1) +−→ +(45, 1) ⊕ (10, 2) (5.16) +– 36 – + +T5 +T5 with deformation [13, 2] +T5 with deformation [12, 3] +Figure 13. CFDs: The intersection graph of −2 (green) and (−1) (white) curves, i.e. the CFD, +for T5 (LHS), the partition [2, 13] in the middle, and [3, 12] on the right hand side. +which is consistent with the flavor symmetry enhancement to +gUV = su(10) ⊕ su(2) . +(5.17) +Similarly for [3, 2] we computed the resolution and find the CFD shown in figure 14, which +shows the representations under su(5)2 to be +(5, 5) ⊕ (10, 1) ⊕ (1, 10) +−→ +45 , +(5.18) +which is consistent with the enhancement to su(10). Finally consider figure 15, where we +manifestly see the su(5) but the su(2) is decomposed into u(1). +For partition [22, 1], although the su(2) factor of the global symmetry is not directly +visible in the resolution, an educated guess allows to read the following representations of +su(5) ⊕ su(5) ⊕ su(2) on figure 15: +(5, 1, 1) ⊕ (1, 5, 1) ⊕ (10, 1, 2) ⊕ (5, 10, 2) ⊕ (5, 5, 1) . +(5.19) +Again, the flavor symmetry algebra is consistent with the one predicted from GTPs. +Acknowledgments +We would like to thank Cyril Closset for collaboration in early stages of this work. AB and +SSN thank Hendrik S¨uß for discussions of related questions. This work, in particular AC +and SSN, was supported and enabled by the Fondation Wiener-Anspach. This research +is further supported by IISN-Belgium (convention 4.4503.15). +AB is supported by the +ERC Consolidator Grant 772408-Stringlandscape, and by the LabEx ENS-ICFP: ANR- +10-LABX-0010/ANR-10-IDEX-0001-02 PSL*. SSN is supported in part by the “Simons +Collaboration on Special Holonomy in Geometry, Analysis and Physics” and the EPSRC +Open Fellowship EP/X01276X/1. +– 37 – + +T5 with deformation [2,3] +Figure 14. CFDs: The intersection graph for T5 with the deformation labeled by the partition +[2, 3]. We see the su(5)2 ⊕ u(1) and the matter in the (5, 5) ⊕ (10, 1) ⊕ (1, 10) which enhance into +45 of su(10). +T5 with deformation [1, 22] +Figure 15. CFDs: The intersection graph for T5 with the deformation labeled by the partition +[1, 22]. +A +Basic algebraic notions for sln +This appendix gathers a few elementary algebraic concepts needed in the bulk of the paper. +In the following, we take g = sln(C), which we represent as n × n complex matrices with +vanishing trace, and we pick the diagonal matrices for the Cartan subalgebra h. +Nilpotent Orbits and Triples. +Let e be a nilpotent element of g. By the Jacobson- +Morozov theorem, one can construct an sl2 triple (e, f, h), i.e. a triple of elements of g with +h ∈ h satisfying the commutation relations +[e, f] = h , +[h, e] = 2e , +[h, f] = −2f . +(A.1) +More precisely, there exists an embedding +ρ : sl2 −→ g , +(A.2) +– 38 – + +such that ρ(e) defines a nilpotent element of g. In our case, nilpotent orbits are charac- +terized by partitions of n. For the partition λ = (λ1, . . . , λr), there is a canonical triple, +where e is in the Jordan form specified by λ, h is diagonal and f is lower diagonal, defined +as follows. Consider first the maximal orbit, λ = (n). In this case we define the canonical +triple e = Jn, h = Hn and f = ˜Jn where +(Jn)i,j = δi+1,j , +(Hn)i,j = δi,j(n + 1 − 2i) , +( ˜Jn)i,j = δi−1,jj(n − j) . +(A.3) +Then for any partition λ the canonical triple is the block diagonal +e = Diag(Jλi) , +f = Diag( ˜Jλi) , +h = Diag(Hλi) . +(A.4) +Slodowy Slices. +Given a triple (e, f, h), one constructs the space +Se = e + gf , +(A.5) +where gf is the centralizer of f in g. This is called the Slodowy slice transverse to e. Note +that this should not be confused with the nilpotent Slodowy slice, which is the intersection +of the Slodowy slice with the nilpotent cone. +When (e, f, h) is the canonical nilpotent +element (A.4) associated to partition λ, we call Sλ the Slodowy slice. +In order to construct explicitly Sλ, we first need the set of matrices which commute +with ˜Jn. These are the matrices S(a1, . . . , an) with a1, . . . , an ∈ C, defined by8 +(S(a1, . . . , an))ij := +n−1 +� +k=0 +ak+1δi−k,j +i−1 +� +l=j +l(n − l) . +(A.7) +Then the centralizer gf is a set of block matrices of sizes λi × λj, where the block (i, j) +depends on min(λi, λj) parameters. We will not need its explicit form here. We only need +the form of the diagonal blocks (i = j), which are of the form +S(a(i) +1 , . . . , a(i) +λi ) . +(A.8) +Using this, we can compute the dimension of the Slodowy slices, which is +dim Sλ = −1 + +� +1≤i,j,≤r +min(λi, λj) = −(n + 1) + 2 +r +� +i=1 +iλi +(A.9) +and +dim Sλ ∩ N = dim Sλ − (n − 1) = −2n + 2 +r +� +i=1 +iλi . +(A.10) +8The matrices S(a1, . . . , an) for low values of n are: +S(a1, a2) = +� +a1 0 +a2 a1 +� +, +S(a1, a2, a3) = +� +� +� +a1 +0 +0 +2a2 a1 +0 +4a3 2a2 a1 +� +� +� , +S(a1, a2, a3, a4) = +� +� +� +� +� +a1 +0 +0 +0 +3a2 +a1 +0 +0 +12a3 4a2 +a1 +0 +36a4 12a3 3a2 a1 +� +� +� +� +� . +(A.6) +– 39 – + +The dimension of the nilpotent cone N is n(n − 1), and therefore we can deduce that the +dimension of the nilpotent orbit of e is +dim Oλ = n(n + 1) − 2 +r +� +i=1 +iλi , +(A.11) +which matches known results. +Levi subalgebras and Slodowy slices. +A Borel subalgebra b of g is a maximal +solvable subalgebra. +The standard choice, which we make, is to pick for b the upper +triangular matrices. The simple roots αi can be indexed by i ∈ I := {1, . . . , n − 1}, and +to every subset Θ of I one can associate a parabolic subalgebra pΘ of g containing b. This +parabolic subalgebra decomposes as a direct sum +pΘ = lΘ ⊕ nΘ +(A.12) +where lΘ is the Levi subalgebra and nΘ is the nilradical of pΘ. +Let λ = (λ1, . . . , λr) be a partition of n. We associate to this partition the set +Θλ = I − {λ1, λ1 + λ2, . . . , λ1 + · · · + λr−1} . +(A.13) +This way, one can construct the corresponding Levi subalgebra lλ := lΘλ. We then intro- +duce the intersection +S0 +λ := Sλ ∩ lλ . +(A.14) +With out choices, lλ is simply the algebra of block diagonal matrices, with blocks of +respective sizes λ1, . . . , λr, and S0 +λ is the set of traceless matrices which are block diagonal, +with diagonal blocks Jλi +S(a1, a2, . . . , aλi). The dimension is dim S0 +λ = n−1, independent +of λ. +Companion matrix. +It is easy to check that the matrix Jn + S(0, a2, . . . , an) can be +conjugated to a matrix of the form +C(b2, . . . , bn) := +� +� +� +� +� +� +� +� +0 +1 +0 +1 +... ... ... +0 +1 +(−)n−1bn (−)n−2bn−1 +· · · +−b2 0 +� +� +� +� +� +� +� +� +(A.15) +where the bi are known functions of the ai. Note that the change of basis depends explicitly +on the ai. A matrix in the form (A.15) is called a companion matrix. It has the convenient +property that its characteristic polynomial (evaluated at −z) is +det(z1n + C) = zn + +n +� +i=2 +bizn−i . +(A.16) +Any matrix in S0 +λ can then be conjugated to a block diagonal matrix with blocks of the +form C(b2, . . . , bλi). +– 40 – + +Cokernel of ad(e). +Consider a finite dimensional representation ρ : sl(2) → V of sl(2). +One can decompose V into irreducible representations Vi of dimensions ni. In each irrep, +the image of ρ(e) has codimension 1, and the cokernel is spanned by the weight space of +lowest weight, which by definition is precisely the kernel of ρ(f). Therefore in the Lie +algebra g seen as an sl(2) representation defined by a triple (e, f, h), the cokernel of ad(e) +is gf. +References +[1] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string +dynamics, Phys. Lett. B 388 (1996) 753–760, [hep-th/9608111]. +[2] D. R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric +field theories, Nucl. Phys. B 483 (1997) 229–247, [hep-th/9609070]. +[3] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. +Phys. B 504 (1997) 239–271, [hep-th/9704170]. +[4] O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories +and grid diagrams, JHEP 01 (1998) 002, [hep-th/9710116]. +[5] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and +five-dimensional E(n) field theories, JHEP 03 (1999) 006, [hep-th/9902179]. +[6] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) +163, [1507.03860]. +[7] G. Zafrir, Brane webs, 5d gauge theories and 6d N = (1, 0) SCFT’s, JHEP 12 (2015) 157, +[1509.02016]. +[8] G. Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109, [1512.08114]. +[9] K. Ohmori and H. Shimizu, S1/T 2 compactifications of 6d N = (1, 0) theories and brane +webs, JHEP 03 (2016) 024, [1509.03195]. +[10] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, JHEP 11 +(2017) 041, [1707.07181]. +[11] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d N = 1 G2 gauge theories, +JHEP 03 (2018) 125, [1801.03916]. +[12] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, +JHEP 12 (2018) 016, [1806.10569]. +[13] C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: +an M-theory/type IIA perspective, SciPost Phys. 6 (2019) 052, [1812.10451]. +[14] N. C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) +91–118, [hep-th/9711013]. +[15] K. A. Intriligator, D. R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge +theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56–100, +[hep-th/9702198]. +[16] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N=2 superconformal field +theories, JHEP 09 (2009) 052, [0906.0359]. +– 41 – + +[17] S. A. Cherkis, Phases of Five-dimensional Theories, Monopole Walls, and Melting Crystals, +JHEP 06 (2014) 027, [1402.7117]. +[18] D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional N = 1 +SCFT, JHEP 06 (2017) 134, [1704.00799]. +[19] M. Del Zotto, J. J. Heckman and D. R. Morrison, 6D SCFTs and Phases of 5D Theories, +JHEP 09 (2017) 147, [1703.02981]. +[20] S. Alexandrov, S. Banerjee and P. Longhi, Rigid limit for hypermultiplets and +five-dimensional gauge theories, JHEP 01 (2018) 156, [1710.10665]. +[21] P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single +Gauge Node, 1705.05836. +[22] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, +JHEP 04 (2018) 103, [1801.04036]. +[23] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Rank one, JHEP 07 +(2019) 178, [1809.01650]. +[24] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Arbitrary rank, JHEP +10 (2019) 282, [1811.10616]. +[25] F. Apruzzi, L. Lin and C. Mayrhofer, Phases of 5d SCFTs from M-/F-theory on Non-Flat +Fibrations, JHEP 05 (2019) 187, [1811.12400]. +[26] F. Apruzzi, C. Lawrie, L. Lin, S. Schafer-Nameki and Y.-N. Wang, 5d Superconformal Field +Theories and Graphs, Phys. Lett. B 800 (2020) 135077, [1906.11820]. +[27] F. Apruzzi, C. Lawrie, L. Lin, S. Schafer-Nameki and Y.-N. Wang, Fibers add Flavor, Part I: +Classification of 5d SCFTs, Flavor Symmetries and BPS States, JHEP 11 (2019) 068, +[1907.05404]. +[28] F. Apruzzi, C. Lawrie, L. Lin, S. Schafer-Nameki and Y.-N. Wang, Fibers add Flavor, Part +II: 5d SCFTs, Gauge Theories, and Dualities, JHEP 03 (2020) 052, [1909.09128]. +[29] L. Bhardwaj, P. Jefferson, H.-C. Kim, H.-C. Tarazi and C. Vafa, Twisted Circle +Compactifications of 6d SCFTs, JHEP 12 (2020) 151, [1909.11666]. +[30] L. Bhardwaj, Do all 5d SCFTs descend from 6d SCFTs?, JHEP 04 (2021) 085, +[1912.00025]. +[31] F. Apruzzi, S. Schafer-Nameki and Y.-N. Wang, 5d SCFTs from Decoupling and Gluing, +JHEP 08 (2020) 153, [1912.04264]. +[32] C. Closset, S. Schafer-Nameki and Y.-N. Wang, Coulomb and Higgs Branches from +Canonical Singularities: Part 0, JHEP 02 (2021) 003, [2007.15600]. +[33] C. Closset, S. Giacomelli, S. Schafer-Nameki and Y.-N. Wang, 5d and 4d SCFTs: Canonical +Singularities, Trinions and S-Dualities, JHEP 05 (2021) 274, [2012.12827]. +[34] C. Closset, S. Schafer-Nameki and Y.-N. Wang, Coulomb and Higgs branches from canonical +singularities. Part I. Hypersurfaces with smooth Calabi-Yau resolutions, JHEP 04 (2022) +061, [2111.13564]. +[35] L. Bhardwaj and G. Zafrir, Classification of 5d N = 1 gauge theories, JHEP 12 (2020) 099, +[2003.04333]. +[36] L. Bhardwaj, More 5d KK theories, JHEP 03 (2021) 054, [2005.01722]. +– 42 – + +[37] L. Bhardwaj, Flavor symmetry of 5d SCFTs. Part I. General setup, JHEP 09 (2021) 186, +[2010.13230]. +[38] L. Bhardwaj, Flavor symmetry of 5d SCFTs. Part II. Applications, JHEP 04 (2021) 221, +[2010.13235]. +[39] D. R. Morrison, S. Schafer-Nameki and B. Willett, Higher-Form Symmetries in 5d, JHEP +09 (2020) 024, [2005.12296]. +[40] F. Albertini, M. Del Zotto, I. n. Garc´ıa Etxebarria and S. S. Hosseini, Higher Form +Symmetries and M-theory, JHEP 12 (2020) 203, [2005.12831]. +[41] L. Bhardwaj and S. Sch¨afer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP +02 (2021) 159, [2008.09600]. +[42] F. Apruzzi, L. Bhardwaj, J. Oh and S. Schafer-Nameki, The Global Form of Flavor +Symmetries and 2-Group Symmetries in 5d SCFTs, SciPost Phys. 13 (2022) 024, +[2105.08724]. +[43] M. Del Zotto, J. J. Heckman, S. N. Meynet, R. Moscrop and H. Y. Zhang, Higher +symmetries of 5D orbifold SCFTs, Phys. Rev. D 106 (2022) 046010, [2201.08372]. +[44] M. Del Zotto, I. n. Garc´ıa Etxebarria and S. Schafer-Nameki, 2-Group Symmetries and +M-Theory, SciPost Phys. 13 (2022) 105, [2203.10097]. +[45] A. Collinucci and R. Valandro, The role of U(1)’s in 5d theories, Higgs branches, and +geometry, JHEP 10 (2020) 178, [2006.15464]. +[46] A. Collinucci, M. De Marco, A. Sangiovanni and R. Valandro, Higgs branches of 5d rank-zero +theories from geometry, JHEP 10 (2021) 018, [2105.12177]. +[47] O. Bergman, D. Rodr´ıguez-G´omez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement, +and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112, [1311.4199]. +[48] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type +minimal conformal matter, JHEP 08 (2015) 097, [1505.04439]. +[49] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs +Branch at Infinite Coupling, JHEP 04 (2017) 042, [1505.06302]. +[50] K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver +gauge theories, JHEP 07 (2015) 167, [1505.04743]. +[51] D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d N = 1 theories, JHEP 01 (2017) +019, [1506.03871]. +[52] G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch +at infinite coupling, JHEP 07 (2018) 061, [1712.06604]. +[53] S. Cabrera, A. Hanany and F. Yagi, Tropical Geometry and Five Dimensional Higgs +Branches at Infinite Coupling, JHEP 01 (2019) 068, [1810.01379]. +[54] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany and Z. Zhong, Brane Webs and +Magnetic Quivers for SQCD, JHEP 03 (2020) 176, [1909.00667]. +[55] M. van Beest, A. Bourget, J. Eckhard and S. Schafer-Nameki, (Symplectic) Leaves and (5d +Higgs) Branches in the Poly(go)nesian Tropical Rain Forest, JHEP 11 (2020) 124, +[2008.05577]. +– 43 – + +[56] M. Van Beest, A. Bourget, J. Eckhard and S. Schafer-Nameki, (5d RG-flow) Trees in the +Tropical Rain Forest, JHEP 03 (2021) 241, [2011.07033]. +[57] A. Bourget, J. F. Grimminger, A. Hanany, M. Sperling, G. Zafrir and Z. Zhong, Magnetic +quivers for rank 1 theories, JHEP 09 (2020) 189, [2006.16994]. +[58] S. Giacomelli, M. Martone, Y. Tachikawa and G. Zafrir, More on N = 2 S-folds, JHEP 01 +(2021) 054, [2010.03943]. +[59] A. Bourget, S. Giacomelli, J. F. Grimminger, A. Hanany, M. Sperling and Z. Zhong, S-fold +magnetic quivers, JHEP 02 (2021) 054, [2010.05889]. +[60] M. Akhond and F. Carta, Magnetic quivers from brane webs with O7+-planes, JHEP 10 +(2021) 014, [2107.09077]. +[61] M. van Beest and S. Giacomelli, Connecting 5d Higgs branches via Fayet-Iliopoulos +deformations, JHEP 12 (2021) 202, [2110.02872]. +[62] A. Bourget, J. F. Grimminger, M. Martone and G. Zafrir, Magnetic quivers for rank 2 +theories, JHEP 03 (2022) 208, [2110.11365]. +[63] A. Bourget, J. F. Grimminger, A. Hanany, R. Kalveks and Z. Zhong, Higgs branches of +U/SU quivers via brane locking, JHEP 08 (2022) 061, [2111.04745]. +[64] A. Bourget, J. F. Grimminger, A. Hanany, M. Sperling and Z. Zhong, Magnetic Quivers +from Brane Webs with O5 Planes, JHEP 07 (2020) 204, [2004.04082]. +[65] M. Akhond, F. Carta, S. Dwivedi, H. Hayashi, S.-S. Kim and F. Yagi, Five-brane webs, Higgs +branches and unitary/orthosymplectic magnetic quivers, JHEP 12 (2020) 164, [2008.01027]. +[66] M. Sperling and Z. Zhong, Balanced B and D-type orthosymplectic quivers - magnetic quivers +for product theories, JHEP 04 (2022) 145, [2111.00026]. +[67] O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141, [1410.2806]. +[68] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams, +JHEP 05 (2019) 203, [1509.03300]. +[69] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 antisymmetric matter on 5-brane webs, +JHEP 05 (2019) 133, [1902.04754]. +[70] C. F. Uhlemann, Wilson loops in 5d long quiver gauge theories, JHEP 09 (2020) 145, +[2006.01142]. +[71] O. Bergman and D. Rodr´ıguez-G´omez, The Cat’s Cradle: deforming the higher rank E1 and +˜E1 theories, JHEP 02 (2021) 122, [2011.05125]. +[72] T. Gomez and E. R. Sharpe, D-branes and scheme theory, hep-th/0008150. +[73] R. Donagi and M. Wijnholt, Gluing Branes, I, JHEP 05 (2013) 068, [1104.2610]. +[74] S. Cecotti, C. Cordova, J. J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 +(2011) 030, [1010.5780]. +[75] J. J. Heckman, T. Rudelius and A. Tomasiello, 6D RG Flows and Nilpotent Hierarchies, +JHEP 07 (2016) 082, [1601.04078]. +[76] M. Del Zotto, J. J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 +(2015) 054, [1407.6359]. +[77] A. Beauville, Symplectic singularities, arXiv preprint math/9903070 (1999) . +– 44 – + +[78] D. Kaledin, Symplectic singularities from the poisson point of view, . +[79] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, M. Sperling, A. Zajac and Z. Zhong, +The Higgs mechanism — Hasse diagrams for symplectic singularities, JHEP 01 (2020) 157, +[1908.04245]. +[80] J. Eckhard, S. Schafer-Nameki and Y.-N. Wang, Trifectas for TN in 5d, JHEP 07 (2020) +199, [2004.15007]. +[81] M. R. Douglas, D-branes, categories and N=1 supersymmetry, J. Math. Phys. 42 (2001) +2818–2843, [hep-th/0011017]. +[82] E. Sharpe, Lectures on D-branes and sheaves, 7, 2003. hep-th/0307245. +[83] A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161, +[1410.4178]. +[84] R. P. Stanley, Smith normal form in combinatorics, Journal of Combinatorial Theory, Series +A 144 (2016) 476–495. +[85] C. Beasley, J. J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP +01 (2009) 058, [0802.3391]. +[86] L. B. Anderson, J. J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080, +[1310.1931]. +[87] L. B. Anderson, J. J. Heckman, S. Katz and L. P. Schaposnik, T-Branes at the Limits of +Geometry, JHEP 10 (2017) 058, [1702.06137]. +[88] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras. +Routledge, 2017. +[89] H. Kraft and C. Procesi, Minimal singularities ingl n, Inventiones mathematicae 62 (1980) +503–515. +[90] S. Cabrera and A. Hanany, Branes and the Kraft-Procesi Transition, JHEP 11 (2016) 175, +[1609.07798]. +[91] S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04 +(2018) 127, [1711.02378]. +[92] S. Cabrera and A. Hanany, Quiver Subtractions, JHEP 09 (2018) 008, [1803.11205]. +[93] A. Bourget, J. F. Grimminger, A. Hanany, M. Sperling and Z. Zhong, Branes, Quivers, and +the Affine Grassmannian, 2102.06190. +[94] D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N=4 Super Yang-Mills +Theory, J. Statist. Phys. 135 (2009) 789–855, [0804.2902]. +[95] A. Hanany and R. Kalveks, Quiver Theories for Moduli Spaces of Classical Group Nilpotent +Orbits, JHEP 06 (2016) 130, [1601.04020]. +[96] K. Altmann, One-parameter families containing three-dimensional toric gorenstein +singularities, Explicit birational geometry of (2000) 21–50. +[97] C. Lawrie and S. Schafer-Nameki, The Tate Form on Steroids: Resolution and Higher +Codimension Fibers, JHEP 04 (2013) 061, [1212.2949]. +[98] L. Bhardwaj, M. Bullimore, A. E. V. Ferrari and S. Schafer-Nameki, Generalized Symmetries +and Anomalies of 3d N=4 SCFTs, 2301.02249. +– 45 – + diff --git a/pNE4T4oBgHgl3EQfvQ0x/content/tmp_files/load_file.txt b/pNE4T4oBgHgl3EQfvQ0x/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0fe408a367f5d49f9d9dd19932b5199fc023399b --- /dev/null +++ b/pNE4T4oBgHgl3EQfvQ0x/content/tmp_files/load_file.txt @@ -0,0 +1,1820 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf,len=1819 +page_content='Generalized Toric Polygons, T-branes, and 5d SCFTs Antoine Bourget,1 Andr´es Collinucci,2 Sakura Sch¨afer-Nameki3 1Universit´e Paris-Saclay, CNRS, CEA, Institut de physique th´eorique, 91191, Gif-sur-Yvette, France 1Laboratoire de Physique de l’´Ecole Normale Sup´erieure, PSL University, 24 rue Lhomond, 75005 Paris, France 2Service de Physique Th´eorique et Math´ematique, Universit´e Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 231, B-1050 Bruxelles, Belgium 3Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, United Kingdom Abstract: 5d Superconformal Field Theories (SCFTs) are intrinsically strongly-coupled UV fixed points, whose realization hinges on string theoretic methods: they can be con- structed by compactifying M-theory on local Calabi-Yau threefold singularities or alterna- tively from the world-volume of 5-brane-webs in type IIB string theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' There is a cor- respondence between 5-brane-webs and toric Calabi-Yau threefolds, however this breaks down when multiple 5-branes are allowed to end on a single 7-brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In this paper, we extend this connection and provide a geometric realization of brane configurations includ- ing 7-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A web with 7-branes defines a so-called generalized toric polygon (GTP), which corresponds to combinatorial data that is obtained by removing vertices along exter- nal edges of a toric polygon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We identify the geometries associated to GTPs as non-toric deformations of toric Calabi-Yau threefolds and provide a precise, algebraic description of the geometry, when 7-branes are introduced along a single edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The key ingredients in our analysis are T-branes in a type IIA frame, which includes D6-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We show that performing Hanany-Witten moves for the 7-branes on the type IIB side corresponds to switching on semisimple vacuum expectation values on the worldvolume of D6-branes, which in turn uplifts to complex structure deformations of the Calabi-Yau geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We test the proposal by computing the crepant resolutions of the deformed geometries, thereby checking consistency with the expected properties of the SCFTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='05239v1 [hep-th] 12 Jan 2023 Contents 1 Introduction and Summary 1 2 T-branes and Kraft-Procesi Transitions 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 T-brane Basics 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Kraft-Procesi Transitions 10 3 Example: GTPs for Tn and Related Models 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 The Setup 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Tachyon Condensation Picture 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3 Example: T2 17 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4 General Case: Tn 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5 Interpretation in terms of Generalized Toric Polygons 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6 Hanany-Witten Moves 24 4 General Discussion 28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 White Dots along a Single Edge 28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Rectangular Box 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3 Generic Triangle 31 5 Testing the Proposal: Resolution of Singularities 33 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 Crepant Resolution of Tn 33 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Resolution of Deformations of Tn 34 A Basic algebraic notions for sln 38 1 Introduction and Summary The existence and characterization of interacting superconformal field theories in five space- time dimensions (5d SCFTs) is a remarkable prediction of string theory [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Two approaches have emerged that allow the construction of 5d SCFTs within the framework of string the- ory: the low energy limit of M-theory on R1,4 times a local Calabi-Yau threefold [2], and the world-volume of a brane-web in type IIB string theory [3–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The properties of the theory are encoded in the geometry of the threefold in the first case, and in the charges of the external (p, q)-5-branes in the second case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A middle ground is the type IIA realization, which involves both geometry and branes [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' When the CY is toric, there is a precise dictionary between the brane-web and M-theory realization: the charges of the external (p, q)-5-branes can be encoded into an integral polygon, which in turn can be seen as the intersection of a toric three-dimensional fan in – 1 – ←→ Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Example of toric polygon (left) and dual brane-web (right) in which lines denote 5-branes and circles denote 7-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The 7-branes on which stacks of 5-branes are spaced to emphasize how the 5-brane end, here exactly one 5-brane ends on each 7-brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This geometry encodes a 5d SCFT of rank 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R3 x,y,z with the plane {z = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The toric threefold X constructed from this fan is such that the 5d SCFT obtained from M-theory on X coincides with that on the world-volume of the brane-web [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' An example is shown in figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A systematic geometric exploration and classification of 5d SCFTs was started in [15–38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These studies reveal many detailed properties of the 5d SCFTs, such as their UV enhanced flavor symmetry, their Coulomb branch (modeled in terms of the crepant resolutions of the Calabi-Yau singularities), but also refined information such as their generalized symmetries [39–44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' What remains somewhat obscure in this framework is the derivation of the full quantum corrected Higgs branch – though some progress in the context of isolated hypersurface Calabi-Yau singularities can be made [32–34, 45, 46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Not surprisingly, these explorations reveal that only a small class of 5d SCFTs have a realization in terms of toric Calabi-Yau threefolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' If such a toric realization exists, then the geometry of the moduli space of supersymmetric vacua, in particular the Higgs branch (but also Coulomb branch and mixed branches) can be computed exactly – irrespective of whether the singularity is isolated or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The key tool is the connection between the toric geometries and brane-webs, where in the latter these moduli space questions have been determined in [47–53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In this paper, we report progress in generalizing these methods to a larger class of 5d SCFTs, which have not necessarily a toric description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In [16], a generalization of toric polygons was introduced: a toric Calabi-Yau threefold can be described in terms of a convex polygon in a square integral lattice embedded into a 2-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The polygon associated to a toric geometry has the property that all lattice points along the edges are part of the toric data (corresponding to vertices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We will refer to these as black dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Generalizing this, [16] proposed to also allow some vertices along the edges of the polygon to be unoccupied, which we will refer to as white dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the dual description, allowing such white dots corresponds in the web to several 5-branes that end on the same 7-brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For a stack of n 5-branes, the boundary condition is encoded in an integer partition λ of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Figure 2 gives an example of a configuration that translates to the [3, 2, 2, 1] partition of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This combinatorial data will be referred to as Generalized Toric Polygons (GTP), and generalizes the standard toric description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In this framework, the standard toric case considered in the previous paragraph corresponds to a boundary condition where for each charge (p, q), there is an equal number of (p, q)-5-branes and – 2 – Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Correspondence between white dots on GTPs (left) and boundary conditions of (p, q) 5-branes on (p, q) 7-branes (middle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Here we have (p, q) = (1, 0) and the partition λ = [3, 2, 2, 1] of n = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' When we draw brane-webs we usually ignore the detached 7-branes and separate the 7-branes on a stack of 5-branes to show the boundary conditions (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (p, q)-7-branes, with one 5-brane ending on one 7-brane, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' the partition is λ = [1n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This generalization and its implications for characterizing the moduli space of supersymmetric vacua using magnetic quivers were explored in great detail in [32, 45, 53–63].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that O5 orientifold planes can also be included in the webs [8, 64–66], but we do not consider this possibility here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Another way of interpreting GTPs is as non-convex would-be toric polygons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These make sense when certain parameters, which map out the extended Coulomb branch (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' gauge couplings and masses of hypers), are turned on, but the non-convexity prevents one from considering the SCFT limit (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' from passing to the origin of the extended Coulomb branch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' From the dual brane-web point of view, this is resolved using a combination of Hanany-Witten moves and 7-brane monodromies, and this plays a prominent role in the brane-web manipulations of [6, 8, 9, 11, 64, 67–71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Importantly, not all non-convex polygons can be transformed into GTPs in this way, and it is in general a hard question to decide whether a given polygon can be transformed in this way or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For this reason, it is simpler to take the GTPs as our starting point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' GTPs can be thought of as generalizations of toric geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, unlike the precise dictionary between the combinatorial data of a toric polygon and the algebraic geometry of the corresponding Calabi-Yau, no such dictionary exists thus far for GTPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The main purpose of this paper is to develop initial steps in order to close this gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' See figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In particular, in the following, we will determine the algebraic geometric description of GTPs, which have white dots along a single edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Summary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We now give a schematic summary of the main ideas involved in our pro- posal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider a length n edge of a toric polygon, which we can assume to have vertical orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the brane-web, this corresponds to n parallel semi-infinite D5-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the associated toric threefold, there is an asymptotic region that approaches C2/Zn×C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Indeed after a transverse T-duality, the D5-branes become D6-branes, which uplift to n-centered – 3 – Convex Integral Polygon Toric CY3 Brane-web 5d SCFT Toric Geometry Dual M-theory Worldvolume GTP Non-Toric CY3 Brane-web with 7-brane b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 5d SCFT Dual M-theory Worldvolume Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Summary of the main question addressed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the left hand side, one starts from a convex polygon with integral vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It defines a 5d SCFT in two distinct ways: from M-theory on the associated toric CY, and from the dual brane-web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' If on the contrary, as shown on the right hand side, the polygon is not convex, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' is a generalized toric polygon (GTP), the toric description is lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However there still exists a dual brane-web, which has non-trivial boundary conditions on 7-branes, and thus a 5d SCFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The central goal of this paper is to develop a map (the dashed line in the diagram) from GTPs to (non-toric) geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Taub-NUT spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' At strong string coupling gs → ∞, this becomes C2/Zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Denoting two longitudinal directions as the w-complex plane, we arrive at a local C2/Zn × C patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' M-theory on this geometry gives us N = 1 7d SYM with SU(n) gauge group, and we can represent it as the singular hypersurface in C4 given by uv = zn (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1) with the w-coordinate tagging along.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The three adjoint scalars φi=1,2,3 on the worldvolume of the D6-branes can be grouped into a complex scalar Φ = φ1+iφ2, and the remaining real one ϕ = φ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the M-theory uplift, Φ encodes algebraic deformations to the hypersurface, and ϕ encodes K¨ahler volumes of resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This grouping is of course arbitrary, and correlates with the arbitrariness of choosing a complex structure on the noncompact K3 in M-theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Having seen this, we can recast the hypersurface as a spectral equation for the com- plexified adjoint Higgs field uv = det(1n z − Φ(w)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2) Switching on constant vevs along the Cartan subalgebra of su(n) will deform the equation and unfold the singularity into a deformed K3 times the w-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, switching on w- dependent vevs will turn this into a bona fide noncompact CY threefold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The geometry will be more or less desingularized, depending on the Casimir invariants of Φ that are switched on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The claim of this paper, is that white dots correspond to nilpotent elements in Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note, that switching on a nilpotent Φ means that the spectral equation remains unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In other words, the D6-branes do not actually move, and the uplifted geometry underlying the M-theory construction remains undeformed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This phenomenon is known as a T-brane [72–74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It is a non-Abelian bound state of branes, whereby the worldvolume gauge group is (partially) Higgsed, but the geometry of the branes is unaltered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, the physics is of course impacted by this T-brane, as we shall see momentarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 4 – Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' White dot and brane transition for a length 2 edge of a toric polygon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' To give a simple example, take a vertical edge with n + 1 dots, and replace the second black dot from the top with a white dot as shown in figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In terms of the 5-branes, this corresponds to forming a bound state between the two uppermost branes, and sending a suspended 5-brane segment to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' From the D6-brane viewpoint, the bound state is understood as switching on a vev for Φ along the minimal nilpotent orbit of su(n) ⟨Φ⟩ = � � � 0 1 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) This binds the first two D6-branes, and partially Higgses su(n) → s (u(1) ⊕ u(n − 2)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) More generally, we said above that a distribution of white dots on the edge is encoded in a partition λ of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Our claim is that each such partition λ of n translates into a vev for Φ along an element in the nilpotent orbit Oλ of su(n) that is uniquely characterized by λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The unbroken 7d gauge group on the D6-branes, which will correspond to a subgroup of the total 5d flavor group, is then broken to the commutant of this nilpotent element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' So far, our discussion parallels the picture developed several years ago in [75, 76], in the 6d SCFT context, whereby geometric data (about elliptic fibrations) was supplemented by nilpotent orbits, which would partially Higgs an original theory and trigger various RG flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' At this point, the reader might object that simply claiming that a white dot translates to a nilpotent vev is not very interesting or verifiable, since that data will be invisible to the geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' While this is true, from the 5-brane-web perspective we know that a white dot opens up the possibility to perform Hanany-Witten type transitions that were not possible in the presence of black dots only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For instance, the following GTPs are related by such a transition where one of the three leftmost 7-branes is moved to the right: ↔ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) – 5 – Such HW type transitions provide non-trivial tests of our proposal: HW moves correspond to changing the positions of branes, which in turn will impact the dual geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We identify the subset of complex structure deformations that are associated to these nilpotent vevs of Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' They are realized in terms of vevs of Φ along a slice transverse to the nilpotent vev (inside the full Lie algebra, not the nilpotent cone), known as the Slodowy slice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' By switching on such a vev, a subset of possible Casimir invariants will become non-zero, leading to a deformation of the geometry, which is given by the spectral equation of the the Higgs field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For instance, in the simple case of su(2), we take the initial nilpotent vev along the minimal orbit Φ0 = � 0 1 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) The M-theory uplifted geometry corresponds to C2/Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The Slodowy slice is given by matrices of the form Φ = � 0 1 a 0 � , with a ∈ C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7) The characteristic polynomial of this Higgs field is now non-trivial, and the M-theory geometry deforms as follows uv = z2 −→ uv = z2 + a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8) The present paper elucidates this for all GTPs, which allow for a IIA-description, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' whose white dots are along a single edge of the GTP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Dually, all 7-branes are parallel, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' mutually local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The toy-model where Slodowy slices appear is generalized in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Higgs branches are symplectic singularities [77], to which one can associate a Hasse diagram of symplectic leaves [78–80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In terms of this diagram, the T-brane data select a new, lowest leaf of the foliation, and the transverse slice to that leaf is the total space of a fibration over the complex structure moduli space of the deformed Calabi-Yau threefold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' See for instance figure 5, where the deformations of the T4 5d SCFT, realized on the threefold W1W2W3 = Z4, are displayed, along with the effect on the Higgs branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In future work we will aim to generalize this to arbitrary GTPs, with mutually non- local 7-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We conjecture that the above picture of transverse slices in the Higgs branch extends to this situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Eventually we hope to develop a succinct description of the algebraic geometry of GTPs, as they exist for toric polygons: A precise map between the combinatorial data and the basic algebraic geometry, such as the set of divisors, curves, intersection numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Plan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the rest of the paper, we spell out the details of the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' An essential tool is the T-brane, which is reviewed in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The bulk of the construction is then carried out explicitly in a representative example – that of the Tn SCFTs – in section 3, before generalizing to any GTP with white dots on a single edge in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' As a first check, we reproduce there the transition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Finally, in section 5 we provide consistency checks, by computing the resolutions of the deformed threefold geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This shows – 6 – a3 a1 a7 e6 e7 α ̸= 0 a1 a7 e6 e7 α ̸= 0 β ̸= 0 a7 e6 e7 W1W2W3 = Z4 W1W2W3 = Z2(Z2 + αW1) W1W2W3 = (Z2 + αW1)(Z2 + βW1) Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Three GTPs are shown on the first line, and below the algebraic equations characterizing the associated Calabi-Yau threefold geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The model on the left is a toric threefold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The other two, non-toric GTPs, are characterized in terms of deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Each of these geometries defines a 5d SCFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The Hasse diagrams of symplectic singularities for the Higgs branch of these 5d SCFTs are shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The vertices represent symplectic leaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For transverse slices we use a standard notation where the closure of the minimal nilpotent orbit of a simple Lie algebra is denoted using the lowercase form of the name of the algebra, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' e7 for algebra E7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In red are drawn the effects of the deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' agreement of the UV flavor symmetry of the SCFT with the one expected from the brane- web (and resulting Higgs branch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 2 T-branes and Kraft-Procesi Transitions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 T-brane Basics Consider n parallel D7-branes in type IIB string theory on flat space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The transverse space is the complex plane with coordinate z, which has coordinate ring R = C[z].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We call z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , zn the positions of the n branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The stack of branes can be described as a D9/D9-brane tachyon condensate, which is defined mathematically as the cokernel of the tachyon map R⊕n R⊕n , T (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1) where T = Diag(z − z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , z − zn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This means that the D7-branes correspond to the sheaf1 S in the short exact sequence 0 R⊕n R⊕n S 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' T (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2) The matter on the system of D7-branes is described by fluctuations of the tachyon, δT, which are defined up to linearized gauge transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This corresponds to a self-Ext1 1We will use the formulation of branes modulo tachyon condensation in terms of the derived category of coherent sheaves throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Some introduction to this topic can be found in [81–83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 7 – computation for the complex (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' morphisms between the complex and the shifted version of that same complex, R⊕n R⊕n R⊕n R⊕n αL δT T αR T (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) up to homotopies, δT ∼ δT − T · αL + αR · T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) Concretely, this means δT is valued in the quotient ring of n×n matrices Matn(R) modulo the two matrix ideals in R generated by left and right multiplication by T, δT ∈ Matn(R)/(T·, ·T) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) Note also that the tachyon map T can be expressed as a matrix given a choice of basis for the D9 gauge bundle and the D9 gauge bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These choices are independent, which means algebraically that only the equivalence class of T under the equivalence relation T ∼ GL · T · G−1 R GL, GR ∈ GL(n, C[z]) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) matters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A canonical representative of each such equivalence class is given by the Smith Normal Form (SNF) computed in the ring R = C[z], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' any matrix T with entries in polynomials in z is equivalent under (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) to a unique diagonal matrix SNF(T) := diag(p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , pr, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , 0) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7) where the pi are monic polynomials2 in z such that p1|p2| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' |pr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' To illustrate the discussion of the previous paragraph, consider the case n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The tachyon matrix is T = � z − z1 0 0 z − z2 � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8) and the fluctuations belong to δT ∈ � R (z−z1) R (z−z1,z−z2) R (z−z1,z−z2) R (z−z2) � ≃ � � � � � � � � � � � � � � C 0 0 C � z1 ̸= z2 � C C C C � z1 = z2 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='9) For any value of z1, z2 there is U(1) adjoint matter on each D7-brane, and for z1 = z2 the U(1)2 gauge symmetry enhances to U(2), and one can have fluctuations in the adjoint of U(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' From the U(1)2 perspective this is simply bifundamental matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 2Unicity is guaranteed up to multiplication by units in the ring;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' demanding that the polynomials be monic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' have coefficient 1 for the term of highest degree, fixes this redundancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 8 – Consider the case z1 = z2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We can then activate an off-diagonal term: T[1,1] = � z 0 0 z � �→ T[2] = � z 1 0 z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10) After this activation, the fluctuations are reduced to δT[2] ∈ � 0 0 1 0 � C ⊕ � 1 0 0 −1 � C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11) The SNF reveals the same structure in a slightly different guise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Indeed SNF � z − z1 0 0 z − z2 � = � � � � � � � � � � � � � � 1 0 0 (z − z1)(z − z2) � z1 ̸= z2 � z − z1 0 0 z − z1 � z1 = z2 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12) so the fluctuations are valued in δT ∈ � � � � � � � � � � � � � � 0 0 0 C ⊕ zC � z1 ̸= z2 � C C C C � z1 = z2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13) Activating the off-diagonal term translates using the SNF into SNF � z − z1 1 0 z − z2 � = � 1 0 0 (z − z1)(z − z2) � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='14) valid for z1 = z2 and z1 ̸= z2 alike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In particular, putting both branes at the origin, SNF � z 1 0 z � = � 1 0 0 z2 � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) where we see the appearance of an infrared trivial complex R R ∼= 0 1 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16) and a so-called ’thick brane’ R R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' z2 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='17) Multivariable polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The ring of polynomials in one variable C[z] has the prop- erty that every ideal is principal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In particular, it is a B´ezout ring, which means by definition that any ideal generated by finitely many generators is principal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The ring C[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , xn] for n > 1 on the other hand is not a B´ezout ring : it has non-principal finitely generated ideals (for example, the ideal generated by x1 and x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It turns out the SNF is best defined in B´ezout rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' By [84, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1] an SNF does not exist for matrices with coefficients – 9 – in C[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , xn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Thus, at face value it seems not possible to use the SNF to describe intersecting branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, this is not a weakness but a feature, as we now demonstrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider the case of two variables, x and z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Physically, this means we are considering branes that share an R1,5 and wrap complex curves in the (x, z)-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider a stack of n branes at x = 0 and a stack of m branes at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is described by the diagonal matrix diag(x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , x, z, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We can activate non-diagonal terms, that we call Q and ˜Q as they correspond to strings that yield hypermultiplets at low energy T = � x1n �Q Q z1m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18) In order to pick a canonical diagonal form for this matrix, we need to make a choice of main variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let us pick z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This means we extend the non-B´ezout ring C[x, z] to the ring C(x)[z], which is B´ezout as it is a polynomial ring in one variable over the field C(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is simply telling us that poles in x have to be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We now describe the SNF over this ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Assume first that the eigenvalues of Q �Q are all distinct, call them λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Then the SNF is diag � x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , x, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , 1, m � i=1 � z − λi x �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='19) If some of the eigenvalues coincide, the form of the SNF changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We can collect this information, which is insensitive to the detailed properties of the eigenvalues, by simply stating that the SNF is � x1n 0 0 z1n − Q � Q x � λi ̸= λj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='20) Thus, from the point of view of the stack of m branes at z = 0, the presence of the other stack is felt as a pole for the complex adjoint-valued Higgs field living on the brane at z = 0, [85–87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that the situation is symmetric and one could have chosen the other stack as the base one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is exactly the same arbitrariness we made when writing the ring as a B´ezout ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Kraft-Procesi Transitions Nilpotent orbits for sln are in one-to-one correspondence with partitions of n, and are partially ordered by inclusion of their closure [88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The nilpotent orbit associated to a partition λ of n is denoted Oλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The partial order corresponds to the well-known dominance ordering for partitions,3 and it can be represented by a Hasse diagram, which indicates the covering relation associated to this partial order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The diagram thus obtained also corresponds to the stratification of the nilpotent cone (the set of all nilpotent matrices) into symplectic leaves [77, 78, 89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Elementary degenerations between adjacent nilpotent orbits are called Kraft-Procesi transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the case of sln nilpotent orbits, these can be 3The dominance ordering is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' If λ and µ are two partitions of n, we say that λ ≥ µ if and only if for all j, j� i=1 λj ≥ j� i=1 µj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 10 – either closures of minimal slm nilpotent orbits or Kleinian singularities C2/Zm for m ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This can be implemented in brane setups [90, 91], where nilpotent orbit closures are realized as Higgs or Coulomb branches of 3d N = 4 quiver theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Slodowy Slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider the case where T = z · 1n + M and M is a nilpotent matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) shows that δT ∼ δT + (αR − αL)z + (αRM − MαL) , δT ∈ Matn(R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='21) Define α+ := 1 2(αR + αL) and α− := 1 2(αR − αL) this gives δT ∼ δT + 2α−z + [α+, M] + {α−, M} , δT ∈ Matn(R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='22) The image of the map Matn(R) → Matn(R) α− �→ 2α−z + {α−, M} (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='23) contains all of Matn(zR),4 so we can use α− to eliminate all z-dependence in δT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We still have the freedom to use α+, which defines an equivalence relation δT ∼ δT + [α+, M] , δT ∈ Matn(C) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='24) The cokernel of the adjoint action by M has dimension dλ := � i (2i − 1)λi , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='25) where λ is the partition that specifies the nilpotent orbit of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' If one considers only traceless matrices, δT then depends only on dλ − 1 parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that being in the cokernel of ad(M) corresponds to commuting with the other nilpotent element in the sl2-triple generated by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Thus M+δT parameterizes the Slodowy slice SM transverse to M (see Appendix A for definitions and a proof of this statement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that indeed that ∀M ∈ Oλ(sln) , dim SM = dλ − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='26) Kraft-Procesi Transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider two partitions λ and µ, which are immediately adjacent in the partial order – one says that λ covers µ if they are adjacent and λ > µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Then λ and µ differ only in two entries, say with indices i < j, with λi − 1 = µi and λi+1 + 1 = µi+1, and one of the two following transitions occurs: Condition Transition name Transverse slice j = i + 1 Aλi−λj−1 C2/Zλi−λj µi = µj ai−j−1 Omin(sl(i − j, C)) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='27) 4This is easily proved by a recursive argument on the degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 11 – The first corresponds to a Kleinian singularity, whereas the second is the closure of a minimal nilpotent orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The equivalence class of tachyon matrices for a partition µ = [µ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , µr] (with µ1 ≥ · · · ≥ µr) is characterized by a common SNF, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' SNF(Tµ) = � � � � � � � � � � � 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 1 zµr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' zµ1 � � � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='28) Starting from the SNF of partition µ, the Kraft-Procesi transition is realized using SNF � zµj αzµj−1 0 zµi � = � zµj−1 0 0 zµi+1 � = � zλj 0 0 zλi � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='29) for α ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that this is precisely the tachyon matrix formalism analog of the way Kraft- Procesi transitions are realized in Hanany-Witten brane systems for 3d N = 4 quiver theories in [90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The equality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) corresponds to the covering of partition [1, 1] by [2], whereby two branes are combined into a thick brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A less trivial case is the covering of [2, 2] by [3, 1], where we do not simply have two branes being combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Rather, one of the two thick branes needs to be broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is realized in our framework using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='29) as follows: SNF � z2 αz 0 z2 � = � z1 0 0 z3 � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='30) for α ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' When the nilpotent orbit Hasse diagram is linear, one can build matrices that encode all partitions at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is the case for n ≤ 5, where the matrices are given by � z a1 0 z � , � � � z a1 0 0 z a2 0 0 z � � � , � � � � � z a1 0 0 0 z za3 + a4 0 0 0 z a2 0 0 0 z � � � � � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='31) � � � � � � � z a1 0 0 0 0 z za3 0 a2a3a4 0 0 z a2 0 −z3a6 0 z2a1a3a6 z −za4 −za2a4a5 (a1a2a3a6 + 1) 0 a2 1a2 2a2 3a4a5a6 0 z � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='32) This means that the SNF of a matrix above with a1, · · · , ar non-zero gives precisely the r-th partition of n, the partitions being totally ordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 12 – 3 Example: GTPs for Tn and Related Models In this section, we use an intermediate step in correspondence between M-theory on a CY threefold and IIB 5-brane-webs: IIA on a resolved C2/Zn singularity with D6-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This discussion follows the philosophy of [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We start in this section with the instructive example of Tn, and consider its description as well as GTPs obtained by adding white dots along a single edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 The Setup Consider the toric local Calabi-Yau defined by the toric diagram with vertices at coordinates (0, 0), (n, 0) and (n, n), drawn here for n = 5: W1 W3 W2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1) The generators of the dual cone are (−1, 0, 0) ↔ W1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2) (1, −1, n) ↔ W2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) (0, 1, 0) ↔ W3 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) (0, 0, 1) ↔ Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) The first three generators are vectors normal to the 2-dimensional facets on the fan, drawn in blue arrows when projected on the CY plane in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' As an algebraic variety, the toric threefold is simply a hypersurface in C4: W1W2W3 = Zn ⊂ C4⟨W1, W2, W3, Z⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) This space has non-isolated singularities, specified by the following intersecting ideals: Ising = (W1, W2, Z) ∩ (W1, W3, Z) ∩ (W2, W3, Z) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7) Along each such ideal, there is a family of An−1-singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These are in one-to-one correspondence with the three edges of the toric graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The singular threefold admits three different (albeit linearly dependent) C∗-actions which act on the coordinates with the following weights: W1 W2 W3 Z C∗ 1 0 1 −1 0 C∗ 2 1 0 −1 0 C∗ 3 1 −1 0 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8) – 13 – As explained in toric language in [13], we can define projections πi, for i = 1, 2, 3, with respect to these actions, and this will bring us down to IIA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let (i, j, k) be a permutation of (1, 2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The way to reduce along a particular C∗-action C∗ i is to pick the pair of ‘charged’ coordinates Wj and Wk, and setup a C∗-fibration over an new complex coordinate Vjk as follows: C∗ i : C[W1, W2, W3, Z] ∼= C[W1, W2, W3, Z, Vjk] (WjWk − Vjk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='9) Now we can rewrite the threefold in the following presentation: C[W1, W2, W3, Z] (W1W2W3 − Zn) ∼= C[W1, W2, W3, Z, Vjk] (WjWk − Vjk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' WiVjk − Zn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10) The IIA reduction is achieved by reducing over the S1 ⊂ C∗ action in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The non- compact part R ⊂ C∗ becomes a transverse direction to the D6-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The projection is simply defined as dropping the pair of coordinates (Wj, Wk), leaving us with a local K3 with an An−1 Klein singularity C[Wi, Vjk, Z] (WiVjk − Zn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11) To simplify the notations, we switch to the more standard X := Wi Y := Vjk (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12) so that the An−1 singularity (a local K3) is described by XY = Zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13) There are D6-branes on the locus defined by the ideal ID6 = (Y, Zn) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='14) which we call the D6 ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It is, first of all a stack of n non-compact D6-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, since this passes through the singularity, more is at play here, and we need to resolve the local K3 to refine our understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In order to describe the resolution of the An−1 orbifold (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13), we introduce homoge- neous coordinates (z1, e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , en−1, z2) with n − 1 C∗-actions z1 e1 e2 e3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' en−3 en−2 en−1 z2 C∗ 1 1 −2 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 0 0 0 0 C∗ 2 0 1 −2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 0 0 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' C∗ n−2 0 0 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 1 −2 1 0 C∗ n−1 0 0 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 0 1 −2 1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) The coordinates are homogeneous with respect to the n − 1 projective actions, by which the space is quotiented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Each row gives the list of weights of the coordinate with respect to each such action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Just as one must excise particular loci when creating standard projective space, so must one excise a number of loci here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 14 – · · e1 = 0 e2 = 0 en−2 = 0 en−1 = 0 z1 = 0 z2 = 0 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Geometry of the resolved An−1 singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Each curved line is a P1 while the straight lines are the non compact divisors z1,2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Specifically, if a coordinate is set to zero, then only one its two ‘neighbors’ are allowed to vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' See figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For example, we can have e2 = 0, and e3 = 0, or e2 = 0 and e1 = 0, but the pair (e1, e3) does not form a valid ideal for a vanishing locus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In terms of the coordinates (X, Y, Z), we have X = n � i=0 en−i i , Y = n � i=0 ei i , Z = n � i=0 ei (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16) where we have introduced e0 := z1 and en := z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The locus ei = 0 corresponds to the i-th exceptional P1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The loci z1 = 0 and z2 = 0 correspond to noncompact holomorphic curves intersecting the first and last P1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Line bundles over this space are characterized by their first Chern class, which is encoded as O(k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , kn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A section of this bundle is a polynomial of homogeneous multi-degree (k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , kn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The brane locus (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='14) is now given by ID6 = � n � i=0 ei i, n � i=0 en i � = � n � i=0 ei i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='17) The interpretation is as follows: there are i D6-brane wrapping the i-th P1, and n non- compact D6-branes on the curve z2 = 0, which intersects the (n−1)-th sphere at one point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' At the SCFT point, all the P1’s shrink to zero size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the Coulomb branch, where the K¨ahler volumes are non zero, the effective theory can be read from the ideal (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It is described by the quiver: U(1) U(2) · · U(n − 2) U(n − 1) n (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Tachyon Condensation Picture The theory (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18) is encoded by via the tachyon condensation/coherent sheaf language as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' First recall that in terms of complexes, one can describe the branes as follows: A brane Bi wrapped on the i-th P1 given by ei = 0 can be described as the cokernel of the complex of line bundles: Bi : O(−ei) O , ei (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='19) – 15 – where O is the structure sheaf over the local K3, and O(−ei) is the dual of the line bundle O(ei), of which ei is a section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For instance, O(−e1) = O(2, −1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A noncompact ‘flavor brane’ BF at the locus z2 = 0, intersecting the rightmost P1 (given by en−1 = 0), is given by the following complex: Bn : O(−z2) O .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' z2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='20) More generally, a noncompact D6-brane intersecting the i-th exceptional P1 will be given by the zero-locus of a section of O(0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , 0, 1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , 0), where the ‘1’ is the i-th entry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Define N = 1 2n(n+1) D8-branes with gauge bundle FD8 := O⊕N and N anti-D8-branes with gauge bundle FD8 := O(2, −1, 0, · · · , 0) ⊕ O(−1, 2, −1, · · · , 0)⊕2 ⊕ · · · ⊕ O(0, · · · , 0, −1)⊕n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='21) We then define the tachyon map T : FD8 → FD8 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='22) as a diagonal matrix T = Diag(e1 · 11, e2 · 12, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , en−1 · 1n−1, z2 · 1n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='23) Note that det T = Y , so that the equations of the threefold are WjWk = det T = Y , XY = Zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='24) from which one recover the original equation WiWjWk = Zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The resulting D6-brane system is defined as the cokernel S := cok(T) of this map, which is the locus where T fails to be invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' So S is reducible: S = n � i=1 O⊕i ei , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='25) where Op means the structure sheaf with support over p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' There is an exact sequence FD8 FD8 S 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' T (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='26) Fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The fluctuations around this background are computed as self-extensions, in the same way as in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This means that the fluctuations δT of the tachyon T belong to the self-extension group, δT ∈ Ext1(S, S) = HomD(K3)(S, S[1]) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='27) where we consider the Homs in the derived category of coherent sheaves on K3 D(K3), and the [1] means that we shift the complex one step to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The matrix δT can be decomposed in blocks, and there will be non-zero fluctuations just above and below the diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In practice, the fluctuations are subjected to three conditions, that we will be using repeatedly in the following sections: – 16 – (i) The C∗ weights of the columns of T and δT need to be compatible with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='23) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (ii) The fluctuations are regular sections of the relevant sheaves (no pole on the support locus) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (iii) The components of δT are subject to the identifications (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3 Example: T2 For concreteness we work out in detail the case n = 2 for Tn before treating the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The tachyon matrix is O(2) ⊕ O(−1)⊕2 O⊕3 T , T = � e1 0 0 z2 · 12 � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='28) and we give names to the blocks in the fluctuation δT in correspondence with the quiver δT = � Φ1 �Q1 Q1 Φ2 � 1 2 Q1 �Q1 Φ1 Φ2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='29) The three conditions listed above give δT ∈ � Γ(O(−2)(e1)) Γ(O(1)(e1,z2)) · C1×2 Γ(O(−2)(e1,z2)) · C2×1 Γ(O(1)(z2)) · C2×2 � = � 0 C1×2 · z1 C2×1 · 1 z2 1 C2×2 · z1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='30) Here, Γ indicates that we take sections of the bundles, and Cn×m is the set of n×m matrix of complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The last equality is easily checked, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' for the lower-left entry, the regular sections are generated by rational functions in z1 alone, having C∗-weight −2, and poles are allowed as the support is the intersection between two curves where z1 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In terms of Ext groups between B1 (see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='19)) and B2 (see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='20)), we can write (using e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' a spectral sequence argument) Q1 ∈ Ext1(B1, B2) = H0(O(e1)e1,z2) = � 1 z2 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='31) �Q1 ∈ Ext1(B2, B1) = H0(O(z2)e1,z2) = ⟨z1⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='32) To summarize, the background tachyon plus fluctuation is given by T + δT = � e1 �q1z1 q1 z2 1 z2 · 12 + z1ϕ2 � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='33) where we have pulled out all dependencies in z1, e1 and z2, so that �q1 ∈ C1×2, q1 ∈ C2×1 and ϕ2 ∈ C2×2 are pure constants: Q1 = q1 z2 1 , �Q1 = �q1z1 , Φ2 = ϕ2z1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='34) – 17 – e1 = 0 z1 = 0 z2 = 0 Φ ϕ1 Q1, ˜Q1 e1 = 0 z1 = 0 z2 = 0 ϕ2 = − M X ϕ1 Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Intersecting branes before and after the transformation that maps the off-diagonal Higgs- field entries Q1, ˜Q1 to diagonal ones with a pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The orange dot signals the pole in the Higgs field at X = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that the term q1 z2 1 ensures that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='33) is defined on the locus z1 ̸= 0 We can perform basis changes from the left and right, using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6), as follows: � 1 0 − q1 z2 1e1 12 � � e1 �q1z1 q1 z2 1 z2 · 12 � � 1 − �q1z1 e1 0 12 � = � e1 0 0 z2 · 12 − M z1e1 � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='35) In the last step we have introduced the meson matrix M := q1�q1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='36) In the 5d effective field theory, F-term conditions impose that M be nilpotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This can also be demonstrated mathematically via the so-called cone construction in the derived category of coherent sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' See [83] for examples of this mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This diagonalization shows that giving a vev to the meson field can be subsumed into a shift of vev of the adjoint field φ on the flavor branes, with a pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Using the coordinate X = z2 1e1 (see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16)) on the z2 = 0 plane, we can write this as T + δT ∼ � e1 0 0 z2 · 12 + z1 · ϕ2 � with ϕ2 = −M X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='37) The transformation from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='33) to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='37) means that we can regard in an appropriate regime the intersecting branes in figure 7 as a stack of two branes on z2 = 0 with a complex codimension-one defect on its world-volume at e1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is in agreement with the findings of [85, 87], where the authors find that a vev of bifundamental fields at the intersection of two branes can be subsumed into a pole for the adjoint of one of the two branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the picture, we trade the description in figure 7 on the left with the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Up to a change of basis we can take M in canonical Jordan form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' There are two possibilities, corresponding to the two partitions of n = 2: M[12] = � 0 0 0 0 � and M[2] = � 0 1 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='38) – 18 – Consider the latter case, T[2] := � e1 t[2] � := � � � e1 0 0 0 z2 − 1 z1e1 0 0 z2 � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='39) We still have det T[2] = ez2 2 = Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' So the brane configuration has not changed geometrically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Accordingly, the M-theory uplift is still given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, the tachyon matrix shows us that the flavor brane no longer carries an SU(2) group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is the hallmark of a T- brane: A non-abelian bound state of branes that does not realize the gauge group that it would naively have given its geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This T-brane effect is the IIA counterpart of the change in boundary conditions in the dual type IIB brane-webs (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='40) In this particular case, once the D5-segment has been sent away, a Hanany-Witten move where the 7-brane detaches completely becomes possible: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='41) How does this translate into the IIA language, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' in terms of the tachyon field?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let us see what deformations are available, starting from the new vacuum defined by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Using the results of section 2, the fluctuations of t[2] are δt[2] = z1 · � 0 0 α 0 � , α ∈ C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='42) Now in order to see how this affects the geometry, we add this perturbation to T[2] T[2] + δt[2] = � � � e 0 0 0 z2 − 1 z1e 0 αz1 z2 � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='43) Now the geometry (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='24) is deformed to WjWk = det T = Y + α , XY = Z2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='44) – 19 – which reduces to the hypersurface W1W2W3 = Z2 + αWi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='45) So the CY threefold is fully desingularized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' From the IIA perspective, we see that two flavor branes have recombined with one gauge brane, to give rise to a noncompact brane that can escape the singular locus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is in full agreement with the 5-brane-web picture, whereby the 7-brane moves off to the left, becomes fully detached from the NS5-branes, and can escape to infinity, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This corresponds precisely to removing the A1 singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' To summarize, the white dot is represented in the IIA picture as a nilpotent vev with poles on the flavor D6-stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The further Hanany-Witten move that actually deforms the M-theory geometry is implemented by switching on a further vev on the flavor stack along the Slodowy slice with respect to the initial singular nilpotent vev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4 General Case: Tn The general Tn case is very similar to the T2 example treated above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The fluctuations around the tachyon background are denoted by fields as follows: 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' n − 2 n − 1 n Q1 Qn−2 Qn−1 �Q1 �Qn−2 �Qn−1 Φ1 Φ2 Φn−2 Φn−1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='46) Generalizing (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='31) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='32), we find that the 5d hypermultiplets that reside at the intersection of the curves ei = 0 and ei+1 = 0 are described by Qi ∈ Ext1(Bi, Bi+1) = H0(O(ei)(ei,ei+1)) = � Y Zi+1 ei � = �� j̸=i ej−i−1 j � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='47) and ˜ Qi ∈ Ext1(Bi+1, Bi) = H0(O(ei+1)(ei,ei+1)) = �Zi Y ei+1 � = � � j̸=i+1 ei−j j � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='48) On the other hand, one can check that Ext1(Bi, Bj) = 0 for |i − j| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Therefore the tachyon matrix T, plus the fluctuations δT, fit schematically (we will provide the explicit form below) into the matrix T + δT = � � � � � � � � � e1 · 11 �Q1 Q1 e2 · 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' en−1 · 1n−1 �Qn−1 Qn−1 z2 · 1n � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='49) As in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='34), we introduce the notation Qi = qi · Y Zi+1 ei ˜Qi = ˜qi · Zi Y ei+1 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='50) – 20 – such that qi and ˜qi are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We can also have fluctuations on the diagonal, which we write as Φi = ϕi · Y Zi+1 ei .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='51) With this notation the F-terms at the ith node can be written �q1q1 = 0, and qi�qi = �qi+1qi+1 i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , n − 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='52) We now come back to the reason why (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='49) is only a schematic form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The i-the hyper (Qi, �Qi) is only well defined at the (ei, ei+1) intersection, but has poles in the nearby patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hence, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='49) is not well-defined over the whole target space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is due to the projective nature of the resolved K3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Therefore, we must study it patch by patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A good local affine coordinate on the locus ei = 0 for the hemisphere where ei+1 (respectively ei−1) does not vanish is Y Zi (respectively Zi Y ): ei = 0 ei+1 = 0 Coordinate Y Zi Coordinate Zi+1 Y (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='53) Note in particular that for i = N (respectively i = 0), this is compatible with the affine coordinate on the locus z2 = 0 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' z1 = 0) being simply X (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Y ), as chosen in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the patch that contains the intersection {ei = 0} ∩ {ei+1 = 0}, the tachyon fluctua- tion is expressed as δT = � Φi �Qi Qi Φi+1 � ∈ � Ci×i · Y Zi+1 ei Ci×(i+1) · Zi Y ei+1 C(i+1)×i · Y Zi+1 ei C(i+1)×(i+1) · Zi Y ei+1 � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='54) Using line and row transformations, one finds � 1i �qi Zi Y −qi Y Zi+1 1i+1 − qi�qi Z � � ei � 1i − �qiqi Z � 0 0 ei+1 · 1i+1 � � 1i −�qi Ziei+1 Y ei qi Y ei Zi+1ei+1 1i+1 − qi�qi Z � = � ei · 1i 0 0 ei+1 � 1i+1 − qi�qi Z � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='55) Effectively, this transforms a pole of the form � ei · 1i + Y Zi+1 eiϕi 0 0 ei+1 · 1i+1 � , ϕi = −�qiqi (Y/Zi) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='56) into a pole of the form � ei · 1i 0 0 ei+11i+1 + Zi Y ei+1ϕi+1 � , ϕi+1 = −qi�qi (Zi+1/Y ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='57) – 21 – Let us introduce the n × n meson matrix M = qn−1�qn−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='58) As argued for the T2 previously, this meson matrix must be nilpotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We can characterize the tachyon fluctuation entirely by the last pole (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='57) for i = n − 1, which gives ϕn = −M X , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='59) consistently with what we found for the n = 2 case in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In summary, the bifun- damental matter between the various branes can be subsumed under a shift of the 7d SU(n)-adjoint Higgs ϕn, as a simple pole with residue equal to a nilpotent element M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Since Mn = 0, we still have det T = n � i=1 ei i = Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='60) Hence, the brane locus remains unscathed despite the activation of the matter fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5 Interpretation in terms of Generalized Toric Polygons We saw in the last subsection that the geometry of the threefold can be affected by the presence of a pole of the form (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This pole can be encoded in two ways: in the nilpotent meson matrix M, or in the list of hypermultiplet deformations qi and �qi satisfying the relations (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let us call Q the set Q = {q = (q1, �q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , qn−1, �qn−1) ∈ C2×1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' C(n−1)×n|(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='52)} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='61) We also call N the set of nilpotent n × n complex matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The map m : Q → N (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='62) q �→ M = qn−1�qn−1 is certainly not injective, as given a nilpotent matrix M, there are infinitely many families {qi, �qi}i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=',n−1 mapping to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let us define r : Q → Nn−1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='63) q �→ (ri = rank(qi�qi))i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=',n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For a given M ∈ N, the ranks of the bilinears in qi�qi that map to M are not fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In other words, r(m−1(M)) contains more than one element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, there is a unique element of rmin ∈ r(m−1(M)) that minimizes the sum of the entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' If M ∈ Oλ, then r0 is given by the partial sums of the transpose of λ, rmin = � � n � j=n+1−i λT j � � i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=',n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='64) – 22 – Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On top, we depict a part of the resolved GTP for the T9 theory, with white dots on the right edge, along with an internal triangulation consistent with the white dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The presence of white dots propagates into the interior of the GTP, thereby limiting the possible resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Each column in the GTP corresponds to a boundary condition for D5-branes ending on D7-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This information is encoded in the ranks ri of the matrices appearing in δT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the bottom, we show the associated D5-brane boundary conditions (where each circle denotes a D7-brane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that this coincides with the ranks of the linear quiver rmin 1 rmin 2 · · rmin n−1 n (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='65) whose 3d N = 4 Coulomb branch is the corresponding nilpotent orbit closure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The ranks in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='64) represent the minimal deformations needed in δT to produce the pole (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In simple cases, the quivers (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='65) appear as embedded in the magnetic quiver describing the Higgs branch of the 5d theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For a more precise statement about the embedding, the reader is referred to [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the GTP, these ranks can be encoded with white dots inside the polygon, using again the notation introduced in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For instance, for n = 9 and partition λ = [4, 3, 2], we can draw the configuration shown in figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The minimal ranks correspond to the number of white dots in each column: here we get rmin = (0, 0, 0, 0, 0, 1, 3, 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These numbers give the brane configuration which saturates the s-rule, as illustrated in the lower part of figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 23 – .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' H H′ Pole Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schematic form of a Hasse diagram of the Higgs branch H viewed as a symplectic singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The effect of the pole prescription corresponds geometrically to imposing a higher dimensional base leaf (the transverse slice is shown in red – here it is minimal, but it does not have to be in general).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The remaining Higgs branch H′ is the transverse slice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Impact on the Hasse diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The vevs of Higgs branch operators in the 5d theory can be projected on the space of complex structure deformations of the geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The fact that the pole (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='59) freezes some of these deformations means geometrically that the resulting pole-deformed Higgs branch is the slice in the initial Higgs branch transverse to these imposed deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This can be represented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The Higgs branch H with no pole is a symplectic singularity, which can be depicted using its Hasse diagram of singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The effect of the pole is to freeze certain defor- mations, represented here as a forced choice of a higher dimensional bottom symplectic leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The resulting Higgs branch H′ is the transverse slice to that leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' See figure 9 for a schematic depiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The analysis above applies to the theory in any phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the case of the IIA reduction on the resolved An−1 singularity shown in figure 6, the Higgs branch of the Tn theory becomes the nilpotent cone of sln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The transverse slices are then identified with the Slodowy slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The example n = 4 is illustrated in figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' If M ∈ Oλ for λ some partition of n, then the corresponding Higgs branch is the Slodowy slice Sλ ∩ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Moving on to the SCFT phase, the Higgs branch is no longer a nilpotent orbit closure, but the general picture stays the same: the Higgs branch is restricted to a transverse slice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is what we already mentioned in the introduction, see figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The Hasse diagrams drawn in figure 5 can be reproduced independently using the quiver subtraction algorithm [92, 93] on the magnetic quivers extracted from the GTPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6 Hanany-Witten Moves In the previous section, we defined the IIA counterpart of a ‘white dot’ as a nilpotent residue for the adjoint complex scalar on the flavor D6-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The nilpotency implies – 24 – 0 3 4 5 6 a3 a1 A1 A3 M ∈ O[14] M ∈ O[2,12] M ∈ O[22] M ∈ O[3,1] Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Diagram for the nilpotent cone of sl4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The dots are nilpotent orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' When M belongs to a given orbit, the Higgs branch of the resulting theory is the transverse Slodowy slice, represented by a bracket on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' that there will be no repercussions on the geometry of the branes, and hence, the M-theory CY will not be deformed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is the hallmark of a ‘T-brane’ [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We would now like to determine how the T-brane configuration impacts the physics of the 5d theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is done using the brane-web language, with Hanany-Witten moves, as we have explained in detail in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The key point is that the nilpotent orbit of M determines which Hanany-Witten move can be performed in order to detach any of the 7-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the IIA setup, flavor D6-branes are now allowed to move across exceptional P1s, thereby changing the quiver structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The way this is seen at the level of the Higgs field, is that by activating vevs along the Slodowy (transverse) slice to the nilpotent vev with poles, the characteristic polynomial of the tachyon matrix actually becomes deformed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This can be seen by computing the self-Ext group Ext1 � B(nil) F , B(nil) F � of the nilpotent configuration on the flavor brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Using the computation from section 2, we are looking for δTF such that δTF ∼ δTF + z2 Z [M, g] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='66) This is equivalent to requiring that δTF be on a transverse slice to M, gauge equivalent to the Slodowy slice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We will choose a gauge such that δTF be the companion matrix to M as in [94], which is referred to as a ‘reconstructible Higgs’ in [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The details on how this is done are given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Say Tnil is in the maximal nilpotent orbit, then the ‘Hanany-Witten’ tachyon will take the form THW = Tnil + δTF = z2 Z � � � � � � � � Z 1 Z 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Z 1 (−)n−1anX (−)n−2an−1X −a2X Z � � � � � � � � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='67) – 25 – where the ai are constants (the fluctuation δTF is proportional to X as a consequence of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='54) with i = N − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This matrix has determinant det(THW) = �z2 Z �n � Zn + a2XZn−2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' + anX � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='68) More generally, for M in the [λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , λr] partition, we take a block diagonal matrix where each block will take the form: (THW)i = z2 Z � � � � � � � � Z 1 Z 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Z 1 (−)λi−1a(i) λi X (−)λi−2a(i) λi−1X −a(i) 2 X Z � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='69) Note that by doing so, we are not using the full Slodowy slice Sλ (which contains non- block-diagonal matrices) but instead restrict to the intersection S0 λ = Sλ ∩ lλ with the Levi subalgebra lλ, see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is physically justified, as it guarantees that the flavor symmetry will not be further broken by the Hanany-Witten moves than it already has been by the white dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The missing parameters, in Sλ − S0 λ, are associated to the non splitting of the flavor branes, illustrated on an example below in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='77).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Putting together all these blocks, and the non-flavor part of the tachyon matrix, the end result of the full deformation is Y �→ 1 X · r � i=1 � �Zλi + X � � λi−2 � j=0 a(i) λi−jZj � � � � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='70) where � i λi = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Actually it can be argued that only the coefficients a(i) λi affect the physics near the singularity: coefficient a(i) λi−j for j ̸= 0 correspond to a shift of Zλi−j X , which is using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='53) the coordinate along a P1 with which the brane has zero intersection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Therefore the equation simplifies to Y �→ 1 X · r � i=1 � Zλi + Xa(i)� , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='71) where we have renamed a(i) := a(i) λi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Reverting to the original notations (W1, W2, W3, Z) for the coordinates in C4, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12), one finally gets W1W2W3 = r � i=1 � Zλi + a(i)W1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='72) Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let us work out a few examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='70) is worked out explicitly for T3 and T4 in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The factorization allows to read off the corresponding quivers, which are the magnetic quivers for nilpotent orbits of sl(3) and sl(4) [95], as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 26 – Partition det T Factorization [13] Y e1e2 2(z3 2) [2, 1] Y + a2Z e1e2(z2)(e2z2 2 + a2z1) [3] Y + a2Z + a3 smooth Partition det T Factorization [14] Y e1e2 2e3 3(z4 2) [2, 12] Y + a2Z2 e1e2 2e2 3(e3z2 2 + a2z2 1e1)(z2 2) [22] Y + (a(1) 2 + a(2) 2 )Z2 + a(1) 2 a(2) 2 X e1e2 2e3(e3z2 2 + a(1) 2 z2 1e1)(e3z2 2 + a(2) 2 z2 1e1) [3, 1] Y + a2Z2 + a3Z e1e2e3(e2e2 3z3 2 + a2z2 1e1e2e3z2 + a3z1)(z2) [4] Y + a2Z2 + a3Z + a4 smooth Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Equations defining the brane configurations in T3 and T4 with white dots on one edge after HW moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the last column, the equation is rewritten in terms of the toric variables for the resolution, and maximally factorized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The factor in orange give the ranks of the low energy quiver while the terms within brackets give the flavor ranks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We can illustrate the problem discussed in the previous paragraph with partition [2, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The generic matrix in the Slodowy slice would give rise to the final block for the tachyon matrix given by � � � Z 1 0 −a2X Z αX βX 0 Z + γX � � � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='73) The resulting, deformed, equation then reads det T = e1e2 � a2γe1z3 1 + a2z1z2 + γe1e2z2 1z2 2 + αβe1z3 1 + e2z3 2 � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='74) from which one reads off a quiver with two abelian nodes and a single flavor brane system: e1 = 0 e2 = 0 z1 = 0 z2 = 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='75) This system, drawn in teal, intersects both P1 divisors at e1 = 0 and e2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This breaks the global isometry u(1) of the nilpotent Slodowy slice S[2,1] ∩ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' By restricting to the Levi subalgebra, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' sending α, β and γ to zero, one gets one more factorization: det T = e1e2(z2) � a2z1 + e2z2 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='76) – 27 – e1 = 0 e2 = 0 z1 = 0 z2 = 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='77) The flavor branes are now disjoint and can be moved independently: e1 = 0 e2 = 0 z1 = 0 z2 = 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='78) Each flavor brane intersects a single P1, and the global symmetry of the resulting Higgs branch (still in the resolved phase) is read to be s(u(1) ⊕ u(1)) = u(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 4 General Discussion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 White Dots along a Single Edge Having discussed the case of Tn in detail, we move to a generic toric polygon and its GTP deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let P be a convex polygon in R2 with vertices in Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Pick an edge on P, and denote by n its length (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' the edge contains exactly n + 1 points in Z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Using an SL(2, Z) transformation, one can assume without loss of generality that this edge extends between the vertices (0, 0) and (0, n), and that all vertices of P other than (0, 0) and (0, n) have coordinates (i, j) with i < 0: · · · · (0, 0) (0, n) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1) In the toric threefold, the length n edge is translated into the presence of a dimension 1 singular stratum with transverse slice of type An−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the brane-web picture, this means that n D5-branes extend to infinity, and the boundary condition, encoded in how they end on D7-branes, can again be encoded in a T-brane datum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This can be done explicitly using the IIA reduction as in section 3 for any given polygon (and we do so for the example of a – 28 – rectangular P in the next section), even though it would be extremely cumbersome to try to give general formulas that would apply to any polygon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The general idea, however, is clear: in the Tn example discussed in section 3, the undeformed equation W1W2W3 = Zn yields the An−1 singularity transverse to the line W2 = W3 = Z = 0 by setting W1 equal to a constant, say W1 = c, giving cW2W3 = Zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2) It is then this equation that is modified by (i) adding a nilpotent pole of the form (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='59) with M in the prescribed nilpotent orbit, and (ii) performing HW moves to deform the geometry, in effect replacing Zn → � i (Zλi + a(i)W1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) The general case is obtained by mimicking this procedure: among the equations for the toric threefold corresponding to the polygon P, the line with transverse singularity An−1 can be parametrized by a coordinate W1, and the transverse slice is again given by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is one of the equations defining the toric threefold, called a ”boundary equation” in [96].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This equation should then be replaced by cW2W3 = � i (Zλi + a(i)W1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) This is in agreement with [96, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A useful mnemonic is that in the toric diagram (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1), the deformation of the edge labelled by W1 involves an An−1 equation involving the coordinates labelling the adjacent edges, here W2 and W3, with the degree n polynomial in Z deformed by powers of W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the following subsections, we give examples to illustrate the scope of our results, and also show certain limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Successive deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Before discussing the examples, we want to address a natural question: given a GTP with white dots on an edge of length n characterized by a partition µ, is it possible to deform it to the same GTP with partition λ instead?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' One necessary condition is that λ > µ, and it is also sufficient if the polygon is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5 In this case, one can deform the nilpotent pole according to the general rules spelled out in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For instance, if n = 4, we can use the explicit form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='31).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Going from partition [2, 12] to [22] is straightforward as it just involves merging two Jordan blocks, while going from 5If the GTP is small, then certain deformations could lead to violations of the S-rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 29 – [22] to [3, 1] requires using higher powers of z (recall (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='29)): � � � � � z 1 0 0 0 z 0 0 0 0 z 0 0 0 0 z � � � � � � � � � � z 1 0 0 0 z 0 0 0 0 z α 0 0 0 z � � � � � � � � � � z 1 0 0 0 z zβ 0 0 0 z α 0 0 0 z � � � � � α ̸= 0 β ̸= 0 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) However it is worth mentioning that this can be done on the T-brane before HW defor- mations are added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Crucially, the two operations do not commute in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Here for instance the deformed equations for T4 with partition [2, 2] and [3, 1], given in table 1, cannot be deformed from one to the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Rectangular Box Consider a rectangular box of size n × m, m n W1 W3 W2 W4 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) The 5d SCFT this describes admits several well-known low energy gauge theory deforma- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The toric threefold singularity is not a hypersurface, but it is described by the pair of equations W1W3 = Zm , W2W4 = Zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7) We can add white dots on the right segment, labeled by W1, exactly as in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The deformed equations are W1W3 = Zm , W2W4 = � i (Zλi + a(i)W1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8) Note that again, the coordinate W1 is used to deform the An−1 equation involving the coordinates labeling the adjacent edges W2 and W4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 30 – Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The following example is a useful check of this proposal, as the resulting model is related to T3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider the case m = 3, n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Placing a white dot on the length 2 edge yields the equations W1W3 = Z3 , W2W4 = Z3 + aW1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='9) We can now use the second equation to solve for W1, and we get the hypersurface W2W3W4 = Z2(aZ + W3) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10) In the limit where a → ∞, the D7-brane, in the web interpretation, has crossed the whole brane system from right to left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We are left with W2W3W4 = Z3 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11) and we have reproduced the prediction (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) ↔ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12) This is a consistency check on the validity of our proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3 Generic Triangle In this subsection we consider more examples which involve threefolds what are not hyper- surfaces in C4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider the case where the toric polygon is a triangle, of arbitrary shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Pick one edge of length n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Then an SL(2, Z) transformation can bring the triangle to a frame where its three vertices are: {(0, 0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (0, n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (−a, b)} , a ∈ Z>0, b ∈ Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13) This means the toric fan is generated by the three vectors (0, 0, 1), (0, n, 1) and (−a, b, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Among the generators of the dual cone we have (−1, 0, 0) ↔ W1 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='14) �n − b d2 , − a d2 , an d2 � ↔ W2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) � b d1 , a d1 , 0 � ↔ W3 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16) (0, 0, 1) ↔ Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='17) In order to write the equation of the threefold, we have introduced d1 = gcd(a, b), d2 = gcd(a, n − b) and d3 = gcd(a, b, n − b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' One of the equations for the toric threefold is W n/d3 1 W d2/d3 2 W d1/d3 3 = Zan/d3 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18) but in general there are other equations, as there are other generators in the dual cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the case of Tn (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1), equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18) is sufficient and reduces to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6), but this is a special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' To illustrate this phenomenon, we consider an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 31 – Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We take the case a = 2 and b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 2 2n W1 W2 W3 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='19) The dual cone is generated by 5 vectors:6 (−1, 0, 0) ↔ W1 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='20) (n, −1, 2n) ↔ W2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='21) (0, 1, 0) ↔ W3 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='22) (0, 0, 1) ↔ Z (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='23) (1, 0, 2) ↔ T (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='24) and the threefold is described by two equations in C5: W n 1 W2W3 = Z2n , W1T = Z2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='25) The first equation corresponds to (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The singular locus associated to the length 2n edge is Z = W2 = W3 = T = 0, parametrized by W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Setting as before W1 = c, we can eliminate T and we find as expected an equation cnW2W3 = Z2n that we can deform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Therefore, the system of equations for the triangle (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='19) with one white dot on the long edge according to our conjecture is ↔ � W n 1 W2W3 = Z2n−2(Z2 + aW1) W1T = Z2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='26) 6There is an algorithmic way to see that the fifth vector (1, 0, 2) is needed, an no other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is the computation of the Hilbert basis of the semi-group σ∨ ∩M, using standard notation in toric geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This Hilbert basis is unique, and in the present case it has 5 elements, given here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 32 – 5 Testing the Proposal: Resolution of Singularities To test the proposal for the deformation of singularities, we compute the resolutions for the deformed singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For the starting point, which we take to be a toric variety, the resolution is easily obtained in a combinatorial fashion, by a complete triangulation of the toric polygon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' However, no such computational simplification exists yet for the resolution of GTPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In view of this, we therefore need to revert to resolving the actual algebraic varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We will carry this out for the Tn theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 Crepant Resolution of Tn The simplest type of singularities are the hypersurfaces that realize the Tn theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The flavor symmetry algebra is su(n)3 except for n = 3, where we expect e6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This can be easily detected from the toric geometry by extracting the set of curves that are complete intersections between compact and non-compact (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' flavor) divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The resulting so- called combined fiber diagram (CFD) [26–28] is easily read off from the toric polygon [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Here we will take the more laborious path of resolving the hypersurface singularity, in preparation for resolving the deformed singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The hypersurface in C4 is W1W2W3 = Zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1) The first resolution for all of these singularities is simply to remove the locus W1 = W2 = W3 = Z = 0, which is achieved by inserting a P3 with projective coordinates [W1, W2, W3, Z] (for a detailed exposition of resolutions from a physicist’s perspective, see [97]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Denoting the exceptional section of the blowup by δ1 the equation, after proper transform, which ensures that the resolution is crepant, becomes W1W2W3 = Znδn−3 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2) This can be further resolved by consecutively blowing up the loci W1 = W2 = W3 = δi = 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' by inserting another projective space with coordinates [W1, W2, W3, δi] , i = 1, · · · , ⌊n − 3i⌋ , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) which implies that the coordinates cannot vanish at the same time (and thus the above is a relation in the Stanley-Reissner ideal of the hypersurface).