jackkuo commited on
Commit
69a385b
·
verified ·
1 Parent(s): cc09602

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. 3tFKT4oBgHgl3EQf8i6_/content/tmp_files/2301.11950v1.pdf.txt +1654 -0
  3. 3tFKT4oBgHgl3EQf8i6_/content/tmp_files/load_file.txt +0 -0
  4. 4NAyT4oBgHgl3EQfo_jf/content/tmp_files/2301.00519v1.pdf.txt +0 -0
  5. 4NAyT4oBgHgl3EQfo_jf/content/tmp_files/load_file.txt +0 -0
  6. 5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf +0 -0
  7. 5NFAT4oBgHgl3EQfFRzt/content/tmp_files/2301.08427v1.pdf.txt +335 -0
  8. 5NFAT4oBgHgl3EQfFRzt/content/tmp_files/load_file.txt +240 -0
  9. 6tE1T4oBgHgl3EQfTQPr/content/tmp_files/2301.03077v1.pdf.txt +3450 -0
  10. 6tE1T4oBgHgl3EQfTQPr/content/tmp_files/load_file.txt +0 -0
  11. 7dAzT4oBgHgl3EQf-f5K/content/tmp_files/2301.01934v1.pdf.txt +920 -0
  12. 7dAzT4oBgHgl3EQf-f5K/content/tmp_files/load_file.txt +0 -0
  13. 7tFJT4oBgHgl3EQfmyyq/content/tmp_files/load_file.txt +0 -0
  14. 89FST4oBgHgl3EQfajh_/content/2301.13796v1.pdf +3 -0
  15. ANE1T4oBgHgl3EQfowXh/content/tmp_files/2301.03325v1.pdf.txt +1553 -0
  16. ANE1T4oBgHgl3EQfowXh/content/tmp_files/load_file.txt +0 -0
  17. BdE2T4oBgHgl3EQfRge6/vector_store/index.faiss +3 -0
  18. CtAyT4oBgHgl3EQfefgG/content/tmp_files/2301.00320v1.pdf.txt +242 -0
  19. CtAyT4oBgHgl3EQfefgG/content/tmp_files/load_file.txt +271 -0
  20. DNE1T4oBgHgl3EQfqAUl/content/tmp_files/2301.03337v1.pdf.txt +1067 -0
  21. DNE1T4oBgHgl3EQfqAUl/content/tmp_files/load_file.txt +0 -0
  22. DdAyT4oBgHgl3EQf4vob/vector_store/index.pkl +3 -0
  23. EtAyT4oBgHgl3EQfevi1/content/tmp_files/2301.00328v1.pdf.txt +611 -0
  24. EtAyT4oBgHgl3EQfevi1/content/tmp_files/load_file.txt +523 -0
  25. EtFLT4oBgHgl3EQfFS_K/content/tmp_files/2301.11987v1.pdf.txt +1063 -0
  26. EtFLT4oBgHgl3EQfFS_K/content/tmp_files/load_file.txt +0 -0
  27. FtE3T4oBgHgl3EQfVwq1/content/tmp_files/2301.04463v1.pdf.txt +3332 -0
  28. FtE3T4oBgHgl3EQfVwq1/content/tmp_files/load_file.txt +0 -0
  29. JNFRT4oBgHgl3EQfzTgG/content/tmp_files/2301.13649v1.pdf.txt +636 -0
  30. JNFRT4oBgHgl3EQfzTgG/content/tmp_files/load_file.txt +387 -0
  31. K9E5T4oBgHgl3EQfYQ9F/content/tmp_files/2301.05572v1.pdf.txt +0 -0
  32. K9E5T4oBgHgl3EQfYQ9F/content/tmp_files/load_file.txt +0 -0
  33. LNAyT4oBgHgl3EQfgPhD/vector_store/index.pkl +3 -0
  34. NNE4T4oBgHgl3EQfjQ2i/content/tmp_files/2301.05141v1.pdf.txt +1567 -0
  35. NNE4T4oBgHgl3EQfjQ2i/content/tmp_files/load_file.txt +0 -0
  36. ONFOT4oBgHgl3EQf3DT4/content/tmp_files/2301.12945v1.pdf.txt +1307 -0
  37. ONFOT4oBgHgl3EQf3DT4/content/tmp_files/load_file.txt +0 -0
  38. PNE0T4oBgHgl3EQfjwHm/content/tmp_files/2301.02465v1.pdf.txt +711 -0
  39. PNE0T4oBgHgl3EQfjwHm/content/tmp_files/load_file.txt +0 -0
  40. R9FRT4oBgHgl3EQfLjfi/content/tmp_files/2301.13503v1.pdf.txt +2011 -0
  41. R9FRT4oBgHgl3EQfLjfi/content/tmp_files/load_file.txt +0 -0
  42. RtE0T4oBgHgl3EQfUQDk/content/tmp_files/2301.02249v1.pdf.txt +0 -0
  43. RtE0T4oBgHgl3EQfUQDk/content/tmp_files/load_file.txt +0 -0
  44. UNAzT4oBgHgl3EQf0_5k/content/tmp_files/2301.01792v1.pdf.txt +1048 -0
  45. UNAzT4oBgHgl3EQf0_5k/content/tmp_files/load_file.txt +0 -0
  46. V9AzT4oBgHgl3EQfJ_vP/content/2301.01091v1.pdf +3 -0
  47. WdFJT4oBgHgl3EQf4i1g/content/tmp_files/2301.11666v1.pdf.txt +1370 -0
  48. WdFJT4oBgHgl3EQf4i1g/content/tmp_files/load_file.txt +0 -0
  49. X9FRT4oBgHgl3EQf_DhA/content/tmp_files/2301.13693v1.pdf.txt +959 -0
  50. X9FRT4oBgHgl3EQf_DhA/content/tmp_files/load_file.txt +487 -0
.gitattributes CHANGED
@@ -136,3 +136,8 @@ aNE3T4oBgHgl3EQfdAo0/content/2301.04530v1.pdf filter=lfs diff=lfs merge=lfs -tex
136
  xdAyT4oBgHgl3EQfa_cC/content/2301.00251v1.pdf filter=lfs diff=lfs merge=lfs -text
137
  Q9FKT4oBgHgl3EQfiC5d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
138
  6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
136
  xdAyT4oBgHgl3EQfa_cC/content/2301.00251v1.pdf filter=lfs diff=lfs merge=lfs -text
137
  Q9FKT4oBgHgl3EQfiC5d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
138
  6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf filter=lfs diff=lfs merge=lfs -text
139
+ 89FST4oBgHgl3EQfajh_/content/2301.13796v1.pdf filter=lfs diff=lfs merge=lfs -text
140
+ BdE2T4oBgHgl3EQfRge6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
141
+ V9AzT4oBgHgl3EQfJ_vP/content/2301.01091v1.pdf filter=lfs diff=lfs merge=lfs -text
142
+ zNFLT4oBgHgl3EQfni-P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
143
+ ttE4T4oBgHgl3EQfWAzx/content/2301.05030v1.pdf filter=lfs diff=lfs merge=lfs -text
3tFKT4oBgHgl3EQf8i6_/content/tmp_files/2301.11950v1.pdf.txt ADDED
@@ -0,0 +1,1654 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TUM-EFT 173/22
2
+ Strong decays of T +
3
+ cc at NLO in an effective field theory
4
+ Lin Dai,1, ∗ Sean Fleming,2, † Reed Hodges,3, ‡ and Thomas Mehen3, §
5
+ 1Physik Department, Technische Universit¨at M¨unchen, 85748 Garching, Germany
6
+ 2Department of Physics and Astronomy,
7
+ University of Arizona, Tucson, Arizona 85721, USA
8
+ 3Department of Physics, Duke University,
9
+ Durham, North Carolina 27708, USA
10
+ Abstract
11
+ The T +
12
+ cc exotic meson, discovered by the LHCb collaboration in 2021, can be interpreted as a
13
+ molecular state of D(∗)0 and D(∗)+ mesons. We compute next-leading order (NLO) contributions to
14
+ the strong decay of T +
15
+ cc in an effective field theory for D mesons and pions, considering contributions
16
+ from one-pion exchange and final state rescattering. Corrections to the total width, as well as the
17
+ differential distribution in the invariant mass of the final state D meson pair are computed. The
18
+ results remain in good agreement with LHCb experimental results when the NLO contributions
19
+ are added. The leading uncertainties in the calculation come from terms which depend on the
20
+ scattering length and effective range in D meson scattering.
21
+ ∗Electronic address: lin.dai@tum.de
22
+ †Electronic address: spf@email.arizona.edu
23
+ ‡Electronic address: reed.hodges@duke.edu
24
+ §Electronic address: mehen@phy.duke.edu
25
+ 1
26
+ arXiv:2301.11950v1 [hep-ph] 27 Jan 2023
27
+
28
+ I.
29
+ INTRODUCTION
30
+ The LHCb collaboration has observed a narrow resonance, the exotic tetraquark T +
31
+ cc,
32
+ in the final state D0D0π+ [1–5]. The resonance is close to both the D∗0D+ and D∗+D0
33
+ thresholds. When using a unitarized Breit-Wigner profile appropriate for a coupled channel
34
+ problem, LHCb finds the difference between the resonance mass and the D∗+D0 threshold,
35
+ δm, and the decay width, Γ, to be: [5]
36
+ δm = −360 ± 40+4
37
+ −0 keV ,
38
+ Γ = 48 ± 2+0
39
+ −14 keV .
40
+ (1)
41
+ The D∗0D+ threshold is 1.7 MeV above the resonance. The closeness of the resonance to
42
+ the two thresholds suggests the possibility that T +
43
+ cc has a molecular nature.
44
+ After the announcement of the discovery of T +
45
+ cc, many theory papers attempted to under-
46
+ stand various aspects of the exotic meson [6–26]. Several papers tried to predict its decay
47
+ width and differential decay width, with considerable success [6, 7, 10, 13, 14, 20, 21]. In one
48
+ of these papers [6], we wrote down an effective field theory for T +
49
+ cc considering it a molecular
50
+ state of two D mesons treated nonrelativistically, and computed leading-order strong and
51
+ electromagnetic decays. Special attention was paid to the coupled channel nature of the
52
+ problem. We found a decay width of 52 keV when the tetraquark is in an isospin-0 state,
53
+ using a value of δm = −273 keV, which arises from using a relativistic P-wave two-body
54
+ Breit-Wigner function with a Blatt-Weisskopf form factor. This was in good agreement with
55
+ the LHCb experiment. The predicted differential spectra as a function of the invariant mass
56
+ of the final state charm meson pair were also in good agreement with the binned experimen-
57
+ tal data. In this paper we investigate how these conclusions are affected by next-to-leading
58
+ order (NLO) strong decays.
59
+ The effective theory we will use is similar to XEFT for the χc1(3872) [27–41].
60
+ Refs.
61
+ [27, 42, 43] have considered NLO XEFT diagrams for χc1(3872) decays. One-pion exchange
62
+ was found to have a negligible contribution to the decay width [27, 43], while final state
63
+ rescattering led to uncertainty in the decay rate of +50%
64
+ −30% when the binding energy of the
65
+ χc1(3872) is 0.2 MeV [43]. The differential spectrum dΓ[χc1(3872) → D0 ¯D0π0]/dEπ was
66
+ found to have a curve whose peak location and overall shape are insensitive to NLO correc-
67
+ tions; only the normalization is affected [43]. The sharply peaked nature of the differential
68
+ 2
69
+
70
+ spectrum can inform about the molecular nature of the χc1(3872): since it is a function of
71
+ the virtual D∗0 propagator (p2
72
+ D + γ2)−1, where γ is the binding momentum, as the binding
73
+ energy goes to zero the distribution becomes sharply peaked as pD → 0.
74
+ By analogy with this earlier work on χc1(3872), in this paper we compute NLO contri-
75
+ butions to the decay of T +
76
+ cc to find the uncertainties due to one-loop one-pion exchange and
77
+ final state rescattering diagrams. We calculate the uncertainty in the decay width, as well
78
+ as in the shape, peak location, and normalization of differential spectra. The calculation is
79
+ complicated by the presence of a coupled channel, which is not present for χc1(3872). We
80
+ find the decay width including NLO corrections to be 47+53%
81
+ −25% keV, which is consistent with
82
+ XEFT [43]. We also discuss the physical significance of several of the parameters in the
83
+ effective theory, and their effect on the decay width.
84
+ In Section II we write down the effective Lagrangian to NLO. The required Feynman
85
+ diagrams and their amplitudes, along with the explicit formulae for the partial widths are
86
+ shown in Section III. Plots of the differential distribution are shown in Section IV, followed
87
+ by concluding remarks in Section V.
88
+ II.
89
+ EFFECTIVE LAGRANGIAN
90
+ The leading-order effective Lagrangian for strong decays of T +
91
+ cc is [6]
92
+ LLO = H∗i†
93
+
94
+ i∂0 +
95
+ ∇2
96
+ 2mH∗ − δ∗
97
+
98
+ H∗i + H†
99
+
100
+ i∂0 + ∇2
101
+ 2mH
102
+ − δ
103
+
104
+ H
105
+ + g
106
+
107
+ H†∂iπH∗i + H.c.
108
+ −C(0)
109
+ 0 (H∗Tτ2H)†(H∗Tτ2H) − C(1)
110
+ 0 (H∗Tτ2τaH)†(H∗Tτ2τaH) .
111
+ (2)
112
+ Here H and H∗ are isodoublets of the pseudoscalar and vector charm meson fields, respec-
113
+ tively, and π is the usual matrix of pion fields. The diagonal matrices δ and δ∗ contain the
114
+ residual masses, which are the difference between the mass of the charm meson D(∗)i, where
115
+ i = 0, +, and that of the D0. The coupling g = 0.54 is the heavy hadron chiral perturbation
116
+ theory (HHχPT) axial coupling [44–46] and fπ = 130 MeV is the pion decay constant. The
117
+ terms on the last two lines are contact interactions mediating D∗D scattering, where C(n)
118
+ 0
119
+ mediates S-wave scattering in the isospin-n channel, and τa are Pauli matrices acting in
120
+ isospin space.
121
+ 3
122
+
123
+ Several new classes of terms appear at NLO in the effective theory. There are new contact
124
+ interactions involving two derivatives:
125
+ LC2 = C(0)
126
+ 2
127
+ 4 (H∗Tτ2H)†(H∗Tτ2
128
+ ←→
129
+ ∇ 2H) + C(1)
130
+ 2
131
+ 4 (H∗Tτ2τaH)†(H∗Tτ2τa
132
+ ←→
133
+ ∇ 2H) .
134
+ (3)
135
+ These interactions occur in XEFT and are proportional to the effective range [27]. We can
136
+ also write down Dπ interaction terms by constructing isospin invariants out of the fields.
137
+ LCπ = C(1/2)
138
+ π
139
+ (πH)†(πH) + C(3/2)
140
+ π
141
+
142
+ vaH − 1
143
+ 3τaπH
144
+ �†�
145
+ vaH − 1
146
+ 3τaπH
147
+
148
+ .
149
+ (4)
150
+ Here v =
151
+
152
+ π1 π2 π0
153
+ �T
154
+ /
155
+
156
+ 2 is a vector of pion fields, with π± ≡ (π1 ∓ iπ2)/
157
+
158
+ 2, such that
159
+ vaτa = π. C(1/2)
160
+ π
161
+ and C(3/2)
162
+ π
163
+ mediate scattering in the isospin-1/2 and isospin-3/2 channels,
164
+ respectively. The interactions which are relevant to our calculation are:
165
+ LCπ → C(1)
166
+ π D0†π0†D+π− − C(1)
167
+ π D+†π0†D0π+ + H.c.
168
+ +C(2)
169
+ π D0†π0†D0π0 + C(2)
170
+ π D+†π0†D+π0
171
+ +C(3)
172
+ π D0†π+†D0π+ ,
173
+ (5)
174
+ where the couplings C(1)
175
+ π , C(2)
176
+ π , and C(3)
177
+ π
178
+ are particular linear combinations of C(1/2)
179
+ π
180
+ and C(3/2)
181
+ π
182
+ as governed by Eq. (4). These interactions can be matched onto the chiral Lagrangian [47].
183
+ The values we use for these Cπ couplings are computed from lattice data; see Appendix C
184
+ for details.
185
+ We can write down D∗D → DDπ interactions by using the same strategy of constructing
186
+ isospin invariants out of the fields. That would lead to:
187
+ LB1 = B(I=0)
188
+ 1
189
+ εαβ(H∗
190
+ αHβ)†(Hτ2τiH∇vi)
191
+ +B(I=1)
192
+ 1
193
+ (H∗τ2τkH)†(εijkHτ2τiH∇vj) + H.c. .
194
+ (6)
195
+ However, we need isospin-breaking terms in order to fully renormalize the theory at NLO,
196
+ so ultimately we have four unique B1 couplings, one for each possible channel. Written in
197
+ terms of the charm meson fields, the interactions become:
198
+ LB1 → B(1)
199
+ 1 (D+D∗0)†(D+D0∇π0) + B(2)
200
+ 1 (D0D∗+)†(D+D0∇π0)
201
+ +B(3)
202
+ 1
203
+ 2 (D0D∗+)†(D0D0∇π+) + B(4)
204
+ 1
205
+ 2 (D+D∗0)†(D0D0∇π+) .
206
+ (7)
207
+ 4
208
+
209
+ Relations between the B(i)
210
+ 1
211
+ implied by Eq. (6) are given in the Appendix. We can construct
212
+ DD contact terms out of the isospin invariants. There are only interactions in the isospin-1
213
+ channel,
214
+ LC0D = C(1)
215
+ 0D(Hτ2τaH)†(Hτ2τaH)
216
+ → C(1)
217
+ 0D
218
+ 2 (D0D0)†(D0D0) + C(1)
219
+ 0D(D+D0)†(D+D0) ,
220
+ (8)
221
+ where in the second line we have restricted to terms that are relevant to our calculation.
222
+ The authors in Ref. [43] chose to vary their C(1)
223
+ 0D coupling, which described D ¯D scattering
224
+ as opposed to DD, over a range of [−1, 1] fm2. We test several different values for it within
225
+ that range. Lastly, we need a kinetic term for the pions; in contrast to XEFT, we treat them
226
+ relativistically,
227
+ Lπ = tr(∂µπ†∂µπ − m2
228
+ ππ†π) .
229
+ (9)
230
+ The full NLO Lagrangian is then LNLO = LC2 + LCπ + LB1 + LC0D + Lπ.
231
+ III.
232
+ FORMULAE FOR DECAY WIDTHS
233
+ Writing down the decay width for the T +
234
+ cc at NLO requires care due to the coupled channel
235
+ nature of the problem. We define a two-point correlation function matrix ˆG as
236
+ ˆG =
237
+
238
+ d4x e−iEt ⟨0|T[X(x)XT(0)]|0⟩ = iΣ(1 + CΣ)−1 ,
239
+ (10)
240
+ where the interpolating field is
241
+ X =
242
+
243
+
244
+
245
+ D0D∗+
246
+ D+D∗0
247
+
248
+
249
+ � .
250
+ (11)
251
+ The right-hand side of Eq. (10) arises from expressing ˆG to all orders as an infinite sum
252
+ of the C0-irreducible two-point function Σ, in a manner similar to that in Appendix A of
253
+ Ref. [48], but here C0 and Σ are matrices due to the presence of a coupled channel. −iΣ is
254
+ given by the sum of D∗D self-energy diagrams in Fig. 1. Its diagonal elements correspond
255
+ to those two-point diagrams which do not swap channels, and the off-diagonal elements to
256
+ those which do swap channels. We can then project out the isospin-0 and isospin-1 channels,
257
+ 5
258
+
259
+ −iΣ
260
+ =
261
+ +
262
+ +
263
+ C2
264
+ +
265
+ +
266
+ C0D
267
+ +
268
+
269
+ +
270
+ B1
271
+ FIG. 1: Some of the D∗D self-energy diagrams contributing to −iΣ. Bold solid lines represent D∗
272
+ mesons, regular solid lines represent D mesons, and dashed lines represent pions. The first row is
273
+ LO, the second row is NLO, and the third and fourth rows are NNLO. There are also other NNLO
274
+ diagrams not shown which are C0-reducible combinations of the NLO diagrams.
275
+ and tune the parameters of the two-point correlators so that there is a pole corresponding
276
+ to the location of the T +
277
+ cc bound state. Near the vicinity of the pole, the Green’s function
278
+ can be written as
279
+ G0/1 =
280
+
281
+
282
+
283
+ 1
284
+ ∓1
285
+
286
+
287
+
288
+ T
289
+ ˆG
290
+
291
+
292
+
293
+ 1
294
+ ∓1
295
+
296
+
297
+ � ≈ 1
298
+ 2
299
+ iZ0/1
300
+ E + ET +
301
+ iΓ0/1
302
+ 2
303
+ ,
304
+ (12)
305
+ where Γ0/1 is the decay width and the residue Z0/1 is the wave function renormalization. We
306
+ find for the decay width in the isospin-0 channel
307
+ ΓNLO
308
+ 0
309
+ ≈ −ΓLO Re Σ′NLO
310
+ 0
311
+ (−ET)
312
+ Re tr Σ′LO(−ET) + 2 Im ΣNLO
313
+ 0
314
+ (−ET)
315
+ Re tr Σ′LO(−ET) ,
316
+ (13)
317
+ where Σ0 ≡ Σ11 + Σ22 − Σ12 − Σ21 is a particular combination of the elements of the Σ
318
+ matrix appropriate for isospin-0. The first term of Eq. (13) is a correction to the LO decay
319
+ width from NLO D∗D self-energy corrections, i.e., diagrams on the second row of Fig. 1.
320
+ The second term of Eq. (13) consists of NLO decay diagrams, from various cuts of diagrams
321
+ 6
322
+
323
+ on the third and fourth rows of Fig. 1. Note that Im ΣNLO is from Σ diagrams of one
324
+ higher order than in Re ΣNLO because the LO self-energy graph has no imaginary part
325
+ below threshold. The derivatives of Σ are with respect to E and evaluated at E = −ET.
326
+ For a more detailed derivation of Eq. (13) refer to Appendix A.
327
+ Three diagrams in Fig. 1 contribute to Re Σ to NLO. They are the LO self-energy dia-
328
+ gram (−iΣ1), the one-pion exchange diagram (−iΣ2), and the C2 contact diagram (−iΣ3).
329
+ They are evaluated in the power divergence subtraction (PDS) scheme [49]. This scheme
330
+ corresponds to using MS to handle logarithmic divergences as well as subtracting poles in
331
+ d = 3 to keep track of linear divergences. A 1/ϵ pole appears in Σ2, but the dependence
332
+ on the renormalization scale drops out when the derivative with respect to E is taken. We
333
+ neglect terms in the propagators that go as p4/m2
334
+ H or (δm)p2/mH, where δm is of the order
335
+ of the pion mass, compared to p2. In Σ2 and Σ3 we use a Fourier transform to evaluate
336
+ the integrals over three-momentum, using a procedure outlined in Ref. [50]. We define a
337
+ reduced mass µ(m1, m2) ≡ m1m2/(m1 + m2) and the binding momenta are defined to be
338
+ γ2(m1, m2) = 2µ(m1, m2)(m1 + m2 − mT). The expressions for the self energy diagrams are:
339
+ −iΣ1(m, m∗) = −iµ(m, m∗)
340
+
341
+ [ΛPDS − γ(m, m∗)] ,
342
+ (14)
343
+ −iΣ2(m1, m∗
344
+ 1, m2, m∗
345
+ 2, mπ, g1, g2) = −4ig1g2
346
+ 3
347
+ µ(m1, m∗
348
+ 1)µ(m2, m∗
349
+ 2)
350
+ ×
351
+
352
+ 1
353
+ 16π2[ΛPDS − γ(m1, m∗
354
+ 1)][ΛPDS − γ(m2, m∗
355
+ 2)]
356
+ +(m∗
357
+ 2 − m1)2 − m2
358
+ π
359
+ (8π)2
360
+ �1
361
+ ϵ + 2
362
+ −4 log
363
+
364
+ γ(m1, m∗
365
+ 1) + γ(m2, m∗
366
+ 2)
367
+ −i(m∗
368
+ 2 − m1)2 + im2
369
+ π
370
+
371
+ − 4 log µ
372
+ ��
373
+ ,
374
+ (15)
375
+ −iΣ3(m1, m∗
376
+ 1, m2, m∗
377
+ 2, C2) = − i
378
+ 4π2C2[γ2(m1, m∗
379
+ 1) + γ2(m2, m∗
380
+ 2)]µ(m1, m∗
381
+ 1)
382
+ ×µ(m2, m∗
383
+ 2)[ΛPDS − γ(m1, m∗
384
+ 1)][ΛPDS − γ(m2, m∗
385
+ 2)] . (16)
386
+ To be consistent with the implementation of the PDS scheme in the decay diagrams (see
387
+ Appendix B), for the double integral in Σ2 we have used rotational symmetry to replace
388
+ 7
389
+
390
+ p
391
+ m
392
+ (a)
393
+ g1
394
+ p
395
+
396
+ g2
397
+ g3
398
+ m∗
399
+ 1
400
+ mext
401
+
402
+ m
403
+ m∗
404
+ 2
405
+ (b)
406
+
407
+ p
408
+
409
+
410
+ m
411
+ (c)
412
+ C2
413
+ m∗
414
+ 1
415
+ m
416
+ p
417
+ m∗
418
+ 2
419
+ mext
420
+ (d)
421
+ B1
422
+ m
423
+ (e)
424
+ C0D
425
+ m∗
426
+ m1
427
+ (f)
428
+ FIG. 2: Feynman diagrams at LO and NLO contributing to the decay of T +
429
+ cc. We label the vertices
430
+ and lines whose naming might be ambiguous. These diagrams arise from cuts of the diagrams on
431
+ the third and fourth lines of Fig. 1.
432
+ the tensor structure in the numerator with δij/3 and not δij/(d − 1).