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is iterated until we reach W1W2W3 = Zn ⌊n−3i⌋ � i=1 δn−3i i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) The remaining blowups will resolve the local singularities along W1 = 0, W2 = 0 and W3 = 0 respectively, by small resolutions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [Wi, Z] , or [Wi, δi] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) Let us denote the compact divisors by Si and the non-compact divisors by Da.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We then find from these resolutions the intersection matrix Ga = � i Si · Da · Da (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) – 33 – T3 T3 with deformation [1, 2] Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' CFDs: The intersection graph for T3 (left hand side) and the deformation of T3 described by the partition [1, 2] (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The nodes are curves that are complete intersections between � Si (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' the sum of all compact divisors) and the non-compact divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The green nodes are −2 self-intersection curves, which correspond to roots of the flavor symmetry algebra, white are −1 curves, which can be thought of as bifundamental matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the left we see the su(3)3 flavor symmetry and the matter in the (3, 3, 1) etc, which enhances to e6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the right the theory is rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' to be precisely the adjacency matrix of the CFD for Tn: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' three su(n) Cartan matrices, pairwise connected by −1 curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We have shown examples in figures 11 and 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2 Resolution of Deformations of Tn Deformations of T3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' By including the deformations, some of the above resolutions get obstructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lets consider the simplest case of T3, which itself is the rank 1 Seiberg theory with flavor symmetry e6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' After a single blowup [W1, W2, W3, Z] we get one compact divisor δ1 = 0, and three A2 singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Resolving yields the CFD shown in figure 11 on the left hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The representations are (3, 3, 1), and cyclic permutations, and thus we get the known enhancement to e6 7, (3, 3, 1) ⊕ (1, 3, 3) ⊕ (3, 1, 3) −→ 27 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7) Adding the deformation results in W1W2W3 = Z(Z2 + W1), which does not allow for a big resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' There are small resolutions, along e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' W1 = Z = 0, indicating that this is a rank 0 theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Deformations of T4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' More interestingly we can start with T4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' All deformations involving a single edge and yielding a positive rank theory are shown in table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The deformation that is associated to the partition [2, 12] along one edge is the hypersurface W1W2W3 = Z2(Z2 + W1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8) 7From the geometry we are also able to extract the flavor symmetry group [42, 98], which however will not play a role in the present paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 34 – Partitions Rank Free Symmetry Equation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [14] 3 0 su(4)3 W1W2W3 = Z4 12 [2, 12] 2 0 su(8) ⊕ su(2) W1W2W3 = Z2(Z2 + W1) 12 [22] 1 0 e7 W1W2W3 = (Z2 + aW1)(Z2 + bW1) 12 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The partition that defines the distribution of white dots in the GTP, the rank of the 5d SCFT, the flavor symmetry algebra, as well as hypersurface equation for the deformations of T4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The first resolution (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) results in W1W2W3 = δ2Z4 + Z2W1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='9) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='Continuing the blowup results in the intersection matrix between the sum of compact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='divisors � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='i Si and each of the non-compact ones ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='Si ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='Da · Db = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='−1 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 −1 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 −2 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 −1 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 −2 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 −2 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 −2 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 −1 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 −2 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 −1 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 −2 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1 −2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='ab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10) This is shown in figure 12, from which the manifest flavor symmetry algebra is read off from the collection of −2 curves su(4)2 ⊕ su(2) ⊕ u(1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11) The additional u(1) follows from the general rule on flavor symmetry algebras from CFDs as laid out in [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The matter is in the representations, which combine naturally into the representations of the enhanced symmetry algebra as follows (4, 4, 1) ⊕ (6, 1, 1) ⊕ (1, 6, 1) ⊕ (4, 1, 2) ⊕ (1, 4, 2) −→ (28, 1) ⊕ (8, 2) , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12) where we identify the enhanced flavor symmetry algebra as gUV = su(8) ⊕ su(2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13) Similarly for the partition [22], the manifest symmetry is su(4)2, while the actual symmetry is e7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the resolution, see figure 12 on the right hand side, where we see the representation (4, 4) ⊕ (4, 4) ⊕ 2 × (6, 1) ⊕ 2 × (1, 6) −→ 56 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='14) These indeed arise from the branching of the 56 of e7 to su(4)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 35 – T4 T4 with deformation [12, 2] T4 with deformation [22] Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' CFDs: The intersection graph for T4 (left hand side) and the deformation of T4 described by the partition [122] (middle) and deformation of T4 with partition [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The nodes are curves that are complete intersections between � Si (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' the sum of all compact divisors) and the non-compact divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The green nodes are −2 self-intersection curves, which correspond to roots of the flavor symmetry algebra, white are −1 curves, which can be thought of as bifundamental matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the left we see the su(4)3 flavor symmetry and the matter in the (4, 4, 1) etc representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the middle, we see the manifest flavor symmetry su(4)2 ⊕ su(2) ⊕ u(1), but the matter shown results in the enhancement to su(8) ⊕ u(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' On the right the flavor symmetry enhances to e7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Partitions Rank Symmetry Equation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [15] 6 su(5)3 W1W2W3 = Z5 13 [2, 13] 5 su(5)2 ⊕ su(3) ⊕ u(1) W1W2W3 = Z3(Z2 + W1) 13 [22, 1] 4 su(5)2 ⊕ su(2) ⊕ u(1) W1W2W3 = Z(Z2 + W1)2 15 [3, 12] 3 su(10) ⊕ su(2) W1W2W3 = Z2(Z3 + W1) 13 [3, 2] 2 su(10) W1W2W3 = (Z2 + W1)(Z3 + W1) 14 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Deformations of the T5 model: the partition that defines the GTP, the rank of the expected 5d SCFT, the flavor symmetry algebra, and the deformed hypersurface equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Deformations of T5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Finally consider the T5 model with deformations added along a single edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These are summarized in table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' First we recompute the resolution of the undeformed T5 model, which is given in figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The flavor symmetry algebra and the representation of the hypers is gUV = su(5)3 : (5, 5, 1) ⊕ (1, 5, 5) ⊕ (5, 1, 5) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) The CFD is shown in figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Adding a single white dot results in a theory with flavor algebra su(5)2 ⊕ su(3) ⊕ u(1), with the CFD shown in the middle in figure 13, which has bifundamental matter consistent with these flavor symmetry algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Adding two white dots along a single edge in the partition [3, 12] we obtain the right hand figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The representations under su(5)2 ⊕ su(2) are (5, 5, 1) ⊕ (1, 5, 2) ⊕ (5, 1, 2) ⊕ (10, 1, 1) ⊕ (1, 10, 1) −→ (45, 1) ⊕ (10, 2) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16) – 36 – T5 T5 with deformation [13, 2] T5 with deformation [12, 3] Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' CFDs: The intersection graph of −2 (green) and (−1) (white) curves, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' the CFD, for T5 (LHS), the partition [2, 13] in the middle, and [3, 12] on the right hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' which is consistent with the flavor symmetry enhancement to gUV = su(10) ⊕ su(2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='17) Similarly for [3, 2] we computed the resolution and find the CFD shown in figure 14, which shows the representations under su(5)2 to be (5, 5) ⊕ (10, 1) ⊕ (1, 10) −→ 45 , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='18) which is consistent with the enhancement to su(10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Finally consider figure 15, where we manifestly see the su(5) but the su(2) is decomposed into u(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For partition [22, 1], although the su(2) factor of the global symmetry is not directly visible in the resolution, an educated guess allows to read the following representations of su(5) ⊕ su(5) ⊕ su(2) on figure 15: (5, 1, 1) ⊕ (1, 5, 1) ⊕ (10, 1, 2) ⊕ (5, 10, 2) ⊕ (5, 5, 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='19) Again, the flavor symmetry algebra is consistent with the one predicted from GTPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Acknowledgments We would like to thank Cyril Closset for collaboration in early stages of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' AB and SSN thank Hendrik S¨uß for discussions of related questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This work, in particular AC and SSN, was supported and enabled by the Fondation Wiener-Anspach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This research is further supported by IISN-Belgium (convention 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' AB is supported by the ERC Consolidator Grant 772408-Stringlandscape, and by the LabEx ENS-ICFP: ANR- 10-LABX-0010/ANR-10-IDEX-0001-02 PSL*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' SSN is supported in part by the “Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics” and the EPSRC Open Fellowship EP/X01276X/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 37 – T5 with deformation [2,3] Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' CFDs: The intersection graph for T5 with the deformation labeled by the partition [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We see the su(5)2 ⊕ u(1) and the matter in the (5, 5) ⊕ (10, 1) ⊕ (1, 10) which enhance into 45 of su(10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' T5 with deformation [1, 22] Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' CFDs: The intersection graph for T5 with the deformation labeled by the partition [1, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A Basic algebraic notions for sln This appendix gathers a few elementary algebraic concepts needed in the bulk of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In the following, we take g = sln(C), which we represent as n × n complex matrices with vanishing trace, and we pick the diagonal matrices for the Cartan subalgebra h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Nilpotent Orbits and Triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let e be a nilpotent element of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' By the Jacobson- Morozov theorem, one can construct an sl2 triple (e, f, h), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' a triple of elements of g with h ∈ h satisfying the commutation relations [e, f] = h , [h, e] = 2e , [h, f] = −2f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1) More precisely, there exists an embedding ρ : sl2 −→ g , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2) – 38 – such that ρ(e) defines a nilpotent element of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In our case, nilpotent orbits are charac- terized by partitions of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' For the partition λ = (λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , λr), there is a canonical triple, where e is in the Jordan form specified by λ, h is diagonal and f is lower diagonal, defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider first the maximal orbit, λ = (n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In this case we define the canonical triple e = Jn, h = Hn and f = ˜Jn where (Jn)i,j = δi+1,j , (Hn)i,j = δi,j(n + 1 − 2i) , ( ˜Jn)i,j = δi−1,jj(n − j) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3) Then for any partition λ the canonical triple is the block diagonal e = Diag(Jλi) , f = Diag( ˜Jλi) , h = Diag(Hλi) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) Slodowy Slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Given a triple (e, f, h), one constructs the space Se = e + gf , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5) where gf is the centralizer of f in g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This is called the Slodowy slice transverse to e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that this should not be confused with the nilpotent Slodowy slice, which is the intersection of the Slodowy slice with the nilpotent cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' When (e, f, h) is the canonical nilpotent element (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4) associated to partition λ, we call Sλ the Slodowy slice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In order to construct explicitly Sλ, we first need the set of matrices which commute with ˜Jn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' These are the matrices S(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , an) with a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , an ∈ C, defined by8 (S(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , an))ij := n−1 � k=0 ak+1δi−k,j i−1 � l=j l(n − l) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7) Then the centralizer gf is a set of block matrices of sizes λi × λj, where the block (i, j) depends on min(λi, λj) parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We will not need its explicit form here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We only need the form of the diagonal blocks (i = j), which are of the form S(a(i) 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , a(i) λi ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='8) Using this, we can compute the dimension of the Slodowy slices, which is dim Sλ = −1 + � 1≤i,j,≤r min(λi, λj) = −(n + 1) + 2 r � i=1 iλi (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='9) and dim Sλ ∩ N = dim Sλ − (n − 1) = −2n + 2 r � i=1 iλi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10) 8The matrices S(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , an) for low values of n are: S(a1, a2) = � a1 0 a2 a1 � , S(a1, a2, a3) = � � � a1 0 0 2a2 a1 0 4a3 2a2 a1 � � � , S(a1, a2, a3, a4) = � � � � � a1 0 0 0 3a2 a1 0 0 12a3 4a2 a1 0 36a4 12a3 3a2 a1 � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6) – 39 – The dimension of the nilpotent cone N is n(n − 1), and therefore we can deduce that the dimension of the nilpotent orbit of e is dim Oλ = n(n + 1) − 2 r � i=1 iλi , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11) which matches known results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Levi subalgebras and Slodowy slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A Borel subalgebra b of g is a maximal solvable subalgebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The standard choice, which we make, is to pick for b the upper triangular matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The simple roots αi can be indexed by i ∈ I := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , n − 1}, and to every subset Θ of I one can associate a parabolic subalgebra pΘ of g containing b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' This parabolic subalgebra decomposes as a direct sum pΘ = lΘ ⊕ nΘ (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12) where lΘ is the Levi subalgebra and nΘ is the nilradical of pΘ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Let λ = (λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , λr) be a partition of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We associate to this partition the set Θλ = I − {λ1, λ1 + λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , λ1 + · · · + λr−1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13) This way, one can construct the corresponding Levi subalgebra lλ := lΘλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' We then intro- duce the intersection S0 λ := Sλ ∩ lλ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='14) With out choices, lλ is simply the algebra of block diagonal matrices, with blocks of respective sizes λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , λr, and S0 λ is the set of traceless matrices which are block diagonal, with diagonal blocks Jλi +S(a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , aλi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' The dimension is dim S0 λ = n−1, independent of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Companion matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It is easy to check that the matrix Jn + S(0, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , an) can be conjugated to a matrix of the form C(b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , bn) := � � � � � � � � 0 1 0 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 0 1 (−)n−1bn (−)n−2bn−1 · · −b2 0 � � � � � � � � (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) where the bi are known functions of the ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Note that the change of basis depends explicitly on the ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A matrix in the form (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15) is called a companion matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' It has the convenient property that its characteristic polynomial (evaluated at −z) is det(z1n + C) = zn + n � i=2 bizn−i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16) Any matrix in S0 λ can then be conjugated to a block diagonal matrix with blocks of the form C(b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' , bλi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 40 – Cokernel of ad(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Consider a finite dimensional representation ρ : sl(2) → V of sl(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' One can decompose V into irreducible representations Vi of dimensions ni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' In each irrep, the image of ρ(e) has codimension 1, and the cokernel is spanned by the weight space of lowest weight, which by definition is precisely the kernel of ρ(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Therefore in the Lie algebra g seen as an sl(2) representation defined by a triple (e, f, h), the cokernel of ad(e) is gf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B 388 (1996) 753–760, [hep-th/9608111].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Morrison and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B 483 (1997) 229–247, [hep-th/9609070].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [3] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Aharony and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, Branes, superpotentials and superconformal fixed points, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B 504 (1997) 239–271, [hep-th/9704170].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [4] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Aharony, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002, [hep-th/9710116].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [5] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' DeWolfe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Iqbal and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006, [hep-th/9902179].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [6] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bergman and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163, [1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='03860].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [7] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, Brane webs, 5d gauge theories and 6d N = (1, 0) SCFT’s, JHEP 12 (2015) 157, [1509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='02016].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109, [1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='08114].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Ohmori and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Shimizu, S1/T 2 compactifications of 6d N = (1, 0) theories and brane webs, JHEP 03 (2016) 024, [1509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='03195].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lee and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, Discrete theta angle from an O5-plane, JHEP 11 (2017) 041, [1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='07181].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lee and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, 5-brane webs for 5d N = 1 G2 gauge theories, JHEP 03 (2018) 125, [1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='03916].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lee and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP 12 (2018) 016, [1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10569].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Closset, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Del Zotto and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 6 (2019) 052, [1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10451].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Leung and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa, Branes and toric geometry, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 2 (1998) 91–118, [hep-th/9711013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Intriligator, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Morrison and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B 497 (1997) 56–100, [hep-th/9702198].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Benini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Benvenuti and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Tachikawa, Webs of five-branes and N=2 superconformal field theories, JHEP 09 (2009) 052, [0906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='0359].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 41 – [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cherkis, Phases of Five-dimensional Theories, Monopole Walls, and Melting Crystals, JHEP 06 (2014) 027, [1402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='7117].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Xie and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yau, Three dimensional canonical singularity and five dimensional N = 1 SCFT, JHEP 06 (2017) 134, [1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='00799].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Del Zotto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Morrison, 6D SCFTs and Phases of 5D Theories, JHEP 09 (2017) 147, [1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='02981].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Alexandrov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Banerjee and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Longhi, Rigid limit for hypermultiplets and five-dimensional gauge theories, JHEP 01 (2018) 156, [1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10665].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [21] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Jefferson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, 1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='05836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [22] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Jefferson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Katz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa, On Geometric Classification of 5d SCFTs, JHEP 04 (2018) 103, [1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04036].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Jefferson, Classifying 5d SCFTs via 6d SCFTs: Rank one, JHEP 07 (2019) 178, [1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='01650].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Jefferson, Classifying 5d SCFTs via 6d SCFTs: Arbitrary rank, JHEP 10 (2019) 282, [1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10616].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [25] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Apruzzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lin and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Mayrhofer, Phases of 5d SCFTs from M-/F-theory on Non-Flat Fibrations, JHEP 05 (2019) 187, [1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12400].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [26] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Apruzzi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lawrie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, 5d Superconformal Field Theories and Graphs, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B 800 (2020) 135077, [1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11820].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [27] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Apruzzi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lawrie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, Fibers add Flavor, Part I: Classification of 5d SCFTs, Flavor Symmetries and BPS States, JHEP 11 (2019) 068, [1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='05404].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [28] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Apruzzi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lawrie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, Fibers add Flavor, Part II: 5d SCFTs, Gauge Theories, and Dualities, JHEP 03 (2020) 052, [1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='09128].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [29] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Jefferson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Tarazi and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa, Twisted Circle Compactifications of 6d SCFTs, JHEP 12 (2020) 151, [1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11666].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [30] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, Do all 5d SCFTs descend from 6d SCFTs?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=', JHEP 04 (2021) 085, [1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='00025].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [31] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Apruzzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, 5d SCFTs from Decoupling and Gluing, JHEP 08 (2020) 153, [1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04264].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [32] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Closset, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, Coulomb and Higgs Branches from Canonical Singularities: Part 0, JHEP 02 (2021) 003, [2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15600].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Closset, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Giacomelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, 5d and 4d SCFTs: Canonical Singularities, Trinions and S-Dualities, JHEP 05 (2021) 274, [2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12827].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [34] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Closset, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, Coulomb and Higgs branches from canonical singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Part I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hypersurfaces with smooth Calabi-Yau resolutions, JHEP 04 (2022) 061, [2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13564].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [35] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, Classification of 5d N = 1 gauge theories, JHEP 12 (2020) 099, [2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04333].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [36] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, More 5d KK theories, JHEP 03 (2021) 054, [2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='01722].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 42 – [37] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, Flavor symmetry of 5d SCFTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Part I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' General setup, JHEP 09 (2021) 186, [2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13230].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [38] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, Flavor symmetry of 5d SCFTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Part II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Applications, JHEP 04 (2021) 221, [2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='13235].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [39] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Morrison, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Willett, Higher-Form Symmetries in 5d, JHEP 09 (2020) 024, [2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12296].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [40] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Albertini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Del Zotto, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Garc´ıa Etxebarria and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hosseini, Higher Form Symmetries and M-theory, JHEP 12 (2020) 203, [2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12831].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [41] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sch¨afer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP 02 (2021) 159, [2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='09600].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [42] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Apruzzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Oh and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki, The Global Form of Flavor Symmetries and 2-Group Symmetries in 5d SCFTs, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 13 (2022) 024, [2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='08724].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Del Zotto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Meynet, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Moscrop and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhang, Higher symmetries of 5D orbifold SCFTs, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' D 106 (2022) 046010, [2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='08372].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Del Zotto, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Garc´ıa Etxebarria and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki, 2-Group Symmetries and M-Theory, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 13 (2022) 105, [2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='10097].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [45] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Collinucci and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Valandro, The role of U(1)’s in 5d theories, Higgs branches, and geometry, JHEP 10 (2020) 178, [2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15464].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Collinucci, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' De Marco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sangiovanni and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Valandro, Higgs branches of 5d rank-zero theories from geometry, JHEP 10 (2021) 018, [2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='12177].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [47] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bergman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Rodr´ıguez-G´omez and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, 5-Brane Webs, Symmetry Enhancement, and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112, [1311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4199].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [48] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Taki and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097, [1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04439].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [49] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cremonesi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Ferlito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Mekareeya, Instanton Operators and the Higgs Branch at Infinite Coupling, JHEP 04 (2017) 042, [1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='06302].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [50] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP 07 (2015) 167, [1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04743].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [51] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Gaiotto and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, Duality walls and defects in 5d N = 1 theories, JHEP 01 (2017) 019, [1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='03871].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [52] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Ferlito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Mekareeya and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP 07 (2018) 061, [1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='06604].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [53] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cabrera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, Tropical Geometry and Five Dimensional Higgs Branches at Infinite Coupling, JHEP 01 (2019) 068, [1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='01379].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [54] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cabrera, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, Brane Webs and Magnetic Quivers for SQCD, JHEP 03 (2020) 176, [1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='00667].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [55] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' van Beest, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Eckhard and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki, (Symplectic) Leaves and (5d Higgs) Branches in the Poly(go)nesian Tropical Rain Forest, JHEP 11 (2020) 124, [2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='05577].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 43 – [56] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Van Beest, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Eckhard and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki, (5d RG-flow) Trees in the Tropical Rain Forest, JHEP 03 (2021) 241, [2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='07033].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [57] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sperling, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, Magnetic quivers for rank 1 theories, JHEP 09 (2020) 189, [2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='16994].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [58] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Giacomelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Martone, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Tachikawa and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, More on N = 2 S-folds, JHEP 01 (2021) 054, [2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='03943].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [59] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Giacomelli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sperling and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, S-fold magnetic quivers, JHEP 02 (2021) 054, [2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='05889].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [60] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Akhond and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Carta, Magnetic quivers from brane webs with O7+-planes, JHEP 10 (2021) 014, [2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='09077].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [61] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' van Beest and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Giacomelli, Connecting 5d Higgs branches via Fayet-Iliopoulos deformations, JHEP 12 (2021) 202, [2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='02872].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [62] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Martone and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, Magnetic quivers for rank 2 theories, JHEP 03 (2022) 208, [2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11365].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [63] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kalveks and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, Higgs branches of U/SU quivers via brane locking, JHEP 08 (2022) 061, [2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04745].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [64] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sperling and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, Magnetic Quivers from Brane Webs with O5 Planes, JHEP 07 (2020) 204, [2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04082].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [65] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Akhond, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Carta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Dwivedi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, Five-brane webs, Higgs branches and unitary/orthosymplectic magnetic quivers, JHEP 12 (2020) 164, [2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='01027].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [66] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sperling and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, Balanced B and D-type orthosymplectic quivers - magnetic quivers for product theories, JHEP 04 (2022) 145, [2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='00026].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [67] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bergman and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141, [1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2806].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [68] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lee and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams, JHEP 05 (2019) 203, [1509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='03300].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [69] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hayashi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lee and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Yagi, Rank-3 antisymmetric matter on 5-brane webs, JHEP 05 (2019) 133, [1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04754].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [70] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Uhlemann, Wilson loops in 5d long quiver gauge theories, JHEP 09 (2020) 145, [2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='01142].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [71] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bergman and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Rodr´ıguez-G´omez, The Cat’s Cradle: deforming the higher rank E1 and ˜E1 theories, JHEP 02 (2021) 122, [2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='05125].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [72] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Gomez and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sharpe, D-branes and scheme theory, hep-th/0008150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [73] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Donagi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wijnholt, Gluing Branes, I, JHEP 05 (2013) 068, [1104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2610].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [74] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cecotti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cordova, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030, [1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='5780].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [75] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Rudelius and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Tomasiello, 6D RG Flows and Nilpotent Hierarchies, JHEP 07 (2016) 082, [1601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04078].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [76] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Del Zotto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Tomasiello and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa, 6d Conformal Matter, JHEP 02 (2015) 054, [1407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='6359].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [77] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Beauville, Symplectic singularities, arXiv preprint math/9903070 (1999) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 44 – [78] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kaledin, Symplectic singularities from the poisson point of view, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [79] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cabrera, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sperling, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zajac and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, The Higgs mechanism — Hasse diagrams for symplectic singularities, JHEP 01 (2020) 157, [1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04245].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [80] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Eckhard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Wang, Trifectas for TN in 5d, JHEP 07 (2020) 199, [2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='15007].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [81] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Douglas, D-branes, categories and N=1 supersymmetry, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 42 (2001) 2818–2843, [hep-th/0011017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [82] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sharpe, Lectures on D-branes and sheaves, 7, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' hep-th/0307245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [83] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Collinucci and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Savelli, T-branes as branes within branes, JHEP 09 (2015) 161, [1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='4178].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [84] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Stanley, Smith normal form in combinatorics, Journal of Combinatorial Theory, Series A 144 (2016) 476–495.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [85] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Beasley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP 01 (2009) 058, [0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='3391].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [86] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Anderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Katz, T-Branes and Geometry, JHEP 05 (2014) 080, [1310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='1931].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [87] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Anderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Heckman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Katz and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schaposnik, T-Branes at the Limits of Geometry, JHEP 10 (2017) 058, [1702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='06137].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [88] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Collingwood and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' McGovern, Nilpotent orbits in semisimple Lie algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Routledge, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [89] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kraft and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Procesi, Minimal singularities ingl n, Inventiones mathematicae 62 (1980) 503–515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [90] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cabrera and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, Branes and the Kraft-Procesi Transition, JHEP 11 (2016) 175, [1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='07798].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [91] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cabrera and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04 (2018) 127, [1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='02378].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [92] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Cabrera and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, Quiver Subtractions, JHEP 09 (2018) 008, [1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='11205].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [93] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bourget, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Grimminger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Sperling and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Zhong, Branes, Quivers, and the Affine Grassmannian, 2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='06190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [94] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Gaiotto and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Witten, Supersymmetric Boundary Conditions in N=4 Super Yang-Mills Theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' 135 (2009) 789–855, [0804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2902].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [95] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Hanany and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Kalveks, Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits, JHEP 06 (2016) 130, [1601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='04020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [96] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Altmann, One-parameter families containing three-dimensional toric gorenstein singularities, Explicit birational geometry of (2000) 21–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [97] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Lawrie and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki, The Tate Form on Steroids: Resolution and Higher Codimension Fibers, JHEP 04 (2013) 061, [1212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='2949].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' [98] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bhardwaj, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Bullimore, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Ferrari and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' Schafer-Nameki, Generalized Symmetries and Anomalies of 3d N=4 SCFTs, 2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content='02249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} +page_content=' – 45 –' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNE4T4oBgHgl3EQfvQ0x/content/2301.05239v1.pdf'} diff --git a/qtFKT4oBgHgl3EQfIC2S/content/tmp_files/2301.11732v1.pdf.txt b/qtFKT4oBgHgl3EQfIC2S/content/tmp_files/2301.11732v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..0783328b7a6eeafc6f2d5c619f9325e8f9c5ad1e --- /dev/null +++ b/qtFKT4oBgHgl3EQfIC2S/content/tmp_files/2301.11732v1.pdf.txt @@ -0,0 +1,1535 @@ +Convolutional neural networks for valid +and efficient causal inference +Mohammad Ghasempour∗, Niloofar Moosavi, Xavier de Luna +Department of Statistics, USBE, Ume˚a University, Ume˚a, Sweden +January 30, 2023 +Abstract +Convolutional neural networks (CNN) have been successful in machine learn- +ing applications. Their success relies on their ability to consider space invariant +local features. We consider the use of CNN to fit nuisance models in semipara- +metric estimation of the average causal effect of a treatment. In this setting, +nuisance models are functions of pre-treatment covariates that need to be con- +trolled for. In an application where we want to estimate the effect of early +retirement on a health outcome, we propose to use CNN to control for time- +structured covariates. Thus, CNN is used when fitting nuisance models explain- +ing the treatment and the outcome. These fits are then combined into an aug- +mented inverse probability weighting estimator yielding efficient and uniformly +valid inference. Theoretically, we contribute by providing rates of convergence +for CNN equipped with the rectified linear unit activation function and com- +pare it to an existing result for feedforward neural networks. We also show +when those rates guarantee uniformly valid inference. A Monte Carlo study +is provided where the performance of the proposed estimator is evaluated and +compared with other strategies. Finally, we give results on a study of the effect +of early retirement on hospitalization using data covering the whole Swedish +population. +∗We are grateful to Xijia Liu and Jenny H¨aggstr¨om for helpful comments that have improved +the paper. +We acknowledge funding from the Swedish Research Council and the Marianne and +Marcus Wallenberg Foundation. The Ume˚a SIMSAM Lab data infrastructure used in this study +was developed with support from the Swedish Research Council, the Riksbanken Jubileumsfond and +by strategic funds from Ume˚a University. +Correspondence: mohammad.ghasemour@umu.se +1 +arXiv:2301.11732v1 [stat.ML] 27 Jan 2023 + +1 +Introduction +Convolutional Neural Networks (CNN) have been found successful in discovering +location-invariant patterns in speech, images, and time series data (LeCun et al., +1995). In particular, they have been shown to have a universal approximation prop- +erty and be more efficient in terms of number of hidden layers than fully-connected +multi-layer networks in high-dimensional situations (Zhou, 2020). In this paper we +show how CNN can be useful in controlling confounding information when using rich +observational databases in order to perform semiparametric inference on a low di- +mensional causal parameter: we focus on average causal effects of a binary treatment +on an outcome of interest, although our results are relevant for the semiparametric +estimation of other low dimensional parameters of interest (see e.g. Chernozhukov +et al., 2018). +Augmented Inverse Probability Weighting (AIPW) estimators (also called Double +Robust (DR) estimators, Robins et al., 1994) attain the semiparametric efficiency +bound and yield uniformly valid inference as long as the nuisance functions of the +confounding covariates are fitted consistenlty with fast enough convergence rates; e.g. +all nuisance functions are estimated with order n−1/4 (Belloni et al., 2014; Farrell, +2015; Kennedy, 2016; Moosavi et al., 2021). +In this paper, we contribute to this +theory by showing that CNN fits of nuisance functions achieve the n−1/4 convergence +rate required to obtain uniformly valid inference on causal parameters. +To show +this we use a result obtained by Farrell et al. (2021) for general Rectified Linear +Unit (ReLU)-based Feed-forward Neural Networks (FNN). They show that, for large +samples, the estimation error rate of FNN are bounded by the following term, with a +probability increasing exponentially with γ: +� +log n/n × complexity penalty + +� +(log log n + γ)/n + approximation rate. +(1) +We deduce the above approximation rate for CNN architectures inspired by earlier +work by Zhou (2020). However, in contrast to the latter paper, we consider a larger +number of free parameters by considering multi-channel convolutional neural network, +so as to achieve a trade-off between complexity penalty and approximation rate in +(1), and thereby obtain the convergence rate n−1/4 for the CNN fit of the nuisance +functions. In the next section we formally define the causal parameters of interest +using the potential outcome framework (Rubin, 1974), and introduce the assumptions +yielding identification, and locally efficient and uniformly valid inference when using +AIPW estimators. We also introduce the convolutional network architectures with +which we propose to fit the nuisance functions used by AIPW, followed by our main +theoretical results, including conditions to obtain uniformly valid inference when using +CNN based AIPW estimation. Section 3 presents numerical experiments illustrating +2 + +the finite sample behaviour of this estimation strategy under different data generat- +ing mechanisms. The proposed estimator is compared to AIPW, Targeted Maximum +Likelihood Estimation (TMLE) (van der Laan and Rose, 2011) and Outcome Re- +gression (OR) estimation (Tan, 2007; Moosavi et al., 2021) using fully-connected +feed-forward ReLU based neural networks (Multilayer Perceptron (MLP) in Farrell +et al., 2021) and Lasso to fit the nuisance functions. In Section 4, we study the effect +of early retirement (at 62 years old), compared to retiring later in life, on morbidity +and mortality outcomes (Barban et al., 2020). We use population wide Swedish reg- +ister data and follow cohorts born in 1946 and 1947 for which we have a rich reservoir +of potential pre-treatment confounders, including hospitalization and income histo- +ries. CNN allows us to consider that such life histories may contain location-invariant +patterns that confound the causal effects of the treatment (decision to retire early). +2 +Theory and method +2.1 +Causal parameters and uniformly valid inference +The Average Causal Effect (ACE) and Average Causal Effect among the Treated +(ACET) of a binary treatment (T) are parameters defined using potential outcomes +(Rubin (1974)), respectively: +τ = E(Y (1)) − E(Y (0)), +τt = E(Y (1) − Y (0)|T = 1), +where Y (1) and Y (0) are the outcomes that would be observed if T = 1 and T = 0, +respectively. +For a given individual only one of these potential outcomes can be +observed. This intrinsic missing data problem implies that assumptions need to be +made to identify τ and τt. For this purpose, and given a vector of observed pre- +treatment covariates X, we assume: +Assumption 1. +a. No unmeasured confounders: +(i) Y (0) +T | X. +(ii) Y (1) +T | X. +b. Overlap: +(i) P(T = 0 | X) > 0. +(ii) P(T = 1 | X) > 0. +c. Consistency: The observed outcome is Y = Y (1)T + Y (0)(1 − T). +3 + +Note that ACET is identified if only 1a(i), 1b(i) and 1c hold. Assumption 1a +requires that the observed vector X includes all confounders. Assumption 1b requires +that for any value X both treatment levels have non-zero probability to occur, and +by Assumption 1c one of the potential outcomes is observed for each individual, and +its value is not affected by the treatment received by other individuals in the sample. +We aim at uniformly (over the class of Data Generating Process (DGP)s, for which +Assumption 2 hold) valid inference while using semiparametric estimation (Moosavi +et al., 2021). +Therefore, the following AIPW estimators of ACE are considered +(Robins et al., 1994; Scharfstein et al., 1999): +ˆτ = En[ ˆψ1(zi) − ˆψ0(zi)] +where En[·] is the empirical mean operator, +ˆψt(zi) = 1{ti = t}(yi − ˆµt(xi)) +ˆP[T = t|X = xi] ++ ˆµt(xi), +and ˆµt(x) is an estimator of µt(x) = E(Y (t) | X = x). +For ACET, we use the estimator +ˆτt = En[ ˆψ1,1(zi) − ˆψ0,1(zi)], +where +ˆψt,t′(zi) = +ˆP[T = t′|X = xi] +ˆP[T = t′] +1{ti = t}(yi − ˆµt(xi)) +ˆP[T = t|X = xi] ++ 1{ti = t′}ˆµt(xi) +ˆP[T = t′] +. +We use the following assumptions for the DGPs. +Assumption 2. We have +a. Let {(yi, ti, xi), i = 1, . . . , n} be an i.i.d. sample from (Y, T, X). +b. Let U = Y (t) − µt(X). There is some r > 0 for which E +� +|µt (xi) µt′ (xi)|1+r� +and E +� +|ui|4+r� +are bounded, for given values of t and t′. +The estimators of the nuisance functions have yet to be introduced for these AIPW +estimation strategies. In order to get the desired results, the proposed estimators +should be well behaved. More precisely, the following consistency and rate conditions +are considered for the nuisance function estimators. +Assumption 3. Let ˆp(x) be an estimator of P[T = 1|X = xi] which only depends on +{xi, ti}n +i=1 (assumption of “no additional randomness”, Farrell, 2015). Moreover, for +a given t we have +4 + +a. En[(ˆp(xi) − p(xi))2] = oP(1) and En[(ˆµt(xi) − µt(xi))2] = oP(1), +b. En[(ˆµt(xi) − µt(xi))2]1/2En[(ˆp(xi) − p(xi))2]1/2 = oP(n−1/2), +c. En[(ˆµt(xi) − µt(xi))(1 − 1{ti = t}/P[T = t|X = xi])] = oP(n−1/2). +The following proposition describes uniform validity results obtained by Farrell +(2018, Corollary 2 and 3) under the above regularity conditions. +Proposition 1. For each n, let Pn be the set of distributions obeying Assumptions +1a(i), 1b(i), 1c and 2a. Further, assume Assumption 2b holds for t = t′ = 0, and let +ˆp(x) and ˆµ0(x) fulfill Assumption 3. Then, we have: +sup +P∈Pn +����PP +� +τt ∈ +� +ˆτt ± cα +� +ˆVt/n +�� +− (1 − α) +���� → 0, +where +ˆVt = n2 +n2 +t +En +� +1(ti = 1) (yi − ˆµ0 (xi) − ˆτt)2� ++n2 +n2 +t +En +� +ˆp (xi)2 +(1 − ˆp (xi))21(ti = 0) (yi − ˆµ0 (xi))2 +� +, +nt = Σn +i=11(T = t) and cα = Φ−1(1 − α/2). +Let also Assumptions 1a(ii), 1b(ii) be fulfilled and Assumption 2b hold for t, t′ ∈ +{0, 1}. Additionally, assume ˆµ1(x) fulfills Assumption 3. Then, we have: +sup +P∈Pn +����PP +� +τ ∈ +� +ˆτ ± cα +� +ˆV /n +�� +− (1 − α) +���� → 0, +where +ˆV = En +� +1(ti = 1) (yi − ˆµ1 (xi))2 +ˆp (xi)2 +� ++ En +�� +ˆµ1 (xi) − En[ ˆψ1(zi)] +�2� ++ En +� +1(ti = 0) (yi − ˆµ0 (xi))2 +(1 − ˆp (xi))2 +� ++ En +�� +ˆµ0 (xi) − En[ ˆψ0(zi)] +�2� +. +Remark 1. A multiplicative rate condition as Assumption 3(b) is weaker than sepa- +rate conditions on the two nuisance model estimators. It only requires that one of the +nuisance functions is estimated at faster rate if the other one is estimated at slower +rate. However, using the regularity conditions in this paper and Farrell et al. (2021), +the rate oP(n−1/4) is obtained for each of the nuisance estimators separately. This is +to make sure Assumption 3(c) for ˆµ is also fulfilled. This assumption can be, however, +dropped by considering sample splitting (Chernozhukov et al., 2018). +Note, finally, that because the AIPW estimators is based on the efficient influence +function, its asymptotic variance is equal to the semiparametric efficiency bound +(Tsiatis, 2006). +5 + +2.2 +Convolutional neural networks +We consider a specific CNN architecture with parallel hidden layers structured as +follows. Let the input column vector be denoted by h0 := (x1, · · · , xd)′ ∈ Ω, where +Ω ⊆ Rd. We consider L to be the number of hidden layers in which we have E number +of parallel vectors. Let σ be the ReLU function defined on the space of real numbers +as σ(z) = max(0, z) for z ∈ R. The vectors in each hidden layer l ∈ {1, · · · , �L} have +size dl and are defined by hl +e = σ(W l +ehl−1 +e +− be +l ), where e ∈ {1, · · · , E}, h0 +e = h0, be +l +is a vector called bias vector in the neural network literature, W l +e is a weight matrix +defined as: +W l +e = +� +��������������������� +we +0,l +0 +0 +0 +· · · +0 +we +1,l +we +0,l +0 +0 +· · · +0 +... +... +... +... +· · · +... +we +S,l +we +S−1,l +· · · +we +0,l +0 · · · +0 +0 +we +S,l +we +S−1,l +· · · +we +0,l · · · +0 +... +... +... +... +· · · +... +... +· · · +0 +we +S,l +· · · +we +0,l +... +· · · +· · · +0 +we +S,l · · · +we +1,l +... +... +... +... +... +... +0 +· · · +· · · +· · · +0 +we +S,l +we +S−1,l +0 +· · · +· · · +· · · +· · · 0 +we +S,l +� +��������������������� +, +and the weight parameter we +i,l is the i-the element of the filter mask (we +0,l, · · · , we +S,l). +S is considered fixed through all values of l and e. We have dl = d0 + Sl, where dl is +the size of vectors in the l-th layer and d0 = d. +The structure of a CNN as defined above provides us with the following function +space on Ω: +C = { +E +� +e=1 +c′ +ehL +e : ce ∈ RdL}. +Similar to Zhou (2020) (who, however, uses E = 1) we assume that for all values +of e in {1, · · · E} and l in {1, · · · , L−1} the vector be +l has the form (be +l,1, · · · , be +l,S, be +l,S+1, +· · · , be +l,S+1, be +l,dl−S+1, · · · , be +l,dl)′ with the dl − 2S repeated components in the middle. +Therefore, the total number of parameters (duplicate/shared weights are counted +more than once), Q for the neural network fulfills the following inequality: +Q = E(d(1 + s)(L − 1) + s(1 + s)L(L − 1)/2 + (s + 3)(d + sL)) ≍ EL2, +(2) +where the notation xn ≍ yn for two sequences of random variables xn and yn means +xn = OP(yn) and yn = OP(xn). +6 + +2.3 +Main results +In this section, we provide results that allow us to use the CNN architectures described +above to fit the nuisance models needed for AIPW estimations of ACE and ACET, +and obtain uniformly valid inference. In particular, we need to show that the rate +conditions in Assumption 3 are fulfilled. +Assumption 4. Assume that zi = (ui, v′ +i)′ , 1 ≤ i ≤ n are i.i.d. +copies of Z = +(U, V ) ∈ [−1, 1]d × V, where U is continuously distributed. For an absolute constant +M > 0 and a target f ∗ (a nuisance function), assume V ∈ [−M, M] and ∥f ∗∥∞ ≤ M. +Assumption 5. Let ℓ be a loss function that, for any arbitrary functions f and g +and z a realization of Z, fulfills: +|ℓ(f, z) − ℓ(g, z)| ≤ Cℓ|f(x) − g(x)|, +c1E((f − ˜f)2) ≤ E(ℓ(f, Z)) − E(ℓ( ˜f, Z)) ≤ c2E((f − ˜f)2), +where ˜f = arg min E(ℓ(f, Z)). +Further, let F be an arbitrary set of functions. We define: +ˆfF := arg min +f∈F +∥f∥∞≤M′ +n +� +i=1 +ℓ(f, z), +(3) +and +εF,F′ := sup +f∈F +inf +f′∈F′ +∥f′∥∞≤M′ +∥f − f ′∥∞ , +(4) +where ∥·∥∞ is the supremum norm. The following result is a special case of Theorem +2(b) given in Farrell et al. (2021), and gives the rate of convergence for our estimate +ˆfC of a target f ∗ (a nuisance function). Prior to presenting the theorem, the target +space in which we seek to find the nuisance functions need to be defined. We use the +notation W β,∞(Ω) for the Sobolev space with smoothness β ∈ N+. We consider W to +be the unit ball on the Sobolev space defined on [−1, 1]d; W := B1(W β,∞([−1, 1]d)) +such as: +W := {f : max +α,|α|≤β ∥Dαf(x)∥L∞([−1,1]d) ≤ 1}, +where ∥f∥L∞(Ω) is the essential supremum norm of the absolute value of a function f +defined on Ω, α = (α1, · · · , αd)′, |α| = α1 + · · · + αd, and Dαf is the weak derivative. +7 + +Theorem 1. Let f ∗ ∈ W, and assume that Assumptions 4-5 hold. For an absolute +constant M > 0 and M ′ = 2M, let the approximation error εW,C be defined as in (4). +With probability at least 1 − e−γ, and for large enough n, +En[( ˆfC − f ∗)2] ≤ C +� +QL log Q +n +log n + log log n + γ +n ++ ε2 +W,C +� +, +(5) +where the constant C > 0 is independent of n, but may depend on d, M, and other +fixed constants. +Our next step is to bound the term ε2 +W,C in the above inequality on the estimation +error. The following result is similar to Theorem 1 in Zhou (2020). However, we allow +here the number of parallel layers to grow with n, which translates into faster growing +function space for our specific CNN architectures, thereby a larger decay rate for the +error. +Theorem 2. Let 2 ≤ s ≤ d. If L ≥ 2d/(s − 1) and f ∈ W, ∥f∥∞ ≤ M and an +integer index β > 2 + d/2, then there exist w, b and f w,b +L,E ∈ C such that +���f − f w,b +L,E +��� +C([−1,1]d) ≤ c2d/2� +log(LE) 1 +LE +1 +2 + 1 +d, +where c is an absolute constant and therefore +εW,C ≤ C +� +log(LE) 1 +LE +1 +2 + 1 +d. +Finally, our main result gives conditions for the CNN nuisance function fit to fulfill +Assumption 3, and therefore conditions for AIPW estimation based on CNN fit to +yield uniformly valid inference for ACE and ACET (Proposition 1). +Theorem 3. Let the conditions in Theorem 1 hold for ui = xi, vi = yi, and f ∗ = µt. +Moreover the same conditions are fulfilled for ui = xi, vi = ti, and f ∗ = p. Let +also E ≍ n +d +2d+4, L ≍ n +1 +4d+8 log2(n), β = βp ∧ βµ, and s and d fulfill the assumptions +of Theorem 2. Then, the rate conditions in Assumption 3 are fulfilled for nuisance +functions estimators (3) with F = C. +Remark 2. The rate result for CNN based estimators in Theorem 3 corresponds to +similar results for MLP in Farrell et al. (2021, Theorem 3). However, the conditions +on smoothness is less strict in our case. The rate of growth for the number of pa- +rameters considered for MLP based estimators in Farrell et al. (2021, Theorem 1) is +n +d +β+d log5 n, while we have considered the growth rate n +d+1 +2d+4 log4(n). These rates are +similar up to a log factor if d is large and β is close to d. Notice, however, that these +are not necessarily minimal rates required for valid inference on ACE(T). +8 + +3 +Simulation Study +We perform a simulation study to evaluate the use of the CNN together with AIPW +estimation strategy of average causal effects proposed above. We focus here on τt +(ACET) but similar results are obtained for τ. Comparisons are made with other +algorithms to fit nuisance functions, including, MLP, (Farrell et al., 2021) and post- +lasso estimators (Farrell, 2015). Moreover, we also include alternative strategies to +AIPW, including OR estimation (Tan, 2007) and targeted learning (van der Laan +and Rose, 2011). +The simulation results are based on 1000 replications. The neural networks initial +weights are different for each replication, which makes the results more robust. A se- +quence of ten covariates are independently generated having normal distributions with +increasing means and varying variances: X1 ∼ N(100, 20), X2 ∼ N(102, 15), X3 ∼ +N(105, 13), X4 ∼ N(107, 11), X5 ∼ N(109, 8), X6 ∼ N(110, 20), X7 ∼ N(112, 15), +X8 ∼ N(115, 13), X9 ∼ N(117, 11), and X10 ∼ N(119, 8). While these variables +are independent, their ordering is going to be important in how the outcomes and +treatment assignment are generated as described below in two different settings. +Setting 1 Potential outcomes and treatment assignment are generated as follows: +Y (0) = 1+0.001((X2−X1)2+(X4−X3)3+(X6−X5)2+(X8−X7)3+(X10−X9)2)+e0, +Y (1) = 2−0.001((X2−X1)2+(X4−X3)3+(X6−X5)2+(X8−X7)3+(X10−X9)2)+e1, +P(T = 1|X) =1/(1 + exp(5 × 10−6((X2 − X1)2+ +(X4 − X3)3 + (X6 − X5)2 + (X8 − X7)3 + (X10 − X9)2))). +In this setting, polynomial functions of the difference of some neighboring vari- +ables in the sequence are used to generate the nuisance models. +Setting 2 Potential outcomes and treatment assignment are generated as follows: +Y (0) = 1 + (l1(X1, X2, X3, X4) + l2(X4, X5, X6, X7) + l3(X6, X7, X8, X9)) + e0, +Y (1) = 2 − (l1(X1, X2, X3, X4) + l2(X4, X5, X6, X7) + l3(X6, X7, X8, X9)) + e1, +P(T = 1|X) =1/(1 + exp(0.05X5− +0.1(l1(X1, X2, X3, X4) + l2(X4, X5, X6, X7) + l3(X6, X7, X8, X9)))), +where +l1(x, y, z, w) = +� +10, +if y/x, z/y, and w/z > 1.15, +0, +otherwise, +9 + +E1 +E2 +E2 +El-2 +El-1 +El-1 +Flattened +Fully connected +Figure 1: Illustration of the convolutional neural network utilized in the simulations +and the real data study. Each layer l contains different number of channels El, where +E0 (not shown in the Figure) is the number of time series in the set of input covariates. +Each channel (feature map) in layer l (e.g. the blue vector in the second layer) is +formed by first applying El−1 number of kernels (convolution filters) on the vectors +in layer l − 1 (as demonstrated by the blue arrow in the set of kernels applied on the +first layer) and then summing the results. There exist some covariates which are not +time series. Inclusion of those vectors in the neural network is not illustrated in the +figure for simplification purpose. A fully connected feed-forward structure has been +used for those covariates and the results are then combined with the results from the +time-series data in the flattening layer demonstrated above. +l2(x, y, z, w) = +� +5, +if y/x, z/y, and w/z < 1.05, +0, +otherwise, +l3(x, y, z, w) = +� +3, +if (y − 1.1x)(z − 1.1y)(w − 1.1z) < 0, +0, +otherwise. +Here, the output of l1 and l2 are non-zero only if an increase by a factor bigger +than 1.15 and a decrease by a factor bigger than 1.05 is found in all consecutive +pair of covariates in the input of size four, respectively. The value of l3 is nonzero +if an increase by a factor bigger than 1.1 is followed by a decrease and followed +by another increase by a factor of bigger than 1.1 or if the oscillation has the +opposite direction. +The following algorithms to estimate the nuisance functions are evaluated: +CNN A convolutional neural network using the ReLU activation function, with ar- +chitecture illustrated in Figure 1. Note that this architecture is slightly more +flexible than the one considered in Section 2.2, hence, we expect it to perform +at least as well in terms of approximation rate. Both for the potential out- +come model µ0 and the propensity score p, the number of channels in the input +10 + +layer is one. For the outcome models 128 channels in the first hidden layer +and 16 channels in the second hidden layer have been used, while 32 channels +in the first hidden layer and 8 channels in the second hidden layer have been +used for fitting the propensity score. We have implemented the CNN together +with AIPW estimation strategy in the package DNNCausal which is available at +https://github.com/stat4reg/DNNCausal. +MLP A ReLU activation function based feedforward neural network with two hidden +layers. Two different feedforward architectures are used in order to estimate µ0, +and p (propensity score). The networks for fitting the outcome model consist of +128 and 80 nodes within the two layers, respectively. For the propensity score, +two layers contain 32 and 8 nodes, respectively. +post-lasso Nuisance models are fitted in two steps, where all higher order terms up +to order three are considered. First, a lasso variable selection step is performed +using the R-package hdm (Chernozhukov et al. (2016)), and then maximum +likelihood is used to fit the models with the selected covariates (those with co- +efficients not shrinked to zero by lasso). Variable selection is performed using +two different strategies: double selection which takes the union of variables se- +lected by regressing outcome and treatment variables and uses that to refit both +models (Belloni et al., 2014; Moosavi et al., 2021), and single selection, which +utilizes two sets of variables selected by regressing outcome and treatment, and +refits each of the models using their corresponding set (Farrell, 2015). +We use the above nuisance function estimators in several different estimators of τt, +as follows: +AIPW is implemented using CNN, MLP, and post-lasso with both single and double +selection (denoted respectively: DRcnn, DRmlp, DRss, DRds). +OR estimator with post-lasso and double selection (denoted ORds). +TMLE using the R-package tmle and the function SL.nnet to fit all nuisance func- +tions (denoted TMLE). +Full details with code for this simulation study are available at the Github page: +https://github.com/stat4reg/Causal CNN/blob/main/README.md. +We set sample sizes to n = 5000 and 10000, and run 1000 replicates. +Bias, +standard errors (both estimated and Monte Carlo), mean squared errors (MSE, bias +squared plus variance) and empirical coverages for 95% confidence intervals are re- +ported in Table 1 and 2. +The DGP of Setting 1 (Table 1) is the least complex one and its polynomial form +is favorable to the post-lasso methods which are based on higher order terms. It is +11 + +Table 1: Setting 1 DGP: Bias, standard errors (both estimated, Est sd, and Monte +Carlo, MC sd), MSEs and empirical coverages for 95% confidence intervals over 1000 +replicates. +bias +coverage +MC sd +Est sd +MSE +n = 5000 +DRcnn +0.185 +0.947 +1.379 +1.366 +1.935 +DRmlp +0.426 +0.940 +1.353 +1.331 +2.013 +ORds +0.001 +0.947 +1.404 +1.392 +1.970 +DRss +0.002 +0.948 +1.404 +1.395 +1.971 +DRds +0.003 +0.948 +1.404 +1.395 +1.972 +tmle +0.044 +0.944 +1.396 +1.384 +1.951 +n = 10000 +DRcnn +0.089 +0.958 +0.971 +0.972 +0.951 +DRmlp +0.223 +0.949 +0.961 +0.958 +0.973 +ORds +0.001 +0.955 +0.981 +0.982 +0.962 +DRss +0.001 +0.955 +0.981 +0.984 +0.962 +DRds +0.001 +0.955 +0.981 +0.984 +0.962 +tmle +0.028 +0.957 +0.981 +0.978 +0.963 +therefore expected that the post-lasso methods ORds, DRss, DRds have low bias. +DRcnn has larger bias, but decreasing with n. All methods have similar MSEs even +though DRcnn has the lowest MSE for the largest sample size. Empirical coverages +are close to the nominal 95% level for all methods. +The DGP of Setting 2 (Table 2) is less smooth and we observe that the DRcnn and +DRmlp methods have the lowest biases and MSEs, where DRcnn performs slightly +better. TMLE and post-lasso both have such a large bias that the confidence interval +coverages are far from being at the nominal level. It should be noted, however, that +the TMLE uses the built-in feedforward neural network, which is not adjusted to the +generated datasets, and so the comparison is not a fair one between TMLE and the +DR estimators. +4 +Effect of early retirement on health +The existing theoretical and empirical evidence on the effects of early retirement on +health are mixed, and both positive and negative results may be expected and have +been reported in different situations; see Barban et al. (2020) and the references +therein. In this context, we add to the empirical evidence by studying the effect of +early retirement on health using a database linking at the individual level a collection +12 + +Table 2: Setting 2 DGP: Bias, standard errors (both estimated and Monte Carlo), +MSEs and empirical coverages for 95% confidence intervals over 1000 replicates. +bias +coverage +MC sd +Est sd +MSE +n = 5000 +DRcnn +0.047 +0.937 +0.094 +0.101 +0.011 +DRmlp +0.076 +0.890 +0.095 +0.099 +0.015 +ORds +0.233 +0.206 +0.083 +0.085 +0.061 +DRss +0.233 +0.260 +0.083 +0.092 +0.061 +DRds +0.235 +0.250 +0.083 +0.092 +0.062 +tmle +0.233 +0.204 +0.083 +0.085 +0.061 +n = 10000 +DRcnn +0.025 +0.945 +0.070 +0.072 +0.006 +DRmlp +0.036 +0.928 +0.070 +0.072 +0.006 +ORds +0.224 +0.040 +0.062 +0.061 +0.054 +DRss +0.224 +0.054 +0.062 +0.065 +0.054 +DRds +0.226 +0.045 +0.061 +0.065 +0.055 +tmle +0.224 +0.041 +0.062 +0.061 +0.054 +of socio-economic and health registers on the whole Swedish population (Lindgren +et al., 2016). This allows us to follow until 2017 two complete cohorts born in 1946 +and 1947 and residing in Sweden in 1990. As health outcome we observe the number +of days in hospital per year after retirement. To study the effects of early retirement +we consider those who were still alive at age 62, and either retire at age 62 (T = 1, +treatment) or retire later (T = 0, control group). For the cohorts studied, retirement +pensions are accessible from age 61, although the usual age of retirement is 65 years +of age (see Figure 2 for descriptive statistics on age of retirement). Therefore, retiring +at age of 62 is considered as early retirement since it decreases your annual pension +transfers compared to later retirement; see, e.g. +Barban et al. (2020) for details +on the Swedish pension system. Barban et al. (2020) also contains a study on the +effects of early retirement, although based on fewer measurements for time-dependent +covariates and using a matching design. This study provides new evidence by taking +into account richer histories of the time-dependent covariates, and by incorporating +CNN to address complex dynamics in pre-treatment confounding covariates. +More precisely, the design of the study is as follows. An individual alive at age +62 is considered as taking early retirement at that age if hers/his pension transfers +become larger than income from work at that age for the first time (i.e., they were +never so earlier). For replicability, the exact definition using income and transfer +variables from the Swedish registers are available at +13 + +https://github.com/stat4reg/Causal CNN/blob/main/population description.md. +The health outcomes of interest are the number of hospitalization days per year dur- +ing the next five years following early retirement. We, however, check first whether +early retirement has an effect on survival during the five first years following early +retirement. There were no (or hardly significant) such effects at the 5% level (results +reported in the appendix, Table 4) and we therefore focus the analysis on the sur- +vivors when looking at effects on hospitalization. The following covariates are used as +input in the CNN architures to fit treatment and outcome nuisance models. Besides +the birth year we include the the following (pre-treatment) covariates measured at 61 +years of age: marriage status, municipality, education level, Spouse education level, +and the number of biological children. Moreover, we consider the measurements of +the following covariates for each of the ten years preceding retirement: days of hos- +pitalization and open health care, annual income from labour, annual income from +pension, annual income from unemployment, annual income from early retirement +and sickness benefit, annual compensation for illness, and spouse retirement status. +Thus, covariates include eight time(-structured) series of ten observations each per +individual. We do separate analyses for men and women which gives two samples of +approximately 100000 individuals each. +The code giving details on the CNN architectures and tuning parameters can be +found at +https://github.com/stat4reg/Causal CNN/blob/main/population description.md. +We also apply the other methods evaluated in the simulation study above. +Results are presented in Table 3. Based on the naive estimation not controlling for +confounders, early retirement has a clear positive effect on health (varying between +0.167 and 0.396 average number of days) and for the five years of follow up considered. +These naive effects are larger for women in the beginning. These negative effects +disappear when controlling for the considered covariates. This is seen most clearly +with CNN which yields the effects smaller than 0.1 day (in absolute value) for all +cases but one. Confidence intervals at the 95% level cover zero in most cases. Thus, +while there appeared to be a positive effect on health of early retirement, this effect +was probably due to confounding. +5 +Discussion +We have proposed and studied a semiparametric estimation strategy for average causal +effects which combine convolutional neural network with AIPW. +As long as the +conditions given are met, this strategy yields locally efficient and uniformly valid +inference. The use of CNN has the advantage over fully-connected feed forward neural +networks that they are more efficient on the number of weights (free parameters) used +14 + +0 +250000 +500000 +750000 +50 +60 +70 +retirement age +count +0e+00 +2e+05 +4e+05 +6e+05 +8e+05 +count +0 +250000 +500000 +750000 +1000000 +50 +60 +70 +retirement age +count +0 +250000 +500000 +750000 +1000000 +count +Figure 2: Retirement age for men and women who belong to the cohorts born in +Sweden 1946 and 1947. The last staple in each histogram displays those who retired +at age 71 or later. +15 + +Table 3: +Effect of early retirement on number of days in hospital during five years +of follow up, for the early retirees, and 95% confidence intervals. +Women +Men +The first year +n=106437 +n=104459 +naive −0.396 +−0.167 +DRcnn +0.062 +(−0.060, +0.183) −0.037 +(−0.256, 0.183) +DRmlp −0.062 +(−0.192, +0.069) +0.138 +(−0.079, 0.355) +ORds −0.135 +(−0.231, −0.039) +0.018 +(−0.156, 0.192) +DRss −0.138 +(−0.232, −0.045) +0.025 +(−0.148, 0.199) +DRds −0.128 +(−0.222, −0.035) +0.028 +(−0.145, 0.202) +tmle −0.143 +(−0.237, −0.049) +0.018 +(−0.156, 0.192) +The second year +n=105776 +n=103560 +naive −0.354 +−0.192 +DRcnn −0.082 +(−0.231, +0.067) +0.122 +(−0.042, 0.285) +DRmlp −0.083 +(−0.224, +0.058) +0.214 +( 0.041, 0.387) +ORds −0.104 +(−0.215, +0.007) −0.007 +(−0.161, 0.146) +DRss −0.098 +(−0.207, +0.011) +0.011 +(−0.142, 0.164) +DRds −0.081 +(−0.190, +0.027) +0.014 +(−0.139, 0.167) +tmle −0.111 +(−0.220, −0.002) +0.011 +(−0.142, 0.163) +The third year +n=105039 +n=102547 +naive −0.277 +−0.173 +DRcnn +0.011 +(−0.153, +0.175) +0.030 +(−0.140, 0.200) +DRmlp +0.200 +( 0.029, +0.370) +1.094 +(−0.894, 3.083) +ORds −0.034 +(−0.192, +0.124) +0.014 +(−0.136, 0.165) +DRss −0.018 +(−0.174, +0.138) +0.024 +(−0.126, 0.175) +DRds −0.010 +(−0.167, +0.146) +0.027 +(−0.123, 0.178) +tmle −0.018 +(−0.174, +0.139) +0.027 +(−0.123, 0.178) +The fourth year +n=104293 +n=101502 +naive −0.179 +−0.216 +DRcnn +0.067 +(−0.181, +0.315) +0.085 +(−0.082, 0.252) +DRmlp +0.804 +(−0.432, +2.040) −0.517 +(−1.723, 0.688) +ORds +0.032 +(−0.186, +0.250) −0.032 +(−0.194, 0.131) +DRss +0.042 +(−0.176, +0.259) −0.016 +(−0.178, 0.146) +DRds +0.056 +(−0.162, +0.273) −0.008 +(−0.170, 0.154) +tmle +0.033 +(−0.185, +0.251) −0.015 +(−0.177, 0.147) +The fifth year +n=103477 +n=100325 +naive −0.232 +−0.230 +DRcnn −0.012 +(−0.185, +0.161) −0.095 +(−0.276, 0.085) +DRmlp −0.979 +(−2.982, +1.024) −0.153 +(−0.443, 0.138) +ORds −0.019 +(−0.169, +0.132) −0.050 +(−0.195, 0.095) +DRss −0.013 +(−0.163, +0.137) −0.035 +(−0.179, 0.109) +DRds +0.000 +(−0.150, +0.151) −0.029 +(−0.173, 0.116) +tmle −0.014 +(−0.164, +0.136) −0.034 +(−0.178, 0.110) +16 + +for approximating the nuisance functions, and are geared to take into account time +invariant local features in the data. +A main contribution of the paper is to show under which conditions CNN fits of +nuisance functions achieve n−1/4 convergence rate required to obtain uniformly valid +inference on an ACE. Using the result in Farrell et al. (2021) in which convergence +rate of a ReLU-based feed-forward network is shown to follow Equation (1), we show +that the rate conditions in Assumption 3 are fulfilled. +Specifically, we use CNN +with a given complexity for which we show that approximation rate in (1) is small +enough. A key component of result in Farrell et al. (2021) is the upper bound on +empirical process terms found in Bartlett et al. (2005) based on Rademacher averages, +which are measures of function space complexity. Global Rademacher averages do not +provide fast rates as in (1). To derive this fast rate, localization analysis is employed +which takes into consideration only intersection of the function space with a ball +around the goal function; considering that in reality the algorithm only searches in +a neighborhood around the true function. Moreover, the tight bound on Pseudo- +dimension of deep nets found in Bartlett et al. (2019) is used. +We also present numerical experiments showing the performance of the estimation +strategy in finite sample and compare it to other machine learning based estimation +strategies. The applicability of the method is illustrated through a population wide +observational study of the effect of early retirement on hospitalization in Sweden. +6 +Appendix +In this section we also consider the Sobolev space Hβ(Ω) that is defined using the L2 +norm instead of the L∞ norm. Moreover, let ∥f∥L2(Ω) be the L2 norm of a function +f defined on Ω. +6.1 +Proof of Theorem 2 +Proof. Let Ω = [−1, 1]d. For any α that satisfies |α| ≤ β, by H¨older’s inequality, we +have: +∥Dαf∥L2(Ω) ≤ 2d/2 ∥Dαf∥L∞(Ω) . +Therefore, f ∈ Hβ(Ω) and ∥f∥Hβ(Ω) ≤ 2d/2 hold by maxα,|α|≤β ∥Dαf∥L∞(Ω) ≤ 1. +Moreover, Ω has a Lipschitz domain interior and measure zero boundary. Therefore, +by Sobolev extension theorem (Stein, 1970, Theorem 5) there is an extension F ∈ +Hβ(Rd) of f for which +∥F∥Hβ(Rd) ≤ C ∥f∥Hβ(Ω) ≤ C2d/2, +17 + +where C is a constant. +By F ∈ Hβ(Rd) and the result in Klusowski and Barron (2018, Theorem 2), we +have +∥F − Fm∥C(Ω) ≤ c0vF,2 max{ +� +log m, +√ +d}m− 1 +2 − 1 +d, +where m = E +� +(s−1)L +d +− 1 +� +, Fm(x) = β0 + α0x + v +m +�m +k=1 βk(αkx − tk)+, βk ∈ [−1, 1], +∥αk∥1 = 1, tk ∈ [0, 1], β0 = F(0), α0 = ∇F(0) and |v| ≤ 2vF,2. +Here, vF,2 := +� +Rd ∥ω∥2 +1 | ˆF(ω)|dω ≤ cd,β ∥F∥Hβ(Rd), where cd,β is the finite constant +��∥ω∥2 +1 (1 + |ω|2)−β/2�� +L2 +and ˆF(ω) is the Fourier transform of F. +Let F i +m := 1 +Eβ0 + 1 +Eα0x + v +m +�(i+1)m +k=im+1 βk(αkx − tk)+. It is shown in Zhou (2020), +using s ≥ 2 and L ≥ 2d/(s − 1), that F i +m|Ω belongs to the following function space +Cw,b +L += +� dL +� +k=1 +ckh(L) +k (x) : c ∈ RdL +� +. +Therefore, by the definition of C, we can directly conclude that Fm|Ω belongs to C. +Let f w,b +L,E := Fm|Ω. Then, we have +���f − f w,b +L,E +��� +C(Ω) = ∥F − Fm∥C(Ω) +≤ c0vF,2 max{ +� +log m, +√ +d}m− 1 +2 − 1 +d +≤ c0cd,β ∥F∥Hβ(Rd) max{ +� +log m, +√ +d}m− 1 +2 − 1 +d. +(6) +The final result is obtained from the facts that 1 +2(s − 1)LE ≤ md ≤ (s − 1)LE, s ≥ 2 +and β > 2 + d/2 (cd,β is bounded). +6.2 +Proof of Theorem 3 +Proof. The rate conditions (a) and (b) of Assumption 3 are fulfilled if both En[(ˆµt(xi)− +µt(xi))2] and En[(ˆp(xi)−p(xi))2] are oP(n−1/2). For this, the three terms in the upper +bound (5) in Theorem 1 must be oP(n−1/2). For the first term, based on 2, we have +QL log Q +n +log n ≍ EL3 log(EL2) +n +log n ≍ log6(n) log(n +d+1 +2d+4 log4 n) +n +2d+5 +4d+8 +log n = oP(n−1/2). +The second term is also oP(n−1/2) if γ = o(n1/2). For the third term, using Theorem +2 we have +εW,C ≤ +� +d+1 +2d+4 log n + log log2 n +n +d+1 +4d log +d+2 +d n +. +18 + +To prove condition (c) of Assumption 3, we use the proof of lemma Farrell et al. +(2021, Lemma 10). In this proof it is shown that for an arbitrary class of feedforward +neural networks with probability at least 1 − exp(−n +d+3 +4d+8 log6 n) +En +� +(ˆµt,C(xi) − µt(xi)) +� +1 − +1{ti = t} +P[T = t|X = xi] +�� +≤C +� +QL log Q +n +log n+ +log log n + n +d+3 +4d+8 log6 n +n ++ ε2 +W,C +� +. +Therefore, we can conclude that under the stated conditions +En +� +(ˆµt(xi) − µt(xi)) +� +1 − +1{ti = t} +P[T = t|X = xi] +�� +≤ CEn[(ˆµt(xi) − µt(xi))2] = oP(n−1/2). +6.3 +Early retirement effects on survival +Additional results on the effect of early retirement on survival can be found in Table +4. +References +Barban, N., X. de Luna, E. Lundholm, I. Svensson, and F. C. Billari (2020). Causal +effects of the timing of life-course events: Age at retirement and subsequent health. +Sociological Methods & Research 49(1), 216–249. +Bartlett, P. L., O. Bousquet, and S. Mendelson (2005). Local rademacher complexi- +ties. The Annals of Statistics 33(4), 1497–1537. +Bartlett, P. L., N. Harvey, C. Liaw, and A. Mehrabian (2019). +Nearly-tight vc- +dimension and pseudodimension bounds for piecewise linear neural networks. The +Journal of Machine Learning Research 20(1), 2285–2301. +Belloni, A., V. Chernozhukov, and C. Hansen (2014). +Inference on treatment ef- +fects after selection among high-dimensional controls. The Review of Economic +Studies 81(2), 608–650. +Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and +J. Robins (2018). Double/debiased machine learning for treatment and structural +parameters. The Econometrics Journal 21(1), C1–C68. +19 + +Chernozhukov, V., C. Hansen, and M. Spindler (2016). hdm: High-dimensional met- +rics. R Journal 8(2), 185–199. +Farrell, M. H. (2015, Nov). Robust inference on average treatment effects with pos- +sibly more covariates than observations. Journal of Econometrics 189(1), 1–23. +Farrell, M. H. (2018). Robust inference on average treatment effects with possibly +more covariates than observations. arXiv:1309.4686v3. +Farrell, M. H., T. Liang, and S. Misra (2021). Deep neural networks for estimation +and inference. Econometrica 89(1), 181–213. +Kennedy, E. H. (2016). +Semiparametric theory and empirical processes in causal +inference. In He H., Wu P., Chen D.-G. (eds) Statistical causal inferences and +their applications in public health research, pp. 141–167. Springer. +Klusowski, J. M. and A. R. Barron (2018). Approximation by combinations of relu +and squared relu ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on +Information Theory 64(12), 7649–7656. +LeCun, Y., Y. Bengio, et al. (1995). Convolutional networks for images, speech, and +time series. The handbook of brain theory and neural networks 3361(10), 1995. +Lindgren, U., K. Nilsson, X. de Luna, and A. Ivarsson (2016). Data resource profile: +Swedish microdata research from childhood into lifelong health and welfare (Ume˚a +SIMSAM Lab). International Journal of Epidemiology 45, 1075–1075. +Moosavi, N., J. H¨aggstr¨om, and X. de Luna (2021). The costs and benefits of uni- +formly valid causal inference with high-dimensional nuisance parameters. To appear +in Statistical Science. ArXiv preprint arXiv:2105.02071. +Robins, J. M., A. Rotnitzky, and L. P. Zhao (1994). Estimation of regression coef- +ficients when some regressors are not always observed. Journal of the American +statistical Association 89(427), 846–866. +Rubin, D. B. (1974). +Estimating causal effects of treatments in randomized and +nonrandomized studies. Journal of educational Psychology 66(5), 688. +Scharfstein, D., A. Rotnitzky, and J. Robins (1999). +Rejoinder to comments on +“adjusting for non-ignorable drop-out using semiparametric non-response models?”. +Journal of the American Statistical Association 94, 1121–1146. +Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions +(PMS-30). Princeton University Press. +20 + +Tan, Z. (2007). Comment: Understanding OR, PS and DR. Statistical Science 22(4), +560–568. +Tsiatis, A. (2006). +Semiparametric theory and missing data. +Springer Science & +Business Media. +van der Laan, M. and S. Rose (2011). Targeted Learning: Causal Inference for Ob- +servational and Experimental Data. +Springer Series in Statistics. Springer New +York. +Zhou, D.-X. (2020). Universality of deep convolutional neural networks. Applied and +computational harmonic analysis 48(2), 787–794. +21 + +Table 4: +Effect of early retirement on survival (binary outcomes death=1), during +five years of follow up for the early retirees, and 95% confidence intervals. +Women n=106916 +Men n=105149 +The first year after treatment is considered for the outcome +naive +0.002 +−0.001 +DRcnn +0.005 +( 0.002, +0.008) −0.001 +(−0.005, 0.003) +DRmlp +0.004 +( 0.000, +0.007) −0.003 +(−0.013, 0.007) +ORds +0.003 +(−0.194, +0.200) +0.000 +(−0.150, 0.151) +DRss +0.003 +( 0.000, +0.006) +0.000 +(−0.002, 0.003) +DRds +0.003 +( 0.000, +0.007) +0.000 +(−0.002, 0.003) +tmle +0.003 +( 0.000, +0.006) +0.000 +(−0.002, 0.003) +The second year after treatment is considered for the outcome +naive +0.002 +−0.002 +DRcnn +0.007 +( 0.003, +0.012) +0.001 +(−0.005, 0.007) +DRmlp +0.006 +( 0.002, +0.011) +0.001 +(−0.003, 0.006) +ORds +0.005 +(−0.164, +0.174) +0.002 +(−0.130, 0.133) +DRss +0.005 +( 0.001, +0.009) +0.002 +(−0.002, 0.005) +DRds +0.005 +( 0.001, +0.009) +0.002 +(−0.002, 0.005) +tmle +0.005 +( 0.001, +0.009) +0.002 +(−0.002, 0.005) +The third year after treatment is considered for the outcome +naive +0.000 +−0.002 +DRcnn −0.052 +(−0.166, +0.063) +0.005 +( 0.000, 0.010) +DRmlp +0.004 +(−0.001, +0.009) +0.008 +( 0.003, 0.013) +ORds +0.004 +(−0.150, +0.159) +0.004 +(−0.114, 0.122) +DRss +0.005 +( 0.000, +0.009) +0.004 +(−0.000, 0.009) +DRds +0.005 +( 0.001, +0.010) +0.005 +( 0.000, 0.009) +tmle +0.005 +( 0.000, +0.009) +0.004 +(−0.000, 0.009) +The fourth year after treatment is considered for the outcome +naive −0.003 +−0.006 +DRcnn +0.002 +(−0.005, +0.008) −0.001 +(−0.007, 0.005) +DRmlp +0.001 +(−0.005, +0.006) +0.005 +(−0.000, 0.011) +ORds +0.003 +(−0.140, +0.145) +0.002 +(−0.107, 0.110) +DRss +0.003 +(−0.002, +0.008) +0.002 +(−0.003, 0.007) +DRds +0.004 +(−0.001, +0.009) +0.002 +(−0.003, 0.007) +tmle +0.003 +(−0.002, +0.008) +0.002 +(−0.003, 0.007) +The fifth year after treatment is considered for the outcome +naive −0.005 +−0.007 +DRcnn +0.002 +(−0.004, +0.009) +0.001 +(−0.006, 0.008) +DRmlp +0.009 +( 0.002, +0.016) +0.009 +( 0.002, 0.016) +ORds +0.001 +(−0.131, +0.134) +0.002 +(−0.098, 0.102) +DRss +0.002 +(−0.004, +0.008) +0.002 +(−0.003, 0.008) +DRds +0.003 +(−0.003, +0.008) +0.003 +(−0.003, 0.009) +tmle +0.002 +(−0.004, +0.008) +0.002 +(−0.003, 0.008) +22 + diff --git a/qtFKT4oBgHgl3EQfIC2S/content/tmp_files/load_file.txt b/qtFKT4oBgHgl3EQfIC2S/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7e5c4697cdd1111b47a87fdbb2a0436ace282448 --- /dev/null +++ b/qtFKT4oBgHgl3EQfIC2S/content/tmp_files/load_file.txt @@ -0,0 +1,1022 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf,len=1021 +page_content='Convolutional neural networks for valid and efficient causal inference Mohammad Ghasempour∗, Niloofar Moosavi, Xavier de Luna Department of Statistics, USBE, Ume˚a University, Ume˚a, Sweden January 30, 2023 Abstract Convolutional neural networks (CNN) have been successful in machine learn- ing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Their success relies on their ability to consider space invariant local features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We consider the use of CNN to fit nuisance models in semipara- metric estimation of the average causal effect of a treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In this setting, nuisance models are functions of pre-treatment covariates that need to be con- trolled for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In an application where we want to estimate the effect of early retirement on a health outcome, we propose to use CNN to control for time- structured covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Thus, CNN is used when fitting nuisance models explain- ing the treatment and the outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' These fits are then combined into an aug- mented inverse probability weighting estimator yielding efficient and uniformly valid inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Theoretically, we contribute by providing rates of convergence for CNN equipped with the rectified linear unit activation function and com- pare it to an existing result for feedforward neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We also show when those rates guarantee uniformly valid inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' A Monte Carlo study is provided where the performance of the proposed estimator is evaluated and compared with other strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Finally, we give results on a study of the effect of early retirement on hospitalization using data covering the whole Swedish population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' ∗We are grateful to Xijia Liu and Jenny H¨aggstr¨om for helpful comments that have improved the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We acknowledge funding from the Swedish Research Council and the Marianne and Marcus Wallenberg Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The Ume˚a SIMSAM Lab data infrastructure used in this study was developed with support from the Swedish Research Council, the Riksbanken Jubileumsfond and by strategic funds from Ume˚a University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Correspondence: mohammad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='ghasemour@umu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='se 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='11732v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='ML] 27 Jan 2023 1 Introduction Convolutional Neural Networks (CNN) have been found successful in discovering location-invariant patterns in speech, images, and time series data (LeCun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In particular, they have been shown to have a universal approximation prop- erty and be more efficient in terms of number of hidden layers than fully-connected multi-layer networks in high-dimensional situations (Zhou, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In this paper we show how CNN can be useful in controlling confounding information when using rich observational databases in order to perform semiparametric inference on a low di- mensional causal parameter: we focus on average causal effects of a binary treatment on an outcome of interest, although our results are relevant for the semiparametric estimation of other low dimensional parameters of interest (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Chernozhukov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Augmented Inverse Probability Weighting (AIPW) estimators (also called Double Robust (DR) estimators, Robins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 1994) attain the semiparametric efficiency bound and yield uniformly valid inference as long as the nuisance functions of the confounding covariates are fitted consistenlty with fast enough convergence rates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' all nuisance functions are estimated with order n−1/4 (Belloni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Farrell, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Kennedy, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moosavi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In this paper, we contribute to this theory by showing that CNN fits of nuisance functions achieve the n−1/4 convergence rate required to obtain uniformly valid inference on causal parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' To show this we use a result obtained by Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021) for general Rectified Linear Unit (ReLU)-based Feed-forward Neural Networks (FNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' They show that, for large samples, the estimation error rate of FNN are bounded by the following term, with a probability increasing exponentially with γ: � log n/n × complexity penalty + � (log log n + γ)/n + approximation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (1) We deduce the above approximation rate for CNN architectures inspired by earlier work by Zhou (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' However, in contrast to the latter paper, we consider a larger number of free parameters by considering multi-channel convolutional neural network, so as to achieve a trade-off between complexity penalty and approximation rate in (1), and thereby obtain the convergence rate n−1/4 for the CNN fit of the nuisance functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In the next section we formally define the causal parameters of interest using the potential outcome framework (Rubin, 1974), and introduce the assumptions yielding identification, and locally efficient and uniformly valid inference when using AIPW estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We also introduce the convolutional network architectures with which we propose to fit the nuisance functions used by AIPW, followed by our main theoretical results, including conditions to obtain uniformly valid inference when using CNN based AIPW estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Section 3 presents numerical experiments illustrating 2 the finite sample behaviour of this estimation strategy under different data generat- ing mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The proposed estimator is compared to AIPW, Targeted Maximum Likelihood Estimation (TMLE) (van der Laan and Rose, 2011) and Outcome Re- gression (OR) estimation (Tan, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moosavi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2021) using fully-connected feed-forward ReLU based neural networks (Multilayer Perceptron (MLP) in Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2021) and Lasso to fit the nuisance functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In Section 4, we study the effect of early retirement (at 62 years old), compared to retiring later in life, on morbidity and mortality outcomes (Barban et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We use population wide Swedish reg- ister data and follow cohorts born in 1946 and 1947 for which we have a rich reservoir of potential pre-treatment confounders, including hospitalization and income histo- ries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' CNN allows us to consider that such life histories may contain location-invariant patterns that confound the causal effects of the treatment (decision to retire early).