433
+ This choice does
434
+ not affect the derivative of Σ2 as it only changes the constant terms which drop out upon
435
+ differentiation with respect to E.
436
+ The decay diagrams that contribute to 2 Im ΣNLO
437
+ 0
438
+ (−ET) are shown in Fig. 2. By the
439
+ optical theorem the square of these diagrams are given by the sum over the cuts of the
440
+ NNLO diagrams in Fig. 1. If there is only one pion/charm meson vertex in a diagram, its
441
+ coupling is labeled gπ. If there are more than one such vertex, the couplings are numbered
442
+ gi. Depending on the type of pion and charm meson, these couplings will be either g/fπ or
443
+ ±g/(
444
+
445
+ 2fπ).The expressions are written in terms of the basis integrals given in Appendix B.
446
+ These basis integrals depend on parameters b, c1, and c2, the definitions for c1 and c2 are
447
+ provided where appropriate, b = 1 unless otherwise specified, and the momentum arguments
448
+ for the integrals are p unless otherwise specified.
449
+ 8
450
+
451
+ iA(2a)(p, m, m∗, gπ) = 2igπϵT · pπµ(m, m∗)
452
+ p2 + γ2(m, m∗)
453
+ .
454
+ (17)
455
+ iA(2b)(p, m, mext, mπ, m∗
456
+ 1, m∗
457
+ 2, g1, g2, g3) = 4iµ(m, m∗
458
+ 1)µ(mext, m∗
459
+ 2)g1g2g3
460
+ p2 + γ2(mext, m∗
461
+ 2)
462
+ ×
463
+
464
+ ϵT · p pπ · p
465
+
466
+ I(2)
467
+ 0
468
+ − 2I(1) + I
469
+
470
+ +ϵT · pπp2I(2)
471
+ 1
472
+
473
+ ,
474
+ (18)
475
+ c1 = γ2(m, m∗
476
+ 1) ,
477
+ c2 = p2 − (mT − m − mext)2 + m2
478
+ π .
479
+ iA(2c)(m, mext, mπ, m∗, gπ, Cπ) = 2iµ(m, m∗)gπCπϵT · p[I(1) − I] ,
480
+ (19)
481
+ c1 = γ2(m, m∗) ,
482
+ c2 = p2 − (mT − m − mext)2 + m2
483
+ π .
484
+ iA(2d)(m, mext, m∗
485
+ 1, m∗
486
+ 2, gπ, C2) = 1
487
+ πiC2gπϵT · pπµ(m, m∗
488
+ 1)µ(mext, m∗
489
+ 2)
490
+ × p2 − γ2(m, m∗
491
+ 1)
492
+ p2 + γ2(mext, m∗
493
+ 2)[γ(m, m∗
494
+ 1) − ΛPDS] .
495
+ (20)
496
+ iA(2e)(m, m∗, B1) = −iB1
497
+ 2π ϵT · pπµ(m, m∗)[γ(m, m∗) − ΛPDS] .
498
+ (21)
499
+ iA(2f)(m1, m2, m∗, p0
500
+ π, gπ, C0D) = 4iµ(m1, m2)µ(m2, m∗)gπC0DϵT · pπI(pπ) , (22)
501
+ c1 = γ2(m2, m∗) ,
502
+ c2 = −2µ(m1, m2)
503
+
504
+ mT − m1 − m2 − p0
505
+ π − p2
506
+ π
507
+ 2m1
508
+
509
+ ,
510
+ b = µ(m1, m2)
511
+ m1
512
+ .
513
+ Following Eq. (13) and using the amplitudes defined above, the decay widths for the two
514
+ strong decays of T +
515
+ cc are
516
+ 9
517
+
518
+ dΓNLO
519
+ 0
520
+ (T +
521
+ cc → D+D0π0)
522
+ dp2
523
+ 0dp2
524
+ +
525
+ =
526
+ 2
527
+ Re tr Σ′LO(−ET)Re
528
+
529
+ A(2a)(p+, m+, m∗
530
+ 0, −g/
531
+
532
+ 2fπ)
533
+ ×
534
+
535
+ A(2b)(p0, m+, m0, mπ0, m∗
536
+ 0, m∗
537
+ +, −g/
538
+
539
+ 2fπ, g/
540
+
541
+ 2fπ, g/
542
+
543
+ 2fπ)
544
+ +A(2b)(p+, m+, m+, mπ−, m∗
545
+ 0, m∗
546
+ 0, g/fπ, g/fπ, −g/
547
+
548
+ 2fπ)
549
+ −A(2b)(p0, m0, m0, mπ+, m∗
550
+ +, m∗
551
+ +, g/fπ, g/fπ, g/
552
+
553
+ 2fπ)
554
+ −A(2b)(p+, m0, m+, mπ0, m∗
555
+ +, m∗
556
+ 0, g/
557
+
558
+ 2fπ, −g/
559
+
560
+ 2fπ, −g/
561
+
562
+ 2fπ)
563
+ +A(2c)(p0, m+, m0, mπ0, m∗
564
+ 0, −g/
565
+
566
+ 2fπ, C(2)
567
+ π )
568
+ −A(2c)(p0, m0, m0, mπ+, m∗
569
+ +, g/fπ, C(1)
570
+ π )
571
+ +A(2f)(m0, m+, m∗
572
+ 0, −g/
573
+
574
+ 2fπ, C(1)
575
+ 0D)
576
+ −A(2f)(m+, m0, m∗
577
+ +, g/
578
+
579
+ 2fπ, C(1)
580
+ 0D)
581
+ �∗
582
+ + (D0 ↔ D+, π+ ↔ π−)
583
+
584
+
585
+ 1
586
+ Re tr Σ′LO(−ET)
587
+
588
+ [β1(p2
589
+ + + γ2
590
+ +) + β2]
591
+ ���A(2a)(p+, m+, m∗
592
+ 0, −g/
593
+
594
+ 2fπ)
595
+ ��2
596
+ −A(2a)(p0, m0, m∗
597
+ +, g/
598
+
599
+ 2fπ)A∗
600
+ (2a)(p+, m+, m∗
601
+ 0, −g/
602
+
603
+ 2fπ)
604
+
605
+ +[β3(p2
606
+ 0 + γ2
607
+ 0) + β4]
608
+ ���A(2a)(p0, m0, m∗
609
+ +, g/
610
+
611
+ 2fπ)
612
+ ��2
613
+ −A(2a)(p+, m+, m∗
614
+ 0, −g/
615
+
616
+ 2fπ)A∗
617
+ (2a)(p0, m0, m∗
618
+ +, g/
619
+
620
+ 2fπ)
621
+ ��
622
+ −dΓLO
623
+ 0 (T +
624
+ cc → D+D0π0)
625
+ dp2
626
+ 0dp2
627
+ +
628
+ Re Σ′NLO
629
+ 0
630
+ Re tr Σ′LO
631
+ ����
632
+ C2→0,E=−ET
633
+ (23)
634
+ 10
635
+
636
+ dΓNLO
637
+ 0
638
+ (T +
639
+ cc → D0D0π+)
640
+ dp2
641
+ 1dp2
642
+ 2
643
+ =
644
+ 1
645
+ Re tr Σ′LO(−ET)Re
646
+
647
+ A(2a)(p2, m0, m∗
648
+ +, g/fπ)
649
+ ×
650
+
651
+ A(2b)(p1, m0, m0, mπ+, m∗
652
+ +, m∗
653
+ +, g/fπ, g/fπ, g/fπ)
654
+ +A(2b)(p2, m0, m0, mπ+, m∗
655
+ +, m∗
656
+ +, g/fπ, g/fπ, g/fπ)
657
+ −A(2b)(p1, m+, m0, mπ0, m∗
658
+ 0, m∗
659
+ +, −g/
660
+
661
+ 2fπ, g/
662
+
663
+ 2fπ, g/fπ)
664
+ −A(2b)(p2, m+, m0, mπ0, m∗
665
+ 0, m∗
666
+ +, −g/
667
+
668
+ 2fπ, g/
669
+
670
+ 2fπ, g/fπ)
671
+ +A(2c)(p1, m0, m0, mπ+, m∗
672
+ +, g/fπ, C(3)
673
+ π )
674
+ −A(2c)(p1, m+, m0, mπ0, m∗
675
+ 0, −g/
676
+
677
+ 2fπ, C(1)
678
+ π )
679
+ +A(2f)(m0, m0, m∗
680
+ +, g/fπ, C(1)
681
+ 0D/2)
682
+ �∗
683
+ + (p1 ↔ p2)
684
+
685
+ �2gµ0
686
+
687
+ �2p2
688
+ π
689
+ 3 β5
690
+
691
+ 1
692
+ p2
693
+ 1 + γ2
694
+ 0
695
+ +
696
+ 1
697
+ p2
698
+ 2 + γ2
699
+ 0
700
+ ��
701
+ −dΓLO
702
+ 0 (T +
703
+ cc → D0D0π+)
704
+ dp2
705
+ 1dp2
706
+ 2
707
+
708
+ β4 + Re Σ′NLO
709
+ 0
710
+ Re tr Σ′LO
711
+ ����
712
+ C2→0,E=−ET
713
+
714
+ (24)
715
+ In the previous formulae we have used subscripts on µ and γ to indicate which charm
716
+ meson is a pseudoscalar in that particular channel, e.g., µ0 = µ(m0, m∗
717
+ +). The combinations
718
+ of self-energy diagrams that we need are Re tr Σ′LO(−ET) and Re Σ′NLO
719
+ 0
720
+ (−ET, C2 → 0). In
721
+ terms of the functions defined above, these are given by:
722
+ Re tr Σ′LO = Re Σ′
723
+ 1(m0, m∗
724
+ +) + Re Σ′
725
+ 1(m+, m∗
726
+ 0) ,
727
+ Re Σ′NLO
728
+ 0
729
+ |C2→0 = Re
730
+
731
+ Σ′
732
+ 2(m+, m∗
733
+ 0, m+, m∗
734
+ 0, mπ+, g/fπ, g/fπ)
735
+ +Σ′
736
+ 2(m0, m∗
737
+ +, m0, m∗
738
+ +, mπ+, g/fπ, g/fπ)
739
+ +Σ′
740
+ 2(m+, m∗
741
+ 0, m0, m∗
742
+ +, mπ0, −g/
743
+
744
+ 2fπ, g/
745
+
746
+ 2fπ)
747
+ +Σ′
748
+ 2(m0, m∗
749
+ +, m+, m∗
750
+ 0, mπ0, g/
751
+
752
+ 2fπ, −g/
753
+
754
+ 2fπ)
755
+
756
+ (25)
757
+ The expressions for βi are given in Appendix C. The terms dependent on A(2b) and Re Σ′
758
+ 2
759
+ have linear divergences that must cancel against each other. They cancel exactly in the limit
760
+ µ0 = µ+. We make that approximation in those terms only to ensure the cancellation; it
761
+ is a reasonable approximation as µ0/µ+ ≈ 0.99948. See Appendix B for more discussion of
762
+ these linear divergences.
763
+ 11
764
+
765
+ 3730
766
+ 3732
767
+ 3734
768
+ 3736
769
+ 3738
770
+ 0
771
+ 20
772
+ 40
773
+ 60
774
+ 80
775
+ 100
776
+ FIG. 3: A plot of the differential decay width as a function of the invariant mass of the final state
777
+ D meson pair. Solid lines represent the LO calculation; the dashed lines represent the addition
778
+ of non-analytic and NLO self-energy corrections. Overlaid is the binned experimental data from
779
+ LHCb, with the background subtracted.
780
+ IV.
781
+ DIFFERENTIAL DECAY DISTRIBUTIONS AND PARTIAL WIDTHS
782
+ Once we have formulae for the T +
783
+ cc → DDπ partial widths, we can numerically integrate
784
+ over part of three-body phase space in Mathematica and plot the differential distribution
785
+ dΓ/dmDD. It is insightful to compare our predicted curves to the LHCb experimental data
786
+ for the total yield. This will inform us about the effect and importance of the different
787
+ interactions in the effective theory. We normalize our distributions by performing a least-
788
+ squares fit of the LO distribution to the data, and using the same normalization factor for
789
+ the NLO distributions. The Cπ decay diagrams, individually and as a whole, contribute
790
+ negligibly to the distributions. The parameters β1, β3, and β5 also have a small impact on
791
+ the distributions over the range in which we vary them. We therefore do not show plots
792
+ varying these parameters individually.
793
+ The contributions from the non-C2-dependent NLO self-energy corrections (i.e. the first
794
+ 12
795
+
796
+ 3730
797
+ 3732
798
+ 3734
799
+ 3736
800
+ 3738
801
+ 0
802
+ 20
803
+ 40
804
+ 60
805
+ 80
806
+ 100
807
+ FIG. 4: A plot of the differential decay width as a function of the invariant mass of the final state
808
+ D meson pair. Solid lines represent the LO calculation; The dashed and dotted lines represent
809
+ two different ranges for C0D.
810
+ Overlaid is the binned experimental data from LHCb, with the
811
+ background subtracted.
812
+ diagram on the second line of Fig. 1), as well as the contributions from Fig. 2b, serve to
813
+ increase the partial widths by a small but noticeable amount (Fig. 3). The effect of the C0D,
814
+ β2, and β4 terms on the distributions can be significant. In the following we will investigate
815
+ their impact by setting all other contributions to dΓNLO/dmDD to zero and varying them
816
+ individually.
817
+ The C0D interaction has a sizeable contribution to the partial widths, as evidenced in
818
+ Fig. 4, where we plot the differential distributions and vary this coupling in two possible
819
+ ranges: C0D ∈ [−1, 1] fm2 and ∈ [−0.25, 0.25] fm2. Its effect on the neutral pion decay is
820
+ twice as large as on the charged pion decay, because the coupling of charged pions to D
821
+ mesons is bigger by a factor of
822
+
823
+ 2. Clearly the differential distributions are sensitive to the
824
+ coupling’s magnitude. If C0D is +1 fm2 the peak of theD+D0 mass distribution is too high,
825
+ and if it is −1 fm2 three higher data points are underpredicted. It would be interesting to
826
+ 13
827
+
828
+ 3730
829
+ 3732
830
+ 3734
831
+ 3736
832
+ 3738
833
+ 0
834
+ 50
835
+ 100
836
+ 150
837
+ FIG. 5: A plot of the differential decay width as a function of the invariant mass of the final state
838
+ D meson pair. Solid lines represent the LO calculation. The dashed and dotted lines represent
839
+ two different values of β2 and β4. Overlaid is the binned experimental data from LHCb, with the
840
+ background subtracted.
841
+ do a more careful analysis of the constraints this data puts on C0D but that is beyond the
842
+ scope of this paper. C0D is directly proportional to the I = 1 D meson scattering length,
843
+ so more precise knowledge of C0D from lattice simulations or experiments would allow us to
844
+ sharpen our predictions for T +
845
+ cc.
846
+ We can glean the significance of β2 and β4 by taking the isospin limit m0 = m+. In
847
+ Appendix C we see that in this limit:
848
+ β2 = β4 = −γr0 ,
849
+ (26)
850
+ where γ is the binding momentum and r0 is the effective range in the I = 0 channel. The
851
+ effective range is positive and we expect γr0 < 1. In Fig. 5, we plot the distribution with all
852
+ other NLO interactions turned off, and for two values of β2 = β4 ≡ β: −0.1 and −0.59, along
853
+ with the LO curve (β = 0). We get γr0 = 0.59 if we use the largest binding momentum
854
+ (γ+) and r0 = 1/(100 MeV).
855
+ For nucleons, r0 ≈ 1/(100 MeV); since charm mesons are
856
+ 14
857
+
858
+ LO result NLO lower bound NLO upper bound
859
+ Γ[T +
860
+ cc → D0D0π+]
861
+ 28
862
+ 21
863
+ 44
864
+ Γ[T +
865
+ cc → D+D0π0]
866
+ 13
867
+ 7.8
868
+ 21
869
+ Γstrong[T +
870
+ cc]
871
+ 41
872
+ 29
873
+ 66
874
+ Γstrong[T +
875
+ cc] + ΓLO
876
+ EM[T +
877
+ cc]
878
+ 47
879
+ 35
880
+ 72
881
+ TABLE I: Partial and total widths in units of keV at LO and NLO.
882
+ considerably more compact objects one might expect the effective range for charm mesons
883
+ to be smaller. We can see that the distribution is highly sensitive to the choice of β. A
884
+ β of −0.59 greatly increases the differential distribution, and is in much poorer agreement
885
+ with the experimental data. This suggests that the effective range for T +
886
+ cc is smaller than
887
+ for nucleons.
888
+ Clearly the partial widths and their differential distributions can vary substantially de-
889
+ pending on the choice of parameters in the effective field theory. However, the availability
890
+ of experimental data for the decays presents the possibility of performing fits of the dis-
891
+ tributions to the data to obtain estimates for these parameters. This could improve the
892
+ predictive power of the effective theory. We save such a careful statistical analysis for a
893
+ future publication.
894
+ We can use these plots that show the effect of a subset of the NLO contributions to inform
895
+ which ranges for the parameters to use when estimating the total NLO contribution to the
896
+ differential distribution (Fig. 6). The upper and lower bounds in the figure reflect varying
897
+ C0D from −1 fm2 to 0.25 fm2. The parameters β1, β3, and β5 are varied from −1/(100 MeV)2
898
+ to +1/(100 MeV)2. The parameters β2 and β4, which reduce to −γr0 in the isospin limit,
899
+ are varied between 0 and −0.26. The latter value corresponds to a binding momentum for
900
+ the D∗+D0 channel, γ0, and r0 = 1/(100 MeV). While the uncertainty in the total width
901
+ of the T +
902
+ cc can be significant depending on the values of the NLO couplings, the qualitative
903
+ aspects of the plots of the differential decay widths in Fig. 6 are consistent between LO and
904
+ NLO. The overall shape and location of the peaks are unchanged by pion exchange and final
905
+ state rescattering.
906
+ When integrating over the full phase space to get the partial widths, we use the same
907
+ 15
908
+
909
+ 3730
910
+ 3732
911
+ 3734
912
+ 3736
913
+ 3738
914
+ 0
915
+ 20
916
+ 40
917
+ 60
918
+ 80
919
+ 100
920
+ 120
921
+ 140
922
+ FIG. 6: A plot of the differential decay width as a function of the invariant mass of the final state
923
+ D meson pair. Solid lines represent LO calculation; the dashed lines represent the lower and upper
924
+ bounds of the NLO corrections. Here, we vary −1 fm2 ≤ C0D ≤ 0.25 fm2 and −0.26 ≤ β2/4 ≤ 0.
925
+ Overlaid is the binned experimental data from LHCb, with the background subtracted.
926
+ ranges for the parameters as in Fig. 6. The partial widths are given in Table I. Note that
927
+ the LO numbers differ from those in our original paper [6] because here we use the binding
928
+ energy from the unitarized Breit-Wigner fit, whereas in Ref. [6] we used the value from the
929
+ P-wave two-body Breit Wigner fit with a Blatt-Weisskopf form factor. This has the effect
930
+ of slightly increasing the prediction for the width compared to the initial paper, bringing
931
+ it closer to the experimental value. When adding the LO electromagnetic decay width of
932
+ 6.1 keV (which is only slightly affected by the different binding energy) the total LO width
933
+ predicted by our effective theory is 47 keV which is already in excellent agreement with the
934
+ LHCb experimental value of 48 keV. Adding in the NLO contribution to the strong decay
935
+ widths, the total width of the T +
936
+ cc can range from 35 keV to 72 keV. So we can establish
937
+ an uncertainty in the width due to NLO strong decays of Γ[T +
938
+ cc] = 47+53%
939
+ −25% keV. This is
940
+ comparable to the uncertainty from similar operators contributing to the decay of χc1(3872)
941
+ 16
942
+
943
+ 3730
944
+ 3732
945
+ 3734
946
+ 3736
947
+ 3738
948
+ 0
949
+ 2.×10-7
950
+ 4.×10-7
951
+ 6.×10-7
952
+ 8.×10-7
953
+ 1.×10-6
954
+ 1.2×10-6
955
+ 1.4×10-6
956
+ FIG. 7: Comparing our LO differential decay width to one where the D∗ propagators are taken to
957
+ be constant. The curves are fixed to have the same normalization. Note the lack of a sharp peak
958
+ in the constant propagator curves.
959
+ in XEFT [43].
960
+ We did not consider NLO corrections to the electromagnetic decay, because the LO
961
+ electromagnetic decay was already a small contribution to the total width. In particular,
962
+ the differential distribution for the electromagnetic decay was negligible compared to the
963
+ strong decays’ distributions.
964
+ To illustrate why these differential decay width plots are good tests of the molecular
965
+ nature of the T +
966
+ cc, in Fig. 7 we can compare the LO differential curves to those which would
967
+ arise if we replaced the virtual D∗ propagators with a constant. The latter do not have
968
+ sharp peaks and thus would be in poor agreement with the experimental data.
969
+ V.
970
+ CONCLUSIONS
971
+ In this paper we have determined the effects of NLO strong decays on the total width
972
+ and differential decay width of the exotic meson T +
973
+ cc. We considered pion exchange and
974
+ final state rescattering diagrams, from similar operators to those in XEFT for the χc1(3872)
975
+ 17
976
+
977
+ [43]. We arrive at similar conclusions as Ref. [43]. The differential decay width plots have
978
+ shapes and peaks that are relatively unchanged by the NLO effects, but the total width has
979
+ significant uncertainty: Γ[T +
980
+ cc] = 47+53%
981
+ −25% keV. The central value (the LO result) is in good
982
+ agreement with data.
983
+ We varied the parameters in the NLO calculation to get a sense of the uncertainty in
984
+ the predictions and determine which parameters in the NLO calculation give the biggest
985
+ corrections. Nonanalytic corrections for pion loops are not important. The parameter C0D,
986
+ which is proportional to the I = 1 D meson scattering length, and β2 and β4, which in the
987
+ isospin limit are equal and proportional to the I = 0 D meson effective ranges, significantly
988
+ affect the decay width and normalization of the differential distribution. It would be inter-
989
+ esting to fit the NLO differential curves to the experimental data and obtain bounds on the
990
+ undetermined couplings, thereby learning more about these physical quantities. Alterna-
991
+ tively, one might hope to get information about these parameters from lattice simulations or
992
+ other experiments. Any improvement in our understanding of these parameters in D meson
993
+ scattering would increase the predictive power of the effective field theory.
994
+ Acknowledgments - L. D. is supported by the Alexander von Humboldt Foundation.
995
+ S. F. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear
996
+ Physics, under award number DE-FG02-04ER41338. T. M. and R. H. are supported by
997
+ the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant
998
+ Contract Numbers DE-FG02-05ER41367.
999
+ Appendix A: Coupled channel decay width
1000
+ The full expression for the isospin-0 two-point correlator is
1001
+ −iG0 = 1
1002
+ 2
1003
+ −Σ0 − 4C(1)
1004
+ 0 det Σ
1005
+ 1 + C(0)
1006
+ 0 Σ0 + C(1)
1007
+ 0 Σ1 + 4C(0)
1008
+ 0 C(1)
1009
+ 0 det Σ
1010
+ ,
1011
+ (A1)
1012
+ where Σ0/1 ≡ Σ11 + Σ22 ∓ Σ12 ∓ Σ21 are the isospin-0 and isopsin-1 combinations of the
1013
+ elements of Σ. Since we expect T +
1014
+ cc to be an isospin-0 state we treat C(1)
1015
+ 0
1016
+ perturbatively and
1017
+ expand to NLO in C(1)
1018
+ 0 .
1019
+ −iG0 ≈ 1
1020
+ 2
1021
+ −Σ0
1022
+ 1 + C(0)
1023
+ 0 Σ0
1024
+ + 1
1025
+ 2
1026
+ C(1)
1027
+ 0 (ΣLO
1028
+ 11 − ΣLO
1029
+ 22 )2
1030
+ (1 + C(0)
1031
+ 0 Σ0)2
1032
+ .
1033
+ (A2)
1034
+ 18
1035
+
1036
+ We see that the real numerator of the C(1)
1037
+ 0
1038
+ term is the residue of a double pole at 1+C(0)
1039
+ 0 Σ0 =
1040
+ 0. That can be interpreted physically as a small shift in the location of the bound state,
1041
+ which can be seen from expanding the right-hand side of Eq. (12) about ENLO
1042
+ T
1043
+ = ET −ELO
1044
+ T .
1045
+ But since we are already tuning ET to be the location of the T +
1046
+ cc bound state, we can set
1047
+ C(1)
1048
+ 0
1049
+ to zero to remove the double pole from the amplitude.
1050
+ −iG0 → 1
1051
+ 2
1052
+ −Σ0
1053
+ 1 + C(0)
1054
+ 0 Σ0
1055
+ .
1056
+ (A3)
1057
+ At this stage the problem is identical to the single-channel problem in XEFT [27], with the
1058
+ single-channel two-point function replaced by our isospin-0 combination of coupled-channel
1059
+ two-point functions. The wave function renormalization and decay width are therefore:
1060
+ Z0 =
1061
+ 1
1062
+
1063
+ C(0)
1064
+ 0
1065
+ �2Re Σ′
1066
+ 0(−ET)
1067
+ ,
1068
+ Γ0 = 2 Im Σ0(−ET)
1069
+ Re Σ′
1070
+ 0(−ET) .
1071
+ (A4)
1072
+ Σ0 has LO contributions from the diagonal elements, and NLO contributions from all ele-
1073
+ ments. After expanding in the NLO terms we find our corrections to the LO decay width.
1074
+ Γ0 ≈ ΓLO
1075
+
1076
+ 1 − Re Σ′NLO
1077
+ 0
1078
+ (−ET)
1079
+ Re tr Σ′LO(−ET)
1080
+
1081
+ + 2 Im ΣNLO
1082
+ 0
1083
+ (−ET)
1084
+ Re tr Σ′LO(−ET) .