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 2 Theory and method 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1 Causal parameters and uniformly valid inference The Average Causal Effect (ACE) and Average Causal Effect among the Treated (ACET) of a binary treatment (T) are parameters defined using potential outcomes (Rubin (1974)), respectively: τ = E(Y (1)) − E(Y (0)), τt = E(Y (1) − Y (0)|T = 1), where Y (1) and Y (0) are the outcomes that would be observed if T = 1 and T = 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For a given individual only one of these potential outcomes can be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' This intrinsic missing data problem implies that assumptions need to be made to identify τ and τt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For this purpose, and given a vector of observed pre- treatment covariates X, we assume: Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' No unmeasured confounders: (i) Y (0) T | X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (ii) Y (1) T | X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Overlap: (i) P(T = 0 | X) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (ii) P(T = 1 | X) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Consistency: The observed outcome is Y = Y (1)T + Y (0)(1 − T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 3 Note that ACET is identified if only 1a(i), 1b(i) and 1c hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assumption 1a requires that the observed vector X includes all confounders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assumption 1b requires that for any value X both treatment levels have non-zero probability to occur, and by Assumption 1c one of the potential outcomes is observed for each individual, and its value is not affected by the treatment received by other individuals in the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We aim at uniformly (over the class of Data Generating Process (DGP)s, for which Assumption 2 hold) valid inference while using semiparametric estimation (Moosavi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, the following AIPW estimators of ACE are considered (Robins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 1994;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Scharfstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 1999): ˆτ = En[ ˆψ1(zi) − ˆψ0(zi)] where En[·] is the empirical mean operator, ˆψt(zi) = 1{ti = t}(yi − ˆµt(xi)) ˆP[T = t|X = xi] + ˆµt(xi), and ˆµt(x) is an estimator of µt(x) = E(Y (t) | X = x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For ACET, we use the estimator ˆτt = En[ ˆψ1,1(zi) − ˆψ0,1(zi)], where ˆψt,t′(zi) = ˆP[T = t′|X = xi] ˆP[T = t′] 1{ti = t}(yi − ˆµt(xi)) ˆP[T = t|X = xi] + 1{ti = t′}ˆµt(xi) ˆP[T = t′] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We use the following assumptions for the DGPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We have a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let {(yi, ti, xi), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' , n} be an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' sample from (Y, T, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let U = Y (t) − µt(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' There is some r > 0 for which E � |µt (xi) µt′ (xi)|1+r� and E � |ui|4+r� are bounded, for given values of t and t′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The estimators of the nuisance functions have yet to be introduced for these AIPW estimation strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In order to get the desired results, the proposed estimators should be well behaved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' More precisely, the following consistency and rate conditions are considered for the nuisance function estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let ˆp(x) be an estimator of P[T = 1|X = xi] which only depends on {xi, ti}n i=1 (assumption of “no additional randomness”, Farrell, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover, for a given t we have 4 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' En[(ˆp(xi) − p(xi))2] = oP(1) and En[(ˆµt(xi) − µt(xi))2] = oP(1), b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' En[(ˆµt(xi) − µt(xi))2]1/2En[(ˆp(xi) − p(xi))2]1/2 = oP(n−1/2), c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' En[(ˆµt(xi) − µt(xi))(1 − 1{ti = t}/P[T = t|X = xi])] = oP(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The following proposition describes uniform validity results obtained by Farrell (2018, Corollary 2 and 3) under the above regularity conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For each n, let Pn be the set of distributions obeying Assumptions 1a(i), 1b(i), 1c and 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Further, assume Assumption 2b holds for t = t′ = 0, and let ˆp(x) and ˆµ0(x) fulfill Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Then, we have: sup P∈Pn ����PP � τt ∈ � ˆτt ± cα � ˆVt/n �� − (1 − α) ���� → 0, where ˆVt = n2 n2 t En � 1(ti = 1) (yi − ˆµ0 (xi) − ˆτt)2� +n2 n2 t En � ˆp (xi)2 (1 − ˆp (xi))21(ti = 0) (yi − ˆµ0 (xi))2 � , nt = Σn i=11(T = t) and cα = Φ−1(1 − α/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let also Assumptions 1a(ii), 1b(ii) be fulfilled and Assumption 2b hold for t, t′ ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Additionally, assume ˆµ1(x) fulfills Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Then, we have: sup P∈Pn ����PP � τ ∈ � ˆτ ± cα � ˆV /n �� − (1 − α) ���� → 0, where ˆV = En � 1(ti = 1) (yi − ˆµ1 (xi))2 ˆp (xi)2 � + En �� ˆµ1 (xi) − En[ ˆψ1(zi)] �2� + En � 1(ti = 0) (yi − ˆµ0 (xi))2 (1 − ˆp (xi))2 � + En �� ˆµ0 (xi) − En[ ˆψ0(zi)] �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' A multiplicative rate condition as Assumption 3(b) is weaker than sepa- rate conditions on the two nuisance model estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' It only requires that one of the nuisance functions is estimated at faster rate if the other one is estimated at slower rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' However, using the regularity conditions in this paper and Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021), the rate oP(n−1/4) is obtained for each of the nuisance estimators separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' This is to make sure Assumption 3(c) for ˆµ is also fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' This assumption can be, however, dropped by considering sample splitting (Chernozhukov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Note, finally, that because the AIPW estimators is based on the efficient influence function, its asymptotic variance is equal to the semiparametric efficiency bound (Tsiatis, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='2 Convolutional neural networks We consider a specific CNN architecture with parallel hidden layers structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let the input column vector be denoted by h0 := (x1, · · · , xd)′ ∈ Ω, where Ω ⊆ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We consider L to be the number of hidden layers in which we have E number of parallel vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let σ be the ReLU function defined on the space of real numbers as σ(z) = max(0, z) for z ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The vectors in each hidden layer l ∈ {1, · · · , �L} have size dl and are defined by hl e = σ(W l ehl−1 e − be l ), where e ∈ {1, · · · , E}, h0 e = h0, be l is a vector called bias vector in the neural network literature, W l e is a weight matrix defined as: W l e = � ��������������������� we 0,l 0 0 0 · · 0 we 1,l we 0,l 0 0 · · 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' we S,l we S−1,l · · we 0,l 0 · · · 0 0 we S,l we S−1,l · · we 0,l · · · 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' · · 0 we S,l · · we 0,l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' · · · · 0 we S,l · · · we 1,l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 0 · · · · · · 0 we S,l we S−1,l 0 · · · · · · · · 0 we S,l � ��������������������� , and the weight parameter we i,l is the i-the element of the filter mask (we 0,l, · · · , we S,l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' S is considered fixed through all values of l and e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We have dl = d0 + Sl, where dl is the size of vectors in the l-th layer and d0 = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The structure of a CNN as defined above provides us with the following function space on Ω: C = { E � e=1 c′ ehL e : ce ∈ RdL}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Similar to Zhou (2020) (who, however, uses E = 1) we assume that for all values of e in {1, · · · E} and l in {1, · · · , L−1} the vector be l has the form (be l,1, · · · , be l,S, be l,S+1, · · , be l,S+1, be l,dl−S+1, · · · , be l,dl)′ with the dl − 2S repeated components in the middle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, the total number of parameters (duplicate/shared weights are counted more than once), Q for the neural network fulfills the following inequality: Q = E(d(1 + s)(L − 1) + s(1 + s)L(L − 1)/2 + (s + 3)(d + sL)) ≍ EL2, (2) where the notation xn ≍ yn for two sequences of random variables xn and yn means xn = OP(yn) and yn = OP(xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='3 Main results In this section, we provide results that allow us to use the CNN architectures described above to fit the nuisance models needed for AIPW estimations of ACE and ACET, and obtain uniformly valid inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In particular, we need to show that the rate conditions in Assumption 3 are fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assumption 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assume that zi = (ui, v′ i)′ , 1 ≤ i ≤ n are i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' copies of Z = (U, V ) ∈ [−1, 1]d × V, where U is continuously distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For an absolute constant M > 0 and a target f ∗ (a nuisance function), assume V ∈ [−M, M] and ∥f ∗∥∞ ≤ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Assumption 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let ℓ be a loss function that, for any arbitrary functions f and g and z a realization of Z, fulfills: |ℓ(f, z) − ℓ(g, z)| ≤ Cℓ|f(x) − g(x)|, c1E((f − ˜f)2) ≤ E(ℓ(f, Z)) − E(ℓ( ˜f, Z)) ≤ c2E((f − ˜f)2), where ˜f = arg min E(ℓ(f, Z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Further, let F be an arbitrary set of functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We define: ˆfF := arg min f∈F ∥f∥∞≤M′ n � i=1 ℓ(f, z), (3) and εF,F′ := sup f∈F inf f′∈F′ ∥f′∥∞≤M′ ∥f − f ′∥∞ , (4) where ∥·∥∞ is the supremum norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The following result is a special case of Theorem 2(b) given in Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021), and gives the rate of convergence for our estimate ˆfC of a target f ∗ (a nuisance function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Prior to presenting the theorem, the target space in which we seek to find the nuisance functions need to be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We use the notation W β,∞(Ω) for the Sobolev space with smoothness β ∈ N+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We consider W to be the unit ball on the Sobolev space defined on [−1, 1]d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' W := B1(W β,∞([−1, 1]d)) such as: W := {f : max α,|α|≤β ∥Dαf(x)∥L∞([−1,1]d) ≤ 1}, where ∥f∥L∞(Ω) is the essential supremum norm of the absolute value of a function f defined on Ω, α = (α1, · · · , αd)′, |α| = α1 + · · · + αd, and Dαf is the weak derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 7 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let f ∗ ∈ W, and assume that Assumptions 4-5 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For an absolute constant M > 0 and M ′ = 2M, let the approximation error εW,C be defined as in (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' With probability at least 1 − e−γ, and for large enough n, En[( ˆfC − f ∗)2] ≤ C � QL log Q n log n + log log n + γ n + ε2 W,C � , (5) where the constant C > 0 is independent of n, but may depend on d, M, and other fixed constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Our next step is to bound the term ε2 W,C in the above inequality on the estimation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The following result is similar to Theorem 1 in Zhou (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' However, we allow here the number of parallel layers to grow with n, which translates into faster growing function space for our specific CNN architectures, thereby a larger decay rate for the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let 2 ≤ s ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' If L ≥ 2d/(s − 1) and f ∈ W, ∥f∥∞ ≤ M and an integer index β > 2 + d/2, then there exist w, b and f w,b L,E ∈ C such that ���f − f w,b L,E ��� C([−1,1]d) ≤ c2d/2� log(LE) 1 LE 1 2 + 1 d, where c is an absolute constant and therefore εW,C ≤ C � log(LE) 1 LE 1 2 + 1 d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Finally, our main result gives conditions for the CNN nuisance function fit to fulfill Assumption 3, and therefore conditions for AIPW estimation based on CNN fit to yield uniformly valid inference for ACE and ACET (Proposition 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let the conditions in Theorem 1 hold for ui = xi, vi = yi, and f ∗ = µt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover the same conditions are fulfilled for ui = xi, vi = ti, and f ∗ = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let also E ≍ n d 2d+4, L ≍ n 1 4d+8 log2(n), β = βp ∧ βµ, and s and d fulfill the assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Then, the rate conditions in Assumption 3 are fulfilled for nuisance functions estimators (3) with F = C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The rate result for CNN based estimators in Theorem 3 corresponds to similar results for MLP in Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021, Theorem 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' However, the conditions on smoothness is less strict in our case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The rate of growth for the number of pa- rameters considered for MLP based estimators in Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021, Theorem 1) is n d β+d log5 n, while we have considered the growth rate n d+1 2d+4 log4(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' These rates are similar up to a log factor if d is large and β is close to d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Notice, however, that these are not necessarily minimal rates required for valid inference on ACE(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 8 3 Simulation Study We perform a simulation study to evaluate the use of the CNN together with AIPW estimation strategy of average causal effects proposed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We focus here on τt (ACET) but similar results are obtained for τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Comparisons are made with other algorithms to fit nuisance functions, including, MLP, (Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2021) and post- lasso estimators (Farrell, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover, we also include alternative strategies to AIPW, including OR estimation (Tan, 2007) and targeted learning (van der Laan and Rose, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The simulation results are based on 1000 replications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The neural networks initial weights are different for each replication, which makes the results more robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' A se- quence of ten covariates are independently generated having normal distributions with increasing means and varying variances: X1 ∼ N(100, 20), X2 ∼ N(102, 15), X3 ∼ N(105, 13), X4 ∼ N(107, 11), X5 ∼ N(109, 8), X6 ∼ N(110, 20), X7 ∼ N(112, 15), X8 ∼ N(115, 13), X9 ∼ N(117, 11), and X10 ∼ N(119, 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' While these variables are independent, their ordering is going to be important in how the outcomes and treatment assignment are generated as described below in two different settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Setting 1 Potential outcomes and treatment assignment are generated as follows: Y (0) = 1+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001((X2−X1)2+(X4−X3)3+(X6−X5)2+(X8−X7)3+(X10−X9)2)+e0, Y (1) = 2−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001((X2−X1)2+(X4−X3)3+(X6−X5)2+(X8−X7)3+(X10−X9)2)+e1, P(T = 1|X) =1/(1 + exp(5 × 10−6((X2 − X1)2+ (X4 − X3)3 + (X6 − X5)2 + (X8 − X7)3 + (X10 − X9)2))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In this setting, polynomial functions of the difference of some neighboring vari- ables in the sequence are used to generate the nuisance models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Setting 2 Potential outcomes and treatment assignment are generated as follows: Y (0) = 1 + (l1(X1, X2, X3, X4) + l2(X4, X5, X6, X7) + l3(X6, X7, X8, X9)) + e0, Y (1) = 2 − (l1(X1, X2, X3, X4) + l2(X4, X5, X6, X7) + l3(X6, X7, X8, X9)) + e1, P(T = 1|X) =1/(1 + exp(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='05X5− 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1(l1(X1, X2, X3, X4) + l2(X4, X5, X6, X7) + l3(X6, X7, X8, X9)))), where l1(x, y, z, w) = � 10, if y/x, z/y, and w/z > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='15, 0, otherwise, 9 E1 E2 E2 El-2 El-1 El-1 Flattened Fully connected Figure 1: Illustration of the convolutional neural network utilized in the simulations and the real data study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Each layer l contains different number of channels El, where E0 (not shown in the Figure) is the number of time series in the set of input covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Each channel (feature map) in layer l (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' the blue vector in the second layer) is formed by first applying El−1 number of kernels (convolution filters) on the vectors in layer l − 1 (as demonstrated by the blue arrow in the set of kernels applied on the first layer) and then summing the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' There exist some covariates which are not time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Inclusion of those vectors in the neural network is not illustrated in the figure for simplification purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' A fully connected feed-forward structure has been used for those covariates and the results are then combined with the results from the time-series data in the flattening layer demonstrated above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' l2(x, y, z, w) = � 5, if y/x, z/y, and w/z < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='05, 0, otherwise, l3(x, y, z, w) = � 3, if (y − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1x)(z − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1y)(w − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1z) < 0, 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Here, the output of l1 and l2 are non-zero only if an increase by a factor bigger than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='15 and a decrease by a factor bigger than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='05 is found in all consecutive pair of covariates in the input of size four, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The value of l3 is nonzero if an increase by a factor bigger than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1 is followed by a decrease and followed by another increase by a factor of bigger than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1 or if the oscillation has the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The following algorithms to estimate the nuisance functions are evaluated: CNN A convolutional neural network using the ReLU activation function, with ar- chitecture illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Note that this architecture is slightly more flexible than the one considered in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='2, hence, we expect it to perform at least as well in terms of approximation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Both for the potential out- come model µ0 and the propensity score p, the number of channels in the input 10 layer is one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For the outcome models 128 channels in the first hidden layer and 16 channels in the second hidden layer have been used, while 32 channels in the first hidden layer and 8 channels in the second hidden layer have been used for fitting the propensity score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We have implemented the CNN together with AIPW estimation strategy in the package DNNCausal which is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='com/stat4reg/DNNCausal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' MLP A ReLU activation function based feedforward neural network with two hidden layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Two different feedforward architectures are used in order to estimate µ0, and p (propensity score).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The networks for fitting the outcome model consist of 128 and 80 nodes within the two layers, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For the propensity score, two layers contain 32 and 8 nodes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' post-lasso Nuisance models are fitted in two steps, where all higher order terms up to order three are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' First, a lasso variable selection step is performed using the R-package hdm (Chernozhukov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2016)), and then maximum likelihood is used to fit the models with the selected covariates (those with co- efficients not shrinked to zero by lasso).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Variable selection is performed using two different strategies: double selection which takes the union of variables se- lected by regressing outcome and treatment variables and uses that to refit both models (Belloni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moosavi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2021), and single selection, which utilizes two sets of variables selected by regressing outcome and treatment, and refits each of the models using their corresponding set (Farrell, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We use the above nuisance function estimators in several different estimators of τt, as follows: AIPW is implemented using CNN, MLP, and post-lasso with both single and double selection (denoted respectively: DRcnn, DRmlp, DRss, DRds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' OR estimator with post-lasso and double selection (denoted ORds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' TMLE using the R-package tmle and the function SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='nnet to fit all nuisance func- tions (denoted TMLE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Full details with code for this simulation study are available at the Github page: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='com/stat4reg/Causal CNN/blob/main/README.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='md.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We set sample sizes to n = 5000 and 10000, and run 1000 replicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Bias, standard errors (both estimated and Monte Carlo), mean squared errors (MSE, bias squared plus variance) and empirical coverages for 95% confidence intervals are re- ported in Table 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The DGP of Setting 1 (Table 1) is the least complex one and its polynomial form is favorable to the post-lasso methods which are based on higher order terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' It is 11 Table 1: Setting 1 DGP: Bias, standard errors (both estimated, Est sd, and Monte Carlo, MC sd), MSEs and empirical coverages for 95% confidence intervals over 1000 replicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' bias coverage MC sd Est sd MSE n = 5000 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='185 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='947 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='379 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='366 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='935 DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='426 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='940 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='353 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='331 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='013 ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='947 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='404 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='392 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='970 DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='948 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='404 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='395 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='971 DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='948 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='404 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='395 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='972 tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='944 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='396 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='384 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='951 n = 10000 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='089 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='958 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='951 DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='223 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='961 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='958 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='973 ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='982 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='962 DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='984 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='962 DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='984 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='962 tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='963 therefore expected that the post-lasso methods ORds, DRss, DRds have low bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' DRcnn has larger bias, but decreasing with n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' All methods have similar MSEs even though DRcnn has the lowest MSE for the largest sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Empirical coverages are close to the nominal 95% level for all methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The DGP of Setting 2 (Table 2) is less smooth and we observe that the DRcnn and DRmlp methods have the lowest biases and MSEs, where DRcnn performs slightly better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' TMLE and post-lasso both have such a large bias that the confidence interval coverages are far from being at the nominal level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' It should be noted, however, that the TMLE uses the built-in feedforward neural network, which is not adjusted to the generated datasets, and so the comparison is not a fair one between TMLE and the DR estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 4 Effect of early retirement on health The existing theoretical and empirical evidence on the effects of early retirement on health are mixed, and both positive and negative results may be expected and have been reported in different situations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' see Barban et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2020) and the references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In this context, we add to the empirical evidence by studying the effect of early retirement on health using a database linking at the individual level a collection 12 Table 2: Setting 2 DGP: Bias, standard errors (both estimated and Monte Carlo), MSEs and empirical coverages for 95% confidence intervals over 1000 replicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' bias coverage MC sd Est sd MSE n = 5000 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='047 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='937 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='094 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011 DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='015 ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='233 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='206 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='061 DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='233 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='061 DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='235 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='250 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='062 tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='233 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='204 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='061 n = 10000 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006 DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='928 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006 ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='224 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='061 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='054 DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='224 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='054 DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='226 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='061 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='055 tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='224 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='041 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='061 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='054 of socio-economic and health registers on the whole Swedish population (Lindgren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' This allows us to follow until 2017 two complete cohorts born in 1946 and 1947 and residing in Sweden in 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' As health outcome we observe the number of days in hospital per year after retirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' To study the effects of early retirement we consider those who were still alive at age 62, and either retire at age 62 (T = 1, treatment) or retire later (T = 0, control group).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For the cohorts studied, retirement pensions are accessible from age 61, although the usual age of retirement is 65 years of age (see Figure 2 for descriptive statistics on age of retirement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, retiring at age of 62 is considered as early retirement since it decreases your annual pension transfers compared to later retirement;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Barban et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2020) for details on the Swedish pension system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Barban et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2020) also contains a study on the effects of early retirement, although based on fewer measurements for time-dependent covariates and using a matching design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' This study provides new evidence by taking into account richer histories of the time-dependent covariates, and by incorporating CNN to address complex dynamics in pre-treatment confounding covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' More precisely, the design of the study is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' An individual alive at age 62 is considered as taking early retirement at that age if hers/his pension transfers become larger than income from work at that age for the first time (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', they were never so earlier).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For replicability, the exact definition using income and transfer variables from the Swedish registers are available at 13 https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='com/stat4reg/Causal CNN/blob/main/population description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='md.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The health outcomes of interest are the number of hospitalization days per year dur- ing the next five years following early retirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We, however, check first whether early retirement has an effect on survival during the five first years following early retirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' There were no (or hardly significant) such effects at the 5% level (results reported in the appendix, Table 4) and we therefore focus the analysis on the sur- vivors when looking at effects on hospitalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The following covariates are used as input in the CNN architures to fit treatment and outcome nuisance models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Besides the birth year we include the the following (pre-treatment) covariates measured at 61 years of age: marriage status, municipality, education level, Spouse education level, and the number of biological children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover, we consider the measurements of the following covariates for each of the ten years preceding retirement: days of hos- pitalization and open health care, annual income from labour, annual income from pension, annual income from unemployment, annual income from early retirement and sickness benefit, annual compensation for illness, and spouse retirement status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Thus, covariates include eight time(-structured) series of ten observations each per individual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We do separate analyses for men and women which gives two samples of approximately 100000 individuals each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The code giving details on the CNN architectures and tuning parameters can be found at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='com/stat4reg/Causal CNN/blob/main/population description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='md.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We also apply the other methods evaluated in the simulation study above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Results are presented in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Based on the naive estimation not controlling for confounders, early retirement has a clear positive effect on health (varying between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='167 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='396 average number of days) and for the five years of follow up considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' These naive effects are larger for women in the beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' These negative effects disappear when controlling for the considered covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' This is seen most clearly with CNN which yields the effects smaller than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1 day (in absolute value) for all cases but one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Confidence intervals at the 95% level cover zero in most cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Thus, while there appeared to be a positive effect on health of early retirement, this effect was probably due to confounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 5 Discussion We have proposed and studied a semiparametric estimation strategy for average causal effects which combine convolutional neural network with AIPW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' As long as the conditions given are met, this strategy yields locally efficient and uniformly valid inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The use of CNN has the advantage over fully-connected feed forward neural networks that they are more efficient on the number of weights (free parameters) used 14 0 250000 500000 750000 50 60 70 retirement age count 0e+00 2e+05 4e+05 6e+05 8e+05 count 0 250000 500000 750000 1000000 50 60 70 retirement age count 0 250000 500000 750000 1000000 count Figure 2: Retirement age for men and women who belong to the cohorts born in Sweden 1946 and 1947.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The last staple in each histogram displays those who retired at age 71 or later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 15 Table 3: Effect of early retirement on number of days in hospital during five years of follow up, for the early retirees, and 95% confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Women Men The first year n=106437 n=104459 naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='396 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='167 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='062 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='060, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='183) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='037 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='256, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='183) DRmlp −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='062 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='192, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='069) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='138 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='079, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='355) ORds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='135 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='231, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='039) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='018 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='156, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='192) DRss −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='138 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='232, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='045) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='025 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='148, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='199) DRds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='128 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='222, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='035) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='028 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='145, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='202) tmle −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='143 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='237, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='049) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='018 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='156, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='192) The second year n=105776 n=103560 naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='354 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='192 DRcnn −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='082 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='231, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='067) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='122 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='042, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='285) DRmlp −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='083 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='224, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='058) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='214 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='041, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='387) ORds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='104 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='215, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='161, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='146) DRss −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='098 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='207, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='142, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='164) DRds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='081 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='190, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='027) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='014 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='139, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='167) tmle −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='111 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='220, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='142, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='163) The third year n=105039 n=102547 naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='277 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='173 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='153, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='175) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='030 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='140, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='200) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='200 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='029, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='370) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='094 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='894, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='083) ORds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='034 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='192, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='124) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='014 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='136, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='165) DRss −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='018 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='174, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='138) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='024 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='126, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='175) DRds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='010 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='167, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='146) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='027 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='123, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='178) tmle −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='018 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='174, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='139) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='027 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='123, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='178) The fourth year n=104293 n=101502 naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='179 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='216 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='067 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='181, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='315) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='085 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='082, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='252) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='804 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='432, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='040) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='517 (−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='723, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='688) ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='032 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='186, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='250) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='032 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='194, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='131) DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='042 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='176, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='259) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='016 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='178, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='146) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='056 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='162, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='273) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='170, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='154) tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='033 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='185, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='251) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='015 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='177, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='147) The fifth year n=103477 n=100325 naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='232 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='230 DRcnn −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='012 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='185, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='161) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='095 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='276, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='085) DRmlp −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='979 (−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='982, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='024) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='153 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='443, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='138) ORds −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='019 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='169, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='132) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='050 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='195, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='095) DRss −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='013 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='163, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='137) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='035 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='179, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='109) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='150, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='151) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='029 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='173, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='116) tmle −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='014 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='164, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='136) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='034 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='178, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='110) 16 for approximating the nuisance functions, and are geared to take into account time invariant local features in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' A main contribution of the paper is to show under which conditions CNN fits of nuisance functions achieve n−1/4 convergence rate required to obtain uniformly valid inference on an ACE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Using the result in Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021) in which convergence rate of a ReLU-based feed-forward network is shown to follow Equation (1), we show that the rate conditions in Assumption 3 are fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Specifically, we use CNN with a given complexity for which we show that approximation rate in (1) is small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' A key component of result in Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021) is the upper bound on empirical process terms found in Bartlett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2005) based on Rademacher averages, which are measures of function space complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Global Rademacher averages do not provide fast rates as in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' To derive this fast rate, localization analysis is employed which takes into consideration only intersection of the function space with a ball around the goal function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' considering that in reality the algorithm only searches in a neighborhood around the true function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover, the tight bound on Pseudo- dimension of deep nets found in Bartlett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2019) is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' We also present numerical experiments showing the performance of the estimation strategy in finite sample and compare it to other machine learning based estimation strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The applicability of the method is illustrated through a population wide observational study of the effect of early retirement on hospitalization in Sweden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 6 Appendix In this section we also consider the Sobolev space Hβ(Ω) that is defined using the L2 norm instead of the L∞ norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover, let ∥f∥L2(Ω) be the L2 norm of a function f defined on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='1 Proof of Theorem 2 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let Ω = [−1, 1]d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For any α that satisfies |α| ≤ β, by H¨older’s inequality, we have: ∥Dαf∥L2(Ω) ≤ 2d/2 ∥Dαf∥L∞(Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, f ∈ Hβ(Ω) and ∥f∥Hβ(Ω) ≤ 2d/2 hold by maxα,|α|≤β ∥Dαf∥L∞(Ω) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moreover, Ω has a Lipschitz domain interior and measure zero boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, by Sobolev extension theorem (Stein, 1970, Theorem 5) there is an extension F ∈ Hβ(Rd) of f for which ∥F∥Hβ(Rd) ≤ C ∥f∥Hβ(Ω) ≤ C2d/2, 17 where C is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' By F ∈ Hβ(Rd) and the result in Klusowski and Barron (2018, Theorem 2), we have ∥F − Fm∥C(Ω) ≤ c0vF,2 max{ � log m, √ d}m− 1 2 − 1 d, where m = E � (s−1)L d − 1 � , Fm(x) = β0 + α0x + v m �m k=1 βk(αkx − tk)+, βk ∈ [−1, 1], ∥αk∥1 = 1, tk ∈ [0, 1], β0 = F(0), α0 = ∇F(0) and |v| ≤ 2vF,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Here, vF,2 := � Rd ∥ω∥2 1 | ˆF(ω)|dω ≤ cd,β ∥F∥Hβ(Rd), where cd,β is the finite constant ��∥ω∥2 1 (1 + |ω|2)−β/2�� L2 and ˆF(ω) is the Fourier transform of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let F i m := 1 Eβ0 + 1 Eα0x + v m �(i+1)m k=im+1 βk(αkx − tk)+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' It is shown in Zhou (2020), using s ≥ 2 and L ≥ 2d/(s − 1), that F i m|Ω belongs to the following function space Cw,b L = � dL � k=1 ckh(L) k (x) : c ∈ RdL � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, by the definition of C, we can directly conclude that Fm|Ω belongs to C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Let f w,b L,E := Fm|Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Then, we have ���f − f w,b L,E ��� C(Ω) = ∥F − Fm∥C(Ω) ≤ c0vF,2 max{ � log m, √ d}m− 1 2 − 1 d ≤ c0cd,β ∥F∥Hβ(Rd) max{ � log m, √ d}m− 1 2 − 1 d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (6) The final result is obtained from the facts that 1 2(s − 1)LE ≤ md ≤ (s − 1)LE, s ≥ 2 and β > 2 + d/2 (cd,β is bounded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='2 Proof of Theorem 3 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The rate conditions (a) and (b) of Assumption 3 are fulfilled if both En[(ˆµt(xi)− µt(xi))2] and En[(ˆp(xi)−p(xi))2] are oP(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For this, the three terms in the upper bound (5) in Theorem 1 must be oP(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For the first term, based on 2, we have QL log Q n log n ≍ EL3 log(EL2) n log n ≍ log6(n) log(n d+1 2d+4 log4 n) n 2d+5 4d+8 log n = oP(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The second term is also oP(n−1/2) if γ = o(n1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' For the third term, using Theorem 2 we have εW,C ≤ � d+1 2d+4 log n + log log2 n n d+1 4d log d+2 d n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 18 To prove condition (c) of Assumption 3, we use the proof of lemma Farrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2021, Lemma 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In this proof it is shown that for an arbitrary class of feedforward neural networks with probability at least 1 − exp(−n d+3 4d+8 log6 n) En � (ˆµt,C(xi) − µt(xi)) � 1 − 1{ti = t} P[T = t|X = xi] �� ≤C � QL log Q n log n+ log log n + n d+3 4d+8 log6 n n + ε2 W,C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Therefore, we can conclude that under the stated conditions En � (ˆµt(xi) − µt(xi)) � 1 − 1{ti = t} P[T = t|X = xi] �� ≤ CEn[(ˆµt(xi) − µt(xi))2] = oP(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='3 Early retirement effects on survival Additional results on the effect of early retirement on survival can be found in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' References Barban, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' de Luna, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Lundholm, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Svensson, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Billari (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Causal effects of the timing of life-course events: Age at retirement and subsequent health.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Sociological Methods & Research 49(1), 216–249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Bartlett, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Bousquet, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Mendelson (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Local rademacher complexi- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The Annals of Statistics 33(4), 1497–1537.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Bartlett, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Harvey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Liaw, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Mehrabian (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Nearly-tight vc- dimension and pseudodimension bounds for piecewise linear neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The Journal of Machine Learning Research 20(1), 2285–2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Belloni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Chernozhukov, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Hansen (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Inference on treatment ef- fects after selection among high-dimensional controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The Review of Economic Studies 81(2), 608–650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Chernozhukov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Chetverikov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Demirer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Duflo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Hansen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Newey, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Robins (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Double/debiased machine learning for treatment and structural parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The Econometrics Journal 21(1), C1–C68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 19 Chernozhukov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Hansen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Spindler (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' hdm: High-dimensional met- rics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' R Journal 8(2), 185–199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Farrell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2015, Nov).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Robust inference on average treatment effects with pos- sibly more covariates than observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Journal of Econometrics 189(1), 1–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Farrell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Robust inference on average treatment effects with possibly more covariates than observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' arXiv:1309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='4686v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Farrell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Liang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Misra (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Deep neural networks for estimation and inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Econometrica 89(1), 181–213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Kennedy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Semiparametric theory and empirical processes in causal inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' In He H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', Wu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', Chen D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (eds) Statistical causal inferences and their applications in public health research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 141–167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Klusowski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Barron (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Approximation by combinations of relu and squared relu ridge functions with ℓ1 and ℓ0 controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' IEEE Transactions on Information Theory 64(12), 7649–7656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' LeCun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Bengio, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Convolutional networks for images, speech, and time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The handbook of brain theory and neural networks 3361(10), 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Lindgren, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Nilsson, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' de Luna, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Ivarsson (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Data resource profile: Swedish microdata research from childhood into lifelong health and welfare (Ume˚a SIMSAM Lab).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' International Journal of Epidemiology 45, 1075–1075.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Moosavi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' H¨aggstr¨om, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' de Luna (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' The costs and benefits of uni- formly valid causal inference with high-dimensional nuisance parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' To appear in Statistical Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' ArXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='02071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Robins, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Rotnitzky, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Zhao (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Estimation of regression coef- ficients when some regressors are not always observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Journal of the American statistical Association 89(427), 846–866.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Rubin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Estimating causal effects of treatments in randomized and nonrandomized studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Journal of educational Psychology 66(5), 688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Scharfstein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Rotnitzky, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Robins (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Rejoinder to comments on “adjusting for non-ignorable drop-out using semiparametric non-response models?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Journal of the American Statistical Association 94, 1121–1146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Stein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Singular Integrals and Differentiability Properties of Functions (PMS-30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Princeton University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 20 Tan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Comment: Understanding OR, PS and DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Statistical Science 22(4), 560–568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Tsiatis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Semiparametric theory and missing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Springer Science & Business Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' van der Laan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Rose (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Targeted Learning: Causal Inference for Ob- servational and Experimental Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Springer Series in Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Springer New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Zhou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Universality of deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Applied and computational harmonic analysis 48(2), 787–794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' 21 Table 4: Effect of early retirement on survival (binary outcomes death=1), during five years of follow up for the early retirees, and 95% confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content=' Women n=106916 Men n=105149 The first year after treatment is considered for the outcome naive 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='013, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='194, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='200) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='150, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='151) DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003) tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003) The second year after treatment is considered for the outcome naive 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='012) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006) ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='164, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='174) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='130, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='133) DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005) tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005) The third year after treatment is considered for the outcome naive 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 DRcnn −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='052 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='166, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='063) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='010) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='013) ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='150, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='159) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='114, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='122) DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='010) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) The fourth year after treatment is considered for the outcome naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='000, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='011) ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='140, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='145) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='107, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='110) DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007) The fifth year after treatment is considered for the outcome naive −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='005 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='007 DRcnn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='006, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) DRmlp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='016) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009 ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='016) ORds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='001 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='131, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='134) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='098, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='102) DRss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) DRds 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='009) tmle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='004, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='002 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} +page_content='008) 22' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qtFKT4oBgHgl3EQfIC2S/content/2301.11732v1.pdf'} diff --git a/rNFKT4oBgHgl3EQfIi19/content/2301.11734v1.pdf b/rNFKT4oBgHgl3EQfIi19/content/2301.11734v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..6e4edbd7316ee54ed9ab3fb23e837b63a5b77709 --- /dev/null +++ b/rNFKT4oBgHgl3EQfIi19/content/2301.11734v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95e0be1a2de0227dfbc1bdd811f59bffd5bf001fdd5ba0d736158721019b73e0 +size 7198972 diff --git a/rNFKT4oBgHgl3EQfIi19/vector_store/index.faiss b/rNFKT4oBgHgl3EQfIi19/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..038d167034f377c9117edca55dc00d34f228a97a --- /dev/null +++ b/rNFKT4oBgHgl3EQfIi19/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5eb9d054ba596564883b991d00e546da38523ed04e92be3bc265a2dc4af963c4 +size 5898285 diff --git a/rNFKT4oBgHgl3EQfIi19/vector_store/index.pkl b/rNFKT4oBgHgl3EQfIi19/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..2c02f9c03ba42daacfa9a49205739cf8f8b3cdd7 --- /dev/null +++ b/rNFKT4oBgHgl3EQfIi19/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f927eedc7785b15d09e29ebb5521445de37f15ee8de289bc6dcec416449aad43 +size 203600 diff --git a/sdE1T4oBgHgl3EQfQAOj/content/2301.03035v1.pdf b/sdE1T4oBgHgl3EQfQAOj/content/2301.03035v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0584dbae4e3c76b092881bda550c0f53ac58f907 --- /dev/null +++ b/sdE1T4oBgHgl3EQfQAOj/content/2301.03035v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08a751206b471a3502b051516096d27d853f1735da1511984d95bd519d4a5739 +size 1083124 diff --git a/sdE1T4oBgHgl3EQfQAOj/vector_store/index.faiss b/sdE1T4oBgHgl3EQfQAOj/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a2845a3ba61bb29d0f7513c8087c4ddae867ea36 --- /dev/null +++ b/sdE1T4oBgHgl3EQfQAOj/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6343ba421d3539c908dae6a03d7920a0ce83bf967c2d3d58b765570313487d1 +size 1835053 diff --git a/sdE1T4oBgHgl3EQfQAOj/vector_store/index.pkl b/sdE1T4oBgHgl3EQfQAOj/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f48b7f7d7f6b1c10f023465062b56a528432e7ac --- /dev/null +++ b/sdE1T4oBgHgl3EQfQAOj/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:596ce3f6bd322320b6b29c8efb3d56963b9ee05334ded518cb1a512960f75e9a +size 77857 diff --git a/sdE3T4oBgHgl3EQfMwm8/vector_store/index.pkl b/sdE3T4oBgHgl3EQfMwm8/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e2dea541d73471261fab8500228f459a40d1e447 --- /dev/null +++ b/sdE3T4oBgHgl3EQfMwm8/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0b9628a323b806e6d95a7f72bc2150e2f86038383183c8830ad30f4804c5e8a3 +size 144016 diff --git a/tNAyT4oBgHgl3EQf0PnV/content/2301.00716v1.pdf b/tNAyT4oBgHgl3EQf0PnV/content/2301.00716v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..338abe2ec2f01cbad9214b13adf5cc0e2aa67b0c --- /dev/null +++ b/tNAyT4oBgHgl3EQf0PnV/content/2301.00716v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3a471284f703f3166a38f7488d349558df08655eecdd594bd05d1c0e1f7fdb75 +size 571916 diff --git a/tNAyT4oBgHgl3EQf0PnV/vector_store/index.faiss b/tNAyT4oBgHgl3EQf0PnV/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..4032b8a1dec72fbf26d94b34e75f44b86c73826a --- /dev/null +++ b/tNAyT4oBgHgl3EQf0PnV/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0feac5a0ed08f2cdad3149ac7261e13f330be5b8c71f00c8d0204f6fdbc27537 +size 3801133 diff --git a/tdA0T4oBgHgl3EQfLf9-/content/2301.02119v1.pdf b/tdA0T4oBgHgl3EQfLf9-/content/2301.02119v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..35f7333bedab1f656928275f3b66ef3555124dc7 --- /dev/null +++ b/tdA0T4oBgHgl3EQfLf9-/content/2301.02119v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:317ad8b6c3f4c62982c72187a4f604d2bebb59e198a07d56f78a53c06bdffa3e +size 766672 diff --git a/tdA0T4oBgHgl3EQfLf9-/vector_store/index.faiss b/tdA0T4oBgHgl3EQfLf9-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..833153105760c14f913164d62b48059d6745b06d --- /dev/null +++ b/tdA0T4oBgHgl3EQfLf9-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d9175d70793324e9641c38c662feb95e2e0e89d0bacdbf14487568a284e6f389 +size 6029357 diff --git a/tdA0T4oBgHgl3EQfLf9-/vector_store/index.pkl b/tdA0T4oBgHgl3EQfLf9-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d5c63a1a686eda59f68a784464ad456d42fcfc1b --- /dev/null +++ b/tdA0T4oBgHgl3EQfLf9-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6bdd2ce7f59c4e91b3d636475069dd01ae594a74ac9b583d66308bc802ed4f66 +size 213946 diff --git a/u9FAT4oBgHgl3EQfiB2Y/content/tmp_files/2301.08597v1.pdf.txt b/u9FAT4oBgHgl3EQfiB2Y/content/tmp_files/2301.08597v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f74d0267734839360626e8fb8feb5d91833ca75 --- /dev/null +++ b/u9FAT4oBgHgl3EQfiB2Y/content/tmp_files/2301.08597v1.pdf.txt @@ -0,0 +1,4444 @@ +arXiv:2301.08597v1 [math.DS] 20 Jan 2023 +Dynamics of the fifth Painlev´e foliation +E. Paul ∗ +J.P. Ramis† +January 23, 2023 +Abstract. The leaves of the Painlev´e foliations appear as the isomonodromic deformations +of a rank 2 linear connection on a moduli space of connections. Therefore they are the fibers of +the Riemann-Hilbert correspondence that sends each connection on its monodromy data, and +this correspondence induces a conjugation between the dynamics of the foliation and a dynamic +on a space of representations of some fundamental groupoid (a character variety). This one +can be identified to a family of cubic surfaces through trace coordinates. We describe here the +dynamics on the character variety related to the Painlev´e V equation. We have here to consider +irregular connections, and the representations of wild groupoids. We describe and compare all +the dynamics which appear on this wild character variety: the tame dynamics, the confluent +dynamics, the canonical symplectic dynamics and the wild dynamics. +Contents +Introduction +3 +1 +The moduli space MV +10 +1.1 +The local classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +10 +1.2 +The global gauge moduli space +. . . . . . . . . . . . . . . . . . . . . . . . . . . . +11 +1.3 +The moduli space of connections MV +. . . . . . . . . . . . . . . . . . . . . . . . +12 +2 +The wild fundamental groupoid πV +1 (X, S) +13 +2.1 +Stokes operators, formal monodromy and exponential tori . . . . . . . . . . . . . +13 +2.2 +The local wild fundamental groupoid +. . . . . . . . . . . . . . . . . . . . . . . . +16 +2.3 +The global wild fundamental groupoid . . . . . . . . . . . . . . . . . . . . . . . . +18 +2.4 +A confluent morphism of groupoid +. . . . . . . . . . . . . . . . . . . . . . . . . . +19 +3 +The character variety χV +20 +3.1 +Definition of χV +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +20 +3.2 +The character variety χV and cubic surfaces . . . . . . . . . . . . . . . . . . . . . +21 +3.3 +Lines and reducibility locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +24 +3.4 +Log-canonical coordinates on CV (θ) and cluster sequences . . . . . . . . . . . . . +28 +3.5 +The Laurent property +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +31 +3.6 +Families of confluent and diffluent morphisms . . . . . . . . . . . . . . . . . . . . +32 +∗Institut of Mathematics of Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex, France +emmanuel.paul math.univ-toulouse.fr +†Institut of Mathematics of Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex, France +Institut de France (Acad´emie des Sciences), France +ramis.jean-pierre@wanadoo.fr +1 + +4 +The Painlev´e V vector field on MV . +35 +4.1 +The Riemann-Hilbert map RHV +. . . . . . . . . . . . . . . . . . . . . . . . . . . +35 +4.2 +Isomonodromic families on MV . . . . . . . . . . . . . . . . . . . . . . . . . . . . +36 +4.3 +Singularities of the Painlev´e V vector field in the Okamoto’s compactification of +MV (α) +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +37 +5 +Dynamics on χV +39 +5.1 +The tame dynamics +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +39 +5.2 +The confluent dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +40 +5.3 +The canonical dynamics on CV (θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . +43 +5.4 +Comparison between the confluent and the canonical dynamics . . . . . . . . . . +48 +5.5 +Comparison with the wild dynamics +. . . . . . . . . . . . . . . . . . . . . . . . . +52 +6 +Conclusion and open questions +55 +Appendix. Structure of the symplectic Cremona group +56 +Bibliography +58 +2 + +Introduction +The transverse dynamics of an holomorphic foliation is usually defined by its holonomy groupoid. +In general we use a specialization of this groupoid along a particular leaf L: the holonomy group +of L. This one is a representation of the fundamental group of the leaf on a germ of transversal, +defined by the analytic continuation of the solutions. It only describes the transverse structure +of the foliation in a neigbourhood of L. +The Painlev´e foliations are holomorphic foliations defined by the Painlev´e equations. These +ones are order two non linear ordinary differential equations. Their writings are available for +example in [27]. We only recall here the Painlev´e VI and Painlev´e V families: +(PVI) +d2w +dt2 = 1 +2 +� 1 +w + +1 +w − 1 + +1 +w − t +� �dw +dt +�2 +− +� 1 +w + +1 +t − 1 + +1 +w − t +� dw +dt ++ w(w − 1)(w − t) +2t2(t − 1)2 +� +(α4 − 1)2 − α2 +3 +t +w2 + α2 +1 +t − 1 +(w − 1)2 + (1 − α2 +2) t(t − 1) +(w − t)2 +� +, +(1) +(PV ) d2w +dt2 = +� 1 +2w + +1 +w − 1 +� �dw +dt +�2 +− 1 +t +dw +dt + (w − 1)2 +t2 +�α2 +1 +2 w − α2 +3 +2w +� ++ (1 − α1 − 2α2 − α3)w +t − 1 +2 +w(w + 1) +w − 1 +. +(2) +They define families of one dimensional foliation on {(t, w, w′) ∈ C3}. They share with all the +Painlev´e differential equations type three properties, which will allow us to give a more global +and explicit description of their dynamics. Let us detail these properties for the Painlev´e VI +foliation: +1- The Painlev´e property : all the solutions (w(t), w′(t)) have a meromorphic continuation +over the universal covering the time space T = P1(C) punctured at the fixed singularities 0, 1 and +∞. This property generalizes the property of holomorphic extension of the solutions of linear +differential equations. The search of non linear differential equations satisfying this property was +the initial motivation of Painlev´e and then Gambier in order to construct new transcentendal +functions. It gives rise to the six well known families of Painlev´e equations. +According to this property, the movable singularities, i.e. the singularities of the solutions +outside the fixed singularities defined by the equation itself, are only poles. K. Okamoto has +introduced a semi-compactification process in order to get a foliation transverse to a fibration +over the time space. After this process, one can define the dynamic of the Painlev´e foliation by +its non linear monodromy, which is defined by an action of the fundamental group of the time +space T, over the Okamoto fiber (the space of initial values). We call it the tame dynamics. +2- The isomonodromic property. +In order to study the non linear monodromy of this +foliation, it is useful to introduce a conjugacy between this dynamical system and a simpler one: +the Riemann-Hilbert map. Let us recall the different ingredients involved by this property for +the Painlev´e VI equation. +• The moduli space of connections MV I. We consider the family of linear connections on the +trivial bundle over P1 defined the family SV I of rank 2 trace free differential systems +(A) : dY +dx = +� 4 +� +i=1 +Ai +x − pi +� +· Y, pi ̸= pj for i ̸= j, Ai ∈ sl2(C), +4 +� +i=1 +Ai = 0, x ∈ P1, +3 + +up to the global gauge action: Y �→ Y · P, P ∈ SL2(C), and to a change of the independent +variable x �→ ϕ(x), ϕ ∈ Aut(P1). The extension of the system to x = ∞ ∈ P1 is defined by the +change of variable z = x−1. The family SV I is a 13 dimensional space (including the variables +pi), and the above quotient is a 7 dimensional space. The local parameter space is defined by +α(A) = (det(Ai) = α2 +i /4, i = 1, . . . 4), +where ±αi/2’s are the eigenvalues of each residue matrix Ai. The time parameter is the cross +ratio t ∈ T = P1 \{0, 1, ∞} of the configurations of the singular points S = {p1, p2, p3, p4}. Over +a value α, the fiber MV I(α) is a 3 dimension space, and t(A) defines a fibration of MV I(α) over +T. +• The character variety χV I as representations of a fundamental groupoid. For a system A in +SV I we can define its monodromy representation by using the analytic continuation of a local +matrix solution Y0 along any element γ of the fundamental group π1(P1\S, x0). We consider here +another (equivalent) description of this monodromy, introduced by the authors in [53], essential +for what will follows. +Instead of considering as usually a fundamental group, we consider a +fundamental groupoid, which allows to make use of several base points. A groupoid is a small +category whose morphisms are invertible. For details on groupoids see [13]. The fundamental +groupoid π1(X) of a variety X is the groupoid whose objects are the points of X and the +morphisms the paths between two points up to homotopy, with the obvious composition. In +what follows, “paths” always means “path up to an homotopy”. We consider the variety X +obtained by 4 real blowing up of the singular points pi in P1, and we choose a base point si on +each divisor (i.e. a direction out of pi). Let S = {s1, s2, s3, s4}. The groupoid πV I +1 (X, S) is the +restriction of the fundamental groupoid π1(X) to this finite set of objects S. πV I +1 (X, S) has a +presentation given by the following picture: + +s1 +s2 +s4 +s3 +γ1,1 +γ2,2 +γ3,3 +γ4,4 +γ1,2 +γ2,3 +γ4,1 +γ3,4 +Figure 1: A presentation of the groupoid πV I +1 (X, S). +The morphisms are generated by the local loops γi,i based in si homotopic to each divisor and +the paths γi,i+1 from si to si+1 satisfying the following relations: +Rext : γ1,2γ2,3γ3,4γ4,1 = ⋆1 (the trivial loop based in s1) +Rint : γ1,1γ1,2γ2,2γ2,3γ3,3γ3,4γ4,4γ4,1 = ⋆1. +A linear representation ρ of πV I +1 (X, S) is a morphism of groupoid from πV I +1 (X, S) into the +category of vector spaces. In the Painlev´e context, we only consider linear representations ρ +4 + +such that ρ(s) = Vs is a 2-dimensional vector space and ρ(γs,t) belongs to the set of linear +morphisms which preserve the area. +A choice of a basis in each Vs defines a map ρ(γs,t) ≃ Mγs,t in SL2(C). We obtain a representation +of the groupoid πV I +1 (X, S) in the group SL2(C). If we change the basis in each Vs, we obtain +another representation ρ′ of πV I +1 (X, S) in the group SL2(C) which is equivalent, i.e. for any s, +there exist matrices Ps such that +M′ +γs,t = P −1 +s +· Mγs,t · Pt. +Therefore a rank two trace free linear representation of πV I +1 (X, S) is also a class of equivalent +representations of πV I +1 (X, S) in SL2(C). +Definition 0.1 The character variety χV I is the categorical quotient 1 of the set of rank 2 trace +free linear representations up to the above equivalence. +The local data of an element ρ in χV I is the restriction of ρ to the groupoid πV I,loc +1 +(X, S) +obtained by forgetting the generators γi,i+1. It is characterized by the class of each ρ(γi,i), or +by a = (ai = tr(ρ(γi,i), i = 1, ..., 4). We denote by χV I(a) the corresponding fiber in χV I. +• The character variety as a family of cubic surfaces CV I. Given a presentation of the groupoid +πV I +1 (X, S) by figure (1), we define the trace coordinates (a, x) by +ai(ρ) = tr(ρ(γi,i)), i = 1, · · · 4, xk(ρ) = tr(ρ(γi,iγi,jγj,j)), {i, j, k} = {1, 2, 3}. +The trace coordinates do not change in a class of equivalent representations in SL2(C). Therefore +it can be convenient to make use of normalized representations: A representation ρ of the +groupoid πV I +1 (X, S) in the group SL2(C) is normalized if for any indexes i, j, i ̸= j we have: +ρ(γi,j) = I. One can always choose the representation of the objects in order to get a normalized +representation by choosing arbitrarily the representation of a first one and by representing the +further consecutive ones such that ρ(γi,i+1) = I. A normalized representation is given by 4 +matrices Mi = ρ(γi,i) unique up to a common conjugacy which satisfy, according to the relation +Rint, M1M2M3M4 = I. We recover here the usual monodromy data. The trace coordinates of +a normalized representation ρ are defined by +ai = tr(Mi), i = 1, · · · 4, x1 = tr(M2M3), x2 = tr(M3M1), x3 = tr(M1M2). +Proposition 0.2 The trace map TrV I defined by (a, x) sends each χV I(a) on the cubic surface +CV I(θ) in C3 defined by the equation FV I(x, θ) = 0 with +FV I(x, θ) = x1x2x3 + x2 +1 + x2 +2 + x2 +3 − θ1x1 − θ2x2 − θ3x3 + θ4, +and θi = aia4 + ajak, {i, j, k} = {1, 2, 3}, θ4 = a1a2a3a4 + � +i a2 +i − 4. +From [31], this trace map is an homeomorphism only on an open set χ0 +V I(a) in the character +variety. For a generic value of the local data a, we have χ0 +V I(a) = χV I(a). This condition implies +that Mi ̸= ±I for i = 1, 2, 3. +• The Riemann-Hilbert correspondence RHV I : MV I → χV I. Let A in MV I(α). We choose +a representative of each base point si by a fundamental system of solutions Ys of A. +The +1This means that we consider the affine variety defined by the ring of invariants functions over the set of linear +representations: see [12] or [61]. +5 + +representation of a path γ from s to t is obtained by comparing the analytic continuation �Ys +γ +of Ys along γ with Yt: +ρA(γ) = Mγ ⇔ Yt = �Ys +γ · Mγ. +A change of representation of the objects, or a gauge action on A gives an equivalent represen- +tation. The Riemann-Hilbert map RHV I is defined by RHV I(A) = [ρA]. The map induced by +RHV I on the local parameters is defined by +RHloc +V I(αi) = 2 cos(παi) = ai. +We do not discuss here about the surjectivity of RHV I (the so called Riemann-Hilbert prob- +lem) or its properness. For a survey on this wide subject, see [29] for the Painlev´e VI case, and +[54] for the other cases. +• Isomonodromic families and Painlev´e VI equation. An isomonodromic family on MV I is a +fiber of the map RHV I, parametrized by a variable t, i.e. a family of connections defined by +dY +dx = A(x, t) · Y such that the monodromy representation is locally constant in χV I along this +family. The relationship with the Painlev´e VI equation was discovered by R. Fuchs in 1907. +Theorem 0.3 There exists coordinates w, w′, t over a Zariski open set in MV (α) such that the +isomonodromic families are the solutions the Painlev´e VI equation (1). +A sketch of proof [30]. +Given a fundamental system of solutions Y (x, t), by isomonodromy, +d +dtY (x, t) and Y (x, t) have the same behaviour along any continuation. Therefore the quotient +B(x, t) = d +dtY (x, t) · Y (x, t)−1 +is univalued outside the fixed singular points. Since the singular points are regular singular +points (see section 2 for the definition) B extends to the singular set in a meromorphic way. +Therefore Y (x, t) satisfies two rational linear systems dY +dx = A(x, t)·Y and dY +dt = B(x, t)·Y . The +compatibility condition requires that the two operators d/dx − A and d/dt − B must commute : +dA +dt − dB +dz + [B, A] = 0. +(3) +The pair (A, B) is called an isomonodromic Lax pair, and the above equation the Schelsinger +equation. If A is irreducible, B is unique. Now, one can find coordinates such that the Schelsinger +equation (3) is equivalent to the Painlev´e VI equation: see [30]. ✷ +3- The Hamiltonian property : Any Painlev´e differential equation is equivalent to a (non +autonomous) hamiltonian system. This fact was first remarked by J. Malmquist [46], and ex- +tended by K. Okamoto in [50]. For example the family of Painlev´e VI equations is equivalent to +˙p = −∂HV I +∂q +, ˙q = ∂HV I +∂p +, +(4) +with +HV I(α) = q(q − 1)(q − t) +t(t − 1) +� +p2 − (α3 +q + +α1 +q − 1 + α2 − 1 +q − t )p + +β +4q(q − 1) +� +. +with β = (α1 + α2 + α3 + α4 − 2)(α1 + α2 + α3 − α4), and where the numbers ±αi/2 are the +eigenvalues of the residues matrices Ai2. +2The numbering is chosen here such that the two first indices correspond to the singularities 1 and t which are +confluent in the usual confluent process of the Painlev´e equations. +6 + +We denote by PV I(α) the corresponding family of Painlev´e vector fields, and by FV I(α) the +family of dimension one holomorphic foliations on C3 +(p,q,t) ⊂ C2 × P1 (where P1 is the complex +one dimensional projective space). The fibers t = 0, 1, ∞ are singular and the foliation has 4 +singular points on each of this fibers. +Remark 0.4 Painlev´e sixth equation was not discovered by Painlev´e and Gambier, using the +Painlev´e property, but by Richard Fuchs, using an isomonodromic deformation. R. Fuchs consid- +ered the monodromy preserving deformation of a second order Fuchsian differential equation with +four regular singular points and an apparent singularity3 : Dy = y′′ + a1(x, t)y′ + a2(x, t) = 0, +where a1 and a2 are rational functions on x depending holomorphically of t. +We write the +Riemann scheme of Dy = 0 : + + + + + + + + + + + + + +x = 0 +x = 1 +x = t +x = q +x = ∞ +0 +0 +0 +0 +κ0 +κ1 +κ2 +κ3 +2 +κ0 + κ4 + + + + + + + + + + + + + +. +In this scheme the exponents κi, i = 0, 1, 2, 3, 4 are complex parameters subject to the Fuchs +relation : +κ1 + κ2 + κ3 + κ4 + 2κ0 = −1. +The κi, i = 1, 2, 3, 4 are related to the eigenvalues ±αi/2 of the Fuchsian systems (A) by +κ1 = α1, κ2 = α2, κ3 = α3 and κ4 = α4 − 1. +For a proof, see [29]. It is easy to derive the Hamiltonian formulation (cf. [48]). The variable q +is the position of the apparent singularity, the variable p is defined by p = Resx=qa2(x, t)dx and +the hamiltonian by (4). +The family of Painlev´e V equations (2) is equivalent to +˙p = −∂HV +∂q , ˙q = ∂HV +∂p , +(5) +with HV (α) = t−1 (p(p + t)q(q − 1) − α1p(q − 1) + α2qt − α3pq) . +We have used here the notations of [60]. The values +alphai/2 are not here eigenvalues of the residues matrices of the connection but are directly +related to them by an affine invertible map whose expression in available in the appendix C of +[35]. +We denote by PV (α) the corresponding families of Painlev´e vector fields, and by FV (α) the +family of dimension one holomorphic foliations on C3 +(p,q,t) ⊂ C2 × P1. There is here only two +singular fibers over t = 0 and t = ∞, with 2 singular points over 0, and 5 singular points over +∞, 3 of them are of saddle-node type i.e. with a vanishing eigenvalue. +This construction provides a symplectic structure ΩV I(α) on MV I(α) given by dq ∧dp. This +Poisson structure on MV I also comes from a general construction of Atiyah and Bott [1]: the +symplectic structure on the infinite dimensional space of all the connections induces a Poisson +structure by a symplectic reduction under the gauge action. There also exists several direct +3Respectively x = 0, 1, t, ∞ and x = q. +7 + +finite dimensional constructions, by using either ciliated fat graphs [24], [2], or quasi-hamiltonian +geometry and quivers varieties [10], or symplectic reduction of multi-Poisson structures [18]. +On the right-hand side, the space of linear representations χV I has also a Poisson structure +which induces a symplectic form ωχV I(a) on each fiber χV I(a). This fact was first proved by +Goldman in [26], and makes use of the Poincar´e-Lefschetz duality on the tangent space. It can +be extended to irregular cases by using the concept of decorated character variety : [15], or +quasi-hamiltonian geometry [9]. +There also exists a Poisson structure on the family of cubic surfaces CV I(θ) given by: +ωV I(θ) = dx1 ∧ dx2 +FV I,x3 += dx2 ∧ dx3 +FV I,x1 += dx3 ∧ dx1 +FV I,x2 +, +where FV I,xi = ∂FV I/∂xi = xjxk + 2xi − θi = ∂FV I/∂xi for i=1,2,3. This structure obtained +by the Poincar´e residue of the volume form coincide with the Goldman structure: see [31]. +Finally K.Iwasaki has proved that the Riemann-Hilbert map RHV I is a Poisson morphism +from (MV I, ΩV I) to (CV I, 2iπωV I): [32]. One can also find a proof of this fact in [40] obtained +from the Jimbo’s asymptotic formula [34]. This result has been extended for the Riemann-Hilbert +map in a local irregular case by P. Boalch: see [8]. +One can summarize these three properties for the Painlev´e foliation by the following state- +ment: the dynamics of the Painlev´e VI foliation FV I(κ) is conjugated through the Riemann- +Hilbert map to the dynamics on CV I(θ) induces by the automorphisms of πV I +1 (X, S). +Since the inner automorphisms γi,j �→ αi,iγi,jα−1 +j,j acts trivially on the character variety, this +action factorizes to the quotient +Out(πV I +1 (X, S)) = Aut(πV I +1 (X, S))/Inn(πV I +1 (X, S)) +which is defined by pure braids over S in X. This braid group is generated by three elementary +braids b1,2, b2,3 and b3,1 such that b1,2 · b2,3 · b3,1 = 1. The action of each generator on χV I has +been first computed by Dubrovin and Mazzocco [23]. See also Iwasaki [31], or Cantat and Loray +[14] or the authors in [53] for a simple computation using groupoids instead of groups. We have +Proposition 0.5 The action of bi,j is given by the automorphism: +hi,j : + + + + + +xi → −xi + xjxk + xix2 +k − θjxk + θi +xj → −xj − xixk + θj +xk → xk. +This dynamics has the remarkable “tame property”: any element and its inverse is given by +polynomials. +Contents of this article. +Our aim is to present the main tools that will allow us to +extend this description for all the Painlev´e equations, by considering here the first case of PV . +In this case, which can be obtained from PV I, by a confluent process, new difficulties arise: +– The monodromy around the two singular fibers 0 and ∞ do not describe the whole trans- +verse structure of the foliation. This monodromy will only give a “tame” dynamics generated +by just one element. This is a consequence of the “irregular” type of the singularities of the +foliation over ∞ which are now saddle-nodes, with non linear Stokes phenomenon. +– On the other side, the class of connections on which PV naturally arises is now a class of +irregular connections. The representation of such a connection must take into account beyond +the usual monodromy, new operators related to such singular points: the linear Stokes operators +and exponential tori. +8 + +We solve these problems by constructing a wild fundamental groupoid πV +1 (X, S) with its +linear representations (modulo equivalence): +the wild character variety χV . +The action of +Out(πV +1 (X, S)) allows us to recover the tame dynamics. +In order to complete this dynamics, one can construct a family of (non invertible) confluent +morphisms from πV +1 (X, S) to πV I +1 (X, S). The key point is that these morphisms induce families +of birational maps between the corresponding character varieties. This will allow us to define +and compute a confluent dynamics Conf(PV ) on χV . This one was previously found by Martin +Klimes in [40]. Our technique based here on wild fundamental groupoids allows us to expect a +generalization for all the other Painlev´e equations. Notice hat the dynamics that we obtain is +no longer polynomial but only a rational one. +We will also discuss about a canonical dynamic which exists on the cubic surfaces CV , with- +out any reference to a Painlev´e equation. +The central idea is that here the cubic surface is +symplectically birationally equivalent to +� +C2, du +u ∧ dv +v +� +by a sequence of log-canonical coordi- +nates which satisfies some exchange relations, which appear in cluster algebra. The pull-back +of the symplectic Cremona group Symp +� +C2, du +u ∧ dv +v +� +delivers a very rich structure denoted by +Dyn(CV ). We will compare Conf(PV ) and Dyn(CV ). +The wild dynamics of the Painlev´e V foliation is defined by the non linear monodromy, non +linear Stokes operators and non linear tori in a neighborhood of a saddle-node singular point. +Following M. Klimes [40], we will recall the definition of this dynamics and its image through the +Riemann-Hilbert map. We also recover here the canonical symplectic dynamics, thus confirming +in this case the rationality conjecture of the second author. +The last part is dedicated to open problems. +Acknowledgments. +We would like to thank Martin Klimes for the discussions we had +together on this subject. His work [40] is a primary source of inspiration for this article. +9 + +1 +The moduli space MV +According to [54], the moduli space of connections on which lives the Painlev´e V foliation is +defined by: +SV = +�dY +dx = A(x) · Y, A(x) = +A0 +x − s0 ++ +A1 +x − s1 ++ A∞, A0, A1, A∞ ∈ sl2(C) +� +such that A∞ is a non trivial semi-simple element. The singularities, i.e. the points s such that +A is not holomorphic around s are s0, s1 and ∞. We suppose that the eigenvalues ±t of A∞ are +distinct (t ̸= 0). One can extend the basis to P1(C) by setting z = x−1: +dY +dz = −z−2A(z−1) · Y. +As explained in the introduction, we consider this family up to a gauge action Y = PZ, which +acts on the system by A → AP = P −1AP − P −1 dP +dx , and up to a change of independent variable +ϕ(x), ϕ in the M¨obius group Aut(P1). +1.1 +The local classification +Suppose that x = 0 is a singular point of a germ of connection defined by +xp+1 dY +dx = A(x) · Y, A ∈ sl2(C{x}), A0 = A(0) ̸= 0, p ≥ 0. +The local formal classification is the classification of such a system up to a gauge transformation +Y = PZ, with P in SL2 (C((x))). The integer p is called the Poincar´e rank of the system. It is +not a local gauge invariant. If p = 0 the singular point is called a fuchsian singularity. Given +an element of SV , the points s0 and s1 are fuchsian singularities. The local formal classification +around such a point is given by the following general result (cf [64]): +Proposition 1.1 We consider the fuchsian system xY ′ = A(x) · Y, A0 = A(0) ̸= 0. +1. Suppose that the eigenvalues of A0 do not differ from a positive integer (the non resonant +case). There exists a local meromorphic gauge transformation P in SL2 (C((x))) which +conjugates the fuchsian singular system to xZ′ = A0 · Z +2. In this case, the system (1) admits a local fundamental solution Y = P(x)xA0, P in +SL2 (C((x))). Furthermore if A is a convergent data, then P is also a convergent matrix. +The general case reduces to the non resonant case by using shearing transformations, which can +eventually modify the Poincar´e rank. We also obtain a local fundamental system Y = P(x)xL +for some constant matrix L. In any cases, the sectoral local solutions admits a moderate growth : +fuchsian singularities are regular singular points. The classification of non fuchsian singularities +is given by the Hukuhara Turritin Theorem [3] : +Theorem 1.2 We consider a sl2-system zp+1Y ′ = A(z).Y, A0 = A(0) ̸= 0, p ≥ 1. There exists +a formal meromorphic gauge transformation Y = PZ and a ramification z = yk such that the +differential system has the canonical form +yZ′ = (L + D1y−1 + · · · + Dmy−m) · Z, +where the Di’s are diagonal matrices, and L commutes with the Di’s. +10 + +If the irregular part D1y−1 + · · · + Dmy−m vanishes, we still get a regular singular point. Other- +wise, the singular point is irregular, and the degree r = m/k is called the Katz invariant of the +irregular singular point. +Remark 1.3 If the eigenvalues of A0 are distincts, we do not need to use a ramification z = yk. +Otherwise, for example if A0 is a nilpotent element of sl2(C), we first have to use shearing +transformations in order to modify the leading term A0, which may change the Poincar´e rank +and requires a ramification. This may occur for some Painlev´e families. +Given an element A of SV , the singular point x = ∞ (z = 0) is an irregular singular point +with Katz rank 1. Since the eigenvalues ±t of A∞ are distinct, we do not need here a ramification +of z. The explicit computation of the residue matrix L∞ gives: +L∞ = + + + +a0 + a1 +0 +0 +−a0 − a1 + + + . +Therefore the system (A) has a formal fundamental matrix solution around z = 0 given by +�Y (z) = P(z)zL∞ exp Q(z), Q(z) = diag(αz−1, −αz−1). +1.2 +The global gauge moduli space +We want to compute the categorical quotient SV //Sl2(C), i.e the affine variety defined by the +ring of invariant functions under the action of the constant gauge action of Sl2(C). One can +first use a constant gauge transformation in order to diagonalize A∞: +A∞ = + + + +t/2 +0 +0 +−t/2 + + + , Ai = + + + +ai +bi +ci +−ai + + + , i = 0, 1. +Let S′ +V be the subset of SV defined be the above writing. For a fixed singular set s0, s1, ∞, it is +a 7-1=6 dimensional variety. The remaining gauge action which normalizes the diagonal matrix +A∞ is the group N =< T, P > generated by +T = {Tm = + + + +m +0 +0 +m−1 + + + , m ∈ C∗} and P = + + + +0 +1 +−1 +0 + + + . +This group acts on sl2(C) by +Tm · + + + +a +b +c +−a + + + = + + + +a +bm2 +cm−2 +−a + + + , P · + + + +a +b +c +−a + + + · P −1 = + + + +−a +−c +−b +a + + + = −AT . +After this first reduction, SV //SL2(C) = S′ +V //N. The following functions are invariant by the +action of N: +α0 = a2 +0 + b0c0 +α1 = a2 +1 + b1c1 +α∞ = (a0 + a1)2 +τ = a0t +β0 = b0c1 + b1c0 +β1 = t(b0c1 − b1c0) +(6) +11 + +Notice that the three coordinates α = (αi), i = 0, 1, ∞ are local invariants around each singular +point. As mentioned in the introduction the αi parameters used in the expressions of the Painlev´e +V equation and in its hamiltonien HV are not exactly equal to the present parameters but only +related to the eigenvalues of the Ai by an affine invertible map : see [35]. +Proposition 1.4 SV //SL2(C) = Spec(α0, α1, α∞, τ, β0, β1). +Proof. +It suffices to prove that the map (α0, α1, α∞, τ, β0, β1) : +S′V //SL2(C) → C6 is +invertible over the Zariski open set a0 ̸= 0, b0c0 ̸= 0. Given a value (α0, α1, α∞, τ, β0, β1), we +first choose arbitrarily t ̸= 0. Now a0 is uniquely determined by ta0 = τ, and b0c0 is uniquely +determined by α0−a2 +0. The values a2 +0 and b0c0 determine a unique class [A0] modulo N. It suffices +to prove that the choice of A0 in this class determines in a unique way the triple (A0, A1, A∞). +A∞ is uniquely defined by a0t = τ. The two last equations define a linear system in (b1, c1) +which admits a unique solution for b0c0 ̸= 0. The relation +2a0a1 = α2 +∞ − α2 +0 − α2 +1 + b0c0 + b1c1 +determines a unique value of a1 for a0 ̸= 0. Another choice of A0 in [A0] will give an equivalent +triple (A0, A1, A∞) modulo N. ✷ +This quotient is endowed with a Poisson structure whose Casimir functions are α0, α1, α∞ +and τ. +Therefore, each fiber has a canonical symplectic structure. See the introduction for +references. +1.3 +The moduli space of connections MV +We now consider the action of a global change of independent variable. We have previously +fixed one singular point at ∞. The positions s0 and s1 are now free parameters. One can use a +translation x → x+λ in order to get s0 = 0. This action do not modify A0 A1 and A∞. Now we +want to normalize the singular point s1 to the value 1, by using the last change of independent +variable that we can use: x �→ µx. Since s1 ̸= s0 = 0, we can introduce the parameter s−1 +1 . The +linear system +dY = (A0 + +A1 +1 − s1x−1 + xA∞)dx +x ) · Y +is changed in +dY = (A0 + +A1 +1 − s1µ−1x−1 + xµA∞)dx +x ) · Y. +This action do not modify A0 and A1 but modify A∞ in µA∞. Therefore it keeps invariant the +local variables αi and modify the others variables by: +(τ, β0, β1, s−1 +1 ) → (µβ0, β1, µβ2, µs−1 +1 ). +The quotient of this action is the weighted projective space P3 +(1,0,1,1). The usual choice of µ such +that s1 = 1, corresponds to a choice of chart in P3 +(1,0,1,1). Therefore +Proposition 1.5 The moduli space of connections MV (α) induced by SV for fixed local invari- +ants is isomorphic to P3 +(1,0,1,1). +Remark 1.6 +1. This space is identical to that obtained by H. Chiba in [17] when he seeks a +natural compactification on which lives the vector field PV by using its Newton polyhedra. +12 + +2. Since one weight vanishes, the quotient space is isomorphic to P2(C) × C, and it is not a +compact space. This fact is shared with the quotient spaces corresponding to the equations +PV I and PIII,D6, while we obtain a compact weighted projective space for the other families +(I), (II), (IV ), (III, D7), (III, D8): [16]. To deal with this problem, we will use the +trick introduced by H. Chiba, who introduces two copies of the previous space, glued by a +convenient B¨acklund transformation. +2 +The wild fundamental groupoid πV +1 (X, S) +The fundamental group of π1(P1 \{s0, s1, s∞}, b0) acts on a local fundamental system Y0 around +b0 by analytic continuation of Y0 along a path in P1 \ {s0, s1, s∞}. We first enlarge this usual +monodromy representation by considering new operators around the irregular point s∞: the +formal monodromy, the Stokes operators and the exponential torus. We first describe theses +operators in the present context, by using a point of view very similar to that introduced by +Stokes himself in [58], starting from a formal solution and using the summability theory. +2.1 +Stokes operators, formal monodromy and exponential tori +Definition 2.1 +1. Let k > 0. A formal power series �f = � +i≥0 aixi is 1/k-Gevrey if there +exists M > 0 and A > 0 such that for all i |ai| ≤ MAi(i!)1/k. +2. Let V be a sector at the origin and f an holomorphic function on V . f is 1/k-Gevrey +asymptotic to �f if for every strict subsector W in V , there exists MW > 0 and AW > 0 +such that for all n ≥ 1 +| (f(x) − +n−1 +� +i=0 +aixi |≤ MW An +W (n!)1/k|x|n. +We denote by C[[x]]1/k the algebra of series which are 1/k-Gevrey, A1/k(V ), the algebra +of holomorphic functions on V which are 1/k-Gevrey asymptotic to some formal series. We +mention here the following facts (for the proofs see [44]): +- If f is 1/k-Gevrey asymptotic to �f, then �f is a 1/k-Gevrey series. Therefore the Taylor +map T : A1/k(V ) → C[[x]]1/k is well defined. +- For V “narrow” i.e. with an opening ≤ π/k, the Taylor map T is surjective: this is a +Gevrey extension of the Borel-Ritt theorem. +- For V “large” i.e. with an opening > π/k, the Taylor map T is injective: this is a Gevrey +extension of the Watson Lemma. +- Any formal solution of any linear or non linear analytic differential equation is 1/k-Gevrey +for some k. This a theorem of Maillet. In the linear case, the second author gives the +optimal Gevrey index by using the Newton polyhedra. In particular, for a linear system +xk+1dY/dx = A(x) · Y , this optimal order is the Katz rank of the system. +Definition 2.2 +1. Let d ∈ S1 a direction. +A formal power series �f = � +k≥0 aixi is k- +summable in the direction d if there exists a sector Vd bisected by d, whose opening is +greater than π/k and an holomorphic function f on V which is 1/k-Gevrey asymptotic to +�f. +13 + +2. A formal power series �f is k-summable if �f is k-summable in any direction d excepted a +finite number of directions (the singular directions). +Let C{x}1/k,d ⊂ C[[x]]1/k be the algebra of k-summable series in the direction d, and C{x}1/k ⊂ +C[[x]]1/k the algebra of k-summable series. Since Vd is a large sector, the summation operator +Σd : C{x}1/k,d → A(Vd) is an injective morphism of C-differential algebra. +Theorem 2.3 Let x2dY/dx = A(x)Y , A(x) in sl2(C{x}), be a germ at x = 0 of meromorphic +differential system. We suppose that the eigenvalues of A(0) are distincts (which avoids a rami- +fication of the independent variable), and that the singularity is irregular, with a Katz rank equal +to 1. +1. The formal series appearing in a formal fundamental system of solutions �Y are 1-summable. +2. For any non singular direction d, the operator Σd extends to a unique differential morphism +from the algebra C{x}1[xλ, x−λ, exp t/x, exp(−t/x)] into O(Vd), such that this morphism +induces the identity map on C[xλ, x−λ, exp t/x, exp(−t/x)]. This allows us to define Σd(�Y ) +for a formal matrix solution �Y . +3. Given a formal fundamental system of solutions +�Y (x) = P(x)xL exp Q(x), Q(x) = diag(tx, −tx), +the singular directions d on which Σd(�Y ) is not defined are characterized by arg(x) = d if +and only if exp(2tx) has a maximal decay, i.e. by tx ∈ R−. +Let Σ be the set of singular directions. The Stokes operators {Sd, d ∈ Σ} are defined in the +following way. We choose a regular direction d0. For any singular direction d, we choose two +regular directions d− and d+ such that the arc (d−, d+) contains the only one singular direction +d. We choose a determination �Y0 of �Y around a d0. This choice induces a determination �Y − of �Y +around the direction d− (resp. a determination �Y + of �Y around d+) by analytic continuation of +the logarithm along the positive arc (d0, d−) (resp. (d0, d+)). The summations Y − = Σd−(�Y −) +and Y + = Σd+(�Y +) are defined on large sectors V − +d and V + +d which intersects non trivially on an +open sector around d. Therefore there exists some constant matrix Sd such that Y + = Y −Sd. +One can easily check that Sd does not depend on the choices of d+ and d− around d. A change +of choice for �Y or for its determination �Y0 around a d0 will modify the family {Sd, d ∈ Σ} by a +common conjugation. +Remark 2.4 Starting from a formal solution �Y0, the Stokes operator Sd are defined by the +successive operations: analytic continuation of the formal solution �Y0 along an arc from d0 to +d−, summation at d−, analytic continuation of Y − until d+ on V + ∩ V −, anti-summation at d+ +(i.e. Taylor expansion of the actual solution Y +) and finally analytic continuation of the formal +solution �Y + from d+ to d0. +Definition 2.5 +1. The Stokes operators at each singular direction are defined by the above +composition of operators. Given a formal solution �Y0, they are characterized by matrices +Ud, up to a common conjugation. +2. The formal monodromy is the operator generated by a loop �γ around 0 acting on a de- +termination of �Y . +For a given determination �Y0, it is defined by a matrix denoted by +� +M. +14 + +3. The geometric monodromy is the operator generated by a loop γ around 0 acting on a +determination of an actual solution Y . For the actual solution Y0 obtained by summation +of �Y0, it is defined by a matrix denoted by M. +4. The (formal) exponential torus is an action of the algebraic group C∗ on �Y0 induced by +a rescaling of the exponential map: exp q → τ exp q. If �Y0 = PxL exp Q is chosen such +that Q is diagonal, the action of τ is given by a diagonal matrix Tτ = diag(τ, τ −1). In the +general case Tτ is a Cartan component of SL2(C) +The motivation for the introduction of the exponential torus action is given by the following +heuristic interpretation in a one dimensional context: we consider the equation x2y′ + y = 0. +We introduce an unfolding of the irregular singularity at the origin : we replace D = x2d/dx + 1 +by Dε := x(x − ε)d/dx + 1 (ε ∈ C∗). Then the irregular singularity is replaced by two regular +singularities at 0 and ε, with respective exponents 1/ε and −1/ε. An important point to notice +is the coupling between the relative positions of the singularity and the exponents. The general +solution of Dεy = 0 is y = Cx1/ε(x − ǫ)−1/ε. It is invariant by the monodromy action of a +simple loop around the two points 0 and ε but the monodromy action of a simple loop around +0 passing between the two points will transform f into e−2iπ/εf. When ε → 0, this monodromy +action does not have a limit. However we can replace the continuous limit by a discrete limit. +We fix ε0 ∈ C∗ and we define a sequence (εn)n∈N by +1 +εn := +1 +ε0 + n, n ∈ N. Then the sequence +(e−2iπ/εn)n∈N is constant and we can interpret f �→ fτ0, with τ0 := e−2iπ/ε0 as the action of a +simple loop passing between two infinitely near points4. As the choice of ε0 is arbitrary, then τ0 +is arbitrary in C∗ and we can consider the exponential torus as a generalized monodromy group. +This group is no longer discrete, it is an algebraic group of dimension one. The “monodromy of +a loop between the two infinitely near singularities” can be interpreted as a “random point” in +this group. In the unfolding bifurcation Dε there is a breaking of symmetry, the choice of ε fix +a point e−2iπ/ε ∈ C∗ and the exponential torus is replaced by the ordinary monodromy group +generated by f �→ e−2iπ/εf. The random point is replaced by a true point. +Proposition 2.6 +1. Let d1, d2 = d1+π be the 2 singular directions of the differential system. +We have M = � +M · Ud2 · Ud1. +2. If �Y0 = PxL exp Q is chosen such that Q is diagonal, Ud1 is a lower triangular unipotent +matrix and Ud2 is a upper triangular unipotent matrix. In the general case, Ud1 and Ud2 +are in the two Borel components of the Cartan component of the exponential torus. +3. In the present case (a non ramified case), the formal monodromy commutes with the expo- +nential torus (and belongs to it). This fact is no longer true in the ramified case. +A Borel-Cartan configuration is a triple of subgroups (B−, C, B+) in SL2(C) such that C is a +maximal torus, isomorphic to the algebraic group C∗, and B− and B+ are two maximal solvable +subgroups which contains C. Any Borel-Cartan configuration is conjugated to the canonical +one given by (T −, D, T +) where D is the subgroup of diagonal matrices, T − (resp. T +) the +subgroup of lower (resp. upper) triangular matrices. The unipotent subgroups of B− and B+ +are respectively denoted by U − and U +. +The triple (Ud1, � +M, Ud2) and the triples (Ud1, Tτ, Ud2) take their values in a unipotent Borel- +Cartan configuration (U −, C, U +). +The local wild dynamics of the irregular connection is the subgroup (well defined up to +a conjugation) of SL2(C) generated by the Stokes operators, the formal monodromy and the +4The idea of considering an irregular singularity as a pack of infinitely near regular singularities is due to Ren´e +Garnier in 1919 [25]. It will be used as a guideline in our work. +15 + +exponential torus. According to a result of the second author [55], the Zariski closure of the +local dynamics in SL2(C) is the differential Galois group of the local linear differential system. +For the study of isomonodromic deformations, we need a parametric version of Theorem +(2.3). They are parametric variants of Gevrey power series and of Gevrey expansions (with +analytic parameters). One supposes that the estimates in definition (2.1) are uniform on the +parameter space U ⊂ Cp, or more generally on every compact K of U : one replaces MW and +AW by MW,K and AW,K (resp. uniform on the parameter space). For an open set U ⊂ Cp, +we will denote O(U)[[x]]1/k the algebra of Gevrey series of order 1/k uniformly on U. They +are also a similar parametric variant of k-summability using the uniformly parametrized 1/k- +Gevrey expansions : the definition is the same mutatis mutandis. We will speak of uniform +k-summability. Then the sums of the uniformly k-summable series in a direction d are analytic +in the variable and in the parameters.5 For more information on these subjects cf. [57]. +Theorem 2.7 Let U ⊂ Cp be an open subset. +Let D ⊂ C be an open disc centered at 0. +Let [A] : +x2dY/dx = A(x, t)Y , where A ∈ sl2 (O(D × U)), be a parametrized meromorphic +differential system. We suppose that, for all t = (t1, . . . tp) ∈ U, the eigenvalues of A(0, t) are +distinct and that the singularity is irregular, with a Katz rank equal to 1. +(i) Locally on U, the system [A] admits a formal fundamental solution analytic in the param- +eters : +ˆF = P �HxLeQ, where P ∈ SL2 (O(V )), �H ∈ SL2 (O(V )[[x]]1), �H(0, t) = I (for +every t ∈ V ), L ∈ sl2(C), Q = (q, −q), with q ∈ x−1O(V )[x−1]. +(ii) Let t0 ∈ U and V ⊂ U a neighborhood of t0 such that the system admits on V a formal +fundamental solution analytic in the parameters as above. Let t1 ∈ U and d a nonsingular +direction for the system x2dY/dx = A(x, t1)Y . Then there exists a neighborhood W ⊂ V +of t1 such that P �H is uniformly 1-summable in the direction d on W. +Proof. (i) Let t0 ∈ U. If an open polydisc V centered at t0 is sufficiently small, then there +exists P ∈ GL (O(V )) conjugating the restriction of A0 = A(0, t) to V to a diagonal matrix B0. +Therefore we are reduced to the case where A0 is diagonal. Then we can use a parametrized +variant of the splitting lemma of [3]. It reduces the system to two parametrized formal one +dimensional equations. The result follows easily. +(ii) A first proof. We use a parametrized generalization of the Improved Splitting Lemma of +[3] (8.1, Lemma 11, page 124). The proof is the same mutatis mutandis6. +A second proof. We imitate a proof of the unparamatrized version based on Gevrey asymp- +totics (cf. [44]), replacing the Gevrey Main Asymptotic Existence Theorem by a parametrized +version. ✷ +2.2 +The local wild fundamental groupoid +Following an idea which appears in a correspondence between P. Deligne B. Malgrange and the +second author [19], the Stokes operators, formal and geometric monodromy around an irregular +point appear as a representation of a “local wild fundamental groupoid”. We want to encode +all these operators by loops, or paths if we allow several base points, in a “halo” (see also [44]) +around the singular point whose internal boundary describes the formal world (represented by +5when these sums exist for all values of the parameters. +In general the singular directions move with the +parameters and it is necessary to reduce the domain. +6It uses the interpretation of 1-summability in terms of the Borel-Laplace method and delicate estimates in +the Borel plane. +16 + +determinations of formal solutions) and its exterior the analytic world (represented by sectoral +holomorphic solutions). +We consider a small disc ∆0 around x = 0, and we perform a real blowing up E : X0 → ∆0 +of x = 0. Let D = E−1(0) ⊂ X0. We draw a second divisor �D inside the disc bounded by D. +We mark two opposite directions by drawing two points p1 and p2 in the annulus. Let A be the +punctured annulus. We consider the groupoid π1(X0, D ∪ �D) whose objects are the points of +D ∪ �D and whose morphisms are the paths or loops up to homotopy between two objects inside +the punctured annulus A. Let S0 = {s1, s2} two opposite directions distinct from p1 and p2. +Definition 2.8 The local wild groupoid π♭ +1(X0, S0) is the restriction of π1(X0, D ∪ �D) over S0. +We define a presentation of π♭ +1(X0, S0) in the following way: + +s1 +s2 +p2 +p1 +r+ +1 +r− +1 +α1 +�γ− +1 +�γ+ +1 +r1 +r2 +�γr +1,2 +γr +1,2 +�γl +1,2 +γl +1,2 +Figure 2: A presentation of π♭ +1(X0, S0). +We choose rays r− +i , r+ +i on the left and right side of pi for i = 1, 2. We choose two opposite +base points s1 and s2 on D on the orthogonal direction to (p1, p2), endpoints of 2 rays r1 and +r2. Let �γ− +i (resp.