1085
+ (A5)
1086
+ Appendix B: Basis integrals and the PDS scheme
1087
+ The most basic integral that arises when evaluating the one-loop diagrams in the PDS
1088
+ scheme is:
1089
+ �ΛPDS
1090
+ 2
1091
+ �4−d �
1092
+ dd−1l
1093
+ (2π)d−1
1094
+ 1
1095
+ l2 + c − iϵ = 1
1096
+ 4π(ΛPDS −
1097
+
1098
+ c − iϵ) .
1099
+ (B1)
1100
+ This result is obtained by subtracting the pole in d = 3 with a counterterm, then evaluating
1101
+ the result in d = 4, yielding a linear divergence in ΛPDS.
1102
+ The scalar integral I(p) is finite in d = 3 and d = 4, so no PDS counterterm is needed.
1103
+ I(p) =
1104
+
1105
+ dd−1l
1106
+ (2π)d−1
1107
+ 1
1108
+ l2 + c1 − iϵ
1109
+ 1
1110
+ l2 − 2bl · p + c2 − iϵ
1111
+ =
1112
+ 1
1113
+
1114
+ 1
1115
+
1116
+ b2p2
1117
+
1118
+ tan−1
1119
+ � c2 − c1
1120
+ 2
1121
+
1122
+ b2p2c1
1123
+
1124
+ + tan−1
1125
+
1126
+ 2b2p2 + c1 − c2
1127
+ 2
1128
+
1129
+ b2p2(c2 − b2p2)
1130
+ ��
1131
+ .
1132
+ (B2)
1133
+ 19
1134
+
1135
+ The linear tensor integral I(1)(p) can be solved using algebraic manipulation of the nu-
1136
+ merator, which yields two integrals of the form of Eq. (B1) that have opposite sign for the
1137
+ divergence, and so I(1)(p) is UV finite.
1138
+ piI(1)(p) =
1139
+
1140
+ dd−1l
1141
+ (2π)d−1li
1142
+ 1
1143
+ l2 + c1 − iϵ
1144
+ 1
1145
+ l2 − 2bl · p + c2 − iϵ ,
1146
+ → p2I(1)(p) =
1147
+ 1
1148
+ 2b
1149
+ � 1
1150
+
1151
+
1152
+ c1 − iϵ − 1
1153
+
1154
+
1155
+ c2 − b2p2 − iϵ + (c2 − c1)I(p)
1156
+
1157
+ .
1158
+ (B3)
1159
+ The quadratic tensor integrals I(2) require care when implementing the PDS scheme. The
1160
+ linear divergences which arise in the decay width can only cancel if the subtraction scheme
1161
+ is implemented correctly. After using Feynman parameters to combine the propagators and
1162
+ obtain an integrand like liljf(l2), the correct procedure is to replace lilj → δij/3 immediately,
1163
+ and not with δij/(d − 1). The latter would cancel the factor of d − 1 that arises when
1164
+ evaluating the loop momentum integral, and this results in the incorrect coefficient for the
1165
+ PDS subtraction scale ΛPDS. Additionally, algebraic manipulation of the numerator of I(2)
1166
+ to reduce it to integrals of the form of I(1) and I leads to yet another incorrect coefficient.
1167
+ This is the method used to obtain the expressions in the appendix of Ref. [43]; as such, the
1168
+ formulae for the decay width in that paper are only correct if ΛPDS = 0 and d = 4.
1169
+ Using the correct procedure for the basis integrals gives the following results:
1170
+ pipjI(2)
1171
+ 0 (p) + δijp2I(2)
1172
+ 1 (p) =
1173
+
1174
+ dd−1l
1175
+ (2π)d−1lilj
1176
+ 1
1177
+ l2 + c1 − iϵ
1178
+ 1
1179
+ l2 − 2bl · p + c2 − iϵ ,
1180
+ I(2)
1181
+ 0 (p) = b2
1182
+
1183
+ � 1
1184
+ 0
1185
+ dx
1186
+ x2
1187
+
1188
+ ∆(x)
1189
+ ,
1190
+ (B4)
1191
+ → p2I(2)
1192
+ 1 (p) =
1193
+ 1
1194
+
1195
+ �2
1196
+ 3ΛPDS −
1197
+ � 1
1198
+ 0
1199
+ dx
1200
+
1201
+ ∆(x)
1202
+
1203
+ ,
1204
+ (B5)
1205
+ for ∆(x) = −b2p2x2 + (c2 −c1)x+c1 −iϵ. One can be reassured that this implementation of
1206
+ the PDS scheme is correct because the same relative weight of the ΛPDS and
1207
+ � 1
1208
+ 0 dx
1209
+
1210
+ ∆(x)
1211
+ terms is obtained when using a hard cutoff. That does not occur when using lilj → δij/(d−1)
1212
+ or algebraic manipulation of the numerator. Furthermore, unless the relative weight of the
1213
+ two terms in I(2)
1214
+ 1
1215
+ is 2/3, the linear divergences that appear in ΓNLO
1216
+ 0
1217
+ as A(2b) and Re Σ′
1218
+ 2 do
1219
+ not cancel in the isospin limit, as they do in XEFT. For the T +
1220
+ cc, they cancel when µ0 = µ+,
1221
+ an approximation we make in the cutoff-dependent terms to ensure cancellation.
1222
+ With algebraic manipulation of the integrand in Eq. (B4) and integration by parts in
1223
+ 20
1224
+
1225
+ Eq. (B5), we can rewrite these expressions in terms of I and I(1).
1226
+ p2I(2)
1227
+ 0
1228
+ = − 1
1229
+ 16π
1230
+
1231
+ c2 − b2p2 − iϵ + c1
1232
+ 2 I(p) + 3
1233
+ 4
1234
+ c2 − c1
1235
+ b
1236
+ I(1)(p) ,
1237
+ (B6)
1238
+ p2I(2)
1239
+ 1
1240
+ = ΛPDS
1241
+ 12π −
1242
+ 1
1243
+ 16π
1244
+
1245
+ c2 − b2p2 − iϵ − c1
1246
+ 2 I(p) − 1
1247
+ 4
1248
+ c2 − c1
1249
+ b
1250
+ I(1)(p) .
1251
+ (B7)
1252
+ Appendix C: Cπ couplings and βi expressions
1253
+ In the isospin |I, mI⟩ basis, we use the phase convention
1254
+ |π+⟩ = − |1, 1⟩ ,
1255
+ |π0⟩ = |1, 0⟩ ,
1256
+ |D+⟩ =
1257
+ ����
1258
+ 1
1259
+ 2, 1
1260
+ 2
1261
+
1262
+ ,
1263
+ |D0⟩ =
1264
+ ����
1265
+ 1
1266
+ 2, −1
1267
+ 2
1268
+
1269
+ .
1270
+ (C1)
1271
+ Then the Clebsch-Gordan decomposition of the Dπ pairs is
1272
+ |D0π0⟩ =
1273
+
1274
+ 2
1275
+ 3
1276
+ ����
1277
+ 3
1278
+ 2, −1
1279
+ 2
1280
+
1281
+ + 1
1282
+
1283
+ 3
1284
+ ����
1285
+ 1
1286
+ 2, −1
1287
+ 2
1288
+
1289
+ ,
1290
+ |D+π0⟩ =
1291
+
1292
+ 2
1293
+ 3
1294
+ ����
1295
+ 3
1296
+ 2, 1
1297
+ 2
1298
+
1299
+ + 1
1300
+
1301
+ 3
1302
+ ����
1303
+ 1
1304
+ 2, 1
1305
+ 2
1306
+
1307
+ ,
1308
+ |D0π+⟩ = −
1309
+
1310
+ 2
1311
+ 3
1312
+ ����
1313
+ 1
1314
+ 2, 1
1315
+ 2
1316
+
1317
+ − 1
1318
+
1319
+ 3
1320
+ ����
1321
+ 3
1322
+ 2, 1
1323
+ 2
1324
+
1325
+ .
1326
+ (C2)
1327
+ From this we can deduce
1328
+ aD0π0 = aD+π0 = 2
1329
+ 3a3/2
1330
+ Dπ + 1
1331
+ 3a1/2
1332
+ Dπ ,
1333
+ aD0π+ = 1
1334
+ 3a3/2
1335
+ Dπ + 2
1336
+ 3a1/2
1337
+ Dπ .
1338
+ (C3)
1339
+ These scattering lengths are calculated on the lattice in Ref. [51] to be a1/2
1340
+ Dπ = 0.37+0.03
1341
+ −0.02 fm
1342
+ and a3/2
1343
+ Dπ = −(0.100±0.002) fm. The matching from tree level scattering tells us that, for the
1344
+ diagonal couplings C(2)
1345
+ π
1346
+ and C(3)
1347
+ π , we can use Cπ = 4π(1+mπ/mD)aDπ, with the appropriate
1348
+ masses and scattering lengths for each process. We can then use those two values to solve
1349
+ for C(1/2)
1350
+ π
1351
+ and C(3/2)
1352
+ π
1353
+ and obtain C(1)
1354
+ π . We get
1355
+ C(1)
1356
+ π
1357
+ = −3.0+0.32
1358
+ −0.40 fm ,
1359
+ C(2)
1360
+ π
1361
+ = −0.76+0.14
1362
+ −0.09 fm ,
1363
+ C(3)
1364
+ π
1365
+ = 2.9+0.3
1366
+ −0.2 fm .
1367
+ (C4)
1368
+ The expressions for the βi are given below. The subscripts on the γ and µ variables indicate
1369
+ the pseudoscalar charm meson is in that channel, e.g.
1370
+ γ+ = γ(m+, m∗
1371
+ 0) is the binding
1372
+ momentum in the channel with the D+ meson.
1373
+ 21
1374
+
1375
+ β1 = (ΛPDS − γ+)
1376
+
1377
+
1378
+
1379
+ 2πgB(1)
1380
+ 1
1381
+ + 1
1382
+ πC(+)
1383
+ 2
1384
+ µ+ − 1
1385
+ πC(−)
1386
+ 2
1387
+ µ0
1388
+ ΛPDS − γ0
1389
+ ΛPDS − γ+
1390
+
1391
+ ,
1392
+ (C5)
1393
+ β2 =
1394
+ � 1
1395
+ πC(+)
1396
+ 2
1397
+ µ+(−2γ2
1398
+ +)(ΛPDS − γ+) − 1
1399
+ πC(−)
1400
+ 2
1401
+ µ0(−γ2
1402
+ 0 − γ2
1403
+ +)(ΛPDS − γ0)
1404
+ +2π
1405
+ �µ2
1406
+ 0
1407
+ γ0
1408
+ + µ2
1409
+ +
1410
+ γ+
1411
+ �−1�
1412
+ − 1
1413
+ π2C(+)
1414
+ 2
1415
+ µ3
1416
+ +(γ+ − ΛPDS)(2γ+ − ΛPDS)
1417
+ − 1
1418
+ π2C(+)
1419
+ 2
1420
+ µ3
1421
+ 0(γ0 − ΛPDS)(2γ0 − ΛPDS)
1422
+ −C(−)
1423
+ 2
1424
+ (γ2
1425
+ + + γ2
1426
+ 0)µ+µ0
1427
+
1428
+ �µ+
1429
+ γ0
1430
+ (ΛPDS − γ0) + µ0
1431
+ γ+
1432
+ (ΛPDS − γ+)
1433
+
1434
+ +C(−)
1435
+ 2
1436
+ µ+µ0(µ+ + µ0)
1437
+ π2
1438
+ (ΛPDS − γ+)(ΛPDS − γ0)
1439
+ ��
1440
+ ,
1441
+ (C6)
1442
+ β3 = (ΛPDS − γ0)
1443
+
1444
+
1445
+
1446
+
1447
+ 2πgB(2)
1448
+ 1
1449
+ + 1
1450
+ πC(+)
1451
+ 2
1452
+ µ0 − 1
1453
+ πC(−)
1454
+ 2
1455
+ µ+
1456
+ ΛPDS − γ+
1457
+ ΛPDS − γ0
1458
+
1459
+ ,
1460
+ (C7)
1461
+ β4 =
1462
+ � 1
1463
+ πC(+)
1464
+ 2
1465
+ µ0(−2γ2
1466
+ 0)(ΛPDS − γ0) − 1
1467
+ πC(−)
1468
+ 2
1469
+ µ+(−γ2
1470
+ 0 − γ2
1471
+ +)(ΛPDS − γ+)
1472
+ +2π
1473
+ �µ2
1474
+ 0
1475
+ γ0
1476
+ + µ2
1477
+ +
1478
+ γ+
1479
+ �−1�
1480
+ − 1
1481
+ π2C(+)
1482
+ 2
1483
+ µ3
1484
+ +(γ+ − ΛPDS)(2γ+ − ΛPDS)
1485
+ − 1
1486
+ π2C(+)
1487
+ 2
1488
+ µ3
1489
+ 0(γ0 − ΛPDS)(2γ0 − ΛPDS)
1490
+ −C(−)
1491
+ 2
1492
+ (γ2
1493
+ + + γ2
1494
+ 0)µ+µ0
1495
+
1496
+ �µ+
1497
+ γ0
1498
+ (ΛPDS − γ0) + µ0
1499
+ γ+
1500
+ (ΛPDS − γ+)
1501
+
1502
+ +C(−)
1503
+ 2
1504
+ µ+µ0(µ+ + µ0)
1505
+ π2
1506
+ (ΛPDS − γ+)(ΛPDS − γ0)
1507
+ ��
1508
+ ,
1509
+ (C8)
1510
+ β5 = 1
1511
+ πC(+)
1512
+ 2
1513
+ µ0(ΛPDS − γ0) − 1
1514
+ πC(−)
1515
+ 2
1516
+ µ+(ΛPDS − γ+)
1517
+ +B(3)
1518
+ 1 fπ
1519
+ 4πg (γ0 − ΛPDS) − B(4)
1520
+ 1 fπ
1521
+ 4πg (γ+ − ΛPDS)µ+
1522
+ µ0
1523
+ .
1524
+ (C9)
1525
+ It is instructive to take the isospin limit of these β expressions and compare to XEFT.
1526
+ Referring to Eq. (6), we can write down the B1 couplings in this limit.
1527
+ B(1)
1528
+ 1
1529
+ = −B(2)
1530
+ 1
1531
+ = −
1532
+
1533
+ 2B(I=0)
1534
+ 1
1535
+ ,
1536
+ B(3)
1537
+ 1
1538
+ = 2(B(I=1)
1539
+ 1
1540
+ + B(I=0)
1541
+ 1
1542
+ ) ,
1543
+ B(4)
1544
+ 1
1545
+ = 2(B(I=1)
1546
+ 1
1547
+ − B(I=0)
1548
+ 1
1549
+ ) .
1550
+ (C10)
1551
+ 22
1552
+
1553
+ Then taking µ+ = µ0 = µ, γ+ = γ0 = γ we find:
1554
+ β1 = β3 = β5 = 1
1555
+ π(γ − ΛPDS)
1556
+ �B(I=0)
1557
+ 1
1558
+
1559
+ g
1560
+ − 2C(0)
1561
+ 2 µ
1562
+
1563
+ ,
1564
+ β2 = β4 = −4C(0)
1565
+ 2 µγ
1566
+ π
1567
+ (γ − ΛPDS)2 .
1568
+ (C11)
1569
+ The isospin-1 couplings drop out, which is to be expected given that we have projected out
1570
+ the isospin-0 state and are here dropping isospin-breaking interactions. These expressions
1571
+ also match the dependence of the decay rate on C2 and B1 in XEFT [27]. Using Eq. (24)
1572
+ of [27] (and adjusting for a factor of 4 in the definition of C2 in that paper) we see that
1573
+ β2 = β4 = −γr0 in the isospin limit. It is an important check on our calculation that in the
1574
+ isospin limit the theory can be properly renormalized with isospin respecting counterterms.
1575
+ When isospin breaking in the masses and binding momentum is included, isospin breaking
1576
+ in the B1 operators needs to be included as we have done in this paper.
1577
+ [1] F. Muheim (2021), the European Physical Society Conference on High Energy Physics, URL
1578
+ https://indico.desy.de/event/28202/contributions/102717/.
1579
+ [2] I. Polyakov (2021), the European Physical Society Conference on High Energy Physics, URL
1580
+ https://indico.desy.de/event/28202/contributions/105627/.
1581
+ [3] L.
1582
+ An
1583
+ (2021),
1584
+ 19th
1585
+ International
1586
+ Conference
1587
+ on
1588
+ Hadron
1589
+ Spectroscopy
1590
+ and
1591
+ Struc-
1592
+ ture, URL https://indico.nucleares.unam.mx/event/1541/session/4/contribution/
1593
+ 35/material/slides/0.pdf.
1594
+ [4] R. Aaij et al. (LHCb) (2021), 2109.01038.
1595
+ [5] R. Aaij et al. (LHCb) (2021), 2109.01056.
1596
+ [6] S. Fleming, R. Hodges, and T. Mehen, Phys. Rev. D 104, 116010 (2021), 2109.02188.
1597
+ [7] L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu (2021), 2107.14784.
1598
+ [8] S. S. Agaev, K. Azizi, and H. Sundu (2021), 2108.00188.
1599
+ [9] T.-W. Wu, Y.-W. Pan, M.-Z. Liu, S.-Q. Luo, X. Liu, and L.-S. Geng (2021), 2108.00923.
1600
+ [10] X.-Z. Ling, M.-Z. Liu, L.-S. Geng, E. Wang, and J.-J. Xie (2021), 2108.00947.
1601
+ [11] R. Chen, Q. Huang, X. Liu, and S.-L. Zhu (2021), 2108.01911.
1602
+ [12] X.-K. Dong, F.-K. Guo, and B.-S. Zou (2021), 2108.02673.
1603
+ [13] A. Feijoo, W. H. Liang, and E. Oset (2021), 2108.02730.
1604
+ 23
1605
+
1606
+ [14] M.-J. Yan and M. P. Valderrama (2021), 2108.04785.
1607
+ [15] L.-Y. Dai, X. Sun, X.-W. Kang, A. P. Szczepaniak, and J.-S. Yu (2021), 2108.06002.
1608
+ [16] X.-Z. Weng, W.-Z. Deng, and S.-L. Zhu (2021), 2108.07242.
1609
+ [17] Y. Huang, H. Q. Zhu, L.-S. Geng, and R. Wang (2021), 2108.13028.
1610
+ [18] R. Chen, N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu (2021), 2108.12730.
1611
+ [19] Q. Xin and Z.-G. Wang (2021), 2108.12597.
1612
+ [20] M. Albaladejo (2021), 2110.02944.
1613
+ [21] M.-L. Du, V. Baru, X.-K. Dong, A. Filin, F.-K. Guo, C. Hanhart, A. Nefediev, J. Nieves, and
1614
+ Q. Wang (2021), 2110.13765.
1615
+ [22] Y. Jin, S.-Y. Li, Y.-R. Liu, Q. Qin, Z.-G. Si, and F.-S. Yu, Phys. Rev. D 104, 114009 (2021),
1616
+ 2109.05678.
1617
+ [23] L. M. Abreu, F. S. Navarra, M. Nielsen, and H. P. L. Vieira (2021), 2110.11145.
1618
+ [24] L. R. Dai, R. Molina, and E. Oset (2021), 2110.15270.
1619
+ [25] C. Deng and S.-L. Zhu (2021), 2112.12472.
1620
+ [26] K. Azizi and U. ¨Ozdem, Phys. Rev. D 104, 114002 (2021), 2109.02390.
1621
+ [27] S. Fleming, M. Kusunoki, T. Mehen, and U. van Kolck, Phys. Rev. D76, 034006 (2007),
1622
+ hep-ph/0703168.
1623
+ [28] S. Fleming and T. Mehen, Phys. Rev. D78, 094019 (2008), 0807.2674.
1624
+ [29] S. Fleming and T. Mehen, Phys. Rev. D85, 014016 (2012), 1110.0265.
1625
+ [30] T. Mehen and R. Springer, Phys. Rev. D83, 094009 (2011), 1101.5175.
1626
+ [31] A. Margaryan and R. P. Springer, Phys. Rev. D88, 014017 (2013), 1304.8101.
1627
+ [32] E. Braaten, H.-W. Hammer, and T. Mehen, Phys. Rev. D82, 034018 (2010), 1005.1688.
1628
+ [33] D. L. Canham, H.-W. Hammer, and R. P. Springer, Phys. Rev. D80, 014009 (2009), 0906.1263.
1629
+ [34] M. Jansen, H.-W. Hammer, and Y. Jia, Phys. Rev. D89, 014033 (2014), 1310.6937.
1630
+ [35] M. Jansen, H.-W. Hammer, and Y. Jia, Phys. Rev. D92, 114031 (2015), 1505.04099.
1631
+ [36] T. Mehen, Phys. Rev. D92, 034019 (2015), 1503.02719.
1632
+ [37] M. H. Alhakami and M. C. Birse, Phys. Rev. D91, 054019 (2015), 1501.06750.
1633
+ [38] E. Braaten, Phys. Rev. D91, 114007 (2015), 1503.04791.
1634
+ [39] E. Braaten, L.-P. He, K. Ingles, and J. Jiang, Phys. Rev. D 101, 096020 (2020), 2004.12841.
1635
+ [40] E. Braaten, L.-P. He, and J. Jiang, Phys. Rev. D 103, 036014 (2021), 2010.05801.
1636
+ [41] E. Braaten, L.-P. He, K. Ingles, and J. Jiang, Phys. Rev. D 103, L071901 (2021), 2012.13499.
1637
+ 24
1638
+
1639
+ [42] F.-K. Guo, C. Hidalgo-Duque, J. Nieves, A. Ozpineci, and M. P. Valderrama, Eur. Phys. J.
1640
+ C74, 2885 (2014), 1404.1776.
1641
+ [43] L. Dai, F.-K. Guo, and T. Mehen, Phys. Rev. D 101, 054024 (2020), 1912.04317.
1642
+ [44] M. B. Wise, Phys. Rev. D45, R2188 (1992).
1643
+ [45] G. Burdman and J. F. Donoghue, Phys. Lett. B280, 287 (1992).
1644
+ [46] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin, and H.-L. Yu, Phys. Rev. D46,
1645
+ 1148 (1992), [Erratum: Phys. Rev.D55,5851(1997)].
1646
+ [47] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Rev. Mod. Phys.
1647
+ 90, 015004 (2018), 1705.00141.
1648
+ [48] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Rev. C 59, 617 (1999), nucl-th/9804032.
1649
+ [49] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424, 390 (1998), nucl-th/9801034.
1650
+ [50] E. Braaten and A. Nieto, Phys. Rev. D 51, 6990 (1995), hep-ph/9501375.
1651
+ [51] L. Liu, K. Orginos, F.-K. Guo, C. Hanhart, and U.-G. Meissner, Phys. Rev. D 87, 014508
1652
+ (2013), 1208.4535.
1653
+ 25
1654
+
3tFKT4oBgHgl3EQf8i6_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NAyT4oBgHgl3EQfo_jf/content/tmp_files/2301.00519v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NAyT4oBgHgl3EQfo_jf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf ADDED
Binary file (87.8 kB). View file
 
5NFAT4oBgHgl3EQfFRzt/content/tmp_files/2301.08427v1.pdf.txt ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08427v1 [cs.CL] 20 Jan 2023
2
+ Arxiv preprint
3
+ WHICH FEATURES ARE LEARNED BY CODEBERT:
4
+ AN EMPIRICAL STUDY OF THE BERT-BASED SOURCE
5
+ CODE REPRESENTATION LEARNING
6
+ Lan Zhang∗, Chen Cao∗, Zhilong Wang∗ and Peng Liu
7
+ The Pennsylvania State University
8
+ State College, PA 16801, USA
9
+ {lfz5092,cuc96,zzw169,pxl20}@psu.edu
10
+ ABSTRACT
11
+ The Bidirectional Encoder Representations from Transformers (BERT) were pro-
12
+ posed in the natural language process (NLP) and shows promising results. Re-
13
+ cently researchers applied the BERT to source-code representation learning and
14
+ reported some good news on several downstream tasks. However, in this pa-
15
+ per, we illustrated that current methods cannot effectively understand the logic of
16
+ source codes. The representation of source code heavily relies on the programmer-
17
+ defined variable and function names. We design and implement a set of experi-
18
+ ments to demonstrate our conjecture and provide some insights for future works.
19
+ 1
20
+ INTRODUCTION
21
+ Deep learning has demonstrated its great learning ability in natural language processing (NLP).
22
+ To deploy a natural language task, e.g. translation and text classification, researchers first pre-
23
+ train a model to embed words into vectors using ELMo
24
+ Sarzynska-Wawer et al. (2021), GPT
25
+ Radford et al. (2018) and BERT Devlin et al. (2018). These pre-trained models are first learned on a
26
+ large unsupervised text corpus and then fine-tuned on different downstream tasks. Those language-
27
+ based techniques have been deployed to the source code to learn a program representation. Simi-
28
+ lar to natural language, the program representation learned from the source code using pre-trained
29
+ models can be applied for several sub-tasks for example program analysis. In 2020, Feng et al.
30
+ proposed a pre-trained model called CodeBERT Feng et al. (2020) based on Bidirectional Encoder
31
+ Representations from Transformers (BERT) that learns general-purpose representations to support
32
+ downstream NL-PL applications such as natural language code search, code documentation genera-
33
+ tion, etc. In 2021, Guo et al. proposed a new pre-trained model called GraphCodeBERT Guo et al.
34
+ (2020), which improves the CodeBERT by enabling the model to capture more program semantic
35
+ information, such as data flow.
36
+ The difference between natural language and program language leads to an unintended consequence
37
+ if these methods are directly employed to program language. In natural language, the meaning of a
38
+ word is deterministic in a specific context, whereas in program language, a programmer can assign
39
+ any string to a variable, method, or function as their name. In such a case, most strings in the code
40
+ could be replaced by other words and may not have meaningful information. In this case, if a BERT
41
+ model still heavily relies on the literal meaning of a variable/methods/function name, it may leave
42
+ a pitfall when the assigned name does not literally contain any useful information or controversial
43
+ meaning.
44
+ Furthermore, limited words are used in natural language, while in the programming language, the
45
+ number of words can be unlimited because a programmer can casually create a string to name
46
+ a variable, no matter whether the created string is interpretable or not. Therefore, it is doubtful
47
+ whether the word embedding adopted in natural language is still efficient in solving the program
48
+ analysis tasks. If a model designer ignores the numerous difference between natural language and
49
+ programing language and naively adopt methods from NLP, the designed model may suffer from the
50
+ above limitations.
51
+ ∗equal contribution
52
+ 1
53
+
54
+ Arxiv preprint
55
+ In this paper, we aim to provide an explanation of these limitations of the BERT-based code rep-
56
+ resentation learning techniques. Specifically, we want to understand what kind of features can be
57
+ learned and cannot be learned by current pre-trained models.
58
+ 1
59
+ template<typename It, typename Pred=std::less<typename std::iterator_traits<It>::
60
+ value_type>>
61
+ 2
62
+ inline void bubble_sort(It begin, It end, Pred pred=Pred()){
63
+ 3
64
+ if ( std::distance( begin, end ) <= 1 ){ return; }
65
+ 4
66
+ auto it_end
67
+ = end;
68
+ 5
69
+ bool finished
70
+ = false;
71
+ 6
72
+ while ( !finished ){
73
+ 7
74
+ finished = true;
75
+ 8
76
+ std::advance( it_end, -1 );
77
+ 9
78
+ for (auto it = begin; it! = it_end; ++ it ){
79
+ 10
80
+ auto next = detail::advance( it, 1 );
81
+ 11
82
+ if (pred( * next, * it)){
83
+ 12
84
+ std::swap( * it, * next);
85
+ 13
86
+ finished = false;
87
+ 14
88
+ }
89
+ 15
90
+ }
91
+ 16
92
+ }
93
+ 17
94
+ }
95
+ Code 1: A piece of code with meaningful variable/function names.
96
+ 1
97
+ template<typename It, typename Fun2=std::less<typename std::iterator_traits<It>::
98
+ value_type>>
99
+ 2
100
+ inline void fun1(It var1, It var2, Pred fun2=Fun2()){
101
+ 3
102
+ if ( std::distance( var1, var2 ) <= 1 ){ return; }
103
+ 4
104
+ auto var3
105
+ = var2;
106
+ 5
107
+ bool var4
108
+ = false;
109
+ 6
110
+ while ( !var4 ){
111
+ 7
112
+ var4 = true;
113
+ 8
114
+ std::advance( var3, -1 );
115
+ 9
116
+ for (auto var5 = var1; var5! = var3; ++ var5 ){
117
+ 10
118
+ auto var6 = detail::advance( var5, 1 );
119
+ 11
120
+ if (fun2( * var6, * var5)){
121
+ 12
122
+ std::swap( * var5, * var6);
123
+ 13
124
+ var4 = false;
125
+ 14
126
+ }
127
+ 15
128
+ }
129
+ 16
130
+ }
131
+ 17
132
+ }
133
+ Code 2: A piece of code without meaningful variable/function names.
134
+ Code 1 and Code 2 are two pieces of code that achieve the same logic – bubble sorting. The Code 1
135
+ has well-named functions and variables whereas the Code 2 does not. If an analyst wants to know
136
+ their purpose, through a quick glance, even a beginner can easily conclude that Code 1 is a bubble-
137
+ sort function based on the literal meaning of the function name. However, it is much more chal-
138
+ lenging for an analyst to understand the purpose of Code 2. Therefore, despite the exactly the same
139
+ program logic that they have, Code 2 is much more difficult to analyze. We can draw the following
140
+ conclusions from the analysis of these two code examples: 1) a source code can be understood in
141
+ two ways: literal analysis, and logic analysis. 2) The literal analysis makes a conclusion based on
142
+ the name of variables and functions, which is easier to analyze but is not always reliable. 3) The
143
+ logic analysis requires a high-level understanding of the code, which is more reliable but hard to
144
+ analyze.
145
+ To understand whether the existing models learn the logic of the code, we identify two features in
146
+ the source code: 1) literal feature. 2) logic feature. For instance, a logical expression is the logic
147
+ feature, whereas the variable names in the expression are literal features. Then, we design a set of
148
+ experiments that mask out different kinds of features in the training set and observe corresponding
149
+ model performance. The result shows that the current models for source code representation learning
150
+ still have limited ability to learn logic features.
151
+ 2
152
+
153
+ Arxiv preprint
154
+ 2
155
+ BACKGROUND
156
+ 2.1
157
+ DEEP LEARNING FOR PROGRAM ANALYSIS
158
+ Compared with traditional deep learning methods, researchers recognized several benefits of deep
159
+ learning for the program analysis: First, deep learning involves less domain knowledge. Second, the
160
+ representations learned by a DL model could be used for various downstream tasks. The applications
161
+ of deep learning in program analysis can be grouped into two categories:
162
+ Source code level deep learning. CodeBert and GraphCodeBERT Feng et al. (2020); Guo et al.
163
+ (2020) are pre-trained models based on Transformer which learns code representations through self-
164
+ supervised training tasks ( masked language modeling and structure-aware tasks) and a large-scale
165
+ unlabeled corpus. Specifically, CodeBERT, which is pre-trained over 6 programming languages,
166
+ is trained based on three tasks: masked language modeling, code structure edge predication, and
167
+ representation alignment.
168
+ Assembly code level deep learning. Previous research use DL to conduct various binary analysis
169
+ tasks Chua et al. (2017); Shin et al. (2015); Li et al. (2021). The main focus of these works is to
170
+ learn a good embedding from binary instructions or raw bytes, and then predict the label for a target
171
+ task through a classification output layer.
172
+ 3
173
+ INSIGHTS AND EXPERIMENTS
174
+ A source code file of a program consists of a sequence of tokens. The tokens can be grouped into
175
+ three categories: keywords, operators, and user-defined names.
176
+ Keywords are reserved words that have special meanings and purposes and can only be used for
177
+ specific purposes. For example, for, if, and break are widely known keywords used in many
178
+ programming languages. A programming language usually only contains a limited number of key-
179
+ words. For example, C programming language contains 32 keywords and Python3.7 contains 35
180
+ keywords.
181
+ Besides the keywords, a programming language needs to define a set of operators. For example,
182
+ arithmetic operators (e.g., +, -, and *) and logical operators (e.g., and, or, and not) are two of
183
+ most important categories. The keywords and operators are defined by a programming language. A
184
+ programmer needs to define some tokens (i.e., names) to represent a variable, structure, function,
185
+ method, class, and package. When programmers write a code snippet, they can randomly choose
186
+ any string to name these elements. However, he/she has limited flexibility to choose the keywords
187
+ and operators. Only some keywords (such as for and while), operators (such as ++, +1) are
188
+ exchangeable.
189
+ Currently, GraphCodeBert takes code pieces of functions or class methods as data samples. It to-
190
+ kenizes keywords, operators, and user-defined names from the code pieces. Inside a function or a
191
+ method, we can group the user-defined names into three categories: 1) variable name. 2) method
192
+ name. 3) method invocation name. Program logic is not affected if we map these user-defined names
193
+ with other strings in the same namespace. To evaluate whether the model learns the code semantics,
194
+ we design 4 groups of experiments. For each group of experiments, we anonymize certain categories
195
+ of user-defined names.
196
+ 1. In the first group of experiments, we anonymize the variable names. An example is the
197
+ change from it end to var3 and finished to var4 between Code 1 and Code 2.
198
+ 2. In the second group of experiments, we anonymize the method names. An example is the
199
+ change from bubble sort to fun1 between Code 1 and Code 2.
200
+ 3. In the third group of experiments, we anonymize the method/function invocation names.
201
+ An example is the change from swap to fun2 between Code 1 and Code 2.
202
+ 4. The last group of experiments are a combination of the first three experiments, which
203
+ anonymize all three kinds of user-defined names.
204
+ Besides, we adopt two strategies to anonymize the name: The first strategy called “randomly-
205
+ generated” randomly generates strings (e.g., “oe4yqk4cit2maq7t”) with any literal meaning. The
206
+ 3
207
+
208
+ Arxiv preprint
209
+ Table 1: Results on Code Search.
210
+ Language
211
+ Original
212
+ Anonymizing
213
+ w/o Variable
214
+ w/o Method Def.
215
+ w/o Method Inv.
216
+ All
217
+ Java
218
+ 70.36%
219
+ Random
220
+ 67.73%
221
+ 60.89%
222
+ 69.84%
223
+ 17.42%
224
+ Meaningful
225
+ 67.14%
226
+ 58.36%
227
+ 69.84%
228
+ 17.03%
229
+ Python
230
+ 68.17%
231
+ Random
232
+ 59.8%
233
+ 55.43%
234
+ 65.61%
235
+ 24.09%
236
+ Meaningful
237
+ 59.78%
238
+ 55.65%
239
+ 65.61%
240
+ 23.73%
241
+ Table 2: Results on Clone Detection.
242
+ Language
243
+ Original
244
+ Anonymizing
245
+ w/o Variable
246
+ w/o Method Def.
247
+ w/o Method Inv.
248
+ All
249
+ Java
250
+ 94.87%
251
+ Random
252
+ 92.64%
253
+ 93.97%
254
+ 94.72%
255
+ 86.77%
256
+ Meaningful
257
+ 92.52%
258
+ 94.27%
259
+ 93.67%
260
+ 84.76%
261
+ second strategy called “meaningfully-generated” generates strings with a literal meaning. However
262
+ the literal meaning does not reflect the intention of the variable/function/invocation. For example,
263
+ this strategy could replace “bubble sort” with “aes encryption”.
264
+ Based on the four types of name-set to replace and two replacing strategies, we eventually generated
265
+ 8 variants of the original dataset from Guo et al. (2020). Then, we retrain the existing models and
266
+ evaluated their performance on the existing 2 downstream tasks: natural language code search, and
267
+ clone detection.
268
+ 3.1
269
+ EXPERIMENT RESULTS
270
+ Figure 2 and Figure 1 show experiment results (accuracy) on the downstream task of code search
271
+ and code clone detection, respectively. The second column shows the module performance reported
272
+ by the original paper Guo et al. (2020). The fourth, fifth, and sixth columns show the module per-
273
+ formance when we anonymize the variable name, method definition name, and method invocation
274
+ name, respectively. The last column shows the model performance after we remove all three user-
275
+ defined names.
276
+ The results show that the anonymization of the variable names, method definition names, and method
277
+ invocation names will result in a huge downgrade in model performance not matter we replace user-
278
+ defined names with “randomly-generated” strings or a “meaningfully-generated” strings. Also, on
279
+ average the dateset with meaningfully-generated strings shows worse result then the dataset with
280
+ randomly-generatedstrings, which indicates that “meaningfully-generated”strings could misleading
281
+ the models. An adversarial machine learning could be trained to further exploit the weakness of the
282
+ CodeBert.
283
+ Overall, our experiments proves that current source-code level representation learning methods still
284
+ largely rely on the literal feature and ignore the logic feature. However, the literal feature is not
285
+ always reliable as mentioned in section 1. The current mode still cannot effectively learn the hidden
286
+ logic feature in the source code.
287
+ 3.2
288
+ DISCUSSION
289
+ Through a set of experiments and empirical analysis, this paper tries to explain the learning ability of
290
+ current BERT-based source code representation learning schemes. The results show that CodeBERT
291
+ and GraphCodeBERT are efficient to learn literal features but less efficient to learn logic features.
292
+ The insights provided by this paper can help future researchers or users in two aspects: Firstly, Code-
293
+ BERT and GraphCodeBERT, which open a new area for source analysis, are efficient methods for
294
+ “well-named” source code. However, the user and researcher should expect a lower model perfor-
295
+ mance if they want to apply them to analyze source code that does not provide enough information
296
+ in a variable, method, and function names, e.g., the code generated from decompilation Katz et al.
297
+ (2018) and code that does not follow standard code naming convention Butler et al. (2015).
298
+ 4
299
+
300
+ Arxiv preprint
301
+ Secondly, this paper indicates that models borrowed from NLP are not very suitable for code anal-
302
+ ysis. The code analysis has some significant differences compared with NLP. Logical analysis is
303
+ more important in many sophisticated program analysis tasks, such as vulnerability analysis, and
304
+ patching generation. But it cannot be well performed by existing model designs. It is important to
305
+ investigate how to improve the model’s ability for logical analysis in future research.
306
+ REFERENCES
307
+ Simon Butler, Michel Wermelinger, and Yijun Yu. Investigating naming convention adherence in
308
+ java references. In 2015 IEEE International Conference on Software Maintenance and Evolution
309
+ (ICSME), pp. 41–50. IEEE, 2015.
310
+ Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural Nets Can Learn Func-
311
+ tion Type Signatures from Binaries. In 26th USENIX Security Symposium (USENIX Security 17),
312
+ pp. 99–116, 2017.
313
+ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
314
+ bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
315
+ Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
316
+ Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
317
+ languages. arXiv preprint arXiv:2002.08155, 2020.
318
+ Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
319
+ Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
320
+ data flow. arXiv preprint arXiv:2009.08366, 2020.
321
+ Deborah S Katz, Jason Ruchti, and Eric Schulte. Using recurrent neural networks for decompilation.
322
+ In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
323
+ (SANER), pp. 346–356. IEEE, 2018.
324
+ X. Li, Y. Qu, and H. Yin. PalmTree: Learning an Assembly Language Model for Instruction Em-
325
+ bedding. In ACM CCS, 2021.
326
+ Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
327
+ standing by generative pre-training. 2018.
328
+ Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela
329
+ Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek. Detecting formal thought disorder by deep
330
+ contextualized word representations. Psychiatry Research, 304:114135, 2021.
331
+ Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions in binaries with
332
+ neural networks. In 24th {USENIX} Security Symposium ({USENIX} Security 15), pp. 611–626,
333
+ 2015.
334
+ 5
335
+
5NFAT4oBgHgl3EQfFRzt/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf,len=239
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
3
+ page_content='08427v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
4
+ page_content='CL] 20 Jan 2023 Arxiv preprint WHICH FEATURES ARE LEARNED BY CODEBERT: AN EMPIRICAL STUDY OF THE BERT-BASED SOURCE CODE REPRESENTATION LEARNING Lan Zhang∗, Chen Cao∗, Zhilong Wang∗ and Peng Liu The Pennsylvania State University State College, PA 16801, USA {lfz5092,cuc96,zzw169,pxl20}@psu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
5
+ page_content='edu ABSTRACT The Bidirectional Encoder Representations from Transformers (BERT) were pro- posed in the natural language process (NLP) and shows promising results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
6
+ page_content=' Re- cently researchers applied the BERT to source-code representation learning and reported some good news on several downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
7
+ page_content=' However, in this pa- per, we illustrated that current methods cannot effectively understand the logic of source codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
8
+ page_content=' The representation of source code heavily relies on the programmer- defined variable and function names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
9
+ page_content=' We design and implement a set of experi- ments to demonstrate our conjecture and provide some insights for future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
10
+ page_content=' 1 INTRODUCTION Deep learning has demonstrated its great learning ability in natural language processing (NLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
11
+ page_content=' To deploy a natural language task, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
12
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
13
+ page_content=' translation and text classification, researchers first pre- train a model to embed words into vectors using ELMo Sarzynska-Wawer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
14
+ page_content=' (2021), GPT Radford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
15
+ page_content=' (2018) and BERT Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
16
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
17
+ page_content=' These pre-trained models are first learned on a large unsupervised text corpus and then fine-tuned on different downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
18
+ page_content=' Those language- based techniques have been deployed to the source code to learn a program representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
19
+ page_content=' Simi- lar to natural language, the program representation learned from the source code using pre-trained models can be applied for several sub-tasks for example program analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
20
+ page_content=' In 2020, Feng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
21
+ page_content=' proposed a pre-trained model called CodeBERT Feng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
22
+ page_content=' (2020) based on Bidirectional Encoder Representations from Transformers (BERT) that learns general-purpose representations to support downstream NL-PL applications such as natural language code search, code documentation genera- tion, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
23
+ page_content=' In 2021, Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
24
+ page_content=' proposed a new pre-trained model called GraphCodeBERT Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
25
+ page_content=' (2020), which improves the CodeBERT by enabling the model to capture more program semantic information, such as data flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
26
+ page_content=' The difference between natural language and program language leads to an unintended consequence if these methods are directly employed to program language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
27
+ page_content=' In natural language, the meaning of a word is deterministic in a specific context, whereas in program language, a programmer can assign any string to a variable, method, or function as their name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
28
+ page_content=' In such a case, most strings in the code could be replaced by other words and may not have meaningful information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
29
+ page_content=' In this case, if a BERT model still heavily relies on the literal meaning of a variable/methods/function name, it may leave a pitfall when the assigned name does not literally contain any useful information or controversial meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
30
+ page_content=' Furthermore, limited words are used in natural language, while in the programming language, the number of words can be unlimited because a programmer can casually create a string to name a variable, no matter whether the created string is interpretable or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
31
+ page_content=' Therefore, it is doubtful whether the word embedding adopted in natural language is still efficient in solving the program analysis tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
32
+ page_content=' If a model designer ignores the numerous difference between natural language and programing language and naively adopt methods from NLP, the designed model may suffer from the above limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
33
+ page_content=' ∗equal contribution 1 Arxiv preprint In this paper, we aim to provide an explanation of these limitations of the BERT-based code rep- resentation learning techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
34
+ page_content=' Specifically, we want to understand what kind of features can be learned and cannot be learned by current pre-trained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
35
+ page_content=' 1 template<typename It, typename Pred=std::less<typename std::iterator_traits<It>:: value_type>> 2 inline void bubble_sort(It begin, It end, Pred pred=Pred()){ 3 if ( std::distance( begin, end ) <= 1 ){ return;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
36
+ page_content=' } 4 auto it_end = end;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
37
+ page_content=' 5 bool finished = false;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
38
+ page_content=' 6 while ( !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
39
+ page_content='finished ){ 7 finished = true;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
40
+ page_content=' 8 std::advance( it_end, -1 );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
41
+ page_content=' 9 for (auto it = begin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
42
+ page_content=' it!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
43
+ page_content=' = it_end;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
44
+ page_content=' ++ it ){ 10 auto next = detail::advance( it, 1 );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
45
+ page_content=' 11 if (pred( * next, * it)){ 12 std::swap( * it, * next);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
46
+ page_content=' 13 finished = false;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
47
+ page_content=' 14 } 15 } 16 } 17 } Code 1: A piece of code with meaningful variable/function names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
48
+ page_content=' 1 template<typename It, typename Fun2=std::less<typename std::iterator_traits<It>:: value_type>> 2 inline void fun1(It var1, It var2, Pred fun2=Fun2()){ 3 if ( std::distance( var1, var2 ) <= 1 ){ return;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
49
+ page_content=' } 4 auto var3 = var2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
50
+ page_content=' 5 bool var4 = false;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
51
+ page_content=' 6 while ( !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
52
+ page_content='var4 ){ 7 var4 = true;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
53
+ page_content=' 8 std::advance( var3, -1 );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
54
+ page_content=' 9 for (auto var5 = var1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
55
+ page_content=' var5!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
56
+ page_content=' = var3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
57
+ page_content=' ++ var5 ){ 10 auto var6 = detail::advance( var5, 1 );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
58
+ page_content=' 11 if (fun2( * var6, * var5)){ 12 std::swap( * var5, * var6);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
59
+ page_content=' 13 var4 = false;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
60
+ page_content=' 14 } 15 } 16 } 17 } Code 2: A piece of code without meaningful variable/function names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
61
+ page_content=' Code 1 and Code 2 are two pieces of code that achieve the same logic – bubble sorting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
62
+ page_content=' The Code 1 has well-named functions and variables whereas the Code 2 does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
63
+ page_content=' If an analyst wants to know their purpose, through a quick glance, even a beginner can easily conclude that Code 1 is a bubble- sort function based on the literal meaning of the function name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
64
+ page_content=' However, it is much more chal- lenging for an analyst to understand the purpose of Code 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
65
+ page_content=' Therefore, despite the exactly the same program logic that they have, Code 2 is much more difficult to analyze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
66
+ page_content=' We can draw the following conclusions from the analysis of these two code examples: 1) a source code can be understood in two ways: literal analysis, and logic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
67
+ page_content=' 2) The literal analysis makes a conclusion based on the name of variables and functions, which is easier to analyze but is not always reliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
68
+ page_content=' 3) The logic analysis requires a high-level understanding of the code, which is more reliable but hard to analyze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
69
+ page_content=' To understand whether the existing models learn the logic of the code, we identify two features in the source code: 1) literal feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
70
+ page_content=' 2) logic feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
71
+ page_content=' For instance, a logical expression is the logic feature, whereas the variable names in the expression are literal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
72
+ page_content=' Then, we design a set of experiments that mask out different kinds of features in the training set and observe corresponding model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
73
+ page_content=' The result shows that the current models for source code representation learning still have limited ability to learn logic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
74
+ page_content=' 2 Arxiv preprint 2 BACKGROUND 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
75
+ page_content='1 DEEP LEARNING FOR PROGRAM ANALYSIS Compared with traditional deep learning methods, researchers recognized several benefits of deep learning for the program analysis: First, deep learning involves less domain knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
76
+ page_content=' Second, the representations learned by a DL model could be used for various downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
77
+ page_content=' The applications of deep learning in program analysis can be grouped into two categories: Source code level deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
78
+ page_content=' CodeBert and GraphCodeBERT Feng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
79
+ page_content=' (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
80
+ page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
81
+ page_content=' (2020) are pre-trained models based on Transformer which learns code representations through self- supervised training tasks ( masked language modeling and structure-aware tasks) and a large-scale unlabeled corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
82
+ page_content=' Specifically, CodeBERT, which is pre-trained over 6 programming languages, is trained based on three tasks: masked language modeling, code structure edge predication, and representation alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
83
+ page_content=' Assembly code level deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
84
+ page_content=' Previous research use DL to conduct various binary analysis tasks Chua et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
85
+ page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
86
+ page_content=' Shin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
87
+ page_content=' (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
88
+ page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
89
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
90
+ page_content=' The main focus of these works is to learn a good embedding from binary instructions or raw bytes, and then predict the label for a target task through a classification output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
91
+ page_content=' 3 INSIGHTS AND EXPERIMENTS A source code file of a program consists of a sequence of tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
92
+ page_content=' The tokens can be grouped into three categories: keywords, operators, and user-defined names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
93
+ page_content=' Keywords are reserved words that have special meanings and purposes and can only be used for specific purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
94
+ page_content=' For example, for, if, and break are widely known keywords used in many programming languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
95
+ page_content=' A programming language usually only contains a limited number of key- words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
96
+ page_content=' For example, C programming language contains 32 keywords and Python3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
97
+ page_content='7 contains 35 keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
98
+ page_content=' Besides the keywords, a programming language needs to define a set of operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
99
+ page_content=' For example, arithmetic operators (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
100
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
101
+ page_content=', +, -, and *) and logical operators (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
102
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
103
+ page_content=', and, or, and not) are two of most important categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
104
+ page_content=' The keywords and operators are defined by a programming language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
105
+ page_content=' A programmer needs to define some tokens (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
106
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
107
+ page_content=', names) to represent a variable, structure, function, method, class, and package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
108
+ page_content=' When programmers write a code snippet, they can randomly choose any string to name these elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
109
+ page_content=' However, he/she has limited flexibility to choose the keywords and operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
110
+ page_content=' Only some keywords (such as for and while), operators (such as ++, +1) are exchangeable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
111
+ page_content=' Currently, GraphCodeBert takes code pieces of functions or class methods as data samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
112
+ page_content=' It to- kenizes keywords, operators, and user-defined names from the code pieces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
113
+ page_content=' Inside a function or a method, we can group the user-defined names into three categories: 1) variable name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
114
+ page_content=' 2) method name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
115
+ page_content=' 3) method invocation name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
116
+ page_content=' Program logic is not affected if we map these user-defined names with other strings in the same namespace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
117
+ page_content=' To evaluate whether the model learns the code semantics, we design 4 groups of experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
118
+ page_content=' For each group of experiments, we anonymize certain categories of user-defined names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
119
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
120
+ page_content=' In the first group of experiments, we anonymize the variable names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
121
+ page_content=' An example is the change from it end to var3 and finished to var4 between Code 1 and Code 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
122
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
123
+ page_content=' In the second group of experiments, we anonymize the method names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
124
+ page_content=' An example is the change from bubble sort to fun1 between Code 1 and Code 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
125
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
126
+ page_content=' In the third group of experiments, we anonymize the method/function invocation names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
127
+ page_content=' An example is the change from swap to fun2 between Code 1 and Code 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
128
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
129
+ page_content=' The last group of experiments are a combination of the first three experiments, which anonymize all three kinds of user-defined names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
130
+ page_content=' Besides, we adopt two strategies to anonymize the name: The first strategy called “randomly- generated” randomly generates strings (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
131
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
132
+ page_content=', “oe4yqk4cit2maq7t”) with any literal meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
133
+ page_content=' The 3 Arxiv preprint Table 1: Results on Code Search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
134
+ page_content=' Language Original Anonymizing w/o Variable w/o Method Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
135
+ page_content=' w/o Method Inv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
136
+ page_content=' All Java 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
137
+ page_content='36% Random 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
138
+ page_content='73% 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
139
+ page_content='89% 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
140
+ page_content='84% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
141
+ page_content='42% Meaningful 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
142
+ page_content='14% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
143
+ page_content='36% 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
144
+ page_content='84% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
145
+ page_content='03% Python 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
146
+ page_content='17% Random 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
147
+ page_content='8% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
148
+ page_content='43% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
149
+ page_content='61% 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
150
+ page_content='09% Meaningful 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
151
+ page_content='78% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
152
+ page_content='65% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
153
+ page_content='61% 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
154
+ page_content='73% Table 2: Results on Clone Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
155
+ page_content=' Language Original Anonymizing w/o Variable w/o Method Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
156
+ page_content=' w/o Method Inv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
157
+ page_content=' All Java 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
158
+ page_content='87% Random 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
159
+ page_content='64% 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
160
+ page_content='97% 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
161
+ page_content='72% 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
162
+ page_content='77% Meaningful 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
163
+ page_content='52% 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
164
+ page_content='27% 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
165
+ page_content='67% 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
166
+ page_content='76% second strategy called “meaningfully-generated” generates strings with a literal meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
167
+ page_content=' However the literal meaning does not reflect the intention of the variable/function/invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
168
+ page_content=' For example, this strategy could replace “bubble sort” with “aes encryption”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
169
+ page_content=' Based on the four types of name-set to replace and two replacing strategies, we eventually generated 8 variants of the original dataset from Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
170
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
171
+ page_content=' Then, we retrain the existing models and evaluated their performance on the existing 2 downstream tasks: natural language code search, and clone detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
172
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
173
+ page_content='1 EXPERIMENT RESULTS Figure 2 and Figure 1 show experiment results (accuracy) on the downstream task of code search and code clone detection, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
174
+ page_content=' The second column shows the module performance reported by the original paper Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
175
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
176
+ page_content=' The fourth, fifth, and sixth columns show the module per- formance when we anonymize the variable name, method definition name, and method invocation name, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
177
+ page_content=' The last column shows the model performance after we remove all three user- defined names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
178
+ page_content=' The results show that the anonymization of the variable names, method definition names, and method invocation names will result in a huge downgrade in model performance not matter we replace user- defined names with “randomly-generated” strings or a “meaningfully-generated” strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
179
+ page_content=' Also, on average the dateset with meaningfully-generated strings shows worse result then the dataset with randomly-generatedstrings, which indicates that “meaningfully-generated”strings could misleading the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
180
+ page_content=' An adversarial machine learning could be trained to further exploit the weakness of the CodeBert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
181
+ page_content=' Overall, our experiments proves that current source-code level representation learning methods still largely rely on the literal feature and ignore the logic feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
182
+ page_content=' However, the literal feature is not always reliable as mentioned in section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
183
+ page_content=' The current mode still cannot effectively learn the hidden logic feature in the source code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
184
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
185
+ page_content='2 DISCUSSION Through a set of experiments and empirical analysis, this paper tries to explain the learning ability of current BERT-based source code representation learning schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
186
+ page_content=' The results show that CodeBERT and GraphCodeBERT are efficient to learn literal features but less efficient to learn logic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
187
+ page_content=' The insights provided by this paper can help future researchers or users in two aspects: Firstly, Code- BERT and GraphCodeBERT, which open a new area for source analysis, are efficient methods for “well-named” source code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
188
+ page_content=' However, the user and researcher should expect a lower model perfor- mance if they want to apply them to analyze source code that does not provide enough information in a variable, method, and function names, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
189
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
190
+ page_content=', the code generated from decompilation Katz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
191
+ page_content=' (2018) and code that does not follow standard code naming convention Butler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
192
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
193
+ page_content=' 4 Arxiv preprint Secondly, this paper indicates that models borrowed from NLP are not very suitable for code anal- ysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
194
+ page_content=' The code analysis has some significant differences compared with NLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
195
+ page_content=' Logical analysis is more important in many sophisticated program analysis tasks, such as vulnerability analysis, and patching generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
196
+ page_content=' But it cannot be well performed by existing model designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
197
+ page_content=' It is important to investigate how to improve the model’s ability for logical analysis in future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
198
+ page_content=' REFERENCES Simon Butler, Michel Wermelinger, and Yijun Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
199
+ page_content=' Investigating naming convention adherence in java references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
200
+ page_content=' In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
201
+ page_content=' 41–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
202
+ page_content=' IEEE, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
203
+ page_content=' Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
204
+ page_content=' Neural Nets Can Learn Func- tion Type Signatures from Binaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
205
+ page_content=' In 26th USENIX Security Symposium (USENIX Security 17), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
206
+ page_content=' 99–116, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
207
+ page_content=' Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
208
+ page_content=' Bert: Pre-training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
209
+ page_content=' arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
210
+ page_content='04805, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
211
+ page_content=' Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
212
+ page_content=' Codebert: A pre-trained model for programming and natural languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
213
+ page_content=' arXiv preprint arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
214
+ page_content='08155, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
215
+ page_content=' Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
216
+ page_content=' Graphcodebert: Pre-training code representations with data flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
217
+ page_content=' arXiv preprint arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
218
+ page_content='08366, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
219
+ page_content=' Deborah S Katz, Jason Ruchti, and Eric Schulte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
220
+ page_content=' Using recurrent neural networks for decompilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
221
+ page_content=' In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
222
+ page_content=' 346–356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
223
+ page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
224
+ page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
225
+ page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
226
+ page_content=' Qu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
227
+ page_content=' Yin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
228
+ page_content=' PalmTree: Learning an Assembly Language Model for Instruction Em- bedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
229
+ page_content=' In ACM CCS, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
230
+ page_content=' Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
231
+ page_content=' Improving language under- standing by generative pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
232
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
233
+ page_content=' Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
234
+ page_content=' Detecting formal thought disorder by deep contextualized word representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
235
+ page_content=' Psychiatry Research, 304:114135, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
236
+ page_content=' Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
237
+ page_content=' Recognizing functions in binaries with neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
238
+ page_content=' In 24th {USENIX} Security Symposium ({USENIX} Security 15), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
239
+ page_content=' 611–626, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
240
+ page_content=' 5' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFAT4oBgHgl3EQfFRzt/content/2301.08427v1.pdf'}
6tE1T4oBgHgl3EQfTQPr/content/tmp_files/2301.03077v1.pdf.txt ADDED
@@ -0,0 +1,3450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03077v1 [stat.ML] 8 Jan 2023
2
+ Stochastic Langevin Monte Carlo for (weakly) log-concave
3
+ posterior distributions.