�γ+ +i ) be the arc from si to the origin of r− +i (resp. r+ +i ) in �D, and αi the arc on D +from the end of r− +i to the end of r+ +i on D. The two Stokes loops are the loops based in si (see +figure above): +σi = r−1 +i +· �γ− +i · r− +i · αi · (r+ +i )−1 · (�γ+ +i )−1ri, i = 1, 2. +Let γr +1,2 and γl +1,2 the lower and upper arcs from s1 to s2 on D, and �γr +1,2 and �γl +1,2 their analog on +�D by using r1, an arc on �D, and r−1 +2 . The local wild groupoid is generated by σ1, σ2, γr +1,2, γl +1,2, +�γr +1,2 and �γl +1,2. Let γ1,1 = γr +1,2 · γl +1,2, �γ1,1 = �γr +1,2 · �γl +1,2. From the above picture we have the relation +γ1,1 = σ1 · �γr +1,2 · σ2 · �γl +2,1. +In order to include the exponential torus in a linear representation of this groupoid, we introduce +a (non discrete) extension π1(X0, S0) of π♭ +1(X0, S0): we glue a representation of (C∗, ×) by adding +two collections of loops �t1,1(κ), κ ∈ C∗ based in �s1, and �t2,2(κ), κ ∈ C∗ based in �s2. We denote: +t1,1(κ) = r−1 +1 +· �t1,1(κ) · r1( based in s1), t2,2(κ) = r−1 +2 +· �t2,2(κ) · r2( based in s2). +17 + +We require the relations Rloc: +(i) ∀κ ∈ C∗, ∀κ′ ∈ C∗, ti,i(κκ′) = ti,i(κ) · ti,i(κ′), i = 1, 2; +(ii) ∀κ ∈ C∗, [[σi, ti,i(κ)], σi] = ⋆i, i = 1, 2; +(iii) ∀κ ∈ C∗, �γi,i · ti,i(κ) · �γ−1 +i,i ti,i(κ)−1 = ⋆i, i = 1, 2; +(iv) t1,1(κ) · �γl +1,2 · t2,2(κ) · �γr +2,1 = ⋆1. +Definition 2.9 The (complete) wild local groupoid is the groupoid π1(X0, S0) generated by +π♭ +1(X0, S0) and the families T1,1 = {t1,1(κ), κ ∈ C∗} and T2,2 = {t2,2(κ), κ ∈ C∗}, with the +above relations Rloc. + +s1 +s2 +p2 +p1 +t1,1(κ) +t2,2(κ) +Figure 3: A presentation of π1(X0, S0). +2.3 +The global wild fundamental groupoid +The local wild fundamental groupoid suffices to deal with the Euler equation, or the Kummer +equations by adding one base point [47]. Nevertheless for the Painlev´e equations, we have to +consider several regular and irregular singularities, with connecting data between them (and in +some cases an order two ramification). +In order to represent the global monodromy data together with the wild local dynamic of a +connection in MV , we consider the following groupoid. We begin with B = P1\{p0, p1, p∞}. We +perform real blowing up at each of these points, and we obtain a variety X with divisors D0, D1 +and D∞. We choose two opposite base points s1 and s2 on D∞, a base point s3 on D0, and s4 on +D1. Let S = {s1, s2, s3, s4}. We consider the groupoid whose morphisms are the paths between +the base points up to homotopy. Inside (D∞, s1, s2), we glue the local wild groupoid π♭ +1(X0, S0) +(resp. the complete local wild groupoid π1(X0, S0)). We obtain a new groupoid denoted by +πV,♭ +1 (X, S) (resp. πV +1 (X, S) for the complete version). A presentation of this groupoid is given +by the figure: +18 + + + +s3 +s4 +γ2,3 +γ4,1 +γ3,4 +p1 +p2 +s1 +s2 +γ3,3 +γ4,4 +Figure 4: A presentation of πV +1 (X, S). +The relations of this presentation are generated by : +– the local relations Rloc previously defined; +– Rext: γl +1,2 · γ2,3 · γ3,4 · γ4,1 = ⋆1; +– Rint: γr +1,2 · γ2,3 · γ3,3 · γ3,4 · γ4,4 · γ4,1 = ⋆1. +We denote by πV,κ +1 +(X, S) the fiber of the morphism K : +πV +1 (X, S) → C∗ induced by +K(t1,1(κ)) = κ. +2.4 +A confluent morphism of groupoid +The comparison of πV,κ +1 +(X, S) with πV I +1 (X, S) is a central point in order to define the confluent +process. For this purpose, we introduce another presentation of this groupoid, setting: +t1,2(κ) = t1,1(κ−1) · �γr +1,2 = �γl +1,2 · t2,2(κ−1), +γ2,3(κ) = t2,2(κ−1) · σ−1 +2 +· γ2,3. +We obtain the following figure +19 + + + +≃ +t1,2(κ) +t1,1(κ) +t2,2(κ) +γ2,3(κ) +σ1 +σ2 + +t1,2(κ) +t1,1(κ) +σ1 +t2,2(κ) +σ2 +γ2,3(κ) +Figure 5: Another presentation for πV,κ +1 +(X, S). +This last figure looks like the figure (1) for the groupoid πV I +1 (X, S). More precisely, we denote +by s′ +i the objects of πV I +1 (X, S), and we consider a presentation {γ′ +i,j, R′ +int, R′ +ext} of πV I +1 (X, S) +given by figure (1). We consider the groupoid morphism ϕκ from πV I +1 (X, S) to πV,κ +1 +(X, S) which +sends s′ +i on si and which is defined by: +• ϕκ(γ′ +3,3) = γ3,3, ϕκ(γ′ +4,4) = γ4,4, ϕκ(γ′ +3,4) = γ3,4, ϕκ(γ′ +4,1) = γ4,1, +• ϕκ(γ′ +1,1) = σ1 · t1,1(κ), ϕκ(γ′ +2,2) = σ2 · t2,2(κ), +• ϕκ(γ′ +1,2) = t1,2(κ), ϕκ(γ′ +2,3) = γ2,3(κ). +This morphism ϕκ is an injective morphim but not a surjective one: the pre-image of a +Stokes loop or a loop of an exponential tori are not defined. +Definition 2.10 The confluent morphism from ϕ : +πV I +1 (X, S) → πV +1 (X, S) is defined by the +family ϕ = (ϕκ)κ∈C∗ . +There exists a similar result in the context of the hypergeometric equation and the confluent +hypergeometric equation in Kummer form. +3 +The character variety χV +3.1 +Definition of χV +The class of rank 2 linear representations of a fundamental groupoid in SL2(C) has been defined +in the introduction. Here we are only interested in a subclass of linear representations ρ which +satisfy the following property +Definition 3.1 A representation ρ of πV +1 (X, S) satisfies the property (⋆) if there exists a Borel- +Cartan configuration (B−, C, B+) such that: +1. ρ(t1,1(κ), κ ∈ C∗) = C, +2. ρ(σ1) ∈ U −, ρ(�γl +1,2σ2�γl +2,1) ∈ U +. +If this property holds for ρ it still holds for ρ′ equivalent to ρ. +20 + +Definition 3.2 The character variety χV is the categorical quotient of the set of linear repre- +sentations πV +1 (X, S) which satisfy the property (⋆) through the equivalence of representations. +A local representation is a representation over the sub-groupoid restricted to the local loops, +generated by �γ1,1, γ3,3, γ4,4. +It is characterized by a = (a0, a3, a4) with a0 = tr(ρ(�γ1,1)) = +tr(ρ(�γ2,2)), a3 = tr(ρ(γ3,3)), a4 = tr(ρ(γ4,4)). Any representation ρ in χV determines a unique +local representation. The fiber of this map is denoted by χV (a). +The inclusion of πV,♭ +1 (X, S) in πV +1 (X, S) induces by restriction a map r whose image is denoted +by χ♭ +V . +Proposition 3.3 For a such that a0 ̸= ±2, r is a (2:1) map over the open set of χ♭ +V defined by +ρ(σ1) or ρ(σ2) is a non trivial element. +Proof. If we suppose that σ1 is non trivial, one can choose � +Y0 such that +ρ(σ1) = + + + +1 +0 +u1 +1 + + + . +In this case, ρ(t1,1(κ), κ ∈ C∗) = C is the diagonal subgroup D of SL2(C), and we have +ρ(t1,1(κ)) = + + + +f(κ) +0 +0 +f(κ−1) + + + . +From the relation t1,1(κ)t1,1(κ′) = t1,1(κκ′) we deduce that f belongs to Aut(C∗, ×), and there- +fore f(κ) = κ or f(κ) = κ−1 . ✷ +Corollary 3.4 The character variety χV (a) = χ+ +V (a) ∪ χ− +V (a) with +χ+ +V (a) = {(U1, M0, U2, M3, M4, Dκ)}//SL2(C), +χ− +V (a) = {(U1, M0, U2, M3, M4, D−1 +κ )}//SL2(C). +The two copies χ+ +V (a) and χ− +V (a) coincide over a such that e0 = e−1 +0 +i.e. such that a0 = ±2. +3.2 +The character variety χV and cubic surfaces +Definition 3.5 A representation of πV,♭ +1 (X, S) in SL2(C) is normalized if, +ρ(γl +1,2) = ρ(γ2,3) = ρ(γ3,4) = I, +where the γi,j are generators of the presentation introduced in figure 4. +There always exists a normalized representation in each class of equivalent representations in +SL2(C), obtained by choosing a representation of an initial object –say s2– and by representing +the successive others objects by analytic continuation along γ2,3, γ3,4 and γl +2,1. From the relation +Rext, for a normalized representation we also have ρ(γ4,1) = I. +Proposition 3.6 A normalized representation of πV,♭ +1 (X, S) is characterized by the data +M0 = ρ(�γ1,1), U1 = ρ(σ1), U2 = ρ(�γl +1,2 · σ2 · �γl +2,1), M3 = ρ(γ3,3), M4 = ρ(γ4,4) +such that U1M0U2M3M4 = I, up to a common conjugacy. +21 + +Proof. +We have to prove that, for a normalized representation ρ, the images of all the +generators of the groupoid by ρ are well defined. Since ρ(γl +1,2) = I, we have +ρ(�γl +1,2) = U2, ρ(�γr +1,2) = M0U2, ρ(γr +1,2) = U1M0U2. +The relation Rint gives U1M0U2M3M4 = I. A change of representation of the initial object will +change this data by a common conjugacy. ✷ +One can suppose, by using a conjugacy, that the Cartan subgroup C = {ρ(t1,1(κ)), κ ∈ C∗} ⊂ +SL2(C) is the diagonal one D. From the relation (iii) of the local groupoid presentation, � +M0 +commutes with each element of C. Therefore from the relations (i) (ii) and (iii), we have: +U1 = + + + +1 +0 +u1 +1 + + + , M0 = + + + +e0 +0 +0 +e−1 +0 + + + , U2 = + + + +1 +u2 +0 +1 + + + , +M3 = + + + +α3 +β3 +γ3 +δ3 + + + , M4 = + + + +α4 +β4 +γ4 +δ4 + + + . +This data is now defined up to a conjugacy by an element of D. Finally we have +χ♭ +V = {(U1, M0, U2, M3, M4) ∈ (U −, D, U +) × SL2(C)2, U1M0U2M3M4 = I}//D. +This algebraic quotient is a 5 dimensional space. The function (a+, x+) = (e0, a3, a4, x+ +1 , x+ +2 , x+ +3 ): +e0 = M0[1, 1], a3 = tr(M3), a4 = tr(M4), +x+ +1 = M3[2, 2] = δ3, x+ +2 = M4[2, 2] = δ4, x+ +3 = tr(U1M0U2) = e0 + e−1 +0 ++ e0u1u2, +is invariant under the action of D. +Proposition 3.7 The coordinates (a+, x+) define a map Tr+ +V , invertible for a generic a, from +χ♭ +V (a) to the family affine cubic surface CV (θ+) defined by +FV (θ+, x) = x1x2x3 + x2 +1 + x2 +2 − θ+ +1 x1 − θ+ +2 x2 − θ+ +3 x3 + θ+ +4 = 0, +where θ+ +1 = a3 + e0a4, θ+ +2 = a4 + e0a3, θ+ +3 = e0, θ+ +4 = e2 +0 + e0a3a4 + 1. +Lemma 3.8 We have: +e0u1u2 = x3 − e0 − e−1 +0 +e0γ3s2 = x2 − e0a3 + e0x1 +e0β3s1 = −x1x3 + e0x1 − x2 + a4 +Proof. We have x3 = e0 + e−1 +0 ++ e0u1u2. From U1M0U2M3 = M−1 +4 +we obtain +δ4 = α3e0 + γ3e0u2, α4 = β3e0s1 + δ3e0u1u2 + δ3e−1 +0 . +Using αi = ai − δi, we obtain the two other equalities. ✷ +Proof of Proposition (3.7). Since α3δ3 − β3γ3 = 1, we have +(e2 +0u1u2)(α3δ3) − (e0β3u1)(e0γ3u2) − e2 +0u1u2 = 0. +22 + +If we replace e0s1s2, e0γ3s2 and e0β3s1 by the above expressions, we obtain the equation +FV (x, θ+) = 0. This proves that the map (a+, x+) takes its values in the cubic surface. Given +a point in the cubic surface, we recover α3 = a3 − x1, α4 = a4 − x2, β3γ3 = 1 − x1(a3 − x1), +β4γ4 = 1 − x2(a4 − x2), γ3s2 = e−1 +0 x2 − a3 + x1, and therefore, for generic values, a unique point +of χ♭ +V (a). ✷ +Remark 3.9 It might seen more natural to consider the trace coordinates: +y1(ρ) = tr(ρ(�γ1,1γ1,3γ3,3)), y2(ρ) = tr(ρ(�γ2,2γ2,4γ4,4)), y3(ρ) = tr(ρ(γ3,3γ3,4γ4,4)) +which, for a normalized representation, give: +y1 = tr(M0M3), y2 = tr(M0M4), y3 = tr(M3M4). +But clearly, the coordinates y1 and y2 degenerate if M0 = ±I, since we have y1 = a3 and y2 = a4 +in this case. The coordinates +x+ +1 = y1 − e0a3 +e−1 +0 +− e0 += δ3, x+ +2 = y2 − e0a4 +e−1 +0 +− e0 += δ4, x+ +3 = y3 +give an extension to this exceptional case M0 = ±I. This choice is also the usual one in the +litterature: see [54] or [40]. Since the coordinates (a+, x+) are directly related to the above trace +coordinates through an affine map, we still denote the corresponding map by Tr+ +V , and we call it +a trace map. +The normalization of the representation by (U1, M0, U2, M3, M4) used in order to construct Tr+ +V +requires that U1 is a lower triangular matrix. If we require that U1 must be an upper triangular +matrix, we obtain the data (U − +1 , M− +0 , U − +2 , M− +3 , M− +4 ) which is equivalent to the first data by the +conjugacy with the matrix +P = + + + +0 +1 +−1 +0 + + + . +We define the trace map Tr−(ρ) = (a−, x−) = (e−1 +0 , a3, a4, x− +1 , x− +2 , x− +3 ) with +e−1 +0 += M− +0 [1, 1], x− +1 = M− +3 [1, 1] = α3, x− +2 = M− +4 [1, 1] = α4, x− +3 = tr(U − +1 M− +0 U − +2 ) = x+ +3 . +This map takes its values in the cubic surface CV (θ−): +FV (x, θ−) = x1x2x3 + x2 +1 + x2 +2 − θ− +1 x1 − θ− +2 x2 − θ− +3 x3 + θ− +4 = 0, +where θ− +1 = a3 + e−1 +0 a4, θ− +2 = a4 + e−1 +0 a3, θ− +3 = e−1 +0 , θ− +4 = e−2 +0 ++ e−1 +0 a3a4 + 1 which can also +be identified to the categorical quotient χ♭ +V (a). +The points p+ ∈ CV (θ+) and p− = Tr− +V ◦ +(Tr+ +V )−1(p+) correspond to the same representation in χ♭ +V (a). +From (3.4) we know that χV (a) = χ+ +V (a) ∪ χ− +V (a) where +χ+ +V (a) = {(U1, M0, U2, M3, M4, Dκ)//SL2(C)}, +χ− +V (a) = {(U1, M0, U2, M3, M4, D−1 +κ )//SL2(C)}. +Using a conjugacy with P this second data is equivalent to (U − +1 , M− +0 , U − +2 , M− +3 , M− +4 , ρ(t1,1(κ)) = +Dκ), which define an element in CV (θ−). Therefore χV (a) is identified through the trace coor- +dinates to the union of the two affine surfaces CV (θ−) ∪ CV (θ+) +We denote by Tr±,κ the restriction of Tr± over πV,κ +1 +(X, S). +23 + +3.3 +Lines and reducibility locus +For what follows in this article, excepted (5.3), we will suppose that the parameters satisfy the +generic conditions: +e0 ̸= ±1, e3 ̸= ±1, e4 ̸= ±1, e0eε3 +3 eε4 +4 ̸= 1 for ε3 = ±1, ε4 = ±1. +The description of the lines in cubic surfaces can be found in [22]. In particular the compacti- +fication of a generic element CV I(θ) in P3(C) contains 27 lines. In the figure below the central +triangle is the union of the three lines at infinity: +Le1,e2 Le−1 +1 ,e−1 +2 +Le3,e4 Le−1 +3 ,e−1 +4 +Le1,e−1 +2 Le−1 +1 ,e2 Le3,e−1 +4 Le−1 +3 ,e4 +Le1,e3 +Le2,e3 +Le−1 +1 ,e−1 +3 +Le−1 +2 ,e−1 +3 +Le1,e3 +Le−1 +1 ,e−1 +3 +Le1,e−1 +3 +Le−1 +1 ,e3 +Le2,e4 +Le−1 +2 ,e−1 +4 +Le2,e−1 +4 +Le−1 +2 ,e4 +Le2,e−1 +3 +Le−1 +2 ,e3 +Le1,e4 +Le−1 +1 ,e−1 +4 +Le1,e−1 +4 +Le−1 +1 ,e4 +Figure 6: The 24 lines in CV I(θ). +The equations of the lines are obtained from the following decomposition which appears in [40]: +FV I(x, θ) = (xk − cei,ej)(FV I,xk − xk + cei,ej) + lei,ejle−1 +i +e−1 +j , +where FV I,xk is the partial derivative of FV I(x, θ) with respect to the variable xk, cα,β = αβ−1 + +α−1β and +lei,ej = eixi + ejxj − akeiej − a4, le−1 +i +,e−1 +j += e−1 +i xi + e−1 +j xj − ake−1 +i e−1 +j +− a4. +Therefore the plane xk = cei,ej intersects the cubic surface along a degenerated conic, union of +the two lines +Lei,ej : xk = cei,ej = eie−1 +j ++ e−1 +i ej and lei,ej = 0, Le−1 +i +,e−1 +j +: xk = ce−1 +i +,e−1 +j +and le−1 +i +,e−1 +j += 0. +The compactification of CV (θ) in P3(C) has a singular point of type A1 at infinity, and admits +21 lines, of which 18 are in the affine part: +24 + + +∆e4 +∆e−1 +4 +∆e3 +∆e−1 +3 +Dl +e−1 +4 +Dr +e3 +Dl +e4 +Dr +e−1 +3 +Dl +e3 +Dr +e−1 +4 +Dl +e−1 +3 +Dr +e4 +De3,e4 +De−1 +3 ,e−1 +4 +De3,e−1 +4 De−1 +3 ,e4 +Df0,f−1 +0 +Df−1 +0 +,f0 +Figure 7: The 18 lines in CV (θ). +Remark 3.10 The equations of these lines are given by +1. z0 = −x2 +1x3 − x1x2 + θ2x1 − e0 = 0 for Dl +e3 ∪ Dl +e−1 +3 +∪ Dl +e−1 +4 +∪ Dl +e4; +2. z1 = x1x2 − e0 = 0 for ∆e3 ∪ ∆e−1 +3 +∪ ∆e4 ∪ ∆e−1 +4 ; +3. z2 = −x2 +2x3 − x1x2 + θ1x2 − e0 = 0 for Dr +e−1 +3 +∪ Dr +e3 ∪ Dr +e4 ∪ Dr +e−1 +4 ; +4. x3 = ce3,e4 or ce3,e−1 +4 +or ce0,e−1 +0 +for the pairs of lines which cut the basis of the triangle. +In this section, we want to characterize the representations whose image is a point on a line.7 +The local loops in πV I +1 (X, S) are the loops γi,i based in si. The local loops in πV +1 (X, S) are γ3,3 +in s3, γ4,4 in s4, and a generic element of the torus t1,1(κ) in s1 and t2,2(κ) in s2. In any cases, +the local loops at si are denoted below by γi. +Definition 3.11 Let γ be a morphism of the groupoid πV I +1 (X, S) or πV +1 (X, S), defined by some +path from si to sj, j ̸= i, γi the local loop in si and γj the local loop in si. A linear representation ρ +of the groupoid in SL2(C) is reducible along γ if ρ(γ−1γiγ) and ρ(γj) have a common eigenvector. +If ρ is the linear representation associated with a regular connection ∇, and γ is represented +by analytic continuation, it means that there exists some local solution at si which is an eigen- +vector of the local monodromy around si and whose analytic continuation along γ is also an +eigenvector of the local monodromy around sj. This semi-local solution in a neighbourhood of +γ has an abelian monodromy. +Remark 3.12 +1. If ρ is reducible along the path γ, any equivalent representation is reducible +along γ. +2. The representation ρ is reducible along γ if and only ρ is reducible along γ−1. +3. If ρ(γi) = ±I, ρ is reducible along any path joining si to another base point. +7We thanks Martin Klimes for discussions on this topics (see also [40]). +25 + +4. Let ρ be a representation in SL2(C) given by a choice of basis of solutions Xi on each Vi. +We set ρ(γi) = Mi, ρ(γ) = Mγ. ρ is reducible on γ if and only if the matrices M−1 +γ MiMγ +and Mj have a common eigenvector. +5. In particular, if ρ is a normalized representation associated to the presentation given by +figure (1) of the groupoid πV I +1 (X, S), with ρ(γi) = Mi and ρ(γi,j) = I for i ̸= j, ρ is +reducible on the generator path γi,j if and only if Mi and Mj have a common eigenvector. +Definition 3.13 A pair of matrices in SL2(C) is reducible if and only if they have a common +eigenvector. +Definition 3.14 +1. The reducibility locus associated to a path γ is the set R(γ) of linear +representations ρ in χV I which are reducible on γ. +2. Given a presentation of πV I +1 (X, S), the generating reducibility locus is the union of the sets +R(γi,j) for all the generators γi,j, i ̸= j. +3. The total reducibility locus is the set R of linear representations ρ in χV I such that there +exists a path between two distinct objects on which ρ is reducible. +Theorem 3.15 Let {γi,j), Ri} be the presentation of πV I +1 (X, S) given by the figure (1), and +TrV I : χV I(a) → CV I(θ) the trace map associated to this presentation. The 24 lines in CV I(θ) +are the reducibility locus of the 6 paths: γi,i+1, i = 1, .., 4 and γ1,3 = γ1,2 · γ2,3, γ2,4 = γ2,3 · γ3,4. +Lemma 3.16 Let M1 and M2 be two matrices in SL2(C) distinct from ±I, e1, e−1 +1 , and e2, +e−1 +2 +their eigenvalues (we may have e1 = e−1 +1 +or e2 = e−1 +2 ). Let +cα,β = αβ−1 + α−1β. +The pair (M1, M2) is reducible if and only if +tr(M1M2) = ce1,e2, or tr(M1M2) = ce1,e−1 +2 . +Proof. We choose a ”mixed basis” taking an eigenvector of M2, and an eigenvector of M1. +In such a basis, we have: +M1 = + + + +e1 +0 +f1 +e−1 +1 + + + , +M2 = + + + +e2 +f2 +0 +e−1 +2 + + + +or any similar writing obtained by changing e1 with e−1 +1 +or e2 with e−1 +2 . Let Di = diag(ei, e−1 +i ). +We have +tr(M1M2) = tr(D1D2) + f1f2. +Such a pair has a common eigenvector if and only if f1 = 0 or f2 = 0, i.e. +if and only if +tr(M1M2) = tr(D1D2). We have tr(D1D2) = ce1,e2 or tr(D1D2) = ce1,e−1 +2 . ✷ +Proof of Theorem (3.15). We consider a normalized representation ρ and the six (non ori- +ented) generating paths γi,j, i ̸= j. +For a normalized representation ρ, these paths satisfy: +ρ(γi,j) = I. Therefore ρ is reducible over γi,j if and only if the pair of matrices (Mi, Mj) is +reducible. For {i, j} in {1,2,3}, according to Lemma (3.16), ρ is reducible on the path γi,j if and +only if xk = cei,ej or xk = cei,e−1 +j . Therefore the reducibility locus R(γi,j) is given by the four +lines Le±1 +i +,e±1 +j . ✷ +26 + +Definition 3.17 The 12 Kaneko points are the intersections +pei,ej = Lei,ej ∩ Le−1 +i +,e−1 +j , pei,e−1 +j += Lei,e−1 +j +∩ Le−1 +i +,ej, {i, j} ⊂ {1, 2, 3, 4}. +Proposition 3.18 The Kaneko points pei,ej and pei,e−1 +j +correspond to a normalized monodromy +representation such that Mi and Mj commute. +Proof. In a ”mixed basis”, +Mi = + + + +ei +0 +fi +e−1 +i + + + , +Mj = + + + +ej +fj +0 +e−1 +j + + + +(7) +or the same writing changing ej in e−1 +j . +The reducibility locus is given by fifj = 0, which +defines two components Lei,ej and Le−1 +i +,e−1 +j +(or Lei,e−1 +j +and Le−1 +i +,ej). Therefore pei,ej (or pei,e−1 +j ) +is defined by fi = 0 and fj = 0.✷ +The Painlev´e VI foliation admits 12 singular points, 4 over each singular fiber. The local +description of the foliation in a neighborhood of these non linear singularities of “regular type” +can be found in the chapter 4 of [30]. The Painlev´e V foliation also admits 3 non linear regular +singular points over 0. The germ of Painlev´e equation admits a unique meromorphic solution +around such a singular point, defining an analytic leave for the germ of foliation: we call them +the central solutions. These solutions have been studied by K. Kaneko [36]. Furthermore, they +appears as the intersection of two codim 1 germs of invariant analytic surfaces [30]. +Theorem 3.19 +1. The Riemann-Hilbert correspondence RHV I sends the 12 central solutions +to the 12 Kaneko points. +2. The Riemann-Hilbert correspondence RHV I sends the local invariant varieties near a sin- +gular point to the 2 germs of lines intersecting at the corresponding Kaneko point. +Proof. +We consider the 4 singular points over 0. +The non linear monodromy generated +by a simple loop around 0 will keep invariant each meromorphic solutions and the analytic +invariant surfaces which intersect on it, around this singular point. Through the Riemann-Hilbert +correspondence this non linear monodromy is conjugated to one of the polynomial dynamics hi,j +given by (0.5). The central solutions are sent on fixed points of hi,j. Since each hi,j fixes 4 +central points, and has no more than 4 fixed points, this proves the first point. +Now we search for invariant curves under the action of hi,j through the central point pei,ej. +Clearly the two lines Lei,ej and Le−1 +i +,e−1 +j +are invariant since the union of the two lines is (xk = +cei,ej) ∩ (FV I(x, θ) = 0) which is invariant. Suppose that there exists another local analytic +invariant curve transverse to dxk = 0. It cut the plane (xk = c) on a finite set of points, for any +value c near from cei,ej. This would create a periodic orbit on each (xk = c). The restriction of +hi,j on each (xk = c) is a family of affine maps, and for a generic affine map, there doesn’t exist +such a periodic orbit. Therefore the local invariant surfaces are sent on the germ of two lines +around each central point. ✷ +Remark 3.20 Using Proposition (3.18) and Theorem (3.19), we recover here a result of K. +Kaneko [36]: the linear monodromy data preserved along a Kaneko solution is generated by +3 matrices with a pair of commuting matrices. +In particular, it generates a solvable group. +Nevertheless, the theorem of K. Kaneko is much more precise: it describes explicitely this linear +solvable monodromy data. +27 + +We have a result similar to Theorem (3.15) for the Painlev´e V foliation. +Theorem 3.21 Let {γi,j, R} be the presentation of πV +1 (X, S) given by figure (4), and Tr+ +V : +χ+ +V (a) → CV (θ+) the trace map associated to this presentation. Any line in CV (θ+) is the image +of a reducibility locus in χV (a) for some path in πV +1 (X, S). +The proof is similar to the one of Theorem (3.15, but one needs to investigate different cases. +We just mention here an example: +Lemma 3.22 The reducibility locus R(γr +1,2) is given by a pair of lines defined by (x3 = a0)∩CV . +Proof. For a normalized representation ρ we have +ρ(γr +1,2) = U1M0U2, ρ(�γ1,1) = ρ(�γ2,2) = M0. +Therefore, according to Remark (3.12), we have: +ρ ∈ R(γr +1,2) ⇔ ((U1M0U2)−1M0(U1M0U2), M0) is a reducible pair +⇔ (M−1 +0 U −1 +1 M0U1, U2M0U −1 +2 M−1 +0 ) is a reducible pair +⇔ u1u2 = 0 +⇔ tr(U1M0U2) = tr(M0), +⇔ x3 = a0 = f 2 +0 + f −2 +0 +where f 2 +0 = e0. +The intersection (x3 = a0) ∩ CV is given by one pair of lines. Indeed we have: +FV (x, θ) = (x3 − e0 − e−1 +0 )(x1x2 − e0) + df0,f−1 +0 df−1 +0 +,f0, +with +df0,f−1 +0 += f0x1 + f −1 +0 x2 − f0a3, df−1 +0 +,f0 = f −1 +0 x1 + f0x2 − f0a4. +Therefore the reducibility locus R(γr +1,2) is given by the pair of lines: +Df0,f−1 +0 +: x3 = e0 + e−1 +0 +and df0,f−1 +0 += 0, +Df−1 +0 +,f0 : +x3 = e0 + e−1 +0 +and df−1 +0 +,f0 = 0. ✷ +The others cases are treated with similar computations. Here we also have a correspondence +between the 3 Kaneko solutions described by K. Kaneko and Y. Ohyama in and [37], and the 3 +Kaneko points pe3,e4, pe3,e−1 +4 +and pe0,e−1 +0 +through RHV . +The complete reducibility locus, defined by all the paths γ of the fondamental groupoid, +contains these lines and their images by the tame dynamics. We don’t know if the lines and the +tame action generate the complete reducibility locus (maybe we have to add some parabolas). +3.4 +Log-canonical coordinates on CV (θ) and cluster sequences +Let CV (θ) be the family of symplectic cubic affine surfaces in C3 defined by FV (x, θ) = 0. The +cubic surfaces CV (θ) are birational to C2. Indeed, since the equation FV (θ) is affine in x3, the +map π3 : CV (θ) → C2 induced by (x1, x2, x3) → (x1, x2) is rationally invertible and therefore +birational. The polar locus of π−1 +3 +is given by FV,x3 = x1x2 − e0 = 0. Recall that CV (θ) has a +symplectic structure defined by +ωV (θ) = dxi ∧ dxj +∂FV,θ/∂xk +, +for any i, j, k = 1, 2, 3. We want here to introduce symplectic birational maps: +Notations (see Appendix): +28 + +- ωlog = du +u ∧ dv +v : the log-canonical symplectic form on C2; +- Bir(C2) : the group of the birational automorphisms of the complex plane; +- Symp(C2) = Symp+(C2) : the subgroup of Bir(C2) of the automorphisms which preserve +ωlog; +- Symp−(C2) : the subset of Bir(C2) of the automorphisms ϕ such that ϕ∗ωlog = −ωlog; +- Symp±(C2) : the subgroup of Bir(C2) generated by Symp+(C2) ∪ Symp−(C2). +Definition 3.23 +1. A log-canonical system of coordinates on CV (θ) is a birational symplectic +morphism from (CV (θ), ωV (θ)) to (C2, ωlog). +2. A log-canonical function on CV (θ) is a component of some log-canonical system. +3. A log-canonical sequence of coordinates is a sequence of coordinates such that two consec- +utive elements define a log-canonical system of coordinates. +4. A log-anti-canonical system of coordinates on CV (θ) is a birational symplectic morphism +from (CV (θ), ωV (θ)) to (C2, −ωlog). +Remark 3.24 +1. If (x, y) is a log-anti-canonical system of coordinates, (y, x) and (x−1, y) +are log-canonical systems of coordinates. +2. If (x, y) is a log-canonical system of coordinates, for any λ, µ in C∗, (λx, µy) is a log- +canonical system of coordinates. +The cubic surface CV (θ) is symplectic birationally equivalent to (C2, ωlog). Indeed we have two +first examples of log-canonical systems of coordinates on CV (θ): +Proposition 3.25 Let y1 = x1, y2 = x2 and z1 = FV,x3 = x1x2 − e0. The pairs (y1, z1), and +(z1, y2) are log-canonical systems of coordinates on CV (θ). A map z1 such that both (y1, z1), and +(z1, y2) are log-canonical systems of coordinates is unique up to a multiplicative constant. +Proof. We have: +dy1 +y1 +∧ dz1 +z1 += dx1 +x1 +∧ x1dx2 + x2dx1 +z1 += dx1 ∧ dx2 +x1x2 − e0 += ωV (θ), +and we have a similar computation for (z2, y2). All the maps such that (y1, z) is a log-canonical +system of coordinates write z = c(y1)z1. Therefore the only maps such that (y1, z), and (z, y2) +are log-canonical systems of coordinates are z = cz1 for some c in C∗. ✷ +Therefore (y1, z1, y2) is a log-canonical triple, which satisfies: z1 = y1y2−e0. In order to construct +new log-canonical or log-anti-canonical systems of coordinates we consider the two maps: +σ1(x1, x2, x3) = (x1 − FV,x1, x2, x3) = (−x1 − x2x3 + θ1, x2, x3) +σ2(x1, x2, x3) = (x1, x2 − FV,x2, x3) = (x1, −x2 − x1x3 + θ2, x3). +Lemma 3.26 σ1 and σ2 define polynomial involutive automorphims of CV (θ). Furthermore they +are anti-symplectic automorphisms, i.e. σ∗ +i ωV (θ) = −ωV (θ). +29 + +Proof. The involutive property is a direct computation. We have FV ◦σi = FV , and therefore +the σi’s are polynomial automorphims. Finally, by using ωV (θ) = +dx2∧dx3 +x2x3+2x1−θ1 (resp. ωV (θ) = +dx3∧dx1 +x3x1+2x2−θ2), we obtain σ∗ +1ωV (θ) = −ωV (θ) (resp. σ∗ +2ωV (θ) = −ωV (θ)). ✷ +We set: +g = σ1 ◦ σ2, +g−1 = σ2 ◦ σ1. +From Lemma (3.26), g is a polynomial symplectic automorphisms of (CV (θ), ωV (θ)). Therefore, +starting from the log-canonical triple (y1, z1, y2), we obtain two other log-canonical triples by +applying σ∗ +i , i = 1, 2 and reversing the order of the triple. We set: +(y2, z2, y3) := (σ∗ +1y2, σ∗ +1z1, σ∗ +1y1); +(y0, z0, y1) := (σ∗ +2y2, σ∗ +2z1, σ∗ +2y1). +Therefore we obtain a log-canonical sequence of length seven: +H : (y0, z0, y1, z1, y2, z2, y3). +We call it the fundamental log-canonical heptuple. Note that we have: +(y2, z2, y3) = g−1∗(y0, z0, y1). +We extend the fundamental log-canonical sequence to an infinite log-canonical sequence by +setting for any k in Z: +(y2k, z2k, y2k+1, z2k+1, y2k+2, z2k+3, y2k+3) := (g−k∗)(y0, z0, y1, z1, y2, z2, y3). +This sequence satisfies the following relations: +Proposition 3.27 [exchange relations] let AV = Z[e± +0 , e± +3 , e± +4 ]. Let P, Q1 and Q2 in AV [t] +defined by +P(t) = t + e0, +Q1(t) = (t − e0e−1 +4 )(t − e0e4)(t − e−1 +3 )(t − e3), +Q2(t) = (t − e0e−1 +3 )(t − e0e3)(t − e−1 +4 )(t − e4). +For all k in Z we have +ykyk+1 = P(zk) +z2kz2k+1 = Q1(y2k+1) +z2k+1z2k+2 = Q2(y2k+2). +Lemma 3.28 We have : +σ∗ +1x1 = x−1 +2 +� +e0 + z−1 +1 Q2(x2) +� +, +and σ∗ +2x2 = x−1 +1 +� +e0 + z−1 +1 Q1(x1) +� +. +(8) +with : +Q2(t) = t4 − θ2t3 + θ4t2 − e0θ1t + e2 +0 = (x − e0e−1 +3 )(x − e0e3)(x − e−1 +4 )(x − e4), +(9) +Q1(t) = t4 − θ1t3 + θ4t2 − e0θ2t + e2 +0 = (x − e0e−1 +4 )(x − e0e4)(x − e−1 +3 )(x − e3). +(10) +30 + +Proof. +1. We have : +x2σ∗ +1x1 = −x1x2 − x2 +2x3 + θ1x2 += −e0 − z1 + x2 +2z−1 +1 (x2 +1 + x2 +2 − θ1x1 − θ2x2 + θ4) + θ1x2 += −e0 − z1 + z−1 +1 +� +(e0 + z1)2 + x4 +2 − θ1x2(e0 + z1) − θ2x3 +2 + θ4x2 +2 +� ++ θ1x2 += e0 + z−1 +1 +� +e2 +0 + x4 +2 − θ1x2 − θ2x3 +2 + θ4x2 +2 +� += e0 + z−1 +1 Q2(x2). +Hence σ∗ +1x1 = e0x−1 +2 ++ x−1 +2 z−1 +1 Q2(x2). +The proof of the other equality is similar. +2. If we develop the right term of (9), we get : +t4 − (a4 + e0a3)t3 + (e0a3a4 + e2 +0 + 1)t2 − e0(a3 + e0a4)t + e2 +0 += t4 − θ2t3 + θ4t2 − e0θ1t + e2 +0. +If we develop the right term of (10), we get : +t4 − (a3 + e0a4)t3 + (e0a3a4 + e2 +0 + 1)t2 − e0(a4 + e0a3)t + e2 +0 += t4 − θ1t3 + θ4t2 − e0θ2t + e2 +0. ✷ +Proof of Proposition (3.27). From lemma 3.28, we get : z2 = x2σ∗ +1x1 − e0 = z−1 +1 Q2(x2). +Hence z1z2 = Q2(x2). Similarly : z0 = σ∗ +2x2 − e0 = z−1 +1 Q1(x1). Hence z0z1 = Q1(x1). The +others relations are obtained by applying g−k∗ to the previous one. ✷ +Remark 3.29 +1. We have Q1 = e−2 +0 t4Q2(e0t−1). +2. According to Remark (3.10), z2k = 0 are the equations of the lines Dr +· , Dl +·, or their images +by the dynamic < g >, and z2k+1 = 0 are the equations of the lines ∆· or their images by +the dynamic < g >. +3.5 +The Laurent property +The exchange relations obtained at Proposition (3.27) suggests that the sequence of log-canonical +systems of coordinates is related to a structure of generalized cluster algebra. Without going +into the theory of cluster algebras (for details see [38]), we just recall here the fact that under +some hypothesis they satisfy the “Laurent property” (see also [15]): +Definition 3.30 +1. A rational map r ∈ C(x, y) satifies the Laurent property if its polar set +is included in xy = 0. +2. A birational map r satifies the Laurent property if both r and r−1 have the Laurent property. +3. Let X be an affine surface, and let (yn, zn) be a sequence of algebraic morphisms from X +to C2. This sequence satisfies the Laurent property, if given an element (yn, zn), any other +regular function ym (or zm) = r(xn, yn) satisfies the Laurent property. +We must remark that the Laurent property is not stable by composition or inversion. It +turns out that in a cluster sequence some simplications arise from the exchange relations and +give this property. A direct proof of this fact needs heavy computations. We can prove here the +Laurent property for the canonical sequence by an argument which avoid these computations +with the exchange relations. +31 + +Proposition 3.31 The log-canonical sequence satisfies the Laurent property. +Proof. We first prove that all the log-canonical variables are polynomials in (x1, x2, x3). This +is true for (y1, z1, y2) = (x1, x1x2 − e0, x2). Recall that σ1, σ2 (and therefore g) are polynomials +in (x1, x2, x3). All the other canonical variables are obtained by the action of a word in σ∗ +1, σ∗ +2 +from a variable in this triple. Therefore they are still polynomials in (x1, x2, x3). We set: +pn : CV (θ) → C2, u = yn(x), v = zn(x), +qn : CV (θ) → C2, u = zn(x), v = yn+1(x). +We claim that pn and qn satisfy the Laurent property. Since pn is polynomial, we only have to +prove that the polar set of p−1 +n +is included in uv = 0. This is true for p1 = (y1, z1): +x1 = y1 +x2 = (z1 + e0)y−1 +1 +x3 = z−1 +1 (−y2 +1 − (z1 + e0)y−2 +1 ++ θ1y1 + θ2(z1 + e0)y−1 +1 +− θ4. +This is also true for q1 = (z1, y2) by using a similar computation. Let +ι : (u, v) → (v, u). +We have : +q0 = ι ◦ p1 ◦ σ2, p2 = ι ◦ q1 ◦ σ1. +Therefore, q0 and p2 also satisfy the Laurent property. Since the property is true for p1 and +p2, and since the tame dynamic g is a polynomial automorphism, it remains true for any pn = +g−1∗pn−2. Since the property is true for q0 and q1 it remains true for any qn = g−1∗qn−2. Finally, +since pn satisfies the Laurent property and pm is polynomial, the map +pm ◦ p−1 +n +: (ym, zm) = (r(yn, zn), s(ym, zm)) +satisfies the Laurent property.✷ +From the above proof, one can remark that the Laurent property comes from the fact that the +antisymplectic tame dynamics (σ1 and σ2) and the symplectic dynamics (g) are automorphisms +of the cubic surface. +3.6 +Families of confluent and diffluent morphisms +These families were first discovered by M. Klimes in [40] through an analytic confluent process, +both on Painlev´e equations and on character varieties. We recover them by using a groupoid +point of view. In definition (2.10) we have introduced a family of morphisms ϕκ : πV I +1 (X, S) → +πV,κ +1 +(X, S). Therefore we obtain a family +ϕ∗ +κ : χκ +V (a) → χV I(aκ) +ρ → ρ ◦ ϕκ. +On the restriction over χ± +V we have 2 families ϕ±∗ +κ . +Proposition 3.32 The morphisms ϕ±∗ +κ +are invertible on the open set in χV I(aκ) defined by the +elements (M1, M2, M3, M4) such that (M1, M2) is a non reducible pair. +32 + +Proof. The matrix expression of ϕ+∗ +κ +is +[U1, M0, U2, M3, M4]D → [U1Dκ, Dκ−1M0U2, M3, M4)]SL2(C). +Given (M1, M2, M3, M4), and a parameter κ, we search for matrices M0, U1, U2, M′ +3, M′ +4, +(U1, M0, U2) in U − × D × U + and a matrix Q in SL2(C) such that + + + + + + + + + + + +U1Dκ = Q−1M1Q +D−1 +κ M0U2 = Q−1M2Q +M′ +3 = Q−1M3Q +M′ +4 = Q−1M4Q +(11) +For a given local data (a1, a2, a3, a4), and a value κ, we have only two choices for the eigenvalues +(e0, e−1 +0 ) of M0, solutions of κ−1e0 + κe−1 +0 += a2, one centered around a2κ and the other around +a2κ−1, induced by the change κ → κ−1. Let e± +1 1, e± +2 be the eigenvalues of M1 and M2. The two +solutions for M0 are: M0 = diag(e1e2, e−1 +1 e−1 +2 ), or M0 = diag(e−1 +1 e−1 +2 , e1e2). We choose the first +one (the second will give a pre-image for ϕ−∗ +κ ). +We recall the LDU decomposition in SL2(C): +Lemma 3.33 Let M be an element of SL2(C) such that M[1, 1] ̸= 0. There exists a unique +triple (L, D, U) in U − × D × U + such that M = L × D × U. +Proof. We have + + + +a +b +c +d + + + = + + + +1 +0 +l +1 + + + × + + + +e +0 +0 +e−1 + + + × + + + +1 +u +0 +1 + + + ⇔ + + + + + + + + + + + +a = e +b = eu +c = el +d = e−1 + elu +which system has the unique solution (l, e, u) = (c/a, a, b/a) if a ̸= 0. ✷ +We call the above decomposition the LDU-decomposition of M and we denote: +LDU(M) = (L, D, U). +Lemma 3.34 Let M1 and M2 be two non vanishing matrices in SL2(C), M1 ̸= ±I, M2 ̸= ±I, +with eigenvalues (e1, e−1 +1 ) and (e2, e−1 +2 ). Suppose that the eigenvectors related to e−1 +2 +and to e1 +are independent. There exists a matrix Q in SL2(C) such that the diagonal component of the +decomposition LDU of Q−1M1M2Q is diag(e1e2, e−1 +1 e−1 +2 ). +Proof. The hypothesis of the Lemma gives the existence of a ”mixed basis” (u, v) given by +an eigenvector u of M2 related to the eigenvalue e−1 +2 , and an eigenvector v of M1 related to the +eigenvalue e1. Let Q be the matrix of this change of basis. We have: +Q−1M1Q = + + + +e1 +0 +c1 +e−1 +1 + + + , Q−1M2Q = + + + +e2 +b2 +0 +e−1 +2 + + + . +33 + +Therefore +Q−1M1M2Q = + + + +e1e2 +e1b2 +e2c1 +e−1 +1 e−1 +2 ++ b2c1 + + + = + + + +1 +0 +c1 +1 + + + · + + + +e1e2 +0 +0 +e−1 +1 e−1 +2 + + + · + + + +1 +b2 +0 +1 + + + . +✷ +End of the proof of Proposition (3.32). Suppose that the pair of matrices (M1,κ, M2,κ) satisfies +the hypothesis of Lemma (3.34). We choose the matrix Q given by this Lemma and we obtain +a solution of (11): +(U1, M0, U2) = LDU(Q−1M1,κM2,κQ), M′ +3 = Q−1M3Q, M′ +4 = Q−1M4Q. +A change of mixed basis will modify Q by a multiplication on the righta side with a diagonal +matrix. Therefore the class [(U1, M0, U2, M′ +3, M′ +4)]D is unique. The representations ρ for which +the hypothesis of Lemma (3.34) is not satisfied are the representations for which the eigen- +directions related to e1,κ and e−1 +2,κ are the same. This defines a component –here the line Le1,e2– +of the reducibility locus along the path γ1,2 in πV I +1 (X, S). Therefore Φκ is invertible outside +Le1,e2. Note that for the other choices of κ or e0 we shall find one of the other components of +R(γ1,2). ✷ +Using the trace maps, ϕ±∗ +κ +induces two families of morphisms of cubic surfaces: +Φ± +κ = (Tr±κ +V )−1 ◦ ϕ±∗ +κ +◦ TrV I : CV (θ±) → CV I(κ(θ±)) +where κ(θ+) = κ(e0, a3, a4) = (κ + κ−1, e0κ−1 + e−1 +0 κ, a3, a4) and κ(a−) = κ(e−1 +0 , a3, a4) = +(κ + κ−1, e−1 +0 κ−1 + e0κ, a3, a4). +Theorem 3.35 (Confluent and diffluent morphisms) The morphisms Φ± +κ are symplectic +birational morphisms from CV (θ±) to CV I(κ(θ±). +Proof. We have to prove that Φ+ +κ has rational expression in trace coordinates and is invertible +in the class of birational transformations. +Lemma 3.36 The map Φ+ +κ : CV (θ+) to CV I(κ(θ+) is defined by + + + + + +x1,κ = e−1 +0 κx1 + κ−1x2 +x2,κ = −e−1 +0 κx1x3 + κ−1x1 − e−1 +0 κx2 + a3κ + a4e−1 +0 κ +x3,κ = x3. +Proof. We set M1,κ = U1Dκ, M2,κ = Dκ−1M0U2. We have + + + + + +x1,κ = tr(M2,κM3) = α3e0κ−1 + e0γ3s2κ−1 + δ3e−1 +0 κ +x2,κ = tr(M3M1,κ) = α3κ + β3s1κ + δ3κ−1 +x3,κ = tr(M1,κM2,κ) = e0s1s2 + e0 + e−1 +0 . +Using Lemma (3.8), we obtain the expressions of Φκ in trace coordinates. ✷ +Lemma 3.37 This map is invertible outside the lines Le1,κ,e2,κ ∪ Le−1 +1,κ,e−1 +2,κ in χV I(aκ) and Φ−1 +κ +is given by + + + + + +x1 = (−κx1,κ − e0κ−1x2,κ + a3e0 + a4)(x3,κ − ce1,κ,e2,κ)−1 +x2 = (κx1,κx3,κ − e0κ−1x1,κ + κx2,κ − a3κ2 − a4κ2e−1 +0 )(x3,κ − ce1,κ,e2,κ)−1 +x3 = x3,κ. +34 + +Proof. In order to find Φ−1 +κ +we solve the system +� +e−1 +0 κx1 + κ−1x2 = x1,κ +(−e−1 +0 κx3,κ) + κ−1)x1 − e−1 +0 κx2 = x2,κ − a3κ − a4e−1 +0 κ +For a fixed value of x3 = x3,κ this system is linear and invertible outside the set +e−1 +0 (x3,κ − e−1 +0 κ2 − e0κ−2) = 0. +This set is the pair of lines x3,κ = e1,κe−1 +2,κ + e1,κe−1 +2,κ = ce1,κ,e2,κ, i.e. the pair of lines Le1,κ,e2,κ ∪ +Le−1 +1,κ,e−1 +2,κ in χV I(aκ). Solving this system, we obtain the expression of Φ−1 +κ +given in the statement +of the Lemma.✷ +Finally one can prove by using the above expressions that Φ+ +κ is a symplectic morphism (see +also [40]) with respects to the symplectcic forms ωκ +V (θ+) and ωV I(θκ). We have a similar result +for Φ− +κ . +4 +The Painlev´e V vector field on MV . +4.1 +The Riemann-Hilbert map RHV +Proposition 4.1 +1. Any local connection ∇, defined by a germ of irregular sl2-system of +Katz rank 1 induces a representation ρ∇ of the local wild groupoid π1(X0, S0) in SL2(C). +2. Any connection A in CV induces a representation ρA of πV +1 (X, S) in SL2(C). +Proof. The representation of the local wild fundamental groupoid induced by a local irregular +system is defined in the following way. We first consider an extension of the set of base points to +any point of D or �D which is an extremity of the rays ri, r± +i , i = 1, 2. The points p1 and p2 are +defined by the singular directions of the connection. Any point of �D is arbitrarily represented +by a determination in the direction d of a formal fundamental system of solutions �Yd of the +connection and any point of D is represented by an actual holomorphic fundamental system +of solutions Yd on a small sector around d. Any arc γ on D with origin a and end point b is +represented, as usually by the comparison between the analytic continuation � +Ya +γ of Ya along γ +with of Yb, i.e. by the matrix Mγ such that +Yb = � +Ya +γ · Mγ. +Any arc on �D is represented in the same way by using the formal representations of its extrem- +ities, and the analytic continuation of the logarithm. Let rd be a regular ray whose origin and +end-point are represented by � +Yd and Yd. The morphism rd is represented by the comparison +between the summation of � +Yd (the summation replace here he analytic continuation) with Yd : +Yd = Sd(� +Yd) · Mrd. +We represent the loops ti,i(κ) in the following way. One can suppose that the matrix �Ysi is a +diagonal matrix. Then the action of �ti,i(κ) on �Ysi is given by the product with the diagonal +matrix diag(κ−1, κ).Therefore ρA (ti,i(κ)) = Dκ. We have defined the representation ρ∇ on all +the generators of π1(X0, S0) and therefore on π1(X0, S0). +Given a global system A in SV , we complete the previous local wild representation to a +representation of πV +1 (X, S) by defining ρ∇(γi,j), (i, j) = (2, 3), (3, 4), (4, 1), (3, 3), (4, 4) in +35 + +the usual monodromic way, by analytic continuation along these paths or loops. +A change +of representations of the objects, or a gauge action on the linear system, induce equivalent +representations, which end the proof. ✷ +We have defined a Riemann-Hilbert map +RHV : MV (α) → χV (a). +The general Riemann-Hilbert problem discusses about the surjectivity of RH: in the present +context, for any irreducible representation ρ in χV , there exists a unique connection in MV on +the trivial bundle whose linear representation is ρ: for details see [54], [11]. +4.2 +Isomonodromic families on MV +Any isomonodromic family on MV (α) is a fiber of the map RHV , parametrized by a variable t, +i.e. a family of connections defined by +dY +dx = A(x, t) · Y +such that the monodromy and the Stokes operators are locally constant in χV (a). +Theorem 4.2 There exists an open Zariski set in MV (α) and coordinates p, q on the fiber +MV (α) such that the isomonodromic families are solutions the Painlev´e V hamiltonian differ- +ential system (5). +A sketch of proof. +We follow here an argument of [54] wich extends the argument of +Schlesinger for fuchsian connections. Given a fundamental system of solutions Y (x, t), by isomon- +odromy, d +dtY (x, t) and Y (x, t) have the same behaviour by analytic continuation or under a Stokes +operator. Therefore the quotient +B(x, t) = d +dtY (x, t) · Y (x, t)−1 +is univalued outside the fixed singular points. +Lemma 4.3 B(x, t) extends to the singular set in a meromorphic way. +Proof. +Let U ⊂ C be an open subset, and let D be an open disc centered at ∞. +Let +dY/dx = A(x−1, t)Y , where A ∈ sl2(O(D × U), be a parametrized meromorphic differential +system. We suppose that, for all t ∈ U, the eigenvalues of A(0, t) are distinct and that the +singularity is irregular, with a Katz rank equal to 1. From Theorem (2.7), the system dY/dx = +AY admits, in a small neighborhood of each t0 ∈ U a formal fundamental solution analytic in +t : �Y = �ΦxLeQ. The polynomials Q and the matrix L are analytic in t and the entries of �Φ +belongs to O(V )[[x−1]], where V is a small open disc centered at t0. Moreover these coefficients +are 1-summable uniformly in t. For a direction d non-singular at t0, if |t − t0| is small, then d +remains non-singular and the 1-sum is analytic in t. Multiplying on the right by an invertible +diagonal matrix analytic in t, we get a fundamental solution with similar properties. +If the system is isomonodromic, then the matrix L is constant and it is possible to choose �Y +in such a way that the Stokes multipliers does not depend on t. +By a simple calculation, we see that �B(x, t) = +d +dt �Y (x, t) · �Y (x, t)−1 does not contain expo- +nentials, and is invariant by the formal monodromy and by the (constant) Stokes multipliers. +Therefore its entries belongs to O(D)((x−1)). These entries are 1-summable uniformly in t and +36 + +are invariant by the Stokes multipliers, therefore they are meromorphic in x (with a pole at ∞) +and analytic in t. ✷ +Therefore Y (x, t) satisfies two rational linear systems dY +dx = A(x, t) · Y and dY +dt = B(x, t) · Y . +The compatibility condition requires that the two operators d/dx − A and d/dt − B have to +commute : +dA +dt − dB +dz + [B, A] = 0. +(12) +The pair (A, B) is called an isomonodromic Lax pair. If A is irreducible, B is unique. In [54], the +computation of B and the equivalence of the compatibility condition (12) with the hamiltonian +system of PV have been performed. ✷ +4.3 +Singularities of the Painlev´e V vector field in the Okamoto’s compactifi- +cation of MV (α) +The Okamoto’s compactification [49], [29]. All the Painlev´e foliations satisfy the Painlev´e +property: any solution admits an extension along any path is the basis given by the time variable +punctured by the fixed singular points, as a meromorphic function. +In a first step, we search for a compactification on which appear the “polar” singular set, +which corresponds to the poles of the meromorphic solutions. Here, following H. Chiba [16] and +[17], we have to distinguish the equations PIV , PII and PI from PV I, PV and PIII. For the first +triple we obtain this compactification by a convenient weighted projective space. For the second +one, the natural weighted projective space presents a vanishing weight and we can’t catch all +the polar set. In this case we need to glue two copies of this weighted projective space by a +convenient B¨acklund transformation. +In a second step one can remove the polar singular set by a convenient sequence of blowing +up’s. In the version of H. Chiba, it suffices to perform only one weighted blowing up whose +weights are given by the eigenvalues of the polar singular point, which are positive integers. +The first step creates new singular points outside the polar singular set, over z = ∞, which +are saddle-nodes. We describe here this set for the PV foliation. In this case, the weights are +ω = (1, 0, 1, 1). +Since the second weight vanishes, this space P3 +(1,0,1,1) is not compact and is +isomorphic to P2 × C. This space is here a manifold (an orbifold for other Painlev´e equations: +[Chiba1-2-4]), covered by 3 charts: +U1 = {(X1 : X2 : X3 : X4), X1 ̸= 0}, (X1 : X2 : X3 : X4) = (1 : u1 : u2 : x); +U3 = {(X1 : X2 : X3 : X4), X3 ̸= 0}, (X1 : X2 : X3 : X4) = (v1 : v2 : 1 : y); +U4 = {(X1 : X2 : X3 : X4), X4 ̸= 0}, (X1 : X2 : X3 : X4) = (w1 : w2 : z : 1). +The change of charts are given by +w1 = v1y−1 = x−1, w2 = v2 = u1, z = y−1 = u2x−1. +Singular points. +The chart U4 is the ”initial chart”, before compactification. In this chart +the vector field corresponding to the hamiltonian zHV is defined by + + + + + +z ˙w1 = −2w2 +1w2 + w2 +1 + w1z − 2w1w2z + (α1 + α3)w1 − α2z +z ˙w2 = 2w1w2 +2 − 2w1w2 − w2z + w2 +2z − (α1 + α3)w2 + α1 +˙z = z +37 + +For each vector field, the plane z = 0 is invariant and the singular points of the restriction of +the vector field to this plane are given by + + + + + +(−2w1w2 + w1 + (α1 + α3))w1 = 0 +2w1w2 +2 − 2w1w2 − (α1 + α3)w2 + α1 = 0 +z = 0 +For α1 ̸= ±α3, we obtain 2 singular points r1 and r2: +(w1, w2, z) = +� +0, +α1 +α1 + α3 +, 0 +� +, +(w1, w2, z) = +� +α1 − α3, +α1 +α1 − α3 +, 0 +� +. +Now we search for singular points over z = ∞. In the first chart the Painlev´e vector field is (see +[17]): + + + + + +˙u1 = −2u1 + 2u2 +1 − u1u2 + u2 +1u2 + α1x − (α1 + α3)u1x +˙u2 = −u2 + 2u1u2 − u2 +2 + u2x + 2u1u2 +2 − (α1 + α3)u2x + α2u2 +2x +˙x = x(−1 + 2u1 − u2 + 2u1u2 − (α1 + α3)x + α2u2x) +The plane (x = 0) is invariant and PV |(x=0) is the autonomous hamiltonian vector field +� +˙u1 = −2u1 + 2u2 +1 − u1u2 + u2 +1u2 = u1(u1 − 1)(u2 + 2) +˙u2 = −u2 + 2u1u2 − u2 +2 + 2u1u2 +2 = u2(2u1 − 1)(u2 + 1) +We have 5 singularities p1, p2, s1, s2, s3 in this first chart, which do not depend on the parameters +αi: +(u1, u2, x) = (0, 0, 0), (1, 0, 0), (0, −1, 0), (1 +2, −2, 0), (1, −1, 0). +The singularities p1 and p2 are polar singular points: H. Chiba has proved in [17] that they +correspond to solutions given by Laurent series at a movable pole z = z0. One can remove these +singularities by a weighted blowing up. The eigenvalues of linear part of PV are (−2, −1, −1) +and (2, 1, 1) respectively. They are analytically linearizable. +In the third chart –the Boutroux chart–, the Painlev´e vector field is given by + + + + + +˙v1 = v1(1 + v1 − 2v2 − 2v1v2 + (α1 + α3 − 1)y) − α2y +˙v2 = v2(−1 + v2 − 2v1 + 2v1v2 − (α1 + α3)y) + α1y +˙y = −y2 +The plane y = 0 is invariant and the restriction of the vector field at infinity is +� +˙v1 = v1(1 + v1 − 2v2 − 2v1v2) = v1(v1 + 1)(1 − 2v2) +˙v2 = v2(−1 + v2 − 2v1 + 2v1v2) = v2(v2 − 1)(2v1 + 1) +There are five singular points s1, s2, s3, s4 and s5 in y = 0 given by +(v1, v2, y) = (−1, 0, 0), (−1 +2, 1 +2, 0), (−1, 1, 0), (0, 0, 0), (0, 1, 0). +38 + +The polar singular set of PV contains 4 points. In order to catch the two missing polar singular +points, H. Chiba introduces a second copy of � +P3(1,0,1,1) glued to the first one by the B¨acklund +transformation π, given in each chart by +π :( ˜w1, ˜w2, ˜z, ˜α0, ˜α1, ˜α2, ˜α3) = (z(w2 − 1), −w1z−1, z, α1, α2, α3, α0) +(˜v1, ˜v2, ˜y, ˜α0, ˜α1, ˜α2, ˜α3) = (v2 − 1, −v1, y, α1, α2, α3, α0) +(˜u1, ˜u2, ˜x, ˜α0, ˜α1, ˜α2, ˜α3) = (−u−1 +2 , (u1 − 1)−1, (u1 − 1)−1u−1 +2 x, α1, α2, α3, α0) +By computing the singularities of the vector field in the chart ( ˜w1, ˜w2, ˜z), we find two singular +points r3 and r4 given by: +( ˜w1, ˜w2, ˜z) = (˜α1 − ˜α3 + 1, +˜α1 +˜α1 − ˜α3 + 1, 0), ( ˜w1, ˜w2, ˜z) = (0, − +˜α1 +˜α0 + ˜α2 +, 0). +We have r4 = r1, and therefore we obtain 3 singular points of regular type. +In the chart +(˜u1, ˜u2, ˜x), we find five singular points: +p3 : (˜u1, ˜u2, ˜x) = (0, 0, 0), +p4 : (˜u1, ˜u2, ˜x) = (1, 0, 0), +s1 : (˜u1, ˜u2, ˜x) = (1, −1, 0), +s2 : (˜u1, ˜u2, ˜x) = (1 +2, −2, 0), +s4 : (˜u1, ˜u2, ˜x) = (0, −1, 0). +According to [17], the singular points p3 and p4 are the two missing polar singular points. The +singularities s1, s2 and s4 was yet detected in the first copy. The singular points in the Boutroux +chart (˜v1, ˜v2, y) = (v2 −1, −v1, y) are s1, s2, s3, s4 and s5 without new singular point (the change +of chart is polynomial). We have obtained: +Proposition 4.4 The Painlev´e vector field admits 3 singular points r1, r2, r3 of regular type +over z = 0, 4 polar singular points pi, i = 1...4 over z = ∞, which can be removed by a weighted +blowing-up, and 5 singular points si over z = ∞, of saddle-node type. +By a local study around each saddle-node singularity, one can recover the 5 solutions of A. +Parusnikova in Laurent series around z = ∞ for the Painlev´e V equation: [52]. +5 +Dynamics on χV +5.1 +The tame dynamics +As mentionned in the introduction, the dynamic of the Painlev´e VI equation on χV I is induced +by the automorphisms of the groupoid, given by braids over 3 points. Here since the singular +set reduces to 3 points, the braid group over two points has only one generator, which can +be represented by the pure braid b over s3 and s4. Furthermore one can consider the “half- +monodromy” defined the (non pure) braid b3,4 which permutes the positions of s3 and s4 and +induces an involution on the local parameters. These actions induced by the trace coordinates +on CV (θ+) has been computed by the authors in [53] and M. Klimes in [40]. +Proposition 5.1 The action of the braid b3,4 : CV (θ+ +1 , θ+ +2 , e0) → CV (e−1 +0 θ+ +2 , e−1 +0 θ1+, e−1 +0 ) is +defined by: + + + + + +x′ +1 = e−1 +0 (−x2 − x1x3 + θ+ +2 ) +x′ +2 = e−1 +0 x1 +x′ +3 = x3 +and + + + + + +e′ +0 = e−1 +0 +θ+ +1 +′ = e−1 +0 θ+ +2 +θ+ +2 +′ = e−1 +0 θ+ +1 +39 + +The action of the pure braid b3,4 ◦ b3,4 : CV (θ+) → CV (θ+) is defined by: +g3,4 : + + + + + +x′ +1 = x1x2 +3 + x2x3 − x1 − θ+ +2 x3 + θ+ +1 +x′ +2 = −x1x3 − x2 + θ+ +2 +x′ +3 = x3 +As for the dynamics on CV I(θ), this dynamics and its inverse are polynomial dynamics. +This is the only part of the dynamics on χV I which do not degenerate through the confluent +morphisms from χV I to χV (see next paragraph). +Definition 5.2 The dynamics generated by g3,4 is called the tame dynamics, and denoted by +Tame(CV ) . +5.2 +The confluent dynamic +Using the birational map Φκ = Φ+ +κ , each dynamic hi,j on CV I(θκ) defined by the braids induces +a family of birational dynamics gi,j(κ) = φ−1 +κ +◦ hi,j ◦ φκ on χ+ +V (a). This one was previously +obtained by M. Klimes by using an analytic confluent process in the spaces of connections. +Definition 5.3 The confluent dynamic Conf(PV ) is the dynamic generated by g1,2(κ), g2,3(κ) +and g3,1(κ) for κ is C∗. +We still have the relation g1,2(κ) ◦ g2,3(κ) ◦ g3,1(κ) = id. Therefore it suffices to compute g1,2(κ) +and g2,3(κ). +Notice that, from the braid group relations, g1,2(κ) = g3,4(κ)−1. +By a direct +computation using proposition (3.36), it can be checked that +Proposition 5.4 The dynamic g3,4(κ) = φ−1 +κ +◦ h3,4 ◦ φκ on χV (a) do not depend on κ and +generates the tame dynamic. +Remark 5.5 Since the braid between s1 and s2 (or between s3 and s4) corresponds to a loop +around 0 in the time space, g3,4 is conjugated through the Riemann-Hilbert correspondence to +the non linear monodromy of the foliation FV over z = 0. +Contrary to the previous case, the dynamics g2,3(κ) and g3,1(κ) are not generated by an +automorphism of πV +1 (Y, S): indeed on the groupoid level, ϕκ is not an isomorphism. Nevertheless +they induce families of birational dynamics on CV (θ): +Proposition 5.6 The family of dynamics g2,3(κ) is defined by: +X1 = e0 +x2 +X2 = x2 − κ2 +x2 ++ e−1 +0 κ2x1 +X3 = κ−2x2 +2x3 − (e−2 +0 κ2 − κ−2)x1x2 − 2e−1 +0 x2 +2 + (e−1 +0 θ2 + κ−2θ1)x2 + (e−1 +0 κ2 + e0κ−2) +The second family g3,1(κ) is given by g1,3(κ) = g1,2 ◦ g2,3(κ). +We first search for the matrix expressions of the confluent dynamics : +40 + +Proposition 5.7 The confluent dynamic (ϕ∗ +κ)−1 ◦ h2,3 ◦ ϕ∗ +κ : +χκ +V (a) → χκ +V (a) is defined by +([U1, M0, U2, M3]D → [V1, M0, V2, N3]D with +V1 = + + + +1 +0 +κ−1e0s1θ3 + κ−1e−1 +0 γ3 − κe−1 +0 γ3 + κ−1e0s1s2γ3 +1 + + + , +V2 = + + + +1 +κ−1e0s2θ3 + κ−1e0s2 +2γ3 − κ−1e0s2δ3 − κ−1e0β3 + κe−1 +0 β3 + κe−1 +0 s2δ3 +0 +1 + + + , +N3 = +1 +θ3 + s2γ3 + + + +θ2 +3 + θ3γ3s2 + β3γ3 + γ3δ3s2 +−e0κ−1(θ3s2 + γ3s2 +2β3 − δ3s2) +κe−1 +0 γ3 +1 + + + . +Proof. We consider an element ρ of χV (a) given by its normalized representation in the +canonical Cartan-Borel decomposition: +ρ = [U1, M0, U2, M3, M4], (U1, M0, U2, M3) ∈ U −×D×U + ×SL2(C), M4 = (U1M0U2M3)−1. +We set: +U1 = + + + +1 +0 +u1 +1 + + + , M0 = + + + +e0 +0 +0 +e−1 +0 + + + , U2 = + + + +1 +u2 +0 +1 + + + , M3 = + + + +θ3 +β3 +γ3 +δ3 + + + . +The map Φκ is defined by: +Φκ([U1, M0, U2, M3, M4]) = [M1, M2, M3, M4] with M1 = U1Dκ, M2 = D−1 +κ M0U2. +Therefore +M1 = + + + +κ +0 +κu1 +κ−1 + + + , M2 = + + + +κ−1e0 +κ−1e0u2 +0 +κe−1 +0 + + + , M3 = + + + +θ3 +β3 +γ3 +δ3 + + + . +According to [53], the dynamic of h2,3 is given by +M1 → (M2M3)−1M1(M2M3) +M2 → M2 +M3 → M3 +M4 → (M2M3)−1M4(M2M3) +Since each data is given up to a common conjugacy, we can also use: +M1 → M′ +1 = M2−1M1M2 +M2 → M′ +2 = M3M2M3−1 +M3 → M′ +3 = M3 +M4 → M′ +4 = M2−1M4M2 +41 + +Now, in order to compute φ−1 +κ (M′ +1, M′ +2, M′ +3, M′ +4), we make use of the matrix P given by Lemma +(3.34), defined by a mixed basis for the pair (M′ +1, M′ +2). Let (u, v) a basis of the representation +of the initial object such that the representation Φκ(ρ) is given by the matrices Mi: u is an +eigenvector of M2 for the eigenvalue e2 = κ−1e0 and v is an eigenvector of M1 for the eigenvalue +e1−1 = κ−1. The vectors +u′ = M3 · u′, v′ = M2−1 · v +are eigenvectors for M′ +2 (with eigenvalue κ−1e0) and for M′ +1 (with eigenvalue κ−1). The change +of basis is given by the matrix +P = + + + +θ3 +−κ−1e0u2 +γ3 +κ−1e0 + + + +which is invertible outside +κ−1e0(b3 + u2γ3) = 0. +Using Lemma (3.8), this locus is given by x2 = 0. Therefore the dynamic g2,3(κ) is a rational +dynamic with polar set x2 = 0. We have: +P −1(M′ +1M′ +2)P = + + + +e0 +κ−1e2 +0u2b3 + κ−1e2 +0u2 +2γ3 − κ−1e2 +0u2δ3 − κ−1e2 +0β3 + κβ3 + κu2δ3 +κ−1e2 +0u1b3 + κ−1γ3 − κγ3 + κ−1e2 +0u1u2γ3 +⋆ + + + . +where the coefficient ⋆ is not specified. +The LDU-decomposition of this matrix is given by +(V1, M0, V2) with +V1 = + + + +1 +0 +κ−1e0u1b3 + κ−1e−1 +0 γ3 − κe−1 +0 γ3 + κ−1e0u1u2γ3 +1 + + + , +V2 = + + + +1 +κ−1e0u2b3 + κ−1e0u2 +2γ3 − κ−1e0u2δ3 − κ−1e0β3 + κe−1 +0 β3 + κe−1 +0 u2δ3 +0 +1 + + + . +we have: +N3 = P −1M′ +3P = +1 +b3 + u2γ3 + + + +b2 +3 + b3γ3u2 + β3γ3 + γ3δ3u2 +−e0κ−1(b3u2 + γ3u2 +2β3 − δ3u2) +κe−1 +0 γ3 +1 + + + +which proves the proposition. ✷ +Proof of Proposition (5.6). The image of x1 = δ3 is given by X1 = N3[2, 2] = +1 +b3+u2γ3 . According +to Lemma (3.8), we have: +N3[2, 2] = +1 +b3 + u2γ3 += +1 +(a3 − x1) + e−1 +0 (x2 − e0a3 + e0x1) = e0 +x2 +. +42 + +The image of x2 = δ4 is given by N4[2, 2] where N4 = P −1M′ +4P. We have +N4[2, 2] = −e−2 +0 κ2γ3β4 + b3δ4 + u2γ3δ4 +b3 + u2γ3 +. +From M4 = (U1M0U2M3)−1 we obtain that β4 = −e0(β3 + u2δ3). Therefore, +γ3β4 = −e0γ3β3 − e0u2γ3δ3 += −e0(b3δ3 − 1) − e0u2γ3δ3 += −e0((a3 − x1)x1 − 1) − x1(x2 + e0x1 − e0a3) += e0 − x1x2. +From Lemma (3.8) and the above equality we obtain +X2 = N4[2, 2] = x2 − κ2x−1 +2 ++ e−1 +0 κ2x1. +We can obtain the last component by computing X3 = tr(M′′ +1 M′′ +2 ) = tr(M′ +2 +−1M′ +1M′ +2M′ +3M′ +2M′ +3 +−1), +or by using the equation of the cubic surface: +X3 = −X2 +1 − X2 +2 + θ1X1 + θ2X2 − θ4 +X1X2 − e0 +. +✷ +5.3 +The canonical dynamics on CV (θ) +In [40], Martin Klimes has computed the dynamics obtained on CV (θ) from the wild dynamics +(non linear stokes operators and non linear exponential tori of one irregular singularity of the +Painlev´e foliation) through the Riemann-Hilbert morphism. It turns out that this dynamics +is a rational one on CV (θ). We enhance here that this dynamics was already present on the +cubic surface in a canonical way, using the log-canonical coordinates introduced in subsection +3.4. This section is completely independent of the other ones excepted 3.4, and only deals with +dynamics on a singular cubic surface. Nevertheless the terminology (canonical Stokes operators +etc...) is deeply influenced by the confluent dynamics. We do not need here any restriction on +the parameters. +Let y be a log-canonical function on CV (θ): there exists z such that (y, z) –or (z, y)– is a +log-canonical system of coordinates. We consider the logarithmic hamiltonian function Hy on +CV (a) such that +dHy = dy +y . +Let Xy be the hamiltonian vector field related to Hy for the symplectic form ωV : +ωV (Xy, ·) = −dy +y . +Through the symplectic morphism (y, z), the image of this vector field is z ∂ +∂z (or −z ∂ +∂z if y is +completed in log-canonical system of coordinates by the left side). Therefore its flow z(t) = z0e±t +is globally defined on C, and it can be factorized through a multiplicative action of C∗ by setting +λ = et. Let Ty be this multiplicative family of (rational symplectic) automorphisms on CV . +43 + +Definition 5.8 Ty = {tλ : +(z′, y) �→ (λ−1z′, y)} = {tλ : +(y, z) �→ (y, λz)} is the exponential +torus related to the log canonical function y. +Remark 5.9 +1. Each element of Ty keeps invariant y, and the set of rational invariant +functions of Ty is C(y). +2. Consider the log-canonical pentuple (z0, y1, z1, y2, z2). The elements of Ty1 keep invariant +the reducible locus z0 = 0 and z1 = 0, and the elements of Ty2 keep invariant the reducible +locus z1 = 0 and z2 = 0. +The subgroups of Symp = Symp(C2, ωlog): Bi, B♮ +i, Ui, i = 1, 2 are defined in the Appendix. +They induce subgroups of Symp(CV , ωV ) by using a system of log-canonical coordinates. Given +a log canonical function z = zk in S, one can complete z into two log-canonical systems, either +by the left side: (y, z) or by the right side: (z, y′). +Lemma 5.10 +1. We fix a canonical triple (y, z, y′). +The pull-back of B2 (resp. +B♮ +2, U2) +by (y, z) and the pull-back of B1 (resp. B♮ +1, U1) by (z, y′) define the same subgroup of +Sym(CV , ωV ). +2. We fix a canonical triple (z, y, z′). The pull-back of B2 (resp. B♮ +2, U2) by (z, y) and the +pull-back of B1 (resp. B♮ +1, U1) by (y, z′) define the same subgroup of Sym(CV , ωV ). +The subgroups obtained at the first point of Lemma (5.10) are denoted by Bz, B♮ +z, Uz, and the +subgroups obtained at the second point are denoted by By, B♮ +y, Uy. +Definition 5.11 Given a canonical system of coordinates (y, z) we will say that By and Bz are +the opposite Borel subgroups associated to (y, z). +Proof of Lemma (5.10). 1- The elements of the pullback of B2 by (y, z) are given by +(y, z) → (r(z)y, λz), r ∈ C(z)∗, λ ∈ C∗, +and the elements of the pullback of B1 by (z, y′) are given by +(z, y′) → (λz, r(z)y′), r ∈ C(z)∗, λ ∈ C∗. +Therefore using yy′ = z + e0, the elements of the first group also write +(z, y′) → (λz, r′(z)y′), with r′(z) = +λz + e0 +(z + e0)r(z), +which proves the first point. +2- The elements of the pullback of B2 by (z, y) are given by +(z, y) → (r(y)z, λy), r ∈ C(y)∗, λ ∈ C∗, +and the elements of the pullback of B1 by (y, z′) are given by +(y, z′) → (λy, r(y)z′), r ∈ C(y)∗, λ ∈ C∗. +Therefore using zz′ = Q(y), where Q = Q1 or Q2 is a polynomial, the elements of the first group +also write +(y, z′) → (λy, r′(y)z′), with r′(y) = +Q(λy) +Q(y)r(y), +which proves the second point. ✷ +44 + +Proposition 5.12 We have Z(Ty) = By, N(Yy) = By∪B− +y , where B− +y = {(y, z′) → (λy, r(y)z′−1), r ∈ +C(y)∗, λ ∈ C∗}. +Proof. Let tλ : (y, z′) → (y, λz′). An element ρ of Symp(CV ), given by +ρ : (y, z′) → (Y (y, z′), Z′(y, z′)) +commutes with tλ if and only if, for any λ in C∗, +Y (y, λz′) = Y (y, z′), +Z′(y, λz′) = λZ′(y, z′). +We claim that any rational function r in K(x) over a field K ⊃ C which satisfies r(λx) = λr(x) +for any λ in C∗ is a constant function. Indeed if it was not a constant function it would admit +an infinite number of zeroes or poles in K. By applying this remark to z′ �→ Y (y, z′) and to +z′ �→ Z′(y, λz′)z′−1, we conclude that Y do not depend on z′ and that Z′ is linear in z′. There +exists two rational functions q(y) and r(y) such that +Y (y, λz′) = q(y), +Z′(y, λz′) = r(y)z′. +We have +dY +Y +∧ dZ′ +Z′ = q′(y)dy +y ∧ (r′(y)dy +y ++ dz +z ) = q′(y)dy +y ∧ dz +z . +Therefore q′(y) = 1, and q(y) = µ in C∗. The elements of Z(Ty) write +(y, z′) → (µy, r(y)z′) +which prove that Z(Ty) = By. +Suppose now that an element ρ is in the normalizer of Ty. +Then either it commutes whith +each element of Ty, or it anti-commutes with each element of Ty. In this last case a similar +computation proves that ρ : (y, z′) → (µy, r(y)z′−1). ✷ +Proposition 5.13 Let T = (y, z, y′) be a log-canonical triple in the cluster sequence S. There +exists a unique element sT of Uz such that sTTys−1 +T += Ty′. This operator is given by: +sT : (y, z) → (y(1 + e−1 +0 z), z) or by +(z, y′) → (z, y′(1 + e−1 +0 z)−1) = (z, e0y−1) +and we have: s−1 +T +: (y, z) → (y(1 + e−1 +0 z)−1, z) = (e0y′−1, z). +Proof. We have: +Ty = {ty(λ) : (y, z) → (y, λz)}, +Ty′ = {ty′(λ) : (z, y′) → (λ−1z, y′)} += {ty′(λ) : (y, z) → (y1 + e−1 +0 λ−1z +1 + e−1 +0 z +, λ−1z)}, +Uz = {ur : (y, z) → (r(z)y, z), r ∈ C(z)∗, r(0) = 1}. +Therefore the element s of Uz: (y, z) → (y(1 + e−1 +0 z), z) satisfies for all λ in C∗ +s ◦ ty(λ) ◦ s−1 = ty′(λ−1). +In order to prove the unicity of s, suppose that there exist another s′ in Uz which conjugates Ty +and Ty′. We have : s−1 ◦ s′(Ty) = Ty i.e. s−1 ◦ s′ belongs to the normalizer N(Ty) of Ty. We +have N(Ty) ∩ Uz = {id} : this is a direct consequence of Proposition (5.12).✷ +45 + +Definition 5.14 The automorphism sT is the canonical Stokes operator induced by the triple +T = (y, z, y′). +Proposition 5.15 +1. The automorphism sT writes in the coordinates h = log y, l = log(1 + +e−1 +0 z): (h, l) → (h + l, l). +2. sT is a pseudo-generator of Uz, that is to say the family {ty(λ) ◦ sT ◦ ty(λ)−1, λ ∈ C∗} +generates Uz. Consequently, B♮ +z :=< Uz, Ty >=< sT, Ty >. +3. Let sk be the canonical Stokes operator related to the triple (yk, zk, yk+1). We have: σ1 ◦ +s1 ◦ σ−1 +1 += s−1 +2 ; g ◦ sk ◦ g−1 = sk+2. +4. For i = 1, 2, si keeps invariant the lines zi = 0, and the restriction of si on each line is a +translation. More generally, sk keeps invariant zk = 0, and the restriction of sk to the set +of rational curves zk = 0 has no fixed point. +Proof. +1. This first point is trivial. +2. We have: +{ty(λ) ◦ sT ◦ ty(λ)−1, λ ∈ C∗} = {(y, z) → (y(1 + νz), z), ν ∈ C∗} +The statement comes from the fact that any rational function r such that r(0) = 1 writes +r(z) = � +i(1 − µiz) � +j(1 − νjz)−1 where the µ−1 +i +are the zeroes of r and the ν−1 +j +are the +poles of r. +3. We have: +s1 : (y1, z1) → (y1(1 + e−1 +0 z1, z1) +s2 : (z2, y3) → (z2, y3(1 + e−1 +0 z2)−1). +Since σ1 : (y1, z1) → (y3, z2), we have σ1 ◦ s1 ◦ σ−1 +1 += s−1 +2 . +The automorphism g−1 send the triple (yk, zk, yk+1) on (yk+2, zk+2, yk+3). Therefore sk = +g−1 ◦ sk+2 ◦ g. +4. From the previous point, it suffices to prove the result for s1. We lift the expression of s1 +in the coordinate system (y1, z1, x3): +s1 : (y1, z1, x3) → (e−1 +0 y1(z1 + e0), z1, X3). +The equation of the character variety CV (θ) is given by +x3z1 + y2 +1 + (z1 + e0)2y−2 +1 +− θ1y1 − θ2(z1 + e0)y−1 +1 ++ θ4 = 0, +which is equivalent to +x3z1 + y−2 +1 z2 +1 + 2e0y−2 +1 z1 − θ2y−1 +1 z1 = −y2 +1 − e2 +0y−2 +1 ++ θ1y1 + θ2e0y−1 +1 +− θ4. +We have: +X3z1 + e−2 +0 y2 +1(z1 + e0)2 + e2 +0y−2 +1 +− θ1e−1 +0 y1(z1 + e0) − θ2e0y−1 +1 ++ θ4 = 0. +46 + +Therefore, +X3z1 = −e−2 +0 y2 +1z2 +1 − 2e−1 +0 y2 +1z1 + θ1e−1 +0 y1z1 − y2 +1 − e2 +0y−2 +1 ++ θ1y1 + θ2e0y−1 +1 +− θ4 += −e−2 +0 y2 +1z2 +1 − 2e−1 +0 y2 +1z1 + θ1e−1 +0 y1z1 + x3z1 + y−2 +1 z2 +1 + 2e0y−2 +1 z1 − θ2y−1 +1 z1. +We obtain: +X3 = −e−2 +0 y2 +1z1 − 2e−1 +0 y2 +1 + θ1e−1 +0 y1 + x3 + y−2 +1 z1 + 2e0y−2 +1 +− θ2y−1 +1 . +Therefore the restriction of s1 to z1 = 0 is given by +x3 → x3 + θ1e−1 +0 y1 − θ2y−1 +1 . +On each component of z1 = 0, y1 is constant (= e± +3 or e0e±1 +4 ) and this map is a translation. +✷ +Definition 5.16 The canonical dynamics induced by the canonical triple T = (y, z, y′) is the +subgroup Dyn(T) =< Ty, sT, Ty′ > of Symp(CV ) generated by Ty, sT, and Ty′. +Proposition 5.17 We have : Dyn(T) =< Ty, sT >= B♮ +z. +Proof. The first equality is a consequence of the relation sTTys−1 +T += Ty′ obtained in Propo- +sition (5.13), and the second one was obtained at the second point of Proposition (5.15). ✷ +Definition 5.18 The canonical dynamics Dyn(CV ) induced by the fundamental canonical se- +quence {y0, z0, y1, z1, y2, z2, y3} is the rational symplectic dynamic generated by: +g : (y2, z2) → (y0, z0), Ty1, s1 = s(y1,z1,y2), s2 = s(y2,z2,y3). +The subgroup Tame(CV ) of Dyn(CV ) generated by g is the tame canonical dynamics. +Remark 5.19 +1. From Proposition (3.25), the canonical sequence is almost unique, that is +we can only replace zk with czk. This action is an element of Tyk and therefore do not +change the dynamics. This dynamics only depends on the polynomial FV , which justify the +notation. +2. Dyn(CV ) also contains Ty0 = g∗Ty2 and s0 = s(y0, z0, y1) = g∗s2, and more generally all +the Tyk and all the sk for k in Z. +3. Dyn(CV ) =< B♮ +z1, B♮ +z2, g > . +Proposition 5.20 The element �m of Dyn(CV ) such that g = s2 ◦ �m ◦ s1 is defined by +(y2, z2) → (y2, e2 +0z2y−4 +2 ). +Proof. We have +s∗ +1z2 = s∗ +1Q2(y2)z−1 +1 += Q2(e0y−1 +1 )z−1 +1 += e2 +0y−4 +1 Q1(y1)z−1 +1 += e2 +0y−4 +1 z0. +Therefore, +g−1∗s∗ +1z2 = e2 +0y−4 +3 z2, +s∗ +2g−1∗s∗ +1z2 = e−2 +0 y4 +2z2. +We also have +s∗ +2g−1∗s∗ +1y2 = s∗ +2g−1∗(e0y−1 +1 ) = s∗ +2(e0y−1 +3 ) = y2, +which proves that �m−1 = s1 ◦ g−1 ◦ s2 is defined by (y2, z2) → (y2, e−2 +0 z2y4 +2). ✷ +Definition 5.21 The element �m in Dyn(CV ) is the canonical formal monodromy. +Note that �m = t2(e2 +0y−4 +2 ). In particular, �m is in the centralizer Z(Ty2) = By2 of Ty2, and +preserves y2. +47 + +5.4 +Comparison between the confluent and the canonical dynamics +We have previously found that the confluent dynamics and the canonical dynamics are both +extensions of the tame dynamics. +In order to compare Dyn(CV ) and Conf(PV ), we write +the confluent dynamic in the canonical coordinates. +The confluent dynamic is generated by +g1,2 = g−1 +3,4 given by Proposition (5.4), the family g2,3(κ) given by Proposition (5.6) and the +family g3,1(κ), which satisfies the relation g1,2 ◦ g2,3(κ) ◦ g3,1(κ) = id. +Proposition 5.22 We have: +(i) We have g1,2 = g. Hence g1,2 : (yn, zn) → (yn−2, zn−2). +(ii) The automorphism g2,3(κ) and its inverse are given in canonical coordinate systems by +g2,3(κ) : (z1, y2) → (κ2z1y−2 +2 , (1 + κ2e−1 +0 z1y−2 +2 )y2), +g3,2(κ) : (y1, z1) → (y1 + e0κ−2z1y−1 +1 , e2 +0κ−2z1y−2 +1 ). +(iii) The automorphism g3,1(κ) and its inverse are given in canonical coordinate systems by +g3,1(κ) : (z2, y3) → (κ2z2y−2 +3 , (1 + κ2e−1 +0 z2y−2 +3 )y3), +g1,3(κ) : (y2, z2) → (y2 + e0κ−2z2y−1 +2 , e2 +0κ−2z2y−2 +2 ). +Proof. +(i) We have g = σ1 ◦ σ2, with +σ1(x1, x2, x3) = (x1 − FV,x1, x2, x3) = (−x1 − x2x3 + θ1, x2, x3) +σ2(x1, x2, x3) = (x1, x2 − FV,x2, x3) = (x1, −x2 − x1x3 + θ2, x3). +Therefore, +(σ1 ◦ σ2)∗x1 = σ∗ +2(−x1 − x2x3 + θ1) += −x1 + x2x3 + x1x2 +3 − θ2x3 + θ1 = (g1,2)∗x1. +(σ1 ◦ σ2)∗x2 = σ∗ +2(x2) += −x2 − x1x3 + θ2 = (g1,2)∗x2. +Hence, g = g1,2. +(ii) From Proposition (5.6) we have: +g2,3(κ)∗z1 = e0x−1 +2 (x2 − κ2x−1 +2 ++ e−1 +0 κ2x1) − e0 += e0 + κ2x−2 +2 (x1x2 − e0) − e0 += κ2z1y−2 +2 . +g2,3(κ)∗y2 = g2,3(κ)∗((z1 + e0)y−1 +1 ) += (κ2z1y−2 +2 ++ e0)e−1 +0 y2 += y2(1 + e−1 +0 κ2z1y−2 +2 ). +We obtain g3,2(κ) by reversing the map (z1, y2) → (Z1, Y2): +z1 = κ−2Y 2 +2 (1 + e−1 +0 Z1)−2, y2 = Y2(1 + e−1 +0 Z1)−1, +and by using the change of canonical coordinates (z1, y2) → (y1 = (z1 + e0)y−1 +2 , z1). +48 + +(iii) We have g1,3(κ) = g ◦ g2,3(κ). We set Z2 := κ2z2y−2 +3 , Y3 := y3 +� +1 + κ2e−1 +0 z2y−2 +3 +� +. We have +to prove that g1,3(κ)∗Z2 = z2 and g1,3(κ)∗Y3 = y3. +g1,3(κ)∗Z2 = g2,3(κ)∗ ◦ g∗(κ2z2y−2 +3 ) = g2,3(κ)∗(κ2z0y−2 +1 ). +g1,3(κ)∗Y3 = g2,3(κ)∗ ◦ g∗Y3 = g2,3(κ)∗ � +y1(1 + κ2e−1 +0 z0y−2 +1 ) +� +. +We compute g2,3(κ)∗z0 and g2,3(κ)∗y1. We have z0 = z−1 +1 Q1(y1), therefore : +g2,3(κ)∗z0 = (g2,3(κ)∗z0)−1 Q1 (g2,3(κ)∗y1) = κ−2z−1 +1 y2 +2Q1 +� +e0y−1 +2 +� +. +We recall (cf. the remark 3.29) that Q1(e0t−1) = e−2 +0 t4Q2(t). We obtain : +g2,3(κ)∗z0 = κ−2e2 +0y−2 +2 z−1 +1 e2 +0y4 +2Q1 +� +e0y−1 +2 +� += κ−2e2 +0y−2 +2 z−1 +1 Q2(y2) = e2 +0κ−2y−2 +2 z2. +Since y1 = (z1 + e0)y−1 +2 , by using (ii) we have +g2,3(κ)∗y1 = (κ2z1y−2 +2 ++ e0)(y2 + κ2e−1 +0 z1y−1 +2 )−1 = e0y−1 +2 . +Finally, +g1,3(κ)∗Z2 = g2,3(κ)∗(κ2z0y−2 +1 ) += κ2(e2 +0κ−2y−2 +2 z2)(e0y−1 +2 )−2 = z2. +g1,3(κ)∗Y3 = g2,3(κ)∗ � +y1(1 + κ2e−1 +0 z0y−2 +1 ) +� += e0y−1 +2 +� +1 + κ2e−1 +0 (e2 +0κ−2z2y−2 +2 )(e0y−1 +2 )−2� += e0y−1 +2 (1 + e−1 +0 z2) = e0y−1 +2 +� +1 + e−1 +0 (y2y3 − e0) +� += y3. +Therefore, g3,1(κ) : +(z2, y3) → (Z2, Y3). The computation of its inverse g3,1(κ) in the chart +(y2, z2) is similar to the computation of the inverse of the g2,3(κ) in point (ii).✷ +Remark 5.23 The transformations g2,3(κ) and g3,1(κ) are conjugated by the map ξ : (y1, z2) → +(y2, z3). Nevertheless, this conjugation ξ does not belong to the canonical dynamics. +The following equalities are consequences of the points (ii) and (iii) in Proposition (5.22): +Corollary 5.24 For all κ in C∗ we have: +1. g2,3(κ) = g2,3(1) ◦ ty2(κ2) = ty1(κ−2) ◦ g2,3(1); +2. g1,3(κ) = g1,3(1) ◦ ty2(κ2) = ty3(κ−2) ◦ g1,3(1). +In particular, g2,3(κ) conjugates Ty1 and Ty2: g2,3(κ) ◦ ty2(κ2) ◦ g2,3(κ) = ty1(κ−2), and g3,1(κ) +conjugates Ty2 and Ty3: g3,1(κ) ◦ ty3(κ2) ◦ g1,3(κ) = ty1(κ−2). +From these preliminary results we immediately obtain: +Proposition 5.25 +1. The tame dynamic generated by g = σ1 ◦ σ2 is included in Conf(PV ). +2. For any n in Z, Tyn ⊂ Conf(PV ). +49 + +Proof. The first point is a direct consequence of g = g1,2. +The second one is obtained for n = 1 or n = 2 from the first item of Corollary (5.24). The others +tori are obtained from Ty1 or Ty2 by a conjugation with an element of the tame dynamic. ✷ +Nevertheless, the canonical Stokes operators do not belong to Conf(PV ). The reason is the +following one: both g2,3(κ) and s1 keep invariant ∆ : +z1 = 0. The restriction of s1 to each +component of ∆ is a translation: see Proposition (5.15). One can compute the restriction of +g2,3(κ) on each each line of ∆. +g2,3(κ)∗x3 = κ−2x2 +2x3 + β(κ, x1, x2), +where β(κ, x1, x2) only depends on κ, x1, and x2. On ∆, x1 = e±1 +3 , e0e±1 +4 , x2 = e0e±1 +3 , e±1 +4 , +therefore the restriction of the g2,3(κ) are affine transformations on each line. The same property +holds for g3,1(κ). Nevertheless, we cannot find κ in C∗ such that κ−2x2 +2 = 1 simultaneously on +each component of ∆. +This remark suggests to introduce an extension of the confluent dynamics. The only way to +obtain from the family g2,3(κ) an element which is a translation on ∆ is to introduce a functional +time for the elements of Tt2, setting κ = x2. Therefore if we expect to obtain the canonical stokes +operators from the confluent dynamic, we have to extend it by the element ty2(y−2 +2 ). +Another motivation in order to introduce this element is purely algebraic and makes use of +the structure induced by the symplectic Cremona group. We recall the subgroups of Bir(CV ) +generated from the Borel-Cartan structure of Symp(C2) by the canonical triple (y1, z1, y2) : +By1 = {by1(λ, r) : (y1, z1) → (λy1, z1r(y1)), r ∈ C(y1)∗, λ ∈ C∗} +By2 = {by2(λ, r) : (z1, y2) → (z1r(y2), λ−1y2), r ∈ C(y2)∗, λ ∈ C∗} +Ty1 = {ty1(λ) : (y1, z1) → (y1, λz1), λ ∈ C∗} +Ty2 = {ty2(λ) : (z1, y2) → (λ−1z1, y2), λ ∈ C∗} +Uz1 = {uz1(r) : (z1, y2) → (z1, y2r(z1)), r ∈ C(z1)∗, r(0) = 1}. +and we set : +Ty2 (C(y2)) = {(z1, y2) → (z1r(y2), y2), r ∈ C(y2)∗} += {by2(1, r), r ∈ C(y2)∗} ⊂ By2; +Ty1 (C(y1)) = {(z1, y2) → (y1, z1r(y1)), r ∈ C(y1)∗} += {by1(1, r), r ∈ C(y1)∗} ⊂ By1. +Proposition 5.26 +(i) There exists a unique pair (by2, uz1) in Ty2 (C(y2)) × Uz1, such that : +g2,3(1) = uz1 ◦ by2. Moreover by2 = ty2(y−2 +2 ) ∈ Ty2 (C(y2)) and uz1 = s−1 +1 . +(ii) There exists a unique pair (by1, vz1) in Ty1 (C(y1)) × Uz1, such that : +g3,2(1) = vz1 ◦ by1. Moreover by1 = ty1(e−2 +0 y2 +1) ∈ Ty1 (C(y1)) and vz1 = s1. +Proof. (i) We set : +by2 : (z1, y2) �→ (z1y−2 +2 , y2), +uz1 : (z1, y2) �→ (z1, (1 + e−1 +0 z1)y2). +50 + +We have g2,3(1) = uz1 ◦ by2. The unicity of this decomposition is a consequence of Ty2 (C(y2)) ∩ +Uz1 = {id}. One recognizes here that by2 = ty2(y−2 +2 ) and uz1 = s−1 +1 . +(ii) We set : +by1 : (y1, z1) �→ (y1, e2 +0z1y−2 +1 ) +vz1 : (y1, z1) �→ +� +(1 + e−1 +0 z1)y1, z1 +� +. +We have g3,1(1) = vz1 ◦ by1. The unicity of this decomposition is a consequence of Ty1 (C(y1)) ∩ +Uz1 = {id}. One recognizes here that by1 = ty1(e−2 +0 y2 +1) and vz1 = s1. ✷ +By using g2,3(κ) = g2,3(1) ◦ ty2(κ2), and Z(Ty2) = By2, we obtain: +g2,3(κ) = uz1 ◦ by2 ◦ ty2(κ2) = uz1 ◦ ty2(κ2) ◦ by2. +Since g3,1(κ) is conjugated to g2,3(κ) by (z1, y2) → (z2, y3) we have a similar decomposition of +the family g3,1(κ) in Uz2 × B1 +y3 × Ty3: +g3,1(κ) = uz2 ◦ by3 ◦ ty3(κ2) = uz2 ◦ ty3(κ2) ◦ by3, uz2 = s−1 +2 , by3 = ty3(y−2 +3 ). +Notice that b−1 +y2 = ty2(y2 +2) : (z1, y2) → (z1y2 +2, y2) is a ramified blowing-up in the canonical chart +(z1, y2). We extend the confluent dynamic by this element: +Definition 5.27 The extended confluent dynamic is defined by +Conf ♯(PV ) =< Conf(PV ), ty2(y2 +2) > . +We recall that, according to Proposition (5.20), the element �m of Dyn(CV ) such that g = s2◦ �m◦s1 +is defined by �m = ty2(e−2 +0 y4 +2). We consider a square root of �m defined by: +�m1/2 : (y2, z2) → (y2, e−1 +0 y2 +2z2). +Definition 5.28 The extended confluent canonical dynamic is defined by +Dyn♯(CV ) =< Dyn♯(CV ), �m1/2 > . +Theorem 5.29 Conf ♯(PV ) = Dyn♯(CV ). +Proof.. We first prove that Dyn(CV )♯ ⊂ Conf ♯(PV ). Dyn♯(CV ) is generated by g, Ty1, s1, +s2 and �m1/2. From Proposition (5.26), since s−1 +1 += g2,3(1) ◦ ty2(y2 +2), Conf ♯(PV ) contains s1. We +have: +�m = ty2(e−2 +0 y4 +2) = +� +ty2(e−1 +0 ) ◦ ty2(y2 +2) +�◦2 . +Hence, Conf ♯(PV ) also contains �m. According to the relation g = s2 ◦ �m ◦ s1, s2 also belongs +to Conf ♯(PV ). +Finally since �m1/2 = ty2(e0) ◦ ty2(y2 +2), we obtain the inclusion Dyn(CV )♯ ⊂ +Conf ♯(PV ). +Now we prove that Conf ♯(PV ) ⊂ Dyn(CV )♯. The relation +g2,3(κ) = s−1 +1 +◦ ty2(y−2 +2 ) ◦ ty2(κ2) +proves that g2,3(κ) belongs to Dyn(CV ) for any κ in C∗. Since g1,2 = g belongs to Dyn(CV ), +from the relation g1,2 ◦ g2,3(κ) ◦ g3,1(κ) = id, g3,1(κ) also belongs to Dyn(CV ) for any κ in C∗. +Finally ty2(y2 +2) = �m1/2 ◦ tt2(e−1 +0 ) belongs to Dyn(CV )♯.✷ +51 + +5.5 +Comparison with the wild dynamics +The wild dynamics is a pseudogroup of non linear dynamics induced by the Painlev´e V foliation +PV (κ) in a neighborhood of each singular point of saddle-node type. We will recall here the +construction of its generators: the non linear stokes operators, non linear tori, and formal and +analytic non linear monodromy. Through the Riemann-Hilbert map RHV it induces an (a priori) +local dynamics on CV (θ). The second author formulates the Wuhan conjecture which claims that +this dynamics extends into a symplectic rational dynamics. This conjecture has been proved +for the Painlev´e V equation by M. Klimes in [40] (there is also a very clear presentation of this +work in Klimes’s lecture [41]). His method uses a description of the confluence on the foliations +of the Hamiltonian systems on the left side and on the linear isomonodromic systems and on +the associated character variety on the right side. An essential tool is the discretization of the +confluence as indicated in section 2.1 on the baby model of confluence x(x − ε) → x2y′ + y = 0, +first introduced by C. Zhang for the confluence for the hypergeometric equations [65]. We will +present here this result of M. Klimes, and compare this dynamics with the canonical dynamics +Dyn(CV ) on the cubic surfaces. +Definition of the wild dynamics. The Painlev´e V foliation is given under its hamiltonian +form by (5). From section 4.3, the irregular singular points si all appear in the Boutroux chart. +Around each irregular singular point of Painlev´e V of saddle-node type si the formal and sectoral +normal forms are given by [40]: +Theorem 5.30 Let α0 = 2α1 + α2 − 1. +1- In a neighborhood of a saddle-node si, the hamiltonian system (5) can be brought to a +formal normal form : +x2 du +dx = (1 − α0x + 4xu1u2) + + + +1 +0 +0 +−1 + + + u, +u = + + + +u1 +u2 + + + +(13) +by means of a formal transversally symplectic change of coordinates : + + + +q +p + + + := �Ψ(u, x) = +� +k≥0 +ψ(k)(u)xk +where the ψ(k) are analytic on a polydisc P = {|u1|, |u2| < δ} (δ > 0). +2- The formal normal form (13) is integrable in closed form : +� +u1(x, c1) = c1e−1/xx−α0+4c1c2 +u2(x, c2) = c2e1/xxα0−4c1c2. +(14) +and this local hamiltonian vector field (for du1 ∧ du2 and h = x−2(1 − α0x)u1u2, also admits the +analytic first integral u1u2. +3- The formal series �Ψ ∈ O(P)[[x]] is uniformly 1-summable with a pair of 1-sums Ψ↑(u, x), +Ψ↓(u, x), defined respectively above the sectors +U ↑ := {| arg x − π/2| < π − η, |x| < δ′} and U ↓ := {| arg x − π/2| < π − η, |x| < δ′} +for some 0 < η < π/2 arbitrary small and some δ′ > 0 (depending on η), and u ∈ P. +52 + +Remark 5.31 The formal Takano’s normal form [59] used here to define the non linear Stokes +operators will not suffice for the other Painlev´e equations in order to obtain overlapping open sec- +tors. We will have to make use of the Bittman’s normal forms, which are no longer polynomials: +see [4], [5] and [6]. +Corollary 5.32 On each sector U • (• =↑ or ↓), +1. the system (5) has a unique analytic bounded solution f • which is the 1-sum of the formal +solution �f : u1(x, 0) = u2(x, 0) = 0. We call these solutions the sectoral center solutions. +They are pole-free on the corresponding sector and they are characterized by this property. +2. the system (5) has a 2-parameters family of solutions �fc1,c2: +(q•, p•)(x, c1, c2) = Ψ•(u(x, c1, c2), x). +We consider the left and right intersection sectors of the overlapping sectors U ↑ and U ↓ +V l := U ↑ ∩ U ↓ ∩ {ℜx < 0} and V r := U ↑ ∩ U ↓ ∩ {ℜx > 0}. +The non linear Stokes multipliers are defined by +S2 = (Ψ↑)−1 ◦ Ψ↓ on V r, S1 = (Ψ↑)−1 ◦ Ψ↓ on V l. +The formal non linear monodromy is defined by the action induced by x �→ e2iπx on the space +of formal solutions �fc1,c2: +� +N : (c1, c2) �→ (e2iπ(−α0+4c1c2)c1, e2iπ(α0−4c1c2)c2). +The formal non linear exponential torus is defined by the analytic symplectic symmetries of the +formal normal forms (14): +tα : (c1, c2) �→ +� +eα(c1c2)c1, e−α(c1c2)c2 +� +, +α ∈ O(C, 0). +Using Ψ↑ and Ψ↓, the formal exponential torus induces two sectoral exponential tori T ↑ and T ↓ +and the formal first integral h = c1c2 induces 2 sectoral first integrals h↑ and h↓. +Definition 5.33 The wild dynamics Wild(PV , f ↑) based in the central solution f ↑ is the pseudo- +group generated by S1, S2, � +N, and T = {tα}. +Wild(PV , f ↑) also contains the actual monodromy N generated by a loop around x = ∞, +according to the relation S2 ◦ � +N ↑ ◦ S1 = � +N, where � +N ↑ = Ψ↑ ◦ � +N ◦ (Ψ↑)−1. +The wild dynamics through the Riemann-Hilbert map RHV . We fix a value x0 in a +neighborhood of ∞, and we consider the Okamoto space of initial condition Vx0 over x0. Let +m• = (q•, p•)(x, 0, 0) +be the two points on Vx0 corresponding to the two central varieties in a neighborhood of a singular +point s. We denote by (c• +1, c• +2)(q, p) the inverse maps of (q•, p•)(x0, c1, c2). The equations c• +2 = 0 +define two germs of curves δ• in m•. The equations c• +1 = 0 define two germs of curves d• in m•. +On the rightside, we consider the 12 lines ∆·, Dr +· , Dl· in the configuration of lines in χV : see +figure 7. We can group them in four triples (∆i, Dri, Dli) such that ∆i∩Dri ̸= ∅ and ∆i∩Dli ̸= ∅. +We set pri = ∆i ∩ Dri, pli = ∆i ∩ Dli. +53 + +Now we consider the confluent process between PV I and PV defined by +tV I = 1 + εtV , +α3 = 1/ε, +α2,V I = ˜α2 = −1 +ε + α2,V , +x = 1 +tV ++ ε, α1,V I = α1,V +(15) +which sends the three fixed singularities to tV = −1/ε, 0, ∞. This change of variables transforms +εHV I into Hε +V I and the PV I Hamiltonian system into : +dq +dt = ∂Hε +V I +∂p +, +dp +dt = −∂Hε +V I +∂q +, +When ε → 0, the simple singular points −1/ε and ∞ merge into a double singular point, an +irregular singularity at infinity, and the limit of Hε +V I is HV . The four pairs of singularities over +−1/ε and ∞ merges to 4 saddle-nodes (the confluent saddle-nodes) among the five saddle nodes +si over ∞. In what follows, we suppose that s is one of these 4 singularities. We summarize the +results of Martin Klimes [40] by the following theorem: +Theorem 5.34 We consider the Riemann-Hilbert map RHV between an open set in the space +of initial condition Vx0 induced by a neighborhood of a confluent singularity s and the character +variety χV . +The choice of s determines a triple of lines (∆, Dr, Dl) among the four triples +(∆i, Dr +i , Dl +i) such that +1. RHV (m↑) = ∆ ∩ Dr = pr, RHV (m↓) = ∆ ∩ Dl = pl. +2. RHV (δ↑) = (∆, pr) (the germ of line at pr), RHV (δ↓) = (∆, pl). Furthermore, the germs δ↑ +and δ↓ extend to a same analytic curve δ in Vx0 isomorphic to C, such that RHV (δ) = ∆. +3. RHV (d↑) = (Dr, pr), RHV (d↓) = (Dl, pl). Furthermore the germs of curves d↑ and d↓ +extends to 2 curves dr and dl isomorphic to C in Vx0, such that RHV (dr) = Dr and +RHV (dl) = Dl. +4. Let (y1, z1, y2) be the triple of canonical coordinates (3.25). We have: +RH∗ +V y1 = y1(pr)eh↑, RH∗ +V y2 = y2(pr)e−h↓, RH∗ +V z1 = e0(e(h↑−h↓) − 1). +5. Let g, s1, s2, be the generators of the canonical dynamics defined in 5.18, let �m be the +canonical formal monodromy defined by 5.20 and Ty1, Ty2 the canonical exponential tori. +We have: +RH∗ +V g = N, RH∗ +V S1 = s1, RH∗ +V S2 = s2, RH∗ +V �m = � +N, RH∗ +V T ↓ = Ty1, RH∗ +V T ↑ = Ty2. +Therefore the dynamics induced by Wild(PV , f ↑) through the Riemann-Hilbert correspondence +RHV extends to a rational symplectic dynamics Wild(PV ) on χV , and we have Wild(PV ) = +Dyn(CV ). This proves the Wuhan conjecture of the second author for the PV foliation. +The main ingredients of the proof of this result in [40] are: +- an unfolded version of Theorem 5.30 for the hamiltonian system related to Hε +V I; +- a discretization of the confluent parameter by setting ε−1 = ε−1 +0 +n, n ∈ Z+, along which the +monodromies of the unfolded system, a priori divergent, converge. The choice of this sequence +depends on a parameter κ = e2iπ/ε. +- a confluence on the rightside between χV I and χV which allows to compare these limits to +the wild dynamics Wild(PV , f ↑). +54 + +6 +Conclusion and open questions +Conclusion. Several dynamics related to the Painlev´e V foliation through the Riemann-Hilbert +map RHV has been described here on the wild character variety χV (a) identified to the cubic +symplectic surface CV (θ) for generic parameters θ. The tame dynamics is induced here by only +one braid. We first extended the tame dynamics by using a confluent dynamics obtained from +the Painlev´e VI dynamics by a birational confluent morphism between χV I and χV . This one, +first discovered by M. Klimes, is obtained here by a confluent process between the corresponding +groupoids (after an extension with families of exponential loops). +We have constructed the canonical symplectic birational dynamics defined on the cubic +symplectic surface CV (θ). This one is the pullback of symplectic dynamics on C2 by a canonical +sequence of coordinates satisfying cluster-type relations. This birational dynamics coincides with +the dynamics obtained by M. Klimes from the wild dynamics defined by a confluent irregular +singular point of the foliation. After and extension by one element, confluent dynamics and +canonical dynamics also coincide. +The cubic symplectic surface CV (θ) contains a skeleton generated by 18 lines and their im- +ages through the action of the tame dynamics. We have characterized this set by a condition of +reducibility of the corresponding linear representations. Some intersections between these lines +correspond to particular solutions of the Painlev´e V equation : Kaneko solutions, or central so- +lutions. The restriction of the dynamics on this skeleton is an important tool in the comparisons +between these dynamics. +Open problems. The equations of the character varieties χJ for the other Painlev´e equations +PJ, J = Vdeg, IV , III(D6), III(D7), III(D8), II(JM), II(FN), I (with the notations of [54]) +are known. We already know that each of them can be obtained as a quotient of a space of +linear representations of a wild groupoid, and that there exists canonical cluster sequences of +coordinates on each χJ, inducing a canonical birational symplectic dynamic DynJ which can be +explicitely computed. We conjecture that for all J: +- All the lines in χJ are a reducibility locus of some path in the groupoid; +- the wild dynamics of all the Painlev´e equations (induced by non linear monodromies, non +linear Stokes operators and exponential tori) around an irregular singular point obtained by a +confluent process coincide with these canonical birational symplectic dynamics DynJ on χJ. +We already know that these dynamics coincide on the skeleton generated by the lines for PI and +PII. With M. Klimes we also conjecture that +- There is a diagram of families of birational symplectic confluences between the χJ, which par- +allels the diagram of confluence of Ohyama and Okumura [51]. +We expect that we can prove this fact by a confluent process between the groupoids (extended +by families of exponential loops). +Finally we mention here the initial motivation of this study. In [14] S. Cantat and F. Loray +proved the irreducibility of PV I for generic parameters, by using the Malgrange closure of its +dynamics [45]. The aim of the Wuhan conjectures of the second author was to extend their +proof in the general case. In the PV I case, the dynamics obviously belongs to the Malgrange +groupoid which is a closure of its holonomy pseudogroup. In the general case, we conjecture that +the wild dynamics is contained in the Malgrange pseudogroup, but now it is far from obvious. +Modulo this conjecture, we would obtain a proof of the irreducibility of the Painlev´e V equation +for generic values of the parameters. Indeed since the extended canonical dynamic contains the +confluent dynamic, it contains a copy of the dynamics of a PV I and we can use Theorem D of +[14] in order to prove that its Malgrange closure is maximal. +55 + +Appendix. Structure of the symplectic Cremona group +The Cremona group Cr = Cr2 is the group of birational automorphisms of P2(C). It does not +depend on the representative X in the birational class of P2: C2, P1 × P1... +The symplectic Cremona group is the subgroup Symp of Cr ≃ Bir(P1(C) × P1(C)) of the +elements which preserve the differential form ω = du +u ∧ dv +v . The Cremona group is an old topic +which appears at the end of the XIX-th century. One can find an introductive text in [43]. For +a study of its subgroups, see [21]. To the contrary, the study of its symplectic subgroup Symp +has been developed only since 2005, first by A. Usnich [62, 63] and then J. Blanc [7]. We present +here without proofs the main results about subgroups of Symp. Some of them are new results. +Our terminology is inspired by the algebraic groups, due to some similarities in this non linear +infinite dimensional context. We denote +T = {t(λ, µ) : (u, v) �→ (λu, µv), (λ, µ) ∈ C∗ × C∗}. +We have T ⊂ Symp. We denote by Z(T) its centralizor, and N(T) its normalizor in Symp. We +consider the subgroup W of Symp of the monomial maps: +W = {(u, v) �→ (uavb, ucvd), + + + +a +b +c +d + + + ∈ SL2(Z)}. +Proposition 6.1 We have: +1. T is an algebraic abelian maximal subgroup of Symp; +2. Z(T) = T; +3. N(T) = W ⋉ T. +Proof. T is an algebraic abelian maximal subgroup of Cr [56], which preserve ω. +The centralizor and normalizor of T in Cr has been computed by [20], since C is algebraically +closed. We have: NSymp(T) = NCr(T) ∩ Symp = W. ✷ +Furthermore, according to a theorem of J. Blanc [7], Symp is generated by N(T) and the order +five element p defined by: +(u, v) �→ +� +v, 1 + v +u +� +. +The Cartan subgroups. +Definition 6.2 A Cartan subgroup of Symp is an algebraic abelian maximal subgroup of rank +two in Symp. T is the standard Cartan subgroup of Symp, and W is the Weyl group associated +to T. +We have T = T1 × T2, where +T1 = {t1(λ) = t(λ, 1), λ ∈ C∗}, T2 = {t2(µ) = t(1, µ), µ ∈ C∗}. +All the Cartan subgroups are conjugated. 8 +8We have no reference for this fact; the proof will be delivered in a forthcoming publication. This proof uses +a result of J. Blanc [7]. +56 + +Borel subgroups. Let dJ1 be the subgroup of Cr ≃ Bir(P1 × P1) of the De Jonqui`eres maps, +i.e. the rational maps which preserve the first projection: +dJ1 = {dj1 : (u, v) �→ (a(u), b(u, v)), a ∈ PGL2(C), b(·, v) ∈ PGL2(C(u))}. +Let dJS1 be the subgroup in Symp of the symplectic De Jonqui`eres maps. For any λ in C∗, any +r in C(X)∗, the maps: +dj1(λ, r) : (u, v) �→ (λu, r(u)v), σ : (u, v) �→ (u−1, v−1) +are examples of elements in dJS1. We set +B1 = {dj1(λ, r), λ ∈ C∗, r ∈ C(u)∗} =< T1, T2(C(u)) >, B− +1 = {b1 ◦ σ, b1 ∈ B1}. +Proposition 6.3 We have dJS1 = B1 ∪ B− +1 = B1 ⋊ Z/2Z. +We also define dJ2, dJS2, B2 with respect to the second projection. We have B1 ∩ B2 = T, and +any pair (wB1w−1, w′B2w′−1), w, w′ ∈ W also satisfies this equality. +Definition 6.4 (B1, B2) is the standard pair of Borel subgroups. +Any pair (wB1w−1, w′B2w′−1), w, w′ ∈ W is a pair of Borel subgroups related to the standard +Cartan subgroup T. +Notice that the Borel subgroups are no longer algebraic subgroups since there are infinite di- +mensional groups. It can be proved that B1 and B2 generate Symp. +Definition 6.5 The subgroup U1 of B1 of the “unipotent” elements is defined by: +U1 = {dj1(1, r), r(0) = 1}. +Proposition 6.6 We have: +1. U1 is an abelian subgroup; +2. U1 is generated by the family dj1(1, 1 + νu), ν ∈ C∗, or by one element dj1(1, 1 + u) and +its conjugations with an element of T1 (we say that this element is a pseudo generator of +U1); +3. [B1, B1] = {dj1(1, r), r(0) = 1, deg(r) = 0.} Therefore, [B1, B1] ⊂ U1 and B1 is meta- +abelian. +In this non linear context, we clearly have some analogies with the structure of the algebraic +group SL2(C) but we also have some differences: +- the inclusion [B1, B1] ⊂ U1 is a strict one, [B1, B1] is an invariant subgroup of U1 and we have +U1/[B1, B1] =< dj1(1, 1 + u) >≃ Z. +- let B♮ +1 =< U1, T1 >. B♮ +1 is also a meta-abelian group which contains U1, but it contains only a +maximal torus of rank 1. We call B♮ +1 a Borel of rank one. +57 + +References +[1] Atiyah M.F., Bott R. The Yang-Mills equations over Riemann surfaces, Philos. Trans. +Roy. Soc. London ser. A 308, p. 523–615. +[2] Audin M. Lectures on integrable systems and gauge theory, in : Gauge Theory and Sym- +plectic Geometry, eds Hurtubise and F. Lalonde, NATO ASI series C 488 Kluwer, Dordrecht, +(1997) p. 1–48 +[3] Balser W. Formal Power Series and Linear Systems of Meromorphic Ordinary Differential +Equations, Universitext, Springer (2000). +[4] Bittmann, A. Classification analytique de germes de champs de vecteurs tridimensionnels +doublement r´esonants et applications aux ´equations de Painlev´e, Th`ese, Strasbourg (2016) . +https://tel.archives- ouvertes.fr/tel- 01367968. +[5] Bittmann, A. Doubly-Resonant Saddle-Nodes in C3 and the Fixed Singularity at Infinity +in the Painlev´e equations : Formal Classification, Qual. Theory Dyn. Syst. 16, 3, p. 491–529. +[6] Bittmann, A. Doubly-resonant saddle-nodes in (C3, 0) and the fixed singularity at infinity +in the Painlev´e equations : analytic classification, Annales Institut Fourier, 68, 4, (2018) p. +1715–1830. +[7] J. Blanc J. Symplectic birational transformations of the plane, Osaka J. Math. Vol 50, 2, +(2013) p. 573–590. +[8] Boalch P.P. Stokes matrices, Poisson Lie groups and Frobenius manifold, Invent. math. +146 (2001) p. 479–506. +[9] Boalch P.P. Geometry and braiding of Stokes data; fission and wild character varieties +Annals of Mathematics 179, 1, (2014) p. 301–365. +[10] Boalch P.P. Quasi-hamiltonian geometry of meromorphic connections, Duke Math. J. +139 2 (2014), p. 301–365. +[11] Bolibruch A.A, Malek S., Mitschi C. On the generalized Riemann-Hilbert problem +with irregular singularities, Expo. Math. 24, no.3, (2006) p. 235–272. +[12] Brion M. Introduction to actions of algebraic groups. Notes on a course in Luminy. +[13] R. Brown, R. From groups to groupoids: a brief survey, Bull. London Math. Soc. 19, +(1987), p. 113–134. +[14] Cantat S., Loray F. Dynamics on characters varieties and Malgrange irreducibility of +Painlev´e VI equations, Ann. Inst. Fourier 59 (2009), p. 2927–2978. +[15] Chekhov L., Mazzocco M., Roubtsov V. Painlev´e monodromy manifolds, decorated +character varieties and cluster algebras, I.M.R.N. 24 (2017) p. 7639–7691. +[16] Chiba H. The first, second and fourth Painlev´e equations on weighted projective spaces, +Journal of Differential Equations 260, (2016), p. 126–1313. +[17] Chiba H. The third, fifth and sixth Painleve equations on weighted projective spaces, in: +Symmetry, Integrability and Geometry: Methods and Applications, SIGMA 12 (2016). +58 + +[18] Chiba H. Multi-Poisson approach to the Painlev´e equations: from the isospectral defor- +mation to the isomonodromic deformation, Symmetry Integrability Geom. Methods Appl. 13 +(2017). +[19] Deligne P., Malgrange B., Ramis J.P. Singularit´es irr´eguli`eres: Correspondances et +Documents, S.M.F. Documents math´ematiques (2007). +[20] M. Demazure M. Sous-groupes alg´ebriques de rang maximum du groupe de Cremona, +Ann. Sci. ´Ecole Norm. Sup. 3 (1970), p. 507–588. +[21] Deserti, J. The Cremona Group and its Subgroups, Mathematical Surveys and Mono- +graphs, 252, American Mathematical Society, Providence, RI ( 2021). +[22] Dolgachev I.V. +Classical algebraic geometry. A modern view. Cambridge University +Press, Cambridge, (2012). +[23] Dubrovin B.A., Mazzocco M. Monodromy of certain Painlev´e-VI transcendents and +reflection group, Invent. Math. 141, (2000), p. 55–147. +[24] Fock V., Rosly A. Poisson structure on moduli of flat connections on Riemann surfaces +and the r-matrix, Moscow Seminar in Mathematical Physics, A.M.S Translations, Ser. 2, 191, +(1999), p. 67–86. +[25] Garnier R. Sur les singularit´es irr´eguli`eres des ´equations diff´erentielles lin´eaires, Journal +de Math´ematiques Pures et Appliqu´ees, 8, Gauthier-Villars, Paris, (1919), p. 99–200. +[26] Goldman W. The symplectic structure of fundamental group surfaces, Adv. in Math. 54 +(1984), p. 200–225 +[27] Gromak V.I., Laine I., Shimomura S. Painlev´e Differential Equations in the Complex +Plane, de Gruyter Studies in Mathematics (2002). +[28] Hitchin N. Geometrical aspects of Schlesinger’s equation, Journal of Geometry and +Physics, 23, (1997), p. 287–300 +[29] Inaba M., Iwasaki K., Saito M.H. Dynamics of the sixth Painlev´e equation, S´eminaires +et Congr`es 14, (2006), p. 103–167. +[30] Iwasaki K., Kimura H., Shimomura S., Yoshida M. From Gauss to Painlev´e, A +Modern Theory of Special Functions, Aspects of Mathematics, Vieweg (1991). +[31] Iwasaki K. Area-Preserving Action of the Mobi¨us group, Commun. Math. Phys. 242, +(2003), p. 185–219. +[32] Iwasaki K. Fuchsian moduli on a Riemann surface, its Poisson structure and Poincar´e- +Lefschetz duality, Pacific J. Math. 155 2 (1992), p. 319–340. +[33] Iwasaki K., Uehara T. +An ergodic study of Painlev´e VI, Math. Ann. 338 (2007), p. +295–345. +[34] Jimbo M. Monodromy problem and the boundary condition for some Painlev´e equations, +Publ. Res. Inst. Math. Sci. 18 (1982), p. 1137–1161. +[35] Jimbo M., Miwa T. Monodromy Preserving Deformations of Linear Ordinary Differential +Equations with Rational Coefficients II, Physica 2D, 2, (1981), p. 407–448. +59 + +[36] Kaneko K. Painlev´e VI transcendents which are meromorphic at a fixed singularity, Proc. +Japan Acad. 82, ser A (2006), p. 71–76. +[37] Kaneko K., Y. Ohyama Y. +Fifth Painlev´e Transcendents Which are Analytic at the +Origin, Funkcialaj Ekvacioj, Volume 50, 2, (2007), p. 187–212. +[38] Keller, B. Alg`ebres amass´ees et applications, S´eminaire Bourbaki, 62 n◦ 1014 (2010). +[39] Klimes M. Stokes phenomenon and confuence in non-autonomous Hamiltonian systems, +Qual. Theory Dyn. Syst. 17, (2018), p. 665–708. +[40] Klimes M. Wild Monodromy of the Fifth Painlev´e Equation and its Action on Wild Char- +acter Variety: An Approach of Confluence, arXiv:1609.05185 +[41] Klimes M. Confluent approach to Fifth Painlev´e equation, Kobe, (2021) +[42] Klimes, M. Confluence of singularities of non-linear differential equations via Borel-Laplace +transformations, Journal of Dynamical and Control Systems, Springer Verlag, 22 2, (2016), +p. 285–324. +[43] Lamy, +S. +The +Cremona +Group, +Premiminary +version, +https://www.math.univ- +toulouse.fr/slamy/ +[44] Loday-Richaud M. Divergent Series, Summability and Resurgence II: Simple and mul- +tiple summability, Springer Lecture Notes in Math. (2016). +[45] Malgrange, B. Le groupo¨ıde de Galois d’un feuilletage, L’enseignement math´ematique +38 (2001). +[46] Malmquist, J. Sur les ´equations diff´erentielles du second ordre dont l’int´egrale g´en´erale a +ses points critiques fixes, Ark. Mat. Astr. Fys., 17, (1922), p. 1–89. +[47] Martinet J., Ramis J.P. Th´eorie de Galois diff´erentielle et resommation, Computer +Algebra and Differential Equations, E. Tournier ed., Computational Mathematics and Appli- +cations, Academic Press, (1988), p. 117–214. +[48] Noumi M., Yamada Y. A new Lax pair for the sixth Painlev´e equation associated with +�so(8), Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, +(2002), p. 238–252. +[49] Okamoto K. Sur les feuilletages associ´es aux ´equations du second ordre `a points critiques +fixes de P. Painlev´e, Japan. J. Math. 5 (1979), p. 1–79. +[50] Okamoto K. Polynomial Hamiltonians associated with Painlev´e equations. II. Differential +equations satisfied by polynomial Hamiltonians, Proc. Japan Acad., 56, Ser. A (1980) 8, p. +367–371. +[51] Ohyama, Y., S. Okumura, S. A coalescent diagram of the Painlev´e equations from the +viewpoint of isomonodromic deformations, J. Phys. A. Math. Gen. 39 (2006), p. 12129–12151. +[52] Paruskinova A. Asymptotic Expansions of Solutions to the Fifth Painlev´e Equation in +Neighborhoods of Singular and Non-singular Points of the Equation, in Formal and Analytic +Solutions of Differential and Difference Equations, Banach Center Publications, vol. 97, Polish +Ac. of Sciences, Warzszawa, (2012) p. 113–124. +60 + +[53] Paul E., Ramis J.P. Dynamics on Wild Character Varieties, SIGMA, 11, (2015), p. +331–401. +[54] van der Put M., Saito M.H. Moduli spaces for linear differential equations and the +Painlev´e equations, Ann. Inst. Fourier, 59, 7, (2009), p. 2927–2978. +[55] Ramis J.P. Filtration Gevrey sur le groupe de Picard-Vessiot d’une ´equation diff´erentielle +irr´eguli`ere, in Singularit´es irr´eguli`eres, Correspondances et Documents, S.M.F. Doc. math. +(1985), p. 129–153. +[56] Serre J.P. Le groupe de Cremona et ses sous-groupes finis, S´eminaire Bourkaki, expos´e +1000, Ast´erisque 332. +[57] Sibuya, Y. Global theory of a second order linear ordinary differential equation with a +polynomial coefficient, North Holland, Amsterdam (1975). +[58] Stokes G.G. On the discontinuity of arbitrary constants which appear in divergent devel- +opments, Trans. Camb. Phil. Soc., 10, p. 106–128 (1857). +[59] Takano, T. A 2-parameter family of solutions of Painlev´e equation (V) near the point at +infinity, Funkciala j Ekvacio j 26 (1983), p. 79–113. +[60] Tsuda T., Okamoto K., Sakai H. Folding transformations of the Painlev´e equations, +Comm. Math. Phys. 220 (2005), p. 713–738. +[61] Thomas R.P. Notes on GIT and symplectic reduction for bundles and varieties, Surveys +in Differential Geometry, 10 (2006): A Tribute to Professor S.-S. Chern. +[62] Usnich +A. +Symplectic +automorphisms +of +CP 2 +and +the +Thomson +group +T, +https://arxiv.org/abs/math/0611604 (2006). +[63] Usnich A. Ph D Thesis Sorbonne Universit´e (2008), HAL theses, tel-00812808, version 1. +[64] Wasow W. Asymptotic expansions for ordinary differential equations, Pure and Applied +Mathematics, Vol. 14, John Wiley & Sons, Inc., New York-London-Sydney. +[65] Zhang C. Confluence et ph´enom`ene de Stokes, J. Math. Sci. Univ. Tokyo 3, p. 91–107. +61 + diff --git a/u9FAT4oBgHgl3EQfiB2Y/content/tmp_files/load_file.txt b/u9FAT4oBgHgl3EQfiB2Y/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..682a22bc4906adbadd503dbe1aa7cb788f62dc04 --- /dev/null +++ b/u9FAT4oBgHgl3EQfiB2Y/content/tmp_files/load_file.txt @@ -0,0 +1,2538 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf,len=2537 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='08597v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='DS] 20 Jan 2023 Dynamics of the fifth Painlev´e foliation E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Paul ∗ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Ramis† January 23, 2023 Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The leaves of the Painlev´e foliations appear as the isomonodromic deformations of a rank 2 linear connection on a moduli space of connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore they are the fibers of the Riemann-Hilbert correspondence that sends each connection on its monodromy data, and this correspondence induces a conjugation between the dynamics of the foliation and a dynamic on a space of representations of some fundamental groupoid (a character variety).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This one can be identified to a family of cubic surfaces through trace coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We describe here the dynamics on the character variety related to the Painlev´e V equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have here to consider irregular connections, and the representations of wild groupoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We describe and compare all the dynamics which appear on this wild character variety: the tame dynamics, the confluent dynamics, the canonical symplectic dynamics and the wild dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Contents Introduction 3 1 The moduli space MV 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The local classification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The global gauge moduli space .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The moduli space of connections MV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 12 2 The wild fundamental groupoid πV 1 (X, S) 13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 Stokes operators, formal monodromy and exponential tori .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The local wild fundamental groupoid .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The global wild fundamental groupoid .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 A confluent morphism of groupoid .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 19 3 The character variety χV 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 Definition of χV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The character variety χV and cubic surfaces .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 Lines and reducibility locus .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 Log-canonical coordinates on CV (θ) and cluster sequences .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 The Laurent property .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 31 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 Families of confluent and diffluent morphisms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 32 ∗Institut of Mathematics of Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex, France emmanuel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='paul math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='univ-toulouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='fr †Institut of Mathematics of Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex, France Institut de France (Acad´emie des Sciences), France ramis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='jean-pierre@wanadoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='fr 1 4 The Painlev´e V vector field on MV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 35 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The Riemann-Hilbert map RHV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 35 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 Isomonodromic families on MV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 36 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 Singularities of the Painlev´e V vector field in the Okamoto’s compactification of MV (α) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 37 5 Dynamics on χV 39 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The tame dynamics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 39 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The confluent dynamic .