4
+ Marelys Crespo Navas1, S´ebastien Gadat2,3, Xavier Gendre1
5
+ 1 ISAE-SUPAERO, Universit´e de Toulouse
6
+ 2Toulouse School of Economics (CNRS UMR 5314), Universit´e Toulouse I Capitole
7
+ 3 Institut Universitaire de France
8
+ January 10, 2023
9
+ Abstract
10
+ In this paper, we investigate a continuous time version of the Stochastic Langevin Monte Carlo
11
+ method, introduced in [39], that incorporates a stochastic sampling step inside the traditional over-
12
+ damped Langevin diffusion. This method is popular in machine learning for sampling posterior
13
+ distribution. We will pay specific attention in our work to the computational cost in terms of
14
+ n (the number of observations that produces the posterior distribution), and d (the dimension
15
+ of the ambient space where the parameter of interest is living). We derive our analysis in the
16
+ weakly convex framework, which is parameterized with the help of the Kurdyka-�Lojasiewicz (KL)
17
+ inequality, that permits to handle a vanishing curvature settings, which is far less restrictive when
18
+ compared to the simple strongly convex case. We establish that the final horizon of simulation
19
+ to obtain an ε approximation (in terms of entropy) is of the order (d log(n)2)(1+r)2[log2(ε−1) +
20
+ n2d2(1+r) log4(1+r)(n)] with a Poissonian subsampling of parameter
21
+
22
+ n(d log2(n))1+r�−1, where the
23
+ parameter r is involved in the KL inequality and varies between 0 (strongly convex case) and 1
24
+ (limiting Laplace situation).
25
+ Keywords: Langevin Monte Carlo sampling; Log concave models; Weak convexity.
26
+ AMS classifications: Primary 6265C05; secondary ; 62C10; 65C30; 60H3520.
27
+ 1
28
+ 1
29
+ Markovian Stochastic Langevin Dynamics and main results
30
+ 1.1
31
+ Introduction
32
+ Motivations
33
+ In the recent past years, a huge amount of methods have been developed in machine
34
+ learning to handle large scale massive datasets with a large number n of observations (X1, . . . , Xn)
35
+ embedded in a high dimensional space Rd. These methods generally involve either optimization of a
36
+ data-dependent function (for frequentist learning) or sampling a data-dependent measure (for Bayesian
37
+ learning with posterior distributions). In both approaches, a bottleneck lies on the size of n and d
38
+ that usually generates numerical difficulties for the use of standard algorithms. We are interested
39
+ in this paper in the simulation of a posterior distribution following a Bayesian point of view with a
40
+ statistical model described by a collection of densities (pθ)θ∈Θ on X, where the parameter of interest
41
+ θ⋆ belongs to Θ = Rd and where the (Xi)1≤i≤n are assumed to be i.i.d. observations in X distributed
42
+ according to pθ⋆. A standard Bayesian approach consists in defining a prior distribution π0 on Θ and
43
+ then sample the posterior distribution denoted by µn (which will be denoted by exp(−Uνn) below)
44
+ using a numerical probabilistic approximation with the help of an over-damped Langevin diffusion:
45
+ dθt = −∇Uνn(t)dt +
46
+
47
+ 2dBt.
48
+ 1We are grateful to Patrick Cattiaux and Arnaud Guillin for helpful discussions and references on functional inequal-
49
+ ities and especially on weak log Sobolev inequalities.
50
+ 1
51
+
52
+ In this work, we manage to deal with an adaptation of the Langevin Monte Carlo (LMC) algorithm
53
+ proposed in [39], that exploits some old ideas of stochastic algorithms introduced in [36]: instead of
54
+ using the previous equation, the authors propose a modification of the diffusion that generates a noisy
55
+ drift in the LMC due to a sampling strategy among the set of observations (Xi)1≤i≤n. Before we
56
+ provide some details on the precise objects and algorithm necessary to properly define this method,
57
+ we first give some literature insights related to it.
58
+ State of the art
59
+ Ergodicity and quantitative mixing properties of over-damped LMC and many
60
+ other sampling algorithms is a popular subject of research initiated in the probabilistic works around,
61
+ roughly speaking, two strategies. The first one relies on pathwise considerations and dynamical proper-
62
+ ties of random dynamical system and is built with some coupling argument and Lyapunov controls. We
63
+ refer to the seminal contributions [32, 27], that exploits the approach of the Doeblin coupling and total
64
+ variation (TV) bounds. Many extensions may be derived from this Lyapunov approach and may lead
65
+ to Wasserstein or L2 upper bounds, we refer to [8] and the references therein of the same authors for a
66
+ description of the link between Lyapunov conditions and ergodicity. The second strategy derives from
67
+ spectral properties of Markov operators and is related to famous functional inequalities (Poincar´e and
68
+ Log-Sobolev among others). The general idea is to differentiate the distance along the time-evolution
69
+ and apply a Gronwall Lemma to obtain a quantitative estimate of the long-time evolution of the semi-
70
+ group. We refer to the seminal contributions of [26, 2], and to [3] for an almost exhaustive survey of
71
+ all possible inequalities and consequences on the ergodicity of the Markov semi-groups. Finally, let us
72
+ emphasize that some strong links exist between the spectral and the Lyapunov approaches, as pointed
73
+ out by [9]. If functional inequalities are then strongly related to mixing properties and especially from
74
+ a quantitative point of view, it is therefore necessary to develop a machinery that is able to assess these
75
+ inequalities carefully, especially with a specific attention to our statistical setting of large n and d in the
76
+ completely non-trivial situation where the target measure is log-concave but not strongly log-concave,
77
+ which is a common feature of Bayesian posterior distributions.
78
+ On the statistical side, the mixing properties of LMC has been largely investigated during the past
79
+ decade, strongly motivated by machine learning methods such as Exponentially Weighted Aggregation
80
+ introduced by [11], which involves sampling a non log-concave and heavy tailed posterior distribution.
81
+ A first paper of Dalalyan [12] establishes the cost of LMC to obtain an ε TV bound in terms of d
82
+ and ρ when the target measure is ρ strongly log-concave and proposes a penalized version of LMC to
83
+ circumvent the lack of strong log-concavity when the target distribution is only log-concave. Since this
84
+ pioneering paper, a huge impressive literature expanded. Among others, we refer to [16] that gives a
85
+ careful study of discretized LMC, [14] for a kinetic version of LMC and [15] where the penalized LMC in
86
+ non strongly-concave situation is studied in depth. Among all these papers, first, the lack of strong log-
87
+ concavity is dealt with a modification of the initial LMC using a surrogate and asymptotically vanishing
88
+ penalty. Second, these papers assume that a noiseless gradient of the log-posterior is available at each
89
+ iteration of the algorithm, which may not be realistic, especially with large n.
90
+ Stochastic LMC (SLMC below) has attracted the interest of several works: [39] introduced this
91
+ method and described its efficiency from a numerical point of view in the particular case of Bayesian
92
+ learning, which is exactly our framework. Some recent advances and related contributions may be also
93
+ cited: [13] studies a noisy version of LMC and derives some non-asymptotic upper bounds (in terms of
94
+ Wasserstein distance) of the sampling strategy in presence of a possibly biased noise for strongly log-
95
+ concave posterior distribution. The recent contribution of [40] is also related to our work: the authors
96
+ develop a machinery for the study of SLMC essentially based on the Poincar´e inequality but the way
97
+ the lower bound on the spectral gap involved in the LMC is dealt with appears to be inappropriate. In
98
+ particular, the diffusion involved in (Stochastic)-LMC is used at a very low-temperature, proportional
99
+ to 1/n, which generates some important troubles in the size of the spectral gap in non strongly log-
100
+ concave framework. In [35], the authors derives some close bounds to our framework for optimization
101
+ purpose, and the authors identify the important dependency of the spectral gap denoted by λ∗ in
102
+ their paper with the temperature level 1/β they introduced. They obtain some very highly pessimistic
103
+ bounds in some general situations (see their discussion in [35][Section 4]), they conclude their discussion
104
+ by the urgent need to find some non-trivial situations where some better lower bounds of λ∗ may be
105
+ derived.
106
+ 2
107
+
108
+ Indeed, the final remark of [35][Section 4]) is related to the well known metastability phenomenon:
109
+ at a low temperature, the mixing rates of a lot of reversible and irreversible Markov semi-groups
110
+ are strongly deteriorated by the low temperature settings, which is implicitly induced by a Bayesian
111
+ posterior sampling problem with a large number n of observations. In a regime of variance noise
112
+ of the order O(β−1), the first study of large deviation principle of invariant measures traces back
113
+ to [18] where the authors establish the asymptotic of the spectral gap of the over-damped Langevin
114
+ diffusion as exp(−Iβ) ( [18][Chapter 6]) where I is an explicit constant that depends on the potential
115
+ of the Gibbs field. This result has been extended in depth by [26], which leads to the first precise
116
+ analyses of the so-called simulated annealing method (see e.g. [24, 33]). These works, and more recent
117
+ contributions with irreversible dynamical systems in a stochastic settings ([22, 19]) show that there
118
+ is almost nothing to expect in metastable situations in terms of asymptotic behaviour of the spectral
119
+ gap, and indirectly in terms of mixing rate. Hence, the only situation that may lead to reasonable
120
+ results is an intermediary situation between the (almost) trivial strongly log-concave case and the
121
+ metastable multi-welled case. This is the purpose of the weakly log-concave situation that is described
122
+ by the family of Kurdyka-�Lojasiewicz inequalities [28, 30] used in optimization theory [5] that have
123
+ shown to be efficient for stochastic optimization [20] or for sampling [21]. We also refer to the recent
124
+ contributions [6] that derives some functional inequalities within an intermediary framework in which
125
+ the curvature ρ is related to their keystone function α that controls the constants involved in the
126
+ functional inequalities they are studying.
127
+ Taking together the statistical considerations and limitations, we are motivated in this paper in
128
+ the study of the continuous time Stochastic Langevin Monte Carlo procedure. This process will be
129
+ described precisely in the next paragraph as well as the Kurdyka-�Lojasiewicz setup parametrized by a
130
+ real value r, which varies between 0 (strongly convex case) and 1 (limiting Laplace asymptotic tail).
131
+ We will show that the final horizon of simulation to obtain an ε approximation is of the order:
132
+ (d log(n)2)(1+r)2[log2(ε−1) + n2d2(1+r) log4(1+r)(n)]
133
+ with a Poissonian subsampling of parameter
134
+ 1
135
+ n(d log2(n))1+r .
136
+ The rest of the introduction consists in the definitions of the algorithm in Subsection 1.2, the way we
137
+ assess the quality of our result with an entropy criterion in Subsection 1.3, as well as the quantitative
138
+ weakly log-concave assumption in Subsection 1.4. We finally state our main result in Subsection 1.5.
139
+ 1.2
140
+ Continuous time evolution
141
+ Below, we briefly remind the continuous time SLMC algorithm for Bayesian learning, for which a
142
+ discretized form has been introduced in [39]. For this purpose, we consider a statistical model that
143
+ is built with the help of a function (x, θ) �−→ pθ(x) where θ ∈ Rd encodes the parameter of the
144
+ statistical model and x the observation in a space denoted by X. We then assume that we have n i.i.d.
145
+ observations denoted by (X1, . . . , Xn) distributed according to pθ. Given a prior distribution π0 on
146
+ Rd, the posterior distribution µn is then defined as:
147
+ µn(θ) ∝ π0(θ) ×
148
+ n
149
+
150
+ i=1
151
+ pθ(Xi).
152
+ We introduce the log-parametrization that leads to the Gibbs form:
153
+ Ux(θ) = −[log π0(θ) + n log pθ(x)],
154
+ and we then observe that:
155
+ µn(θ) ∝ exp
156
+
157
+ − 1
158
+ n
159
+ n
160
+
161
+ i=1
162
+ UXi(θ)
163
+
164
+ = exp (−Uνn(θ)) ,
165
+ where νn refers to the empirical distribution and Uνn the average value of UX(θ) when X ∼ νn:
166
+ νn(x) = 1
167
+ n
168
+ n
169
+
170
+ i=1
171
+ δXi(x)
172
+ and
173
+ Uνn(θ) = EX∼νn[UX(θ)].
174
+ 3
175
+
176
+ The standard Langevin Monte Carlo approach relies on the ergodic behaviour of the stochastic differ-
177
+ ential equation:
178
+ dθt = −∇Uνn(θt)dt +
179
+
180
+ 2dBt,
181
+ (1)
182
+ that possesses under some mild assumptions a unique invariant distribution µn.
183
+ The SLMC algorithm takes benefit of both sampling with a S.D.E. and homogenization of the drift
184
+ that may be written as an expectation on X that is sampled uniformly over the set of observations
185
+ according to νn. The leading idea is to replace the expectation in Uνn that depends on the overall set
186
+ of observations (X1, . . . , Xn) by a single unique observation that is randomized uniformly all along
187
+ the evolution of the stochastic differential equation, and modified according to a Markov exponential
188
+ clock. That being said, we can write an explicit formal definition of the algorithm as follows. We
189
+ define
190
+
191
+ ξ(n)
192
+ j
193
+
194
+ j≥1 an infinite sequence of exponential random variables of mean α−1
195
+ n
196
+ that will be fixed
197
+ later on.
198
+ We also consider a sequence
199
+
200
+ V (n)
201
+ j
202
+
203
+ j≥0 of i.i.d. random variables uniformly distributed in {1, 2, . . ., n}.
204
+ We then define the process (Xt)t≥0 as a jump process that takes its values in {1, 2, . . ., n} such that:
205
+ Xt =
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+ XV (n)
216
+ 1
217
+ ,
218
+ if
219
+ 0 ≤ t < ξ(n)
220
+ 1
221
+ ,
222
+ XV (n)
223
+ j
224
+ ,
225
+ if
226
+ j−1
227
+
228
+ k=1
229
+ ξ(n)
230
+ k
231
+ ≤ t <
232
+ j�
233
+ k=1
234
+ ξ(n)
235
+ k ,
236
+ j > 1.
237
+ (2)
238
+ Informally, (Xt)t≥0 should be understood as follows: the process takes the value of one observation
239
+ uniformly chosen from the n observations X1, . . . , Xn during exponential times with intensity αn. The
240
+ stochastic Langevin over-damped diffusion we consider is then given by the joint evolution (θt, Xt)t≥0
241
+ and that is defined by:
242
+ dθt = −∇θUXt(θt)dt +
243
+
244
+ 2dBt,
245
+ t > 0,
246
+ (3)
247
+ where (Bt)t≥0 is a multivariate standard Brownian Motion.
248
+ Algorithm 1: Stochastic Langevin over-damped
249
+ Data: (X1, . . . , Xn) i.i.d. observations, n0 initial distribution, π0 prior distribution
250
+ 1 t0 = 0
251
+ 2 Generate θ0 according to n0
252
+ 3 for k = 0, 1, . . . do
253
+ 4
254
+ Pick Xk uniformly in {X1, . . . , Xn}
255
+ 5
256
+ Generate ξk according to an Exponential distribution with mean α−1
257
+ n
258
+ 6
259
+ tk+1 = tk + ξk
260
+ 7
261
+ θtk+1 = θtk −
262
+ � tk+1
263
+ tk
264
+ ∇θUXk(θs)ds +
265
+
266
+ 2Bξk
267
+ 8 end
268
+ 9 return lim
269
+ k→∞ θtk
270
+ 1.3
271
+ Entropic divergence
272
+ To assess the long-time behaviour of the SLMC, we introduce several notations related to the pair
273
+ (θt, Xt)t≥0. Below, we denote by λd the Lebesgue measure over Rd. The semi-group induced by L
274
+ being elliptic on the θ coordinate, trivially irreducible and finitely supported on the x coordinate,
275
+ makes the law of (θt, Xt) absolutely continuous with respect to the measure λd ⊗ νn as soon as t > 0.
276
+ We introduce the notation of mt to refer to the joint density of (θt, Xt) at time t with respect
277
+ to λd ⊗ νn. In the meantime, nt denotes the marginal distribution of θt and mt(·|θ) the conditional
278
+ distribution of Xt given θt = θ. That is:
279
+ Law(θt, Xt) = mt,
280
+ nt(θ) =
281
+ n
282
+
283
+ i=1
284
+ mt(θ, Xi),
285
+ mt(x|θ) = mt(θ, x)
286
+ nt(θ) ,
287
+ (4)
288
+ 4
289
+
290
+ for θ ∈ Rd and x ∈ {X1, . . . , Xn}.
291
+ To show that the SLMC algorithm recovers the correct asymptotic behaviour, i.e. that nt(θ) −→ µn
292
+ when t −→ ∞, we consider the relative entropy (or Kullback-Leibler divergence) of nt with respect to
293
+ µn that is well defined thanks to the ellipticity, and given by:
294
+ Jt = Entµn
295
+ � nt
296
+ µn
297
+
298
+ =
299
+
300
+ Rd
301
+ log
302
+ � nt(θ)
303
+ µn(θ)
304
+
305
+ dnt(θ).
306
+ (5)
307
+ Jt measures at any time t > 0 a divergence between the instantaneous law of the process at time t
308
+ and the (presumably) invariant distribution µn of the process (θt, Xt). It would also be possible to
309
+ measure this difference between the two distributions in terms of the L2 or the χ-square distance and
310
+ to produce a theoretical analysis with the help of functional analysis but it would rely on stronger
311
+ assumptions on the function Uνn.
312
+ In the meantime, we also introduce a weighted L2 distance between the conditional distribution of
313
+ Xt given θt = θ and the measure νn. This distance is denoted by It and is defined as:
314
+ It =
315
+
316
+ Rd
317
+ n
318
+
319
+ i=1
320
+ �mt(Xi|θ)
321
+ νn(Xi)
322
+ − 1
323
+ �2
324
+ νn(Xi)dnt(θ).
325
+ (6)
326
+ This quantity measures the average closeness (w.r.t. θ) of the conditional law of x given θ at time t to
327
+ νn.
328
+ 1.4
329
+ Main assumptions
330
+ Weak convexity
331
+ We will study the SLMC into a weakly convex framework, i.e. when Uνn is assumed
332
+ to be convex but not necessarily strongly convex. SLMC has recently received an important interest in
333
+ the machine learning community and has been studied essentially in its explicit Euler discretized form
334
+ in various situations where functional inequalities are involved. We refer to [38] (uniform Log-Sobolev
335
+ inequality), to [35] (uniform Poincar´e inequality) where the authors develop a Wasserstein-2 analysis
336
+ of the algorithm, and to [40] (uniform Poincar´e inequality). In these works, the functional inequalities
337
+ play a crucial role to analyze the behaviour of SLMC and these inequalities are assumed, which is an
338
+ important hypothesis. Importantly, Poincar´e or Log-Sobolev inequalities are not so innocent since they
339
+ generally require convexity (see e.g. [4, 3]) to be reasonably dimension-dependent, and even strong
340
+ convexity to be dimension free. Otherwise, the constant involved in these functional inequalities are
341
+ exponentially degraded by the “temperature” (n−1(d log2β(n))−(1+r) in our case) and the dimension
342
+ (d for us) as indicated in [26].
343
+ In our work, we have chosen to parameterize this lack of strong convexity with the help of the
344
+ Kurdyka-�Lojasiewicz inequality [28, 30], which is a standard tool in optimization to describe the tran-
345
+ sition between convexity and strong convexity and makes the bounds more explicit. This assumption
346
+ allows to observe how the entropy evolves according to the key exponent involved in the KL inequality.
347
+ In particular, it makes possible to understand the influence of the lack of strong convexity that is more
348
+ or less hidden in the uniform Poincar´e or Log-Sobolev inequalities that are assumed in the previous
349
+ works. We introduce a parametric form of the KL inequalities following [20].
350
+ For this purpose, for any V twice differentiable function, we denote the spectrum of the Hessian
351
+ matrix of V as Sp(∇2V (θ)). Furthermore, if V is convex, we denote:
352
+ λ∇2V (θ) = inf Sp(∇2V (θ)).
353
+ Hypothesis Hr
354
+ KL(c, L) We say that a function V : Rd → R satisfies a Hr
355
+ KL(c, L)-condition if:
356
+ a) V is a C2-function.
357
+ b) V is a convex function and minθ∈RdV (θ) = V (θ∗) > 0.
358
+ c) ∇V is L-Lipschitz.
359
+ 5
360
+
361
+ d) There exist some constants 0 ≤ r < 1 and c > 0 such that:
362
+ cV −r(θ) ≤ λ∇2V (θ)
363
+ ∀θ ∈ Rd.
364
+ (7)
365
+ Let us briefly comment this assumption.
366
+ • In [21], a slightly different parametrization is used with the introduction of another exponent
367
+ q related to λ∇2V (θ) = sup Sp(∇2V (θ)). The authors also assume the upper bound λ∇2V (θ) ≤
368
+ ˜cV −q(θ). Here, we have chosen to simplify this assumption and use a rough upper bound on the
369
+ eigenvalues of the Hessian matrix given by the Lipschitz constant L, i.e. in the last inequality
370
+ we simply use ˜c = L and q = 0.
371
+ • We shall observe that if V (θ) = (1 + ∥θ∥2
372
+ 2)p with p ∈ [1/2, 1], then V satisfies Hr
373
+ KL(c, L) with
374
+ r = 1−p
375
+ p
376
+ and c = 2p(1 − 2(1 − p)), see Remark 7 of [21] for further details. In particular, the
377
+ larger p, the smaller r, which translates into a better curvature of the potential function V .
378
+ • When r = q, we recover a global standard KL inequality (see [20, 5]) and when r = 1 it
379
+ corresponds to the limiting Laplace case.
380
+ • The case r = 0 is of course associated to the strongly convex situation where the curvature of
381
+ the function is uniformly lower bounded by c.
382
+ Hence, it is expected that the complexity of SLMC increases with the lack of curvature, i.e. is an
383
+ increasing function of r.
384
+ In section 4 we recall some important consequences of the KL inequality obtained in Lemma 15 of
385
+ [21]. In particular, the growth of any function that satisfies Hr
386
+ KL(c, L) is lower and upper bounded by
387
+ a positive power of the distance to its minimizer.
388
+ If inequality (7) holds for a constant c, then it holds for all positive values less than c. For that
389
+ reason, in section 5 we assume c ≤
390
+
391
+ 8L
392
+ (1+r)
393
+ �1+r
394
+ .
395
+ Assumption on the prior π0
396
+ We state below the important consequence of a “population” Hr
397
+ KL(c, L)
398
+ assumption, but before, let us state some mild assumptions on π0.
399
+ Hypothesis Hπ0(ℓ0) π0 is a log-concave C2-function such that minθ∈Rd − log π0(θ) > 0 and θ �→
400
+ ∇ log π0(θ) is ℓ0-Lipschitz.
401
+ Since the prior distribution is chosen by the user, our Hπ0(ℓ0) hypothesis is not restrictive and
402
+ some typical examples satisfy these conditions, such as Gaussian, Weibull and Gamma, both with
403
+ shape parameter larger than 1, Gumbel, among others.
404
+ Proposition 1.1. We assume Hπ0(ℓ0) and that there exist (c, r) such that for any x: θ �−→ − log pθ(x)
405
+ satisfies Hr
406
+ KL(c, L), then Uνn satisfies Hr
407
+ KL
408
+
409
+ cn1+r, nL + ℓ0
410
+
411
+ , and in particular, for any Xi, UXi sat-
412
+ isfies Hr
413
+ KL
414
+
415
+ cn1+r, nL + ℓ0
416
+
417
+ .
418
+ We introduce the notation a ≲uc b (a ≳uc b) which means a ≤ cb (a ≥ cb) where c is a universal
419
+ constant i.e. a positive constant independent of n and d.
420
+ We assume that the minimizers of the functions UXi are contained in a ball of radius which depends
421
+ of n and d. Additionally, we consider minθ∈RdUXi to be at most of order d.
422
+ Hypothesis Hmin There exists β ≥ 0 such that:
423
+ maxi∥ arg min UXi∥2 ≲uc
424
+
425
+ d logβ(n)
426
+ and
427
+ maxi minθ∈Rd UXi(θ) ≲uc d.
428
+ Assumption Hmin is not restrictive. In dimension d = 1, it holds for many concentrated i.i.d.
429
+ samples (Xi)1≤i≤n with a suitable sub-Gaussian like behaviour for which the Laplace transform of
430
+ min UXi is upper bounded as:
431
+ E[exp(λmin UXi)] ≤ exp(σ2λk),
432
+ ∀λ > 0.
433
+ 6
434
+
435
+ The previous upper bound implies that, in this case, β involved in Hmin is given by β = k−1
436
+ k . We
437
+ recover in particular the situation where β = 1/2 when k = 2. For larger dimensions, the result may
438
+ be extended using that ∥X∥2
439
+ 2 ≤ d max1≤j≤d(Xj)2, where Xj is the j-th component of X. We should
440
+ keep in mind from this last discussion that even if Hmin is stated (and makes sense) for any value of
441
+ β > 0, it holds in general for β ≤ 1.
442
+ This Hmin hypothesis together with Hπ0(ℓ0) lead to an almost similar behaviour of the minimizer
443
+ and the minimum of Uνn. Details appear in Proposition 4.4.
444
+ 1.5
445
+ Long-time entropy convergence
446
+ We introduce for any time t ≥ 0 the density of Law(θt) w.r.t. µn, which is given by:
447
+ ft(θ) = nt(θ)
448
+ µn(θ),
449
+ and n0 is chosen such that ∥f0∥∞ < +∞. The following hypothesis guarantees this result which will
450
+ be proved in Proposition 3.5.
451
+ Hypothesis Hn0(L, ℓ0) A positive constant σ2 exists such that n0 = N(0, σ2Id). Moreover, there
452
+ exist two universal constants c1 and c2 such that 0 < c1 ≤ c2 < 1 and
453
+ c1
454
+ nL + ℓ0
455
+ ≤ σ2 ≤
456
+ c2
457
+ nL + ℓ0
458
+ .
459
+ Futhermore, in Proposition 3.5, as an immediate consequence of the boundedness of ∥f0∥∞, we
460
+ obtain that J0 ≲uc nd1+r log2β(1+r)(n) + d log
461
+ � d
462
+ n
463
+
464
+ .
465
+ The next result assesses a mixing property in terms of decrease of the entropy and therefore states
466
+ the convergence of nt towards the correct measure µn.
467
+ Theorem 1.1. Assume Hπ0(ℓ0), Hmin, Hn0(L, ℓ0) and that each θ �→ − log pθ(Xi) satisfies Hr
468
+ KL(c, L),
469
+ then
470
+ • Uνn satisfies a Poincar´e inequality of constant CP (µn), indistinctly denoted as CP .
471
+ • Define cn,d := n4 �
472
+ d log2β(n)
473
+ �1+r
474
+ and On,d :=
475
+ � C1d
476
+ n
477
+ � dr
478
+ 2 exp
479
+
480
+ C2n
481
+
482
+ d log2β(n)
483
+ �1+r�
484
+ , where C1
485
+ and C2 are universal constants, then for any t > 0:
486
+ Jt ≲uc
487
+
488
+ J0 + cn,d
489
+ αn
490
+
491
+ 1 +
492
+ �CP
493
+ αn
494
+ +
495
+
496
+ CP
497
+
498
+ e
499
+
500
+ CP
501
+ √a + CP
502
+ 3αn
503
+
504
+ + On,d
505
+
506
+ (1 + t)1/4e−
507
+
508
+ Cp
509
+ √a (√1+t−1).
510
+ (8)
511
+ • For any ε > 0, if αn =
512
+ 1
513
+ n(d log2β(n))
514
+ 1+r , then:
515
+ t ≳uc
516
+
517
+ d log2β(n)
518
+ �(1+r)2 �
519
+ log2(ε−1) + n2 �
520
+ d log2β(n)
521
+ �2(1+r)
522
+ + d2 log2 d
523
+
524
+ =⇒ Jt ≤ ε.
525
+ If we denote tε the smallest value such that Jtε ≤ ε, then the choice of αn =
526
+ 1
527
+ n(d log2β(n))
528
+ 1+r
529
+ guarantees that the mean number of jumps αntε of the process (Xt)0≤t≤tε is the minimum possible.
530
+ In order to proof the main result, we first present in Section 2 the classical tools related to the
531
+ Markov semi-group, which could be skipped by the experienced reader in the subject. In Section 3
532
+ we prove the main result. Sections 4 and 5 are reserved to the technical results of the Hr
533
+ KL(c, L)
534
+ hypothesis and Uνn, and the Markov Dynamics respectively.
535
+ 7
536
+
537
+ 2
538
+ Markov tools
539
+ It is straightforward to verify that the joint evolution of (θt, Xt)t≥0 exists and is weakly unique (in
540
+ law) with the help of the Martingale Problem (MP below). For this purpose, we preliminary define
541
+ the operator L that acts on any function f ∈ C2(Rd × X) as:
542
+ Lf(θ, x) = −⟨∇θUx(θ), ∇θf(θ, x)⟩ + ∆θf(θ, x)
543
+
544
+ ��
545
+
546
+ :=L1f(θ,x)
547
+ + αn
548
+ n
549
+ n
550
+
551
+ i=1
552
+ [f(θ, Xi) − f(θ, x)
553
+
554
+ ��
555
+
556
+ L2f(θ,x)
557
+ ],
558
+ (9)
559
+ for all (θ, x) ∈ Rd × X.
560
+ The operator L is divided into two terms, L1 acts on the component θ and is associated to the
561
+ diffusion part, while L2 is the jump operator that acts on the x component. Thanks to the finiteness
562
+ of the number of observations (X1, . . . , Xn), we can apply the results of Section 4 and 5 of chapter 4
563
+ of [17] and deduce the following result:
564
+ Proposition 2.1. Assume that for any x ∈ X, Ux is C2(Rd) and ∇θUx is Lx-Lipschitz, then for any
565
+ initial distribution ν on Rd × X, the martingale problem (L, ν) is well-posed.
566
+ The associated (weakly) unique process (θt, Xt)t≥0 is a Feller Markov process associated to the
567
+ semi-group L. In particular, the θ component verifies the S.D.E. (3).
568
+ If we denote by L⋆ the adjoint operator of L in L2(Rd) × νn, the backward Kolmogorov Equation
569
+ yields:
570
+ ∂tmt(θ, x) = L⋆mt(θ, x).
571
+ (10)
572
+ Using the ellipticity of the semi-group L on the θ coordinate, we can use the result of [25] and
573
+ deduce that for any t > 0, nt ∈ C∞(Rd, R) and the irreducibility yields ∀t ≥ 0, nt > 0. We will prove
574
+ in Proposition 3.5 some sufficient conditions that implies ∥f0∥∞ = ∥ n0(θ)
575
+ µn(θ)∥∞ < +∞ and an important
576
+ and standard consequence of the maximum principle, is as follows: if ∥f0∥∞ ≤ M, then
577
+ ∀t ≥ 0,
578
+ ∥ft∥∞ ≤ M.
579
+ We defer the details of this result to the Proposition 3.5 as they are not central to our analysis and
580
+ are rather technical.
581
+ Thanks to this master equation, it is possible to compute the derivative of the semi-group on some
582
+ time dependent function of θ. For this purpose, we introduce two keystone operators. The first one
583
+ describes the infinitesimal action on the θ coordinate under the average effect of Xt at time t that
584
+ applies ∀f ∈ C2(Rd, R) as:
585
+ Gtf(θ) = −
586
+ n
587
+
588
+ i=1
589
+ ⟨∇θf(θ), ∇θUXi(θ)⟩mt(Xi|θ) + ∆θf(θ).
590
+ (11)
591
+ The second one is very close to the first one except that the average effect of Xt is replaced by the
592
+ targeted ideal distribution νn. It leads to the definition ∀f ∈ C2(Rd, R):
593
+ Gf(θ) = −
594
+ n
595
+
596
+ i=1
597
+ ⟨∇θf(θ), ∇θUXi(θ)⟩νn(Xi) + ∆θf(θ) = −⟨∇θf(θ), ∇θUνn(θ)⟩ + ∆θf(θ).
598
+ (12)
599
+ This derivative is given in the next result, whose proof is deferred to the appendix.
600
+ Lemma 2.1. Let be ht a twice differentiable function with uniformly bounded first and second order
601
+ derivatives on Rd, then for t > 0:
602
+ ∂t
603
+ ��
604
+ Rd ht(θ)dnt(θ)
605
+
606
+ =
607
+
608
+ Rd ∂t{ht(θ)}dnt(θ) +
609
+
610
+ Rd Gtht(θ)dnt(θ),
611
+ (13)
612
+ where Gt is the diffusion operator under the average effect of Xt, defined in Equation (11).
613
+ 8
614
+
615
+ 3
616
+ Proof of the main results
617
+ 3.1
618
+ Evolution of the entropy Jt
619
+ The entropy satisfies the following differential inequality.
620
+ Proposition 3.1. Assume Hmin, Hπ0(ℓ0) and for each Xi, θ → − log pθ(Xi) satisfies Hr
621
+ KL(c, L), then
622
+ a ”universal” constant C (independent from n and d) exists such that ∀t > 0:
623
+ ∂t{Jt} ≤ −
624
+
625
+ Rd
626
+ �����∇θ
627
+ ��
628
+ nt(θ)
629
+ µn(θ)
630
+ ������
631
+ 2
632
+ 2
633
+ dµn(θ) + CI
634
+ 1
635
+ 3
636
+ t n
637
+ 11
638
+ 3
639
+
640
+ d log2β(n)
641
+ �1+r
642
+ .
643
+ Proof. We shall use the standard preliminary estimate that may be derived from Equation (3.14) of
644
+ [29] for elliptic diffusions to apply Lemma 2.1 to ft = log(ntµ−1
645
+ n ). From Equation (13), we have:
646
+ ∂t{Jt} =
647
+
648
+ Rd ∂t
649
+
650
+ log
651
+ � nt(θ)
652
+ µn(θ)
653
+ ��
654
+ dnt(θ) +
655
+
656
+ Rd Gt log
657
+ � nt(θ)
658
+ µn(θ)
659
+
660
+ dnt(θ),
661
+ The first term vanishes since:
662
+
663
+ Rd ∂t
664
+
665
+ log
666
+ � nt(θ)
667
+ µn(θ)
668
+ ��
669
+ dnt(θ)
670
+ =
671
+
672
+ Rd
673
+ ∂t{nt(θ)}
674
+ nt(θ)
675
+ dnt(θ)
676
+ =
677
+
678
+ Rd ∂t {nt(θ)} dθ
679
+ =
680
+ ∂t
681
+ ��
682
+ Rd dnt(θ)
683
+
684
+ =
685
+ 0.
686
+ Then, the derivative is reduced to the second term, and we are led to:
687
+ ∂t{Jt}
688
+ =
689
+
690
+ Rd Gt log
691
+ � nt(θ)
692
+ µn(θ)
693
+
694
+ dnt(θ),
695
+ =
696
+
697
+ Rd G log
698
+ � nt(θ)
699
+ µn(θ)
700
+
701
+ dnt(θ)
702
+
703
+ ��
704
+
705
+ J1,t
706
+ +
707
+
708
+ Rd (Gt − G) log
709
+ � nt(θ)
710
+ µn(θ)
711
+
712
+ dnt(θ)
713
+
714
+ ��
715
+
716
+ J2,t
717
+ .
718
+ (14)
719
+ We study the two terms J1,t and J2,t separately.
720
+ • Study of J1,t. Since G is a diffusion operator and µn is the invariant measure associated to G,
721
+ then we can use the classical link between J1,t and the Dirichlet form (see [3]):
722
+
723
+ Rd G log
724
+ � nt(θ)
725
+ µn(θ)
726
+
727
+ dnt(θ)
728
+ =
729
+
730
+ Rd
731
+ nt(θ)
732
+ µn(θ) G log
733
+ � nt(θ)
734
+ µn(θ)
735
+
736
+ dµn(θ)
737
+ =
738
+ −4
739
+
740
+ Rd
741
+ �����∇θ
742
+ ��
743
+ nt(θ)
744
+ µn(θ)
745
+ ������
746
+ 2
747
+ 2
748
+ dµn(θ).
749
+ (15)
750
+ • Study of J2,t. We use the difference between G and Gt, for any twice differentiable function f:
751
+ (Gt − G) f(θ)
752
+ =
753
+
754
+ n
755
+
756
+ i=1
757
+ ⟨∇θf(θ), ∇θUXi(θ)⟩ [mt(Xi|θ) − νn(Xi)]
758
+ =
759
+
760
+ n
761
+
762
+ i=1
763
+ ⟨∇θf(θ), ∇θUXi(θ)⟩
764
+ �mt(Xi|θ)
765
+ νn(Xi)
766
+ − 1
767
+
768
+ νn(Xi).
769
+ 9
770
+
771
+ Then, the term J2,t may be computed as:
772
+ |J2,t|
773
+ =
774
+ ����
775
+
776
+ Rd (Gt − G) log
777
+ � nt(θ)
778
+ µn(θ)
779
+
780
+ dnt(θ)
781
+ ����
782
+ =
783
+ �����
784
+
785
+ Rd
786
+ n
787
+
788
+ i=1
789
+ ⟨∇θ log
790
+ � nt(θ)
791
+ µn(θ)
792
+
793
+ , ∇θUXi(θ)⟩
794
+ �mt(Xi|θ)
795
+ νn(Xi)
796
+ − 1
797
+
798
+ νn(Xi) dnt(θ)
799
+ ����� .
800
+ Using the Cauchy-Schwartz inequality with respect to the measure νn(Xi) × dnt(θ) in the first
801
+ line, 2ab ≤ a2 + b2 in the second line and ∇ log f = 2∇ log √f = 2 ∇√f
802
+ √f
803
+ in the third line, we
804
+ obtain that:
805
+ |J2,t|
806
+
807
+ ��
808
+ Rd
809
+ ����∇θ log
810
+ � nt(θ)
811
+ µn(θ)
812
+ �����
813
+ 2
814
+ 2
815
+ dnt(θ)
816
+ � 1
817
+ 2 ��
818
+ Rd
819
+ n
820
+
821
+ i=1
822
+ ��∇θUXi(θ)
823
+ ��2
824
+ 2
825
+ �mt(Xi|θ)
826
+ νn(Xi)
827
+ − 1
828
+ �2
829
+ νn(Xi) dnt(θ)
830
+ � 1
831
+ 2
832
+
833
+ 3
834
+ 4
835
+
836
+ Rd
837
+ ����∇θ log
838
+ � nt(θ)
839
+ µn(θ)
840
+ �����
841
+ 2
842
+ 2
843
+ dnt(θ) + 1
844
+ 3
845
+
846
+ Rd
847
+ n
848
+
849
+ i=1
850
+ ��∇θUXi(θ)
851
+ ��2
852
+ 2
853
+ � mt(Xi|θ)
854
+ νn(Xi)
855
+ − 1
856
+ �2
857
+ νn(Xi) dnt(θ)
858
+
859
+ 3
860
+
861
+ Rd
862
+ �����∇θ
863
+ ��
864
+ nt(θ)
865
+ µn(θ)
866
+ ������
867
+ 2
868
+ 2
869
+ dµn(θ) + 1
870
+ 3
871
+
872
+ Rd
873
+ n
874
+
875
+ i=1
876
+ ��∇θUXi(θ)
877
+ ��2
878
+ 2
879
+ �mt(Xi|θ)
880
+ νn(Xi)
881
+ − 1
882
+ �2
883
+ νn(Xi) dnt(θ).
884
+ Using Equation (15) and the previous line yields:
885
+ ∂t{Jt}
886
+
887
+
888
+
889
+ Rd
890
+ �����∇θ
891
+ ��
892
+ nt(θ)
893
+ µn(θ)
894
+ ������
895
+ 2
896
+ 2
897
+ dµn(θ) + 1
898
+ 3
899
+
900
+ Rd
901
+ n
902
+
903
+ i=1
904
+ ��∇θUXi(θ)
905
+ ��2
906
+ 2
907
+ �mt(Xi|θ)
908
+ νn(Xi)
909
+ − 1
910
+ �2
911
+ νn(Xi) dnt(θ)
912
+
913
+ ��
914
+
915
+ :=∆t
916
+ ,
917
+ (16)
918
+ We then focus on the second term of the right hand side. For this purpose, we consider a non-
919
+ negative function g(t), which will be fixed later and we split ∆t into two terms as:
920
+ ∆t
921
+ =
922
+
923
+ Rd
924
+ n
925
+
926
+ i=1
927
+ ��∇θUXi(θ)
928
+ ��2
929
+ 2
930
+
931
+ 1∥∇θUXi (θ)∥2≤g(t) +
932
+ 1∥∇θUXi (θ)∥2>g(t)
933
+ � �mt(Xi|θ)
934
+ νn(Xi)
935
+ − 1
936
+ �2
937
+ νn(Xi) dnt(θ)
938
+
939
+ g2(t)It +
940
+
941
+ Rd
942
+ n
943
+
944
+ i=1
945
+ ��∇θUXi(θ)
946
+ ��2
947
+ 2
948
+ 1∥∇θUXi (θ)∥2>g(t)
949
+ �mt(Xi|θ)
950
+ νn(Xi)
951
+ − 1
952
+ �2
953
+ νn(Xi) dnt(θ),
954
+ where It has been introduced in Equation (6) and measures the closeness of mt(Xi|θ) to νn. Finally,
955
+ for the last term we observe that 0 ≤ mt(Xi|θ) ≤ 1 and
956
+ ��� mt(Xi|θ)
957
+ νn(Xi) − 1
958
+ ��� = n
959
+ ��mt(Xi|θ) − 1
960
+ n
961
+ �� ≤ n, which
962
+ implies that:
963
+ ∆t ≤ g2(t)It + n2 1
964
+ n
965
+
966
+ Rd
967
+ n
968
+
969
+ i=1
970
+ ∥∇θUXi(θ)∥2
971
+ 2
972
+ 1∥∇θUXi (θ)∥2>g(t)dnt(θ)
973
+
974
+ ��
975
+
976
+ := ˜∆t
977
+ .
978
+ (17)
979
+ The Cauchy inequality leads to:
980
+ ˜∆t
981
+
982
+
983
+ 1
984
+ n
985
+
986
+ Rd
987
+ n
988
+
989
+ i=1
990
+ ∥∇θUXi(θ)∥4
991
+ 2 dnt(θ)
992
+ � 1
993
+ 2 �
994
+ 1
995
+ n
996
+
997
+ Rd
998
+ n
999
+
1000
+ i=1
1001
+ 1∥∇θUXi (θ)∥2>g(t)dnt(θ)
1002
+ � 1
1003
+ 2
1004
+ =
1005
+
1006
+ 1
1007
+ n
1008
+ n
1009
+
1010
+ i=1
1011
+ E
1012
+
1013
+ ∥∇θUXi(θt)∥4
1014
+ 2
1015
+ �� 1
1016
+ 2 �
1017
+ 1
1018
+ n
1019
+ n
1020
+
1021
+ i=1
1022
+ P (∥∇θUXi(θt)∥2 > g(t))
1023
+ � 1
1024
+ 2
1025
+ .
1026
+ (18)
1027
+ We then use Proposition 4.1 and obtain that:
1028
+ ˜∆t
1029
+
1030
+
1031
+ 1
1032
+ n
1033
+ n
1034
+
1035
+ i=1
1036
+ E
1037
+ ��
1038
+ 2(nL + ℓ0)U 2
1039
+ Xi(θt)
1040
+ ��
1041
+ � 1
1042
+ 2 �
1043
+ 1
1044
+ n
1045
+ n
1046
+
1047
+ i=1
1048
+ P
1049
+
1050
+ 2(nL + ℓ0)UXi(θt) > g2(t)
1051
+
1052
+ � 1
1053
+ 2
1054
+
1055
+ 2(nL + ℓ0)
1056
+
1057
+ nE[U 2
1058
+ νn(θt)]
1059
+ � 1
1060
+ 2
1061
+
1062
+ 1
1063
+ n
1064
+ n
1065
+
1066
+ i=1
1067
+ 2(nL + ℓ0)
1068
+ g2(t)
1069
+ E [UXi(θt)]
1070
+ � 1
1071
+ 2
1072
+
1073
+ [2(nL + ℓ0)]
1074
+ 3
1075
+ 2 n
1076
+ 1
1077
+ 2 E
1078
+
1079
+ U 2
1080
+ νn(θt)
1081
+ � 1
1082
+ 2 E [Uνn(θt)]
1083
+ 1
1084
+ 2
1085
+ g(t)
1086
+ ,
1087
+ 10
1088
+
1089
+ where we used the Markov’s inequality and the relation ∥.∥2 ≤ ∥.∥1 in Rn. We apply Proposition 5.1
1090
+ with α = 2 and α = 1 and obtain that a constant C > 0 exists (whose value may change from line to
1091
+ line) such that:
1092
+ ˜∆t
1093
+
1094
+ C
1095
+ n
1096
+ 7
1097
+ 2
1098
+
1099
+ d log2β(n)
1100
+ � 3(1+r)
1101
+ 2
1102
+ g(t)
1103
+ .
1104
+ We use this last bound in (17) and we deduce that:
1105
+ ∆t ≤ g2(t)It + C
1106
+ n
1107
+ 11
1108
+ 2
1109
+
1110
+ d log2β(n)
1111
+ � 3(1+r)
1112
+ 2
1113
+ g(t)
1114
+ .
1115
+ Optimizing this last bound with respect to g(t) leads to the upper bound:
1116
+ ∆t ≤ CI
1117
+ 1
1118
+ 3
1119
+ t n
1120
+ 11
1121
+ 3
1122
+
1123
+ d log2β(n)
1124
+ �1+r
1125
+ ,
1126
+ ∀t ≥ 0.
1127
+ 3.2
1128
+ Evolution of the weighted L2 distance It
1129
+ The quantity It involved in Proposition 3.1 measures how close to νn the conditional distribution of
1130
+ Xt|θt is. To study It, we first remark that it may be rewritten in a simpler way.