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 40 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The canonical dynamics on CV (θ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 43 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 Comparison between the confluent and the canonical dynamics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 48 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 Comparison with the wild dynamics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 52 6 Conclusion and open questions 55 Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Structure of the symplectic Cremona group 56 Bibliography 58 2 Introduction The transverse dynamics of an holomorphic foliation is usually defined by its holonomy groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In general we use a specialization of this groupoid along a particular leaf L: the holonomy group of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This one is a representation of the fundamental group of the leaf on a germ of transversal, defined by the analytic continuation of the solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It only describes the transverse structure of the foliation in a neigbourhood of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Painlev´e foliations are holomorphic foliations defined by the Painlev´e equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' These ones are order two non linear ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Their writings are available for example in [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We only recall here the Painlev´e VI and Painlev´e V families: (PVI) d2w dt2 = 1 2 � 1 w + 1 w − 1 + 1 w − t � �dw dt �2 − � 1 w + 1 t − 1 + 1 w − t � dw dt + w(w − 1)(w − t) 2t2(t − 1)2 � (α4 − 1)2 − α2 3 t w2 + α2 1 t − 1 (w − 1)2 + (1 − α2 2) t(t − 1) (w − t)2 � , (1) (PV ) d2w dt2 = � 1 2w + 1 w − 1 � �dw dt �2 − 1 t dw dt + (w − 1)2 t2 �α2 1 2 w − α2 3 2w � + (1 − α1 − 2α2 − α3)w t − 1 2 w(w + 1) w − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (2) They define families of one dimensional foliation on {(t, w, w′) ∈ C3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' They share with all the Painlev´e differential equations type three properties, which will allow us to give a more global and explicit description of their dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let us detail these properties for the Painlev´e VI foliation: 1- The Painlev´e property : all the solutions (w(t), w′(t)) have a meromorphic continuation over the universal covering the time space T = P1(C) punctured at the fixed singularities 0, 1 and ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This property generalizes the property of holomorphic extension of the solutions of linear differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The search of non linear differential equations satisfying this property was the initial motivation of Painlev´e and then Gambier in order to construct new transcentendal functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It gives rise to the six well known families of Painlev´e equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to this property, the movable singularities, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the singularities of the solutions outside the fixed singularities defined by the equation itself, are only poles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Okamoto has introduced a semi-compactification process in order to get a foliation transverse to a fibration over the time space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' After this process, one can define the dynamic of the Painlev´e foliation by its non linear monodromy, which is defined by an action of the fundamental group of the time space T, over the Okamoto fiber (the space of initial values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We call it the tame dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2- The isomonodromic property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to study the non linear monodromy of this foliation, it is useful to introduce a conjugacy between this dynamical system and a simpler one: the Riemann-Hilbert map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let us recall the different ingredients involved by this property for the Painlev´e VI equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The moduli space of connections MV I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the family of linear connections on the trivial bundle over P1 defined the family SV I of rank 2 trace free differential systems (A) : dY dx = � 4 � i=1 Ai x − pi � Y, pi ̸= pj for i ̸= j, Ai ∈ sl2(C), 4 � i=1 Ai = 0, x ∈ P1, 3 up to the global gauge action: Y �→ Y · P, P ∈ SL2(C), and to a change of the independent variable x �→ ϕ(x), ϕ ∈ Aut(P1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The extension of the system to x = ∞ ∈ P1 is defined by the change of variable z = x−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The family SV I is a 13 dimensional space (including the variables pi), and the above quotient is a 7 dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local parameter space is defined by α(A) = (det(Ai) = α2 i /4, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4), where ±αi/2’s are the eigenvalues of each residue matrix Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The time parameter is the cross ratio t ∈ T = P1 \\{0, 1, ∞} of the configurations of the singular points S = {p1, p2, p3, p4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Over a value α, the fiber MV I(α) is a 3 dimension space, and t(A) defines a fibration of MV I(α) over T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The character variety χV I as representations of a fundamental groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a system A in SV I we can define its monodromy representation by using the analytic continuation of a local matrix solution Y0 along any element γ of the fundamental group π1(P1\\S, x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider here another (equivalent) description of this monodromy, introduced by the authors in [53], essential for what will follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Instead of considering as usually a fundamental group, we consider a fundamental groupoid, which allows to make use of several base points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A groupoid is a small category whose morphisms are invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For details on groupoids see [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The fundamental groupoid π1(X) of a variety X is the groupoid whose objects are the points of X and the morphisms the paths between two points up to homotopy, with the obvious composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In what follows, “paths” always means “path up to an homotopy”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the variety X obtained by 4 real blowing up of the singular points pi in P1, and we choose a base point si on each divisor (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a direction out of pi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let S = {s1, s2, s3, s4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The groupoid πV I 1 (X, S) is the restriction of the fundamental groupoid π1(X) to this finite set of objects S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' πV I 1 (X, S) has a presentation given by the following picture: s1 s2 s4 s3 γ1,1 γ2,2 γ3,3 γ4,4 γ1,2 γ2,3 γ4,1 γ3,4 Figure 1: A presentation of the groupoid πV I 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The morphisms are generated by the local loops γi,i based in si homotopic to each divisor and the paths γi,i+1 from si to si+1 satisfying the following relations: Rext : γ1,2γ2,3γ3,4γ4,1 = ⋆1 (the trivial loop based in s1) Rint : γ1,1γ1,2γ2,2γ2,3γ3,3γ3,4γ4,4γ4,1 = ⋆1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A linear representation ρ of πV I 1 (X, S) is a morphism of groupoid from πV I 1 (X, S) into the category of vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the Painlev´e context, we only consider linear representations ρ 4 such that ρ(s) = Vs is a 2-dimensional vector space and ρ(γs,t) belongs to the set of linear morphisms which preserve the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A choice of a basis in each Vs defines a map ρ(γs,t) ≃ Mγs,t in SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We obtain a representation of the groupoid πV I 1 (X, S) in the group SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If we change the basis in each Vs, we obtain another representation ρ′ of πV I 1 (X, S) in the group SL2(C) which is equivalent, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' for any s, there exist matrices Ps such that M′ γs,t = P −1 s Mγs,t · Pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore a rank two trace free linear representation of πV I 1 (X, S) is also a class of equivalent representations of πV I 1 (X, S) in SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The character variety χV I is the categorical quotient 1 of the set of rank 2 trace free linear representations up to the above equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local data of an element ρ in χV I is the restriction of ρ to the groupoid πV I,loc 1 (X, S) obtained by forgetting the generators γi,i+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It is characterized by the class of each ρ(γi,i), or by a = (ai = tr(ρ(γi,i), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote by χV I(a) the corresponding fiber in χV I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The character variety as a family of cubic surfaces CV I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a presentation of the groupoid πV I 1 (X, S) by figure (1), we define the trace coordinates (a, x) by ai(ρ) = tr(ρ(γi,i)), i = 1, · · · 4, xk(ρ) = tr(ρ(γi,iγi,jγj,j)), {i, j, k} = {1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The trace coordinates do not change in a class of equivalent representations in SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore it can be convenient to make use of normalized representations: A representation ρ of the groupoid πV I 1 (X, S) in the group SL2(C) is normalized if for any indexes i, j, i ̸= j we have: ρ(γi,j) = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can always choose the representation of the objects in order to get a normalized representation by choosing arbitrarily the representation of a first one and by representing the further consecutive ones such that ρ(γi,i+1) = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A normalized representation is given by 4 matrices Mi = ρ(γi,i) unique up to a common conjugacy which satisfy, according to the relation Rint, M1M2M3M4 = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We recover here the usual monodromy data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The trace coordinates of a normalized representation ρ are defined by ai = tr(Mi), i = 1, · · · 4, x1 = tr(M2M3), x2 = tr(M3M1), x3 = tr(M1M2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The trace map TrV I defined by (a, x) sends each χV I(a) on the cubic surface CV I(θ) in C3 defined by the equation FV I(x, θ) = 0 with FV I(x, θ) = x1x2x3 + x2 1 + x2 2 + x2 3 − θ1x1 − θ2x2 − θ3x3 + θ4, and θi = aia4 + ajak, {i, j, k} = {1, 2, 3}, θ4 = a1a2a3a4 + � i a2 i − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From [31], this trace map is an homeomorphism only on an open set χ0 V I(a) in the character variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a generic value of the local data a, we have χ0 V I(a) = χV I(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This condition implies that Mi ̸= ±I for i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Riemann-Hilbert correspondence RHV I : MV I → χV I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let A in MV I(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose a representative of each base point si by a fundamental system of solutions Ys of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The 1This means that we consider the affine variety defined by the ring of invariants functions over the set of linear representations: see [12] or [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 5 representation of a path γ from s to t is obtained by comparing the analytic continuation �Ys γ of Ys along γ with Yt: ρA(γ) = Mγ ⇔ Yt = �Ys γ · Mγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A change of representation of the objects, or a gauge action on A gives an equivalent represen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Riemann-Hilbert map RHV I is defined by RHV I(A) = [ρA].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The map induced by RHV I on the local parameters is defined by RHloc V I(αi) = 2 cos(παi) = ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We do not discuss here about the surjectivity of RHV I (the so called Riemann-Hilbert prob- lem) or its properness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a survey on this wide subject, see [29] for the Painlev´e VI case, and [54] for the other cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Isomonodromic families and Painlev´e VI equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' An isomonodromic family on MV I is a fiber of the map RHV I, parametrized by a variable t, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a family of connections defined by dY dx = A(x, t) · Y such that the monodromy representation is locally constant in χV I along this family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The relationship with the Painlev´e VI equation was discovered by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fuchs in 1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 There exists coordinates w, w′, t over a Zariski open set in MV (α) such that the isomonodromic families are the solutions the Painlev´e VI equation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A sketch of proof [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a fundamental system of solutions Y (x, t), by isomonodromy, d dtY (x, t) and Y (x, t) have the same behaviour along any continuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the quotient B(x, t) = d dtY (x, t) · Y (x, t)−1 is univalued outside the fixed singular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the singular points are regular singular points (see section 2 for the definition) B extends to the singular set in a meromorphic way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore Y (x, t) satisfies two rational linear systems dY dx = A(x, t)·Y and dY dt = B(x, t)·Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The compatibility condition requires that the two operators d/dx − A and d/dt − B must commute : dA dt − dB dz + [B, A] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (3) The pair (A, B) is called an isomonodromic Lax pair, and the above equation the Schelsinger equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If A is irreducible, B is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Now, one can find coordinates such that the Schelsinger equation (3) is equivalent to the Painlev´e VI equation: see [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ 3- The Hamiltonian property : Any Painlev´e differential equation is equivalent to a (non autonomous) hamiltonian system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This fact was first remarked by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Malmquist [46], and ex- tended by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Okamoto in [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For example the family of Painlev´e VI equations is equivalent to ˙p = −∂HV I ∂q , ˙q = ∂HV I ∂p , (4) with HV I(α) = q(q − 1)(q − t) t(t − 1) � p2 − (α3 q + α1 q − 1 + α2 − 1 q − t )p + β 4q(q − 1) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' with β = (α1 + α2 + α3 + α4 − 2)(α1 + α2 + α3 − α4), and where the numbers ±αi/2 are the eigenvalues of the residues matrices Ai2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2The numbering is chosen here such that the two first indices correspond to the singularities 1 and t which are confluent in the usual confluent process of the Painlev´e equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 6 We denote by PV I(α) the corresponding family of Painlev´e vector fields, and by FV I(α) the family of dimension one holomorphic foliations on C3 (p,q,t) ⊂ C2 × P1 (where P1 is the complex one dimensional projective space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The fibers t = 0, 1, ∞ are singular and the foliation has 4 singular points on each of this fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 Painlev´e sixth equation was not discovered by Painlev´e and Gambier, using the Painlev´e property, but by Richard Fuchs, using an isomonodromic deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fuchs consid- ered the monodromy preserving deformation of a second order Fuchsian differential equation with four regular singular points and an apparent singularity3 : Dy = y′′ + a1(x, t)y′ + a2(x, t) = 0, where a1 and a2 are rational functions on x depending holomorphically of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We write the Riemann scheme of Dy = 0 : \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 x = 0 x = 1 x = t x = q x = ∞ 0 0 0 0 κ0 κ1 κ2 κ3 2 κ0 + κ4 \uf8fc \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8fd \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8fe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this scheme the exponents κi, i = 0, 1, 2, 3, 4 are complex parameters subject to the Fuchs relation : κ1 + κ2 + κ3 + κ4 + 2κ0 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The κi, i = 1, 2, 3, 4 are related to the eigenvalues ±αi/2 of the Fuchsian systems (A) by κ1 = α1, κ2 = α2, κ3 = α3 and κ4 = α4 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a proof, see [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It is easy to derive the Hamiltonian formulation (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [48]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The variable q is the position of the apparent singularity, the variable p is defined by p = Resx=qa2(x, t)dx and the hamiltonian by (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The family of Painlev´e V equations (2) is equivalent to ˙p = −∂HV ∂q , ˙q = ∂HV ∂p , (5) with HV (α) = t−1 (p(p + t)q(q − 1) − α1p(q − 1) + α2qt − α3pq) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have used here the notations of [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The values alphai/2 are not here eigenvalues of the residues matrices of the connection but are directly related to them by an affine invertible map whose expression in available in the appendix C of [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote by PV (α) the corresponding families of Painlev´e vector fields, and by FV (α) the family of dimension one holomorphic foliations on C3 (p,q,t) ⊂ C2 × P1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There is here only two singular fibers over t = 0 and t = ∞, with 2 singular points over 0, and 5 singular points over ∞, 3 of them are of saddle-node type i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' with a vanishing eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This construction provides a symplectic structure ΩV I(α) on MV I(α) given by dq ∧dp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This Poisson structure on MV I also comes from a general construction of Atiyah and Bott [1]: the symplectic structure on the infinite dimensional space of all the connections induces a Poisson structure by a symplectic reduction under the gauge action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There also exists several direct 3Respectively x = 0, 1, t, ∞ and x = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 7 finite dimensional constructions, by using either ciliated fat graphs [24], [2], or quasi-hamiltonian geometry and quivers varieties [10], or symplectic reduction of multi-Poisson structures [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On the right-hand side, the space of linear representations χV I has also a Poisson structure which induces a symplectic form ωχV I(a) on each fiber χV I(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This fact was first proved by Goldman in [26], and makes use of the Poincar´e-Lefschetz duality on the tangent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It can be extended to irregular cases by using the concept of decorated character variety : [15], or quasi-hamiltonian geometry [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There also exists a Poisson structure on the family of cubic surfaces CV I(θ) given by: ωV I(θ) = dx1 ∧ dx2 FV I,x3 = dx2 ∧ dx3 FV I,x1 = dx3 ∧ dx1 FV I,x2 , where FV I,xi = ∂FV I/∂xi = xjxk + 2xi − θi = ∂FV I/∂xi for i=1,2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This structure obtained by the Poincar´e residue of the volume form coincide with the Goldman structure: see [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='Iwasaki has proved that the Riemann-Hilbert map RHV I is a Poisson morphism from (MV I, ΩV I) to (CV I, 2iπωV I): [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can also find a proof of this fact in [40] obtained from the Jimbo’s asymptotic formula [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This result has been extended for the Riemann-Hilbert map in a local irregular case by P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Boalch: see [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can summarize these three properties for the Painlev´e foliation by the following state- ment: the dynamics of the Painlev´e VI foliation FV I(κ) is conjugated through the Riemann- Hilbert map to the dynamics on CV I(θ) induces by the automorphisms of πV I 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the inner automorphisms γi,j �→ αi,iγi,jα−1 j,j acts trivially on the character variety, this action factorizes to the quotient Out(πV I 1 (X, S)) = Aut(πV I 1 (X, S))/Inn(πV I 1 (X, S)) which is defined by pure braids over S in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This braid group is generated by three elementary braids b1,2, b2,3 and b3,1 such that b1,2 · b2,3 · b3,1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The action of each generator on χV I has been first computed by Dubrovin and Mazzocco [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' See also Iwasaki [31], or Cantat and Loray [14] or the authors in [53] for a simple computation using groupoids instead of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have Proposition 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 The action of bi,j is given by the automorphism: hi,j : \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 xi → −xi + xjxk + xix2 k − θjxk + θi xj → −xj − xixk + θj xk → xk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This dynamics has the remarkable “tame property”: any element and its inverse is given by polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Contents of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Our aim is to present the main tools that will allow us to extend this description for all the Painlev´e equations, by considering here the first case of PV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this case, which can be obtained from PV I, by a confluent process, new difficulties arise: – The monodromy around the two singular fibers 0 and ∞ do not describe the whole trans- verse structure of the foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This monodromy will only give a “tame” dynamics generated by just one element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This is a consequence of the “irregular” type of the singularities of the foliation over ∞ which are now saddle-nodes, with non linear Stokes phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' – On the other side, the class of connections on which PV naturally arises is now a class of irregular connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The representation of such a connection must take into account beyond the usual monodromy, new operators related to such singular points: the linear Stokes operators and exponential tori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 8 We solve these problems by constructing a wild fundamental groupoid πV 1 (X, S) with its linear representations (modulo equivalence): the wild character variety χV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The action of Out(πV 1 (X, S)) allows us to recover the tame dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to complete this dynamics, one can construct a family of (non invertible) confluent morphisms from πV 1 (X, S) to πV I 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The key point is that these morphisms induce families of birational maps between the corresponding character varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This will allow us to define and compute a confluent dynamics Conf(PV ) on χV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This one was previously found by Martin Klimes in [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Our technique based here on wild fundamental groupoids allows us to expect a generalization for all the other Painlev´e equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Notice hat the dynamics that we obtain is no longer polynomial but only a rational one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We will also discuss about a canonical dynamic which exists on the cubic surfaces CV , with- out any reference to a Painlev´e equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The central idea is that here the cubic surface is symplectically birationally equivalent to � C2, du u ∧ dv v � by a sequence of log-canonical coordi- nates which satisfies some exchange relations, which appear in cluster algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The pull-back of the symplectic Cremona group Symp � C2, du u ∧ dv v � delivers a very rich structure denoted by Dyn(CV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We will compare Conf(PV ) and Dyn(CV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The wild dynamics of the Painlev´e V foliation is defined by the non linear monodromy, non linear Stokes operators and non linear tori in a neighborhood of a saddle-node singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Following M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes [40], we will recall the definition of this dynamics and its image through the Riemann-Hilbert map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We also recover here the canonical symplectic dynamics, thus confirming in this case the rationality conjecture of the second author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The last part is dedicated to open problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We would like to thank Martin Klimes for the discussions we had together on this subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' His work [40] is a primary source of inspiration for this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 9 1 The moduli space MV According to [54], the moduli space of connections on which lives the Painlev´e V foliation is defined by: SV = �dY dx = A(x) · Y, A(x) = A0 x − s0 + A1 x − s1 + A∞, A0, A1, A∞ ∈ sl2(C) � such that A∞ is a non trivial semi-simple element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The singularities, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the points s such that A is not holomorphic around s are s0, s1 and ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We suppose that the eigenvalues ±t of A∞ are distinct (t ̸= 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can extend the basis to P1(C) by setting z = x−1: dY dz = −z−2A(z−1) · Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' As explained in the introduction, we consider this family up to a gauge action Y = PZ, which acts on the system by A → AP = P −1AP − P −1 dP dx , and up to a change of independent variable ϕ(x), ϕ in the M¨obius group Aut(P1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The local classification Suppose that x = 0 is a singular point of a germ of connection defined by xp+1 dY dx = A(x) · Y, A ∈ sl2(C{x}), A0 = A(0) ̸= 0, p ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local formal classification is the classification of such a system up to a gauge transformation Y = PZ, with P in SL2 (C((x))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The integer p is called the Poincar´e rank of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It is not a local gauge invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If p = 0 the singular point is called a fuchsian singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given an element of SV , the points s0 and s1 are fuchsian singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local formal classification around such a point is given by the following general result (cf [64]): Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 We consider the fuchsian system xY ′ = A(x) · Y, A0 = A(0) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Suppose that the eigenvalues of A0 do not differ from a positive integer (the non resonant case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists a local meromorphic gauge transformation P in SL2 (C((x))) which conjugates the fuchsian singular system to xZ′ = A0 · Z 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this case, the system (1) admits a local fundamental solution Y = P(x)xA0, P in SL2 (C((x))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Furthermore if A is a convergent data, then P is also a convergent matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The general case reduces to the non resonant case by using shearing transformations, which can eventually modify the Poincar´e rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We also obtain a local fundamental system Y = P(x)xL for some constant matrix L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In any cases, the sectoral local solutions admits a moderate growth : fuchsian singularities are regular singular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The classification of non fuchsian singularities is given by the Hukuhara Turritin Theorem [3] : Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 We consider a sl2-system zp+1Y ′ = A(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='Y, A0 = A(0) ̸= 0, p ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists a formal meromorphic gauge transformation Y = PZ and a ramification z = yk such that the differential system has the canonical form yZ′ = (L + D1y−1 + · · · + Dmy−m) · Z, where the Di’s are diagonal matrices, and L commutes with the Di’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 10 If the irregular part D1y−1 + · · · + Dmy−m vanishes, we still get a regular singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Other- wise, the singular point is irregular, and the degree r = m/k is called the Katz invariant of the irregular singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 If the eigenvalues of A0 are distincts, we do not need to use a ramification z = yk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Otherwise, for example if A0 is a nilpotent element of sl2(C), we first have to use shearing transformations in order to modify the leading term A0, which may change the Poincar´e rank and requires a ramification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This may occur for some Painlev´e families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given an element A of SV , the singular point x = ∞ (z = 0) is an irregular singular point with Katz rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the eigenvalues ±t of A∞ are distinct, we do not need here a ramification of z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The explicit computation of the residue matrix L∞ gives: L∞ = \uf8eb \uf8ec \uf8ed a0 + a1 0 0 −a0 − a1 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the system (A) has a formal fundamental matrix solution around z = 0 given by �Y (z) = P(z)zL∞ exp Q(z), Q(z) = diag(αz−1, −αz−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The global gauge moduli space We want to compute the categorical quotient SV //Sl2(C), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e the affine variety defined by the ring of invariant functions under the action of the constant gauge action of Sl2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can first use a constant gauge transformation in order to diagonalize A∞: A∞ = \uf8eb \uf8ec \uf8ed t/2 0 0 −t/2 \uf8f6 \uf8f7 \uf8f8 , Ai = \uf8eb \uf8ec \uf8ed ai bi ci −ai \uf8f6 \uf8f7 \uf8f8 , i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let S′ V be the subset of SV defined be the above writing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a fixed singular set s0, s1, ∞, it is a 7-1=6 dimensional variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The remaining gauge action which normalizes the diagonal matrix A∞ is the group N =< T, P > generated by T = {Tm = \uf8eb \uf8ec \uf8ed m 0 0 m−1 \uf8f6 \uf8f7 \uf8f8 , m ∈ C∗} and P = \uf8eb \uf8ec \uf8ed 0 1 −1 0 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This group acts on sl2(C) by Tm · \uf8eb \uf8ec \uf8ed a b c −a \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed a bm2 cm−2 −a \uf8f6 \uf8f7 \uf8f8 , P · \uf8eb \uf8ec \uf8ed a b c −a \uf8f6 \uf8f7 \uf8f8 · P −1 = \uf8eb \uf8ec \uf8ed −a −c −b a \uf8f6 \uf8f7 \uf8f8 = −AT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' After this first reduction, SV //SL2(C) = S′ V //N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The following functions are invariant by the action of N: α0 = a2 0 + b0c0 α1 = a2 1 + b1c1 α∞ = (a0 + a1)2 τ = a0t β0 = b0c1 + b1c0 β1 = t(b0c1 − b1c0) (6) 11 Notice that the three coordinates α = (αi), i = 0, 1, ∞ are local invariants around each singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' As mentioned in the introduction the αi parameters used in the expressions of the Painlev´e V equation and in its hamiltonien HV are not exactly equal to the present parameters but only related to the eigenvalues of the Ai by an affine invertible map : see [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 SV //SL2(C) = Spec(α0, α1, α∞, τ, β0, β1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It suffices to prove that the map (α0, α1, α∞, τ, β0, β1) : S′V //SL2(C) → C6 is invertible over the Zariski open set a0 ̸= 0, b0c0 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a value (α0, α1, α∞, τ, β0, β1), we first choose arbitrarily t ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Now a0 is uniquely determined by ta0 = τ, and b0c0 is uniquely determined by α0−a2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The values a2 0 and b0c0 determine a unique class [A0] modulo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It suffices to prove that the choice of A0 in this class determines in a unique way the triple (A0, A1, A∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A∞ is uniquely defined by a0t = τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The two last equations define a linear system in (b1, c1) which admits a unique solution for b0c0 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The relation 2a0a1 = α2 ∞ − α2 0 − α2 1 + b0c0 + b1c1 determines a unique value of a1 for a0 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Another choice of A0 in [A0] will give an equivalent triple (A0, A1, A∞) modulo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ This quotient is endowed with a Poisson structure whose Casimir functions are α0, α1, α∞ and τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, each fiber has a canonical symplectic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' See the introduction for references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The moduli space of connections MV We now consider the action of a global change of independent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have previously fixed one singular point at ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The positions s0 and s1 are now free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can use a translation x → x+λ in order to get s0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This action do not modify A0 A1 and A∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Now we want to normalize the singular point s1 to the value 1, by using the last change of independent variable that we can use: x �→ µx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since s1 ̸= s0 = 0, we can introduce the parameter s−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The linear system dY = (A0 + A1 1 − s1x−1 + xA∞)dx x ) · Y is changed in dY = (A0 + A1 1 − s1µ−1x−1 + xµA∞)dx x ) · Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This action do not modify A0 and A1 but modify A∞ in µA∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore it keeps invariant the local variables αi and modify the others variables by: (τ, β0, β1, s−1 1 ) → (µβ0, β1, µβ2, µs−1 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The quotient of this action is the weighted projective space P3 (1,0,1,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The usual choice of µ such that s1 = 1, corresponds to a choice of chart in P3 (1,0,1,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 The moduli space of connections MV (α) induced by SV for fixed local invari- ants is isomorphic to P3 (1,0,1,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This space is identical to that obtained by H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chiba in [17] when he seeks a natural compactification on which lives the vector field PV by using its Newton polyhedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 12 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since one weight vanishes, the quotient space is isomorphic to P2(C) × C, and it is not a compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This fact is shared with the quotient spaces corresponding to the equations PV I and PIII,D6, while we obtain a compact weighted projective space for the other families (I), (II), (IV ), (III, D7), (III, D8): [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' To deal with this problem, we will use the trick introduced by H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chiba, who introduces two copies of the previous space, glued by a convenient B¨acklund transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2 The wild fundamental groupoid πV 1 (X, S) The fundamental group of π1(P1 \\{s0, s1, s∞}, b0) acts on a local fundamental system Y0 around b0 by analytic continuation of Y0 along a path in P1 \\ {s0, s1, s∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We first enlarge this usual monodromy representation by considering new operators around the irregular point s∞: the formal monodromy, the Stokes operators and the exponential torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We first describe theses operators in the present context, by using a point of view very similar to that introduced by Stokes himself in [58], starting from a formal solution and using the summability theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 Stokes operators, formal monodromy and exponential tori Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let k > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A formal power series �f = � i≥0 aixi is 1/k-Gevrey if there exists M > 0 and A > 0 such that for all i |ai| ≤ MAi(i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' )1/k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let V be a sector at the origin and f an holomorphic function on V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' f is 1/k-Gevrey asymptotic to �f if for every strict subsector W in V , there exists MW > 0 and AW > 0 such that for all n ≥ 1 | (f(x) − n−1 � i=0 aixi |≤ MW An W (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' )1/k|x|n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote by C[[x]]1/k the algebra of series which are 1/k-Gevrey, A1/k(V ), the algebra of holomorphic functions on V which are 1/k-Gevrey asymptotic to some formal series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We mention here the following facts (for the proofs see [44]): If f is 1/k-Gevrey asymptotic to �f, then �f is a 1/k-Gevrey series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the Taylor map T : A1/k(V ) → C[[x]]1/k is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For V “narrow” i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' with an opening ≤ π/k, the Taylor map T is surjective: this is a Gevrey extension of the Borel-Ritt theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For V “large” i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' with an opening > π/k, the Taylor map T is injective: this is a Gevrey extension of the Watson Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any formal solution of any linear or non linear analytic differential equation is 1/k-Gevrey for some k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This a theorem of Maillet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the linear case, the second author gives the optimal Gevrey index by using the Newton polyhedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In particular, for a linear system xk+1dY/dx = A(x) · Y , this optimal order is the Katz rank of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let d ∈ S1 a direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A formal power series �f = � k≥0 aixi is k- summable in the direction d if there exists a sector Vd bisected by d, whose opening is greater than π/k and an holomorphic function f on V which is 1/k-Gevrey asymptotic to �f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A formal power series �f is k-summable if �f is k-summable in any direction d excepted a finite number of directions (the singular directions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let C{x}1/k,d ⊂ C[[x]]1/k be the algebra of k-summable series in the direction d, and C{x}1/k ⊂ C[[x]]1/k the algebra of k-summable series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since Vd is a large sector, the summation operator Σd : C{x}1/k,d → A(Vd) is an injective morphism of C-differential algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 Let x2dY/dx = A(x)Y , A(x) in sl2(C{x}), be a germ at x = 0 of meromorphic differential system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We suppose that the eigenvalues of A(0) are distincts (which avoids a rami- fication of the independent variable), and that the singularity is irregular, with a Katz rank equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The formal series appearing in a formal fundamental system of solutions �Y are 1-summable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For any non singular direction d, the operator Σd extends to a unique differential morphism from the algebra C{x}1[xλ, x−λ, exp t/x, exp(−t/x)] into O(Vd), such that this morphism induces the identity map on C[xλ, x−λ, exp t/x, exp(−t/x)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This allows us to define Σd(�Y ) for a formal matrix solution �Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a formal fundamental system of solutions �Y (x) = P(x)xL exp Q(x), Q(x) = diag(tx, −tx), the singular directions d on which Σd(�Y ) is not defined are characterized by arg(x) = d if and only if exp(2tx) has a maximal decay, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' by tx ∈ R−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let Σ be the set of singular directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Stokes operators {Sd, d ∈ Σ} are defined in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose a regular direction d0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For any singular direction d, we choose two regular directions d− and d+ such that the arc (d−, d+) contains the only one singular direction d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose a determination �Y0 of �Y around a d0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This choice induces a determination �Y − of �Y around the direction d− (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a determination �Y + of �Y around d+) by analytic continuation of the logarithm along the positive arc (d0, d−) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (d0, d+)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The summations Y − = Σd−(�Y −) and Y + = Σd+(�Y +) are defined on large sectors V − d and V + d which intersects non trivially on an open sector around d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore there exists some constant matrix Sd such that Y + = Y −Sd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can easily check that Sd does not depend on the choices of d+ and d− around d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A change of choice for �Y or for its determination �Y0 around a d0 will modify the family {Sd, d ∈ Σ} by a common conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 Starting from a formal solution �Y0, the Stokes operator Sd are defined by the successive operations: analytic continuation of the formal solution �Y0 along an arc from d0 to d−, summation at d−, analytic continuation of Y − until d+ on V + ∩ V −, anti-summation at d+ (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Taylor expansion of the actual solution Y +) and finally analytic continuation of the formal solution �Y + from d+ to d0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Stokes operators at each singular direction are defined by the above composition of operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a formal solution �Y0, they are characterized by matrices Ud, up to a common conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The formal monodromy is the operator generated by a loop �γ around 0 acting on a de- termination of �Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a given determination �Y0, it is defined by a matrix denoted by � M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The geometric monodromy is the operator generated by a loop γ around 0 acting on a determination of an actual solution Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For the actual solution Y0 obtained by summation of �Y0, it is defined by a matrix denoted by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The (formal) exponential torus is an action of the algebraic group C∗ on �Y0 induced by a rescaling of the exponential map: exp q → τ exp q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If �Y0 = PxL exp Q is chosen such that Q is diagonal, the action of τ is given by a diagonal matrix Tτ = diag(τ, τ −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the general case Tτ is a Cartan component of SL2(C) The motivation for the introduction of the exponential torus action is given by the following heuristic interpretation in a one dimensional context: we consider the equation x2y′ + y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We introduce an unfolding of the irregular singularity at the origin : we replace D = x2d/dx + 1 by Dε := x(x − ε)d/dx + 1 (ε ∈ C∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then the irregular singularity is replaced by two regular singularities at 0 and ε, with respective exponents 1/ε and −1/ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' An important point to notice is the coupling between the relative positions of the singularity and the exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The general solution of Dεy = 0 is y = Cx1/ε(x − ǫ)−1/ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It is invariant by the monodromy action of a simple loop around the two points 0 and ε but the monodromy action of a simple loop around 0 passing between the two points will transform f into e−2iπ/εf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' When ε → 0, this monodromy action does not have a limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' However we can replace the continuous limit by a discrete limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We fix ε0 ∈ C∗ and we define a sequence (εn)n∈N by 1 εn := 1 ε0 + n, n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then the sequence (e−2iπ/εn)n∈N is constant and we can interpret f �→ fτ0, with τ0 := e−2iπ/ε0 as the action of a simple loop passing between two infinitely near points4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' As the choice of ε0 is arbitrary, then τ0 is arbitrary in C∗ and we can consider the exponential torus as a generalized monodromy group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This group is no longer discrete, it is an algebraic group of dimension one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The “monodromy of a loop between the two infinitely near singularities” can be interpreted as a “random point” in this group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the unfolding bifurcation Dε there is a breaking of symmetry, the choice of ε fix a point e−2iπ/ε ∈ C∗ and the exponential torus is replaced by the ordinary monodromy group generated by f �→ e−2iπ/εf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The random point is replaced by a true point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let d1, d2 = d1+π be the 2 singular directions of the differential system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have M = � M · Ud2 · Ud1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If �Y0 = PxL exp Q is chosen such that Q is diagonal, Ud1 is a lower triangular unipotent matrix and Ud2 is a upper triangular unipotent matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the general case, Ud1 and Ud2 are in the two Borel components of the Cartan component of the exponential torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the present case (a non ramified case), the formal monodromy commutes with the expo- nential torus (and belongs to it).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This fact is no longer true in the ramified case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A Borel-Cartan configuration is a triple of subgroups (B−, C, B+) in SL2(C) such that C is a maximal torus, isomorphic to the algebraic group C∗, and B− and B+ are two maximal solvable subgroups which contains C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any Borel-Cartan configuration is conjugated to the canonical one given by (T −, D, T +) where D is the subgroup of diagonal matrices, T − (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' T +) the subgroup of lower (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' upper) triangular matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The unipotent subgroups of B− and B+ are respectively denoted by U − and U +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The triple (Ud1, � M, Ud2) and the triples (Ud1, Tτ, Ud2) take their values in a unipotent Borel- Cartan configuration (U −, C, U +).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local wild dynamics of the irregular connection is the subgroup (well defined up to a conjugation) of SL2(C) generated by the Stokes operators, the formal monodromy and the 4The idea of considering an irregular singularity as a pack of infinitely near regular singularities is due to Ren´e Garnier in 1919 [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It will be used as a guideline in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 15 exponential torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to a result of the second author [55], the Zariski closure of the local dynamics in SL2(C) is the differential Galois group of the local linear differential system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For the study of isomonodromic deformations, we need a parametric version of Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' They are parametric variants of Gevrey power series and of Gevrey expansions (with analytic parameters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One supposes that the estimates in definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1) are uniform on the parameter space U ⊂ Cp, or more generally on every compact K of U : one replaces MW and AW by MW,K and AW,K (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' uniform on the parameter space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For an open set U ⊂ Cp, we will denote O(U)[[x]]1/k the algebra of Gevrey series of order 1/k uniformly on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' They are also a similar parametric variant of k-summability using the uniformly parametrized 1/k- Gevrey expansions : the definition is the same mutatis mutandis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We will speak of uniform k-summability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then the sums of the uniformly k-summable series in a direction d are analytic in the variable and in the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 For more information on these subjects cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='7 Let U ⊂ Cp be an open subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let D ⊂ C be an open disc centered at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let [A] : x2dY/dx = A(x, t)Y , where A ∈ sl2 (O(D × U)), be a parametrized meromorphic differential system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We suppose that, for all t = (t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' tp) ∈ U, the eigenvalues of A(0, t) are distinct and that the singularity is irregular, with a Katz rank equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (i) Locally on U, the system [A] admits a formal fundamental solution analytic in the param- eters : ˆF = P �HxLeQ, where P ∈ SL2 (O(V )), �H ∈ SL2 (O(V )[[x]]1), �H(0, t) = I (for every t ∈ V ), L ∈ sl2(C), Q = (q, −q), with q ∈ x−1O(V )[x−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) Let t0 ∈ U and V ⊂ U a neighborhood of t0 such that the system admits on V a formal fundamental solution analytic in the parameters as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let t1 ∈ U and d a nonsingular direction for the system x2dY/dx = A(x, t1)Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then there exists a neighborhood W ⊂ V of t1 such that P �H is uniformly 1-summable in the direction d on W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (i) Let t0 ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If an open polydisc V centered at t0 is sufficiently small, then there exists P ∈ GL (O(V )) conjugating the restriction of A0 = A(0, t) to V to a diagonal matrix B0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore we are reduced to the case where A0 is diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then we can use a parametrized variant of the splitting lemma of [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It reduces the system to two parametrized formal one dimensional equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The result follows easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) A first proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We use a parametrized generalization of the Improved Splitting Lemma of [3] (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1, Lemma 11, page 124).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The proof is the same mutatis mutandis6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A second proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We imitate a proof of the unparamatrized version based on Gevrey asymp- totics (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [44]), replacing the Gevrey Main Asymptotic Existence Theorem by a parametrized version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The local wild fundamental groupoid Following an idea which appears in a correspondence between P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Deligne B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Malgrange and the second author [19], the Stokes operators, formal and geometric monodromy around an irregular point appear as a representation of a “local wild fundamental groupoid”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We want to encode all these operators by loops, or paths if we allow several base points, in a “halo” (see also [44]) around the singular point whose internal boundary describes the formal world (represented by 5when these sums exist for all values of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In general the singular directions move with the parameters and it is necessary to reduce the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 6It uses the interpretation of 1-summability in terms of the Borel-Laplace method and delicate estimates in the Borel plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 16 determinations of formal solutions) and its exterior the analytic world (represented by sectoral holomorphic solutions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider a small disc ∆0 around x = 0, and we perform a real blowing up E : X0 → ∆0 of x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let D = E−1(0) ⊂ X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We draw a second divisor �D inside the disc bounded by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We mark two opposite directions by drawing two points p1 and p2 in the annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let A be the punctured annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the groupoid π1(X0, D ∪ �D) whose objects are the points of D ∪ �D and whose morphisms are the paths or loops up to homotopy between two objects inside the punctured annulus A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let S0 = {s1, s2} two opposite directions distinct from p1 and p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8 The local wild groupoid π♭ 1(X0, S0) is the restriction of π1(X0, D ∪ �D) over S0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We define a presentation of π♭ 1(X0, S0) in the following way: s1 s2 p2 p1 r+ 1 r− 1 α1 �γ− 1 �γ+ 1 r1 r2 �γr 1,2 γr 1,2 �γl 1,2 γl 1,2 Figure 2: A presentation of π♭ 1(X0, S0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose rays r− i , r+ i on the left and right side of pi for i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose two opposite base points s1 and s2 on D on the orthogonal direction to (p1, p2), endpoints of 2 rays r1 and r2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let �γ− i (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='�γ+ i ) be the arc from si to the origin of r− i (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' r+ i ) in �D, and αi the arc on D from the end of r− i to the end of r+ i on D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The two Stokes loops are the loops based in si (see figure above): σi = r−1 i �γ− i · r− i · αi · (r+ i )−1 · (�γ+ i )−1ri, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let γr 1,2 and γl 1,2 the lower and upper arcs from s1 to s2 on D, and �γr 1,2 and �γl 1,2 their analog on �D by using r1, an arc on �D, and r−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local wild groupoid is generated by σ1, σ2, γr 1,2, γl 1,2, �γr 1,2 and �γl 1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let γ1,1 = γr 1,2 · γl 1,2, �γ1,1 = �γr 1,2 · �γl 1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From the above picture we have the relation γ1,1 = σ1 · �γr 1,2 · σ2 · �γl 2,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to include the exponential torus in a linear representation of this groupoid, we introduce a (non discrete) extension π1(X0, S0) of π♭ 1(X0, S0): we glue a representation of (C∗, ×) by adding two collections of loops �t1,1(κ), κ ∈ C∗ based in �s1, and �t2,2(κ), κ ∈ C∗ based in �s2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote: t1,1(κ) = r−1 1 �t1,1(κ) · r1( based in s1), t2,2(κ) = r−1 2 �t2,2(κ) · r2( based in s2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 17 We require the relations Rloc: (i) ∀κ ∈ C∗, ∀κ′ ∈ C∗, ti,i(κκ′) = ti,i(κ) · ti,i(κ′), i = 1, 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) ∀κ ∈ C∗, [[σi, ti,i(κ)], σi] = ⋆i, i = 1, 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (iii) ∀κ ∈ C∗, �γi,i · ti,i(κ) · �γ−1 i,i ti,i(κ)−1 = ⋆i, i = 1, 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (iv) t1,1(κ) · �γl 1,2 · t2,2(κ) · �γr 2,1 = ⋆1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='9 The (complete) wild local groupoid is the groupoid π1(X0, S0) generated by π♭ 1(X0, S0) and the families T1,1 = {t1,1(κ), κ ∈ C∗} and T2,2 = {t2,2(κ), κ ∈ C∗}, with the above relations Rloc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s1 s2 p2 p1 t1,1(κ) t2,2(κ) Figure 3: A presentation of π1(X0, S0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The global wild fundamental groupoid The local wild fundamental groupoid suffices to deal with the Euler equation, or the Kummer equations by adding one base point [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Nevertheless for the Painlev´e equations, we have to consider several regular and irregular singularities, with connecting data between them (and in some cases an order two ramification).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to represent the global monodromy data together with the wild local dynamic of a connection in MV , we consider the following groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We begin with B = P1\\{p0, p1, p∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We perform real blowing up at each of these points, and we obtain a variety X with divisors D0, D1 and D∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose two opposite base points s1 and s2 on D∞, a base point s3 on D0, and s4 on D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let S = {s1, s2, s3, s4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the groupoid whose morphisms are the paths between the base points up to homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Inside (D∞, s1, s2), we glue the local wild groupoid π♭ 1(X0, S0) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the complete local wild groupoid π1(X0, S0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We obtain a new groupoid denoted by πV,♭ 1 (X, S) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' πV 1 (X, S) for the complete version).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A presentation of this groupoid is given by the figure: 18 s3 s4 γ2,3 γ4,1 γ3,4 p1 p2 s1 s2 γ3,3 γ4,4 Figure 4: A presentation of πV 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The relations of this presentation are generated by : – the local relations Rloc previously defined;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' – Rext: γl 1,2 · γ2,3 · γ3,4 · γ4,1 = ⋆1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' – Rint: γr 1,2 · γ2,3 · γ3,3 · γ3,4 · γ4,4 · γ4,1 = ⋆1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote by πV,κ 1 (X, S) the fiber of the morphism K : πV 1 (X, S) → C∗ induced by K(t1,1(κ)) = κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 A confluent morphism of groupoid The comparison of πV,κ 1 (X, S) with πV I 1 (X, S) is a central point in order to define the confluent process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For this purpose, we introduce another presentation of this groupoid, setting: t1,2(κ) = t1,1(κ−1) · �γr 1,2 = �γl 1,2 · t2,2(κ−1), γ2,3(κ) = t2,2(κ−1) · σ−1 2 γ2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We obtain the following figure 19 ≃ t1,2(κ) t1,1(κ) t2,2(κ) γ2,3(κ) σ1 σ2 t1,2(κ) t1,1(κ) σ1 t2,2(κ) σ2 γ2,3(κ) Figure 5: Another presentation for πV,κ 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This last figure looks like the figure (1) for the groupoid πV I 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' More precisely, we denote by s′ i the objects of πV I 1 (X, S), and we consider a presentation {γ′ i,j, R′ int, R′ ext} of πV I 1 (X, S) given by figure (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the groupoid morphism ϕκ from πV I 1 (X, S) to πV,κ 1 (X, S) which sends s′ i on si and which is defined by: ϕκ(γ′ 3,3) = γ3,3, ϕκ(γ′ 4,4) = γ4,4, ϕκ(γ′ 3,4) = γ3,4, ϕκ(γ′ 4,1) = γ4,1, ϕκ(γ′ 1,1) = σ1 · t1,1(κ), ϕκ(γ′ 2,2) = σ2 · t2,2(κ), ϕκ(γ′ 1,2) = t1,2(κ), ϕκ(γ′ 2,3) = γ2,3(κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This morphism ϕκ is an injective morphim but not a surjective one: the pre-image of a Stokes loop or a loop of an exponential tori are not defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10 The confluent morphism from ϕ : πV I 1 (X, S) → πV 1 (X, S) is defined by the family ϕ = (ϕκ)κ∈C∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists a similar result in the context of the hypergeometric equation and the confluent hypergeometric equation in Kummer form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3 The character variety χV 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 Definition of χV The class of rank 2 linear representations of a fundamental groupoid in SL2(C) has been defined in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Here we are only interested in a subclass of linear representations ρ which satisfy the following property Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 A representation ρ of πV 1 (X, S) satisfies the property (⋆) if there exists a Borel- Cartan configuration (B−, C, B+) such that: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ρ(t1,1(κ), κ ∈ C∗) = C, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ρ(σ1) ∈ U −, ρ(�γl 1,2σ2�γl 2,1) ∈ U +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If this property holds for ρ it still holds for ρ′ equivalent to ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 20 Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The character variety χV is the categorical quotient of the set of linear repre- sentations πV 1 (X, S) which satisfy the property (⋆) through the equivalence of representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A local representation is a representation over the sub-groupoid restricted to the local loops, generated by �γ1,1, γ3,3, γ4,4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It is characterized by a = (a0, a3, a4) with a0 = tr(ρ(�γ1,1)) = tr(ρ(�γ2,2)), a3 = tr(ρ(γ3,3)), a4 = tr(ρ(γ4,4)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any representation ρ in χV determines a unique local representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The fiber of this map is denoted by χV (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The inclusion of πV,♭ 1 (X, S) in πV 1 (X, S) induces by restriction a map r whose image is denoted by χ♭ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 For a such that a0 ̸= ±2, r is a (2:1) map over the open set of χ♭ V defined by ρ(σ1) or ρ(σ2) is a non trivial element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If we suppose that σ1 is non trivial, one can choose � Y0 such that ρ(σ1) = \uf8eb \uf8ec \uf8ed 1 0 u1 1 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this case, ρ(t1,1(κ), κ ∈ C∗) = C is the diagonal subgroup D of SL2(C), and we have ρ(t1,1(κ)) = \uf8eb \uf8ec \uf8ed f(κ) 0 0 f(κ−1) \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From the relation t1,1(κ)t1,1(κ′) = t1,1(κκ′) we deduce that f belongs to Aut(C∗, ×), and there- fore f(κ) = κ or f(κ) = κ−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 The character variety χV (a) = χ+ V (a) ∪ χ− V (a) with χ+ V (a) = {(U1, M0, U2, M3, M4, Dκ)}//SL2(C), χ− V (a) = {(U1, M0, U2, M3, M4, D−1 κ )}//SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The two copies χ+ V (a) and χ− V (a) coincide over a such that e0 = e−1 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' such that a0 = ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The character variety χV and cubic surfaces Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 A representation of πV,♭ 1 (X, S) in SL2(C) is normalized if, ρ(γl 1,2) = ρ(γ2,3) = ρ(γ3,4) = I, where the γi,j are generators of the presentation introduced in figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There always exists a normalized representation in each class of equivalent representations in SL2(C), obtained by choosing a representation of an initial object –say s2– and by representing the successive others objects by analytic continuation along γ2,3, γ3,4 and γl 2,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From the relation Rext, for a normalized representation we also have ρ(γ4,1) = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 A normalized representation of πV,♭ 1 (X, S) is characterized by the data M0 = ρ(�γ1,1), U1 = ρ(σ1), U2 = ρ(�γl 1,2 · σ2 · �γl 2,1), M3 = ρ(γ3,3), M4 = ρ(γ4,4) such that U1M0U2M3M4 = I, up to a common conjugacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 21 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have to prove that, for a normalized representation ρ, the images of all the generators of the groupoid by ρ are well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since ρ(γl 1,2) = I, we have ρ(�γl 1,2) = U2, ρ(�γr 1,2) = M0U2, ρ(γr 1,2) = U1M0U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The relation Rint gives U1M0U2M3M4 = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A change of representation of the initial object will change this data by a common conjugacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ One can suppose, by using a conjugacy, that the Cartan subgroup C = {ρ(t1,1(κ)), κ ∈ C∗} ⊂ SL2(C) is the diagonal one D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From the relation (iii) of the local groupoid presentation, � M0 commutes with each element of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore from the relations (i) (ii) and (iii), we have: U1 = \uf8eb \uf8ec \uf8ed 1 0 u1 1 \uf8f6 \uf8f7 \uf8f8 , M0 = \uf8eb \uf8ec \uf8ed e0 0 0 e−1 0 \uf8f6 \uf8f7 \uf8f8 , U2 = \uf8eb \uf8ec \uf8ed 1 u2 0 1 \uf8f6 \uf8f7 \uf8f8 , M3 = \uf8eb \uf8ec \uf8ed α3 β3 γ3 δ3 \uf8f6 \uf8f7 \uf8f8 , M4 = \uf8eb \uf8ec \uf8ed α4 β4 γ4 δ4 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This data is now defined up to a conjugacy by an element of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally we have χ♭ V = {(U1, M0, U2, M3, M4) ∈ (U −, D, U +) × SL2(C)2, U1M0U2M3M4 = I}//D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This algebraic quotient is a 5 dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The function (a+, x+) = (e0, a3, a4, x+ 1 , x+ 2 , x+ 3 ): e0 = M0[1, 1], a3 = tr(M3), a4 = tr(M4), x+ 1 = M3[2, 2] = δ3, x+ 2 = M4[2, 2] = δ4, x+ 3 = tr(U1M0U2) = e0 + e−1 0 + e0u1u2, is invariant under the action of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='7 The coordinates (a+, x+) define a map Tr+ V , invertible for a generic a, from χ♭ V (a) to the family affine cubic surface CV (θ+) defined by FV (θ+, x) = x1x2x3 + x2 1 + x2 2 − θ+ 1 x1 − θ+ 2 x2 − θ+ 3 x3 + θ+ 4 = 0, where θ+ 1 = a3 + e0a4, θ+ 2 = a4 + e0a3, θ+ 3 = e0, θ+ 4 = e2 0 + e0a3a4 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8 We have: e0u1u2 = x3 − e0 − e−1 0 e0γ3s2 = x2 − e0a3 + e0x1 e0β3s1 = −x1x3 + e0x1 − x2 + a4 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have x3 = e0 + e−1 0 + e0u1u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From U1M0U2M3 = M−1 4 we obtain δ4 = α3e0 + γ3e0u2, α4 = β3e0s1 + δ3e0u1u2 + δ3e−1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Using αi = ai − δi, we obtain the two other equalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Proof of Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since α3δ3 − β3γ3 = 1, we have (e2 0u1u2)(α3δ3) − (e0β3u1)(e0γ3u2) − e2 0u1u2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 22 If we replace e0s1s2, e0γ3s2 and e0β3s1 by the above expressions, we obtain the equation FV (x, θ+) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This proves that the map (a+, x+) takes its values in the cubic surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a point in the cubic surface, we recover α3 = a3 − x1, α4 = a4 − x2, β3γ3 = 1 − x1(a3 − x1), β4γ4 = 1 − x2(a4 − x2), γ3s2 = e−1 0 x2 − a3 + x1, and therefore, for generic values, a unique point of χ♭ V (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='9 It might seen more natural to consider the trace coordinates: y1(ρ) = tr(ρ(�γ1,1γ1,3γ3,3)), y2(ρ) = tr(ρ(�γ2,2γ2,4γ4,4)), y3(ρ) = tr(ρ(γ3,3γ3,4γ4,4)) which, for a normalized representation, give: y1 = tr(M0M3), y2 = tr(M0M4), y3 = tr(M3M4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' But clearly, the coordinates y1 and y2 degenerate if M0 = ±I, since we have y1 = a3 and y2 = a4 in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The coordinates x+ 1 = y1 − e0a3 e−1 0 − e0 = δ3, x+ 2 = y2 − e0a4 e−1 0 − e0 = δ4, x+ 3 = y3 give an extension to this exceptional case M0 = ±I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This choice is also the usual one in the litterature: see [54] or [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the coordinates (a+, x+) are directly related to the above trace coordinates through an affine map, we still denote the corresponding map by Tr+ V , and we call it a trace map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The normalization of the representation by (U1, M0, U2, M3, M4) used in order to construct Tr+ V requires that U1 is a lower triangular matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If we require that U1 must be an upper triangular matrix, we obtain the data (U − 1 , M− 0 , U − 2 , M− 3 , M− 4 ) which is equivalent to the first data by the conjugacy with the matrix P = \uf8eb \uf8ec \uf8ed 0 1 −1 0 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We define the trace map Tr−(ρ) = (a−, x−) = (e−1 0 , a3, a4, x− 1 , x− 2 , x− 3 ) with e−1 0 = M− 0 [1, 1], x− 1 = M− 3 [1, 1] = α3, x− 2 = M− 4 [1, 1] = α4, x− 3 = tr(U − 1 M− 0 U − 2 ) = x+ 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This map takes its values in the cubic surface CV (θ−): FV (x, θ−) = x1x2x3 + x2 1 + x2 2 − θ− 1 x1 − θ− 2 x2 − θ− 3 x3 + θ− 4 = 0, where θ− 1 = a3 + e−1 0 a4, θ− 2 = a4 + e−1 0 a3, θ− 3 = e−1 0 , θ− 4 = e−2 0 + e−1 0 a3a4 + 1 which can also be identified to the categorical quotient χ♭ V (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The points p+ ∈ CV (θ+) and p− = Tr− V ◦ (Tr+ V )−1(p+) correspond to the same representation in χ♭ V (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4) we know that χV (a) = χ+ V (a) ∪ χ− V (a) where χ+ V (a) = {(U1, M0, U2, M3, M4, Dκ)//SL2(C)}, χ− V (a) = {(U1, M0, U2, M3, M4, D−1 κ )//SL2(C)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Using a conjugacy with P this second data is equivalent to (U − 1 , M− 0 , U − 2 , M− 3 , M− 4 , ρ(t1,1(κ)) = Dκ), which define an element in CV (θ−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore χV (a) is identified through the trace coor- dinates to the union of the two affine surfaces CV (θ−) ∪ CV (θ+) We denote by Tr±,κ the restriction of Tr± over πV,κ 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 Lines and reducibility locus For what follows in this article, excepted (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3), we will suppose that the parameters satisfy the generic conditions: e0 ̸= ±1, e3 ̸= ±1, e4 ̸= ±1, e0eε3 3 eε4 4 ̸= 1 for ε3 = ±1, ε4 = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The description of the lines in cubic surfaces can be found in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In particular the compacti- fication of a generic element CV I(θ) in P3(C) contains 27 lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the figure below the central triangle is the union of the three lines at infinity: Le1,e2 Le−1 1 ,e−1 2 Le3,e4 Le−1 3 ,e−1 4 Le1,e−1 2 Le−1 1 ,e2 Le3,e−1 4 Le−1 3 ,e4 Le1,e3 Le2,e3 Le−1 1 ,e−1 3 Le−1 2 ,e−1 3 Le1,e3 Le−1 1 ,e−1 3 Le1,e−1 3 Le−1 1 ,e3 Le2,e4 Le−1 2 ,e−1 4 Le2,e−1 4 Le−1 2 ,e4 Le2,e−1 3 Le−1 2 ,e3 Le1,e4 Le−1 1 ,e−1 4 Le1,e−1 4 Le−1 1 ,e4 Figure 6: The 24 lines in CV I(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The equations of the lines are obtained from the following decomposition which appears in [40]: FV I(x, θ) = (xk − cei,ej)(FV I,xk − xk + cei,ej) + lei,ejle−1 i e−1 j , where FV I,xk is the partial derivative of FV I(x, θ) with respect to the variable xk, cα,β = αβ−1 + α−1β and lei,ej = eixi + ejxj − akeiej − a4, le−1 i ,e−1 j = e−1 i xi + e−1 j xj − ake−1 i e−1 j − a4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the plane xk = cei,ej intersects the cubic surface along a degenerated conic, union of the two lines Lei,ej : xk = cei,ej = eie−1 j + e−1 i ej and lei,ej = 0, Le−1 i ,e−1 j : xk = ce−1 i ,e−1 j and le−1 i ,e−1 j = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The compactification of CV (θ) in P3(C) has a singular point of type A1 at infinity, and admits 21 lines, of which 18 are in the affine part: 24 ∆e4 ∆e−1 4 ∆e3 ∆e−1 3 Dl e−1 4 Dr e3 Dl e4 Dr e−1 3 Dl e3 Dr e−1 4 Dl e−1 3 Dr e4 De3,e4 De−1 3 ,e−1 4 De3,e−1 4 De−1 3 ,e4 Df0,f−1 0 Df−1 0 ,f0 Figure 7: The 18 lines in CV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10 The equations of these lines are given by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' z0 = −x2 1x3 − x1x2 + θ2x1 − e0 = 0 for Dl e3 ∪ Dl e−1 3 ∪ Dl e−1 4 ∪ Dl e4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' z1 = x1x2 − e0 = 0 for ∆e3 ∪ ∆e−1 3 ∪ ∆e4 ∪ ∆e−1 4 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' z2 = −x2 2x3 − x1x2 + θ1x2 − e0 = 0 for Dr e−1 3 ∪ Dr e3 ∪ Dr e4 ∪ Dr e−1 4 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' x3 = ce3,e4 or ce3,e−1 4 or ce0,e−1 0 for the pairs of lines which cut the basis of the triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this section, we want to characterize the representations whose image is a point on a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='7 The local loops in πV I 1 (X, S) are the loops γi,i based in si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local loops in πV 1 (X, S) are γ3,3 in s3, γ4,4 in s4, and a generic element of the torus t1,1(κ) in s1 and t2,2(κ) in s2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In any cases, the local loops at si are denoted below by γi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='11 Let γ be a morphism of the groupoid πV I 1 (X, S) or πV 1 (X, S), defined by some path from si to sj, j ̸= i, γi the local loop in si and γj the local loop in si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A linear representation ρ of the groupoid in SL2(C) is reducible along γ if ρ(γ−1γiγ) and ρ(γj) have a common eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If ρ is the linear representation associated with a regular connection ∇, and γ is represented by analytic continuation, it means that there exists some local solution at si which is an eigen- vector of the local monodromy around si and whose analytic continuation along γ is also an eigenvector of the local monodromy around sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This semi-local solution in a neighbourhood of γ has an abelian monodromy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If ρ is reducible along the path γ, any equivalent representation is reducible along γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The representation ρ is reducible along γ if and only ρ is reducible along γ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If ρ(γi) = ±I, ρ is reducible along any path joining si to another base point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 7We thanks Martin Klimes for discussions on this topics (see also [40]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let ρ be a representation in SL2(C) given by a choice of basis of solutions Xi on each Vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set ρ(γi) = Mi, ρ(γ) = Mγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ρ is reducible on γ if and only if the matrices M−1 γ MiMγ and Mj have a common eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In particular, if ρ is a normalized representation associated to the presentation given by figure (1) of the groupoid πV I 1 (X, S), with ρ(γi) = Mi and ρ(γi,j) = I for i ̸= j, ρ is reducible on the generator path γi,j if and only if Mi and Mj have a common eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='13 A pair of matrices in SL2(C) is reducible if and only if they have a common eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The reducibility locus associated to a path γ is the set R(γ) of linear representations ρ in χV I which are reducible on γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a presentation of πV I 1 (X, S), the generating reducibility locus is the union of the sets R(γi,j) for all the generators γi,j, i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The total reducibility locus is the set R of linear representations ρ in χV I such that there exists a path between two distinct objects on which ρ is reducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15 Let {γi,j), Ri} be the presentation of πV I 1 (X, S) given by the figure (1), and TrV I : χV I(a) → CV I(θ) the trace map associated to this presentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The 24 lines in CV I(θ) are the reducibility locus of the 6 paths: γi,i+1, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='., 4 and γ1,3 = γ1,2 · γ2,3, γ2,4 = γ2,3 · γ3,4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='16 Let M1 and M2 be two matrices in SL2(C) distinct from ±I, e1, e−1 1 , and e2, e−1 2 their eigenvalues (we may have e1 = e−1 1 or e2 = e−1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let cα,β = αβ−1 + α−1β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The pair (M1, M2) is reducible if and only if tr(M1M2) = ce1,e2, or tr(M1M2) = ce1,e−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose a ”mixed basis” taking an eigenvector of M2, and an eigenvector of M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In such a basis, we have: M1 = \uf8eb \uf8ec \uf8ed e1 0 f1 e−1 1 \uf8f6 \uf8f7 \uf8f8 , M2 = \uf8eb \uf8ec \uf8ed e2 f2 0 e−1 2 \uf8f6 \uf8f7 \uf8f8 or any similar writing obtained by changing e1 with e−1 1 or e2 with e−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let Di = diag(ei, e−1 i ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have tr(M1M2) = tr(D1D2) + f1f2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Such a pair has a common eigenvector if and only if f1 = 0 or f2 = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' if and only if tr(M1M2) = tr(D1D2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have tr(D1D2) = ce1,e2 or tr(D1D2) = ce1,e−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Proof of Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider a normalized representation ρ and the six (non ori- ented) generating paths γi,j, i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a normalized representation ρ, these paths satisfy: ρ(γi,j) = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore ρ is reducible over γi,j if and only if the pair of matrices (Mi, Mj) is reducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For {i, j} in {1,2,3}, according to Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='16), ρ is reducible on the path γi,j if and only if xk = cei,ej or xk = cei,e−1 j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the reducibility locus R(γi,j) is given by the four lines Le±1 i ,e±1 j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ 26 Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='17 The 12 Kaneko points are the intersections pei,ej = Lei,ej ∩ Le−1 i ,e−1 j , pei,e−1 j = Lei,e−1 j ∩ Le−1 i ,ej, {i, j} ⊂ {1, 2, 3, 4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='18 The Kaneko points pei,ej and pei,e−1 j correspond to a normalized monodromy representation such that Mi and Mj commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In a ”mixed basis”, Mi = \uf8eb \uf8ec \uf8ed ei 0 fi e−1 i \uf8f6 \uf8f7 \uf8f8 , Mj = \uf8eb \uf8ec \uf8ed ej fj 0 e−1 j \uf8f6 \uf8f7 \uf8f8 (7) or the same writing changing ej in e−1 j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The reducibility locus is given by fifj = 0, which defines two components Lei,ej and Le−1 i ,e−1 j (or Lei,e−1 j and Le−1 i ,ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore pei,ej (or pei,e−1 j ) is defined by fi = 0 and fj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='✷ The Painlev´e VI foliation admits 12 singular points, 4 over each singular fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The local description of the foliation in a neighborhood of these non linear singularities of “regular type” can be found in the chapter 4 of [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Painlev´e V foliation also admits 3 non linear regular singular points over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The germ of Painlev´e equation admits a unique meromorphic solution around such a singular point, defining an analytic leave for the germ of foliation: we call them the central solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' These solutions have been studied by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Kaneko [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Furthermore, they appears as the intersection of two codim 1 germs of invariant analytic surfaces [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Riemann-Hilbert correspondence RHV I sends the 12 central solutions to the 12 Kaneko points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Riemann-Hilbert correspondence RHV I sends the local invariant varieties near a sin- gular point to the 2 germs of lines intersecting at the corresponding Kaneko point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the 4 singular points over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The non linear monodromy generated by a simple loop around 0 will keep invariant each meromorphic solutions and the analytic invariant surfaces which intersect on it, around this singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Through the Riemann-Hilbert correspondence this non linear monodromy is conjugated to one of the polynomial dynamics hi,j given by (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The central solutions are sent on fixed points of hi,j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since each hi,j fixes 4 central points, and has no more than 4 fixed points, this proves the first point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Now we search for invariant curves under the action of hi,j through the central point pei,ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Clearly the two lines Lei,ej and Le−1 i ,e−1 j are invariant since the union of the two lines is (xk = cei,ej) ∩ (FV I(x, θ) = 0) which is invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Suppose that there exists another local analytic invariant curve transverse to dxk = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It cut the plane (xk = c) on a finite set of points, for any value c near from cei,ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This would create a periodic orbit on each (xk = c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The restriction of hi,j on each (xk = c) is a family of affine maps, and for a generic affine map, there doesn’t exist such a periodic orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the local invariant surfaces are sent on the germ of two lines around each central point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='20 Using Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='18) and Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='19), we recover here a result of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Kaneko [36]: the linear monodromy data preserved along a Kaneko solution is generated by 3 matrices with a pair of commuting matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In particular, it generates a solvable group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Nevertheless, the theorem of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Kaneko is much more precise: it describes explicitely this linear solvable monodromy data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 27 We have a result similar to Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15) for the Painlev´e V foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='21 Let {γi,j, R} be the presentation of πV 1 (X, S) given by figure (4), and Tr+ V : χ+ V (a) → CV (θ+) the trace map associated to this presentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any line in CV (θ+) is the image of a reducibility locus in χV (a) for some path in πV 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The proof is similar to the one of Theorem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15, but one needs to investigate different cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We just mention here an example: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='22 The reducibility locus R(γr 1,2) is given by a pair of lines defined by (x3 = a0)∩CV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a normalized representation ρ we have ρ(γr 1,2) = U1M0U2, ρ(�γ1,1) = ρ(�γ2,2) = M0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, according to Remark (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='12), we have: ρ ∈ R(γr 1,2) ⇔ ((U1M0U2)−1M0(U1M0U2), M0) is a reducible pair ⇔ (M−1 0 U −1 1 M0U1, U2M0U −1 2 M−1 0 ) is a reducible pair ⇔ u1u2 = 0 ⇔ tr(U1M0U2) = tr(M0), ⇔ x3 = a0 = f 2 0 + f −2 0 where f 2 0 = e0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The intersection (x3 = a0) ∩ CV is given by one pair of lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Indeed we have: FV (x, θ) = (x3 − e0 − e−1 0 )(x1x2 − e0) + df0,f−1 0 df−1 0 ,f0, with df0,f−1 0 = f0x1 + f −1 0 x2 − f0a3, df−1 0 ,f0 = f −1 0 x1 + f0x2 − f0a4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the reducibility locus R(γr 1,2) is given by the pair of lines: Df0,f−1 0 : x3 = e0 + e−1 0 and df0,f−1 0 = 0, Df−1 0 ,f0 : x3 = e0 + e−1 0 and df−1 0 ,f0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ The others cases are treated with similar computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Here we also have a correspondence between the 3 Kaneko solutions described by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Kaneko and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Ohyama in and [37], and the 3 Kaneko points pe3,e4, pe3,e−1 4 and pe0,e−1 0 through RHV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The complete reducibility locus, defined by all the paths γ of the fondamental groupoid, contains these lines and their images by the tame dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We don’t know if the lines and the tame action generate the complete reducibility locus (maybe we have to add some parabolas).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 Log-canonical coordinates on CV (θ) and cluster sequences Let CV (θ) be the family of symplectic cubic affine surfaces in C3 defined by FV (x, θ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The cubic surfaces CV (θ) are birational to C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Indeed, since the equation FV (θ) is affine in x3, the map π3 : CV (θ) → C2 induced by (x1, x2, x3) → (x1, x2) is rationally invertible and therefore birational.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The polar locus of π−1 3 is given by FV,x3 = x1x2 − e0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Recall that CV (θ) has a symplectic structure defined by ωV (θ) = dxi ∧ dxj ∂FV,θ/∂xk , for any i, j, k = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We want here to introduce symplectic birational maps: Notations (see Appendix): 28 ωlog = du u ∧ dv v : the log-canonical symplectic form on C2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Bir(C2) : the group of the birational automorphisms of the complex plane;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Symp(C2) = Symp+(C2) : the subgroup of Bir(C2) of the automorphisms which preserve ωlog;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Symp−(C2) : the subset of Bir(C2) of the automorphisms ϕ such that ϕ∗ωlog = −ωlog;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Symp±(C2) : the subgroup of Bir(C2) generated by Symp+(C2) ∪ Symp−(C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='23 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A log-canonical system of coordinates on CV (θ) is a birational symplectic morphism from (CV (θ), ωV (θ)) to (C2, ωlog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A log-canonical function on CV (θ) is a component of some log-canonical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A log-canonical sequence of coordinates is a sequence of coordinates such that two consec- utive elements define a log-canonical system of coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A log-anti-canonical system of coordinates on CV (θ) is a birational symplectic morphism from (CV (θ), ωV (θ)) to (C2, −ωlog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If (x, y) is a log-anti-canonical system of coordinates, (y, x) and (x−1, y) are log-canonical systems of coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If (x, y) is a log-canonical system of coordinates, for any λ, µ in C∗, (λx, µy) is a log- canonical system of coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The cubic surface CV (θ) is symplectic birationally equivalent to (C2, ωlog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Indeed we have two first examples of log-canonical systems of coordinates on CV (θ): Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='25 Let y1 = x1, y2 = x2 and z1 = FV,x3 = x1x2 − e0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The pairs (y1, z1), and (z1, y2) are log-canonical systems of coordinates on CV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A map z1 such that both (y1, z1), and (z1, y2) are log-canonical systems of coordinates is unique up to a multiplicative constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: dy1 y1 ∧ dz1 z1 = dx1 x1 ∧ x1dx2 + x2dx1 z1 = dx1 ∧ dx2 x1x2 − e0 = ωV (θ), and we have a similar computation for (z2, y2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' All the maps such that (y1, z) is a log-canonical system of coordinates write z = c(y1)z1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the only maps such that (y1, z), and (z, y2) are log-canonical systems of coordinates are z = cz1 for some c in C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Therefore (y1, z1, y2) is a log-canonical triple, which satisfies: z1 = y1y2−e0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to construct new log-canonical or log-anti-canonical systems of coordinates we consider the two maps: σ1(x1, x2, x3) = (x1 − FV,x1, x2, x3) = (−x1 − x2x3 + θ1, x2, x3) σ2(x1, x2, x3) = (x1, x2 − FV,x2, x3) = (x1, −x2 − x1x3 + θ2, x3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='26 σ1 and σ2 define polynomial involutive automorphims of CV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Furthermore they are anti-symplectic automorphisms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' σ∗ i ωV (θ) = −ωV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 29 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The involutive property is a direct computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have FV ◦σi = FV , and therefore the σi’s are polynomial automorphims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally, by using ωV (θ) = dx2∧dx3 x2x3+2x1−θ1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ωV (θ) = dx3∧dx1 x3x1+2x2−θ2), we obtain σ∗ 1ωV (θ) = −ωV (θ) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' σ∗ 2ωV (θ) = −ωV (θ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ We set: g = σ1 ◦ σ2, g−1 = σ2 ◦ σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='26), g is a polynomial symplectic automorphisms of (CV (θ), ωV (θ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, starting from the log-canonical triple (y1, z1, y2), we obtain two other log-canonical triples by applying σ∗ i , i = 1, 2 and reversing the order of the triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set: (y2, z2, y3) := (σ∗ 1y2, σ∗ 1z1, σ∗ 1y1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (y0, z0, y1) := (σ∗ 2y2, σ∗ 2z1, σ∗ 2y1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore we obtain a log-canonical sequence of length seven: H : (y0, z0, y1, z1, y2, z2, y3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We call it the fundamental log-canonical heptuple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Note that we have: (y2, z2, y3) = g−1∗(y0, z0, y1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We extend the fundamental log-canonical sequence to an infinite log-canonical sequence by setting for any k in Z: (y2k, z2k, y2k+1, z2k+1, y2k+2, z2k+3, y2k+3) := (g−k∗)(y0, z0, y1, z1, y2, z2, y3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This sequence satisfies the following relations: Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='27 [exchange relations] let AV = Z[e± 0 , e± 3 , e± 4 ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let P, Q1 and Q2 in AV [t] defined by P(t) = t + e0, Q1(t) = (t − e0e−1 4 )(t − e0e4)(t − e−1 3 )(t − e3), Q2(t) = (t − e0e−1 3 )(t − e0e3)(t − e−1 4 )(t − e4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For all k in Z we have ykyk+1 = P(zk) z2kz2k+1 = Q1(y2k+1) z2k+1z2k+2 = Q2(y2k+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='28 We have : σ∗ 1x1 = x−1 2 � e0 + z−1 1 Q2(x2) � , and σ∗ 2x2 = x−1 1 � e0 + z−1 1 Q1(x1) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (8) with : Q2(t) = t4 − θ2t3 + θ4t2 − e0θ1t + e2 0 = (x − e0e−1 3 )(x − e0e3)(x − e−1 4 )(x − e4), (9) Q1(t) = t4 − θ1t3 + θ4t2 − e0θ2t + e2 0 = (x − e0e−1 4 )(x − e0e4)(x − e−1 3 )(x − e3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (10) 30 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have : x2σ∗ 1x1 = −x1x2 − x2 2x3 + θ1x2 = −e0 − z1 + x2 2z−1 1 (x2 1 + x2 2 − θ1x1 − θ2x2 + θ4) + θ1x2 = −e0 − z1 + z−1 1 � (e0 + z1)2 + x4 2 − θ1x2(e0 + z1) − θ2x3 2 + θ4x2 2 � + θ1x2 = e0 + z−1 1 � e2 0 + x4 2 − θ1x2 − θ2x3 2 + θ4x2 2 � = e0 + z−1 1 Q2(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Hence σ∗ 1x1 = e0x−1 2 + x−1 2 z−1 1 Q2(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The proof of the other equality is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If we develop the right term of (9), we get : t4 − (a4 + e0a3)t3 + (e0a3a4 + e2 0 + 1)t2 − e0(a3 + e0a4)t + e2 0 = t4 − θ2t3 + θ4t2 − e0θ1t + e2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If we develop the right term of (10), we get : t4 − (a3 + e0a4)t3 + (e0a3a4 + e2 0 + 1)t2 − e0(a4 + e0a3)t + e2 0 = t4 − θ1t3 + θ4t2 − e0θ2t + e2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Proof of Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='28, we get : z2 = x2σ∗ 1x1 − e0 = z−1 1 Q2(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Hence z1z2 = Q2(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Similarly : z0 = σ∗ 2x2 − e0 = z−1 1 Q1(x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Hence z0z1 = Q1(x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The others relations are obtained by applying g−k∗ to the previous one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have Q1 = e−2 0 t4Q2(e0t−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to Remark (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10), z2k = 0 are the equations of the lines Dr , Dl , or their images by the dynamic < g >, and z2k+1 = 0 are the equations of the lines ∆· or their images by the dynamic < g >.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 The Laurent property The exchange relations obtained at Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='27) suggests that the sequence of log-canonical systems of coordinates is related to a structure of generalized cluster algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Without going into the theory of cluster algebras (for details see [38]), we just recall here the fact that under some hypothesis they satisfy the “Laurent property” (see also [15]): Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A rational map r ∈ C(x, y) satifies the Laurent property if its polar set is included in xy = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A birational map r satifies the Laurent property if both r and r−1 have the Laurent property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let X be an affine surface, and let (yn, zn) be a sequence of algebraic morphisms from X to C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This sequence satisfies the Laurent property, if given an element (yn, zn), any other regular function ym (or zm) = r(xn, yn) satisfies the Laurent property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We must remark that the Laurent property is not stable by composition or inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It turns out that in a cluster sequence some simplications arise from the exchange relations and give this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A direct proof of this fact needs heavy computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We can prove here the Laurent property for the canonical sequence by an argument which avoid these computations with the exchange relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 31 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='31 The log-canonical sequence satisfies the Laurent property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We first prove that all the log-canonical variables are polynomials in (x1, x2, x3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This is true for (y1, z1, y2) = (x1, x1x2 − e0, x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Recall that σ1, σ2 (and therefore g) are polynomials in (x1, x2, x3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' All the other canonical variables are obtained by the action of a word in σ∗ 1, σ∗ 2 from a variable in this triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore they are still polynomials in (x1, x2, x3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set: pn : CV (θ) → C2, u = yn(x), v = zn(x), qn : CV (θ) → C2, u = zn(x), v = yn+1(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We claim that pn and qn satisfy the Laurent property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since pn is polynomial, we only have to prove that the polar set of p−1 n is included in uv = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This is true for p1 = (y1, z1): x1 = y1 x2 = (z1 + e0)y−1 1 x3 = z−1 1 (−y2 1 − (z1 + e0)y−2 1 + θ1y1 + θ2(z1 + e0)y−1 1 − θ4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This is also true for q1 = (z1, y2) by using a similar computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let ι : (u, v) → (v, u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have : q0 = ι ◦ p1 ◦ σ2, p2 = ι ◦ q1 ◦ σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, q0 and p2 also satisfy the Laurent property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the property is true for p1 and p2, and since the tame dynamic g is a polynomial automorphism, it remains true for any pn = g−1∗pn−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the property is true for q0 and q1 it remains true for any qn = g−1∗qn−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally, since pn satisfies the Laurent property and pm is polynomial, the map pm ◦ p−1 n : (ym, zm) = (r(yn, zn), s(ym, zm)) satisfies the Laurent property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='✷ From the above proof, one can remark that the Laurent property comes from the fact that the antisymplectic tame dynamics (σ1 and σ2) and the symplectic dynamics (g) are automorphisms of the cubic surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 Families of confluent and diffluent morphisms These families were first discovered by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes in [40] through an analytic confluent process, both on Painlev´e equations and on character varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We recover them by using a groupoid point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10) we have introduced a family of morphisms ϕκ : πV I 1 (X, S) → πV,κ 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore we obtain a family ϕ∗ κ : χκ V (a) → χV I(aκ) ρ → ρ ◦ ϕκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On the restriction over χ± V we have 2 families ϕ±∗ κ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='32 The morphisms ϕ±∗ κ are invertible on the open set in χV I(aκ) defined by the elements (M1, M2, M3, M4) such that (M1, M2) is a non reducible pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 32 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The matrix expression of ϕ+∗ κ is [U1, M0, U2, M3, M4]D → [U1Dκ, Dκ−1M0U2, M3, M4)]SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given (M1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' M2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' M3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' M4),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' and a parameter κ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' we search for matrices M0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' M′ 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' M′ 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (U1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' M0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U2) in U − × D × U + and a matrix Q in SL2(C) such that \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 U1Dκ = Q−1M1Q D−1 κ M0U2 = Q−1M2Q M′ 3 = Q−1M3Q M′ 4 = Q−1M4Q (11) For a given local data (a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a4),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' and a value κ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' we have only two choices for the eigenvalues (e0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' e−1 0 ) of M0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' solutions of κ−1e0 + κe−1 0 = a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' one centered around a2κ and the other around a2κ−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' induced by the change κ → κ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let e± 1 1, e± 2 be the eigenvalues of M1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The two solutions for M0 are: M0 = diag(e1e2, e−1 1 e−1 2 ), or M0 = diag(e−1 1 e−1 2 , e1e2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose the first one (the second will give a pre-image for ϕ−∗ κ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We recall the LDU decomposition in SL2(C): Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='33 Let M be an element of SL2(C) such that M[1, 1] ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists a unique triple (L, D, U) in U − × D × U + such that M = L × D × U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have \uf8eb \uf8ec \uf8ed a b c d \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed 1 0 l 1 \uf8f6 \uf8f7 \uf8f8 × \uf8eb \uf8ec \uf8ed e 0 0 e−1 \uf8f6 \uf8f7 \uf8f8 × \uf8eb \uf8ec \uf8ed 1 u 0 1 \uf8f6 \uf8f7 \uf8f8 ⇔ \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 a = e b = eu c = el d = e−1 + elu which system has the unique solution (l, e, u) = (c/a, a, b/a) if a ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ We call the above decomposition the LDU-decomposition of M and we denote: LDU(M) = (L, D, U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='34 Let M1 and M2 be two non vanishing matrices in SL2(C), M1 ̸= ±I, M2 ̸= ±I, with eigenvalues (e1, e−1 1 ) and (e2, e−1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Suppose that the eigenvectors related to e−1 2 and to e1 are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists a matrix Q in SL2(C) such that the diagonal component of the decomposition LDU of Q−1M1M2Q is diag(e1e2, e−1 1 e−1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The hypothesis of the Lemma gives the existence of a ”mixed basis” (u, v) given by an eigenvector u of M2 related to the eigenvalue e−1 2 , and an eigenvector v of M1 related to the eigenvalue e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let Q be the matrix of this change of basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: Q−1M1Q = \uf8eb \uf8ec \uf8ed e1 0 c1 e−1 1 \uf8f6 \uf8f7 \uf8f8 , Q−1M2Q = \uf8eb \uf8ec \uf8ed e2 b2 0 e−1 2 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 33 Therefore Q−1M1M2Q = \uf8eb \uf8ec \uf8ed e1e2 e1b2 e2c1 e−1 1 e−1 2 + b2c1 \uf8f6 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ed 1 0 c1 1 \uf8f6 \uf8f7 \uf8f8 · \uf8eb \uf8ec \uf8ed e1e2 0 0 e−1 1 e−1 2 \uf8f6 \uf8f7 \uf8f8 · \uf8eb \uf8ec \uf8ed 1 b2 0 1 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ End of the proof of Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Suppose that the pair of matrices (M1,κ, M2,κ) satisfies the hypothesis of Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We choose the matrix Q given by this Lemma and we obtain a solution of (11): (U1, M0, U2) = LDU(Q−1M1,κM2,κQ), M′ 3 = Q−1M3Q, M′ 4 = Q−1M4Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A change of mixed basis will modify Q by a multiplication on the righta side with a diagonal matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the class [(U1, M0, U2, M′ 3, M′ 4)]D is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The representations ρ for which the hypothesis of Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='34) is not satisfied are the representations for which the eigen- directions related to e1,κ and e−1 2,κ are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This defines a component –here the line Le1,e2– of the reducibility locus along the path γ1,2 in πV I 1 (X, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore Φκ is invertible outside Le1,e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Note that for the other choices of κ or e0 we shall find one of the other components of R(γ1,2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Using the trace maps, ϕ±∗ κ induces two families of morphisms of cubic surfaces: Φ± κ = (Tr±κ V )−1 ◦ ϕ±∗ κ TrV I : CV (θ±) → CV I(κ(θ±)) where κ(θ+) = κ(e0, a3, a4) = (κ + κ−1, e0κ−1 + e−1 0 κ, a3, a4) and κ(a−) = κ(e−1 0 , a3, a4) = (κ + κ−1, e−1 0 κ−1 + e0κ, a3, a4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='35 (Confluent and diffluent morphisms) The morphisms Φ± κ are symplectic birational morphisms from CV (θ±) to CV I(κ(θ±).