1131
+ It
1132
+ =
1133
+
1134
+ Rd
1135
+ n
1136
+
1137
+ i=1
1138
+ �mt(Xi|θ)
1139
+ νn(Xi)
1140
+ − 1
1141
+ �2
1142
+ νn(Xi) dnt(θ)
1143
+ =
1144
+
1145
+ Rd
1146
+ n
1147
+
1148
+ i=1
1149
+ �m2
1150
+ t(Xi|θ)
1151
+ ν2n(Xi)
1152
+ − 2mt(Xi|θ)
1153
+ νn(Xi)
1154
+ + 1
1155
+
1156
+ νn(Xi) dnt(θ)
1157
+ =
1158
+
1159
+ Rd
1160
+ n
1161
+
1162
+ i=1
1163
+ �m2
1164
+ t(Xi|θ)
1165
+ νn(Xi)
1166
+ − 2mt(Xi|θ) + νn(Xi)
1167
+
1168
+ dnt(θ)
1169
+ =
1170
+
1171
+ Rd
1172
+ � n
1173
+
1174
+ i=1
1175
+ m2
1176
+ t(Xi|θ)
1177
+ νn(Xi)
1178
+ − 1
1179
+
1180
+ dnt(θ)
1181
+ =
1182
+
1183
+ Rd
1184
+ n
1185
+
1186
+ i=1
1187
+ m2
1188
+ t(Xi|θ)
1189
+ νn(Xi) dnt(θ) − 1.
1190
+ Using that mt(Xi|θ)nt(θ) = mt(θ, Xi) and νn(Xi) = 1
1191
+ n for i = 1, 2, . . ., n, we obtain that:
1192
+ It = n
1193
+
1194
+ Rd
1195
+ n
1196
+
1197
+ i=1
1198
+ m2
1199
+ t(θ, Xi)
1200
+ nt(θ)
1201
+ dθ − 1.
1202
+ (19)
1203
+ The next proposition then assesses how fast It decreases to 0 as t −→ +∞.
1204
+ Proposition 3.2. For any t ≥ 0:
1205
+ It ≤ I0e−2αnt ≤ (n − 1)e−2αnt.
1206
+ (20)
1207
+ Proof. Our starting point is Equation (19). We compute its derivative with respect to t:
1208
+ ∂t{It}
1209
+ =
1210
+ 2n
1211
+
1212
+ Rd
1213
+ n
1214
+
1215
+ i=1
1216
+ mt(θ, Xi)
1217
+ nt(θ)
1218
+ ∂tmt(θ, Xi)dθ − n
1219
+
1220
+ Rd
1221
+ n
1222
+
1223
+ i=1
1224
+ m2
1225
+ t(θ, Xi)
1226
+ n2
1227
+ t(θ)
1228
+ ∂tnt(θ)dθ
1229
+ =
1230
+ 2n
1231
+
1232
+ Rd
1233
+ n
1234
+
1235
+ i=1
1236
+ mt(Xi|θ)∂tmt(θ, Xi)dθ − n
1237
+
1238
+ Rd
1239
+ n
1240
+
1241
+ i=1
1242
+ m2
1243
+ t(Xi|θ)∂tnt(θ)dθ.
1244
+ 11
1245
+
1246
+ Using the Kolmogorov backward equation in the first line and L = L1 + L2 in the second one where
1247
+ L1 and L2 are defined in Equation (9), we have:
1248
+ ∂t{It}
1249
+ =
1250
+ 2n
1251
+
1252
+ Rd
1253
+ n
1254
+
1255
+ i=1
1256
+ Lmt(Xi|θ) mt(θ, Xi)dθ − n
1257
+
1258
+ Rd
1259
+ n
1260
+
1261
+ i=1
1262
+ m2
1263
+ t(Xi|θ)∂tnt(θ)dθ
1264
+ =
1265
+ 2n
1266
+
1267
+ Rd
1268
+ n
1269
+
1270
+ i=1
1271
+ L1mt(Xi|θ) mt(θ, Xi)dθ
1272
+
1273
+ ��
1274
+
1275
+ :=I3,t
1276
+ + 2n
1277
+
1278
+ Rd
1279
+ n
1280
+
1281
+ i=1
1282
+ L2mt(Xi|θ) mt(θ, Xi)dθ
1283
+
1284
+ ��
1285
+
1286
+ :=I1,t
1287
+ −n
1288
+
1289
+ Rd
1290
+ n
1291
+
1292
+ i=1
1293
+ m2
1294
+ t(Xi|θ)∂tnt(θ)dθ
1295
+
1296
+ ��
1297
+
1298
+ :=I2,t
1299
+ .
1300
+ (21)
1301
+ Then, ∂t{It} may be splitted into three terms that are studied separately.
1302
+ • Study of I1,t. We observe that:
1303
+ L2mt(Xi|θ) = αn
1304
+ n
1305
+ n
1306
+
1307
+ j=1
1308
+ [mt(Xj|θ) − mt(Xi|θ)] = αn
1309
+ n − αn mt(Xi|θ).
1310
+ (22)
1311
+ We then use this last equation in the definition of I1(t) and obtain that:
1312
+ I1,t
1313
+ =
1314
+ 2n
1315
+
1316
+ Rd
1317
+ n
1318
+
1319
+ i=1
1320
+ L2mt(Xi|θ) mt(θ, Xi)dθ
1321
+ =
1322
+ 2αn
1323
+
1324
+ Rd
1325
+ n
1326
+
1327
+ i=1
1328
+ mt(θ, Xi)dθ − 2αnn
1329
+
1330
+ Rd
1331
+ n
1332
+
1333
+ i=1
1334
+ mt(Xi|θ)mt(θ, Xi)dθ
1335
+ =
1336
+ 2αn − 2αnn
1337
+
1338
+ Rd
1339
+ n
1340
+
1341
+ i=1
1342
+ m2
1343
+ t(θ, Xi)
1344
+ nt(θ)
1345
+
1346
+ =
1347
+ −2αnIt.
1348
+ (23)
1349
+ • Study of I2,t. Using the definition of nt, we obtain that:
1350
+ I2,t
1351
+ =
1352
+ −n
1353
+
1354
+ Rd
1355
+ n
1356
+
1357
+ i=1
1358
+ m2
1359
+ t(Xi|θ)∂tnt(θ)dθ
1360
+ =
1361
+ −n
1362
+
1363
+ Rd
1364
+ n
1365
+
1366
+ i=1
1367
+ m2
1368
+ t(Xi|θ)∂t
1369
+
1370
+
1371
+ n
1372
+
1373
+ j=1
1374
+ mt(θ, Xj)
1375
+
1376
+  dθ
1377
+ =
1378
+ −n
1379
+
1380
+ Rd
1381
+ n
1382
+
1383
+ j=1
1384
+ n
1385
+
1386
+ i=1
1387
+ m2
1388
+ t (Xi|θ)∂tmt(θ, Xj)dθ
1389
+ =
1390
+ −n
1391
+
1392
+ Rd
1393
+ n
1394
+
1395
+ j=1
1396
+ � n
1397
+
1398
+ i=1
1399
+ Lm2
1400
+ t (Xi|θ)
1401
+
1402
+ mt(θ, Xj)dθ
1403
+ =
1404
+ −n
1405
+
1406
+ Rd
1407
+ n
1408
+
1409
+ i=1
1410
+ Lm2
1411
+ t(Xi|θ) dnt(θ).
1412
+ where we used the Kolmogorov backward equation in the fourth line and again the definition of
1413
+ nt in the last line. Again, the decomposition L = L1 + L2 yields:
1414
+ I2,t
1415
+ =
1416
+ −n
1417
+
1418
+ Rd
1419
+ n
1420
+
1421
+ i=1
1422
+ L1m2
1423
+ t(Xi|θ) dnt(θ) − n
1424
+
1425
+ Rd
1426
+ n
1427
+
1428
+ i=1
1429
+ L2m2
1430
+ t(Xi|θ) dnt(θ).
1431
+ 12
1432
+
1433
+ We repeat some similar computations as those developed in Equation (22) to study the action
1434
+ of the jump component induced by L2 on m2
1435
+ t . We obtain that:
1436
+ L2m2
1437
+ t(Xi|θ) = αn
1438
+ n
1439
+ n
1440
+
1441
+ k=1
1442
+ [m2
1443
+ t(Xk|θ) − m2
1444
+ t(Xi|θ)] = αn
1445
+ n
1446
+ n
1447
+
1448
+ k=1
1449
+ m2
1450
+ t (Xk|θ) − αn m2
1451
+ t(Xi|θ).
1452
+ We use this last equation and obtain that:
1453
+ I2,t
1454
+ =
1455
+ −n
1456
+
1457
+ Rd
1458
+ n
1459
+
1460
+ i=1
1461
+ L1m2
1462
+ t (Xi|θ) dnt(θ) − αn
1463
+
1464
+ Rd
1465
+ n
1466
+
1467
+ i=1
1468
+ n
1469
+
1470
+ k=1
1471
+ m2
1472
+ t(Xk|θ) dnt(θ)
1473
+ +αnn
1474
+
1475
+ Rd
1476
+ n
1477
+
1478
+ i=1
1479
+ m2
1480
+ t(Xi|θ) dnt(θ)
1481
+ =
1482
+ −n
1483
+
1484
+ Rd
1485
+ n
1486
+
1487
+ i=1
1488
+ L1m2
1489
+ t (Xi|θ) dnt(θ) − αnn
1490
+
1491
+ Rd
1492
+ n
1493
+
1494
+ k=1
1495
+ m2
1496
+ t(Xk|θ) dnt(θ)
1497
+ +αnn
1498
+
1499
+ Rd
1500
+ n
1501
+
1502
+ i=1
1503
+ m2
1504
+ t(Xi|θ) dnt(θ)
1505
+ =
1506
+ −n
1507
+
1508
+ Rd
1509
+ n
1510
+
1511
+ i=1
1512
+ L1m2
1513
+ t (Xi|θ) dnt(θ).
1514
+ (24)
1515
+ • Study of I2,t + I3,t. We observe that this sum involves only L1 (see Equation (9). We first
1516
+ compute:
1517
+ L1mt(Xi|θ) = −⟨∇θUXi(θ), ∇θmt(Xi|θ)⟩ + ∆θmt(Xi|θ),
1518
+ and similarly:
1519
+ L1m2
1520
+ t(Xi|θ) = −⟨∇θUXi(θ), ∇θm2
1521
+ t(Xi|θ), ⟩ + ∆θm2
1522
+ t(Xi|θ)
1523
+ = −2mt(Xi|θ)⟨∇θUXi(θ), ∇θmt(Xi|θ)⟩ + 2∥∇θmt(Xi|θ)∥2
1524
+ 2 + 2mt(Xi|θ)∆θmt(Xi|θ).
1525
+ Using these two equations into I2,t + I3,t and mt(Xi|θ)nt(θ) = mt(θ, Xi), we get:
1526
+ I2,t + I3,t
1527
+ n
1528
+ = 2
1529
+
1530
+ Rd
1531
+ n
1532
+
1533
+ i=1
1534
+ ⟨∇θmt(Xi|θ), ∇θUXi(θ)⟩mt(θ, Xi)dθ
1535
+ − 2
1536
+
1537
+ Rd
1538
+ n
1539
+
1540
+ i=1
1541
+ ∥∇θmt(Xi|θ)∥2
1542
+ 2 nt(θ)dθ − 2
1543
+
1544
+ Rd
1545
+ n
1546
+
1547
+ i=1
1548
+ ∆θmt(Xi|θ) mt(θ, Xi)dθ
1549
+ − 2
1550
+
1551
+ Rd
1552
+ n
1553
+
1554
+ i=1
1555
+ ⟨∇θmt(Xi|θ), ∇θUXi(θ)⟩mt(θ, Xi)dθ + 2
1556
+
1557
+ Rd
1558
+ n
1559
+
1560
+ i=1
1561
+ ∆θmt(Xi|θ) mt(θ, Xi)dθ
1562
+ = −
1563
+
1564
+ Rd
1565
+ n
1566
+
1567
+ i=1
1568
+ ∥∇θmt(Xi|θ)∥2
1569
+ 2 dnt(θ) ≤ 0.
1570
+ Gathering this last inequality with (23) into Equation (21) yields:
1571
+ ∂t{It} ≤ −2αnIt.
1572
+ We conclude with a direct application of the Gronwall lemma while observing that I0 ≤ n − 1.
1573
+ 3.3
1574
+ Functional (weak) log-Sobolev inequalities
1575
+ 3.3.1
1576
+ Related works on functional inequalities
1577
+ A straightforward consequence of Proposition 3.1 and Proposition 3.2 is the following differential
1578
+ inequality on the relative entropy Jt:
1579
+ ∂t{Jt} ≤ −
1580
+
1581
+ Rd
1582
+ �����∇θ
1583
+ ��
1584
+ nt(θ)
1585
+ µn(θ)
1586
+ ������
1587
+ 2
1588
+ 2
1589
+ dµn(θ) + cn,de− 2αn
1590
+ 3
1591
+ t,
1592
+ (25)
1593
+ 13
1594
+
1595
+ where cn,d is defined as:
1596
+ cn,d ≲uc n4 �
1597
+ d log2β(n)
1598
+ �1+r
1599
+ .
1600
+ (26)
1601
+ At this stage, we should observe that a standard approach consists in finding a functional inequality
1602
+ that relates the key Dirichlet form E(f) defined by:
1603
+ E(f) =
1604
+
1605
+ Rd ∥∇θf(θ)∥2
1606
+ 2dµn(θ),
1607
+ (27)
1608
+ to Entµn(f 2), the entropy itself with respect to µn. These approaches rely on the initial works of [23]
1609
+ where Logarithmic Sobolev Inequality (LSI for short) were introduced. The consequences of LSI to
1610
+ exponential ergodicity has then been an extensive field of research and we refer to [3] for an overview
1611
+ on this topic. A popular sufficient condition that ensures LSI is the log strong-convexity of the targeted
1612
+ measure (see among other [2]) and an impressive amount of literature has been focused on the existing
1613
+ links between these functional inequalities, ergodicity of the semi-group, transport inequalities and
1614
+ Lyapunov conditions. We refer to [8, 1] (these two works are far from being exhaustive). The great
1615
+ interest of LSI has then been observed in machine learning and statistics more recently as testified by
1616
+ the recent works in Monte Carlo samplings of [31, 34]. A popular way to extend LSI from the strongly
1617
+ convex situation to a more general case relies on the “strong convexity outside a ball” hypothesis using
1618
+ the perturbation argument of the seminal contributions of [26]. If this method proves to be suitable
1619
+ for the study of the simulated annealing process in [33], [26], it appears to be doubtful for the study
1620
+ of sampling problems with convex potentials that satisfies Hr
1621
+ KL(c, L) as this settings do not imply an
1622
+ asymptotic strong convexity of θ �−→ U(θ) for large values of ∥θ∥2. That being said, and maybe an
1623
+ even worst consequence of such approach, is the unavoidable dependency on the dimension for the LSI
1624
+ constant when using a perturbation approach, which leads to a serious exponential degradation of the
1625
+ convergence rates with the dimension of the ambient space.
1626
+ To overcome these difficulties, we have chosen to use a slightly different functional inequality that
1627
+ may be considered as an innocent modification of LSI, but that indeed appears to be well suited
1628
+ to weakly log-concave setting described through an Hr
1629
+ KL(c, L) assumption.
1630
+ For this purpose, we
1631
+ shall use weak log-Sobolev inequalities (WLSI for short below) that have been introduced in [37]
1632
+ and whose interest has been extensively studied in many works to obtain exponentially sub-linear
1633
+ rates of mixing, see among others for example [7].
1634
+ To derive such inequalities, our starting point
1635
+ will be the contribution of [10] that makes the link between Lyapunov conditions and WLSI. Our
1636
+ approach based on Hr
1637
+ KL(c, L) certainly shares some similarities with the recent work of [6] where
1638
+ some functional inequalities (Poincar´e and Transport inequalities) are obtained within a framework of
1639
+ variable curvature bound.
1640
+ 3.3.2
1641
+ Weak log Sobolev inequalities
1642
+ We briefly introduce the key theoretical ingredients, that are exhaustively described in [3]. We intro-
1643
+ duce the following assumption, that will be suitable for the setting of bounded functions.
1644
+ Definition 3.1 (Weak Log-Sobolev Inequality ). For any measurable space (Ω, F, µ) and for any nice
1645
+ function f, let us define:
1646
+ Entµ(f 2) :=
1647
+
1648
+
1649
+ f 2 log(f 2)dµ −
1650
+
1651
+
1652
+ f 2dµ log
1653
+ ��
1654
+
1655
+ f 2dµ
1656
+
1657
+ .
1658
+ The measure µ satisfies a WLSI if a non-increasing function ϕWLS : (0, +∞) �→ R+ exists such that
1659
+ for any f ∈ C
1660
+ 1
1661
+ b (Ω):
1662
+ Entµ(f 2) ≤ ϕWLS(s)E(f) + s Osc2(f),
1663
+ (28)
1664
+ where Osc(f) := sup f − inf f.
1665
+ Before establishing how to use this functional inequality, we first state the important relationship
1666
+ between Poincar´e Inequality and WLSI.
1667
+ 14
1668
+
1669
+ Proposition 3.3. Assume that µ satisfies a Poincar´e Inequality of constant CP , i.e. for any smooth
1670
+ integrable function f:
1671
+ Cp(µ)V arµ(f) = Cp(µ)
1672
+
1673
+
1674
+ (f − µ[f])2dµ ≤
1675
+
1676
+
1677
+ |∇f|2dµ,
1678
+ then if log c =
1679
+ 3
1680
+ 14e2
1681
+ � 1
1682
+ e + 1
1683
+ 2
1684
+
1685
+ + 1 + log
1686
+ � 14
1687
+ 3
1688
+
1689
+ , then µ satisfies a WLSI with:
1690
+ ϕWLS(s) =
1691
+
1692
+ 0,
1693
+ s > 1
1694
+ e + 1
1695
+ 2
1696
+ 32
1697
+ CP log
1698
+ � c
1699
+ s
1700
+
1701
+ ,
1702
+ s ≤ 1
1703
+ e + 1
1704
+ 2
1705
+ .
1706
+ For the sake of readability, we introduce a universal a > 0 such that:
1707
+ ϕWLS(s) =
1708
+
1709
+ 0,
1710
+ s > 1
1711
+ e + 1
1712
+ 2
1713
+ a
1714
+ 1+log( 1
1715
+ s)
1716
+ CP
1717
+ ,
1718
+ s ≤ 1
1719
+ e + 1
1720
+ 2
1721
+ .
1722
+ (29)
1723
+ Proof of Proposition 3.3. The proof of how the Poincar´e Inequality implies the WLSI in the bounded
1724
+ setting described in Definition 28 is given for the sake of completeness. Technical details are skipped
1725
+ and we refer to the references below. We use the measure-capacity inequality (see [3], Section 8.3).
1726
+ We know that the Poincar´e Inequality implies a capacity inequality (Proposition 8.3.1 of [3]) with a
1727
+ constant equal to 2CP . Then, we can apply Theorem 2.2 of [7] that induces a WLSI which is based
1728
+ on the function ϕWLS given in the statement of the proposition.
1729
+ 3.3.3
1730
+ Weak log Sobolev inequalities under Hr
1731
+ KL(c, L)
1732
+ Of course, in the previous result, the only important dependency will be the one induced by CP , which
1733
+ will deserve an ad-hoc study under Assumption Hr
1734
+ KL(c, L). The numbers 32 and log(c) will be dealt
1735
+ with as “universal constants” in what follows.
1736
+ The next proposition states two lower bounds on the Poincar´e constant within the Hr
1737
+ KL(c, L)
1738
+ framework. The first one always holds, regardless the value of (X1, . . . , Xn) that may be been randomly
1739
+ sampled. The second one has to be considered with high probability, with respect to the sampling
1740
+ process (X1, . . . , Xn).
1741
+ Proposition 3.4. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and for any x, θ �→ − log pθ(x) satisfies Hr
1742
+ KL(c, L),
1743
+ then:
1744
+ i) For any sample (X1, . . . , Xn), it holds:
1745
+ CP (µn) ≳uc
1746
+ 1
1747
+
1748
+ d log2β(n)
1749
+ �(1+r)2
1750
+ ii) Assume that θ �→ Pθ is injective and θ0 exists such that (X1, . . . , Xn) ∼ Pθ0. If locally around
1751
+ θ0, θ �→ |θ − θ0|−αW1(Pθ, Pθ0) does not vanish, then:
1752
+ E(X1,...,Xn)∼Pθ0[CP (µn)] ≳uc
1753
+
1754
+ n
1755
+ Ld log n
1756
+ �α
1757
+ .
1758
+ We are finally led to upper bound the oscillations of the function involved in the WLSI introduced
1759
+ in (28), i.e. we are looking for an upper bound of Osc2 ��
1760
+ nt
1761
+ µn
1762
+
1763
+ for any time t > 0. For this purpose,
1764
+ we observe that the Markov semi-group induces that ft =
1765
+ nt
1766
+ µn = Ptf0 where f0 =
1767
+ n0
1768
+ µn .
1769
+ The next
1770
+ proposition implies the boundedness of ft over Rd when n0 is chosen as a Gaussian distribution with
1771
+ a carefully tuned covariance matrix.
1772
+ Proposition 3.5. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and that, for any x, θ �→ − log pθ(x) satisfies
1773
+ Hr
1774
+ KL(c, L), then:
1775
+ 15
1776
+
1777
+ i) Two positive constants C1 and C2 exist, which are independent from n and d and such that:
1778
+ ∥f0∥∞ ≲uc
1779
+ �C1d
1780
+ n
1781
+ � dr
1782
+ 2
1783
+ exp
1784
+
1785
+ C2nd1+r log2β(1+r)(n)
1786
+
1787
+ .
1788
+ ii) As a consequence:
1789
+ Osc2(
1790
+
1791
+ ft) ≤ Osc2(
1792
+
1793
+ f0) ≲uc
1794
+ �C1d
1795
+ n
1796
+ � dr
1797
+ 2
1798
+ exp
1799
+
1800
+ C2nd1+r log2β(1+r)(n)
1801
+
1802
+ .
1803
+ iii) Moreover, a straightforward consequence of i) is:
1804
+ J0 =
1805
+
1806
+ Rd log (f0(θ)) dn0(θ) ≲uc nd1+r log2β(1+r)(n) + d log
1807
+ � d
1808
+ n
1809
+
1810
+ .
1811
+ 3.4
1812
+ Entropic convergence of the SLMC
1813
+ The purpose of this paragraph is to prove the main result of the paper, i.e. Theorem 1.1 that guarantees
1814
+ the convergence of the SLMC algorithm.
1815
+ Proof of Theorem 1.1. Our starting point is the semi-group inequality (25) associated with the func-
1816
+ tional WLSI inequality (28). Using cn,d defined in (26), we obtain for any s > 0:
1817
+ ∂t{Jt} ≤ −E
1818
+ �� nt
1819
+ µn
1820
+
1821
+ + cn,de− 2αn
1822
+ 3
1823
+ t
1824
+ ≤ −
1825
+ Jt
1826
+ ϕWLS(s) +
1827
+ s
1828
+ ϕWLS(s)Osc2
1829
+ �� nt
1830
+ µn
1831
+
1832
+ + cn,de− 2αn
1833
+ 3
1834
+ t
1835
+ ≤ −
1836
+ Jt
1837
+ ϕWLS(s) +
1838
+ s On,d
1839
+ ϕWLS(s) + cn,de− 2αn
1840
+ 3
1841
+ t,
1842
+ where we applied Proposition 3.5 in the last line with On,d ≲uc
1843
+ � C1d
1844
+ n
1845
+ � dr
1846
+ 2 exp
1847
+
1848
+ C2nd1+r log2β(1+r)(n)
1849
+
1850
+ and C1 and C2 two universal constants. We then choose s (that depends on t) such that:
1851
+ st = e−A√t+1
1852
+ with
1853
+ A > 1
1854
+ that will be chosen later on.
1855
+ We observe that st < e−1 + 1/2, so that Equation (29) of Proposition 3.3 yields:
1856
+ ϕWLS(st) = a
1857
+ 1 + log
1858
+
1859
+ 1
1860
+ st
1861
+
1862
+ CP
1863
+ = a1 + A√1 + t
1864
+ CP
1865
+ .
1866
+ We introduce ψ(t) = exp
1867
+
1868
+ CP
1869
+ a
1870
+ � t
1871
+ 0
1872
+ du
1873
+ 1+A√1+u
1874
+
1875
+ and deduce that
1876
+ ψ(t) = exp
1877
+
1878
+ CP
1879
+ a
1880
+ 2A(√1 + t − 1) − 2 log
1881
+
1882
+ 1+A√1+t
1883
+ 1+A
1884
+
1885
+ A2
1886
+
1887
+  ≤ exp
1888
+ �2CP
1889
+ aA (
1890
+
1891
+ 1 + t − 1)
1892
+
1893
+ .
1894
+ We now apply the Gronwall Lemma:
1895
+ ∂t {ψ(t)Jt} =
1896
+
1897
+ CP
1898
+ a(1 + A√1 + t)Jt + J′
1899
+ t
1900
+
1901
+ ψ(t)
1902
+
1903
+
1904
+ CP On,d
1905
+ a
1906
+ e−A√t+1
1907
+ 1 + A√1 + t + cn,de− 2αn
1908
+ 3
1909
+ t
1910
+
1911
+ ψ(t)
1912
+ ≤ CP On,d
1913
+ a
1914
+ e−(A− 2CP
1915
+ aA )√1+t + cn,de
1916
+ 2CP
1917
+ aA (√1+t−1)− 2αn
1918
+ 3
1919
+ t.