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have to prove that Φ+ κ has rational expression in trace coordinates and is invertible in the class of birational transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='36 The map Φ+ κ : CV (θ+) to CV I(κ(θ+) is defined by \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 x1,κ = e−1 0 κx1 + κ−1x2 x2,κ = −e−1 0 κx1x3 + κ−1x1 − e−1 0 κx2 + a3κ + a4e−1 0 κ x3,κ = x3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set M1,κ = U1Dκ, M2,κ = Dκ−1M0U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 x1,κ = tr(M2,κM3) = α3e0κ−1 + e0γ3s2κ−1 + δ3e−1 0 κ x2,κ = tr(M3M1,κ) = α3κ + β3s1κ + δ3κ−1 x3,κ = tr(M1,κM2,κ) = e0s1s2 + e0 + e−1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Using Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8), we obtain the expressions of Φκ in trace coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='37 This map is invertible outside the lines Le1,κ,e2,κ ∪ Le−1 1,κ,e−1 2,κ in χV I(aκ) and Φ−1 κ is given by \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 x1 = (−κx1,κ − e0κ−1x2,κ + a3e0 + a4)(x3,κ − ce1,κ,e2,κ)−1 x2 = (κx1,κx3,κ − e0κ−1x1,κ + κx2,κ − a3κ2 − a4κ2e−1 0 )(x3,κ − ce1,κ,e2,κ)−1 x3 = x3,κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 34 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to find Φ−1 κ we solve the system � e−1 0 κx1 + κ−1x2 = x1,κ (−e−1 0 κx3,κ) + κ−1)x1 − e−1 0 κx2 = x2,κ − a3κ − a4e−1 0 κ For a fixed value of x3 = x3,κ this system is linear and invertible outside the set e−1 0 (x3,κ − e−1 0 κ2 − e0κ−2) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This set is the pair of lines x3,κ = e1,κe−1 2,κ + e1,κe−1 2,κ = ce1,κ,e2,κ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the pair of lines Le1,κ,e2,κ ∪ Le−1 1,κ,e−1 2,κ in χV I(aκ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Solving this system, we obtain the expression of Φ−1 κ given in the statement of the Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='✷ Finally one can prove by using the above expressions that Φ+ κ is a symplectic morphism (see also [40]) with respects to the symplectcic forms ωκ V (θ+) and ωV I(θκ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have a similar result for Φ− κ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4 The Painlev´e V vector field on MV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The Riemann-Hilbert map RHV Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any local connection ∇, defined by a germ of irregular sl2-system of Katz rank 1 induces a representation ρ∇ of the local wild groupoid π1(X0, S0) in SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any connection A in CV induces a representation ρA of πV 1 (X, S) in SL2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The representation of the local wild fundamental groupoid induced by a local irregular system is defined in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We first consider an extension of the set of base points to any point of D or �D which is an extremity of the rays ri, r± i , i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The points p1 and p2 are defined by the singular directions of the connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any point of �D is arbitrarily represented by a determination in the direction d of a formal fundamental system of solutions �Yd of the connection and any point of D is represented by an actual holomorphic fundamental system of solutions Yd on a small sector around d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any arc γ on D with origin a and end point b is represented, as usually by the comparison between the analytic continuation � Ya γ of Ya along γ with of Yb, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' by the matrix Mγ such that Yb = � Ya γ · Mγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any arc on �D is represented in the same way by using the formal representations of its extrem- ities, and the analytic continuation of the logarithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let rd be a regular ray whose origin and end-point are represented by � Yd and Yd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The morphism rd is represented by the comparison between the summation of � Yd (the summation replace here he analytic continuation) with Yd : Yd = Sd(� Yd) · Mrd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We represent the loops ti,i(κ) in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can suppose that the matrix �Ysi is a diagonal matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then the action of �ti,i(κ) on �Ysi is given by the product with the diagonal matrix diag(κ−1, κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='Therefore ρA (ti,i(κ)) = Dκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have defined the representation ρ∇ on all the generators of π1(X0, S0) and therefore on π1(X0, S0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a global system A in SV , we complete the previous local wild representation to a representation of πV 1 (X, S) by defining ρ∇(γi,j), (i, j) = (2, 3), (3, 4), (4, 1), (3, 3), (4, 4) in 35 the usual monodromic way, by analytic continuation along these paths or loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A change of representations of the objects, or a gauge action on the linear system, induce equivalent representations, which end the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ We have defined a Riemann-Hilbert map RHV : MV (α) → χV (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The general Riemann-Hilbert problem discusses about the surjectivity of RH: in the present context, for any irreducible representation ρ in χV , there exists a unique connection in MV on the trivial bundle whose linear representation is ρ: for details see [54], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 Isomonodromic families on MV Any isomonodromic family on MV (α) is a fiber of the map RHV , parametrized by a variable t, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a family of connections defined by dY dx = A(x, t) · Y such that the monodromy and the Stokes operators are locally constant in χV (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 There exists an open Zariski set in MV (α) and coordinates p, q on the fiber MV (α) such that the isomonodromic families are solutions the Painlev´e V hamiltonian differ- ential system (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A sketch of proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We follow here an argument of [54] wich extends the argument of Schlesinger for fuchsian connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a fundamental system of solutions Y (x, t), by isomon- odromy, d dtY (x, t) and Y (x, t) have the same behaviour by analytic continuation or under a Stokes operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the quotient B(x, t) = d dtY (x, t) · Y (x, t)−1 is univalued outside the fixed singular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 B(x, t) extends to the singular set in a meromorphic way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let U ⊂ C be an open subset, and let D be an open disc centered at ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let dY/dx = A(x−1, t)Y , where A ∈ sl2(O(D × U), be a parametrized meromorphic differential system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We suppose that, for all t ∈ U, the eigenvalues of A(0, t) are distinct and that the singularity is irregular, with a Katz rank equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From Theorem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='7), the system dY/dx = AY admits, in a small neighborhood of each t0 ∈ U a formal fundamental solution analytic in t : �Y = �ΦxLeQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The polynomials Q and the matrix L are analytic in t and the entries of �Φ belongs to O(V )[[x−1]], where V is a small open disc centered at t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Moreover these coefficients are 1-summable uniformly in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a direction d non-singular at t0, if |t − t0| is small, then d remains non-singular and the 1-sum is analytic in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Multiplying on the right by an invertible diagonal matrix analytic in t, we get a fundamental solution with similar properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If the system is isomonodromic, then the matrix L is constant and it is possible to choose �Y in such a way that the Stokes multipliers does not depend on t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' By a simple calculation, we see that �B(x, t) = d dt �Y (x, t) · �Y (x, t)−1 does not contain expo- nentials, and is invariant by the formal monodromy and by the (constant) Stokes multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore its entries belongs to O(D)((x−1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' These entries are 1-summable uniformly in t and 36 are invariant by the Stokes multipliers, therefore they are meromorphic in x (with a pole at ∞) and analytic in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Therefore Y (x, t) satisfies two rational linear systems dY dx = A(x, t) · Y and dY dt = B(x, t) · Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The compatibility condition requires that the two operators d/dx − A and d/dt − B have to commute : dA dt − dB dz + [B, A] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (12) The pair (A, B) is called an isomonodromic Lax pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' If A is irreducible, B is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In [54], the computation of B and the equivalence of the compatibility condition (12) with the hamiltonian system of PV have been performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 Singularities of the Painlev´e V vector field in the Okamoto’s compactifi- cation of MV (α) The Okamoto’s compactification [49], [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' All the Painlev´e foliations satisfy the Painlev´e property: any solution admits an extension along any path is the basis given by the time variable punctured by the fixed singular points, as a meromorphic function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In a first step, we search for a compactification on which appear the “polar” singular set, which corresponds to the poles of the meromorphic solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Here, following H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chiba [16] and [17], we have to distinguish the equations PIV , PII and PI from PV I, PV and PIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For the first triple we obtain this compactification by a convenient weighted projective space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For the second one, the natural weighted projective space presents a vanishing weight and we can’t catch all the polar set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this case we need to glue two copies of this weighted projective space by a convenient B¨acklund transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In a second step one can remove the polar singular set by a convenient sequence of blowing up’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the version of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chiba, it suffices to perform only one weighted blowing up whose weights are given by the eigenvalues of the polar singular point, which are positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The first step creates new singular points outside the polar singular set, over z = ∞, which are saddle-nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We describe here this set for the PV foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this case, the weights are ω = (1, 0, 1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since the second weight vanishes, this space P3 (1,0,1,1) is not compact and is isomorphic to P2 × C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This space is here a manifold (an orbifold for other Painlev´e equations: [Chiba1-2-4]), covered by 3 charts: U1 = {(X1 : X2 : X3 : X4), X1 ̸= 0}, (X1 : X2 : X3 : X4) = (1 : u1 : u2 : x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U3 = {(X1 : X2 : X3 : X4), X3 ̸= 0}, (X1 : X2 : X3 : X4) = (v1 : v2 : 1 : y);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U4 = {(X1 : X2 : X3 : X4), X4 ̸= 0}, (X1 : X2 : X3 : X4) = (w1 : w2 : z : 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The change of charts are given by w1 = v1y−1 = x−1, w2 = v2 = u1, z = y−1 = u2x−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Singular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The chart U4 is the ”initial chart”, before compactification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this chart the vector field corresponding to the hamiltonian zHV is defined by \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 z ˙w1 = −2w2 1w2 + w2 1 + w1z − 2w1w2z + (α1 + α3)w1 − α2z z ˙w2 = 2w1w2 2 − 2w1w2 − w2z + w2 2z − (α1 + α3)w2 + α1 ˙z = z 37 For each vector field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the plane z = 0 is invariant and the singular points of the restriction of the vector field to this plane are given by \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 (−2w1w2 + w1 + (α1 + α3))w1 = 0 2w1w2 2 − 2w1w2 − (α1 + α3)w2 + α1 = 0 z = 0 For α1 ̸= ±α3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' we obtain 2 singular points r1 and r2: (w1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' w2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' z) = � 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α1 α1 + α3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (w1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' w2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' z) = � α1 − α3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α1 α1 − α3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Now we search for singular points over z = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the first chart the Painlev´e vector field is (see [17]): \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ˙u1 = −2u1 + 2u2 1 − u1u2 + u2 1u2 + α1x − (α1 + α3)u1x ˙u2 = −u2 + 2u1u2 − u2 2 + u2x + 2u1u2 2 − (α1 + α3)u2x + α2u2 2x ˙x = x(−1 + 2u1 − u2 + 2u1u2 − (α1 + α3)x + α2u2x) The plane (x = 0) is invariant and PV |(x=0) is the autonomous hamiltonian vector field � ˙u1 = −2u1 + 2u2 1 − u1u2 + u2 1u2 = u1(u1 − 1)(u2 + 2) ˙u2 = −u2 + 2u1u2 − u2 2 + 2u1u2 2 = u2(2u1 − 1)(u2 + 1) We have 5 singularities p1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' p2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s3 in this first chart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' which do not depend on the parameters αi: (u1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' u2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' x) = (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' −1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' −2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' −1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The singularities p1 and p2 are polar singular points: H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chiba has proved in [17] that they correspond to solutions given by Laurent series at a movable pole z = z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can remove these singularities by a weighted blowing up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The eigenvalues of linear part of PV are (−2, −1, −1) and (2, 1, 1) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' They are analytically linearizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the third chart –the Boutroux chart–,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the Painlev´e vector field is given by \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ˙v1 = v1(1 + v1 − 2v2 − 2v1v2 + (α1 + α3 − 1)y) − α2y ˙v2 = v2(−1 + v2 − 2v1 + 2v1v2 − (α1 + α3)y) + α1y ˙y = −y2 The plane y = 0 is invariant and the restriction of the vector field at infinity is � ˙v1 = v1(1 + v1 − 2v2 − 2v1v2) = v1(v1 + 1)(1 − 2v2) ˙v2 = v2(−1 + v2 − 2v1 + 2v1v2) = v2(v2 − 1)(2v1 + 1) There are five singular points s1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s4 and s5 in y = 0 given by (v1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' v2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' y) = (−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (−1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 38 The polar singular set of PV contains 4 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to catch the two missing polar singular points, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chiba introduces a second copy of � P3(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1) glued to the first one by the B¨acklund transformation π,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' given in each chart by π :( ˜w1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜w2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α3) = (z(w2 − 1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' −w1z−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α0) (˜v1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜v2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α3) = (v2 − 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' −v1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α0) (˜u1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜u2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α3) = (−u−1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (u1 − 1)−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (u1 − 1)−1u−1 2 x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' α0) By computing the singularities of the vector field in the chart ( ˜w1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜w2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜z),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' we find two singular points r3 and r4 given by: ( ˜w1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜w2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜z) = (˜α1 − ˜α3 + 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜α1 ˜α1 − ˜α3 + 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ( ˜w1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜w2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ˜z) = (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' − ˜α1 ˜α0 + ˜α2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have r4 = r1, and therefore we obtain 3 singular points of regular type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the chart (˜u1, ˜u2, ˜x), we find five singular points: p3 : (˜u1, ˜u2, ˜x) = (0, 0, 0), p4 : (˜u1, ˜u2, ˜x) = (1, 0, 0), s1 : (˜u1, ˜u2, ˜x) = (1, −1, 0), s2 : (˜u1, ˜u2, ˜x) = (1 2, −2, 0), s4 : (˜u1, ˜u2, ˜x) = (0, −1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to [17], the singular points p3 and p4 are the two missing polar singular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The singularities s1, s2 and s4 was yet detected in the first copy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The singular points in the Boutroux chart (˜v1, ˜v2, y) = (v2 −1, −v1, y) are s1, s2, s3, s4 and s5 without new singular point (the change of chart is polynomial).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have obtained: Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 The Painlev´e vector field admits 3 singular points r1, r2, r3 of regular type over z = 0, 4 polar singular points pi, i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 over z = ∞, which can be removed by a weighted blowing-up, and 5 singular points si over z = ∞, of saddle-node type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' By a local study around each saddle-node singularity, one can recover the 5 solutions of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Parusnikova in Laurent series around z = ∞ for the Painlev´e V equation: [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 5 Dynamics on χV 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The tame dynamics As mentionned in the introduction, the dynamic of the Painlev´e VI equation on χV I is induced by the automorphisms of the groupoid, given by braids over 3 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Here since the singular set reduces to 3 points, the braid group over two points has only one generator, which can be represented by the pure braid b over s3 and s4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Furthermore one can consider the “half- monodromy” defined the (non pure) braid b3,4 which permutes the positions of s3 and s4 and induces an involution on the local parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' These actions induced by the trace coordinates on CV (θ+) has been computed by the authors in [53] and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes in [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 The action of the braid b3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 : CV (θ+ 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' θ+ 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' e0) → CV (e−1 0 θ+ 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' e−1 0 θ1+,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' e−1 0 ) is defined by: \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 x′ 1 = e−1 0 (−x2 − x1x3 + θ+ 2 ) x′ 2 = e−1 0 x1 x′ 3 = x3 and \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 e′ 0 = e−1 0 θ+ 1 ′ = e−1 0 θ+ 2 θ+ 2 ′ = e−1 0 θ+ 1 39 The action of the pure braid b3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 ◦ b3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 : CV (θ+) → CV (θ+) is defined by: g3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 : \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 x′ 1 = x1x2 3 + x2x3 − x1 − θ+ 2 x3 + θ+ 1 x′ 2 = −x1x3 − x2 + θ+ 2 x′ 3 = x3 As for the dynamics on CV I(θ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' this dynamics and its inverse are polynomial dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This is the only part of the dynamics on χV I which do not degenerate through the confluent morphisms from χV I to χV (see next paragraph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The dynamics generated by g3,4 is called the tame dynamics, and denoted by Tame(CV ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 The confluent dynamic Using the birational map Φκ = Φ+ κ , each dynamic hi,j on CV I(θκ) defined by the braids induces a family of birational dynamics gi,j(κ) = φ−1 κ hi,j ◦ φκ on χ+ V (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This one was previously obtained by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes by using an analytic confluent process in the spaces of connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The confluent dynamic Conf(PV ) is the dynamic generated by g1,2(κ), g2,3(κ) and g3,1(κ) for κ is C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We still have the relation g1,2(κ) ◦ g2,3(κ) ◦ g3,1(κ) = id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore it suffices to compute g1,2(κ) and g2,3(κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Notice that, from the braid group relations, g1,2(κ) = g3,4(κ)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' By a direct computation using proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='36), it can be checked that Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 The dynamic g3,4(κ) = φ−1 κ h3,4 ◦ φκ on χV (a) do not depend on κ and generates the tame dynamic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 Since the braid between s1 and s2 (or between s3 and s4) corresponds to a loop around 0 in the time space, g3,4 is conjugated through the Riemann-Hilbert correspondence to the non linear monodromy of the foliation FV over z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Contrary to the previous case, the dynamics g2,3(κ) and g3,1(κ) are not generated by an automorphism of πV 1 (Y, S): indeed on the groupoid level, ϕκ is not an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Nevertheless they induce families of birational dynamics on CV (θ): Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 The family of dynamics g2,3(κ) is defined by: X1 = e0 x2 X2 = x2 − κ2 x2 + e−1 0 κ2x1 X3 = κ−2x2 2x3 − (e−2 0 κ2 − κ−2)x1x2 − 2e−1 0 x2 2 + (e−1 0 θ2 + κ−2θ1)x2 + (e−1 0 κ2 + e0κ−2) The second family g3,1(κ) is given by g1,3(κ) = g1,2 ◦ g2,3(κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We first search for the matrix expressions of the confluent dynamics : 40 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='7 The confluent dynamic (ϕ∗ κ)−1 ◦ h2,3 ◦ ϕ∗ κ : χκ V (a) → χκ V (a) is defined by ([U1, M0, U2, M3]D → [V1, M0, V2, N3]D with V1 = \uf8eb \uf8ec \uf8ed 1 0 κ−1e0s1θ3 + κ−1e−1 0 γ3 − κe−1 0 γ3 + κ−1e0s1s2γ3 1 \uf8f6 \uf8f7 \uf8f8 , V2 = \uf8eb \uf8ec \uf8ed 1 κ−1e0s2θ3 + κ−1e0s2 2γ3 − κ−1e0s2δ3 − κ−1e0β3 + κe−1 0 β3 + κe−1 0 s2δ3 0 1 \uf8f6 \uf8f7 \uf8f8 , N3 = 1 θ3 + s2γ3 \uf8eb \uf8ec \uf8ed θ2 3 + θ3γ3s2 + β3γ3 + γ3δ3s2 −e0κ−1(θ3s2 + γ3s2 2β3 − δ3s2) κe−1 0 γ3 1 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider an element ρ of χV (a) given by its normalized representation in the canonical Cartan-Borel decomposition: ρ = [U1, M0, U2, M3, M4], (U1, M0, U2, M3) ∈ U −×D×U + ×SL2(C), M4 = (U1M0U2M3)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set: U1 = \uf8eb \uf8ec \uf8ed 1 0 u1 1 \uf8f6 \uf8f7 \uf8f8 , M0 = \uf8eb \uf8ec \uf8ed e0 0 0 e−1 0 \uf8f6 \uf8f7 \uf8f8 , U2 = \uf8eb \uf8ec \uf8ed 1 u2 0 1 \uf8f6 \uf8f7 \uf8f8 , M3 = \uf8eb \uf8ec \uf8ed θ3 β3 γ3 δ3 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The map Φκ is defined by: Φκ([U1, M0, U2, M3, M4]) = [M1, M2, M3, M4] with M1 = U1Dκ, M2 = D−1 κ M0U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore M1 = \uf8eb \uf8ec \uf8ed κ 0 κu1 κ−1 \uf8f6 \uf8f7 \uf8f8 , M2 = \uf8eb \uf8ec \uf8ed κ−1e0 κ−1e0u2 0 κe−1 0 \uf8f6 \uf8f7 \uf8f8 , M3 = \uf8eb \uf8ec \uf8ed θ3 β3 γ3 δ3 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to [53], the dynamic of h2,3 is given by M1 → (M2M3)−1M1(M2M3) M2 → M2 M3 → M3 M4 → (M2M3)−1M4(M2M3) Since each data is given up to a common conjugacy, we can also use: M1 → M′ 1 = M2−1M1M2 M2 → M′ 2 = M3M2M3−1 M3 → M′ 3 = M3 M4 → M′ 4 = M2−1M4M2 41 Now, in order to compute φ−1 κ (M′ 1, M′ 2, M′ 3, M′ 4), we make use of the matrix P given by Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='34), defined by a mixed basis for the pair (M′ 1, M′ 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let (u, v) a basis of the representation of the initial object such that the representation Φκ(ρ) is given by the matrices Mi: u is an eigenvector of M2 for the eigenvalue e2 = κ−1e0 and v is an eigenvector of M1 for the eigenvalue e1−1 = κ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The vectors u′ = M3 · u′, v′ = M2−1 · v are eigenvectors for M′ 2 (with eigenvalue κ−1e0) and for M′ 1 (with eigenvalue κ−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The change of basis is given by the matrix P = \uf8eb \uf8ec \uf8ed θ3 −κ−1e0u2 γ3 κ−1e0 \uf8f6 \uf8f7 \uf8f8 which is invertible outside κ−1e0(b3 + u2γ3) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Using Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8), this locus is given by x2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the dynamic g2,3(κ) is a rational dynamic with polar set x2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: P −1(M′ 1M′ 2)P = \uf8eb \uf8ec \uf8ed e0 κ−1e2 0u2b3 + κ−1e2 0u2 2γ3 − κ−1e2 0u2δ3 − κ−1e2 0β3 + κβ3 + κu2δ3 κ−1e2 0u1b3 + κ−1γ3 − κγ3 + κ−1e2 0u1u2γ3 ⋆ \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' where the coefficient ⋆ is not specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The LDU-decomposition of this matrix is given by (V1, M0, V2) with V1 = \uf8eb \uf8ec \uf8ed 1 0 κ−1e0u1b3 + κ−1e−1 0 γ3 − κe−1 0 γ3 + κ−1e0u1u2γ3 1 \uf8f6 \uf8f7 \uf8f8 , V2 = \uf8eb \uf8ec \uf8ed 1 κ−1e0u2b3 + κ−1e0u2 2γ3 − κ−1e0u2δ3 − κ−1e0β3 + κe−1 0 β3 + κe−1 0 u2δ3 0 1 \uf8f6 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' we have: N3 = P −1M′ 3P = 1 b3 + u2γ3 \uf8eb \uf8ec \uf8ed b2 3 + b3γ3u2 + β3γ3 + γ3δ3u2 −e0κ−1(b3u2 + γ3u2 2β3 − δ3u2) κe−1 0 γ3 1 \uf8f6 \uf8f7 \uf8f8 which proves the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Proof of Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The image of x1 = δ3 is given by X1 = N3[2, 2] = 1 b3+u2γ3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8), we have: N3[2, 2] = 1 b3 + u2γ3 = 1 (a3 − x1) + e−1 0 (x2 − e0a3 + e0x1) = e0 x2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 42 The image of x2 = δ4 is given by N4[2, 2] where N4 = P −1M′ 4P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have N4[2, 2] = −e−2 0 κ2γ3β4 + b3δ4 + u2γ3δ4 b3 + u2γ3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From M4 = (U1M0U2M3)−1 we obtain that β4 = −e0(β3 + u2δ3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, γ3β4 = −e0γ3β3 − e0u2γ3δ3 = −e0(b3δ3 − 1) − e0u2γ3δ3 = −e0((a3 − x1)x1 − 1) − x1(x2 + e0x1 − e0a3) = e0 − x1x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From Lemma (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8) and the above equality we obtain X2 = N4[2, 2] = x2 − κ2x−1 2 + e−1 0 κ2x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We can obtain the last component by computing X3 = tr(M′′ 1 M′′ 2 ) = tr(M′ 2 −1M′ 1M′ 2M′ 3M′ 2M′ 3 −1), or by using the equation of the cubic surface: X3 = −X2 1 − X2 2 + θ1X1 + θ2X2 − θ4 X1X2 − e0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 The canonical dynamics on CV (θ) In [40], Martin Klimes has computed the dynamics obtained on CV (θ) from the wild dynamics (non linear stokes operators and non linear exponential tori of one irregular singularity of the Painlev´e foliation) through the Riemann-Hilbert morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It turns out that this dynamics is a rational one on CV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We enhance here that this dynamics was already present on the cubic surface in a canonical way, using the log-canonical coordinates introduced in subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This section is completely independent of the other ones excepted 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4, and only deals with dynamics on a singular cubic surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Nevertheless the terminology (canonical Stokes operators etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=') is deeply influenced by the confluent dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We do not need here any restriction on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let y be a log-canonical function on CV (θ): there exists z such that (y, z) –or (z, y)– is a log-canonical system of coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the logarithmic hamiltonian function Hy on CV (a) such that dHy = dy y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let Xy be the hamiltonian vector field related to Hy for the symplectic form ωV : ωV (Xy, ·) = −dy y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Through the symplectic morphism (y, z), the image of this vector field is z ∂ ∂z (or −z ∂ ∂z if y is completed in log-canonical system of coordinates by the left side).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore its flow z(t) = z0e±t is globally defined on C, and it can be factorized through a multiplicative action of C∗ by setting λ = et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let Ty be this multiplicative family of (rational symplectic) automorphisms on CV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 43 Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='8 Ty = {tλ : (z′, y) �→ (λ−1z′, y)} = {tλ : (y, z) �→ (y, λz)} is the exponential torus related to the log canonical function y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Each element of Ty keeps invariant y, and the set of rational invariant functions of Ty is C(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Consider the log-canonical pentuple (z0, y1, z1, y2, z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The elements of Ty1 keep invariant the reducible locus z0 = 0 and z1 = 0, and the elements of Ty2 keep invariant the reducible locus z1 = 0 and z2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The subgroups of Symp = Symp(C2, ωlog): Bi, B♮ i, Ui, i = 1, 2 are defined in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' They induce subgroups of Symp(CV , ωV ) by using a system of log-canonical coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Given a log canonical function z = zk in S, one can complete z into two log-canonical systems, either by the left side: (y, z) or by the right side: (z, y′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We fix a canonical triple (y, z, y′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The pull-back of B2 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' B♮ 2, U2) by (y, z) and the pull-back of B1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' B♮ 1, U1) by (z, y′) define the same subgroup of Sym(CV , ωV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We fix a canonical triple (z, y, z′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The pull-back of B2 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' B♮ 2, U2) by (z, y) and the pull-back of B1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' B♮ 1, U1) by (y, z′) define the same subgroup of Sym(CV , ωV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The subgroups obtained at the first point of Lemma (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10) are denoted by Bz, B♮ z, Uz, and the subgroups obtained at the second point are denoted by By, B♮ y, Uy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='11 Given a canonical system of coordinates (y, z) we will say that By and Bz are the opposite Borel subgroups associated to (y, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof of Lemma (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1- The elements of the pullback of B2 by (y, z) are given by (y, z) → (r(z)y, λz), r ∈ C(z)∗, λ ∈ C∗, and the elements of the pullback of B1 by (z, y′) are given by (z, y′) → (λz, r(z)y′), r ∈ C(z)∗, λ ∈ C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore using yy′ = z + e0, the elements of the first group also write (z, y′) → (λz, r′(z)y′), with r′(z) = λz + e0 (z + e0)r(z), which proves the first point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2- The elements of the pullback of B2 by (z, y) are given by (z, y) → (r(y)z, λy), r ∈ C(y)∗, λ ∈ C∗, and the elements of the pullback of B1 by (y, z′) are given by (y, z′) → (λy, r(y)z′), r ∈ C(y)∗, λ ∈ C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore using zz′ = Q(y), where Q = Q1 or Q2 is a polynomial, the elements of the first group also write (y, z′) → (λy, r′(y)z′), with r′(y) = Q(λy) Q(y)r(y), which proves the second point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ 44 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='12 We have Z(Ty) = By, N(Yy) = By∪B− y , where B− y = {(y, z′) → (λy, r(y)z′−1), r ∈ C(y)∗, λ ∈ C∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let tλ : (y, z′) → (y, λz′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' An element ρ of Symp(CV ), given by ρ : (y, z′) → (Y (y, z′), Z′(y, z′)) commutes with tλ if and only if, for any λ in C∗, Y (y, λz′) = Y (y, z′), Z′(y, λz′) = λZ′(y, z′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We claim that any rational function r in K(x) over a field K ⊃ C which satisfies r(λx) = λr(x) for any λ in C∗ is a constant function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Indeed if it was not a constant function it would admit an infinite number of zeroes or poles in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' By applying this remark to z′ �→ Y (y, z′) and to z′ �→ Z′(y, λz′)z′−1, we conclude that Y do not depend on z′ and that Z′ is linear in z′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists two rational functions q(y) and r(y) such that Y (y, λz′) = q(y), Z′(y, λz′) = r(y)z′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have dY Y ∧ dZ′ Z′ = q′(y)dy y ∧ (r′(y)dy y + dz z ) = q′(y)dy y ∧ dz z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore q′(y) = 1, and q(y) = µ in C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The elements of Z(Ty) write (y, z′) → (µy, r(y)z′) which prove that Z(Ty) = By.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Suppose now that an element ρ is in the normalizer of Ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Then either it commutes whith each element of Ty, or it anti-commutes with each element of Ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this last case a similar computation proves that ρ : (y, z′) → (µy, r(y)z′−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='13 Let T = (y, z, y′) be a log-canonical triple in the cluster sequence S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' There exists a unique element sT of Uz such that sTTys−1 T = Ty′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This operator is given by: sT : (y, z) → (y(1 + e−1 0 z), z) or by (z, y′) → (z, y′(1 + e−1 0 z)−1) = (z, e0y−1) and we have: s−1 T : (y, z) → (y(1 + e−1 0 z)−1, z) = (e0y′−1, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: Ty = {ty(λ) : (y, z) → (y, λz)}, Ty′ = {ty′(λ) : (z, y′) → (λ−1z, y′)} = {ty′(λ) : (y, z) → (y1 + e−1 0 λ−1z 1 + e−1 0 z , λ−1z)}, Uz = {ur : (y, z) → (r(z)y, z), r ∈ C(z)∗, r(0) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the element s of Uz: (y, z) → (y(1 + e−1 0 z), z) satisfies for all λ in C∗ s ◦ ty(λ) ◦ s−1 = ty′(λ−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to prove the unicity of s, suppose that there exist another s′ in Uz which conjugates Ty and Ty′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have : s−1 ◦ s′(Ty) = Ty i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' s−1 ◦ s′ belongs to the normalizer N(Ty) of Ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have N(Ty) ∩ Uz = {id} : this is a direct consequence of Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='✷ 45 Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='14 The automorphism sT is the canonical Stokes operator induced by the triple T = (y, z, y′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The automorphism sT writes in the coordinates h = log y, l = log(1 + e−1 0 z): (h, l) → (h + l, l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' sT is a pseudo-generator of Uz, that is to say the family {ty(λ) ◦ sT ◦ ty(λ)−1, λ ∈ C∗} generates Uz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Consequently, B♮ z :=< Uz, Ty >=< sT, Ty >.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let sk be the canonical Stokes operator related to the triple (yk, zk, yk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: σ1 ◦ s1 ◦ σ−1 1 = s−1 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g ◦ sk ◦ g−1 = sk+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For i = 1, 2, si keeps invariant the lines zi = 0, and the restriction of si on each line is a translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' More generally, sk keeps invariant zk = 0, and the restriction of sk to the set of rational curves zk = 0 has no fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This first point is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: {ty(λ) ◦ sT ◦ ty(λ)−1, λ ∈ C∗} = {(y, z) → (y(1 + νz), z), ν ∈ C∗} The statement comes from the fact that any rational function r such that r(0) = 1 writes r(z) = � i(1 − µiz) � j(1 − νjz)−1 where the µ−1 i are the zeroes of r and the ν−1 j are the poles of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: s1 : (y1, z1) → (y1(1 + e−1 0 z1, z1) s2 : (z2, y3) → (z2, y3(1 + e−1 0 z2)−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since σ1 : (y1, z1) → (y3, z2), we have σ1 ◦ s1 ◦ σ−1 1 = s−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The automorphism g−1 send the triple (yk, zk, yk+1) on (yk+2, zk+2, yk+3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore sk = g−1 ◦ sk+2 ◦ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From the previous point, it suffices to prove the result for s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We lift the expression of s1 in the coordinate system (y1, z1, x3): s1 : (y1, z1, x3) → (e−1 0 y1(z1 + e0), z1, X3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The equation of the character variety CV (θ) is given by x3z1 + y2 1 + (z1 + e0)2y−2 1 − θ1y1 − θ2(z1 + e0)y−1 1 + θ4 = 0, which is equivalent to x3z1 + y−2 1 z2 1 + 2e0y−2 1 z1 − θ2y−1 1 z1 = −y2 1 − e2 0y−2 1 + θ1y1 + θ2e0y−1 1 − θ4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: X3z1 + e−2 0 y2 1(z1 + e0)2 + e2 0y−2 1 − θ1e−1 0 y1(z1 + e0) − θ2e0y−1 1 + θ4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 46 Therefore, X3z1 = −e−2 0 y2 1z2 1 − 2e−1 0 y2 1z1 + θ1e−1 0 y1z1 − y2 1 − e2 0y−2 1 + θ1y1 + θ2e0y−1 1 − θ4 = −e−2 0 y2 1z2 1 − 2e−1 0 y2 1z1 + θ1e−1 0 y1z1 + x3z1 + y−2 1 z2 1 + 2e0y−2 1 z1 − θ2y−1 1 z1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We obtain: X3 = −e−2 0 y2 1z1 − 2e−1 0 y2 1 + θ1e−1 0 y1 + x3 + y−2 1 z1 + 2e0y−2 1 − θ2y−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the restriction of s1 to z1 = 0 is given by x3 → x3 + θ1e−1 0 y1 − θ2y−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On each component of z1 = 0, y1 is constant (= e± 3 or e0e±1 4 ) and this map is a translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='16 The canonical dynamics induced by the canonical triple T = (y, z, y′) is the subgroup Dyn(T) =< Ty, sT, Ty′ > of Symp(CV ) generated by Ty, sT, and Ty′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='17 We have : Dyn(T) =< Ty, sT >= B♮ z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The first equality is a consequence of the relation sTTys−1 T = Ty′ obtained in Propo- sition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='13), and the second one was obtained at the second point of Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='18 The canonical dynamics Dyn(CV ) induced by the fundamental canonical se- quence {y0, z0, y1, z1, y2, z2, y3} is the rational symplectic dynamic generated by: g : (y2, z2) → (y0, z0), Ty1, s1 = s(y1,z1,y2), s2 = s(y2,z2,y3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The subgroup Tame(CV ) of Dyn(CV ) generated by g is the tame canonical dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='25), the canonical sequence is almost unique, that is we can only replace zk with czk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This action is an element of Tyk and therefore do not change the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This dynamics only depends on the polynomial FV , which justify the notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Dyn(CV ) also contains Ty0 = g∗Ty2 and s0 = s(y0, z0, y1) = g∗s2, and more generally all the Tyk and all the sk for k in Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Dyn(CV ) =< B♮ z1, B♮ z2, g > .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='20 The element �m of Dyn(CV ) such that g = s2 ◦ �m ◦ s1 is defined by (y2, z2) → (y2, e2 0z2y−4 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have s∗ 1z2 = s∗ 1Q2(y2)z−1 1 = Q2(e0y−1 1 )z−1 1 = e2 0y−4 1 Q1(y1)z−1 1 = e2 0y−4 1 z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, g−1∗s∗ 1z2 = e2 0y−4 3 z2, s∗ 2g−1∗s∗ 1z2 = e−2 0 y4 2z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We also have s∗ 2g−1∗s∗ 1y2 = s∗ 2g−1∗(e0y−1 1 ) = s∗ 2(e0y−1 3 ) = y2, which proves that �m−1 = s1 ◦ g−1 ◦ s2 is defined by (y2, z2) → (y2, e−2 0 z2y4 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='21 The element �m in Dyn(CV ) is the canonical formal monodromy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Note that �m = t2(e2 0y−4 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In particular, �m is in the centralizer Z(Ty2) = By2 of Ty2, and preserves y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 47 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 Comparison between the confluent and the canonical dynamics We have previously found that the confluent dynamics and the canonical dynamics are both extensions of the tame dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In order to compare Dyn(CV ) and Conf(PV ), we write the confluent dynamic in the canonical coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The confluent dynamic is generated by g1,2 = g−1 3,4 given by Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4), the family g2,3(κ) given by Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6) and the family g3,1(κ), which satisfies the relation g1,2 ◦ g2,3(κ) ◦ g3,1(κ) = id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='22 We have: (i) We have g1,2 = g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Hence g1,2 : (yn, zn) → (yn−2, zn−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) The automorphism g2,3(κ) and its inverse are given in canonical coordinate systems by g2,3(κ) : (z1, y2) → (κ2z1y−2 2 , (1 + κ2e−1 0 z1y−2 2 )y2), g3,2(κ) : (y1, z1) → (y1 + e0κ−2z1y−1 1 , e2 0κ−2z1y−2 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (iii) The automorphism g3,1(κ) and its inverse are given in canonical coordinate systems by g3,1(κ) : (z2, y3) → (κ2z2y−2 3 , (1 + κ2e−1 0 z2y−2 3 )y3), g1,3(κ) : (y2, z2) → (y2 + e0κ−2z2y−1 2 , e2 0κ−2z2y−2 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (i) We have g = σ1 ◦ σ2, with σ1(x1, x2, x3) = (x1 − FV,x1, x2, x3) = (−x1 − x2x3 + θ1, x2, x3) σ2(x1, x2, x3) = (x1, x2 − FV,x2, x3) = (x1, −x2 − x1x3 + θ2, x3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, (σ1 ◦ σ2)∗x1 = σ∗ 2(−x1 − x2x3 + θ1) = −x1 + x2x3 + x1x2 3 − θ2x3 + θ1 = (g1,2)∗x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (σ1 ◦ σ2)∗x2 = σ∗ 2(x2) = −x2 − x1x3 + θ2 = (g1,2)∗x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Hence, g = g1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) From Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6) we have: g2,3(κ)∗z1 = e0x−1 2 (x2 − κ2x−1 2 + e−1 0 κ2x1) − e0 = e0 + κ2x−2 2 (x1x2 − e0) − e0 = κ2z1y−2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g2,3(κ)∗y2 = g2,3(κ)∗((z1 + e0)y−1 1 ) = (κ2z1y−2 2 + e0)e−1 0 y2 = y2(1 + e−1 0 κ2z1y−2 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We obtain g3,2(κ) by reversing the map (z1, y2) → (Z1, Y2): z1 = κ−2Y 2 2 (1 + e−1 0 Z1)−2, y2 = Y2(1 + e−1 0 Z1)−1, and by using the change of canonical coordinates (z1, y2) → (y1 = (z1 + e0)y−1 2 , z1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 48 (iii) We have g1,3(κ) = g ◦ g2,3(κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set Z2 := κ2z2y−2 3 , Y3 := y3 � 1 + κ2e−1 0 z2y−2 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have to prove that g1,3(κ)∗Z2 = z2 and g1,3(κ)∗Y3 = y3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g1,3(κ)∗Z2 = g2,3(κ)∗ ◦ g∗(κ2z2y−2 3 ) = g2,3(κ)∗(κ2z0y−2 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g1,3(κ)∗Y3 = g2,3(κ)∗ ◦ g∗Y3 = g2,3(κ)∗ � y1(1 + κ2e−1 0 z0y−2 1 ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We compute g2,3(κ)∗z0 and g2,3(κ)∗y1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have z0 = z−1 1 Q1(y1), therefore : g2,3(κ)∗z0 = (g2,3(κ)∗z0)−1 Q1 (g2,3(κ)∗y1) = κ−2z−1 1 y2 2Q1 � e0y−1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We recall (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='29) that Q1(e0t−1) = e−2 0 t4Q2(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We obtain : g2,3(κ)∗z0 = κ−2e2 0y−2 2 z−1 1 e2 0y4 2Q1 � e0y−1 2 � = κ−2e2 0y−2 2 z−1 1 Q2(y2) = e2 0κ−2y−2 2 z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since y1 = (z1 + e0)y−1 2 , by using (ii) we have g2,3(κ)∗y1 = (κ2z1y−2 2 + e0)(y2 + κ2e−1 0 z1y−1 2 )−1 = e0y−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally, g1,3(κ)∗Z2 = g2,3(κ)∗(κ2z0y−2 1 ) = κ2(e2 0κ−2y−2 2 z2)(e0y−1 2 )−2 = z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g1,3(κ)∗Y3 = g2,3(κ)∗ � y1(1 + κ2e−1 0 z0y−2 1 ) � = e0y−1 2 � 1 + κ2e−1 0 (e2 0κ−2z2y−2 2 )(e0y−1 2 )−2� = e0y−1 2 (1 + e−1 0 z2) = e0y−1 2 � 1 + e−1 0 (y2y3 − e0) � = y3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore, g3,1(κ) : (z2, y3) → (Z2, Y3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The computation of its inverse g3,1(κ) in the chart (y2, z2) is similar to the computation of the inverse of the g2,3(κ) in point (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='✷ Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='23 The transformations g2,3(κ) and g3,1(κ) are conjugated by the map ξ : (y1, z2) → (y2, z3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Nevertheless, this conjugation ξ does not belong to the canonical dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The following equalities are consequences of the points (ii) and (iii) in Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='22): Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='24 For all κ in C∗ we have: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g2,3(κ) = g2,3(1) ◦ ty2(κ2) = ty1(κ−2) ◦ g2,3(1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g1,3(κ) = g1,3(1) ◦ ty2(κ2) = ty3(κ−2) ◦ g1,3(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In particular, g2,3(κ) conjugates Ty1 and Ty2: g2,3(κ) ◦ ty2(κ2) ◦ g2,3(κ) = ty1(κ−2), and g3,1(κ) conjugates Ty2 and Ty3: g3,1(κ) ◦ ty3(κ2) ◦ g1,3(κ) = ty1(κ−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From these preliminary results we immediately obtain: Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The tame dynamic generated by g = σ1 ◦ σ2 is included in Conf(PV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For any n in Z, Tyn ⊂ Conf(PV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 49 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The first point is a direct consequence of g = g1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The second one is obtained for n = 1 or n = 2 from the first item of Corollary (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The others tori are obtained from Ty1 or Ty2 by a conjugation with an element of the tame dynamic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Nevertheless, the canonical Stokes operators do not belong to Conf(PV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The reason is the following one: both g2,3(κ) and s1 keep invariant ∆ : z1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The restriction of s1 to each component of ∆ is a translation: see Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can compute the restriction of g2,3(κ) on each each line of ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' g2,3(κ)∗x3 = κ−2x2 2x3 + β(κ, x1, x2), where β(κ, x1, x2) only depends on κ, x1, and x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On ∆, x1 = e±1 3 , e0e±1 4 , x2 = e0e±1 3 , e±1 4 , therefore the restriction of the g2,3(κ) are affine transformations on each line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The same property holds for g3,1(κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Nevertheless, we cannot find κ in C∗ such that κ−2x2 2 = 1 simultaneously on each component of ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This remark suggests to introduce an extension of the confluent dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The only way to obtain from the family g2,3(κ) an element which is a translation on ∆ is to introduce a functional time for the elements of Tt2, setting κ = x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore if we expect to obtain the canonical stokes operators from the confluent dynamic, we have to extend it by the element ty2(y−2 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Another motivation in order to introduce this element is purely algebraic and makes use of the structure induced by the symplectic Cremona group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We recall the subgroups of Bir(CV ) generated from the Borel-Cartan structure of Symp(C2) by the canonical triple (y1, z1, y2) : By1 = {by1(λ, r) : (y1, z1) → (λy1, z1r(y1)), r ∈ C(y1)∗, λ ∈ C∗} By2 = {by2(λ, r) : (z1, y2) → (z1r(y2), λ−1y2), r ∈ C(y2)∗, λ ∈ C∗} Ty1 = {ty1(λ) : (y1, z1) → (y1, λz1), λ ∈ C∗} Ty2 = {ty2(λ) : (z1, y2) → (λ−1z1, y2), λ ∈ C∗} Uz1 = {uz1(r) : (z1, y2) → (z1, y2r(z1)), r ∈ C(z1)∗, r(0) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' and we set : Ty2 (C(y2)) = {(z1, y2) → (z1r(y2), y2), r ∈ C(y2)∗} = {by2(1, r), r ∈ C(y2)∗} ⊂ By2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Ty1 (C(y1)) = {(z1, y2) → (y1, z1r(y1)), r ∈ C(y1)∗} = {by1(1, r), r ∈ C(y1)∗} ⊂ By1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='26 (i) There exists a unique pair (by2, uz1) in Ty2 (C(y2)) × Uz1, such that : g2,3(1) = uz1 ◦ by2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Moreover by2 = ty2(y−2 2 ) ∈ Ty2 (C(y2)) and uz1 = s−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) There exists a unique pair (by1, vz1) in Ty1 (C(y1)) × Uz1, such that : g3,2(1) = vz1 ◦ by1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Moreover by1 = ty1(e−2 0 y2 1) ∈ Ty1 (C(y1)) and vz1 = s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (i) We set : by2 : (z1, y2) �→ (z1y−2 2 , y2), uz1 : (z1, y2) �→ (z1, (1 + e−1 0 z1)y2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 50 We have g2,3(1) = uz1 ◦ by2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The unicity of this decomposition is a consequence of Ty2 (C(y2)) ∩ Uz1 = {id}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One recognizes here that by2 = ty2(y−2 2 ) and uz1 = s−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (ii) We set : by1 : (y1, z1) �→ (y1, e2 0z1y−2 1 ) vz1 : (y1, z1) �→ � (1 + e−1 0 z1)y1, z1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have g3,1(1) = vz1 ◦ by1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The unicity of this decomposition is a consequence of Ty1 (C(y1)) ∩ Uz1 = {id}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One recognizes here that by1 = ty1(e−2 0 y2 1) and vz1 = s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ By using g2,3(κ) = g2,3(1) ◦ ty2(κ2), and Z(Ty2) = By2, we obtain: g2,3(κ) = uz1 ◦ by2 ◦ ty2(κ2) = uz1 ◦ ty2(κ2) ◦ by2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since g3,1(κ) is conjugated to g2,3(κ) by (z1, y2) → (z2, y3) we have a similar decomposition of the family g3,1(κ) in Uz2 × B1 y3 × Ty3: g3,1(κ) = uz2 ◦ by3 ◦ ty3(κ2) = uz2 ◦ ty3(κ2) ◦ by3, uz2 = s−1 2 , by3 = ty3(y−2 3 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Notice that b−1 y2 = ty2(y2 2) : (z1, y2) → (z1y2 2, y2) is a ramified blowing-up in the canonical chart (z1, y2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We extend the confluent dynamic by this element: Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='27 The extended confluent dynamic is defined by Conf ♯(PV ) =< Conf(PV ), ty2(y2 2) > .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We recall that, according to Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='20), the element �m of Dyn(CV ) such that g = s2◦ �m◦s1 is defined by �m = ty2(e−2 0 y4 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider a square root of �m defined by: �m1/2 : (y2, z2) → (y2, e−1 0 y2 2z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='28 The extended confluent canonical dynamic is defined by Dyn♯(CV ) =< Dyn♯(CV ), �m1/2 > .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='29 Conf ♯(PV ) = Dyn♯(CV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='. We first prove that Dyn(CV )♯ ⊂ Conf ♯(PV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Dyn♯(CV ) is generated by g, Ty1, s1, s2 and �m1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From Proposition (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='26), since s−1 1 = g2,3(1) ◦ ty2(y2 2), Conf ♯(PV ) contains s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: �m = ty2(e−2 0 y4 2) = � ty2(e−1 0 ) ◦ ty2(y2 2) �◦2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Hence, Conf ♯(PV ) also contains �m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' According to the relation g = s2 ◦ �m ◦ s1, s2 also belongs to Conf ♯(PV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally since �m1/2 = ty2(e0) ◦ ty2(y2 2), we obtain the inclusion Dyn(CV )♯ ⊂ Conf ♯(PV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Now we prove that Conf ♯(PV ) ⊂ Dyn(CV )♯.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The relation g2,3(κ) = s−1 1 ty2(y−2 2 ) ◦ ty2(κ2) proves that g2,3(κ) belongs to Dyn(CV ) for any κ in C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Since g1,2 = g belongs to Dyn(CV ), from the relation g1,2 ◦ g2,3(κ) ◦ g3,1(κ) = id, g3,1(κ) also belongs to Dyn(CV ) for any κ in C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally ty2(y2 2) = �m1/2 ◦ tt2(e−1 0 ) belongs to Dyn(CV )♯.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='✷ 51 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 Comparison with the wild dynamics The wild dynamics is a pseudogroup of non linear dynamics induced by the Painlev´e V foliation PV (κ) in a neighborhood of each singular point of saddle-node type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We will recall here the construction of its generators: the non linear stokes operators, non linear tori, and formal and analytic non linear monodromy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Through the Riemann-Hilbert map RHV it induces an (a priori) local dynamics on CV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The second author formulates the Wuhan conjecture which claims that this dynamics extends into a symplectic rational dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This conjecture has been proved for the Painlev´e V equation by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes in [40] (there is also a very clear presentation of this work in Klimes’s lecture [41]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' His method uses a description of the confluence on the foliations of the Hamiltonian systems on the left side and on the linear isomonodromic systems and on the associated character variety on the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' An essential tool is the discretization of the confluence as indicated in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 on the baby model of confluence x(x − ε) → x2y′ + y = 0, first introduced by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Zhang for the confluence for the hypergeometric equations [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We will present here this result of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes, and compare this dynamics with the canonical dynamics Dyn(CV ) on the cubic surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition of the wild dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Painlev´e V foliation is given under its hamiltonian form by (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3, the irregular singular points si all appear in the Boutroux chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Around each irregular singular point of Painlev´e V of saddle-node type si the formal and sectoral normal forms are given by [40]: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='30 Let α0 = 2α1 + α2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1- In a neighborhood of a saddle-node si, the hamiltonian system (5) can be brought to a formal normal form : x2 du dx = (1 − α0x + 4xu1u2) \uf8eb \uf8ec \uf8ed 1 0 0 −1 \uf8f6 \uf8f7 \uf8f8 u, u = \uf8eb \uf8ec \uf8ed u1 u2 \uf8f6 \uf8f7 \uf8f8 (13) by means of a formal transversally symplectic change of coordinates : \uf8eb \uf8ec \uf8ed q p \uf8f6 \uf8f7 \uf8f8 := �Ψ(u, x) = � k≥0 ψ(k)(u)xk where the ψ(k) are analytic on a polydisc P = {|u1|, |u2| < δ} (δ > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2- The formal normal form (13) is integrable in closed form : � u1(x, c1) = c1e−1/xx−α0+4c1c2 u2(x, c2) = c2e1/xxα0−4c1c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (14) and this local hamiltonian vector field (for du1 ∧ du2 and h = x−2(1 − α0x)u1u2, also admits the analytic first integral u1u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3- The formal series �Ψ ∈ O(P)[[x]] is uniformly 1-summable with a pair of 1-sums Ψ↑(u, x), Ψ↓(u, x), defined respectively above the sectors U ↑ := {| arg x − π/2| < π − η, |x| < δ′} and U ↓ := {| arg x − π/2| < π − η, |x| < δ′} for some 0 < η < π/2 arbitrary small and some δ′ > 0 (depending on η), and u ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 52 Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='31 The formal Takano’s normal form [59] used here to define the non linear Stokes operators will not suffice for the other Painlev´e equations in order to obtain overlapping open sec- tors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We will have to make use of the Bittman’s normal forms, which are no longer polynomials: see [4], [5] and [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='32 On each sector U • (• =↑ or ↓), 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the system (5) has a unique analytic bounded solution f • which is the 1-sum of the formal solution �f : u1(x, 0) = u2(x, 0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We call these solutions the sectoral center solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' They are pole-free on the corresponding sector and they are characterized by this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the system (5) has a 2-parameters family of solutions �fc1,c2: (q•, p•)(x, c1, c2) = Ψ•(u(x, c1, c2), x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the left and right intersection sectors of the overlapping sectors U ↑ and U ↓ V l := U ↑ ∩ U ↓ ∩ {ℜx < 0} and V r := U ↑ ∩ U ↓ ∩ {ℜx > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The non linear Stokes multipliers are defined by S2 = (Ψ↑)−1 ◦ Ψ↓ on V r, S1 = (Ψ↑)−1 ◦ Ψ↓ on V l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The formal non linear monodromy is defined by the action induced by x �→ e2iπx on the space of formal solutions �fc1,c2: � N : (c1, c2) �→ (e2iπ(−α0+4c1c2)c1, e2iπ(α0−4c1c2)c2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The formal non linear exponential torus is defined by the analytic symplectic symmetries of the formal normal forms (14): tα : (c1, c2) �→ � eα(c1c2)c1, e−α(c1c2)c2 � , α ∈ O(C, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Using Ψ↑ and Ψ↓, the formal exponential torus induces two sectoral exponential tori T ↑ and T ↓ and the formal first integral h = c1c2 induces 2 sectoral first integrals h↑ and h↓.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='33 The wild dynamics Wild(PV , f ↑) based in the central solution f ↑ is the pseudo- group generated by S1, S2, � N, and T = {tα}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Wild(PV , f ↑) also contains the actual monodromy N generated by a loop around x = ∞, according to the relation S2 ◦ � N ↑ ◦ S1 = � N, where � N ↑ = Ψ↑ ◦ � N ◦ (Ψ↑)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The wild dynamics through the Riemann-Hilbert map RHV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We fix a value x0 in a neighborhood of ∞, and we consider the Okamoto space of initial condition Vx0 over x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let m• = (q•, p•)(x, 0, 0) be the two points on Vx0 corresponding to the two central varieties in a neighborhood of a singular point s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote by (c• 1, c• 2)(q, p) the inverse maps of (q•, p•)(x0, c1, c2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The equations c• 2 = 0 define two germs of curves δ• in m•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The equations c• 1 = 0 define two germs of curves d• in m•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On the rightside, we consider the 12 lines ∆·, Dr , Dl· in the configuration of lines in χV : see figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We can group them in four triples (∆i, Dri, Dli) such that ∆i∩Dri ̸= ∅ and ∆i∩Dli ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set pri = ∆i ∩ Dri, pli = ∆i ∩ Dli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 53 Now we consider the confluent process between PV I and PV defined by tV I = 1 + εtV , α3 = 1/ε, α2,V I = ˜α2 = −1 ε + α2,V , x = 1 tV + ε, α1,V I = α1,V (15) which sends the three fixed singularities to tV = −1/ε, 0, ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This change of variables transforms εHV I into Hε V I and the PV I Hamiltonian system into : dq dt = ∂Hε V I ∂p , dp dt = −∂Hε V I ∂q , When ε → 0, the simple singular points −1/ε and ∞ merge into a double singular point, an irregular singularity at infinity, and the limit of Hε V I is HV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The four pairs of singularities over −1/ε and ∞ merges to 4 saddle-nodes (the confluent saddle-nodes) among the five saddle nodes si over ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In what follows, we suppose that s is one of these 4 singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We summarize the results of Martin Klimes [40] by the following theorem: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='34 We consider the Riemann-Hilbert map RHV between an open set in the space of initial condition Vx0 induced by a neighborhood of a confluent singularity s and the character variety χV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The choice of s determines a triple of lines (∆, Dr, Dl) among the four triples (∆i, Dr i , Dl i) such that 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' RHV (m↑) = ∆ ∩ Dr = pr, RHV (m↓) = ∆ ∩ Dl = pl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' RHV (δ↑) = (∆, pr) (the germ of line at pr), RHV (δ↓) = (∆, pl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Furthermore, the germs δ↑ and δ↓ extend to a same analytic curve δ in Vx0 isomorphic to C, such that RHV (δ) = ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' RHV (d↑) = (Dr, pr), RHV (d↓) = (Dl, pl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Furthermore the germs of curves d↑ and d↓ extends to 2 curves dr and dl isomorphic to C in Vx0, such that RHV (dr) = Dr and RHV (dl) = Dl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let (y1, z1, y2) be the triple of canonical coordinates (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: RH∗ V y1 = y1(pr)eh↑, RH∗ V y2 = y2(pr)e−h↓, RH∗ V z1 = e0(e(h↑−h↓) − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let g, s1, s2, be the generators of the canonical dynamics defined in 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='18, let �m be the canonical formal monodromy defined by 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='20 and Ty1, Ty2 the canonical exponential tori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: RH∗ V g = N, RH∗ V S1 = s1, RH∗ V S2 = s2, RH∗ V �m = � N, RH∗ V T ↓ = Ty1, RH∗ V T ↑ = Ty2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Therefore the dynamics induced by Wild(PV , f ↑) through the Riemann-Hilbert correspondence RHV extends to a rational symplectic dynamics Wild(PV ) on χV , and we have Wild(PV ) = Dyn(CV ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This proves the Wuhan conjecture of the second author for the PV foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The main ingredients of the proof of this result in [40] are: an unfolded version of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='30 for the hamiltonian system related to Hε V I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a discretization of the confluent parameter by setting ε−1 = ε−1 0 +n, n ∈ Z+, along which the monodromies of the unfolded system, a priori divergent, converge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The choice of this sequence depends on a parameter κ = e2iπ/ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' a confluence on the rightside between χV I and χV which allows to compare these limits to the wild dynamics Wild(PV , f ↑).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 54 6 Conclusion and open questions Conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Several dynamics related to the Painlev´e V foliation through the Riemann-Hilbert map RHV has been described here on the wild character variety χV (a) identified to the cubic symplectic surface CV (θ) for generic parameters θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The tame dynamics is induced here by only one braid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We first extended the tame dynamics by using a confluent dynamics obtained from the Painlev´e VI dynamics by a birational confluent morphism between χV I and χV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This one, first discovered by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes, is obtained here by a confluent process between the corresponding groupoids (after an extension with families of exponential loops).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have constructed the canonical symplectic birational dynamics defined on the cubic symplectic surface CV (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This one is the pullback of symplectic dynamics on C2 by a canonical sequence of coordinates satisfying cluster-type relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This birational dynamics coincides with the dynamics obtained by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes from the wild dynamics defined by a confluent irregular singular point of the foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' After and extension by one element, confluent dynamics and canonical dynamics also coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The cubic symplectic surface CV (θ) contains a skeleton generated by 18 lines and their im- ages through the action of the tame dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have characterized this set by a condition of reducibility of the corresponding linear representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Some intersections between these lines correspond to particular solutions of the Painlev´e V equation : Kaneko solutions, or central so- lutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The restriction of the dynamics on this skeleton is an important tool in the comparisons between these dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Open problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The equations of the character varieties χJ for the other Painlev´e equations PJ, J = Vdeg, IV , III(D6), III(D7), III(D8), II(JM), II(FN), I (with the notations of [54]) are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We already know that each of them can be obtained as a quotient of a space of linear representations of a wild groupoid, and that there exists canonical cluster sequences of coordinates on each χJ, inducing a canonical birational symplectic dynamic DynJ which can be explicitely computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We conjecture that for all J: All the lines in χJ are a reducibility locus of some path in the groupoid;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the wild dynamics of all the Painlev´e equations (induced by non linear monodromies, non linear Stokes operators and exponential tori) around an irregular singular point obtained by a confluent process coincide with these canonical birational symplectic dynamics DynJ on χJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We already know that these dynamics coincide on the skeleton generated by the lines for PI and PII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' With M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Klimes we also conjecture that There is a diagram of families of birational symplectic confluences between the χJ, which par- allels the diagram of confluence of Ohyama and Okumura [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We expect that we can prove this fact by a confluent process between the groupoids (extended by families of exponential loops).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Finally we mention here the initial motivation of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Cantat and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Loray proved the irreducibility of PV I for generic parameters, by using the Malgrange closure of its dynamics [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The aim of the Wuhan conjectures of the second author was to extend their proof in the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the PV I case, the dynamics obviously belongs to the Malgrange groupoid which is a closure of its holonomy pseudogroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In the general case, we conjecture that the wild dynamics is contained in the Malgrange pseudogroup, but now it is far from obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Modulo this conjecture, we would obtain a proof of the irreducibility of the Painlev´e V equation for generic values of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Indeed since the extended canonical dynamic contains the confluent dynamic, it contains a copy of the dynamics of a PV I and we can use Theorem D of [14] in order to prove that its Malgrange closure is maximal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 55 Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Structure of the symplectic Cremona group The Cremona group Cr = Cr2 is the group of birational automorphisms of P2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It does not depend on the representative X in the birational class of P2: C2, P1 × P1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The symplectic Cremona group is the subgroup Symp of Cr ≃ Bir(P1(C) × P1(C)) of the elements which preserve the differential form ω = du u ∧ dv v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Cremona group is an old topic which appears at the end of the XIX-th century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' One can find an introductive text in [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For a study of its subgroups, see [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' To the contrary, the study of its symplectic subgroup Symp has been developed only since 2005, first by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Usnich [62, 63] and then J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Blanc [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We present here without proofs the main results about subgroups of Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Some of them are new results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Our terminology is inspired by the algebraic groups, due to some similarities in this non linear infinite dimensional context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote T = {t(λ, µ) : (u, v) �→ (λu, µv), (λ, µ) ∈ C∗ × C∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have T ⊂ Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We denote by Z(T) its centralizor, and N(T) its normalizor in Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We consider the subgroup W of Symp of the monomial maps: W = {(u, v) �→ (uavb, ucvd), \uf8eb \uf8ec \uf8ed a b c d \uf8f6 \uf8f7 \uf8f8 ∈ SL2(Z)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='1 We have: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' T is an algebraic abelian maximal subgroup of Symp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Z(T) = T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' N(T) = W ⋉ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' T is an algebraic abelian maximal subgroup of Cr [56], which preserve ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The centralizor and normalizor of T in Cr has been computed by [20], since C is algebraically closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have: NSymp(T) = NCr(T) ∩ Symp = W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ✷ Furthermore, according to a theorem of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Blanc [7], Symp is generated by N(T) and the order five element p defined by: (u, v) �→ � v, 1 + v u � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Cartan subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='2 A Cartan subgroup of Symp is an algebraic abelian maximal subgroup of rank two in Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' T is the standard Cartan subgroup of Symp, and W is the Weyl group associated to T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have T = T1 × T2, where T1 = {t1(λ) = t(λ, 1), λ ∈ C∗}, T2 = {t2(µ) = t(1, µ), µ ∈ C∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' All the Cartan subgroups are conjugated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 8 8We have no reference for this fact;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the proof will be delivered in a forthcoming publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' This proof uses a result of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Blanc [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 56 Borel subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let dJ1 be the subgroup of Cr ≃ Bir(P1 × P1) of the De Jonqui`eres maps, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' the rational maps which preserve the first projection: dJ1 = {dj1 : (u, v) �→ (a(u), b(u, v)), a ∈ PGL2(C), b(·, v) ∈ PGL2(C(u))}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Let dJS1 be the subgroup in Symp of the symplectic De Jonqui`eres maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' For any λ in C∗, any r in C(X)∗, the maps: dj1(λ, r) : (u, v) �→ (λu, r(u)v), σ : (u, v) �→ (u−1, v−1) are examples of elements in dJS1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We set B1 = {dj1(λ, r), λ ∈ C∗, r ∈ C(u)∗} =< T1, T2(C(u)) >, B− 1 = {b1 ◦ σ, b1 ∈ B1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3 We have dJS1 = B1 ∪ B− 1 = B1 ⋊ Z/2Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We also define dJ2, dJS2, B2 with respect to the second projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We have B1 ∩ B2 = T, and any pair (wB1w−1, w′B2w′−1), w, w′ ∈ W also satisfies this equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='4 (B1, B2) is the standard pair of Borel subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Any pair (wB1w−1, w′B2w′−1), w, w′ ∈ W is a pair of Borel subgroups related to the standard Cartan subgroup T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Notice that the Borel subgroups are no longer algebraic subgroups since there are infinite di- mensional groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' It can be proved that B1 and B2 generate Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='5 The subgroup U1 of B1 of the “unipotent” elements is defined by: U1 = {dj1(1, r), r(0) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='6 We have: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U1 is an abelian subgroup;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' U1 is generated by the family dj1(1, 1 + νu), ν ∈ C∗, or by one element dj1(1, 1 + u) and its conjugations with an element of T1 (we say that this element is a pseudo generator of U1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [B1, B1] = {dj1(1, r), r(0) = 1, deg(r) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='} Therefore, [B1, B1] ⊂ U1 and B1 is meta- abelian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' In this non linear context, we clearly have some analogies with the structure of the algebraic group SL2(C) but we also have some differences: the inclusion [B1, B1] ⊂ U1 is a strict one, [B1, B1] is an invariant subgroup of U1 and we have U1/[B1, B1] =< dj1(1, 1 + u) >≃ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' let B♮ 1 =< U1, T1 >.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' B♮ 1 is also a meta-abelian group which contains U1, but it contains only a maximal torus of rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' We call B♮ 1 a Borel of rank one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 57 References [1] Atiyah M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Bott R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Yang-Mills equations over Riemann surfaces, Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' London ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A 308, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 523–615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [2] Audin M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lectures on integrable systems and gauge theory, in : Gauge Theory and Sym- plectic Geometry, eds Hurtubise and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Lalonde, NATO ASI series C 488 Kluwer, Dordrecht, (1997) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1–48 [3] Balser W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Universitext, Springer (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [4] Bittmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Classification analytique de germes de champs de vecteurs tridimensionnels doublement r´esonants et applications aux ´equations de Painlev´e, Th`ese, Strasbourg (2016) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' https://tel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='archives- ouvertes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='fr/tel- 01367968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [5] Bittmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Doubly-Resonant Saddle-Nodes in C3 and the Fixed Singularity at Infinity in the Painlev´e equations : Formal Classification, Qual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theory Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 16, 3, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 491–529.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [6] Bittmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Doubly-resonant saddle-nodes in (C3, 0) and the fixed singularity at infinity in the Painlev´e equations : analytic classification, Annales Institut Fourier, 68, 4, (2018) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1715–1830.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Blanc J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Symplectic birational transformations of the plane, Osaka J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Vol 50, 2, (2013) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 573–590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [8] Boalch P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Stokes matrices, Poisson Lie groups and Frobenius manifold, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 146 (2001) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 479–506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [9] Boalch P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Geometry and braiding of Stokes data;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' fission and wild character varieties Annals of Mathematics 179, 1, (2014) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 301–365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [10] Boalch P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Quasi-hamiltonian geometry of meromorphic connections, Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 139 2 (2014), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 301–365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [11] Bolibruch A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='A, Malek S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Mitschi C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On the generalized Riemann-Hilbert problem with irregular singularities, Expo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='3, (2006) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 235–272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [12] Brion M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Introduction to actions of algebraic groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Notes on a course in Luminy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Brown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From groups to groupoids: a brief survey, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 19, (1987), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 113–134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [14] Cantat S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Loray F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Dynamics on characters varieties and Malgrange irreducibility of Painlev´e VI equations, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fourier 59 (2009), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2927–2978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [15] Chekhov L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Mazzocco M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Roubtsov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Painlev´e monodromy manifolds, decorated character varieties and cluster algebras, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 24 (2017) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 7639–7691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [16] Chiba H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The first, second and fourth Painlev´e equations on weighted projective spaces, Journal of Differential Equations 260, (2016), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 126–1313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [17] Chiba H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The third, fifth and sixth Painleve equations on weighted projective spaces, in: Symmetry, Integrability and Geometry: Methods and Applications, SIGMA 12 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 58 [18] Chiba H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Multi-Poisson approach to the Painlev´e equations: from the isospectral defor- mation to the isomonodromic deformation, Symmetry Integrability Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 13 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [19] Deligne P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Malgrange B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Ramis J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Singularit´es irr´eguli`eres: Correspondances et Documents, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Documents math´ematiques (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Demazure M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sous-groupes alg´ebriques de rang maximum du groupe de Cremona, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' ´Ecole Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 3 (1970), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 507–588.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [21] Deserti, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Cremona Group and its Subgroups, Mathematical Surveys and Mono- graphs, 252, American Mathematical Society, Providence, RI ( 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [22] Dolgachev I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Classical algebraic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A modern view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Cambridge University Press, Cambridge, (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [23] Dubrovin B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Mazzocco M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Monodromy of certain Painlev´e-VI transcendents and reflection group, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 141, (2000), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 55–147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [24] Fock V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Rosly A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix, Moscow Seminar in Mathematical Physics, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='S Translations, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2, 191, (1999), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 67–86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [25] Garnier R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sur les singularit´es irr´eguli`eres des ´equations diff´erentielles lin´eaires, Journal de Math´ematiques Pures et Appliqu´ees, 8, Gauthier-Villars, Paris, (1919), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 99–200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [26] Goldman W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The symplectic structure of fundamental group surfaces, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 54 (1984), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 200–225 [27] Gromak V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Laine I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Shimomura S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Painlev´e Differential Equations in the Complex Plane, de Gruyter Studies in Mathematics (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [28] Hitchin N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Geometrical aspects of Schlesinger’s equation, Journal of Geometry and Physics, 23, (1997), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 287–300 [29] Inaba M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Iwasaki K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Saito M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Dynamics of the sixth Painlev´e equation, S´eminaires et Congr`es 14, (2006), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 103–167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [30] Iwasaki K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Kimura H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Shimomura S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Yoshida M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' From Gauss to Painlev´e, A Modern Theory of Special Functions, Aspects of Mathematics, Vieweg (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [31] Iwasaki K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Area-Preserving Action of the Mobi¨us group, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 242, (2003), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 185–219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [32] Iwasaki K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fuchsian moduli on a Riemann surface, its Poisson structure and Poincar´e- Lefschetz duality, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 155 2 (1992), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 319–340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [33] Iwasaki K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Uehara T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' An ergodic study of Painlev´e VI, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 338 (2007), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 295–345.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [34] Jimbo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Monodromy problem and the boundary condition for some Painlev´e equations, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 18 (1982), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1137–1161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [35] Jimbo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Miwa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Monodromy Preserving Deformations of Linear Ordinary Differential Equations with Rational Coefficients II, Physica 2D, 2, (1981), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 407–448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 59 [36] Kaneko K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Painlev´e VI transcendents which are meromorphic at a fixed singularity, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Japan Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 82, ser A (2006), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 71–76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [37] Kaneko K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Ohyama Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fifth Painlev´e Transcendents Which are Analytic at the Origin, Funkcialaj Ekvacioj, Volume 50, 2, (2007), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 187–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [38] Keller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Alg`ebres amass´ees et applications, S´eminaire Bourbaki, 62 n◦ 1014 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [39] Klimes M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Stokes phenomenon and confuence in non-autonomous Hamiltonian systems, Qual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Theory Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 17, (2018), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 665–708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [40] Klimes M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Wild Monodromy of the Fifth Painlev´e Equation and its Action on Wild Char- acter Variety: An Approach of Confluence, arXiv:1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='05185 [41] Klimes M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Confluent approach to Fifth Painlev´e equation, Kobe, (2021) [42] Klimes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Confluence of singularities of non-linear differential equations via Borel-Laplace transformations, Journal of Dynamical and Control Systems, Springer Verlag, 22 2, (2016), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 285–324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [43] Lamy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' The Cremona Group, Premiminary version, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='univ- toulouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='fr/slamy/ [44] Loday-Richaud M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Divergent Series, Summability and Resurgence II: Simple and mul- tiple summability, Springer Lecture Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [45] Malgrange, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Le groupo¨ıde de Galois d’un feuilletage, L’enseignement math´ematique 38 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [46] Malmquist, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sur les ´equations diff´erentielles du second ordre dont l’int´egrale g´en´erale a ses points critiques fixes, Ark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Astr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', 17, (1922), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1–89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [47] Martinet J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Ramis J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Th´eorie de Galois diff´erentielle et resommation, Computer Algebra and Differential Equations, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Tournier ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Computational Mathematics and Appli- cations, Academic Press, (1988), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 117–214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [48] Noumi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Yamada Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A new Lax pair for the sixth Painlev´e equation associated with �so(8), Microlocal analysis and complex Fourier analysis, World Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', River Edge, NJ, (2002), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 238–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [49] Okamoto K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sur les feuilletages associ´es aux ´equations du second ordre `a points critiques fixes de P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Painlev´e, Japan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 5 (1979), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 1–79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [50] Okamoto K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Polynomial Hamiltonians associated with Painlev´e equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Differential equations satisfied by polynomial Hamiltonians, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Japan Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', 56, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A (1980) 8, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 367–371.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [51] Ohyama, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Okumura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A coalescent diagram of the Painlev´e equations from the viewpoint of isomonodromic deformations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 39 (2006), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 12129–12151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [52] Paruskinova A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Asymptotic Expansions of Solutions to the Fifth Painlev´e Equation in Neighborhoods of Singular and Non-singular Points of the Equation, in Formal and Analytic Solutions of Differential and Difference Equations, Banach Center Publications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 97, Polish Ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' of Sciences, Warzszawa, (2012) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 113–124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 60 [53] Paul E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Ramis J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Dynamics on Wild Character Varieties, SIGMA, 11, (2015), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 331–401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [54] van der Put M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Saito M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Moduli spaces for linear differential equations and the Painlev´e equations, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Fourier, 59, 7, (2009), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 2927–2978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [55] Ramis J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Filtration Gevrey sur le groupe de Picard-Vessiot d’une ´equation diff´erentielle irr´eguli`ere, in Singularit´es irr´eguli`eres, Correspondances et Documents, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' (1985), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 129–153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [56] Serre J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Le groupe de Cremona et ses sous-groupes finis, S´eminaire Bourkaki, expos´e 1000, Ast´erisque 332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [57] Sibuya, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North Holland, Amsterdam (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [58] Stokes G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' On the discontinuity of arbitrary constants which appear in divergent devel- opments, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Camb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', 10, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 106–128 (1857).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [59] Takano, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' A 2-parameter family of solutions of Painlev´e equation (V) near the point at infinity, Funkciala j Ekvacio j 26 (1983), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 79–113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [60] Tsuda T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Okamoto K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', Sakai H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Folding transformations of the Painlev´e equations, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 220 (2005), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 713–738.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [61] Thomas R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Notes on GIT and symplectic reduction for bundles and varieties, Surveys in Differential Geometry, 10 (2006): A Tribute to Professor S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Chern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [62] Usnich A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Symplectic automorphisms of CP 2 and the Thomson group T, https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content='org/abs/math/0611604 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [63] Usnich A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Ph D Thesis Sorbonne Universit´e (2008), HAL theses, tel-00812808, version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [64] Wasow W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 14, John Wiley & Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=', New York-London-Sydney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' [65] Zhang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Confluence et ph´enom`ene de Stokes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' Tokyo 3, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 91–107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} +page_content=' 61' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9FAT4oBgHgl3EQfiB2Y/content/2301.08597v1.pdf'} diff --git a/utE1T4oBgHgl3EQfQwOJ/content/2301.03044v1.pdf b/utE1T4oBgHgl3EQfQwOJ/content/2301.03044v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4eeaaf6f181b3ef1c77fd94f190c879cfacd4dc6 --- /dev/null +++ b/utE1T4oBgHgl3EQfQwOJ/content/2301.03044v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:225ac28202296f9b6df4f3e36d487c3e503bf7b4d6c13bc349b9e3628291b254 +size 897343 diff --git a/utE1T4oBgHgl3EQfQwOJ/vector_store/index.faiss b/utE1T4oBgHgl3EQfQwOJ/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..fda0536ed678f9bba6859b5049eeb45dc0bd38cc --- /dev/null +++ b/utE1T4oBgHgl3EQfQwOJ/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:730ad1f5fdd84ba0cd2c12b6b8a883115dd4a2fee0458552f10c65b67266943b +size 4128813 diff --git a/utE1T4oBgHgl3EQfQwOJ/vector_store/index.pkl b/utE1T4oBgHgl3EQfQwOJ/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c1b96bbc3ab8ea0d170a890955f2c0b97e40f559 --- /dev/null +++ b/utE1T4oBgHgl3EQfQwOJ/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:157a97505e63301c476ba3a36f57ab79a596069c0209505879146a68aea69951 +size 160948 diff --git a/v9AyT4oBgHgl3EQfnPij/content/2301.00486v1.pdf b/v9AyT4oBgHgl3EQfnPij/content/2301.00486v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8d379e873685b969c56719fda18603cf9ba81ce0 --- /dev/null +++ b/v9AyT4oBgHgl3EQfnPij/content/2301.00486v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c80338ef63e88bbebf1181e53886c1e090d2470cc9ae0931b3ee6bbf4e96917 +size 420330 diff --git a/v9AyT4oBgHgl3EQfnPij/vector_store/index.faiss b/v9AyT4oBgHgl3EQfnPij/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..c8be76b292782b18c37eace20b709bdea3caf670 --- /dev/null +++ b/v9AyT4oBgHgl3EQfnPij/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b5bcc86d6ffba6272a789b2cd03ce18bfcbd3c503a213465751f8a661f6812ef +size 4587565 diff --git a/v9AyT4oBgHgl3EQfnPij/vector_store/index.pkl b/v9AyT4oBgHgl3EQfnPij/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..2cde823adec069e2fa7f033ffed6a6ea5f096259 --- /dev/null +++ b/v9AyT4oBgHgl3EQfnPij/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a066e86d6c6a1a447a37163797e519d9c129c04a9196f958afb49bb57b2f29a6 +size 178834 diff --git a/v9E2T4oBgHgl3EQf2wjd/content/tmp_files/2301.04165v1.pdf.txt b/v9E2T4oBgHgl3EQf2wjd/content/tmp_files/2301.04165v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1aed27edd18723206a5b7d7dc31be48fa521c4e0 --- /dev/null +++ b/v9E2T4oBgHgl3EQf2wjd/content/tmp_files/2301.04165v1.pdf.txt @@ -0,0 +1,943 @@ +MITP-22-103 +Dark Matter Induced Nucleon Decay Signals in Mesogenesis +Joshua Berger1, ∗ and Gilly Elor2, † +1Colorado State University, Fort Collins, Colorado 80523, USA +2PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical Physics +Johannes Gutenberg University, 55099 Mainz, Germany +We introduce and study the first class of signals that can probe the dark matter in Mesogenesis +which will be observable at current and upcoming large volume neutrino experiments. The well- +motivated Mesogenesis scenario for generating the observed matter-anti-matter asymmetry neces- +sarily has dark matter charged under baryon number. Interactions of these particles with nuclei can +induce nucleon decay with kinematics differing from sponanteous nucleon decay. We calculate the +rate for this process and develop a simulation of the signal that includes important distortions due to +nuclear effects. We estimate the sensitivity of DUNE, Super-Kamiokande, and Hyper-Kamiokande +to this striking signal. +Mesogenesis mechanisms [1–4] utilize the Charge- +Parity (CP) violation of Standard Model (SM) meson +systems to generate the primordial baryon asymmetry +and the dark matter (DM) abundance of the Universe. +Excitingly, Mesogenesis is highly testable [5, 6] and ex- +perimental searches are underway to probe signals di- +rectly linked to the generated baryon asymmetry [6–10] +(see overviews in [11–14]). However, a direct probe of the +DM in Mesogenesis has remained elusive, until now. In +this Letter we study DM induced nucleon decays (IND) +in Mesogenesis which can produce a striking signal at cur- +rent and upcoming neutrino detectors. While the Meso- +genesis framework is the primary focus of this letter, the +methods developed here can be more broadly applied to +search for models containing dark baryons e.g. [15–17]. +The novel way in which Mesogenesis satisfies the +Sakharov conditions [18], is as follows: mesons produced +at late (MeV scale) times, having undergone CP violat- +ing processes, decay out of thermal equilibrium into dark +baryons. This process generates an equal and opposite +baryon asymmetry between the dark and visible sector. +For instance, the baryon asymmetry in B0-Mesogenesis +[1] is generated from the late time production of B0 +s,d +mesons which undergo CP violating particle-antiparticle +oscillations and then quickly decay into a SM baryon and +a dark Dirac fermion ψB carrying SM baryon number −1. +To evade washing out the generated baryon asymmetry +through e.g. ψB → p e ¯νe, the ψBs must rapidly decay +into stable DM states. +Mesogenesis DM consists of two components— a dark +Majorana fermion ξ and a dark complex scalar φB which +is charged under SM baryon number. These two stable +particles will compose the entirety of the DM. As such the +DM halo will consist of a mixture of ξ and φB particles +which can scatter off target nuclei in neutrino detectors +to produce mono-energetic pions or kaons and missing +energy. This process of IND appears experimentally as +nucleon decay but with different kinematics, and as such +current limits are essentially not constraining. +The cross section for IND, as it arises in Mesogene- +sis, will be within reach of neutrino detectors and can be +searched for at the Deep Underground Neutrino Experi- +ment (DUNE) [22], Super-Kamiokande [23], and Hyper- +Kamiokande [24]. Furthermore, given the mono-energetic +(up to smearing effects) meson, such signals should be +distinct over SM backgrounds which primarily consist of +mesons produced in atmospheric neutrino processes. +In order to study the details of the IND process, we +have developed a Monte Carlo event generation tool +within the GENIE [19, 20] software suite used to study +accelerator and atmospheric neutrino scattering events +[21]. Based on this tool, we are able to study the de- +tailed kinematics of the outgoing mesons produced dur- +ing DM scattering events and compare these with the +dominant atmospheric neutrino scattering background. +The event generation includes nuclear effects which smear +out the spectrum of mesons from one that is nearly mono- +energetic in the non-relativistic DM limit. Furthermore, +these events are ready to be used for study in neutrino +experiments, where they can be passed through detector- +specific simulation software. +In this Letter we first characterize the IND signal. We +present the Mesogenesis specific parameter space which +can be targeted by experiments. +We then detail the +simulation. Next, we apply this simulation to estimate +the sensitvity of DUNE, Super-Kamiokande, and Hyper- +Kamiokande to benchmark models. +Characterizing the IND Signal. — Generating the +baryon asymmetry in B-Mesogenesis [1, 3], requires the +existence of a TeV scale colored scalar (which may be +identified as a squark in a supersymmetric embedding +[4]) which mediates the baryon number conserving decay +of a B to ψB and a SM baryon through the (GeV scale) +effective operator: +Oab,c = Cab,cϵijk +� +ui +adj +b +� � +ψB dk +c +� +, +(1) +where all fermions are right handed, though our results +easily generalize to left handed operators. +Cuadb,dc ≡ +yuadbyψdc/M 2 +Y , where MY is the mediator mass. +ψB +decays to the DM through a Yukawa coupling Ld ⊃ +yd ¯ψBξφB +h.c., which is allowed by a stabilizing Z2 sym- +metry under which ψB is even and the DM particles odd. +arXiv:2301.04165v1 [hep-ph] 10 Jan 2023 + +2 +FIG. 1. Induced proton decay to a pion through Ou,dd. +Since we remain agnostic about the dark sector, yd is +a free parameter. +However a motivated benchmark is +yd ≲ O(0.1) which results in the correct DM abundance +given an example UV embedding [4]. +Eq. 1 generates the IND signal in Mesogenesis: when +kinematically allowed, an incoming ξ or φB scatters off a +proton or neutron by exchanging a ψB and produces an +energetic meson. Fig. 1 depicts an example process — +incoming φB’s induce proton decay to π+ through Oud,d. +Similarly induced decay to kaons arises through Oud,s +and Ous,d. We consider searches at neutrino experiments +for the following two processes: +φB N → M ξ +if +mφB + mN > mM + mξ , +(2a) +ξ N → M φ⋆ +B +if +mξ + mN > mM + mφB , +(2b) +where N = n0, p+ and M is a SM meson. Recall that +ξ is Majorana, allowing any of the DM states to partici- +pate in this process when it is kinematically allowed. For +decays induced by incoming φs, the kinetic energy of the +outgoing meson, to O(vDM), is given by +EM, kin +φBN→ξM = +m2 +M − m2 +ξ + (mN + mφB)2 +2(mN + mφB) +− mM . (3) +Swap mξ ↔ mφB in the above to obtain the meson energy +from incoming ξs. The expected kinetic energy for each +process that arises in Mesogenesis is given in Table I. +If the struck nucleon is at rest, then the outgoing +meson is mono-energetic with energy given in Eq (3). +However, the nucleons are moving with a momentum of +O(100 MeV) inside nuclei, smearing out of the meson sig- +nal (except for the case of scattering off hydrogen in wa- +ter Cherenkov detectors). We simulate the IND process, +carefully accounting for this smearing. +Note that the +energies of these decays are shifted compared to sponta- +neous nucleon decay, with higher energies when φB scat- +ters and lower energies when ξ scatters. This alters the +phenomenology of the Mesogenesis scenario compared +with proton decay models such as grand unified theo- +ries — the canonical targets of current nucleon decay +searches [25–30]. As such, existing limits from nucleon +Initial +Final +Mediating +Meson +Approx. ⟨σv⟩0 +DM +Meson +Operator +EKin [GeV] +� +cm3/sec +� +φB +π+/π0 +Oud,d +0.6 - 1.2 +10−21.4 - 10−21.0 +ξ +π+/π0 +Oud,d +0.02 - 0.6 +10−22.5 - 10−21.9 +φB +K+/K0 Ous,d, Oud,s +0.3 - 0.9 +10−19.7 - 10−19.3 +ξ +K+/K0 Ous,d, Oud,s +0.04 - 0.3 +10−20.6 - 10−19.8. +TABLE I. The induced nucleon decays allowed by kinemat- +ics (2) and Mesogenesis considerations Eq. 5. We show the +corresponding flavorful variation of the opeator Eq. 1 that +generates the decay, the expected range of un-smeared ki- +netic energy of the outgoing meson computed from Eq. (3), +and the stripped cross section defined in Eq. (6). +decay searches, with a few exceptions, do not constrain +the Mesogeneis signal. Similar considerations were dis- +cussed in the context of Hylogenesis [31]. +The cross section for IND is obtained from the matrix +element: +AφBN→ξM += ¯uξ(⃗pξ) +yd Cab,c +p2 +ψB −m2 +ψB +� +/pψB + mψB +� +(4) +× PR +� +W RR +0 +− i +/pψB +mN W RR +1 +� +uN(⃗pN) , +with ¯uξ → ¯vξ for ξ N → M φ⋆ +B. Here, pψB = pξ−pφB and +PR is the right handed fermion projector. The Wilson +Coefficients are constrained by a combination of LHC +searches for the mediator and flavor observables: Cmax +ud,d = +0.07 TeV−2 and Cmax +ud,s , Cmax +us,d = 0.64 TeV−2 [6, 15]. Since +INDs can lead to O(GeV) momentum transfer, we use +high q2 extrapolated lattice results from [32] for the form +factors W RR +0,1 [33]. Including the momentum dependence +of W1,2 negligibly affects the signal. The Ous,d and Oud,s +require different form factors but lead to similar signals. +Mesogenesis Parameter Space. — In addition to the +kinematic constraints on IND Eq. (2), the allowed param- +eter space is constrained by Mesogenesis-specific consid- +erations i.e. generating the observed baryon asymmetry +and DM abundance: +mφB + mξ < mψB < mB − mp ≃ 4.34 GeV , +(5a) +|mφB − mξ| < mp + me ≃ 938.8 MeV , +(5b) +mψB , mφB > mp − me . +(5c) +mφB > mξ . +(5d) +The regions in {mξ, mφB} space excluded by these con- +straints are shaded in Fig. 2, while the white region is +allowed. Eq. (5a) ensured that ψB is light so that the +baryon asymmetry can be generated through the decay +B → BSM + ψB, while also being heavy enough to decay +into the DM ξ and φB. Decreasing the value of mψB cor- +responds to increasing the excluded green region. +For +mψB ≃ 1.1 GeV, there is no longer viable parameter +space. +Eq. (5b) is enforced to prevent ξ and φB from +coalescing into SM baryons, which would washout the + +ΦB +S +山B +u +d +p +d +u3 +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +��� +FIG. 2. Parameter space and kinetic energy contours for the eight different DM IND proceses arising in Mesogenesis. Colored +regions are ruled out by kinematics Eq. (2) or mechanism considerations Eq. (5). Sold lines correspond to kinetic energy for +scattering off protons N = p, and the dashed off nucleons N = n. In each panel, we indicate the location of the representative +benchmark points: 1, 2, 3p, 4p for pions and 1, 2, 3k, 4k for kaons as summarized in Table II. +baryon asymmetry. +Proton decay through Eq. (1) to +dark baryons is kinematically forbidden through Eq. (5c). +A complete list of DM IND processes consistent with +Eq. (2) and Eq. (5) is shown in Table I. +There must exist dark sector interactions which de- +plete the DM and ensure the correct abundance [1]. Since +nφB − ¯nφB is related to the baryon asymmetry, φB must +always constitute some, but not all, of the DM: if mφB < +mξ, dark interactions could annihilate the entire ξ pop- +ulation into ψBs. The measured ratio of DM to baryon +densities [34] implies that mφB ≃ 5mp, violating Eq. (5a). +This motivates multi-component DM where we enforce +Eq. 5d so that the symmetric component of φBs annihi- +late into ξs. Since the measured SM baryon asymmetry +is always balanced by an asymmetry in φBs, the observed +DM to baryon ratio ρDM ∼ 5ρB fixes the expected density +of ξ and φB particles in the halo: ρξ/ρφB = 5mp/mφB −1, +and ρtotal = ρφ + ρξ = 0.4 GeV/cm3. Given Eq. (5c), +there will always be a substantial asymmetric compo- +nent of DM, and so both INDs in Eq. (2) will be present +if kinematically allowed. +The scattering cross sections for the INDs are com- +puted from Eq. (4). They scale roughly as ⟨σv⟩ ∝ m−2 +ψB, +but the range of variation mψB ∼1-4.3 GeV, leads to a +small effect. We parametrize the cross section as: +⟨σv⟩M +DM ≡ (yd × Cudi,dj)2 +m2 +ψB[GeV−4] ⟨σv⟩M,0 +DM +(6) +where M = π0, π+, K+, K0 and DM = φB, ξ. Val- +ues of the coupling stripped cross section ⟨σv⟩M,0 +DM over +the allowed parameter space of Fig. 2) are shown in Ta- +ble I. For e.g. yd = 0.1 and Cmax +udi,dj, the expected cross +section can be as large as 10−38 − 10−36cm3/sec in the +allowed parameter space for all channels. Meanwhile, the +estimated sensitivity at DUNE and Super-Kamiokande is +roughly 10−42 − 10−40cm2/sec . +Benchmark +mφB [GeV] mξ [GeV] +1 +0.95 +0.92 +2 +2.45 +1.53 +3p +2.38 +1.6 +3k +2.2 +1.8 +4p +0.95 +0.17 +4k +0.95 +0.55 +TABLE II. Benchmarks highlighting the possible signal +topologies. +Benchmark 1 corresponds to Ekin,min +pφB→Mξ +∼ +Ekin,max +pφB→Mξ for both πs and kaons. Benchmark 2 corresponds +to Ekin,max +pφB→Mξ. Benchmarks 3p and 3k correspond to the maxi- +mal Ekin +pφB→Mξ such that the incoming ξ process is still allowed +for production of πs and kaons respectfully. Benchmarks 4p +and 4k highlight a region of {mξ, mφB} which would still lead +to a signal for small mψB (see also labels in Fig 2). +Signal +Monte +Carlo +and +Benchmarks. — +Non- +relativistic DM striking a nucleon at rest and inducing +decay would lead to a mono-energetic signal with kinetic +energy given by Eq. (3) and shown in Fig. 2. +We +pick benchmark points to highlight the possible signal +topologies; these are defined in Table II and labeled in +Fig. 2. +In the context of large nuclei, nuclear effects +including nuclear motion of the nucleons and final +state interactions of hadronic particles escaping the +nuclear remnant smear the outgoing meson energy, can +liberate additional hadrons, and can change the isospin +characteristics of the meson. +In order to account for +these effects, as well as allow for future simulation of the +detailed detector response at neutrino experiments, we +have developed a Monte Carlo event generation tool for +the IND process. +Signal events are generated using a modified version +of GENIE v3.0.2 [19, 20]. We employ the default tune +(G18 02a) throughout, though we considered other nu- +clear models. We found differences in the signal distri- +butions of order 10% between hA and hN models of the +intranuclear cascade. The current nucleon decay mod- + +4 +ule in GENIE was modified to allow for IND kinematics. +The meson final states currently implemented are π0, π+, +K0 +S/L, K+, and D0. This module propagates the outgo- +ing mesons through the nuclear remnant to the edge of +the nucleus. The kinematics of the IND process is fixed +given masses for the two DM particles. The cross sec- +tion is determined by Eq. (6). For non-relativistic DM, +there is a small difference in the rate for interaction with +a high speed nucleon compared with a nucleon at rest. +We neglect this small difference of ∼10%. +Signals at Neutrino Experiments. — The current best +limits on spontaneous nucleon decays to pions are from a +Super-Kamiokande [27], which applied a pion momen- +tum cut of 1 GeV and is thus applicable to parts of +Mesogenesis parameter space — here the experimental +limit can be compared to an effective lifetime (τ Ind +N )−1 = +nDM⟨σv⟩DM [31, 35, 36]. +This yields an approximate, +conservative, limit of yd × Cud,d/Cmax +ud,d ≳ 0.03 − 0.1 for +70 MeV ≲ Ekin +π+ ≲ 870 MeV and Ekin +π0 ≲ 870 MeV. Ex- +isting searches in kaon channels [29, 30] placed narrow +ranges of momentum cuts. Consequentially, the major- +ity of parameter space of interest is unconstrained by ex- +isting searches. Super-Kamiokande is expected to have +sensitivity to IND signals given dedicated studies. Hyper- +Kamiokande will improve on this with its larger exposure. +Since DUNE is based on liquid argon time-projection +chamber (LArTPC) technology, it could have particular +sensitivity to certain models. +We assume kinetic energy thresholds as indicated in +Table III, based on the studies where available [37] +and otherwise based on Cherenkov thresholds or de- +tecting tracks/showers in LArTPCs. +Determining re- +construction efficiencies requires a dedicated study by +the respective experimental collaborations. +In Super- +Kamiokande’s search for proton decay in the π+ν chan- +nel, no muon/pion separation was attempted [27]. On +the other hand, the LArTPC experiment MicroBooNE +has demonstrated muon/pion separation at the 80% +level [38], consistent with other particle identification ef- +ficiencies. We therefore do not assume muon/pion sepa- +ration for the Water Cherenkov experiments, while we as- +sume perfect muon/pion separation for DUNE. Searches +for similar signals of kaons in spontaneous nucleon decay +at Super-Kamiokande indicate reconstruction efficiencies +around or below 10% [29, 30]. The full 3D imaging of +LArTPC detectors like DUNE may increase performance +in reconstructing complex topologies arising from kaon +decays, e.g. kaons above 40 MeV kinetic energy may be +efficiently be reconstructed as tracks before decay [39]. +Sensitivity Estimate. — The dominant background for +the channels we consider is expected to be inelastic scat- +tering of atmospheric neutrinos off nuclei, leading to ad- +ditional mesons. By looking for off beam timing events, +beam-related backgrounds can be evaded. +To study +the atmospheric neutrino background, we generate at- +mospheric neutrino events using GENIE v3.0.2, along +Particle +LArTPC +Cherenkov +Thresh. [MeV] Thresh. [MeV] +e± +30 +3.5 +γ +30 +3.5 +µ± +35 +55 +π± +35 +72 +p +80 +481 +TABLE III. Kinetic energy thresholds for particles assumed in +LArTPC (DUNE) and Water Cherenkov (Super- and Hyper- +Kamiokande) detectors. +with the Bartol atmospheric neutrino flux model [40] at +Soudan for DUNE and Kamioka. +From samples of DM signals and atmospheric neutrino +events, we look for events containing the relevant final +state meson for the channel considered. Not all events +with such a meson should be considered. Signal events +contain a single meson and no other activity other than +possible emissions from the nuclear remnant or byprod- +ucts of final state interactions. Thus, it is highly benefi- +cial to veto any activity beyond the expected meson. To +do so, we first apply the thresholds in Table III to all final +state particles. Of the remaining particles that can be de- +tected, we veto on events that have anything other than a +meson of the expected type. For the pion channels, order +1% of atmospheric neutrino scattering events lead to an +event matching these criteria. This leaves a search that +is not entirely background free. For the kaon channels on +the other hand, single kaon events are only possible with +additional flavor-violating weak interactions. Searches in +these channels may thus be background free if kaon re- +construction is sufficiently good. To get a sense of the +events after these vetoes we plot kinetic energy distribu- +tions of the remaining signal and background events; a +few illustrative distributions are shown in Fig. 3. +We now estimate the sensitivity to yd×Cudi,dj/Cmax +udi,dj. +For pion channels, we apply the selection described +above. To eliminate a majority of the background events, +we also require that the selected pion has a kinetic energy +within 100 MeV of its unsmeared value Eq. (3). For the +kaon channels, no further selection is required as we have +found that this channel is nearly background free, and we +determine the coupling that would lead to 5 signal events +over the assumed exposure of the experiment. In cases +where there is background, we estimate the 2σ sensitivity +to the signal. The sensitivity results are summarized in +Table IV for the benchmarks listed in Table II. +Discovering an IND signal would be a direct probe of +the DM in Mesogenesis. In addition to providing exper- +imentalists with the tools needed to search for DM IND +signals at neutrino experiments, this letter paves the way +to a signal driven model building effort of the dark sector. + +5 +FIG. 3. Kinetic energy distributions for sample benchmark models at DUNE and Hyper-Kamiokande. Super-Kamiokande, is +simply a rescaling of the rate at Hyper-Kamiokande by a factor of 16. Dashed lines indicate the un-smeared energy Eq. 3. +Green lines indicate, where relevant, the assumed threshold for the detector to see the meson. The top row correspond to +Benchmark 1, while the bottom corresponds to Benchmark 3k. The Hyper-Kamiokande signal has a noticeable mono-energetic +spike corresponding to scattering of hydrogen, while the smeared distribution corresponds to scatterings off oxygen. +Benchmark Background yd(Cudi,dj/Cmax +udi,dj) +Background yd(Cudi,dj/Cmax +udi,dj) +Background yd(Cudi,dj/Cmax +udi,dj) +and Meson +DUNE +DUNE sensitivity +Super-K +Super-K sensitivity +Hyper-K +Hyper-K sensitivity +1 π+ +118 +0.019 +1759 +0.030 +9452 +0.020 +2 π+ +14 +0.007 +432 +0.014 +2323 +0.0090 +3p π+ +584 +0.021 +2570 +0.023 +13835 +0.015 +4p π+ +600 +0.040 +2907 +0.045 +15653 +0.029 +1 π0 +140 +0.025 +125 +0.026 +672 +0.017 +2 π0 +26 +0.011 +17 +0.011 +94 +0.0069 +3p π0 +915 +0.080 +590 +0.080 +3135 +0.052 +4p π0 +923 +0.053 +608 +0.050 +3231 +0.033 +1 K+ +0 +0.0016 +0 +0.0014 +0 +0.00061 +2 K+ +0 +0.00038 +0 +0.00032 +0 +0.00014 +3k K+ +0 +0.00063 +0 +0.00054 +0 +0.00023 +4k K+ +0 +0.0010 +0 +0.00087 +0 +0.00038 +1 K0 +S +0 +0.00047 +0 +0.00056 +0 +0.00024 +2 K0 +S +0 +0.00034 +0 +0.00041 +0 +0.00018 +3k K0 +S +0 +0.00037 +0 +0.00044 +0 +0.00019 +4k K0 +S +0 +0.00049 +0 +0.00058 +0 +0.00025 +TABLE IV. Estimated coupling sensitivity at DUNE with 400 kton-years of exposure, at Super-Kamiokande with 350.8 kton- +years of exposure, and at Hyper-Kamiokande with 1,900 kton-years of exposure. We apply the solar minimum flux model for +all experiments. The solar maximum model gives slightly different sensitivity estimates. +We thank Yun-Tse Tsai for comments on the draft and +Yue Zhao for helpful discussions. The work of J.B. is sup- +ported by the National Science Foundation under Grant +No. 2112789. G.E. is supported by the Cluster of Excel- +lence Precision Physics, Fundamental Interactions and +Structure of Matter (PRISMA+ – EXC 2118/1) within +the German Excellence Strategy (project ID 39083149). +J.B. thanks the Mainz Institute for Theoretical Physics +(MITP) of the Cluster of Excellence PRISMA+ (project +ID 39083149) for their hospitality. + +200 +DUNE +Atmospheric +m=0.92GeV +150 +ΦB signal +mg = 0.95GeV +d = 0.05, Cud,d = +$ signal +max +ud,d +100 +Number +50 +0 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 ++kinetic energy (GeV)5000 +Hyper-K +Atmospheric v +4000 +m=0.92GeV +events +ΦB signal +ms=0.95 GeV +$ signal +3000 +ud,d +Number of +2000 +1000 +0 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 ++ kinetic energy (GeV)120 +DUNE +ΦB signal +100 +ofevents +m = 1.8 GeV +$ signal +m= = 2.2 GeV +80 +Yd = 0.01, Cud,s = +max +ud,s +60 +40 +20 - +0 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +K+kinetic energy (GeV)Hyper-K +Atmosphericv +1500 +ms = 1.8 GeV +events +ΦB signal +m = 2.2 GeV +$ signal +Yd = 0.01, Cud,s = Cmax +ud,s +JO +1000 +Number +500 +0 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +K+ kinetic energy (GeV)6 +∗ Joshua.Berger@colostate.edu +† gelor@uni-mainz.de +[1] G. Elor, M. Escudero, and A. Nelson, Phys. Rev. D 99, +035031 (2019), arXiv:1810.00880 [hep-ph]. +[2] G. Elor and R. McGehee, Phys. Rev. D 103, 035005 +(2021), arXiv:2011.06115 [hep-ph]. +[3] F. Elahi, G. Elor, and R. McGehee, Phys. Rev. D 105, +055024 (2022), arXiv:2109.09751 [hep-ph]. +[4] G. Alonso-´Alvarez, G. Elor, A. E. Nelson, and H. Xiao, +JHEP 03, 046 (2020), arXiv:1907.10612 [hep-ph]. +[5] G. +Elor +and +A. +W. +M. +Guerrera, +(2022), +arXiv:2211.10553 [hep-ph]. +[6] G. Alonso-´Alvarez, G. Elor, +and M. Escudero, Phys. +Rev. D 104, 035028 (2021), arXiv:2101.02706 [hep-ph]. +[7] C. Hadjivasiliou et al. (Belle), Phys. Rev. D 105, L051101 +(2022), arXiv:2110.14086 [hep-ex]. +[8] A. B. Rodriguez, V. Chobanova, X. Cid Vidal, S. L. +Soli no, D. M. Santos, T. Mombacher, C. Prouve, E. X. R. +Fernandez, and C. Vazquez Sierra, Eur. Phys. J. C 81, +964 (2021), arXiv:2106.12870 [hep-ph]. +[9] M. Borsato et al., Rept. Prog. Phys. 85, 024201 (2022), +arXiv:2105.12668 [hep-ph]. +[10] X. Shi (BESIII), PoS EPS-HEP2021, 663 (2022). +[11] G. Elor et al., in 2022 Snowmass Summer Study (2022) +arXiv:2203.05010 [hep-ph]. +[12] P. Asadi et al., (2022), arXiv:2203.06680 [hep-ph]. +[13] J. L. Barrow et al., (2022), arXiv:2203.07059 [hep-ph]. +[14] E. Goudzovski et al., (2022), arXiv:2201.07805 [hep-ph]. +[15] G. Alonso-´Alvarez, G. Elor, M. Escudero, B. Fornal, +B. Grinstein, +and J. Martin Camalich, Phys. Rev. D +105, 115005 (2022), arXiv:2111.12712 [hep-ph]. +[16] B. Fornal and B. Grinstein, Mod. Phys. Lett. A 35, +2030019 (2020), arXiv:2007.13931 [hep-ph]. +[17] B. Grinstein, C. Kouvaris, and N. G. Nielsen, Phys. Rev. +Lett. 123, 091601 (2019), arXiv:1811.06546 [hep-ph]. +[18] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967), +[Usp. Fiz. Nauk161,61(1991)]. +[19] C. Andreopoulos et al., Nucl. Instrum. Meth. A 614, 87 +(2010), arXiv:0905.2517 [hep-ph]. +[20] C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, +T. Golan, R. Hatcher, G. Perdue, and J. Yarba, (2015), +arXiv:1510.05494 [hep-ph]. +[21] All data generated using this code is available upon +request. +The +code +itself +can +be +downloaded +from +https://github.com/jberger7/Generator-IND. +[22] M. N. Guinot (DUNE), PoS NuFact2021, 231 (2022). +[23] C. W. Walter, , 19 (2008), arXiv:0802.1041 [hep-ex]. +[24] M. Yokoyama (Hyper-Kamiokande Proto), in Prospects +in Neutrino Physics (2017) arXiv:1705.00306 [hep-ex]. +[25] C. McGrew et al., Phys. Rev. D 59, 052004 (1999). +[26] D. Wall et al. (Soudan 2), Phys. Rev. D 62, 092003 +(2000), arXiv:hep-ex/0001015. +[27] K. Abe et al. (Super-Kamiokande), Phys. Rev. Lett. 113, +121802 (2014), arXiv:1305.4391 [hep-ex]. +[28] K. Abe et al. (Super-Kamiokande), Phys. Rev. D 95, +012004 (2017), arXiv:1610.03597 [hep-ex]. +[29] K. Kobayashi et al. (Super-Kamiokande), Phys. Rev. D +72, 052007 (2005), arXiv:hep-ex/0502026. +[30] K. Abe et al. (Super-Kamiokande), Phys. Rev. D 90, +072005 (2014), arXiv:1408.1195 [hep-ex]. +[31] H. +Davoudiasl, +D. +E. +Morrissey, +K. +Sigurdson, +and +S. +Tulin, +Phys. +Rev. +D +84, +096008 +(2011), +arXiv:1106.4320 [hep-ph]. +[32] Y. Aoki, T. Izubuchi, E. Shintani, +and A. Soni, Phys. +Rev. D 96, 014506 (2017), arXiv:1705.01338 [hep-lat]. +[33] The corresponding values of W0(W1) for π+ are 0.038 +√ +2 +(−0.05 +√ +2), for π0 are 0.038 (-0.05), and, through Oud,s, +for K+ are 0.0648 (-0.046) and for K0 are -0.0648 (0.046). +[34] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 +(2020), [Erratum: +Astron.Astrophys. 652, C4 (2021)], +arXiv:1807.06209 [astro-ph.CO]. +[35] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, +and +S. +Tulin, +Phys. +Rev. +Lett. +105, +211304 +(2010), +arXiv:1008.2399 [hep-ph]. +[36] J. +Huang +and +Y. +Zhao, +JHEP +02, +077 +(2014), +arXiv:1312.0011 [hep-ph]. +[37] K. Abe et al. (Super-Kamiokande), Phys. Rev. D 94, +052010 (2016), arXiv:1606.07538 [hep-ex]. +[38] J. N. Esquivel, µ/π Separation using Convolutional Neu- +ral Networks for the MicroBooNE Charged Current Inclu- +sive Cross Section Measurement, Ph.D. thesis, Syracuse +U., Syracuse U. (2018). +[39] B. Abi et al. (DUNE), Eur. Phys. J. C 81, 322 (2021), +arXiv:2008.12769 [hep-ex]. +[40] G. D. Barr, T. K. Gaisser, P. Lipari, S. Robbins, +and +T. Stanev, Phys. Rev. D 70, 023006 (2004), arXiv:astro- +ph/0403630. + diff --git a/v9E2T4oBgHgl3EQf2wjd/content/tmp_files/load_file.txt b/v9E2T4oBgHgl3EQf2wjd/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a0d65cdf89de21d25df758ff206beaf2ea99f96e --- /dev/null +++ b/v9E2T4oBgHgl3EQf2wjd/content/tmp_files/load_file.txt @@ -0,0 +1,635 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf,len=634 +page_content='MITP-22-103 Dark Matter Induced Nucleon Decay Signals in Mesogenesis Joshua Berger1, ∗ and Gilly Elor2, † 1Colorado State University, Fort Collins, Colorado 80523, USA 2PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical Physics Johannes Gutenberg University, 55099 Mainz, Germany We introduce and study the first class of signals that can probe the dark matter in Mesogenesis which will be observable at current and upcoming large volume neutrino experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The well- motivated Mesogenesis scenario for generating the observed matter-anti-matter asymmetry neces- sarily has dark matter charged under baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Interactions of these particles with nuclei can induce nucleon decay with kinematics differing from sponanteous nucleon decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We calculate the rate for this process and develop a simulation of the signal that includes important distortions due to nuclear effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We estimate the sensitivity of DUNE, Super-Kamiokande, and Hyper-Kamiokande to this striking signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Mesogenesis mechanisms [1–4] utilize the Charge- Parity (CP) violation of Standard Model (SM) meson systems to generate the primordial baryon asymmetry and the dark matter (DM) abundance of the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Excitingly, Mesogenesis is highly testable [5, 6] and ex- perimental searches are underway to probe signals di- rectly linked to the generated baryon asymmetry [6–10] (see overviews in [11–14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' However, a direct probe of the DM in Mesogenesis has remained elusive, until now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In this Letter we study DM induced nucleon decays (IND) in Mesogenesis which can produce a striking signal at cur- rent and upcoming neutrino detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' While the Meso- genesis framework is the primary focus of this letter, the methods developed here can be more broadly applied to search for models containing dark baryons e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [15–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The novel way in which Mesogenesis satisfies the Sakharov conditions [18], is as follows: mesons produced at late (MeV scale) times, having undergone CP violat- ing processes, decay out of thermal equilibrium into dark baryons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This process generates an equal and opposite baryon asymmetry between the dark and visible sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For instance, the baryon asymmetry in B0-Mesogenesis [1] is generated from the late time production of B0 s,d mesons which undergo CP violating particle-antiparticle oscillations and then quickly decay into a SM baryon and a dark Dirac fermion ψB carrying SM baryon number −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' To evade washing out the generated baryon asymmetry through e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' ψB → p e ¯νe, the ψBs must rapidly decay into stable DM states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Mesogenesis DM consists of two components— a dark Majorana fermion ξ and a dark complex scalar φB which is charged under SM baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' These two stable particles will compose the entirety of the DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' As such the DM halo will consist of a mixture of ξ and φB particles which can scatter off target nuclei in neutrino detectors to produce mono-energetic pions or kaons and missing energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This process of IND appears experimentally as nucleon decay but with different kinematics, and as such current limits are essentially not constraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The cross section for IND, as it arises in Mesogene- sis, will be within reach of neutrino detectors and can be searched for at the Deep Underground Neutrino Experi- ment (DUNE) [22], Super-Kamiokande [23], and Hyper- Kamiokande [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Furthermore, given the mono-energetic (up to smearing effects) meson, such signals should be distinct over SM backgrounds which primarily consist of mesons produced in atmospheric neutrino processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In order to study the details of the IND process, we have developed a Monte Carlo event generation tool within the GENIE [19, 20] software suite used to study accelerator and atmospheric neutrino scattering events [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Based on this tool, we are able to study the de- tailed kinematics of the outgoing mesons produced dur- ing DM scattering events and compare these with the dominant atmospheric neutrino scattering background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The event generation includes nuclear effects which smear out the spectrum of mesons from one that is nearly mono- energetic in the non-relativistic DM limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Furthermore, these events are ready to be used for study in neutrino experiments, where they can be passed through detector- specific simulation software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In this Letter we first characterize the IND signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We present the Mesogenesis specific parameter space which can be targeted by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We then detail the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Next, we apply this simulation to estimate the sensitvity of DUNE, Super-Kamiokande, and Hyper- Kamiokande to benchmark models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Characterizing the IND Signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' — Generating the baryon asymmetry in B-Mesogenesis [1, 3], requires the existence of a TeV scale colored scalar (which may be identified as a squark in a supersymmetric embedding [4]) which mediates the baryon number conserving decay of a B to ψB and a SM baryon through the (GeV scale) effective operator: Oab,c = Cab,cϵijk � ui adj b � � ψB dk c � , (1) where all fermions are right handed, though our results easily generalize to left handed operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Cuadb,dc ≡ yuadbyψdc/M 2 Y , where MY is the mediator mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' ψB decays to the DM through a Yukawa coupling Ld ⊃ yd ¯ψBξφB +h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', which is allowed by a stabilizing Z2 sym- metry under which ψB is even and the DM particles odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='04165v1 [hep-ph] 10 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Induced proton decay to a pion through Ou,dd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Since we remain agnostic about the dark sector, yd is a free parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' However a motivated benchmark is yd ≲ O(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1) which results in the correct DM abundance given an example UV embedding [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 1 generates the IND signal in Mesogenesis: when kinematically allowed, an incoming ξ or φB scatters off a proton or neutron by exchanging a ψB and produces an energetic meson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 1 depicts an example process — incoming φB’s induce proton decay to π+ through Oud,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Similarly induced decay to kaons arises through Oud,s and Ous,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We consider searches at neutrino experiments for the following two processes: φB N → M ξ if mφB + mN > mM + mξ , (2a) ξ N → M φ⋆ B if mξ + mN > mM + mφB , (2b) where N = n0, p+ and M is a SM meson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Recall that ξ is Majorana, allowing any of the DM states to partici- pate in this process when it is kinematically allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For decays induced by incoming φs, the kinetic energy of the outgoing meson, to O(vDM), is given by EM, kin φBN→ξM = m2 M − m2 ξ + (mN + mφB)2 2(mN + mφB) − mM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (3) Swap mξ ↔ mφB in the above to obtain the meson energy from incoming ξs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The expected kinetic energy for each process that arises in Mesogenesis is given in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' If the struck nucleon is at rest, then the outgoing meson is mono-energetic with energy given in Eq (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' However, the nucleons are moving with a momentum of O(100 MeV) inside nuclei, smearing out of the meson sig- nal (except for the case of scattering off hydrogen in wa- ter Cherenkov detectors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We simulate the IND process, carefully accounting for this smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Note that the energies of these decays are shifted compared to sponta- neous nucleon decay, with higher energies when φB scat- ters and lower energies when ξ scatters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This alters the phenomenology of the Mesogenesis scenario compared with proton decay models such as grand unified theo- ries — the canonical targets of current nucleon decay searches [25–30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' As such, existing limits from nucleon Initial Final Mediating Meson Approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' ⟨σv⟩0 DM Meson Operator EKin [GeV] � cm3/sec � φB π+/π0 Oud,d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 10−21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4 - 10−21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0 ξ π+/π0 Oud,d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='02 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 10−22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 - 10−21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='9 φB K+/K0 Ous,d, Oud,s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='9 10−19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='7 - 10−19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 ξ K+/K0 Ous,d, Oud,s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='04 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 10−20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 - 10−19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The induced nucleon decays allowed by kinemat- ics (2) and Mesogenesis considerations Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We show the corresponding flavorful variation of the opeator Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 1 that generates the decay, the expected range of un-smeared ki- netic energy of the outgoing meson computed from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (3), and the stripped cross section defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' decay searches, with a few exceptions, do not constrain the Mesogeneis signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Similar considerations were dis- cussed in the context of Hylogenesis [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The cross section for IND is obtained from the matrix element: AφBN→ξM = ¯uξ(⃗pξ) yd Cab,c p2 ψB −m2 ψB � /pψB + mψB � (4) × PR � W RR 0 − i /pψB mN W RR 1 � uN(⃗pN) , with ¯uξ → ¯vξ for ξ N → M φ⋆ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Here, pψB = pξ−pφB and PR is the right handed fermion projector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The Wilson Coefficients are constrained by a combination of LHC searches for the mediator and flavor observables: Cmax ud,d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='07 TeV−2 and Cmax ud,s , Cmax us,d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='64 TeV−2 [6, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Since INDs can lead to O(GeV) momentum transfer, we use high q2 extrapolated lattice results from [32] for the form factors W RR 0,1 [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Including the momentum dependence of W1,2 negligibly affects the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The Ous,d and Oud,s require different form factors but lead to similar signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Mesogenesis Parameter Space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' — In addition to the kinematic constraints on IND Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (2), the allowed param- eter space is constrained by Mesogenesis-specific consid- erations i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' generating the observed baryon asymmetry and DM abundance: mφB + mξ < mψB < mB − mp ≃ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='34 GeV , (5a) |mφB − mξ| < mp + me ≃ 938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 MeV , (5b) mψB , mφB > mp − me .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5c) mφB > mξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5d) The regions in {mξ, mφB} space excluded by these con- straints are shaded in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 2, while the white region is allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5a) ensured that ψB is light so that the baryon asymmetry can be generated through the decay B → BSM + ψB, while also being heavy enough to decay into the DM ξ and φB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Decreasing the value of mψB cor- responds to increasing the excluded green region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For mψB ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 GeV, there is no longer viable parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5b) is enforced to prevent ξ and φB from coalescing into SM baryons, which would washout the ΦB S 山B u d p d u3 ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Parameter space and kinetic energy contours for the eight different DM IND proceses arising in Mesogenesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Colored regions are ruled out by kinematics Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (2) or mechanism considerations Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Sold lines correspond to kinetic energy for scattering off protons N = p, and the dashed off nucleons N = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In each panel, we indicate the location of the representative benchmark points: 1, 2, 3p, 4p for pions and 1, 2, 3k, 4k for kaons as summarized in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' baryon asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Proton decay through Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (1) to dark baryons is kinematically forbidden through Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' A complete list of DM IND processes consistent with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (2) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5) is shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' There must exist dark sector interactions which de- plete the DM and ensure the correct abundance [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Since nφB − ¯nφB is related to the baryon asymmetry, φB must always constitute some, but not all, of the DM: if mφB < mξ, dark interactions could annihilate the entire ξ pop- ulation into ψBs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The measured ratio of DM to baryon densities [34] implies that mφB ≃ 5mp, violating Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This motivates multi-component DM where we enforce Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 5d so that the symmetric component of φBs annihi- late into ξs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Since the measured SM baryon asymmetry is always balanced by an asymmetry in φBs, the observed DM to baryon ratio ρDM ∼ 5ρB fixes the expected density of ξ and φB particles in the halo: ρξ/ρφB = 5mp/mφB −1, and ρtotal = ρφ + ρξ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4 GeV/cm3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Given Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (5c), there will always be a substantial asymmetric compo- nent of DM, and so both INDs in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (2) will be present if kinematically allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The scattering cross sections for the INDs are com- puted from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' They scale roughly as ⟨σv⟩ ∝ m−2 ψB, but the range of variation mψB ∼1-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 GeV, leads to a small effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We parametrize the cross section as: ⟨σv⟩M DM ≡ (yd × Cudi,dj)2 m2 ψB[GeV−4] ⟨σv⟩M,0 DM (6) where M = π0, π+, K+, K0 and DM = φB, ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Val- ues of the coupling stripped cross section ⟨σv⟩M,0 DM over the allowed parameter space of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 2) are shown in Ta- ble I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' yd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 and Cmax udi,dj, the expected cross section can be as large as 10−38 − 10−36cm3/sec in the allowed parameter space for all channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Meanwhile, the estimated sensitivity at DUNE and Super-Kamiokande is roughly 10−42 − 10−40cm2/sec .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmark mφB [GeV] mξ [GeV] 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='92 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='53 3p 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='38 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 3k 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 4p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='17 4k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='55 TABLE II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmarks highlighting the possible signal topologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmark 1 corresponds to Ekin,min pφB→Mξ ∼ Ekin,max pφB→Mξ for both πs and kaons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmark 2 corresponds to Ekin,max pφB→Mξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmarks 3p and 3k correspond to the maxi- mal Ekin pφB→Mξ such that the incoming ξ process is still allowed for production of πs and kaons respectfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmarks 4p and 4k highlight a region of {mξ, mφB} which would still lead to a signal for small mψB (see also labels in Fig 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Signal Monte Carlo and Benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' — Non- relativistic DM striking a nucleon at rest and inducing decay would lead to a mono-energetic signal with kinetic energy given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (3) and shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We pick benchmark points to highlight the possible signal topologies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' these are defined in Table II and labeled in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In the context of large nuclei, nuclear effects including nuclear motion of the nucleons and final state interactions of hadronic particles escaping the nuclear remnant smear the outgoing meson energy, can liberate additional hadrons, and can change the isospin characteristics of the meson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In order to account for these effects, as well as allow for future simulation of the detailed detector response at neutrino experiments, we have developed a Monte Carlo event generation tool for the IND process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Signal events are generated using a modified version of GENIE v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We employ the default tune (G18 02a) throughout, though we considered other nu- clear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We found differences in the signal distri- butions of order 10% between hA and hN models of the intranuclear cascade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The current nucleon decay mod- 4 ule in GENIE was modified to allow for IND kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The meson final states currently implemented are π0, π+, K0 S/L, K+, and D0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This module propagates the outgo- ing mesons through the nuclear remnant to the edge of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The kinematics of the IND process is fixed given masses for the two DM particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The cross sec- tion is determined by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For non-relativistic DM, there is a small difference in the rate for interaction with a high speed nucleon compared with a nucleon at rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We neglect this small difference of ∼10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Signals at Neutrino Experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' — The current best limits on spontaneous nucleon decays to pions are from a Super-Kamiokande [27], which applied a pion momen- tum cut of 1 GeV and is thus applicable to parts of Mesogenesis parameter space — here the experimental limit can be compared to an effective lifetime (τ Ind N )−1 = nDM⟨σv⟩DM [31, 35, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This yields an approximate, conservative, limit of yd × Cud,d/Cmax ud,d ≳ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='03 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 for 70 MeV ≲ Ekin π+ ≲ 870 MeV and Ekin π0 ≲ 870 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Ex- isting searches in kaon channels [29, 30] placed narrow ranges of momentum cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Consequentially, the major- ity of parameter space of interest is unconstrained by ex- isting searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Super-Kamiokande is expected to have sensitivity to IND signals given dedicated studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Hyper- Kamiokande will improve on this with its larger exposure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Since DUNE is based on liquid argon time-projection chamber (LArTPC) technology, it could have particular sensitivity to certain models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We assume kinetic energy thresholds as indicated in Table III, based on the studies where available [37] and otherwise based on Cherenkov thresholds or de- tecting tracks/showers in LArTPCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Determining re- construction efficiencies requires a dedicated study by the respective experimental collaborations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In Super- Kamiokande’s search for proton decay in the π+ν chan- nel, no muon/pion separation was attempted [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' On the other hand, the LArTPC experiment MicroBooNE has demonstrated muon/pion separation at the 80% level [38], consistent with other particle identification ef- ficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We therefore do not assume muon/pion sepa- ration for the Water Cherenkov experiments, while we as- sume perfect muon/pion separation for DUNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Searches for similar signals of kaons in spontaneous nucleon decay at Super-Kamiokande indicate reconstruction efficiencies around or below 10% [29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The full 3D imaging of LArTPC detectors like DUNE may increase performance in reconstructing complex topologies arising from kaon decays, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' kaons above 40 MeV kinetic energy may be efficiently be reconstructed as tracks before decay [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Sensitivity Estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' — The dominant background for the channels we consider is expected to be inelastic scat- tering of atmospheric neutrinos off nuclei, leading to ad- ditional mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' By looking for off beam timing events, beam-related backgrounds can be evaded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' To study the atmospheric neutrino background, we generate at- mospheric neutrino events using GENIE v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2, along Particle LArTPC Cherenkov Thresh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [MeV] Thresh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [MeV] e± 30 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 γ 30 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 µ± 35 55 π± 35 72 p 80 481 TABLE III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Kinetic energy thresholds for particles assumed in LArTPC (DUNE) and Water Cherenkov (Super- and Hyper- Kamiokande) detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' with the Bartol atmospheric neutrino flux model [40] at Soudan for DUNE and Kamioka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' From samples of DM signals and atmospheric neutrino events, we look for events containing the relevant final state meson for the channel considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Not all events with such a meson should be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Signal events contain a single meson and no other activity other than possible emissions from the nuclear remnant or byprod- ucts of final state interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Thus, it is highly benefi- cial to veto any activity beyond the expected meson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' To do so, we first apply the thresholds in Table III to all final state particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Of the remaining particles that can be de- tected, we veto on events that have anything other than a meson of the expected type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For the pion channels, order 1% of atmospheric neutrino scattering events lead to an event matching these criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' This leaves a search that is not entirely background free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For the kaon channels on the other hand, single kaon events are only possible with additional flavor-violating weak interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Searches in these channels may thus be background free if kaon re- construction is sufficiently good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' To get a sense of the events after these vetoes we plot kinetic energy distribu- tions of the remaining signal and background events;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' a few illustrative distributions are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We now estimate the sensitivity to yd×Cudi,dj/Cmax udi,dj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For pion channels, we apply the selection described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' To eliminate a majority of the background events, we also require that the selected pion has a kinetic energy within 100 MeV of its unsmeared value Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' For the kaon channels, no further selection is required as we have found that this channel is nearly background free, and we determine the coupling that would lead to 5 signal events over the assumed exposure of the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In cases where there is background, we estimate the 2σ sensitivity to the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The sensitivity results are summarized in Table IV for the benchmarks listed in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Discovering an IND signal would be a direct probe of the DM in Mesogenesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' In addition to providing exper- imentalists with the tools needed to search for DM IND signals at neutrino experiments, this letter paves the way to a signal driven model building effort of the dark sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Kinetic energy distributions for sample benchmark models at DUNE and Hyper-Kamiokande.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Super-Kamiokande, is simply a rescaling of the rate at Hyper-Kamiokande by a factor of 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Dashed lines indicate the un-smeared energy Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Green lines indicate, where relevant, the assumed threshold for the detector to see the meson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The top row correspond to Benchmark 1, while the bottom corresponds to Benchmark 3k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The Hyper-Kamiokande signal has a noticeable mono-energetic spike corresponding to scattering of hydrogen, while the smeared distribution corresponds to scatterings off oxygen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Benchmark Background yd(Cudi,dj/Cmax udi,dj) Background yd(Cudi,dj/Cmax udi,dj) Background yd(Cudi,dj/Cmax udi,dj) and Meson DUNE DUNE sensitivity Super-K Super-K sensitivity Hyper-K Hyper-K sensitivity 1 π+ 118 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='019 1759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='030 9452 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='020 2 π+ 14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='007 432 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='014 2323 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0090 3p π+ 584 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='021 2570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='023 13835 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='015 4p π+ 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='040 2907 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='045 15653 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='029 1 π0 140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='025 125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='026 672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='017 2 π0 26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='011 17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='011 94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0069 3p π0 915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='080 590 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='080 3135 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='052 4p π0 923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='053 608 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='050 3231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='033 1 K+ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0016 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0014 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00061 2 K+ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00038 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00032 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00014 3k K+ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00063 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00054 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00023 4k K+ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0010 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00087 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00038 1 K0 S 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00047 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00056 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00024 2 K0 S 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00034 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00041 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00018 3k K0 S 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00037 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00044 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00019 4k K0 S 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00049 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00058 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00025 TABLE IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Estimated coupling sensitivity at DUNE with 400 kton-years of exposure, at Super-Kamiokande with 350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 kton- years of exposure, and at Hyper-Kamiokande with 1,900 kton-years of exposure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We apply the solar minimum flux model for all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The solar maximum model gives slightly different sensitivity estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' We thank Yun-Tse Tsai for comments on the draft and Yue Zhao for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The work of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' is sup- ported by the National Science Foundation under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 2112789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' is supported by the Cluster of Excel- lence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA+ – EXC 2118/1) within the German Excellence Strategy (project ID 39083149).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' thanks the Mainz Institute for Theoretical Physics (MITP) of the Cluster of Excellence PRISMA+ (project ID 39083149) for their hospitality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 200 DUNE Atmospheric m=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='92GeV 150 ΦB signal mg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='95GeV d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='05, Cud,d = $ signal max ud,d 100 Number 50 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 +kinetic energy (GeV)5000 Hyper-K Atmospheric v 4000 m=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='92GeV events ΦB signal ms=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='95 GeV $ signal 3000 ud,d Number of 2000 1000 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 + kinetic energy (GeV)120 DUNE ΦB signal 100 ofevents m = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 GeV $ signal m= = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 GeV 80 Yd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='01, Cud,s = max ud,s 60 40 20 - 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 K+kinetic energy (GeV)Hyper-K Atmosphericv 1500 ms = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 GeV events ΦB signal m = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 GeV $ signal Yd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='01, Cud,s = Cmax ud,s JO 1000 Number 500 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='8 K+ kinetic energy (GeV)6 ∗ Joshua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='Berger@colostate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='edu † gelor@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='de [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Escudero, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Nelson, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 99, 035031 (2019), arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00880 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [2] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' McGehee, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 103, 035005 (2021), arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='06115 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [3] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elahi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' McGehee, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 105, 055024 (2022), arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='09751 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Alonso-´Alvarez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Nelson, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Xiao, JHEP 03, 046 (2020), arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='10612 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Guerrera, (2022), arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='10553 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Alonso-´Alvarez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Escudero, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 104, 035028 (2021), arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='02706 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Hadjivasiliou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Belle), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 105, L051101 (2022), arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='14086 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rodriguez, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Chobanova, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Cid Vidal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Soli no, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Santos, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Mombacher, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Prouve, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Fernandez, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Vazquez Sierra, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' C 81, 964 (2021), arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='12870 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Borsato et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 85, 024201 (2022), arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='12668 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [10] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Shi (BESIII), PoS EPS-HEP2021, 663 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', in 2022 Snowmass Summer Study (2022) arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='05010 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Asadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', (2022), arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='06680 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Barrow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', (2022), arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='07059 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Goudzovski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', (2022), arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='07805 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Alonso-´Alvarez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Elor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Escudero, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Fornal, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Grinstein, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Martin Camalich, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 105, 115005 (2022), arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='12712 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [16] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Fornal and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Grinstein, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' A 35, 2030019 (2020), arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='13931 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [17] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Grinstein, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Kouvaris, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Nielsen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 123, 091601 (2019), arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='06546 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Sakharov, Pisma Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 5, 32 (1967), [Usp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Nauk161,61(1991)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Andreopoulos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' A 614, 87 (2010), arXiv:0905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2517 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Andreopoulos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Barry, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Dytman, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Gallagher, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Golan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Hatcher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Perdue, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Yarba, (2015), arXiv:1510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='05494 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [21] All data generated using this code is available upon request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' The code itself can be downloaded from https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='com/jberger7/Generator-IND.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Guinot (DUNE), PoS NuFact2021, 231 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [23] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Walter, , 19 (2008), arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1041 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Yokoyama (Hyper-Kamiokande Proto), in Prospects in Neutrino Physics (2017) arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='00306 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [25] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' McGrew et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 59, 052004 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [26] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Wall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Soudan 2), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 62, 092003 (2000), arXiv:hep-ex/0001015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [27] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Super-Kamiokande), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 113, 121802 (2014), arXiv:1305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4391 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [28] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Super-Kamiokande), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 95, 012004 (2017), arXiv:1610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='03597 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [29] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Kobayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Super-Kamiokande), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 72, 052007 (2005), arXiv:hep-ex/0502026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [30] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Super-Kamiokande), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 90, 072005 (2014), arXiv:1408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='1195 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Davoudiasl, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Morrissey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Sigurdson, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Tulin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 84, 096008 (2011), arXiv:1106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='4320 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [32] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Aoki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Izubuchi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Shintani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Soni, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 96, 014506 (2017), arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='01338 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [33] The corresponding values of W0(W1) for π+ are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='038 √ 2 (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='05 √ 2), for π0 are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='038 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='05), and, through Oud,s, for K+ are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0648 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='046) and for K0 are -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0648 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='046).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [34] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Planck), Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 641, A6 (2020), [Erratum: Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 652, C4 (2021)], arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='06209 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [35] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Davoudiasl, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Morrissey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Sigurdson, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Tulin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' 105, 211304 (2010), arXiv:1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='2399 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [36] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Huang and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Zhao, JHEP 02, 077 (2014), arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='0011 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [37] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (Super-Kamiokande), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 94, 052010 (2016), arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='07538 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Esquivel, µ/π Separation using Convolutional Neu- ral Networks for the MicroBooNE Charged Current Inclu- sive Cross Section Measurement, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' thesis, Syracuse U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=', Syracuse U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [39] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Abi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' (DUNE), Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' C 81, 322 (2021), arXiv:2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content='12769 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' [40] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Barr, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Gaisser, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Lipari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Robbins, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Stanev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} +page_content=' D 70, 023006 (2004), arXiv:astro- ph/0403630.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/v9E2T4oBgHgl3EQf2wjd/content/2301.04165v1.pdf'} diff --git a/w9FRT4oBgHgl3EQfhDe7/content/tmp_files/2301.13582v1.pdf.txt b/w9FRT4oBgHgl3EQfhDe7/content/tmp_files/2301.13582v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..134f079973ed01ff61c00d228f2938598b70f559 --- /dev/null +++ b/w9FRT4oBgHgl3EQfhDe7/content/tmp_files/2301.13582v1.pdf.txt @@ -0,0 +1,4650 @@ +arXiv:2301.13582v1 [math.AG] 31 Jan 2023 +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES +OVER FINITE FIELDS +R´EGIS BLACHE AND EMMANUEL HALLOUIN +Abstract. In this article, we consider weak del Pezzo surfaces defined over a +finite field, and their associated, singular, anticanonical models. +We first define arithmetic types for such surfaces, by considering the Frobe- +nius actions on their Picard groups; this extends the classification of Swinnerton- +Dyer and Manin for ordinary del Pezzo surfaces. +We also show that some +invariants of the surfaces only depend on the above type. +Then we study an inverse Galois problem for singular del Pezzo surfaces +having degree 3 ≤ d ≤ 6: we describe which types can occur over a given finite +field (of odd characteristic when 3 ≤ d ≤ 4). +Contents +Introduction +2 +1. +Weak del Pezzo surfaces +4 +1.1. +A blow-up model +5 +1.2. +Roots, exceptional curves and geometric types +6 +1.3. +Arithmetic types +8 +2. +Singular del Pezzo surfaces +9 +2.1. +Anticanonical models: geometric aspects +9 +2.2. +Divisor class groups and zeta functions +10 +3. +Construction of weak del Pezzo surfaces of degree at least five +13 +3.1. +Degrees seven and eight +13 +3.2. +Degree six +14 +3.3. +Degree five +15 +4. +Construction of singular del Pezzo surfaces of degree four. +16 +4.1. +Pencils of quadrics, their Segre symbols, and geometric types +16 +4.2. +Morphisms to the projective line +18 +4.3. +Galois action on the singular quadrics, and arithmetic types +23 +4.4. +Quadratic module associated to a pencil of quadrics +24 +4.5. +Construction of degree four del Pezzo surfaces of any arithmetic type +29 +5. +Construction of singular del Pezzo surfaces of degree three. +38 +5.1. +Blowing up degree four surfaces +38 +5.2. +Other constructions +39 +5.3. +Type 36 +42 +Appendix A. +Arithmetic types for degrees three to six +44 +References +48 +Date: February 1, 2023. +2020 Mathematics Subject Classification. Primary 11G25, 14J26; Secondary 14G10, 11E12. +Key words and phrases. del Pezzo surfaces over finite fields, zeta functions, quadratic modules. +1 + +2 +R. BLACHE AND E. HALLOUIN +Introduction +In this article, we study certain del Pezzo surfaces defined over a finite field. +Recall that a smooth projective surface X is a weak del Pezzo surface when its +anticanonical divisor −KX is big and nef; its degree is the self-intersection number +d := K·2 +X. If moreover −KX is ample, we call X an ordinary del Pezzo surface. +When a weak del Pezzo surface X is not ordinary, it contains absolutely irreducible +curves with self intersection −2, that we shall call (−2)-curves in the following. +The anticanonical model of a weak, non ordinary del Pezzo surface X is a singular +surface, that we denote by Xs, and call a singular del Pezzo surface. Note that +Xs has Du Val singularities, and is Gorenstein; for these reasons such surfaces are +sometimes called Du Val del Pezzo or Gorenstein del Pezzo in the literature. +The study of complex singular cubic surfaces (degree 3 del Pezzo surfaces over +C) dates back to the nineteenth century [6, 23]. It has been generalized to del +Pezzo surfaces along the twentieth century [13]. In particular we know all types of +singularities (sometimes called the Dynkin types) that can occur in characteristic +zero [12, Chapter 8]. Over an algebraically closed field of positive characteristic, +some new types occur, but only in characteristic 2 [16]. +The interest on del Pezzo surfaces over finite fields is more recent. If X is an +ordinary del Pezzo surface defined over the finite field Fq, where q = pm is a power +of a prime, the Frobenius action σ∗ on Pic(X ⊗Fq) must preserve the anticanonical +class and the intersection product. The group of automorphisms of Pic(X ⊗ Fq) +with these properties is a (finite) Weyl group depending on the degree of the surface. +Thus the image of the Galois group Gal(Fq/Fq) is a cyclic subgroup generated by +the image of the Frobenius morphism σ; its conjugacy class is the arithmetic type +of X. Swinnerton-Dyer [25] and Manin [21] construct tables of conjugacy classes in +these Weyl groups in order to classify ordinary del Pezzo surfaces over finite fields +(the table for degree 3 has been corrected in [2]). +Many invariants of a del Pezzo surface only depend on its arithmetic type; this +is the case for its zeta function [21, Theorem 27.1, Corollary 27.1.2] +(0.1) +Z(X, T )−1 = (1 − T )(1 − q2T ) det +� +I − qT σ∗| Pic(X ⊗ k) +� +The first aim of this paper is to extend the classification of Swinnerton-Dyer and +Manin to weak del Pezzo surfaces, by defining their arithmetic type, and to give an +expression for their zeta functions. +We begin by classifying the possible singularities over the algebraic closure. Fol- +lowing [7, 10], we define a geometric type. This is the configuration of negative +curves on the surface X ⊗ k (corresponding to lines and singularities on the anti- +canonical model), up to the action of the Weyl group. It is finer than the Dynkin +type. The types are orbits of the Weyl action on the root bases in the lattice E9−d +corresponding to the degree d. +Coming back to the surface X, the Galois action must preserve the set Rirr of +(−2)-curves. Thus the Frobenius maps to an element of its stabilizer Stab(Rirr). +We define the arithmetic type of X as the conjugacy class of the Frobenius action +in this last group. +Here again, many properties of a weak del Pezzo surface only depend on its +arithmetic type; this is true for its zeta function from (0.1), and we show that it + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +3 +remains true for its anticanonical model Xs (note that its geometric Picard lattice +is the orthogonal of Rirr in the geometric Picard group of X). +Theorem 1. We have the equality +Z(Xs, T )−1 = (1 − T )(1 − q2T ) det +� +I − qT σ∗| Pic(Xs ⊗ k) +� +Our second aim is to construct such surfaces. When the finite field is small, not +all are constructible [26]. For instance, over the field F2, there are no split ordinary +del Pezzo surfaces of degree d ≤ 4 since there are at most four points in general +position in P2(F2). +This is the inverse Galois problem for singular del Pezzo surfaces over finite +fields: in the ordinary case, it asks for which conjugacy classes of the Weyl group +can arise as the conjugacy class of the Frobenius action. It has been solved for +ordinary degree four surfaces in [26, Theorem 1.4], and for ordinary degree three +and two surfaces in [20]. There is also a weaker version of this problem, asking for +which integers can arise as the trace of the Frobenius action. It has been solved for +ordinary del Pezzo surfaces, see [2]. +It should be easier for non ordinary del Pezzo surfaces since when we consider +them as blowups of the projective plane, we relax the condition of blowing up points +in general position to almost general position. But when the degree is at most four +and the base field is not algebraically closed, some of the surfaces are no longer +birational to the projective plane, and we have to provides other constructions. +In this paper we solve the inverse Galois problem for singular del Pezzo surfaces +of degree at least 5 over any finite field, and for surfaces of degree 3 or 4 when the +characteristic is odd. We refer to Appendix A for the tables of arithmetic types for +each degree 3 ≤ d ≤ 6. +Theorem 2. There exists a weak, non ordinary del Pezzo surface of degree d and +any arithmetic type T over the finite field Fq in the following cases +1. we have d ≥ 5; +2. we have d = 4 and Fq has odd characteristic. +3. we have d = 3, Fq has odd characteristic and (q, T) /∈ {(3, 1), (3, 12)}. +There does not exist any surface of degree 3 and arithm´etic type 1 or 12 over F3. +The types corresponding to the degrees d ≥ 5 are not very difficult to construct. +It turns out that these surfaces are birational to P2, and it is sufficient to blowup +the projective plane at well chosen points, and to contract exceptional curves. +In the case of degree four, we no longer consider a blowup model. We exploit an +idea which is present in [3, 14, 24]. The anticanonical model of a del Pezzo surface +a degree four is the base locus of a pencil of quadrics in P4. To such a pencil we +associate a quadratic Fq|T ]-module (equivalently, a Frobenius algebra). Now fixing +a geometric type, then an arithmetic type for a del Pezzo surface, gives a precise +description of the quadratic module. We construct such modules with prescribed +arithmetic properties, and their existence is sufficient to prove the second assertion +of the above theorem. Note that these quadratic modules are rather different in +even characteristic, since there a bilinear form over an odd dimensionnal vector +space must be degenerate. This is why we do not consider that case here. However, +nice normal forms have been described in this case [11], that should help solving +this problem. + +4 +R. BLACHE AND E. HALLOUIN +Note that we have used the mathematical software magma to construct explicit +models (ie a couple of quadrics in P4) for all types of degree four singular del Pezzo +surfaces over a given finite field. The code is freely available on the second author’s +webpage. +Finally, we construct degree three surfaces in different ways. Our main con- +struction is by blowing up a point – not lying on any negative curve – on a well +chosen degree four del Pezzo surface. We count the numbers of such points for each +arithmetic type belonging to degree four; this allows us to show the existence of +many degree three surfaces with given arithmetic type, but also – when there is +no such point – the non existence result stated in the last sentence of the above +Theorem. We also use other types of blow up (of the projective plane, or a degree +four surface at a point lying on one or more exceptional curve) in order to construct +the surfaces belonging to the remaining arithmetic types. +The paper is organised as follows: in section 1, we describe weak del Pezzo +surfaces, and recall their principal properties. +This allows us to introduce the +classification and to define the different types (geometric, then arithmetic) that +we use in the rest of the article. Then we turn to the description of singular del +Pezzo surfaces; we briefly describe their different groups of divisors, and we show +Theorem 1 in section 2. The next section is devoted to the proof of the first assertion +in Theorem 2. The fourth section is more technical: we treat the degree four del +Pezzo surfaces over finite fields of odd characteristic; to such a variety, we associate +a quadratic Fq|T ]-module. Then most of the work is devoted to describing the link +between the arithmetic properties of the module and the arithmetic type of the +surface; this allows us to prove the second assertion of Theorem 2. The last section +mainly builds on the preceding one: we blow up the degree four surfaces at well +chosen points in order to construct degree three surfaces. We also use some direct +constructions; this allows us to prove the last two assertions of Theorem 2. +We give the description of the different arithmetic types for degree d ≥ 3 in the +Appendix. +1. Weak del Pezzo surfaces +We first define the smooth surfaces we shall consider in this article +Definition 1.1. A smooth projective surface X defined over a field k is a weak del +Pezzo surface when its anticanonical divisor −KX is +(i) big, i.e. K·2 +X > 0; +(ii) and nef, i.e. for any effective divisor D on X, (−KX) · D ≥ 0. +It is an ordinary del Pezzo surface when −KX is ample. Its degree is d := K·2 +X. +Note that since −KX is nef, the adjunction formula ensures that for any abso- +lutely irreducible curve C on X, we have C · C ≥ C · (C + KX) = 2pa(C) − 2 ≥ −2. +Moreover, if for such a curve this inequality is an equality, then we have C ·KX = 0, +and from the Nakai-Moishezon criterion the anticanonical divisor is not ample: the +surface X is a not an ordinary del Pezzo surface. +It is well known [9, 7] that the geometry of del Pezzo surfaces depends to a +large extent of its absolutely irreducible curves with negative self-intersection, the +so-called negative curves. These are the generalization of the celebrated 27 lines on +an smooth cubic hypersurface in P3. + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +5 +Definition 1.2. Let X denote a weak del Pezzo surface over the field k. +An element D in the geometric Picard group Pic(X ⊗k) is an exceptional divisor +when D·2 = D · KX = −1. +An absolutely irreducible curve C on X whose class is an exceptional divisor is +an exceptional curve. +An element D in Pic(X ⊗k) is a root when it satisfies D·2 = −2 and D·KX = 0. +We denote by R(X) the set of roots. +When C is a curve on X whose class is a root, we say that C (or its class) is an +effective root. If moreover C is absolutely irreducible, then it is a (−2)-curve. +We denote by A the union of the (−2)-curves on X; this is a closed subscheme +of X. We denote by U the complementary of A on X. +Remark 1.3. First remark that the negative curves which are absolutely irreducible +are isomorphic to P1 from the adjunction formula. +The sets of exceptional divisors and roots are finite and depend up to isomor- +phism only on the degree of the surface [9, II. Tables 2 et 3]. +Note also (contrary to the case of ordinary del Pezzo surfaces) that all exceptional +divisors need not correspond to exceptional curves; see Lemma 1.11 for a numerical +criterion. +Finally, the sets of exceptional and (−2)-curves will be crucial in this article +since they determine (up to an isomorphism) the geometric type. +We first give a construction of weak del Pezzo surfaces as blow-ups of the pro- +jective plane. +1.1. A blow-up model. We assume k algebraically closed in this section. +Definition 1.4. We denote by X(Σ) the surface obtained from the projective plane +by successively blowing up the points in Σ := {p1, . . . , pr} +π : X(Σ) +Blpr +−→ Xr → . . . → X2 +Blp1 +−→ X1 = P2 +where each pi, 1 ≤ i ≤ r is a closed point in the surface Xi. +For 1 ≤ i ≤ r, we denote by Ei the total transform in X(Σ) of the exceptional +divisor of the blowing-up Blpi : Xi+1 → Xi, and we write pi ≺ pi+1 when pi+1 is +infinitely near to pi, ie when it lies on the exceptional divisor of Blpi in Xi+1. +The Picard lattice of the surface X(Σ) is the group generated by E0 := π∗L, the +total transform of the class L of a line in P2, and the Ei, 1 ≤ i ≤ r +Pic(X(Σ)) = Zr+1 = ZE0 + ZE1 + · · · + ZEr +endowed with the intersection product given by E·2 +0 = 1, E·2 +i += −1 for 1 ≤ i ≤ r +and Ei · Ej = 0 for i ̸= j. The canonical class is given by +KX(Σ) = −3E0 + E1 + · · · + Er +From [9, III. Theorem 1], the surface X(Σ) is a weak del Pezzo surface of degree +d = 9 − r if, and only if r ≤ 8, and the points in Σ are in almost general position: +at each stage, the point pi does not lie on a (−2)-curve on Xi. +The converse statement is almost true; actually we have the following description +of weak del Pezzo surfaces [7, Proposition 0.4] +Proposition 1.5. Let X denote a weak del Pezzo surface of degree d over an +algebraically closed field k. Then we have 1 ≤ d ≤ 9, and if we set r = 9 − d, we +must have one of the following + +6 +R. BLACHE AND E. HALLOUIN +(i) r = 1 and X ≃ P1 × P1; +(ii) r = 1 and X ≃ F2 the Hirzebruch surface; +(iii) 0 ≤ r ≤ 8, and X ≃ X(Σ), where Σ := {p1, . . . , pr} consists of points in +almost general position. +1.2. Roots, exceptional curves and geometric types. In this section, we con- +sider a weak del Pezzo surface X of degree d ≤ 7 over an algebraically closed field +k, and we set r := 9 − d as above. Note that the description of del Pezzo surfaces +of degrees 8 and 9 follows immediately from the preceding result. +There exists some Σ := {p1, . . . , pr} consisting of points in almost general posi- +tion such that X ≃ X(Σ); this choice allows us to identify Pic(X) ≃ Zr+1 as in the +preceding section. +Definition 1.6. Recall that R(X) is the set of roots in Pic(X) +R(X) := {D ∈ Pic(X), D·2 = −2, D.KX = 0} +We denote by Reff(X) ⊂ R(X) (resp. Rirr(X) ⊂ R(X)) the subset of effective +roots (resp. of (−2)-curves) in Pic(X). +Let R(X) denote the root module; it is the sub-Z-module of Pic(X) generated +by Rirr(X). +It is well known [9] that the set R(X) is a root system in the orthogonal (KX)⊥⊗ +Q of the canonical divisor KX. Under the identification of Pic(X) and Zr+1, it is +sent on the root system Rd with basis {E0−E1 −E2−E3, E1 −E2, · · · , Er−1 −Er}. +We denote by E9−d the intersection graph of this basis. It is the Dynkin diagram +associated to the degree d, namely +Degree d +6 +5 +4 +3 +2 +1 +Dynkin diagram E9−d +A2 × A1 +A4 +D5 +E6 +E7 +E8 +The group of automorphisms of the Picard group Pic(X) preserving the canonical +divisor and the intersection product is isomorphic to the Weyl group associated to +E9−d, which we denote by W(E9−d). It is generated by the reflections through the +hyperplanes orthogonal to the roots, i.e. the sα : x �→ x + (x · α)α, α ∈ Rd. +The following result [9, III Th´eor`eme 2] is fundamental for the geometric classi- +fication of weak del Pezzo surfaces +Proposition 1.7. Let X denote a weak del Pezzo surface of degree d ≤ 6. Then +the set Reff(X) ∪ (−Reff(X)) is a closed and symmetric part of R(X). +It is a root system in the space R(X)⊗Q, of which the set Rirr(X) forms a basis +(and we call it a root basis). +As a consequence, the free Z-module generated by Rirr(X) is equal to R(X). +An immediate consequence is that since we have R(X) ⊂ K⊥ +X, and this last +module has rank r = 9−d, there are at most r (−2)-curves on X. Their intersection +graph has a strong geometric significance. It is sometimes called the Dynkin type +of X. +We are ready to define the first, geometric part of our classification +Definition 1.8. The geometric type of X is the orbit of the image of its set of +(−2)-curves Rirr(X) under the action of W(E9−d) on the set of bases for closed and +symmetric parts of Rd. +When X is ordinary, we say it has ordinary geometric type. + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +7 +Note that two isomorphisms between the lattices Pic(X) and Zr+1 differ by an +element of the Weyl group. This is why we define the type as an orbit under the +action of this group: this makes it independent of the choice of such an isomorphism, +and of the blown-up points. Note also that the geometric type above is equivalent +to the type from [10, Definition 3]. +The possible orbits can be deduced recursively from a theorem by Borel and +de Siebenthal that classifies the closed symmetric parts of maximal rank in a root +system up to the action of the Weyl group [22, p 29], [12, p 404]. They are given, +degree by degree, in [12, Chapters 8 and 9]. We recall them in Appendix A as a +column in the table of arithmetic types. +For each orbit, one can choose a root basis in such a way that its intersection +graph is a subgraph of the Dynkin diagram E9−d when d ≥ 5, and of the extended +(or affine) Dynkin diagram �E9−d when 3 ≤ d ≤ 4; this is no longer true when +d ∈ {1, 2}. +Remark 1.9. The geometric type we have just defined is a finer invariant than +the Dynkin type. For instance, if d = 6 there are two orbits of Dynkin type A1, +depending on whether the (−2)-curve lies on the A1 or the A2 component of the +root system: surfaces in the corresponding geometric types differ by the number of +exceptional curves they contain. There are also two orbits for each of the Dynkin +types 2A1 and A3 when d = 4. +Note that for d ≥ 3, the possible geometric types of del Pezzo surfaces are in +bijection with the orbits given by Borel-de Siebenthal theorem. This is no longer +true when d ≤ 2: for instance, the orbits corresponding to certain types for d = 1 +or d = 2 only occur as geometric types of del Pezzo surfaces in characteristic 2 [16, +Remark 1.5]. +A convenient way to represent the geometric type is to consider a new graph, +containing the intersection graph of the (−2)-curves as a subgraph [7]. +Definition 1.10. We define the graph of negative curves associated to the surface +X as the graph whose vertices are circles corresponding to (−2)-curves, and points +corresponding to exceptional curves. Two vertices corresponding to curves C et C′ +are joined by n edges if we have C · C′ = n. +Since the Weyl group preserves the intersection product, two surfaces sharing +the same geometric type have the same graph of negative curves. The converse +is true [10, Remark 4]; actually the geometric type of a weak del Pezzo surface +is completely determined by its degree, its Dynkin type and the number of its +exceptional curves. As a consequence, this is the way we will encode it in the tables +of the Appendix. +Here is a criterion for an exceptional divisor to be irreducible [9, Corollaire au +Th´eor`eme III.2] +Lemma 1.11. Let D denote an exceptional divisor of X. Then D is the class of +an exceptional curve if, and only if we have D · R ≥ 0 for any effective root (or +(−2)-curve) R. +We end with [9, Lemme IV.2], that will be useful we we decribe the fibers of the +desingularization of a songular del Pezzo surface + +8 +R. BLACHE AND E. HALLOUIN +Lemma 1.12. Each connected component B of A is the support of a unique fun- +damental cycle, which is the least effective root C such that for any irreducible +component D of B we have C · D ≤ 0. +The fundamental cycle depends only on the corresponding connected component +of the Dynkin type. Actually it is the highest root of the root system associated to +this component [12, Section 8.2.7]. +1.3. Arithmetic types. We assume here that k = Fq is a finite field. We denote +by σ a generator of the absolute Galois group Γ := Gal(k/k). +Let X denote a weak del Pezzo surface defined over k, having degree d. We +denote by Rirr(X) the set of the (−2)-curves of X ⊗ k, and by Rirr a representative +of the geometric type of X. +We fix an isomorphism between Pic(X ⊗ k) and +ZE0 + . . . + ZE9−d that send Rirr(X) to Rirr. +The automorphism σ induces the automorphism Id ×σ of the surface X ⊗ k, +and an automorphism (Id ×σ)∗ of the group Pic(X ⊗ k), that we denote by σ∗ in +the following; it preserves the intersection pairing, and the canonical class since X +is defined over k. Under the action of the isomorphism between Pic(X ⊗ k) and +ZE0 + . . .+ ZE9−d, the image of σ∗ is an element of the Weyl group W(E9−d), and +we get a morphism from Γ to W(E9−d), whose image is a finite cyclic group. +Finally, σ∗ preserves the set of (−2)-curves, and its image in W(E9−d) must lie +in Stab(Rirr), the stabilizer of Rirr in W(E9−d) which is the subgroup consisting of +the θ such that θRirr = Rirr. +This motivates the following +Definition 1.13. Let X denote a weak del Pezzo surface defined over k, and Rirr +the image of the set of its (−2)-curves described above. +The arithmetic type T of X is the conjugacy class of the image of σ∗ in Stab(Rirr). +Two isomorphisms between Pic(X ⊗ k) and ZE0 + . . . + ZE9−d sending the +(−2)-curves of X to Rirr differ by an element of the above stabilizer, which is a +subgroup of W(E9−d). Defining the type as a conjugacy class in this group makes +it independent of the choice of such an isomorphism. +Remark 1.14. We will see below that two singular del Pezzo surfaces such that the +Frobenius actions on the Picard groups of their associated weak del Pezzo surfaces +lie in the same conjugacy class in W(E9−d) (not in the stabilizer) can have different +arithmetic properties, in particular different zeta functions. This is easily seen on +the tables given in Appendix A that describe the different arithmetic types for +degrees 3 ≤ d ≤ 6, in particular in degree 4 where we precise the corresponding +conjugacy classes in W(D5). +To end this section, we remark that two weak del Pezzo surfaces sharing the +same arithmetic type have the same zeta function. Actually, since a weak del Pezzo +surface is rational, we have the following [21, Theorem 27.1, Corollary 27.1.2] +Proposition 1.15. For any n ≥ 1, the number of rational points of the weak del +Pezzo surface X over the finite field Fqn is +#X(Fqn) = q2n + qn Tr(σ∗n) + 1 +As a consequence, the zeta function of the weak del Pezzo surface X is +Z(X, T )−1 = (1 − T )(1 − q2T ) det +� +I − qT σ∗| Pic(X ⊗ k) +� + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +9 +2. Singular del Pezzo surfaces +In this section, we consider a weak del Pezzo surface X of degree d defined over +the finite field k = Fq. +If X is not ordinary, its anticanonical divisor is no longer ample, and the mor- +phism it (or one of its multiples) defines is no longer an embedding; its image Xs +is singular. +In this section, we first describe the geometry of this image, then we determine +the divisor class groups of X and the associated singular variety in order to prove +Theorem 1. +2.1. Anticanonical models: geometric aspects. +Definition 2.1. The anticanonical model of the surface X is the variety +Xs := Proj +∞ +� +n=0 +H0(X, −nKX) +and we denote by ϕ : X → Xs the associated morphism. +The variety Xs just defined is the singular del Pezzo surface associated to X. +Remark 2.2. One can also consider for i ≥ 1, the plurianticanonical linear system +| − iKX| and the image X(i) of the morphism it defines. This variety is isomorphic +to Xs as long as di ≥ 3 [9, V Th´eor`eme 1]. As a consequence, the variety Xs can +be identified with the anticanonical image of X when d ≥ 3. +The anticanonical model of a degree d del Pezzo surface is [17, Theorem 3.5] +(i) if d = 4, the complete intersection of two quadrics in P4; +(ii) if d = 3, a cubic in P3; +(iii) if d = 2, a degree four hypersurface in weighted projective space P(1, 1, 1, 2); +(iv) if d = 1, a degree six hypersurface in P(1, 1, 2, 3). +We list below some properties of the surface Xs, and of the morphism ϕ [9, IV +Th´eor`eme 1, V Proposition 1, V Th´eor`emes 1 et 2]. Recall that A is the union of +the (−2)-curves on X, and U is its complementary +Theorem 2.3. 1) The schematic fibers of the morphism ϕ are the points of U and +the fundamental cycles. As a consequence, ϕ is birational, and we have ϕ∗OX = +OXs. +2) for all n ∈ Z, i > 0, we have Riϕ∗O(nKX) = 0. +3) The surface Xs is normal. The singular points of Xs are the images of the +fundamental cycles; they are rational double points. +4) If we set O(KXs) := ϕ∗O(KX), then O(KXs) is locally free of rank 1, and +for every integer n we have canonical isomorphisms +O(nKXs) = ϕ∗O(nKX), O(nKX) = ϕ∗O(nKXs) +In other words, ϕ is an isomorphism from U on its image Us, and each connected +component of A is sent to a point which is a rational double point on Xs. We obtain +all singular points of Xs in this way. The map ϕ is a minimal resolution of the +singularities of Xs, and the Dynkin type of X is the dual graph to this resolution. +Thus the singularity type of Xs is exactly the Dynkin type of X. +The type of a singularity x of Xs is the type of the connected component corre- +sponding to x in the intersection graph of (−2)-curves of X. Since all singularities +are rational double points, their types fall in the ADE classification. + +10 +R. BLACHE AND E. HALLOUIN +Note also that since O(KXs) is locally free of rank 1, this invertible sheaf corre- +sponds to a Cartier divisor KXs. +We end by recalling the following result [9, V Corollaire 2]. +Theorem 2.4. Let F denote a locally free sheaf on Xs. Then, for any i ≥ 0, we +have +Hi(Xs, F) = Hi(X, ϕ∗F) +Moreover, we have Serre duality +Hi(Xs, F) = H2−i(Xs, O(KXs) ⊗ F∨)∨ +From this result, we can describe the global sections of the Cartier divisors on +Xs. Moreover we see that the sheaf O(KXs) is dualizing; since it is locally free, the +surface Xs is Gorenstein. +2.2. Divisor class groups and zeta functions. Let X denote a weak non ordi- +nary del Pezzo surface defined over k = Fq, and Xs its anticanonical model. Then +ϕ and Xs are defined over k since the anticanonical divisor is. In the same way, +the varieties Sing(Xs) of dimension zero, and A of dimension 1 are defined over k. +Recall that the geometric Picard group (the group of classes of Cartier divisors) +Pic(X ⊗ k) identifies to the free Z-module generated by E0 and E1, . . . , Er, with +r = 9 − d. It is equal to the group of classes of Weil divisors Cl(X ⊗ k) since X is +smooth. Using this identification, we will no longer mention the dependance on X +of some objects such as the root modules. +We first describe the groups Cl(Xs ⊗ k) and Pic(Xs ⊗ k). Note that since Xs is +normal, the groups of Cartier divisors and of invertible sheaves coincide. +The restriction to U⊗k of Weil divisors X⊗k is surjective [15, Proposition II.6.5]; +its kernel consists of divisors whose support is contained in the complementary of +U ⊗ k, i.e. in A ⊗ k. This last group is R, since it is generated by the irreducible +components of A ⊗ k, and these are exactly the (−2)-curves. +No principal divisor on X ⊗ k has support contained in A ⊗ k [19, p 225]. Thus +R remains the kernel of the restriction of classes of Weil divisors from Cl(X ⊗ k) +to Cl(U ⊗ k). +The morphism ϕ induces an isomorphism from U to Us, and we have Cl(Us⊗k) = +Cl(U ⊗ k). Now Xs ⊗ k \ Us ⊗ k has codimension 2 in Xs ⊗ k, and we deduce [15, +Proposition II.6.5] that Cl(Us ⊗ k) = Cl(Xs ⊗ k). We get +(2.1) +0 +� R +� Cl(X ⊗ k) = Pic(X ⊗ k) +� Cl(Xs ⊗ k) +� 0 +We come to the Picard group. The pull-back ϕ∗ : Pic(Xs ⊗ k) → Pic(X ⊗ k) +gives rise to the exact sequence [4, Proposition 1] +(2.2) +0 +� Pic(Xs ⊗ k) +ϕ∗ +� Pic(X ⊗ k) +θ +� R∨ +� Br(Xs ⊗ k) +ϕ∗ +� Br(X ⊗ k) +where we have set R∨ := Hom(R, Z), and θ comes from the intersection product: +for any D ∈ Pic(X ⊗ k), θ(D) : R → Z is defined by θ(D)(R) = D · R. + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +11 +In other words, the group Pic(Xs ⊗ k) identifies to the following subgroup of +Pic(X ⊗ k) +Pic(Xs ⊗ k) += +{D ∈ Pic(X ⊗ k), ∀R ∈ R, D · R = 0} += +{D ∈ Pic(X ⊗ k), ∀R ∈ Rirr, D · R = 0} +Since X ⊗ k is a rational surface, its Brauer group is trivial. We deduce the +equality Coker θ = Br(Xs ⊗ k), and we have the following explicit description of +this last group [4, Proposition 4]. The root module R is a subgroup of K⊥ +X, and +Br(Xs ⊗ k) is the torsion subgroup of the quotient +Coker θ = Br(Xs ⊗ k) = +� +K⊥ +X/R +� +tors +It depends on the geometric type defined above (not only on the Dynkin type in +general: for instance there are two orbits for the Dynkin type 4A1 when d = 2, +one gives a trivial cokernel, the other an order 2 cokernel), and the different cases +are described in [4, Theorem 6]. Note that θ is often surjective (this is always true +when d ≥ 5). +We turn to the study of the zeta function. We first determine the zeta function +of the union A of the (−2)-curves in X. +Since the set Rirr is stable under the action of Γ, the action of σ∗ on Pic(X ⊗ k) +restricts to an action on R. Moreover this action preserves the intersection product, +and it induces an automorphism on the singular graph; as a consequence it permutes +the (−2)-curves. The matrix of the action of σ∗ over R with respect to the basis +Rirr is a permutation matrix. +We can express the zeta function of A in terms of the characteristic polynomial +of this action +Lemma 2.5. We have the equality +Z(A, T ) = Z(Sing(Xs), T ) det(I − qT σ∗|R)−1 +Proof. Write A as the disjoint union of its connected components Ax, where for +any x ∈ Sing(Xs)(Fq), Ax is the fiber (seen as a set) ϕ−1({x}). +Let n ≥ 1 an integer; since ϕ is defined over k, we have Axσn = Aσn +x . If we have +x /∈ Sing(Xs)(Fqn), then Aσn +x ∩ Ax = ∅, and we deduce that Ax(Fqn) = ∅. +Now assume x ∈ Sing(Xs)(Fqn), and let us denote by Cx1, . . . , Cxk the absolutely +irreducible components of Ax, whuch form the Coxeter-Dynkin graph associated to +x. +For any two curves Cxi and Cxj defined over Fqn, there is a unique (since the +graph has no cycle) chain with minimal length in the graph between them. As the +extremities of this chain are fixed by σn, the whole chain is fixed. We deduce from +this fact that the subgraph of the Cxi, 1 ≤ i ≤ k defined over Fqn is connected; let +us denote Nnx the number of its vertices. As the (−2)-curves have normal crossings, +we deduce + +12 +R. BLACHE AND E. HALLOUIN +#Ax(Fqn) += +Nnx +� +i=1 +#Cxi(Fqn) − +� +1≤i 1). +The same construction as in the preceding case yields two morphisms from Xs\{vi} +to P1 (note that the vertex vi of Qi is a singular point of Xs here). +Consider the blowup Blvi(P4) → P4; then Blvi(Xs) is the strict transform of +Xs [15, Corollary II.7.15], and the two morphisms above become morphisms from +Blvi(Xs) to P1. The fiber of vi in the blowup Blvi(Xs) → Xs contains only (−2)- +curves, and we must have a morphism X → Blvi(Xs) since X is the minimal +desingularization of Xs. Composing, we get two morphisms ϕi1, ϕi2 : X → P1. +The last case to be considered is when θi is a multiple root of P, and Qi has rank +3; here the ith part of the Segre symbol (4.1) contains exactly two terms between +parentheses. In this case Qi is a cone with vertex ℓi ≃ P1 and base a smooth +plane conic ci. The projection with vertex ℓi from P4 \ ℓi to this plane induces a +morphism from Xs \ ℓi ∩ Xs to ci ≃ P1 (a rational map Xs ��� P1). +The blowup Blℓi(P4) → P4 restricts to Blℓi∩Xs(Xs) → Xs as above, and we +get a morphism Blℓi∩Xs(Xs) → P1 from the above rational map. +Once again, +the fibers above the points in ℓi ∩ Xs in the morphism Blℓi∩Xs(Xs) → Xs only +contain (−2)-curves, and we get a morphism X → Blℓi∩Xs(Xs) from the minimal +desingularization, from which we get a morphism ϕi1 : X → P1. +Summing up, we have constructed 2a + 2b + c morphisms from X to P1, where +a is the number of simple roots of P, b the number of multiple roots corresponding +to a rank 4 quadric in the pencil, and c the number of rank 3 quadrics in the pencil. +The following table contains the graphs we mentioned at the beginning of the +section. It is sufficient to prove the next proposition for each geometric type. +Note that for each type we use an empty square to denote the classes in C +that intersect negatively a (−2)-curve, and a full square for the other ones; we +also denote by ri the curve with class Ei − Ei+1, and by rijk the curve with class +E0 − Ei − Ej − Ek +Table 1: Conics-(−2)-curves graphs +Geom. Type +Conics-(−2) Curves Graph +N +(a, b, c) +(−2)-curves +A1 [2111] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R +8 +(3, 1, 0) +R = r45 +2A1(9) [221] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +6 +(1, 2, 0) +R1 = r23 +R2 = r45 +2A1(8) [111(11)] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +7 +(3, 0, 1) +R1 = r123 +R2 = r45 + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +21 +Table 1: Conics-(−2)-curves graphs +Geom. Type +Conics-(−2) Curves Graph +N +(a, b, c) +(−2)-curves +A2 [311] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +6 +(2, 1, 0) +R1 = r34 +R2 = r45 +3A1 [(11)21] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R3 +5 +(1, 1, 1) +R1 = r23 +R2 = r45 +R3 = r123 +A1A2 [32] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R3 +4 +(0, 2, 0) +R1 = r12 +R2 = r34 +R3 = r45 +A3(5) [41] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R3 +4 +(1, 1, 0) +R1 = r23 +R2 = r34 +R3 = r45 +A3(4) [(21)11] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R3 +R2 +R1 +5 +(2, 0, 1) +R1 = r45 +R2 = r34 +R3 = r123 +4A1 [(11)(11)1] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R4 +R1 +R2 +R3 +4 +(1, 0, 2) +R1 = r12 +R2 = r345 +R3 = r45 +R4 = r123 +2A1A2 [3(11)] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R4 +R3 +3 +(0, 1, 1) +R1 = r12 +R2 = r23 +R3 = r45 +R4 = r123 +A1A3 [(21)2] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R4 +R3 +3 +(0, 1, 1) +R1 = r12 +R2 = r34 +R3 = r45 +R4 = r123 +A4 [5] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R3 +R4 +2 +(0, 1, 0) +R1 = r12 +R2 = r23 +R3 = r34 +R4 = r45 + +22 +R. BLACHE AND E. HALLOUIN +Table 1: Conics-(−2)-curves graphs +Geom. Type +Conics-(−2) Curves Graph +N +(a, b, c) +(−2)-curves +D4 [(31)1] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R4 +R1 +R2 +R3 +3 +(1, 0, 1) +R1 = r23 +R2 = r34 +R3 = r45 +R4 = r123 +2A1A3 [(21)(11)] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R5 +R1 +R3 +R4 +R2 +2 +(0, 0, 2) +R1 = r12 +R2 = r345 +R3 = r34 +R4 = r45 +R5 = r123 +D5 [(41)] +C1 +C2 +C3 +C4 +C5 +C′ +1 +C′ +2 +C′ +3 +C′ +4 +C′ +5 +R1 +R2 +R3 +R4 +R5 +1 +(0, 0, 1) +R1 = r12 +R2 = r23 +R3 = r34 +R4 = r45 +R5 = r123 +We summarize the results of this section in the following +Proposition 4.3. Let X denote a degree four weak del Pezzo surface, and P a +characteristic polynomial for the pencil of quadrics defining its anticanonical model +in P4. Denote by aX the number of simple roots of P, bX ( resp. cX) the number +of multiple roots corresponding to a rank 4 ( resp. rank 3) quadric in the pencil. +If NX is the number of classes in C not intersecting any (−2)-curve negatively, +we have NX = 2aX + 2bX + cX, and this is the number of surjective morphisms +from X to the projective line. +For each of these classes C, the morphism ϕ|C| : X → P1 has fibers linearly +equivalent to C, and the type of map ϕ|C| defines on Xs depends on the following +numerical criterion +(a) 2aX of them satisfy C · R = 0 for all (−2)-curves R ∈ Rirr(X); for those +ones ϕ|C| factors through the anticanonical morphism and yields a mor- +phism from Xs to P1; moreover these classes lie in Pic(Xs), and they form +aX couples of complementary classes; +(b) 2bX + cX satisfy C · R ≥ 0 for all (−2)-curves R and C · R > 0 for at least +one, and for those ϕ|C| does not define a morphism from Xs to P1. +Remark 4.4. Note that in the ordinary case, we have aX = 5 and bX = cX = 0. +Then the fibers of the 10 morphisms form the conic bundles, and we recover the +original graph. +Remark 4.5. Another consequence of the discussion above is that, for a fixed class +C ∈ C which intersects all the (−2)-curves nonnegatively, we have two possibilities +for the relative position of a (−2)-curve with class R with the fibers of the morphism +ϕ|C| +(i) when we have C · R = 1, R is transverse to the fibration, and ϕ|C| restricts +to an isomorphism from R to P1. The images in Xs of its fibers all pass +through the singular point which is the image of R; + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +23 +(ii) when we have C · R = 0, R is contained in a fiber of the morphism ϕ|C|. +4.3. Galois action on the singular quadrics, and arithmetic types. In this +section we work over the finite field k = Fq, q a power of an odd prime. +It remains to provide information on the arithmetic type of a degree four del +Pezzo surface X from arithmetic information on the rank four singular quadrics +in the pencil defining Xs. We begin by using the results of the preceding section +to describe the Galois action on the morphisms to the projective line from this +information. +Later, we will transpose this action to an action on the graph of +conics and (−2)-curves, which will naturally lead to a (“part” of a) conjugacy class +in the Weyl group W(D5), that we describe below, and that is given in the fourth +column of the table for degree four surfaces in the Appendix. +We begin by a definition (note that it is independant of the choice of the sup- +plementary) +Definition 4.6. Let Q denote a rank four quadric in P4, defined over Fqd; its +restricted discriminant is the discriminant of its base in F× +qd/F×2 +qd . In other word, +it is the discriminant of the restriction of quadratic form corresponding to Q to a +supplementary of its kernel. +The Weyl group W(D5) can be identified with the group H5 ⋊ S5, where H5 is +the subgroup of (Z/2Z)5 which is the kernel of the map ε = (ε1, . . . , ε5) �→ �5 +i=1 εi, +and S5 acts on H5 by σ · ε = (εσ−1(1), . . . , εσ−1(5)). +Recall from [5, Proposition 25] that the conjugacy classes in W(D5) are even +signed cycle-types; they form a partition of 5 where each integer in the partition is +overlined or not, and there is an even number of overlines. The conjugacy class of +an element (ε, σ) has partition corresponding to the conjugacy class of σ in S5, and +a number in this partition is overlined when the sum of the εi where i describes the +support of the corresponding cycle is 1. Note that if σ is a d-cycle, the conjugacy +class of an element of the form (ε, σ) is d when its d-th power is trivial, and d else. +Note that W(D5) is a subgroup of W(B5) = (Z/2Z)5 ⋊ S5, whose conjugacy +classes can be represented by (even or odd) signed cycle-types. +Note also that an arithmetic type is a conjugacy class in some subgroup of +W(D5). As a consequence, different arithmetic types can be contained in the same +conjugacy class in W(D5), and we will have to be more precise in the last section. +With these notations (and the ones used in the preceding sections) at hand, we +begin by describing the Galois action on the part of the graph coming from the +morphisms associated to the simple roots of P +Lemma 4.7. Let X be a weak degree 4 del Pezzo surface over Fq whose anti- +canonical model is the intersection of two quadrics Q0 and Q∞ in P4, both defined +over Fq. Let G ∈ Fq[T ] be a simple irreducible divisor of degree d of the character- +istic polynomial P(T ) and let θ ∈ Fqd be a root of G. +We denote by ∆(θ) ∈ F× +qd the restricted discriminant of Q = Q0 − θQ∞, ie the +discriminant of its base q. +To G, one can associate d couples of complementary classes in C , and the action +of the Frobenius on those classes induces a permutation of signed sub-type d or d +depending on whether ∆(θ) is or is not a square in F× +qd (note that this does not +depend on the choice of the root θ). + +24 +R. BLACHE AND E. HALLOUIN +Proof. Let θ1 = θ, θ2 = θq, . . . , θd = θqd−1 ∈ Fqd denote the roots of G. From the +results in the preceding section, we obtain d rank 4 quadrics Qi := Q0 − θiQ∞, +and 2d morphisms ϕij from Xs to P1, 1 ≤ i ≤ d, 1 ≤ j ≤ 2. It follows from +Proposition 4.3 that the classes fij of the fibers of these morphisms form d couples +of complementary classes in C . +The action of Frobenius sends Qi on Qi+1 (the indices are read modulo d), and +the couple {fi1, fi2} to the couple {fi+1,1, fi+1,2}. Thus the permutation associated +to the Frobenius (seen as an element in W(D5)) is the cycle (1 . . . d) of length d. +The base q1 of the quadric Q1 is defined over Fqd; it is well known that it is either +hyperbolic (isomorphic to P1 × P1 over Fqd) or elliptic (it becomes isomorphic to +P1 × P1 only after a quadratic extension of the base field) depending on whether +its discriminant is or is not a square in Fqd. +In the hyperbolic case (then any of the qi is hyperbolic), the d-th power of the +Frobenius stabilizes each one of the two P1, and the fibers f11 and f12; the Galois +action has order d, and type d. Else the d-th power of the Frobenius exchanges the +two P1 and the fibers f11, f12; the Galois action has order 2d, and type d. +□ +We now describe the Galois action on the morphisms associated to the rank 4 +quadrics in the pencil coming from multiple roots of its characteristic polynomial. +Lemma 4.8. Let θ ∈ Fq be a multiple root of P, say of multiplicity m, such that +the associated quadric Q := Q0 − θQ∞ has rank 4. +Denote by G the minimal +polynomial of θ over Fq, by d its degree, and by ∆(θ) the restricted discriminant of +Q. +The d vertices of Q and its conjugates Qσ, . . . , Qσd−1 are singular points on Xs, +and these singularities have Dynkin type dAm−1. To these correspond 2d morphisms +from X to P1, whose fibers f1, f2, . . . , f σd−1 +1 +, f σd−1 +2 +form 2d classes in C , and the +following cases occur +(a) d = 1, 2 ≤ m ≤ 4: the Galois action fixes f1 and f2 if ∆(θ) is a square in +F× +q , and exchanges them otherwise; +(b) d = 2, m = 2 and the Galois action acts on the fibers as the bitransposition +(f1f σ +1 )(f2f σ +2 ) if ∆(θ) is a square in F× +q2, and as the four cycle (f1f σ +1 f2f σ +2 ) +else. +Proof. Since P has degree 5 and Gm is a divisor, we must have md ≤ 5, which +leaves us with the listed possibilities, and d = 1, m = 5. But we see from the +Segre symbols that this case corresponds to a singularity of Dynkin type A4. For +this geometric type, there is only one arithmetic type, and the Galois action is not +relevant: it will be sufficient to construct any del Pezzo surface over Fq with this +singularity. +The assertion on the Dynkin type of the singularities comes from the Segre sym- +bols: the number m appearing as a part of it corresponds to an Am−1 singularity. +The assertion on the fibers comes from Proposition 4.3. +Finally the arithmetic assertions on the Galois action are easily deduced from +the proof of the preceding lemma. +□ +4.4. Quadratic module associated to a pencil of quadrics. We continue to +work over the finite field k = Fq. +The anticanonical model of a degree four del Pezzo surface is the base locus of a +pencil of quadrics in P4, thus it is defined by the vanishing of a pair of quadratic + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +25 +forms. We follow [27] in this section, and define a quadratic module (here a k[T ]- +module of finite length endowed with a non degenerate bilinear form) from the +surface. +We give a normal form for such a module and we deduce arithmetic +information on the singular quadrics of the pencil from this normal form. +As usual we denote by {Q0, Q∞} a basis for the pencil of quadratic forms defining +X. We assume Q∞ is non-degenerate. Note that this requires the existence of a +non-degenerate quadric of the pencil which is defined over k. We will have to drop +this assumption farther in some very particular cases when q = 3. +If ϕ0, ϕ∞ denote the bilinear forms on k5 associated respectively to Q0 and Q∞, +then ϕ∞ is non degenerate, and there is an unique endomorphism u of k5 such that +ϕ∞(u(x), y) = ϕ0(x, y) for any vectors x, y. Moreover u is symmetric with respect +to ϕ∞. +The vector space V = k5, endowed with the action of u becomes a k[T ]-module +of finite length that we denote by Vu, and ϕ∞ is a nondegenerate symmetric k[T ]- +bilinear form on Vu. +Definition 4.9. We call the pair (Vu, ϕ∞) a quadratic k[T ]-module in the following. +Since k[T ] is a principal ideal domain, the module Vu decomposes as a direct +sum of primary cyclic components: +Vu = +t +� +i=1 + + +ni +� +j=1 +k[T ].xij + + , +ann (xij) = P mij +i +k[T ], +(4.2) +where the xij are elements of Vu, the polynomials P1, . . . , Pt ∈ k[T ] are irreducible +and pairwise distinct, and the exponents mi1, . . . miti are (not necessarily distinct) +positive integers. Note that when k is algebraically closed we recover the Segre +symbol (4.1). +Waterhouse has proved that the cyclic primary components of the decomposition +(4.2) can be chosen in such a way that they are two-by-two ϕ∞-orthogonal. +Moreover, it turns out that each cyclic component can be explicitly described. +To this end, we need to introduce some notations. Let F ∈ k[T ] be a non constant, +unitary polynomial and let us consider the quotient algebra k[T ]/(F). +We put +t = T mod F, we choose some δ ∈ k[T ]/(F) and we define λF , ΦF , δ ·λF and δ ·ΦF +as +• the linear form λF : k[T ]/(F) → k defined as the last vector of the dual +basis of (1, t, . . . , tdeg(F )−1); +• the symmetric bilinear form ΦF : k[T ]/(F) × k[T ]/(F) → k defined by +ΦF (x, y) = λF (xy); +• the linear form defined by δ · λF (x) = λF (δx) and +• the bilinear form defined by δ · ΦF (x, y) = λF (δxy). +Then the linear form λF is a dualizing form and the algebra k[T ]/(F) with its du- +alizing form is called a Frobenius algebra; by definition, this means that the bilinear +form ΦF is non degenerate or equivalently that for every λ ∈ Homk (k[T ]/(F), k), +there exists α ∈ k[T ]/(F) such that λ(x) = α · λF (x) = λF (αx). +Definition 4.10. The quadratic module [[F, δ]] is the k[T ]-module k[T ]/(F) en- +dowed with the bilinear form ϕ = δ · ΦF . + +26 +R. BLACHE AND E. HALLOUIN +This is an example of quadratic module with cyclic underlying k[T ]-module. +Note that the pair of quadratic forms on the corresponding k-vector space is given +by Q∞(x) = λF (δx2) and Q0(x) = λF (tδx2). +In fact this is a generic example. +Proposition 4.11. Let (Vu, ϕ) be k[T ]-quadratic module. Suppose that the k[T ]- +module Vu is cyclic, let x ∈ Vu be such that Vu = k[T ] · x, and let F ∈ k[T ] be a +generator of its annihilator. Then there exists δ ∈ k[T ]/(F) such that for all p, q in +k[T ]/(F) we have ϕ(p · x, q · x) = δ · ΦF (p, q). +Proof. By definition of F, the map ι defined by p �→ p · x is an isomorphism of +k[T ]-modules from k[T ]/(F) to Vu = k[T ]·x. The map ψ defined by ψ(p, q) = ϕ(p· +x, q · x) for every p, q ∈ k[T ]/(F) is bilinear symmetric. Since u is ϕ-symmetric, the +multiplication by t endomorphism is ψ-symmetric, and we have ψ(tp, q) = ψ(p, tq). +In particular, we get ψ(p, q) = ψ(1, pq). But we know that there exists δ ∈ k[T ]/(F) +such that ψ(1, q) = δ · λF (q) for every q ∈ k[T ]/(F). We deduce that +ϕ(p · x, q · x) = ψ(p, q) = ψ(1, pq) = δ · λF (pq) = δ · ΦF (p, q) +and the result follows. +□ +We can use the quadratic modules we have just defined to give a normal form +for all quadratic modules. From [27, Theorem 1.1 and Section 2], we have +Theorem 4.12 (Waterhouse). Let (V, ϕ) be a non-degenerate k[T ]-quadratic mod- +ule of finite length. +Let +� +P eij +i +� +i,j, 1 ≤ i ≤ r, 1 ≤ j ≤ nij, be the elementary divisors of u. Then there +exists δij ∈ (k[T ]/(P eij +i +))× such that the pair (V, ϕ) is isometric to the orthogonal +sum � +i,j[[P eij +i +, δij]]. +Thus we can associate to the anticanonical model of any degree 4 del Pezzo +surface (with at least one non-singular quadric defined over Fq in the pencil) a +k[T ]-quadratic module of the form � +i[[Fi, δi]]. +Conversely, to such a module we associate the del Pezzo surface defined by the +vanishing of the following two quadratic forms defined for x = (xi) by +(4.3) +Q∞(x) = +� +i +λFi(δix2 +i ), Q0(x) = +� +i +λFi(T δix2 +i ) +Remark 4.13. Note that this association is in no way an application: we have arbi- +trarily chosen the basis {Q0, Q∞}, and one could replace some δi by x2δi without +changing the resulting del Pezzo surface. +Also replacing all δi by aδi for some +a ∈ F× +q gives the quadratic forms aQ∞, aQ0 and does not change the del Pezzo +surface. +For this reason, we will frequently be able to put additional restrictions on the δi +in the last section, in order to ease the computation of the restricted discriminants +of the singular quadrics of the pencil. +Moreover we have chosen to use the elementary divisors of the k[T ]-module in +the above presentation, but we could have chosen the invariant factors instead, or +any other possible decomposition in cyclic submodules. +We have seen that one of the key tools to compute the arithmetic type of a Del +Pezzo surface of degree 4 is to control the discriminants of the bases of the rank 4 +singular quadrics in the pencil. From the Frobenius algebras point of view, we have + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +27 +Lemma 4.14. Let F ∈ k[T ] be a unitary polynomial and let δ ∈ k[T ]/(F). +We denote by NF : k[T ]/(F) → k the norm. +(1) The discriminant of the bilinear form δ · ΦF equals +(−1) +deg(F )(deg(F )−1) +2 +NF (δ) +(2) Let θ ∈ k be a root of F. Then the bilinear form (θ − T )δ ·ΦF is degenerate +of rank deg F − 1 and its restricted discriminant equals +(−1) +deg(F )(deg(F )−1) +2 +NF (δ)δ(θ) +Proof. (1) Put n = deg(F). Let C = (1, . . . , tn−1) be the canonical basis of k[T ]/(F), +and let D = (f1, . . . , fn) be its dual basis with respect to λF , i.e. +such that +λF (ti−1fj) = δij, 1 ≤ i, j ≤ n. +The coordinates of the elements of D in the +basis C are given by the columns of the matrix: +P = + + + + + + +a1 +· · · +an−1 +1 +... +... +1 +an−1 +... +1 + + + + + + +where the ai’s are the coefficients of F = T n+an−1T n−1+· · ·+a1T +a0. Moreover, +for any x ∈ k[T ]/(F), one has x = �n +i=1 λF (xfi)ei. Let us compare the matrices +of the bilinear form δ · φF and of the linear map mδ (multiplication by δ) in the +basis C; by definition they are equal to +Mat (δ · ΦF , C) = (λF (δeiej))1≤i,j≤n +and +Mat (mδ, C) = (λF (δfiej))1≤i,j≤n . +Thus they are related by the formula Mat (mδ, C) = tP Mat (δ · ΦF , C) and the +result follows from the equality of the determinants. +(2) Let e denote the multiplicity of the root θ for F, and set F = (T − θ)eG; +there exist U, V ∈ k[T ] satisfying U(T − θ)e + V G = 1. Then for any x ∈ k[T ]/(F), +we have +λF (x) += +λF (xU(T − θ)e) + λF (xV G) += +λF ((xU mod G)(T − θ)e) + λF ((xV mod (T − θ)e)G) += +λG(xU) + λ(T −θ)e(xV ) +where the last equality holds since G and (T − θ)e are unitary. We deduce the +following orthogonal decomposition +(4.4) +(θ − T )δ · ΦF = (θ − T )V δ · Φ(T −θ)e ⊕ (θ − T )Uδ · ΦG. +In order to compute the restricted discriminant of the first component, we note +that (θ − T )V δ · λ(T −θ)e((T − θ)a) = −λ(T −θ)e((T − θ)a+1δV ) is equal to 0 as long +as a ≥ e − 1, and to −δ(θ)V (θ) when a = e − 1. We get +Mat +� +(θ − T )V δ · Φ(T −θ)e, +� +(T − θ)e−1, . . . , 1 +�� += + + + + + + +0 +... +−V (θ)δ(θ) +... +... +... +0 +−V (θ)δ(θ) +· · · +⋆ + + + + + + +. + +28 +R. BLACHE AND E. HALLOUIN +This form has rank e − 1; its kernel is generated by (T − θ)e−1, and its restricted +discriminant equals: +(−1) +(e−1)(e−2) +2 +× (−1)e−1 × V (θ)e−1δ(θ)e−1 = (−1) +e(e−1) +2 +δ(θ)e−1 +G(θ)e−1 +because V (θ)G(θ) = 1. +For the second component of the decomposition (4.4), putting d = deg(G), and +using (1), its discriminant equals +(−1)d(d−1)NG ((θ − T )Uδ) = (−1) +d(d−1) +2 ++ed +NG(δ) +NG(θ − T )e−1 +since U(θ − T ) × (−1)e(θ − T )e−1 = 1 mod G. +We have NG(θ − T ) = G(θ), and the product of these two discriminants gives +the result as NF (δ) = NG(δ)N(T −θ)e(δ) = NG(δ)NT −θ(δ)e = NG(δ)δ(θ)e. +□ +Remark 4.15. At this point, we make the following observation: when the underly- +ing k[T ]-module is cyclic, all singular quadrics in the correspondong pencil (defined +by equations (4.3)) have corank one. +The converse is true: when the underlying k[T ]-module is not cyclic, it admits +at least two invariant factors, and for all roots of the one of smallest degree the +above result shows that the corresponding singular quadric has corank equal to the +number of invariant factors. +We end this section with a criterion that determines the field of definition of +certain singular points of the del Pezzo surface. We will use it in the next section in +order to determine the arithmetic types when the pencil contains a rank 3 quadric. +Lemma 4.16. Let X be a degree four del Pezzo surface over Fq such that for some +θ ∈ Fq, the non-degenerate quadratic k[T ]-module associated to X can be written +as an orthogonal sum [[T − θ, δ1]] ⊕ [[T − θ, δ2]] ⊕ M, where the annihilator P of the +k[T ]-module M satisfies P(θ) ̸= 0. +Then the quadric of the pencil with equation Q0 − θQ∞ = 0 has rank 3, and +if ℓ ≃ P1 is its vertex, the singular del Pezzo variety Xs meets ℓ at two distinct +points, which are defined over Fq if −δ1δ2 is a square in F× +q , and conjugate over +Fq else. +Proof. We choose a basis (e1, . . . , e5) of k5 which is adapted to the orthogonal +decomposition. In this basis, from the expressions (4.3) of the forms Q0, Q∞, their +matrices can be written in block diagonal form as respectively +Mat(Q∞) = + + +δ1 +0 +0 +0 +δ2 +0 +0 +0 +A∞ + + ., Mat(Q0) = + + +θδ1 +0 +0 +0 +θδ2 +0 +0 +0 +A0 + + . +Since the annihilator P of the k[T ]-module M satisfies P(θ) ̸= 0, the matrix A0 − +θA∞ is invertible, and the quadric with equation Q0 − θQ∞ has rank 3. +Its vertex is the line (x1 : x2 : 0 : 0 : 0) in P4, the intersection of which with the +quadric Q∞ = 0 is defined by the equation δ1x2 +1 + δ2x2 +2 = 0. Now we have δ1δ2 ̸= 0 +since the form Q∞ is assumed non degenerate, and we get two solutions since the +characteristic is odd. The last assertion is classical. +□ + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +29 +4.5. Construction of degree four del Pezzo surfaces of any arithmetic +type. We are ready to show Theorem 2 2. Our strategy is the following : in order +to construct a surface of a given arithmetic type, we construct a quadratic module +as a sum of cyclic modules in normal form. We proceed geometric type by geometric +type, and for each one we do the following +1. the Segre symbol gives the factorisation of the characteristic polynomial +over Fq, and we deduce from it a decomposition of a quadratic k[T ]-module +associated to X. We choose it cyclic when this is possible, but in general +we choose the decomposition that have seemed us best adapted to the com- +putation of the restricted discriminants from lemma 4.14, and of the infor- +mation needed in lemma 4.16. We sometimes put additional restrictions on +the δi in order to ease this computation. +2. we describe all possible Galois actions on the graph of conics and (−2)- +curves given in Table 4.2; they give the possible arithmetic types. For each +one, we use lemmas 4.7, 4.8 and 4.16 to describe the factorization type of +the characteristic polynomial over Fq, the restricted discriminants of rank +4 singular quadrics and the squareness of certain invariants; +3. we choose some δi in the cyclic quadratic submodules such that the invari- +ants associated to the singular quadrics in the pencil satisfy the conditions +listed at the second point above. +The existence of a polynomial with this factorization, and of some δi with the +claimed properties, is sufficient to ensure that the del Pezzo surface associated to +the quadratic k[T ]-module we have constructed has the arithmetic type we need. +Remark 4.17. As already mentioned in the introduction, we have used the math- +ematical software magma to construct a couple of quadrics in P4 for each type of +degree four singular del Pezzo surfaces over a given finite field. There is a slight +difference between the procedure used in this program and the description of the +quadratic modules presented below: here we decompose the modules using a biggest +possible cyclic module. In the program we use another decomposition, with more +terms. There is a Chinese remainder theorem for quadratic modules –not presented +here– that gives an equivalence between the two descriptions. +4.5.1. Ordinary geometric type. The factorization of P over Fq is P(T ) = �5 +i=1(T − +θi) with distinct θi, 1 ≤ i ≤ 5. +All singular quadrics in the pencil have rank four, and we can associate to the +del Pezzo surface X a cyclic quadratic module [[P, δ]]. We will construct δ such +that NP (δ) is a square in F× +q ; then from lemma 4.14, the restricted discriminants +of the four singular quadrics are the ∆(θi) = NP (δ)δ(θi) ∈ Fq(θi)× and we have +∆(θi) ≡ δ(θi) mod Fq(θi)×2. +Applying lemma 4.7, we see that the signed types representing the conjugacy +classes in W(D5) (which are the arithmetic types of ordinary degree four del Pezzo +surfaces) give +• the degrees of the irreducible factors of P in Fq[T ] just by removing the +bars; +• the reduced discriminants ∆(θi) mod Fq(θi)×2, ie the classes δ(θi) mod +Fq(θi)×2 from our convention on NP (δ); + +30 +R. BLACHE AND E. HALLOUIN +For each geometric type, we present the correspondance between signed types +and properties of P and δ in a table. In the last column, we write {□, · · · , □ +� +�� +� +d times +} when +the corresponding d roots θi, . . . , θi+d−1 are conjugate over Fq and δ(θi) is a square +in F× +qd, and {⊠, · · · , ⊠ +� +�� +� +d times +} when δ(θi) is not a square in F× +qd. +Signed type +(δ(θ1), . . . , δ(θ5)) +11111 +(□, □, □, □, □) +11111 +(□, □, □, ⊠, ⊠) +11111 +(□, ⊠, ⊠, ⊠, ⊠) +2111 +({□, □}, □, □, □) +2111 +({□, □}, □, ⊠, ⊠) +221 +({□, □}, {□, □}, □) +311 +({□, □, □}, □, □) +221 +({□, □}, {⊠, ⊠}, ⊠) +41 +({□, □, □, □}, □) +2111 +({⊠, ⊠}, □, □, ⊠) +2111 +({⊠, ⊠}, ⊠, ⊠, ⊠) +221 +({⊠, ⊠}, {⊠, ⊠}, □) +5 +({□, □, □, □, □}) +32 +({□, □, □}, {□, □}) +311 +({□, □, □}, ⊠, ⊠) +311 +({⊠, ⊠, ⊠}, □, ⊠) +41 +({⊠, ⊠, ⊠, ⊠}, ⊠) +32 +({⊠, ⊠, ⊠}, {⊠, ⊠}) +Note that a polynomial P and an element δ with the desired properties exist as +long as we have q ≥ 5. But when we have q = 3, one cannot construct a polynomial +with five roots over Fq, and some types do not exist [26]. +4.5.2. Geometric type A1. The factorization of P over Fq is P(T ) = �3 +i=1(T − +θi)(T − θ4)2 with distinct θi, 1 ≤ i ≤ 4, and θ4 ∈ Fq. +All singular quadrics in the pencil have rank four, and we can associate to the +del Pezzo surface X a cyclic quadratic module [[P, δ]]. For each arithmetic type, we +will choose some δ such that NP (δ) is a square in F× +q ; then from lemma 4.14, the +restricted discriminants of the four singular quadrics are the ∆(θi) = NP (δ)δ(θi) ∈ +Fq(θi)× and we have ∆(θi) ≡ δ(θi) mod Fq(θi)×2. +An element of Stab(Rirr) must act on the last two couples of complementary +conics as the identity (of signed type 11) or the bitransposition (C4C′ +5)(C5C′ +4) (of +signed type 2); note that both have even signed types. Since it is an element of +W(D5), it must act on the first three couples as an element of even signed type, ie +as an element of H3 ⋊ S3, where H3 is the subgroup of Z/2Z3 which is the kernel +of the map ε = (ε1, . . . , ε3) �→ �3 +i=1 εi. We get the following ten conjugacy classes +in Stab(Rirr) +111 · 11 +111 · 11 +21 11 +21 · 11 +3 · 11 +111 · 2 +111 · 2 +21 · 2 +21 · 2 +3 · 2. + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +31 +Write P(T ) = F(T )(T − θ4)2; applying lemma 4.7, we see that the first part of +the above signed types give +• the degrees of the irreducible factors of F in Fq[T ] just by removing the +bars; +• for 1 ≤ i ≤ 3, the reduced discriminants ∆(θi) mod Fq(θi)×2, ie the classes +δ(θi) mod Fq(θi)×2 from our convention on NP (δ); +Then, from lemma 4.8, the classes C4 and C′ +5, which correspond to the fibers of the +morphisms defined by the last singular quadric Q0 − θ4Q∞, are fixed by Frobenius +when δ(θ4) is a square in F× +q , and exchanged else. This gives us the second part of +the signed type. We obtain the following table +N ◦ +Cl. Stab. +Cl. Weyl +(δ(θ1), . . . , δ(θ4)) +1 +111 · 11 +11111 +(□, □, □, □) +2 +111 · 2 +2111 +(□, □, □, ⊠) +3 +21 · 11 +2111 +({□, □}, □, □) +4 +111 · 11 +11111 +(⊠, ⊠, □, □) +5 +21 · 2 +221 +({□, □}, □, ⊠) +6 +111 · 2 +2111 +(⊠, ⊠, □, ⊠) +7 +3 · 11 +311 +({□, □, □}, □) +8 +21 · 2 +221 +({⊠, ⊠}, ⊠, ⊠) +9 +21 · 11 +2111 +({⊠, ⊠}, ⊠, □) +10 +3 · 2 +32 +({□, □, □}, ⊠) +Note that we can always construct a polynomial with the claimed factorization, +except when q = 3 in cases 1, 2, 4 and 6 since then P needs to have four distinct +roots in Fq. +Elements δ ∈ k[T ]/(P) with the required properties always exist. +Finally note that we have NP (δ) ∈ F×2 +q +in all cases, as required. +It remains to construct surfaces of types 1,2,4 and 6 over F3. We mimic the above +construction: we consider the quadratic forms with the following block diagonal +matrices +Mat(Q0) = + + + + + + +δ∞ +1 +1 +0 +0 +0 +δ0 + + + + + + +, Mat(Q∞) = + + + + + + +0 +1 +−1 +0 +δ0 +δ0 +0 + + + + + + +The four quadrics of the pencil which are defined over F3 (namely Qt = Q0 + +tQ∞, t ∈ F3 and Q∞) are singular of rank four, and the vertex of Q0 –here (0 : 0 : +0 : 1 : 0)– is the unique singular point of the base of the pencil. We deduce that +Xs has geometric type A1. +The restricted discriminants are, modulo squares +∆(Q0) ≡ δ0δ∞, ∆(Q1) ≡ ∆(Q2) ≡ δ∞, ∆(Q∞) ≡ 1 +and we get the types 1, 2, 4 and 6 respectively choosing (δ0, δ∞) of the form (□, □), +(⊠, □), (⊠, ⊠) and (□, ⊠). +4.5.3. Geometric type 2A1 with 9 lines. The factorization of P over Fq is P(T ) = +(T − θ1)(T − θ2)2(T − θ3)2 with distinct θi, 1 ≤ i ≤ 3, and θ1 ∈ Fq. + +32 +R. BLACHE AND E. HALLOUIN +All singular quadrics in the pencil have rank four, and we can associate to the +del Pezzo surface X a cyclic quadratic module [[P, δ]]. We will always choose some +δ such that NP (δ) (or equivalently δ(θ1)) is a square in F× +q ; then we have the +congruence ∆(θi) ≡ δ(θi) mod Fq(θi)×2 for the restricted discriminants. +An element of Stab(Rirr) can +• fix the (−2)-curves, and the sets {C2, C′ +2, C3, C′ +3} and {C4, C′ +4, C5, C′ +5}; in +this case it acts on the last four couples of complementary conics as +– the identity, of signed type 11 · 11 or +– a bitransposition such as (C2C′ +3)(C2C′ +3), of signed type 2 · 11 or +– four transpositions such as (C2C′ +3)(C2C′ +3)(C4C′ +5)(C4C′ +5), of signed type +2 · 2 ; +• exchange the (−2)-curves, and the sets {C2, C′ +2, C3, C′ +3} and {C4, C′ +4, C5, C′ +5}; +in this case it acts on the last four couples of complementary conics as +– four transpositions such as (C2C4)(C′ +2C′ +4)(C3C5)(C′ +3C′ +5), of signed type +we note here {2 · 2} or +– a permutation such as (C3C5C′ +2C′ +4)(C′ +3C′ +5C2C4), of signed type 4. +Note that all have even signed types, and the action must be trivial on the remaining +couple of conics. We get the following five conjugacy classes in Stab(Rirr) +1 · 11 · 11, +1 · 2 · 11, +1 · 2 · 2, +1 · {2 · 2}, +1 · 4. +Applying lemma 4.8, we get the following table +N ◦ +Cl. Stab. +Cl. Weyl +(δ(θ1), δ(θ2), δ(θ3)) +11 +1 · 11 · 11 +11111 +(□, □, □) +12 +1 · 2 · 11 +2111 +(□, ⊠, □) +13 +1 · 2 · 2 +221 +(□, ⊠, ⊠) +14 +1 · {2 · 2} +221 +(□, {□, □}) +15 +1 · 4 +41 +(□, {⊠, ⊠}) +4.5.4. Geometric type 2A1 with 8 lines. The factorization of P over Fq is P(T ) = +�3 +i=1(T − θi)(T − θ4)2 with distinct θi, 1 ≤ i ≤ 4, and θ4 ∈ Fq. +There is a rank three singular quadric in the pencil, corresponding to the root +θ4, and we can associate to the del Pezzo surface X a quadratic module of the form +[[F, δ]] ⊕ [[T − θ4, δ1]] ⊕ [[T − θ4, δ2]], where F(T ) = �3 +i=1(T − θi). +With the help of lemma 4.14, and using a block diagonal form as in the proof of +lemma 4.16, we get that the rank four singular quadrics in the pencil have restricted +discriminants +∆(θi) = (θi − θ4)2δ1δ2(−1)3NF (δ)δ(θi) ≡ −δ1δ2NF (δ)δ(θi) mod Fq(θi)×2 +for 1 ≤ i ≤ 3. +We shall construct quadratic modules satisfying δ2 = −1 and +δ1NF (δ) ∈ F×2 +q , so that ∆(θi) ≡ δ(θi) mod Fq(θi)×2 for 1 ≤ i ≤ 3. +An element of Stab(Rirr) must act on the last two couples of complementary +conics as the identity or as (C5C′ +5) of signed type 11. In the first case it acts on +the first three couples as an even signed type permutation, ie as an element of +H3 ⋊ S3, and in the second as an odd signed type permutation, ie as an element +of Z/2Z3 ⋊ S3 \ H3 ⋊ S3. We get the following conjugacy classes in Stab(Rirr) + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +33 +111 · 11, 111 · 11, 21 · 11, 21 · 11, 3 · 11, 111 · 11, 111 · 11, 21 · 11, 21 · 11, 3 · 11. +The second part of the signed type is 11 exactly when the singular points are +defined over Fq; lemma 4.16, applied with our convention δ2 = −1, tells us that +this happens exactly when δ1 is a square in F× +q . +It remains to use lemma 4.7 to determine the factorization pattern of F and the +δ(θi) mod Fq(θi)×2 from the signed type of the action on the first three couples. +We get the following table +N ◦ +Cl. Stab. +Cl. Weyl +(δ(θ1), δ(θ2), δ(θ3), δ1) +16 +111 · 11 +11111 +(□, □, □, □) +17 +21 · 11 +2111 +({□, □}, □, □) +18 +111 · 11 +11111 +(⊠, ⊠, □, □) +19 +111 · 11 +11111 +(⊠, □, □, ⊠) +20 +21 · 11 +2111 +({□, □}, ⊠, ⊠) +21 +111 · 11 +11111 +(⊠, ⊠, ⊠, ⊠) +22 +3 · 11 +311 +({□, □, □}, □) +23 +21 · 11 +2111 +({⊠, ⊠}, □, ⊠) +24 +21 · 11 +2111 +({⊠, ⊠}, ⊠, □) +25 +3 · 11 +311 +({⊠, ⊠, ⊠}, ⊠) +Note that we can always construct a polynomial over Fq with the claimed factor- +ization, except when q = 3 in cases 16, 18, 19 and 21. Elements δ ∈ k[T ]/(F) with +the required properties always exist. Finally note that we have δ1NF (δ) ∈ F×2 +q +in +all cases. +It remains to construct surfaces of types 16, 18, 19 and 21 over F3. We mimic +the above construction: we consider the quadratic forms with the following block +diagonal matrices +Mat(Q0) = + + + + + + +δ∞ +δ1 +1 +0 +0 + + + + + + +, Mat(Q∞) = + + + + + + +0 +δ1 +−1 +δ0 +−1 + + + + + + +The quadrics with equations Q∞, Q0 + Q∞ and Q0 − Q∞ have rank 4, and the +quadric Q0 has rank 3. The singular points of Xs are the intersections of the vertex +of Q0 with Q∞, that is the points (0 : 0 : 0 : a : b) with δ0a2 − b2 = 0. We get +a surface of geometric type 2A1 with 8 lines as above, since the line joining the +singularities is not contained in Xs. +Computing the restricted discriminants, and applying lemma 4.16, we see that +we get the types 16, 18, 19 and 21 respectively choosing (δ0, δ1, δ∞) of the form +(□, □, □), (□, ⊠, ⊠), (⊠, ⊠, ⊠) and (⊠, □, □). +4.5.5. Geometric type A2. The factorization of P over Fq is P(T ) = (T − θ1)(T − +θ2)(T − θ3)3 with distinct θi, 1 ≤ i ≤ 3, and θ3 ∈ Fq. +All singular quadrics in the pencil have rank four, and we can associate to the +del Pezzo surface X a cyclic quadratic module [[P, δ]]. We will construct δ such that +NP (δ) is a square in F× +q ; then we have the congruence ∆(θi) ≡ δ(θi) mod Fq(θi)×2 +for the restricted discriminants. + +34 +R. BLACHE AND E. HALLOUIN +An element of Stab(Rirr) must act on the last three couples of complementary +conics as the identity (of signed type 111) or the permutation (C5C′ +3)(C3C′ +5)(C4C′ +4) +(of signed type 21). It will act on the first two couples as en even signed permutation +in the first case, as an odd signed one in the second. We get the following five +conjugacy classes in Stab(Rirr) +11 · 111, +11 · 111, +2 · 111, +11 · 21, +2 · 21. +Note that the signed type is completely determined by its first part, and we just +have to describe the action on it via lemma 4.7. We get the following table, where +we have chosen δ(θ3) so that the convention NP (δ) = δ(θ1)δ(θ2)δ(θ3)3 ∈ F×2 +q +holds +N ◦ +Cl. Stab. +Cl. Weyl +(δ(θ1), δ(θ2), δ(θ3)) +26 +11 · 111 +11111 +(□, □, □) +27 +2 · 111 +2111 +({□, □}, □) +28 +11 · 111 +11111 +(⊠, ⊠, □) +29 +11 · 21 +2111 +(⊠, □, ⊠) +30 +2 · 21 +221 +({⊠, ⊠}, ⊠) +4.5.6. Geometric type 3A1. The factorization of P over Fq is P(T ) = (T − θ1)(T − +θ2)2(T − θ3)2 with distinct θi, 1 ≤ i ≤ 3. We assume that the rank three conic in +the pencil corresponds to θ3. We can write the quadratic k[T ]-module [[F, δ]]⊕[[T − +θ3, δ1]] ⊕ [[T − θ3, δ2]] where F(T ) := (T − θ1)(T − θ2)2. +With the help of lemma 4.14, and using a block diagonal form as in the proof of +lemma 4.16, we get that the rank four singular quadrics in the pencil have restricted +discriminants +∆(θi) = (θi − θ3)2δ1δ2(−1)3NF (δ)δ(θi) ≡ −δ1δ2δ(θ1)δ(θi) mod F×2 +q , 1 ≤ i ≤ 2 +We shall construct quadratic modules satisfying δ2 = −1 and δ1δ(θ1) ∈ F×2 +q , so +that ∆(θi) ≡ δ(θi) mod F×2 +q +for 1 ≤ i ≤ 2. +An element of Stab(Rirr) must act on the last two couples of complementary +conics as the identity (of signed type 11) or the permutation (C5C′ +5) (of signed type +11). On the second and third couples, it acts as the identity (of signed type 11) or +as the bitransposition (C2C′ +3)(C3C′ +2) of signed type 2. We then have to “complete” +the action by fixing C1 and C′ +1 if C5 and C′ +5 are fixed, and by transposing them +else. We get the following four conjugacy classes in Stab(Rirr) +1 · 11 · 11, +1 · 11 · 11, +1 · 2 · 11, +1 · 2 · 11. +As above, we use lemma 4.8 (a) to read the restricted discriminant ∆(θ2) from +the action on the second and third couples, and lemma 4.16 to get δ1 from the +action on the last couple. We get +N ◦ +Cl. Stab. +Cl. Weyl +(δ(θ1), δ(θ2), δ1) +31 +1 · 11 · 11 +11111 +(□, □, □) +32 +1 · 2 · 11 +2111 +(□, ⊠, □) +33 +1 · 11 · 11 +11111 +(⊠, □, ⊠) +34 +1 · 2 · 11 +2111 +(⊠, ⊠, ⊠) + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +35 +4.5.7. Geometric type A1A2. The factorization of P over Fq is P(T ) = (T − +θ1)2(T − θ2)3 with distinct θi, 1 ≤ i ≤ 2. There is no rank three conic in the +pencil, and we can write the quadratic k[T ]-module in cyclic form [[P, δ]]. +Lemma 4.14 tells us that the restricted discriminants are ∆(θi) = NP (δ)δ(θi) = +δ(θ1)2δ(θ2)3δ(θi) ≡ δ(θ2)δ(θi) mod F×2 +q +for 1 ≤ i ≤ 2. We shall construct quadratic +modules satisfying δ(θ2) ∈ F×2 +q , so that ∆(θi) ≡ δ(θi) mod F×2 +q +for 1 ≤ i ≤ 2. +An element of Stab(Rirr) must act on the first two couples of complementary +conics as the identity (of signed type 11) or a bitransposition (of signed type 2). +On the last three couples, it acts as the identity in order to have en even signed +type (recall that the non trivial action on these three couples has signed type 21). +We get two conjugacy classes in Stab(Rirr), namely 11 · 111 and 2 · 111, and using +lemma 4.8 (a), we get the table +N ◦ +Cl. Stab +Cl. Weyl +(δ(θ1), δ(θ2)) +35 +11 · 111 +11111 +(□, □) +36 +2 · 111 +2111 +(⊠, □) +4.5.8. Geometric type A3 with five lines. The factorization of P over Fq is P(T ) = +(T − θ1)(T − θ2)4 with distinct θi, 1 ≤ i ≤ 2. There is no rank three conic in the +pencil, and we can write the quadratic k[T ]-module in cyclic form [[P, δ]]. +Lemma 4.14 tells us that the restricted discriminants are ∆(θi) = NP (δ)δ(θi) ≡ +δ(θ1)δ(θi) mod F×2 +q +for 1 ≤ i ≤ 2. We shall construct quadratic modules satisfying +δ(θ1) ∈ F×2 +q , so that ∆(θi) ≡ δ(θi) mod F×2 +q +for 1 ≤ i ≤ 2. +An element of Stab(Rirr) must act on the last four couples of complementary +conics as the identity (of signed type 1111) or as (C2C′ +5)(C′ +2C5)(C3C′ +4)(C′ +3C4) (of +signed type 22). Thus it must act as the identity on the first couple in order to have +en even signed type. We get two conjugacy classes in Stab(Rirr), namely 1 · 1111 +and 1 · 22, and using lemma 4.8 (a), we get the table +N ◦ +Cl. Stab. +Cl. Weyl +(δ(θ1), δ(θ2)) +37 +1 · 1111 +11111 +(□, □) +38 +1 · 22 +221 +(□, ⊠) +4.5.9. Geometric type A3 with four lines. The factorization of P over Fq is P(T ) = +(T − θ1)(T − θ2)(T − θ3)3 with distinct θi, 1 ≤ i ≤ 3. We can write the quadratic +k[T ]-module [[F, δ]] ⊕ [[T − θ3, δ1]] ⊕ [[(T − θ3)2, δ2]] where F(T ) := (T − θ1)(T − θ2). +With the help of lemma 4.14, and using a block diagonal form as in the proof of +lemma 4.16, we get that the rank four singular quadrics in the pencil have restricted +discriminants +∆(θi) = (θi − θ3)3δ1δ2 +2NF (δ)δ(θi) ≡ (θi − θ3)δ1δ(θ1)δ(θ2)δ(θi) mod F×2 +q , 1 ≤ i ≤ 2 +We shall construct quadratic modules satisfying δ1 = (θ1 − θ3)(θ2 − θ3), so that +∆(θi) ≡ (θj − θ3)δ(θj) mod F×2 +q +for 1 ≤ i ̸= j ≤ 2. +An element of Stab(Rirr) must act on the last three couples of complementary +conics as the identity (of signed type 111) or the transposition (C5C′ +5) (of signed +type 111). We deduce the possible actions on the first two couples, and the following +five conjugacy classes in Stab(Rirr) +11 · 111, +11 · 111, +2 · 111, +11 · 111, +2 · 111. + +36 +R. BLACHE AND E. HALLOUIN +The type is completely determined by the action on the first two couples: it is +sufficient to use lemma 4.7 to obtain the table +N ◦ +Cl. Stab. +Cl. Weyl +((θ1 − θ3)δ(θ1), (θ2 − θ3)δ(θ2)) +39 +11 · 111 +11111 +(□, □) +40 +2 · 111 +2111 +({□, □}) +41 +11 · 111 +11111 +(⊠, ⊠) +42 +11 · 111 +11111 +(□, ⊠) +43 +2 · 111 +2111 +({⊠, ⊠}) +4.5.10. Geometric type 4A1. The factorization of P over Fq is P(T ) = (T −θ1)(T − +θ2)2(T − θ3)2 with distinct θi, 1 ≤ i ≤ 3. We can write the quadratic k[T ]-module +[[T − θ1, δ]] ⊕ [[F, δ1]] ⊕ [[F, δ2]] where F(T ) := (T − θ2)(T − θ3). We will construct +such a module satisfying the additional assumption δ2 = −1. +An element in Stab(Rirr) acts on the four (−2)-curves, and we deduce from this +its action on the couples {Ci, C′ +i}, i ∈ {1, 2, 4, 5} +(a) it fixes the four (−2)-curves, and the eight conics classes; then its signed +type is 1111; +(b) it fixes two (−2)-curves (necessarily corresponding to the same rank 3 +quadric of the pencil, thus in the same “component” of the graph), and +permutes the other ones; for instance the transposition (R3R4) corresponds +to (C5C′ +5), of signed type 1111; +(c) it acts as the bitransposition (R1R2)(R3R4) on (−2)-curves, and on conic +classes as (C2C′ +2)(C5C′ +5), its signed type is 1111 +(d) it acts as the bitransposition (R1R3)(R2R4) on (−2)-curves, and on conic +classes as (C1C4)(C2C5)(C′ +1C′ +4)(C′ +2C′ +5) of signed type 22; +(e) it acts as the four-cycle (R1R3R2R4) on (−2)-curves and on conic classes +as (C1C4)(C′ +1C′ +4)(C2C5C′ +2C′ +5) of signed type 22; +Then we complete with the correct action on {C3, C′ +3} in order to get an even signed +permutation. We get five conjugacy classes +1 · 1111, +1 · 1111, +1 · 1111, +1 · 22, +1 · 22. +The two rank three conics can be defined over Fq (we have θ2, θ3 ∈ Fq), or over +Fq2, and conjugate over Fq. Applying lemma 4.16 to X in the first case, and to +X ⊗ Fq2 in the second, we get the following table under the assumption δ2 = −1 +N ◦ +Cl. Stab. +Cl. Weyl +(δ1(θ2), δ1(θ3)) +44 +1 · 1111 +11111 +(□, □) +45 +1 · 1111 +11111 +(⊠, ⊠) +46 +1 · 22 +221 +({□, □}) +47 +1 · 1111 +11111 +(⊠, □) +48 +1 · 22 +221 +({⊠, ⊠}) +4.5.11. Geometric type 2A1A2. The factorization of P over Fq is P(T ) = (T − +θ1)3(T − θ2)2 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module +[[(T −θ1)3, δ]]⊕[[T −θ2, δ1]]⊕[[T −θ2, δ2]]. We will construct such a module satisfying +the additional assumptions δ = 1, δ2 = −1. +We have already seen that an element in Stab(Rirr) can act on the first three +couples with a signed type 111 or 21, and on the last two with a signed type 11 or +11. This leaves us with two conjugacy classes, namely 11 · 111 and 21 · 11, which + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +37 +are determined by the action on the last couple, ie on the two A1-singularities. +Applying lemma 4.16, and from our assumption δ2 = −1, we get the table +N ◦ +Cl. Stab. +Cl. Weyl +δ1 +49 +111 · 11 +11111 +□ +50 +21 · 11 +2111 +⊠ +4.5.12. Geometric type A1A3. The factorization of P over Fq is P(T ) = (T − +θ1)2(T − θ2)3 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module +[[(T − θ1)2, δ]] ⊕ [[(T − θ2)2, δ1]] ⊕ [[T − θ2, δ2]]. We will construct such a module +satisfying the additional assumptions δ1 = δ2 = 1. The restricted discriminant of +the rank four quadric in the pencil (corresponding to root θ1) is +∆(θ1) = δ(θ1)(θ1 − θ2)3δ2 +1δ2 ≡ δ(θ1)(θ1 − θ2) mod F×2 +q +An element in Stab(Rirr) acts on the first two couples with a signed type 11 or +2, and on the last three with a signed type 111 or 111. This leaves us with two +conjugacy classes, namely 111·11 and 2·111, and they are determined by the action +on the first two couples. Applying lemma 4.8 (a), and from our assumptions, we +get the table +N ◦ +Cl. Stab +Cl. Weyl +(θ1 − θ2)δ(θ1) +51 +111 · 11 +11111 +□ +52 +2 · 111 +2111 +⊠ +4.5.13. Geometric type A4. The factorization of P over Fq is P(T ) = (T − θ1)5, +and we can consider the cyclic quadratic k[T ]-module [[(T − θ1)5, δ]]. +An element in Stab(Rirr) can only act on the graph trivially (the other automor- +phism of this graph is (C1C′ +5)(C′ +1C5)(C2C′ +4)(C′ +2C4)(C3C′ +3) which has odd signed +type 221). Thus for any choice of δ we get the arithmetic type 53. +4.5.14. Geometric type D4. The factorization of P over Fq is P(T ) = (T − θ1)(T − +θ2)4 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module [[T − +θ1, δ]] ⊕ [[(T − θ2)3, δ1]] ⊕ [[T − θ2, δ2]]. We will construct such a module satisfying +the additional assumptions δ = δ2 = 1. In this case the restricted discriminant of +the rank four quadric in the pencil (corresponding to root θ1) is +∆(θ1) = −(θ2 − θ1)4δ3 +1δ2 ≡ δ1 mod F×2 +q +An element in Stab(Rirr) acts on the last four couples with a signed type 1111 +or 1111, and on the first one with a signed type 1 or 1. This leaves us with two +conjugacy classes, namely 1 · 1111 and 1 · 1111, and they are determined by the +action on the first couple. Applying lemma 4.7 to the value of ∆(θ1) above, we get +the table +N ◦ +Cl. Stab +Cl. Weyl +δ1 +54 +1 · 1111 +11111 +□ +55 +1 · 1111 +11111 +⊠ + +38 +R. BLACHE AND E. HALLOUIN +4.5.15. Geometric type 2A1A3. The factorization of P over Fq is P(T ) = (T − +θ1)2(T − θ2)3 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module +[[T − θ1, δ1]] ⊕ [[T − θ1, δ2]] ⊕ [[(T − θ2)2, η1]] ⊕ [[T − θ2, η2]]. We will construct such a +module satisfying the additional assumptions δ2 = −1 and η1 = η2 = 1. +An element in Stab(Rirr) acts on the first two couples with a signed type 11 +or 11, and on the last three with a signed type 111 or 111. This leaves us with +two conjugacy classes, namely 11 · 111 and 11 · 111, and they are determined by +the action on the first two couples, ie by the action on the two A1-singularities. +Applying lemma 4.16 with δ2 = −1, we get the table +N ◦ +Cl. Stab. +Cl. Weyl +δ1 +56 +11 · 111 +11111 +□ +57 +11 · 111 +11111 +⊠ +4.5.16. Geometric type D5. The factorization of P over Fq is P(T ) = (T −θ)5. We +can write the quadratic k[T ]-module [[(T − θ)4, δ1]] ⊕ [[T − θ, δ2]]. +An element in Stab(Rirr) can only act on the graph trivially (the other auto- +morphism of this graph is (C5C′ +5) which has odd signed type 11111). Thus for any +choice of δi we get the arithmetic type 58. +5. Construction of singular del Pezzo surfaces of degree three. +The aim of this section is to prove the last two assertions of Theorem 2. +We blow up the degree four surfaces from the preceding section at well chosen +rational points in order to construct degree three surfaces, but we also use some +direct constructions by blowing up some well chosen configurations of points in the +projective plane. +5.1. Blowing up degree four surfaces. Our first construction of degree three +del Pezzo surfaces is by blowing up a rational point not lying on any of the negative +curves of a degree four del Pezzo surface. In this way we get a surface of the same +Dynkin type (note that for degree three, the geometric type coincides with the +Dynkin type), whose zeta function is the one of the degree four surface, divided +by 1 − qT . This (and the Galois action on the (−2)-curves) makes it very easy to +control the arithmetic type of the new surface. +In order to do this, we count the number of rational points not lying on any +negative curve on a degree four weak del Pezzo surface of a given arithmetic type. +If a rational point lies on a negative curve, then the curve must be defined over Fq, +or the point is the intersection of two Galois conjugate curves (thus defined over +Fq2). We deduce that the number we are looking for is (note that there is no 3-cycle +in any graph of negative curves, and such three curves cannot be concurrent) +N += +#X(Fq) − (#N(Fq)(q + 1) − I1) − I2 += +q2 − tq + 1 − (#N(Fq)(q + 1) − I1) − I2 +where t is the trace of the action of the Frobenius operator on Pic(X⊗Fq), N(Fq) is +the number of negative curves defined over Fq, I1 is the number of their intersection +points (which is readily computed as an intersection number from the N(Fq) curves +above), and I2 is the number of couples of conjugate negative curves intersecting +themselves. + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +39 +We compute these data and present them in table 5.1, which is constructed as +follows. For each geometric type of degree four del Pezzo surfaces, we consider the +graph of negative curves given in [7, Proposition 6.1]. We denote the curves in the +same way, except for the (−2)-curves : recall that we denote by ri the curve with +class Ei − Ei+1, and by rijk the curve with class E0 − Ei − Ej − Ek. +For each arithmetic type in degree four, we give in the second column an element +of the Weyl group in the conjugacy class corresponding to the Frobenius action. +We present it as a composite of reflections, where we denote by sij (resp. sijk) the +reflection around the root Ei − Ej (resp. E0 − Ei − Ej − Ek). In the third column +we present the action of this element on the negative curves, as a product of cycles. +As explained above, this is sufficient to determine the numbers t, N(Fq), I1, I2 and +N; they are given in the following columns. +The last column gives the type of the degree three surface obtained by blowing +up a rational point not lying on any negative curve, if any. +Note that this is sufficient to prove the existence of a degree three del Pezzo +surface of the type given in the last column over the finite field Fq as long as the +number given in the last but one column is positive for the given q. +Assume that there exists a weak del Pezzo surface of degree three and arithmetic +type 1, defined over Fq; the Galois action on the Picard group is trivial, and all its +negative curves are defined over Fq. It contains an exceptional curve that does not +meet the (−2)-curve. Contracting this curve gives a degree three del Pezzo surface +of arithmetic type 1, and the image of the curve is a point that does not lie on any +negative curve. But such a point does not exist when q = 3 from the first line of +the above table. +One shows in the same way that a weak del Pezzo surface of degree three and +arithmetic type 12 does not exist over F3. The only difference is that contracting +an exceptional curve that does not meet the (−2)-curve gives a point outside the +negative curves on a weak del Pezzo surface of degree four and arithmetic type 11 +or 16; such a point does not exist when q = 3. +5.2. Other constructions. There remains 77 − 48 = 29 types to be constructed +over any finite field with odd characteristic. +For those we give an alternative contruction: we often present them as blow ups +of the projective plane at well-chosen rational points, and sometimes as blow ups of +a degree four del Pezzo surface at some point lying on one or two negative curve(s). +First remark that we get all arithmetic types for the geometric type A1 over Fq +by blowing up the points of a degree 6 zero-dimensional subscheme of a smooth +conic, everything being defined over Fq, when q is large enough. Note that the only +(−2)-curve is the strict transform of the conic. Playing on the fields of definition +of the points in the subscheme, we get all partitions of the integer 6, and all types +(note the stabilizer here is S6). In this way we construct a surface for each of +the remaining types. We get type 5 by blowing up two points defined over Fq3, +type 10 by blowing up one point defined over Fq and one over Fq5, and type 5 by +blowing up one point defined over Fq6. Since a smooth conic defined over Fq has +qk + 1 points over Fqk, such configurations exist over any finite field (also of even +characteristic). + +40 +R. BLACHE AND E. HALLOUIN +Type +Frobenius in W(D5) +Galois action on neg. curves +(t, #N(Fq), I1, I2) +N +Type +1 +A1(12) +Id +(6, 13, 24, 0) +q2 − 7q + 12 +1 +2 +s12 +(ℓ1ℓ2)(ℓ13ℓ23)(ℓ14ℓ24) +(4, 7, 6, 0) +q2 − 3q +2 +3 +s123 +(ℓ45q)(ℓ1ℓ23)(ℓ2ℓ13)(ℓ3ℓ12) +(4, 5, 0, 0) +q2 − q − 4 +2 +4 +s12 ◦ s345 +(ℓ12q)(ℓ1ℓ2)(ℓ3ℓ45)(ℓ5ℓ34)(ℓ14ℓ24)(ℓ13ℓ23) +(2, 1, 4, 0) +q2 + q + 4 +3 +5 +s12 ◦ s123 +(ℓ3q)(ℓ2ℓ13)(ℓ1ℓ23)(ℓ5ℓ34)(ℓ12ℓ45) +(2, 3, 2, 2) +q2 − q − 2 +3 +6 +s12 ◦ s345 ◦ s123 +(ℓ1ℓ13)(ℓ3q)(ℓ2ℓ23)(ℓ5ℓ34)(ℓ12ℓ45)(ℓ14ℓ24) +(0, 1, 0, 4) +q2 − q − 4 +4 +7 +s12 ◦ s23 +(ℓ1ℓ2ℓ3)(ℓ13ℓ12ℓ23)(ℓ14ℓ24ℓ34) +(3, 4, 3, 0) +q2 − q +6 +8 +s13 ◦ s23 ◦ s145 ◦ s123 +(ℓ1qℓ3ℓ13)(ℓ2ℓ23ℓ45ℓ12)(ℓ14ℓ5ℓ34ℓ24) +(0, 1, 0, 0) +q2 − q +8 +9 +s345 ◦ s23 ◦ s12 +(ℓ23qℓ12ℓ13)(ℓ2ℓ1ℓ45ℓ3)(ℓ14ℓ5ℓ34ℓ24) +(2, 1, 0, 0) +q2 + q +9 +10 +s12 ◦ s23 ◦ s123 +(ℓ14ℓ24ℓ34)(ℓ45q)(ℓ1ℓ13ℓ3ℓ23ℓ2ℓ12) +(1, 2, 1, 0) +q2 − q +7 +11 +2A1(9) +Id +(6, 11, 16, 0) +q2 − 5q + 6 +12 +12 +s123 +(qℓ45)(ℓ1ℓ23)(ℓ3ℓ12) +(4, 5, 4, 0) +q2 − q − 2 +13 +13 +s123 ◦ s145 +(qℓ1)(ℓ3ℓ12)(ℓ5ℓ14)(ℓ45ℓ23) +(2, 3, 2, 2) +q2 − q − 2 +15 +14 +s24 ◦ s35 +(ℓ3ℓ5)(ℓ45ℓ23)(ℓ14ℓ12)(r2r4) +(2, 3, 1, 1) +q2 − q − 2 +14 +15 +s145 ◦ s24 ◦ s35 +(qℓ23ℓ1ℓ45)(ℓ3ℓ14ℓ12ℓ5)(r2r4) +(2, 1, 0, 0) +q2 + q +19 +16 +2A1(8) +Id +(6, 10, 12, 0) +q2 − 4q + 3 +12 +17 +s12 +(ℓ1ℓ2)(ℓ14ℓ24) +(4, 6, 6, 0) +q2 − 2q + 1 +13 +18 +s345 ◦ s12 +(ℓ1ℓ2)(ℓ14ℓ24)(ℓ3ℓ45)(ℓ34ℓ5) +(2, 2, 0, 0) +q2 − 1 +15 +19 +s15 ◦ s234 +(ℓ1ℓ5)(ℓ2ℓ34)(ℓ3ℓ24)(ℓ45ℓ14)(r123r4) +(2, 0, 0, 0) +q2 + q + 1 +14 +20 +s134 ◦ s245 ◦ s25 +(ℓ1ℓ34)(ℓ2ℓ24)(ℓ3ℓ14)(ℓ45ℓ5)(r123r4) +(0, 0, 0, 2) +q2 − 1 +16 +21 +s145 ◦ s234 ◦ s15 ◦ s23 +(ℓ1ℓ14)(ℓ2ℓ24)(ℓ3ℓ34)(ℓ45ℓ5)(r123r4) +(−2, 0, 0, 4) +q2 − 2q − 3 +17 +22 +s12 ◦ s23 +(ℓ1ℓ2ℓ3)(ℓ14ℓ24ℓ34) +(3, 4, 3, 0) +q2 − q +18 +23 +s134 ◦ s15 ◦ s25 +(ℓ1ℓ5ℓ2ℓ34)(ℓ3ℓ14ℓ45ℓ24)(r123r4) +(2, 0, 0, 0) +q2 + 2q + 1 +19 +24 +s145 ◦ s12 ◦ s23 +(ℓ1ℓ2ℓ3ℓ45)(ℓ5ℓ14ℓ24ℓ34) +(2, 2, 0, 0) +q2 − 1 +20 +25 +s124 ◦ s15 ◦ s35 ◦ s23 +(ℓ1ℓ5ℓ3ℓ14ℓ45ℓ34)(ℓ2ℓ24)(r123r4) +(1, 0, 0, 1) +q2 + q +21 +26 +A2(8) +Id +(6, 10, 13, 0) +q2 − 4q + 4 +22 +27 +s12 +(ℓ1ℓ2)(ℓ13ℓ23) +(4, 6, 5, 0) +q2 − 2q +23 +28 +s345 ◦ s12 +(ℓ1ℓ2)(ℓ13ℓ23)(ℓ5ℓ34)(ℓ12q) +(2, 2, 1, 0) +q2 +24 +29 +s235 ◦ s124 ◦ s14 +(ℓ1ℓ12)(ℓ2q)(ℓ5ℓ23)(ℓ13ℓ34)(r3r4) +(0, 0, 0, 3) +q2 − 2 +25 +30 +s135 ◦ s124 ◦ s14 ◦ s24 +(ℓ1ℓ12ℓ2q)(ℓ5ℓ13ℓ34ℓ23)(r3r4) +(0, 0, 0, 1) +q2 +28 +31 +3A1(6) +Id +(6, 9, 10, 0) +q2 − 3q + 2 +31 +32 +s145 +(ℓ1ℓ45)(ℓ5ℓ14) +(4, 5, 4, 0) +q2 − q +32 +33 +s234 ◦ s15 +(ℓ5ℓ1)(ℓ3ℓ24)(ℓ45ℓ14)(r4r123) +(2, 1, 0, 0) +q2 + q +33 +34 +s234 ◦ s145 ◦ s15 +(ℓ1ℓ14)(ℓ5ℓ45)(ℓ3ℓ24)(r4r123) +(0, 1, 0, 2) +q2 − q − 2 +34 +35 +A1A2(6) +Id +(6, 9, 10, 0) +q2 − 3q + 2 +37 +36 +s345 +(ℓ5ℓ34)(qℓ12) +(4, 5, 4, 0) +q2 − q +38 +37 +A3(5) +Id +(6, 8, 8, 0) +q2 − 2q + 1 +40 +38 +s125 ◦ s134 +(ℓ5ℓ12)(qℓ1)(r2r4) +(2, 2, 1, 1) +q2 − 1 +42 +39 +A3(4) +Id +(6, 7, 6, 0) +q2 − q +40 +40 +s345 +(ℓ5ℓ34) +(4, 5, 4, 0) +q2 − q +41 +41 +s345 ◦ s12 +(ℓ1ℓ2)(ℓ5ℓ34) +(2, 3, 2, 0) +q2 − q +43 +42 +s234 ◦ s15 +(ℓ1ℓ5)(ℓ2ℓ34)(r123r4) +(2, 1, 0, 0) +q2 + q +42 +43 +s134 ◦ s15 ◦ s25 +(ℓ1ℓ5ℓ2ℓ34)(r123r4) +(2, 1, 0, 0) +q2 + q +44 +44 +4A1(4) +Id +(6, 8, 8, 0) +q2 − 2q + 1 +45 +45 +s134 ◦ s25 +(ℓ2ℓ5)(ℓ3ℓ14)(r1r345)(r4r123) +(2, 0, 0, 0) +q2 + 2q + 1 +46 +46 +s14 ◦ s25 +(ℓ2ℓ5)(r1r4)(r123r345) +(2, 2, 0, 0) +q2 − 1 +46 +47 +s124 ◦ s35 +(ℓ2ℓ14)(ℓ3ℓ5)(r4r123) +(2, 2, 0, 0) +q2 − 1 +47 +48 +s145 ◦ s14 ◦ s25 ◦ s35 +(ℓ2ℓ14ℓ5ℓ3)(r1r4r345r123) +(0, 0, 0, 0) +q2 − 1 +49 +49 +2A1A2(4) +Id +(6, 8, 8, 0) +q2 − 2q + 1 +50 +50 +s134 ◦ s245 ◦ s25 +(ℓ3ℓ14)(ℓ5ℓ45)(r1r2)(r123r4) +(0, 0, 0, 2) +q2 − 1 +51 +51 +A1A3(3) +Id +(6, 7, 6, 0) +q2 − q +52 +52 +s345 +(ℓ34ℓ5) +(4, 5, 4, 0) +q2 − q +53 +53 +A4(3) +Id +(6, 7, 6, 0) +q2 − q +60 +54 +D4(2) +Id +(6, 6, 5, 0) +q2 +62 +55 +s234 ◦ s15 +(ℓ5ℓ2)(r4r123) +(2, 2, 1, 0) +q2 +63 +56 +2A1A3(2) +Id +(6, 7, 6, 0) +q2 − q +67 +57 +s134 ◦ s25 +(ℓ5ℓ2)(r1r345)(r123r4) +(2, 1, 0, 0) +q2 + q +68 +58 +D5(1) +Id +(6, 6, 5, 0) +q2 +72 +Table 4. Galois action on negative curves in degree 4 +We get all arithmetic types for the geometric type A2 over Fq by blowing up +the points of two degree 3 zero-dimensional subschemes lying on two different lines, + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +41 +but not containing their intersection point, everything being defined over Fq for q +large enough. Note that the (−2)-curves are the strict transforms of the two lines. +As above, the fields of definitions of the points, and the lines, give the arithmetic +type. We get types +26 when we choose the two lines to be defined over Fq, with three points +defined over Fq on one, and three conjugate points defined over Fq3 on the +other line. +27 when we choose the two lines to be defined over Fq, with three conjugate +points defined over Fq3 on the both lines. +29 when we choose the two lines to be defined over Fq, with one point defined +over Fq and two defined over Fq2 on one, and three conjugate points defined +over Fq3 on the other line. +30 when we choose the two lines to be conjugate, defined over Fq2, with one +point defined over Fq6 on one, and all its conjugates points. +We get type 35 by blowing up three conjugate points defined over Fq3 in the +projective plane, then three infinitely near conjugate points. Note that the (−2)- +curves are the strict tranforms of the exceptional divisors of the first blow up. +In order to construct a surface of type 39, we start from a degree four del Pezzo +surface of arithmetic type 22. Such a surface contains two exceptional curves defined +over Fq, that meet together and each one meets exactly one (−2)-curve. We blow +up a point defined over Fq on one of these exceptional curve, different from their +intersection point and not lying on a (−2)-curve. This is possible for any q, and we +get the desired surface. +In order to get a degree three surface of geometric type 4A1, we start with four +lines in general position in the projective plane, their union being defined over +Fq. Then we blow up their six intersection points; the (−2)-curves are the strict +transforms of the lines. Then we get the arithmetic types by playing on the fields +of definition of the lines. For instance we get type 48 by choosing three conjugates +lines defined over Fq3 and the last one defined over Fq. +If we start from a degree four surface of geometric type 2A1 defined over Fq, +and we blow up a rational point which lies at the intersection of two exceptional +curve (ie corresponding to a “middle” edge of the graph of negative curves), we +get a degree three surface of geometric type 2A2 over Fq. +In this way we get +types 54, 55, 56, 57, 58 59 in degree three respectively from types 16, 17, 20, 21, 22 +et 25 in degree four. Note that in any case these degree four surfaces contain two +intersecting exceptional curves which are either defined over Fq, or defined over +Fq2 and conjugate over Fq: their intersection point is always a rational point. +We get type 61 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 four infinitely near points with +the first three not collinear, and a point of degree 2 on a line passing through p1 +but whose strict transform by the first blow up does not contain p2. +We get a degree three surface of type 64 by blowing up three collinear points +p1, p2, p3 defined over Fq3 and conjugate over Fq then three conjugate points +p4, p5, p6 with pi ≺ pi+3. +We get a degree three del Pezzo surface of geometric type A12A2 when we blow +up the point ℓ1 ∩ ℓ14 on a degree four del Pezzo surface of type 3A1. This point is +defined over Fq when the degree four surface has one of the types 31 or 34, and we +get a surface of type 65 or 66 in this way. + +42 +R. BLACHE AND E. HALLOUIN +Most of the remaining constructions are completely geometric and can be found +in [12, pp 493-494]. Namely we get type +69 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 with p1, p2, p3 not collinear and p6 +on the (smooth) conic defined by the first five ones; +70 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 with p1, p2, p3 not collinear; +73 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 with p1, p2, p3 not collinear +and p6 on the conic defined by the first five ones; +77 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 with p1, p2, p3 collinear. +Type 71 in degree three is obtained by blowing up a rational point lying on the +exceptional curve ℓ2 (but not on any (−2)-curve) in a degree four del Pezzo surface +of arithmetic type 52. +We end with the geometric type 3A2; we blow up three points p1, p2, p3 in +general position in the projective plane. Then, on the resulting degree 6 ordinary +del Pezzo surface, we blow up the intersection points ℓ1 ∩ ℓ12, ℓ2 ∩ ℓ23 and ℓ3 ∩ ℓ13. +The (−2)-curves on the corresponding degree three del Pezzo surface are the strict +transforms of these six lines. Finally, we get a surface of type 74 when the pi are +rational points, of type 75 when one is rational and the two other ones defined over +Fq2 and conjugate over Fq, and of type 76 when the three points are defined over +Fq3 and conjugate over Fq. +5.3. Type 36. It remains to construct a del Pezzo surface of degree three and +arithmetic type 36. Such a surface has geometric type 3A1, and the inverse of the +weight two part of its zeta function is Φ2 +1Φ2Φ2 +3. +We start with a degree one del Pezzo surface S obtained by blowing up two +degree three points p1, p2 = pσ +1, p3 = pσ2 +1 +and q1, q2 = qσ +1 , q3 = qσ2 +1 +in P2(Fq3) and +a degree two point r1, r2 = rσ +1 in P2(Fq2), such that there exists a conic passing +through p1, p2, q1, q2, r1, r2 and defined over Fq3, but there are no other (−2)-curve +on the resulting degree one surface than the strict transforms of this conic and its +conjugates. We report the proof of the existence of such a configuration. +The surface S has geometric type 3A1 by our hypothesis on its (−2)-curves +(note that the strict transforms are separated by the blowups), and the inverse of +the weight two part of its zeta function is (X −1)(X2 −1)(X3 −1)2 = Φ4 +1Φ2Φ2 +3. We +can contract the strict transform of the line (r1r2), and of the conic (q1q2q3r1r2): +these are disjoint exceptional curves that do not meet the (−2)-curves, both defined +over Fq. In this way we get a degree three surface with geometric type 3A1 and +the desired zeta function. +It remains to show the existence of such a configuration of points over any finite +field of odd characteristic. +We start with two elements θ ∈ Fq3 \Fq, η ∈ Fq2 \Fq, whose respective minimal +polynomials over Fq are πθ(x) := X3 + aX2 + bX + c and πη(X) = X2 + tX + n. +We consider the points p1 = (θ : θ2 : 1), q1 = (θ : θ2 : u) and r1 = (η : 1 : 0) for +some u ∈ Fq3 \ {0, 1}. +From Pascal’s theorem, the points p1, p2, q2, r2, r1, q1 are conconic if and only if +the pairs of opposite sides of the hexagon meet in three collinear points (p1p2) ∩ +(r1r2), (p2q2) ∩ (r1q1) and (p1q1) ∩ (q2r2); we get the points +(θ − θq : θ2 − θ2q : 0), (θq : θ2q : α), (θ : θ2 : β) + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +43 +where we have set +α := uηθ2q − θq +ηθ2 − θ , β := uq ηqθ2 − θ +ηqθ2q − θq +The points are collinear if and only if we have (uβ − uqα)θ3(θq−1 − θ2(q−1)) = 0, if +and only if uβ − uqα = 0 (note that θq−1 ̸= 1). We easily check that the preceding +equality gives +u ∈ (ηθ2 − θ)(ηqθ2 − θ)F× +q = (nθ4 + tθ3 + θ2)F× +q +In other words, for our choice of the points, there are exactly q−1 values of u in Fq3 +such that the points p1, p2, q2, r2, r1, q1 are conconic; note that using the Frobenius +action, we also get that the points p2, p3, q3, r2, r1, q2 are conconic, so as the points +p1, p3, q3, r2, r1, q1. +We remark that the conic C1 passing through p1, p2, q2, r2, r1, q1 must be irre- +ducible. Else it would be the union of two lines d and d′. If d contains r1, it cannot +contain r2 = rσ +1 : it would be the line Z = 0 and the other line would contain the +four remaining points; this is impossible since p2 does not lie on (p1q1). Thus dσ3 +contains r2, d is not defined over Fq3, and we get d′ = dσ3. In this case both d and +dσ3 would contain p1, p2, q1, q2, this is impossible. +It remains to verify that one can choose u such that there is no other (−2)-curve +on the degree one surface obtained by blowing up the eight points. In other words, +no three points can be collinear, no six can lie on a conic, and there is no cubic +passing through the eight points which is singular at one of them. +We first check that no three of the eight points can be collinear. If such a subset +contains r1 and r2, this is clear. If it contains r1, then the line joining r1 to any +degree three point is defined over Fq6, and cannot contain any other point defined +over Fq3. +We are reduced to the subsets of three points among the p1, p2, p3, q1, q2, q3. Any +subset of the form {pi, pj, qk} or {qi, qj, pk} with k ∈ {i, j} cannot be collinear; else +the corresponding line would cross one of the three irreducible conics conjugate +to C1 above at three points. We are reduced to consider the subsets {p1, p2, p3}, +{q1, q2, q3}, and (up to Galois action) {p1, p2, q3}, {q1, q2, p3}. +Note that a point (x : y : z) ∈ P2(Fq3) and its conjugates over Fq are collinear +if and only if the Fq subspace generated by x, y, z is strictly contained in Fq3. As +a consequence, it follows from the definition of p1 that the points p1, p2, p3 are not +collinear. Now write +u = m(nθ4 + tθ3 + θ2) = m +� +(1 − nb − a(t − na))θ2 − (nc + t − na)θ − (t − na)c +� +for some m ∈ F× +q . From the above criterion, we get that the points q1, q2, q3 are +collinear if and only if t = na (of course we have c ̸= 0). +The points p1, p2, q3 are collinear if and only if +������ +1 +θ +θ2 +1 +θq +θ2q +uq2 +θq2 +θ2q2 +������ += 0 +This equation is (semi)-linear in the variable u, and admits a unique solution. +In the same way, the points q1, q2, p3 are collinear if and only if +u(θ2q2+q − θq2+2q) − uq(θ2q2+1 − θq2+2) + θ2q+1 − θq+2 = 0 + +44 +R. BLACHE AND E. HALLOUIN +Setting U = u(θ2q2+q − θq2+2q), we can rewrite the equation U + U q + θ2q+1 − +θq+2 = 0. Since gcd(T q + T, T q3 − T ) = T , the map U �→ U q + U is an Fq-linear +automorphism of Fq3, and this equation admits exactly one solution. +Now choose six of the eight points, and assume they lie on a conic. If ri is one +of these points, then among the five remaining points, four must lie on one of the +conjugates of C1; from Bezout theorem, the conic must be one of these, and the +subset of six conconic points is among the three we already constructed. It remains +to consider the six points p1, p2, p3, q1, q2, q3; any conic passing through these points +should be defined over Fq, et thus have an equation of the form +eX2 + hXY + iY 2 + jXZ + kY Z + lZ2 +Plugging the coordinates of p1 and q1, substracting and factoring 1 − u, we get +jθ + kθ2 + l(1 + u) = 0 +so that the family (θ, θ2, 1 + u) does not generate the Fq-vector space Fq3. This +happens if, and only if 1 + mc(t − na) = 0 – with u = m(nθ4 + tθ3 + θ2). +It remains to show that there is no cubic passing through the eight points and +singular at one of them. If such a cubic C exists, it has exactly one singular point, +which is not defined over Fq. So it is distinct from Cσ. Now these two cubics have +at least ten intersection points (counted with multiplicities), which is impossible. +Summing up, we have to choose η and θ as above, such that the coefficients of +their minimal polynomials satisfy t − na ̸= 0; then we get q − 1 possible values for +u such that the three prescribed subsets of six points are conconic. We remove one +possible value to verify that the six points pi, qi do not lie on a conic, then at most +one for each of the assertions p1, p2, q3 non collinear, and q1, q2, p3 non collinear. +We get a least q − 4 possible values for u, and the problem is settled for q ≥ 5. +For q = 3, one can verify that if θ is a root of T 3 + T 2 + 2, and η a root of +T 2 + T + 2, then for m = −1 the points defined above have the required position. +Appendix A. Arithmetic types for degrees three to six +We give below the lists of arithmetic types for degrees 3 ≤ d ≤ 6. The tables are +organized as follows +• in the first column, we fix a number for each type; there are also three +types (one in degree four and two in degree three) for which we add an +asterisk. This means that the invariant H1(Γ, Pic(X ⊗ Fq)) is non trivial +(it is isomorphic to the Klein four-group Z/2Z × Z/2Z in each case), and +that a surface of this type is not birational to the projective plane [21, +Section 29]. +• in the second one, we describe the geometric types for the given degrees, in +other words the closed and symmetric parts of a root system of type E9−d +up to the action of the Weyl group; they come from [7], except for degree +3 where they are given in [8, Table IV (iv)]. We give the Dynkin types of +the singular points and (between parentheses) the number of exceptional +divisors on the surface; +• in the third column, we give the stabilizer attached to the geometric type; +• in the fourth one, we give the characteristic polynomial of the action of any +element w in the conjugacy class of the stabilizer on the geometric Picard +group Pic(X) of a weak del Pezzo surface of the type; + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +45 +• finally, we give the characteristic polynomial of the action of any element +w in the conjugacy class of the stabilizer on the geometric Picard group +Pic(Xs) of a singular del Pezzo surface of a type. +Moreover, in the table for degree 4, we add a column, in order to describe each +conjugacy class in W(D5) by its signed cycle type. +Table 5: Arithmetic types in degree 6 +Type T +Geometric type +Stab +χw,Pic(X) +χw,Pic(Xs) +1 +A1 (4) +Z/2Z +Φ4 +1 +Φ3 +1 +2 +Φ3 +1Φ2 +Φ2 +1Φ2 +3 +A1 (3) +S3 +Φ4 +1 +Φ3 +1 +4 +Φ3 +1Φ2 +Φ2 +1Φ2 +5 +Φ2 +1Φ3 +Φ1Φ3 +6 +2A1 (2) +{e} +Φ4 +1 +Φ2 +1 +7 +A2 (2) +Z/2Z +Φ4 +1 +Φ2 +1 +8 +Φ3 +1Φ2 +Φ1Φ2 +9 +A2A1 (1) +{e} +Φ4 +1 +Φ1 +Table 6: Arithmetic types in degree 5 +Type T +Geometric type +Stab +χw,Pic(X) +χw,Pic(Xs) +1 +A1 (7) +S3 +Φ5 +1 +Φ4 +1 +2 +Φ4 +1Φ2 +Φ3 +1Φ2 +3 +Φ3 +1Φ3 +Φ2 +1Φ3 +4 +2A1 (5) +Z/2Z +Φ5 +1 +Φ3 +1 +5 +Φ3 +1Φ2 +2 +Φ2 +1Φ2 +6 +A2 (4) +Z/2Z +Φ5 +1 +Φ3 +1 +7 +Φ4 +1Φ2 +Φ2 +1Φ2 +8 +A2A1 (3) +{e} +Φ5 +1 +Φ2 +1 +9 +A3 (2) +{e} +Φ5 +1 +Φ2 +1 +10 +A4 (1) +{e} +Φ5 +1 +Φ1 +Table 7: Arithmetic types in degree 4 +Type T +Geometric type +Stab +W(D5) +χw,Pic(X) +χw,Pic(Xs) +1 +A1 (12) +S4 × Z/2Z +11111 +Φ6 +1 +Φ5 +1 +2 +2111 +Φ5 +1Φ2 +Φ4 +1Φ2 +3 +2111 +Φ5 +1Φ2 +Φ4 +1Φ2 +4 +11111 +Φ4 +1Φ2 +2 +Φ3 +1Φ2 +2 +5 +221 +Φ4 +1Φ2 +2 +Φ3 +1Φ2 +2 +6 +2111 +Φ3 +1Φ3 +2 +Φ2 +1Φ3 +2 +7 +311 +Φ4 +1Φ3 +Φ3 +1Φ3 +8 +221 +Φ2 +1Φ2 +2Φ4 +Φ1Φ2 +2Φ4 +9 +1121 +Φ3 +1Φ2Φ4 +Φ2 +1Φ2Φ4 +10 +32 +Φ3 +1Φ2Φ3 +Φ2 +1Φ2Φ3 + +46 +R. BLACHE AND E. HALLOUIN +Table 7: Arithmetic types in degree 4 +Type T +Geometric type +Stab +W(D5) +χw,Pic(X) +χw,Pic(Xs) +11 +2A1 (9) +D8 +11111 +Φ6 +1 +Φ4 +1 +12 +2111 +Φ5 +1Φ2 +Φ3 +1Φ2 +13 +221 +Φ4 +1Φ2 +2 +Φ2 +1Φ2 +2 +14 +221 +Φ4 +1Φ2 +2 +Φ3 +1Φ2 +15 +41 +Φ3 +1Φ2Φ4 +Φ2 +1Φ4 +16 +2A1 (8) +S4 × Z/2Z +11111 +Φ6 +1 +Φ4 +1 +17 +2111 +Φ5 +1Φ2 +Φ3 +1Φ2 +18 +11111 +Φ4 +1Φ2 +2 +Φ2 +1Φ2 +2 +19 +11111 +Φ4 +1Φ2 +2 +Φ3 +1Φ2 +20 +2111 +Φ3 +1Φ3 +2 +Φ2 +1Φ2 +2 +21∗ +11111 +Φ2 +1Φ4 +2 +Φ1Φ3 +2 +22 +311 +Φ4 +1Φ3 +Φ2 +1Φ3 +23 +2111 +Φ3 +1Φ2Φ4 +Φ2 +1Φ4 +24 +2111 +Φ3 +1Φ2Φ4 +Φ1Φ2Φ4 +25 +311 +Φ2 +1Φ2 +2Φ6 +Φ1Φ2Φ6 +26 +A2 (8) +D8 +11111 +Φ6 +1 +Φ4 +1 +27 +2111 +Φ5 +1Φ2 +Φ3 +1Φ2 +28 +11111 +Φ4 +1Φ2 +2 +Φ2 +1Φ2 +2 +29 +2111 +Φ3 +1Φ3 +2 +Φ2 +1Φ2 +2 +30 +221 +Φ2 +1Φ2 +2Φ4 +Φ1Φ2Φ4 +31 +3A1 (6) +(Z/2Z)2 +11111 +Φ6 +1 +Φ3 +1 +32 +2111 +Φ5 +1Φ2 +Φ2 +1Φ2 +33 +11111 +Φ4 +1Φ2 +2 +Φ2 +1Φ2 +34 +2111 +Φ3 +1Φ3 +2 +Φ1Φ2 +2 +35 +A1A2 (6) +Z/2Z +11111 +Φ6 +1 +Φ3 +1 +36 +2111 +Φ5 +1Φ2 +Φ2 +1Φ2 +37 +A3 (5) +Z/2Z +11111 +Φ6 +1 +Φ3 +1 +38 +221 +Φ4 +1Φ2 +2 +Φ2 +1Φ2 +39 +A3 (4) +D8 +11111 +Φ6 +1 +Φ3 +1 +40 +2111 +Φ5 +1Φ2 +Φ2 +1Φ2 +41 +11111 +Φ4 +1Φ2 +2 +Φ1Φ2 +2 +42 +11111 +Φ4 +1Φ2 +2 +Φ2 +1Φ2 +43 +2111 +Φ3 +1Φ2Φ4 +Φ1Φ4 +44 +4A1 (4) +D8 +11111 +Φ6 +1 +Φ2 +1 +45 +11111 +Φ4 +1Φ2 +2 +Φ2 +1 +46 +221 +Φ4 +1Φ2 +2 +Φ2 +1 +47 +11111 +Φ4 +1Φ2 +2 +Φ1Φ2 +48 +221 +Φ2 +1Φ2 +2Φ4 +Φ1Φ2 +49 +2A1A2 (4) +Z/2Z +11111 +Φ6 +1 +Φ2 +1 +50 +2111 +Φ3 +1Φ3 +2 +Φ1Φ2 +51 +A1A3 (3) +Z/2Z +11111 +Φ6 +1 +Φ2 +1 +52 +2111 +Φ5 +1Φ2 +Φ1Φ2 +53 +A4 (3) +{e} +11111 +Φ6 +1 +Φ2 +1 +54 +D4 (2) +Z/2Z +11111 +Φ6 +1 +Φ2 +1 + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +47 +Table 7: Arithmetic types in degree 4 +Type T +Geometric type +Stab +W(D5) +χw,Pic(X) +χw,Pic(Xs) +55 +11111 +Φ4 +1Φ2 +2 +Φ1Φ2 +56 +2A1A3 (2) +Z/2Z +11111 +Φ6 +1 +Φ1 +57 +11111 +Φ4 +1Φ2 +2 +Φ1 +58 +D5 (1) +{e} +11111 +Φ6 +1 +Φ1 +Table 8: Arithmetic types in degree 3 +Type T +Geometric type +Stab +χw,Pic(X) +χw,Pic(Xs) +1 +A1 (21) +S6 +Φ7 +1 +Φ6 +1 +2 +Φ6 +1Φ2 +Φ5 +1Φ2 +3 +Φ5 +1Φ2 +2 +Φ4 +1Φ2 +2 +4 +Φ4 +1Φ3 +2 +Φ3 +1Φ3 +2 +5 +Φ3 +1Φ2 +3 +Φ2 +1Φ2 +3 +6 +Φ5 +1Φ3 +Φ4 +1Φ3 +7 +Φ4 +1Φ2Φ3 +Φ3 +1Φ2Φ3 +8 +Φ3 +1Φ2 +2Φ4 +Φ2 +1Φ2 +2Φ4 +9 +Φ4 +1Φ2Φ4 +Φ3 +1Φ2Φ4 +10 +Φ3 +1Φ5 +Φ2 +1Φ5 +11 +Φ2 +1Φ2Φ3Φ6 +Φ1Φ2Φ3Φ6 +12 +2A1 (16) +S4 × Z/2Z +Φ7 +1 +Φ5 +1 +13 +Φ6 +1Φ2 +Φ4 +1Φ2 +14 +Φ5 +1Φ2 +2 +Φ4 +1Φ2 +15 +Φ5 +1Φ2 +2 +Φ3 +1Φ2 +2 +16 +Φ4 +1Φ3 +2 +Φ3 +1Φ2 +2 +17∗ +Φ3 +1Φ4 +2 +Φ2 +1Φ3 +2 +18 +Φ5 +1Φ3 +Φ3 +1Φ3 +19 +Φ4 +1Φ2Φ4 +Φ3 +1Φ4 +20 +Φ4 +1Φ2Φ4 +Φ2 +1Φ2Φ4 +21 +Φ3 +1Φ2 +2Φ6 +Φ2 +1Φ2Φ6 +22 +A2 (15) +S3 ≀ Z/2Z +Φ7 +1 +Φ5 +1 +23 +Φ6 +1Φ2 +Φ4 +1Φ2 +24 +Φ5 +1Φ2 +2 +Φ3 +1Φ2 +2 +25 +Φ4 +1Φ3 +2 +Φ3 +1Φ2 +2 +26 +Φ5 +1Φ3 +Φ3 +1Φ3 +27 +Φ3 +1Φ2 +3 +Φ1Φ2 +3 +28 +Φ3 +1Φ2 +2Φ4 +Φ2 +1Φ2Φ4 +29 +Φ4 +1Φ2Φ3 +Φ2 +1Φ2Φ3 +30 +Φ2 +1Φ2Φ3Φ6 +Φ1Φ3Φ6 +31 +3A1 (12) +D12 +Φ7 +1 +Φ4 +1 +32 +Φ6 +1Φ2 +Φ3 +1Φ2 +33 +Φ5 +1Φ2 +2 +Φ5 +1Φ2 +34 +Φ4 +1Φ3 +2 +Φ2 +1Φ2 +2 +35 +Φ3 +1Φ2 +3 +Φ2 +1Φ3 +36 +Φ2 +1Φ2Φ2 +3 +Φ1Φ2Φ3 + +48 +R. BLACHE AND E. HALLOUIN +Table 8: Arithmetic types in degree 3 +Type T +Geometric type +Stab +χw,Pic(X) +χw,Pic(Xs) +37 +A1A2 (11) +S3 +Φ7 +1 +Φ4 +1 +38 +Φ6 +1Φ2 +Φ3 +1Φ2 +39 +Φ5 +1Φ3 +Φ2 +1Φ3 +40 +A3 (10) +D8 +Φ7 +1 +Φ4 +1 +41 +Φ6 +1Φ2 +Φ3 +1Φ2 +42 +Φ5 +1Φ2 +2 +Φ3 +1Φ2 +43 +Φ5 +1Φ2 +2 +Φ2 +1Φ2 +2 +44 +Φ4 +1Φ2Φ4 +Φ2 +1Φ4 +45 +4A1 (9) +S4 +Φ7 +1 +Φ3 +1 +46 +Φ5 +1Φ2 +2 +Φ3 +1 +47 +Φ5 +1Φ2 +2 +Φ2 +1Φ2 +48 +Φ3 +1Φ2 +3 +Φ1Φ3 +49 +Φ3 +1Φ2 +2Φ4 +Φ2 +1Φ2 +50 +2A1A2 (8) +Z/2Z +Φ7 +1 +Φ3 +1 +51 +Φ4 +1Φ3 +2 +Φ2 +1Φ2 +52 +A1A3 (7) +Z/2Z +Φ7 +1 +Φ3 +1 +53 +Φ6 +1Φ2 +Φ2 +1Φ2 +54 +2A2 (7) +D12 +Φ7 +1 +Φ3 +1 +55 +Φ6 +1Φ2 +Φ2 +1Φ2 +56 +Φ4 +1Φ3 +2 +Φ2 +1Φ2 +57∗ +Φ3 +1Φ4 +2 +Φ1Φ2 +2 +58 +Φ5 +1Φ3 +Φ1Φ3 +59 +Φ3 +1Φ2 +2Φ6 +Φ1Φ6 +60 +A4 (6) +Z/2Z +Φ7 +1 +Φ3 +1 +61 +Φ6 +1Φ2 +Φ2 +1Φ2 +62 +D4 (6) +S3 +Φ7 +1 +Φ3 +1 +63 +Φ5 +1Φ2 +2 +Φ2 +1Φ2 +64 +Φ3 +1Φ2 +3 +Φ1Φ3 +65 +A12A2 (5) +Z/2Z +Φ7 +1 +Φ2 +1 +66 +Φ4 +1Φ3 +2 +Φ1Φ2 +67 +2A1A3 (5) +Z/2Z +Φ7 +1 +Φ2 +1 +68 +Φ5 +1Φ2 +2 +Φ2 +1 +69 +A1A4 (4) +{e} +Φ7 +1 +$Phi3 +1 +70 +A5 (3) +Z/2Z +Φ7 +1 +Φ2 +1 +71 +Φ6 +1Φ2 +Φ1Φ2 +72 +D5 (3) +{e} +Φ7 +1 +Φ2 +1 +73 +A1A5 (2) +{e} +Φ7 +1 +Φ1 +74 +3A2 (3) +S3 +Φ7 +1 +Φ1 +75 +Φ4 +1Φ3 +2 +Φ1 +76 +Φ3 +1Φ2 +3 +Φ1 +77 +E6 (1) +{e} +Φ7 +1 +Φ1 +References +1. M. Artin, Coverings of the rational double points in characteristic p, Complex analysis and +algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 11–22. + +CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS +49 +2. Barinder Banwait, Francesc Fit´e, and Daniel Loughran, Del Pezzo surfaces over finite fields +and their Frobenius traces, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 1, 35–60. +3. M. J. Bright, N. Bruin, E. V. Flynn, and A. Logan, The Brauer-Manin obstruction and X[2], +LMS J. Comput. Math. 10 (2007), 354–377. +4. Martin Bright, Brauer groups of singular del Pezzo surfaces, Michigan Math. J. 62 (2013), +no. 3, 657–664. +5. R. W. Carter, Conjugacy classes in the weyl group, Compositio Mathematica 25 (1972), no. 1, +1–59. +6. Arthur Cayley, A memoir on cubic surfaces, Philos. Trans. Roy. Soc. London 159 (1869), +231–326. +7. D. F. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfaces, Proc. London +Math. Soc. (3) 57 (1988), no. 1, 25–87. +8. Harold S. M. Coxeter, Finite groups generated by reflections, and their subgroups generated +by reflections, Proc Cambridge Philos. Soc. 30 (1934), 466–482. +9. Michel Demazure, Surfaces de del pezzo in S´eminaire sur les Singularit´es des Surfaces, Lecture +Notes in Mathematics, vol. 777, Springer, Berlin, 1980. +10. Ulrich Derenthal, Singular del Pezzo surfaces whose universal torsors are hypersurfaces, Proc. +Lond. Math. Soc. (3) 108 (2014), no. 3, 638–681. +11. Igor Dolgachev and Alexander Duncan, Regular pairs of quadratic forms on odd-dimensional +spaces in characteristic 2, Algebra Number Theory 12 (2018), no. 1, 99–130. +12. Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, +2012. +13. Patrick Du Val, On isolated singularities which do not affect the conditions of adjunction. +III, Proc. Cambridge Philos. Soc 30 (1934), no. 3, 483–491. +14. E. V. Flynn, Homogeneous spaces and degree 4 del Pezzo surfaces, Manuscripta Math. 129 +(2009), no. 3, 369–380. +15. Robin Hartshorne, Algebraic geometry, Graduate Studies in Mathematics, vol. 52, Springer, +1977. +16. Tatsuro Kawakami and Masaru Nagaoka, Pathologies and liftability of Du Val del Pezzo +surfaces in positive characteristic, Math. Z. 301 (2022), no. 3, 2975–3017. +17. J´anos Koll´ar, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer +Grenzgebiete, vol. 32, Springer-Verlag, Berlin, 1996. +18. B. `E. Kunyavski˘ı, A. N. Skorobogatov, and M. A. Tsfasman, del Pezzo surfaces of degree four, +M´em. Soc. Math. France (N.S.) (1989), no. 37, 113. +19. Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique +factorization, Inst. Hautes ´Etudes Sci. Publ. Math. (1969), no. 36, 195–279. +20. Daniel Loughran and Andrey Trepalin, Inverse Galois problem for del Pezzo surfaces over +finite fields, Math. Res. Lett. 27 (2020), no. 3, 845–853. +21. Yu. I. Manin, Cubic forms, second ed., North-Holland Mathematical Library, vol. 4, North- +Holland Publishing Co., Amsterdam, 1986. +22. J.-Y. M´erindol, Les singularit´es simples elliptiques, leurs d´eformations, les surfaces de del +Pezzo et les transformations quadratiques, Ann. Sci. ´Ecole Norm. Sup. (4) 15 (1982), no. 1, +17–44. +23. Ludwig Schl¨afli, On the distribution of surfaces of the third order into species, in reference to +the absence or presence of singular points, and the reality of their lines, Philos. Trans. Roy. +Soc. London 153 (1863), 193–241. +24. Alexei Skorobogatov, del Pezzo surfaces of degree 4 and their relation to Kummer surfaces, +Enseign. Math. (2) 56 (2010), no. 1-2, 73–85. +25. H. P. F. Swinnerton-Dyer, The zeta function of a cubic surface over a finite field, Proc. +Cambridge Philos. Soc. 63 (1967), 55–71. +26. Andrey Trepalin, Del Pezzo surfaces over finite fields, Finite Fields Appl. 68 (2020), 101741, +32. +27. William C. Waterhouse, Pairs of quadratic forms, Invent. Math. 37 (1976), no. 2, 157–164. + +50 +R. BLACHE AND E. HALLOUIN +LAMIA, Universit´e des Antilles +Email address: regis.blache@univ-antilles.fr +Institut de Math´ematiques de Toulouse, UMR 5219 +Email address: hallouin@univ-tlse2.fr + diff --git a/w9FRT4oBgHgl3EQfhDe7/content/tmp_files/load_file.txt b/w9FRT4oBgHgl3EQfhDe7/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a0a876ba719ed6f2ef1217bfad93fba28fc9b90f --- /dev/null +++ b/w9FRT4oBgHgl3EQfhDe7/content/tmp_files/load_file.txt @@ -0,0 +1,2736 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf,len=2735 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='13582v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='AG] 31 Jan 2023 CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS R´EGIS BLACHE AND EMMANUEL HALLOUIN Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In this article, we consider weak del Pezzo surfaces defined over a finite field, and their associated, singular, anticanonical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We first define arithmetic types for such surfaces, by considering the Frobe- nius actions on their Picard groups;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this extends the classification of Swinnerton- Dyer and Manin for ordinary del Pezzo surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We also show that some invariants of the surfaces only depend on the above type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then we study an inverse Galois problem for singular del Pezzo surfaces having degree 3 ≤ d ≤ 6: we describe which types can occur over a given finite field (of odd characteristic when 3 ≤ d ≤ 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Contents Introduction 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Weak del Pezzo surfaces 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' A blow-up model 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Roots, exceptional curves and geometric types 6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Arithmetic types 8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Singular del Pezzo surfaces 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Anticanonical models: geometric aspects 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Divisor class groups and zeta functions 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Construction of weak del Pezzo surfaces of degree at least five 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Degrees seven and eight 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Degree six 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Degree five 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Construction of singular del Pezzo surfaces of degree four.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Pencils of quadrics, their Segre symbols, and geometric types 16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Morphisms to the projective line 18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Galois action on the singular quadrics, and arithmetic types 23 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Quadratic module associated to a pencil of quadrics 24 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Construction of degree four del Pezzo surfaces of any arithmetic type 29 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Construction of singular del Pezzo surfaces of degree three.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Blowing up degree four surfaces 38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Other constructions 39 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Type 36 42 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Arithmetic types for degrees three to six 44 References 48 Date: February 1, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Primary 11G25, 14J26;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Secondary 14G10, 11E12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' del Pezzo surfaces over finite fields, zeta functions, quadratic modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 1 2 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' BLACHE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' HALLOUIN Introduction In this article, we study certain del Pezzo surfaces defined over a finite field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Recall that a smooth projective surface X is a weak del Pezzo surface when its anticanonical divisor −KX is big and nef;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' its degree is the self-intersection number d := K·2 X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' If moreover −KX is ample, we call X an ordinary del Pezzo surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' When a weak del Pezzo surface X is not ordinary, it contains absolutely irreducible curves with self intersection −2, that we shall call (−2)-curves in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The anticanonical model of a weak, non ordinary del Pezzo surface X is a singular surface, that we denote by Xs, and call a singular del Pezzo surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that Xs has Du Val singularities, and is Gorenstein;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' for these reasons such surfaces are sometimes called Du Val del Pezzo or Gorenstein del Pezzo in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The study of complex singular cubic surfaces (degree 3 del Pezzo surfaces over C) dates back to the nineteenth century [6, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It has been generalized to del Pezzo surfaces along the twentieth century [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In particular we know all types of singularities (sometimes called the Dynkin types) that can occur in characteristic zero [12, Chapter 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Over an algebraically closed field of positive characteristic, some new types occur, but only in characteristic 2 [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The interest on del Pezzo surfaces over finite fields is more recent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' If X is an ordinary del Pezzo surface defined over the finite field Fq, where q = pm is a power of a prime, the Frobenius action σ∗ on Pic(X ⊗Fq) must preserve the anticanonical class and the intersection product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The group of automorphisms of Pic(X ⊗ Fq) with these properties is a (finite) Weyl group depending on the degree of the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Thus the image of the Galois group Gal(Fq/Fq) is a cyclic subgroup generated by the image of the Frobenius morphism σ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' its conjugacy class is the arithmetic type of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Swinnerton-Dyer [25] and Manin [21] construct tables of conjugacy classes in these Weyl groups in order to classify ordinary del Pezzo surfaces over finite fields (the table for degree 3 has been corrected in [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Many invariants of a del Pezzo surface only depend on its arithmetic type;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this is the case for its zeta function [21, Theorem 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1, Corollary 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2] (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1) Z(X, T )−1 = (1 − T )(1 − q2T ) det � I − qT σ∗| Pic(X ⊗ k) � The first aim of this paper is to extend the classification of Swinnerton-Dyer and Manin to weak del Pezzo surfaces, by defining their arithmetic type, and to give an expression for their zeta functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We begin by classifying the possible singularities over the algebraic closure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Fol- lowing [7, 10], we define a geometric type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This is the configuration of negative curves on the surface X ⊗ k (corresponding to lines and singularities on the anti- canonical model), up to the action of the Weyl group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is finer than the Dynkin type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The types are orbits of the Weyl action on the root bases in the lattice E9−d corresponding to the degree d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Coming back to the surface X, the Galois action must preserve the set Rirr of (−2)-curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Thus the Frobenius maps to an element of its stabilizer Stab(Rirr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We define the arithmetic type of X as the conjugacy class of the Frobenius action in this last group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Here again, many properties of a weak del Pezzo surface only depend on its arithmetic type;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this is true for its zeta function from (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1), and we show that it CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS 3 remains true for its anticanonical model Xs (note that its geometric Picard lattice is the orthogonal of Rirr in the geometric Picard group of X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We have the equality Z(Xs, T )−1 = (1 − T )(1 − q2T ) det � I − qT σ∗| Pic(Xs ⊗ k) � Our second aim is to construct such surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' When the finite field is small, not all are constructible [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' For instance, over the field F2, there are no split ordinary del Pezzo surfaces of degree d ≤ 4 since there are at most four points in general position in P2(F2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This is the inverse Galois problem for singular del Pezzo surfaces over finite fields: in the ordinary case, it asks for which conjugacy classes of the Weyl group can arise as the conjugacy class of the Frobenius action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It has been solved for ordinary degree four surfaces in [26, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='4], and for ordinary degree three and two surfaces in [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' There is also a weaker version of this problem, asking for which integers can arise as the trace of the Frobenius action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It has been solved for ordinary del Pezzo surfaces, see [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It should be easier for non ordinary del Pezzo surfaces since when we consider them as blowups of the projective plane, we relax the condition of blowing up points in general position to almost general position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' But when the degree is at most four and the base field is not algebraically closed, some of the surfaces are no longer birational to the projective plane, and we have to provides other constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In this paper we solve the inverse Galois problem for singular del Pezzo surfaces of degree at least 5 over any finite field, and for surfaces of degree 3 or 4 when the characteristic is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We refer to Appendix A for the tables of arithmetic types for each degree 3 ≤ d ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' There exists a weak, non ordinary del Pezzo surface of degree d and any arithmetic type T over the finite field Fq in the following cases 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' we have d ≥ 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' we have d = 4 and Fq has odd characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' we have d = 3, Fq has odd characteristic and (q, T) /∈ {(3, 1), (3, 12)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' There does not exist any surface of degree 3 and arithm´etic type 1 or 12 over F3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The types corresponding to the degrees d ≥ 5 are not very difficult to construct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It turns out that these surfaces are birational to P2, and it is sufficient to blowup the projective plane at well chosen points, and to contract exceptional curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In the case of degree four, we no longer consider a blowup model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We exploit an idea which is present in [3, 14, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The anticanonical model of a del Pezzo surface a degree four is the base locus of a pencil of quadrics in P4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' To such a pencil we associate a quadratic Fq|T ]-module (equivalently, a Frobenius algebra).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Now fixing a geometric type, then an arithmetic type for a del Pezzo surface, gives a precise description of the quadratic module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We construct such modules with prescribed arithmetic properties, and their existence is sufficient to prove the second assertion of the above theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that these quadratic modules are rather different in even characteristic, since there a bilinear form over an odd dimensionnal vector space must be degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This is why we do not consider that case here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' However, nice normal forms have been described in this case [11], that should help solving this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 4 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' BLACHE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' HALLOUIN Note that we have used the mathematical software magma to construct explicit models (ie a couple of quadrics in P4) for all types of degree four singular del Pezzo surfaces over a given finite field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The code is freely available on the second author’s webpage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Finally, we construct degree three surfaces in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Our main con- struction is by blowing up a point – not lying on any negative curve – on a well chosen degree four del Pezzo surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We count the numbers of such points for each arithmetic type belonging to degree four;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this allows us to show the existence of many degree three surfaces with given arithmetic type, but also – when there is no such point – the non existence result stated in the last sentence of the above Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We also use other types of blow up (of the projective plane, or a degree four surface at a point lying on one or more exceptional curve) in order to construct the surfaces belonging to the remaining arithmetic types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The paper is organised as follows: in section 1, we describe weak del Pezzo surfaces, and recall their principal properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This allows us to introduce the classification and to define the different types (geometric, then arithmetic) that we use in the rest of the article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then we turn to the description of singular del Pezzo surfaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' we briefly describe their different groups of divisors, and we show Theorem 1 in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The next section is devoted to the proof of the first assertion in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The fourth section is more technical: we treat the degree four del Pezzo surfaces over finite fields of odd characteristic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' to such a variety, we associate a quadratic Fq|T ]-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then most of the work is devoted to describing the link between the arithmetic properties of the module and the arithmetic type of the surface;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this allows us to prove the second assertion of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The last section mainly builds on the preceding one: we blow up the degree four surfaces at well chosen points in order to construct degree three surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We also use some direct constructions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this allows us to prove the last two assertions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We give the description of the different arithmetic types for degree d ≥ 3 in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Weak del Pezzo surfaces We first define the smooth surfaces we shall consider in this article Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' A smooth projective surface X defined over a field k is a weak del Pezzo surface when its anticanonical divisor −KX is (i) big, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' K·2 X > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' (ii) and nef, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' for any effective divisor D on X, (−KX) · D ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is an ordinary del Pezzo surface when −KX is ample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Its degree is d := K·2 X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that since −KX is nef, the adjunction formula ensures that for any abso- lutely irreducible curve C on X, we have C · C ≥ C · (C + KX) = 2pa(C) − 2 ≥ −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Moreover, if for such a curve this inequality is an equality, then we have C ·KX = 0, and from the Nakai-Moishezon criterion the anticanonical divisor is not ample: the surface X is a not an ordinary del Pezzo surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is well known [9, 7] that the geometry of del Pezzo surfaces depends to a large extent of its absolutely irreducible curves with negative self-intersection, the so-called negative curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' These are the generalization of the celebrated 27 lines on an smooth cubic hypersurface in P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS 5 Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let X denote a weak del Pezzo surface over the field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' An element D in the geometric Picard group Pic(X ⊗k) is an exceptional divisor when D·2 = D · KX = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' An absolutely irreducible curve C on X whose class is an exceptional divisor is an exceptional curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' An element D in Pic(X ⊗k) is a root when it satisfies D·2 = −2 and D·KX = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by R(X) the set of roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' When C is a curve on X whose class is a root, we say that C (or its class) is an effective root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' If moreover C is absolutely irreducible, then it is a (−2)-curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by A the union of the (−2)-curves on X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this is a closed subscheme of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by U the complementary of A on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' First remark that the negative curves which are absolutely irreducible are isomorphic to P1 from the adjunction formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The sets of exceptional divisors and roots are finite and depend up to isomor- phism only on the degree of the surface [9, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Tables 2 et 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note also (contrary to the case of ordinary del Pezzo surfaces) that all exceptional divisors need not correspond to exceptional curves;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' see Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='11 for a numerical criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Finally, the sets of exceptional and (−2)-curves will be crucial in this article since they determine (up to an isomorphism) the geometric type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We first give a construction of weak del Pezzo surfaces as blow-ups of the pro- jective plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' A blow-up model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We assume k algebraically closed in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by X(Σ) the surface obtained from the projective plane by successively blowing up the points in Σ := {p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' , pr} π : X(Σ) Blpr −→ Xr → .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' → X2 Blp1 −→ X1 = P2 where each pi, 1 ≤ i ≤ r is a closed point in the surface Xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' For 1 ≤ i ≤ r, we denote by Ei the total transform in X(Σ) of the exceptional divisor of the blowing-up Blpi : Xi+1 → Xi, and we write pi ≺ pi+1 when pi+1 is infinitely near to pi, ie when it lies on the exceptional divisor of Blpi in Xi+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The Picard lattice of the surface X(Σ) is the group generated by E0 := π∗L, the total transform of the class L of a line in P2, and the Ei, 1 ≤ i ≤ r Pic(X(Σ)) = Zr+1 = ZE0 + ZE1 + · · · + ZEr endowed with the intersection product given by E·2 0 = 1, E·2 i = −1 for 1 ≤ i ≤ r and Ei · Ej = 0 for i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The canonical class is given by KX(Σ) = −3E0 + E1 + · · · + Er From [9, III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Theorem 1], the surface X(Σ) is a weak del Pezzo surface of degree d = 9 − r if, and only if r ≤ 8, and the points in Σ are in almost general position: at each stage, the point pi does not lie on a (−2)-curve on Xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The converse statement is almost true;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' actually we have the following description of weak del Pezzo surfaces [7, Proposition 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='4] Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let X denote a weak del Pezzo surface of degree d over an algebraically closed field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then we have 1 ≤ d ≤ 9, and if we set r = 9 − d, we must have one of the following 6 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' BLACHE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' HALLOUIN (i) r = 1 and X ≃ P1 × P1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' (ii) r = 1 and X ≃ F2 the Hirzebruch surface;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' (iii) 0 ≤ r ≤ 8, and X ≃ X(Σ), where Σ := {p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' , pr} consists of points in almost general position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Roots, exceptional curves and geometric types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In this section, we con- sider a weak del Pezzo surface X of degree d ≤ 7 over an algebraically closed field k, and we set r := 9 − d as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that the description of del Pezzo surfaces of degrees 8 and 9 follows immediately from the preceding result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' There exists some Σ := {p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' , pr} consisting of points in almost general posi- tion such that X ≃ X(Σ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this choice allows us to identify Pic(X) ≃ Zr+1 as in the preceding section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Recall that R(X) is the set of roots in Pic(X) R(X) := {D ∈ Pic(X), D·2 = −2, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='KX = 0} We denote by Reff(X) ⊂ R(X) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Rirr(X) ⊂ R(X)) the subset of effective roots (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' of (−2)-curves) in Pic(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let R(X) denote the root module;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' it is the sub-Z-module of Pic(X) generated by Rirr(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is well known [9] that the set R(X) is a root system in the orthogonal (KX)⊥⊗ Q of the canonical divisor KX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Under the identification of Pic(X) and Zr+1, it is sent on the root system Rd with basis {E0−E1 −E2−E3, E1 −E2, · · · , Er−1 −Er}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by E9−d the intersection graph of this basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is the Dynkin diagram associated to the degree d, namely Degree d 6 5 4 3 2 1 Dynkin diagram E9−d A2 × A1 A4 D5 E6 E7 E8 The group of automorphisms of the Picard group Pic(X) preserving the canonical divisor and the intersection product is isomorphic to the Weyl group associated to E9−d, which we denote by W(E9−d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is generated by the reflections through the hyperplanes orthogonal to the roots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' the sα : x �→ x + (x · α)α, α ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The following result [9, III Th´eor`eme 2] is fundamental for the geometric classi- fication of weak del Pezzo surfaces Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let X denote a weak del Pezzo surface of degree d ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then the set Reff(X) ∪ (−Reff(X)) is a closed and symmetric part of R(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is a root system in the space R(X)⊗Q, of which the set Rirr(X) forms a basis (and we call it a root basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' As a consequence, the free Z-module generated by Rirr(X) is equal to R(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' An immediate consequence is that since we have R(X) ⊂ K⊥ X, and this last module has rank r = 9−d, there are at most r (−2)-curves on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Their intersection graph has a strong geometric significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is sometimes called the Dynkin type of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We are ready to define the first, geometric part of our classification Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The geometric type of X is the orbit of the image of its set of (−2)-curves Rirr(X) under the action of W(E9−d) on the set of bases for closed and symmetric parts of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' When X is ordinary, we say it has ordinary geometric type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS 7 Note that two isomorphisms between the lattices Pic(X) and Zr+1 differ by an element of the Weyl group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This is why we define the type as an orbit under the action of this group: this makes it independent of the choice of such an isomorphism, and of the blown-up points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note also that the geometric type above is equivalent to the type from [10, Definition 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The possible orbits can be deduced recursively from a theorem by Borel and de Siebenthal that classifies the closed symmetric parts of maximal rank in a root system up to the action of the Weyl group [22, p 29], [12, p 404].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' They are given, degree by degree, in [12, Chapters 8 and 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We recall them in Appendix A as a column in the table of arithmetic types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' For each orbit, one can choose a root basis in such a way that its intersection graph is a subgraph of the Dynkin diagram E9−d when d ≥ 5, and of the extended (or affine) Dynkin diagram �E9−d when 3 ≤ d ≤ 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' this is no longer true when d ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The geometric type we have just defined is a finer invariant than the Dynkin type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' For instance, if d = 6 there are two orbits of Dynkin type A1, depending on whether the (−2)-curve lies on the A1 or the A2 component of the root system: surfaces in the corresponding geometric types differ by the number of exceptional curves they contain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' There are also two orbits for each of the Dynkin types 2A1 and A3 when d = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that for d ≥ 3, the possible geometric types of del Pezzo surfaces are in bijection with the orbits given by Borel-de Siebenthal theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This is no longer true when d ≤ 2: for instance, the orbits corresponding to certain types for d = 1 or d = 2 only occur as geometric types of del Pezzo surfaces in characteristic 2 [16, Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' A convenient way to represent the geometric type is to consider a new graph, containing the intersection graph of the (−2)-curves as a subgraph [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We define the graph of negative curves associated to the surface X as the graph whose vertices are circles corresponding to (−2)-curves, and points corresponding to exceptional curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Two vertices corresponding to curves C et C′ are joined by n edges if we have C · C′ = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Since the Weyl group preserves the intersection product, two surfaces sharing the same geometric type have the same graph of negative curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The converse is true [10, Remark 4];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' actually the geometric type of a weak del Pezzo surface is completely determined by its degree, its Dynkin type and the number of its exceptional curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' As a consequence, this is the way we will encode it in the tables of the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Here is a criterion for an exceptional divisor to be irreducible [9, Corollaire au Th´eor`eme III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2] Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let D denote an exceptional divisor of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then D is the class of an exceptional curve if, and only if we have D · R ≥ 0 for any effective root (or (−2)-curve) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We end with [9, Lemme IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2], that will be useful we we decribe the fibers of the desingularization of a songular del Pezzo surface 8 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' BLACHE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' HALLOUIN Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Each connected component B of A is the support of a unique fun- damental cycle, which is the least effective root C such that for any irreducible component D of B we have C · D ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The fundamental cycle depends only on the corresponding connected component of the Dynkin type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Actually it is the highest root of the root system associated to this component [12, Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Arithmetic types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We assume here that k = Fq is a finite field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by σ a generator of the absolute Galois group Γ := Gal(k/k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let X denote a weak del Pezzo surface defined over k, having degree d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We denote by Rirr(X) the set of the (−2)-curves of X ⊗ k, and by Rirr a representative of the geometric type of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We fix an isomorphism between Pic(X ⊗ k) and ZE0 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' + ZE9−d that send Rirr(X) to Rirr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The automorphism σ induces the automorphism Id ×σ of the surface X ⊗ k, and an automorphism (Id ×σ)∗ of the group Pic(X ⊗ k), that we denote by σ∗ in the following;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' it preserves the intersection pairing, and the canonical class since X is defined over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Under the action of the isomorphism between Pic(X ⊗ k) and ZE0 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='+ ZE9−d, the image of σ∗ is an element of the Weyl group W(E9−d), and we get a morphism from Γ to W(E9−d), whose image is a finite cyclic group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Finally, σ∗ preserves the set of (−2)-curves, and its image in W(E9−d) must lie in Stab(Rirr), the stabilizer of Rirr in W(E9−d) which is the subgroup consisting of the θ such that θRirr = Rirr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This motivates the following Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let X denote a weak del Pezzo surface defined over k, and Rirr the image of the set of its (−2)-curves described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The arithmetic type T of X is the conjugacy class of the image of σ∗ in Stab(Rirr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Two isomorphisms between Pic(X ⊗ k) and ZE0 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' + ZE9−d sending the (−2)-curves of X to Rirr differ by an element of the above stabilizer, which is a subgroup of W(E9−d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Defining the type as a conjugacy class in this group makes it independent of the choice of such an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We will see below that two singular del Pezzo surfaces such that the Frobenius actions on the Picard groups of their associated weak del Pezzo surfaces lie in the same conjugacy class in W(E9−d) (not in the stabilizer) can have different arithmetic properties, in particular different zeta functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This is easily seen on the tables given in Appendix A that describe the different arithmetic types for degrees 3 ≤ d ≤ 6, in particular in degree 4 where we precise the corresponding conjugacy classes in W(D5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' To end this section, we remark that two weak del Pezzo surfaces sharing the same arithmetic type have the same zeta function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Actually, since a weak del Pezzo surface is rational, we have the following [21, Theorem 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1, Corollary 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2] Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' For any n ≥ 1, the number of rational points of the weak del Pezzo surface X over the finite field Fqn is #X(Fqn) = q2n + qn Tr(σ∗n) + 1 As a consequence, the zeta function of the weak del Pezzo surface X is Z(X, T )−1 = (1 − T )(1 − q2T ) det � I − qT σ∗| Pic(X ⊗ k) � CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Singular del Pezzo surfaces In this section, we consider a weak del Pezzo surface X of degree d defined over the finite field k = Fq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' If X is not ordinary, its anticanonical divisor is no longer ample, and the mor- phism it (or one of its multiples) defines is no longer an embedding;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' its image Xs is singular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In this section, we first describe the geometry of this image, then we determine the divisor class groups of X and the associated singular variety in order to prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Anticanonical models: geometric aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The anticanonical model of the surface X is the variety Xs := Proj ∞ � n=0 H0(X, −nKX) and we denote by ϕ : X → Xs the associated morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The variety Xs just defined is the singular del Pezzo surface associated to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' One can also consider for i ≥ 1, the plurianticanonical linear system | − iKX| and the image X(i) of the morphism it defines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This variety is isomorphic to Xs as long as di ≥ 3 [9, V Th´eor`eme 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' As a consequence, the variety Xs can be identified with the anticanonical image of X when d ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The anticanonical model of a degree d del Pezzo surface is [17, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5] (i) if d = 4, the complete intersection of two quadrics in P4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' (ii) if d = 3, a cubic in P3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' (iii) if d = 2, a degree four hypersurface in weighted projective space P(1, 1, 1, 2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' (iv) if d = 1, a degree six hypersurface in P(1, 1, 2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We list below some properties of the surface Xs, and of the morphism ϕ [9, IV Th´eor`eme 1, V Proposition 1, V Th´eor`emes 1 et 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Recall that A is the union of the (−2)-curves on X, and U is its complementary Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 1) The schematic fibers of the morphism ϕ are the points of U and the fundamental cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' As a consequence, ϕ is birational, and we have ϕ∗OX = OXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 2) for all n ∈ Z, i > 0, we have Riϕ∗O(nKX) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 3) The surface Xs is normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The singular points of Xs are the images of the fundamental cycles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' they are rational double points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 4) If we set O(KXs) := ϕ∗O(KX), then O(KXs) is locally free of rank 1, and for every integer n we have canonical isomorphisms O(nKXs) = ϕ∗O(nKX), O(nKX) = ϕ∗O(nKXs) In other words, ϕ is an isomorphism from U on its image Us, and each connected component of A is sent to a point which is a rational double point on Xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We obtain all singular points of Xs in this way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The map ϕ is a minimal resolution of the singularities of Xs, and the Dynkin type of X is the dual graph to this resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Thus the singularity type of Xs is exactly the Dynkin type of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The type of a singularity x of Xs is the type of the connected component corre- sponding to x in the intersection graph of (−2)-curves of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Since all singularities are rational double points, their types fall in the ADE classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 10 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' BLACHE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' HALLOUIN Note also that since O(KXs) is locally free of rank 1, this invertible sheaf corre- sponds to a Cartier divisor KXs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We end by recalling the following result [9, V Corollaire 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let F denote a locally free sheaf on Xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then, for any i ≥ 0, we have Hi(Xs, F) = Hi(X, ϕ∗F) Moreover, we have Serre duality Hi(Xs, F) = H2−i(Xs, O(KXs) ⊗ F∨)∨ From this result, we can describe the global sections of the Cartier divisors on Xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Moreover we see that the sheaf O(KXs) is dualizing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' since it is locally free, the surface Xs is Gorenstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Divisor class groups and zeta functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let X denote a weak non ordi- nary del Pezzo surface defined over k = Fq, and Xs its anticanonical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Then ϕ and Xs are defined over k since the anticanonical divisor is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' In the same way, the varieties Sing(Xs) of dimension zero, and A of dimension 1 are defined over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Recall that the geometric Picard group (the group of classes of Cartier divisors) Pic(X ⊗ k) identifies to the free Z-module generated by E0 and E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' , Er, with r = 9 − d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' It is equal to the group of classes of Weil divisors Cl(X ⊗ k) since X is smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Using this identification, we will no longer mention the dependance on X of some objects such as the root modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We first describe the groups Cl(Xs ⊗ k) and Pic(Xs ⊗ k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that since Xs is normal, the groups of Cartier divisors and of invertible sheaves coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The restriction to U⊗k of Weil divisors X⊗k is surjective [15, Proposition II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' its kernel consists of divisors whose support is contained in the complementary of U ⊗ k, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' in A ⊗ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' This last group is R, since it is generated by the irreducible components of A ⊗ k, and these are exactly the (−2)-curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' No principal divisor on X ⊗ k has support contained in A ⊗ k [19, p 225].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Thus R remains the kernel of the restriction of classes of Weil divisors from Cl(X ⊗ k) to Cl(U ⊗ k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The morphism ϕ induces an isomorphism from U to Us, and we have Cl(Us⊗k) = Cl(U ⊗ k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Now Xs ⊗ k \\ Us ⊗ k has codimension 2 in Xs ⊗ k, and we deduce [15, Proposition II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5] that Cl(Us ⊗ k) = Cl(Xs ⊗ k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We get (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='1) 0 � R � Cl(X ⊗ k) = Pic(X ⊗ k) � Cl(Xs ⊗ k) � 0 We come to the Picard group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The pull-back ϕ∗ : Pic(Xs ⊗ k) → Pic(X ⊗ k) gives rise to the exact sequence [4, Proposition 1] (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='2) 0 � Pic(Xs ⊗ k) ϕ∗ � Pic(X ⊗ k) θ � R∨ � Br(Xs ⊗ k) ϕ∗ � Br(X ⊗ k) where we have set R∨ := Hom(R, Z), and θ comes from the intersection product: for any D ∈ Pic(X ⊗ k), θ(D) : R → Z is defined by θ(D)(R) = D · R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS 11 In other words, the group Pic(Xs ⊗ k) identifies to the following subgroup of Pic(X ⊗ k) Pic(Xs ⊗ k) = {D ∈ Pic(X ⊗ k), ∀R ∈ R, D · R = 0} = {D ∈ Pic(X ⊗ k), ∀R ∈ Rirr, D · R = 0} Since X ⊗ k is a rational surface, its Brauer group is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We deduce the equality Coker θ = Br(Xs ⊗ k), and we have the following explicit description of this last group [4, Proposition 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The root module R is a subgroup of K⊥ X, and Br(Xs ⊗ k) is the torsion subgroup of the quotient Coker θ = Br(Xs ⊗ k) = � K⊥ X/R � tors It depends on the geometric type defined above (not only on the Dynkin type in general: for instance there are two orbits for the Dynkin type 4A1 when d = 2, one gives a trivial cokernel, the other an order 2 cokernel), and the different cases are described in [4, Theorem 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Note that θ is often surjective (this is always true when d ≥ 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We turn to the study of the zeta function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We first determine the zeta function of the union A of the (−2)-curves in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Since the set Rirr is stable under the action of Γ, the action of σ∗ on Pic(X ⊗ k) restricts to an action on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Moreover this action preserves the intersection product, and it induces an automorphism on the singular graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' as a consequence it permutes the (−2)-curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' The matrix of the action of σ∗ over R with respect to the basis Rirr is a permutation matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We can express the zeta function of A in terms of the characteristic polynomial of this action Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We have the equality Z(A, T ) = Z(Sing(Xs), T ) det(I − qT σ∗|R)−1 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Write A as the disjoint union of its connected components Ax, where for any x ∈ Sing(Xs)(Fq), Ax is the fiber (seen as a set) ϕ−1({x}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Let n ≥ 1 an integer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' since ϕ is defined over k, we have Axσn = Aσn x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' If we have x /∈ Sing(Xs)(Fqn), then Aσn x ∩ Ax = ∅, and we deduce that Ax(Fqn) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' Now assume x ∈ Sing(Xs)(Fqn), and let us denote by Cx1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' , Cxk the absolutely irreducible components of Ax, whuch form the Coxeter-Dynkin graph associated to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' For any two curves Cxi and Cxj defined over Fqn, there is a unique (since the graph has no cycle) chain with minimal length in the graph between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' As the extremities of this chain are fixed by σn, the whole chain is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' We deduce from this fact that the subgraph of the Cxi, 1 ≤ i ≤ k defined over Fqn is connected;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' let us denote Nnx the number of its vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' As the (−2)-curves have normal crossings, we deduce 12 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' BLACHE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/w9FRT4oBgHgl3EQfhDe7/content/2301.13582v1.pdf'} +page_content=' HALLOUIN #Ax(Fqn) = Nnx � i=1 #Cxi(Fqn) − � 1≤i