1920
+ 16
1921
+
1922
+ We denote by t0 the positive real value that solves the equation 2CP
1923
+ aA
1924
+ √1 + t0 = αnt0
1925
+ 3 . We then observe
1926
+ that:
1927
+ � t
1928
+ 0
1929
+ e
1930
+ 2CP
1931
+ aA (√1+u−1)− 2αn
1932
+ 3
1933
+ udu ≤
1934
+ � t0
1935
+ 0
1936
+ e
1937
+ 2CP
1938
+ aA
1939
+ √1+udu +
1940
+ � +∞
1941
+ t0
1942
+ e− αn
1943
+ 3 udu
1944
+ ≤ t0e
1945
+ 2CP
1946
+ aA
1947
+ √1+t0 + 3
1948
+ αn
1949
+ = t0e
1950
+ αnt0
1951
+ 3
1952
+ + 3
1953
+ αn
1954
+ .
1955
+ If A is chosen such that A > 2CP
1956
+ aA , we then deduce that:
1957
+ Jt ≤
1958
+
1959
+ J0 + cn,dt0e
1960
+ αnt0
1961
+ 3
1962
+ + 3cn,d
1963
+ αn
1964
+
1965
+ ψ(t)−1 + CP On,d
1966
+ a
1967
+ ψ(t)−1
1968
+ � t
1969
+ 0
1970
+ e−
1971
+
1972
+ A− 2CP
1973
+ aA
1974
+ �√1+udu
1975
+
1976
+
1977
+ J0 + cn,dt0e
1978
+ αnt0
1979
+ 3
1980
+ + 3cn,d
1981
+ αn
1982
+
1983
+ ψ(t)−1 +
1984
+ 2CP On,d
1985
+ a
1986
+
1987
+ A − 2CP
1988
+ aA
1989
+ �2 ψ(t)−1,
1990
+ where we used in the previous line the bound:
1991
+ � t
1992
+ 0
1993
+ e−b√1+udu ≤
1994
+ � +∞
1995
+ 0
1996
+ e−b√1+udu ≤ 2
1997
+ b2 .
1998
+ To obtain the lowest upper bound, we are led to choose A such that 2CP
1999
+ aA as large as possible and
2000
+ below A, which naturally drives to the choice:
2001
+ 2CP
2002
+ aA = A
2003
+ 2 =⇒ A =
2004
+ 2
2005
+ √a
2006
+
2007
+ CP .
2008
+ Using this value of A in the previous bound, we observe that t0 ≤ 3√CP
2009
+ αn
2010
+ √a + CP
2011
+ α2n , so that a constant C
2012
+ exists such that:
2013
+ Jt ≤ C
2014
+
2015
+ J0 + cn,d
2016
+ αn
2017
+
2018
+ 1 +
2019
+ �CP
2020
+ αn
2021
+ +
2022
+
2023
+ CP
2024
+
2025
+ e
2026
+
2027
+ CP
2028
+ √a + CP
2029
+ 3αn
2030
+
2031
+ + On,d
2032
+
2033
+ (1 + t)1/4e−
2034
+
2035
+ Cp
2036
+ √a (√1+t−1).
2037
+ (30)
2038
+ In Proposition 3.4 we obtained CP ≥
2039
+ κ
2040
+ (d log2β(n))
2041
+ (1+r)2 . If instead of using the constant CP , we use
2042
+ directly
2043
+ κ
2044
+ (d log2β(n))
2045
+ (1+r)2 with κ < 1, then all the previous computations remain the same only replacing
2046
+ CP by its lower bound and:
2047
+ Jt ≤ C
2048
+
2049
+
2050
+ J0 + cn,d
2051
+ αn
2052
+ e
2053
+ √κ
2054
+
2055
+ 1
2056
+ √a +
2057
+ 1
2058
+ 3αn
2059
+
2060
+ (d log2β(n))(1+r)2/2 + On,d
2061
+
2062
+
2063
+  (1 + t)1/4e
2064
+
2065
+ √κ(√1+t−1)
2066
+ √a(d log2β(n))(1+r)2/2 .
2067
+ (31)
2068
+ Using the values of On,d, cn,d and the upper bound of J0, we finally observe that if αn =
2069
+ 1
2070
+ n(d log2β(n))
2071
+ 1+r , then:
2072
+ t ≥ ℵ
2073
+
2074
+ d log2β(n)
2075
+ �(1+r)2 �
2076
+ log2(ε−1) + n2 �
2077
+ d log2β(n)
2078
+ �2(1+r)
2079
+ + d2 log2 d
2080
+
2081
+ =⇒ Jt ≤ ε.
2082
+ 4
2083
+ Technical results on KL and Uνn
2084
+ 4.1
2085
+ Growth properties under the Kurdyka-�Lojasiewicz inequality
2086
+ We remind here some important consequences of the KL inequality that implies several relationships
2087
+ between the function and the norm of its gradient. The proof of these inequalities may be found in
2088
+ Lemma 15 of [21] (a small mistake appears and we correct the statement with a factor 2 in our work).
2089
+ 17
2090
+
2091
+ Proposition 4.1. Assume that a function V satisfies Hr
2092
+ KL(c, L), then:
2093
+ 2c
2094
+ 1 − r
2095
+
2096
+ V 1−r(θ) − min(V )1−r�
2097
+ ≤ ∥∇V (θ)∥2
2098
+ 2 ≤ 2L [V (θ) − min(V )] ,
2099
+ ∀θ ∈ Rd.
2100
+ It is furthermore possible to assess a minimal and maximal growth property of any function that
2101
+ satisfies Hr
2102
+ KL(c, L), which is necessarily lower and upper bounded by a positive power of the distance
2103
+ to its minimizer.
2104
+ Proposition 4.2. Assume that a function V satisfies Hr
2105
+ KL(c, L), then, ∀θ ∈ Rd:
2106
+ V 1+r(θ) − min(V )1+r ≥ (1 + r)c
2107
+ 2
2108
+ ∥θ − arg min V ∥2
2109
+ 2,
2110
+ and
2111
+ V (θ) − min(V ) ≤ L
2112
+ 2 ∥θ − arg min V ∥2
2113
+ 2.
2114
+ A straightforward consequence of the first inequality is then
2115
+ Proposition 4.3. Assume that a function V satisfies Hr
2116
+ KL(c, L), then, ∀θ ∈ Rd:
2117
+ V (θ) ≥ 2−
2118
+ r
2119
+ 1+r
2120
+
2121
+ min(V ) +
2122
+ �(1 + r)c
2123
+ 2
2124
+
2125
+ 1
2126
+ 1+r
2127
+ ∥θ − arg min V ∥
2128
+ 2
2129
+ 1+r
2130
+ 2
2131
+
2132
+ .
2133
+ 4.2
2134
+ Properties of Uνn
2135
+ Proof of Proposition 1.1. First, we observe that if each θ �→ ∇ log pθ(Xi) is L-Lipschitz and θ �→
2136
+ ∇ log π0 is ℓ0-Lipschitz, then the triangle inequality implies that
2137
+ ∥∇Uνn(θ1) − ∇Uνn(θ2)∥2 ≤ (nL + ℓ0)∥θ1 − θ2∥2.
2138
+ Second, we consider the lower-bound property on the curvature and observe that:
2139
+ λ∇2Uνn(θ) =
2140
+ inf
2141
+ e∈Rd:|e|=1 eT (∇2Uνn)(θ)e ≥ 1
2142
+ n
2143
+ n
2144
+
2145
+ i=1
2146
+ inf
2147
+ e∈Rd:|e|=1 eT (∇2UXi)(θ)e.
2148
+ The log concavity of the prior yields
2149
+ λ∇2Uνn(θ) ≥ 1
2150
+ n
2151
+ n
2152
+
2153
+ i=1
2154
+ λ∇2(−n log pθ(Xi)) =
2155
+ n
2156
+
2157
+ i=1
2158
+ λ∇2(− log pθ(Xi)).
2159
+ Then, the Hr
2160
+ KL(c, L) property applied to each term of the sum above and minθ∈Rd − log π0(θ) > 0
2161
+ yields
2162
+ λ∇2Uνn(θ) ≥ c
2163
+ n
2164
+
2165
+ i=1
2166
+ [− log pθ(Xi)]−r ≥ cnr
2167
+ n
2168
+
2169
+ i=1
2170
+ U −r
2171
+ Xi (θ) = cn1+r
2172
+
2173
+ 1
2174
+ n
2175
+ n
2176
+
2177
+ i=1
2178
+ U −r
2179
+ Xi (θ)
2180
+
2181
+ .
2182
+ From the Jensen inequality, we finally deduce that:
2183
+ λ∇2Uνn(θ) ≥ cn1+r
2184
+
2185
+ 1
2186
+ n
2187
+ n
2188
+
2189
+ i=1
2190
+ U −r
2191
+ Xi (θ)
2192
+
2193
+ ≥ cn1+rU −r
2194
+ νn (θ).
2195
+ We conclude that Uνn satisfies Hr
2196
+ KL
2197
+
2198
+ cn1+r, nL + ℓ0
2199
+
2200
+ . For UXi, the proof is similar.
2201
+ Proposition 4.4. We assume Hπ0(ℓ0), Hmin and that for any x: θ �−→ − log pθ(x) satisfies Hr
2202
+ KL(c, L),
2203
+ then:
2204
+ ∥ arg min Uνn∥2 ≲uc d
2205
+ 1+r
2206
+ 2 logβ(1+r)(n)
2207
+ and
2208
+ minθ∈Rd Uνn(θ) ≲uc nd log2β(n).
2209
+ 18
2210
+
2211
+ Proof. Proposition 1.1 shows that Uνn satisfies Hr
2212
+ KL
2213
+
2214
+ cn1+r, nL + ℓ0
2215
+
2216
+ . Therefore, we can apply Propo-
2217
+ sition 4.2 with θ = 0 and deduce that:
2218
+ ∥ arg min Uνn∥2
2219
+ 2 ≤
2220
+ 2
2221
+ (1 + r)cn1+r
2222
+
2223
+ U 1+r
2224
+ νn (0) − min U 1+r
2225
+ νn
2226
+
2227
+ .
2228
+ To obtain an upper bound of Uνn(0) we first bound UXi(0) using Proposition 4.2, for all i, as follows:
2229
+ UXi(0) ≤ min UXi + nL + ℓ0
2230
+ 2
2231
+ ∥ arg min UXi∥2
2232
+ 2 ≲uc d + nd log2β(n) ≲uc nd log2β(n),
2233
+ then Uνn(0) ≲uc nd log2β(n). We deduce that:
2234
+ ∥ arg min Uνn∥2
2235
+ 2 ≤
2236
+ 2
2237
+ (1 + r)cn1+r U 1+r
2238
+ νn (0) ≲uc d1+r log2β(1+r)(n).
2239
+ The second part comes from min Uνn ≤ Uνn(0).
2240
+ 5
2241
+ Smoothness and boundedness of the semi-group
2242
+ Proof of Proposition 3.4. i). The proof relies on an argument set up with a ”fixed” sample (X1, . . . , Xn).
2243
+ Our starting point is Proposition 4.2 and the consequences of the Kurdyka-�Lojasiewicz inequality.
2244
+ Since Hπ0(ℓ0) and θ �→ − log pθ(Xi) satisfies Hr
2245
+ KL(c, L), then Proposition 1.1 shows that Uνn satisfies
2246
+ Hr
2247
+ KL
2248
+
2249
+ cn1+r, nL + ℓ0
2250
+
2251
+ . Therefore, we can apply Proposition 4.2 and deduce that:
2252
+ ∥θ − arg min Uνn∥2
2253
+ 2 ≤
2254
+ 2
2255
+ (1 + r)cn1+r
2256
+
2257
+ U 1+r
2258
+ νn (θ) − min U 1+r
2259
+ νn
2260
+
2261
+
2262
+ 2
2263
+ (1 + r)cn1+r U 1+r
2264
+ νn (θ).
2265
+ If Id refers to the identity map, we use the fact that for any distribution µ, we have V ar[µ] ≤ µ[∥Id−a∥2
2266
+ 2]
2267
+ for any a ∈ Rd so that a straightforward consequence with a = arg min Uνn is then:
2268
+ V ar(µn) ≤
2269
+
2270
+ Rd ∥θ − arg min Uνn∥2
2271
+ 2dµn(θ) ≤
2272
+ 2
2273
+ (1 + r)cn1+r µn[U 1+r
2274
+ νn ].
2275
+ We then use the ergodic behaviour of (θt)t≥0 and observe that there exists a constant C independent
2276
+ from n and d such that:
2277
+ V ar(µn) ≤
2278
+ 2
2279
+ (1 + r)cn1+r lim sup
2280
+ t≥0
2281
+ E[U 1+r
2282
+ νn (θt)]
2283
+ ≤ C
2284
+
2285
+ d log2β(n)
2286
+ �(1+r)2
2287
+ ,
2288
+ where the last inequality comes from Proposition 5.1. We now use the Bobkov bound on the Poincar´e
2289
+ constant for log-concave distribution (see Theorem 1.2 of [4]) and deduce that a universal constant K
2290
+ exists such that:
2291
+ CP (µn) ≥
2292
+ 1
2293
+ 4K2V ar(µn).
2294
+ Using the upper bound of the variance, we deduce that a universal κ > 0 exists such that:
2295
+ CP (µn) ≥
2296
+ κ
2297
+
2298
+ d log2β(n)
2299
+ �(1+r)2 .
2300
+ ii). For the second point, we consider a situation on average over the samples and the result uses the
2301
+ concentration of the posterior distribution around its mean. We know from Theorem 3 of [21] that a
2302
+ constant c > 0 exists such that:
2303
+ E(X1,...,Xn)∼Pθ0[Var(µn)] ≤ cǫ2
2304
+ n,d,
2305
+ with ǫn,d =
2306
+
2307
+ Ld log n
2308
+ n
2309
+ �α−1
2310
+ . The result follows using the Jensen inequality and the Bobkov bound.
2311
+ 19
2312
+
2313
+ Proof of Proposition 3.5. i). We first establish the boundedness of f0.
2314
+ From our assumptions, we
2315
+ apply Proposition 1.1 and obtain that Uνn satisfies Hr
2316
+ KL
2317
+
2318
+ cn1+r, nL + ℓ0
2319
+
2320
+ . If θ⋆
2321
+ n = arg min Uνn, we
2322
+ then deduce from Proposition 4.2 that:
2323
+ f0(θ) = n0(θ)
2324
+ µn(θ) = Zne−
2325
+ ∥θ∥2
2326
+ 2
2327
+ 2σ2 +Uνn(θ)
2328
+ (2π)d/2σd
2329
+ ≤ Zne−
2330
+ ∥θ∥2
2331
+ 2
2332
+ 2σ2 +Uνn(θ⋆
2333
+ n)+ (nL+ℓ0)
2334
+ 2
2335
+ ∥θ−θ⋆
2336
+ n∥2
2337
+ 2
2338
+ (2π)d/2σd
2339
+ .
2340
+ (32)
2341
+ We compute an upper bound of Zn and use the lower bound of Uνn induced by Proposition 4.3:
2342
+ Zn =
2343
+
2344
+ Rd e−Uνn(θ)dθ
2345
+
2346
+
2347
+ Rd e
2348
+ −2
2349
+
2350
+ r
2351
+ 1+r
2352
+
2353
+ Uνn(θ⋆
2354
+ n)+n(
2355
+ (1+r)c
2356
+ 2
2357
+ )
2358
+ 1
2359
+ 1+r ∥θ−θ⋆
2360
+ n∥
2361
+ 2
2362
+ 1+r
2363
+ 2
2364
+
2365
+
2366
+ ≤ e−2
2367
+
2368
+ r
2369
+ 1+r Uνn(θ⋆
2370
+ n)
2371
+
2372
+ Rd e−nar∥θ∥
2373
+ 2
2374
+ 1+r
2375
+ 2
2376
+ dθ,
2377
+ with ar = ((1+r)c)
2378
+ 1
2379
+ 1+r
2380
+ 2
2381
+ . Using the well known equality:
2382
+
2383
+ Rd e−a|θ|ℓdθ =
2384
+ dπd/2Γ(d/ℓ)
2385
+ ℓad/ℓΓ(d/2 + 1),
2386
+ ∀a > 0,
2387
+ ∀ℓ > 0.
2388
+ we then deduce with a = nar and ℓ =
2389
+ 2
2390
+ 1+r that:
2391
+ Zn ≤ e−2
2392
+
2393
+ r
2394
+ 1+r Uνn(θ⋆
2395
+ n)
2396
+
2397
+ Rd e−nar∥θ∥
2398
+ 2
2399
+ 1+r
2400
+ 2
2401
+ dθ ≤ d(1 + r)
2402
+ 2
2403
+ πd/2
2404
+ (nar)
2405
+ d(1+r)
2406
+ 2
2407
+ Γ
2408
+
2409
+ d(1+r)
2410
+ 2
2411
+
2412
+ Γ
2413
+ � d
2414
+ 2 + 1
2415
+ � .
2416
+ From standard relationships on the Gamma function:
2417
+ Zn ≤ 2
2418
+ �21+rπ
2419
+ cn1+r
2420
+ � d
2421
+ 2
2422
+ d
2423
+ dr
2424
+ 2 .
2425
+ (33)
2426
+ We gather Equations (32) and (33) and obtain that:
2427
+ f0(θ) ≤ 2eUνn(θ⋆
2428
+ n)
2429
+
2430
+ 2
2431
+ cσ2n1+r
2432
+ � d
2433
+ 2
2434
+ d
2435
+ dr
2436
+ 2 e−
2437
+ ∥θ∥2
2438
+ 2
2439
+ 2σ2 + (nL+ℓ0)
2440
+ 2
2441
+ ∥θ−θ⋆
2442
+ n∥2
2443
+ 2.
2444
+ For all σ2 <
2445
+ 1
2446
+ nL+ℓ0 , a straightforward optimization on θ yields :
2447
+ ∥f0∥∞ ≤ 2eUνn(θ⋆
2448
+ n)
2449
+
2450
+ 2
2451
+ cσ2n1+r
2452
+ � d
2453
+ 2
2454
+ d
2455
+ dr
2456
+ 2 exp
2457
+
2458
+ (nL + ℓ0)
2459
+ 2(1 − σ2(nL + ℓ0))∥θ⋆
2460
+ n∥2
2461
+ 2
2462
+
2463
+ .
2464
+ Then, the choice
2465
+ c1
2466
+ nL+ℓ0 ≤ σ2 ≤
2467
+ c2
2468
+ nL+ℓ0 , where 0 < c1 ≤ c2 < 1 in Hn0(L, ℓ0) and the bounds of ∥θ⋆
2469
+ n∥2
2470
+ 2
2471
+ and Uνn(θ⋆
2472
+ n) in Proposition 4.4 lead to :
2473
+ ∥f0∥∞ ≤ 2
2474
+ �C1d
2475
+ n
2476
+ � dr
2477
+ 2
2478
+ exp
2479
+
2480
+ C2nd1+r log2β(1+r)(n)
2481
+
2482
+ ,
2483
+ where C1 and C2 are universal constants.
2484
+ ii). This result is an almost standard consequence of the maximum principle for a Markov semi-group
2485
+ property with a Brownian diffusion. For any bounded measurable h > 0, we observe that Pth > 0
2486
+ using the Markov property, and we are led to define gt as the following function gt := √Pth. We then
2487
+ introduce θ(t) and θ(t) as:
2488
+ θ(t) = arg max gt(θ)
2489
+ and
2490
+ θ(t) = arg min gt(θ).
2491
+ 20
2492
+
2493
+ The chain rule yields:
2494
+ d
2495
+ dtOsc(gt)
2496
+ =
2497
+ d
2498
+ dt
2499
+
2500
+ gt(θ(t)) − gt(θ(t))
2501
+
2502
+ =
2503
+ dgt
2504
+ dt (θ(t)) +
2505
+
2506
+ ∇gt(θ(t)), dθ(t)
2507
+ dt
2508
+
2509
+ − dgt
2510
+ dt (θ(t)) −
2511
+
2512
+ ∇gt(θ(t)), dθ(t)
2513
+ dt
2514
+
2515
+ .
2516
+ (34)
2517
+ We compute:
2518
+ dgt
2519
+ dt (θ)
2520
+ =
2521
+ 1
2522
+ 2√Pth
2523
+ dPth
2524
+ dt (θ)
2525
+ =
2526
+ 1
2527
+ 2√PthGtPth(θ)
2528
+ =
2529
+ 1
2530
+ 2
2531
+
2532
+ Pth(θ)
2533
+
2534
+
2535
+ n
2536
+
2537
+ i=1
2538
+ ⟨∇θPth(θ), ∇θUXi(θ)⟩mt(Xi|θ) + ∆θPth(θ)
2539
+
2540
+ .
2541
+ (35)
2542
+ Now, we use that θ(t) = arg max gt = arg max Pth, (a similar argument holds for θ(t)):
2543
+ ∇θgt(θ(t)) = 0,
2544
+ ∇θPth(θ(t)) = 0
2545
+ and
2546
+ ∆θPth(θ(t)) ≤ 0.
2547
+ then:
2548
+ d
2549
+ dtOsc(gt)
2550
+ =
2551
+ dgt
2552
+ dt (θ(t)) − dgt
2553
+ dt (θ(t))
2554
+ =
2555
+ ∆θPth
2556
+ 2√Pth(θ(t)) − ∆θPth
2557
+ 2√Pth(θ(t))
2558
+ (36)
2559
+
2560
+ 0.
2561
+ We have therefore shown that Osc(√Pth) is decreasing in t ≥ 0, which ends the proof.
2562
+ Proof of Lemma 2.1. We proceed as in Proposition 3 of [33] to justify the use of the Lebesgue domi-
2563
+ nated convergence theorem for the derivation of the integral involved in our statement. We can then
2564
+ deduce that:
2565
+ ∂t
2566
+ ��
2567
+ Rd ft(θ)dnt(θ)
2568
+
2569
+ =
2570
+
2571
+ Rd ∂t{ft(θ)}dnt(θ) +
2572
+
2573
+ Rd ft(θ)∂t{nt(θ)}dθ.
2574
+ We leave the first term unchanged and now focus on the second term:
2575
+
2576
+ Rd ft(θ)∂t{nt(θ)}dθ
2577
+ =
2578
+
2579
+ Rd ft(θ)∂t
2580
+ � n
2581
+
2582
+ i=1
2583
+ mt(θ, Xi)
2584
+
2585
+
2586
+ =
2587
+
2588
+ Rd
2589
+ n
2590
+
2591
+ i=1
2592
+ ft(θ)∂t{mt(θ, Xi)}dθ
2593
+ =
2594
+
2595
+ Rd
2596
+ n
2597
+
2598
+ i=1
2599
+ Lft(θ) mt(θ, Xi)dθ,
2600
+ where we used the definition of nt in the first step and Kolmogorov backward equation (10) in the last
2601
+ one. Since the function ft(θ) does not depend on x, we observe that L2ft(θ) = 0 and we only need to
2602
+ compute the remaining term L1ft(θ):
2603
+
2604
+ Rd ft(θ)∂t{nt(θ)}dθ
2605
+ =
2606
+
2607
+ Rd
2608
+ n
2609
+
2610
+ i=1
2611
+ L1ft(θ) mt(θ, Xi)dθ
2612
+ (37)
2613
+ =
2614
+
2615
+ Rd
2616
+ n
2617
+
2618
+ i=1
2619
+ [−⟨∇θft(θ), ∇θUXi(θ)⟩ + ∆θft(θ)] mt(θ, Xi)dθ
2620
+ =
2621
+
2622
+
2623
+ Rd
2624
+ n
2625
+
2626
+ i=1
2627
+ ⟨∇θft(θ), ∇θUXi(θ)⟩mt(Xi|θ)dnt(θ) +
2628
+
2629
+ Rd ∆θft(θ)dnt(θ)
2630
+ =
2631
+
2632
+ Rd Gtft(θ)dnt(θ),
2633
+ (38)
2634
+ 21
2635
+
2636
+ where we used the fact that mt(θ, Xi) = mt(Xi|θ)nt(θ).
2637
+ 5.1
2638
+ Moments upper bounds
2639
+ Proposition 5.1. Assume Hn0(L, ℓ0), Hπ0(ℓ0), Hmin and that for each Xi, θ �→ − log pθ(Xi) satisfies
2640
+ Hr
2641
+ KL(c, L). Then:
2642
+ i) Three positive constants C1, C2 and C3, independent from n and d, exist such that for any t > 0:
2643
+ E
2644
+
2645
+ e
2646
+ (1+r)nc
2647
+ 1
2648
+ 1+r
2649
+ 16
2650
+ (∥θt∥2
2651
+ 2+1)
2652
+ 1
2653
+ 1+r
2654
+
2655
+ ≤ C1
2656
+
2657
+ d log2β(n)
2658
+
2659
+ r
2660
+ 1+r eC2nd log2β(n) + Cd
2661
+ 3e
2662
+ (1+r)nc
2663
+ 1
2664
+ 1+r
2665
+ 16
2666
+ .
2667
+ ii) For any t > 0 and for any α ≥ 1:
2668
+ E[U α
2669
+ νn(θt)] ≲uc nα �
2670
+ d log2β(n)
2671
+ �α(1+r)
2672
+ .
2673
+ Proof of i). We consider the function f(θ) = exp
2674
+ � a
2675
+ 2(∥θ∥2
2676
+ 2 + 1)ρ�
2677
+ where 0 < ρ < 1, which is twice
2678
+ differentiable. The gradient of f is computed as:
2679
+ ∇f(θ) = aρ(∥θ∥2
2680
+ 2 + 1)ρ−1f(θ)θ.
2681
+ The Laplace operator is given as:
2682
+ ∆f(θ) = aρ(∥θ∥2
2683
+ 2 + 1)ρ−2f(θ)
2684
+
2685
+ aρ(∥θ∥2
2686
+ 2 + 1)ρ∥θ∥2
2687
+ 2 + (d + 2ρ − 2)∥θ∥2
2688
+ 2 + d
2689
+
2690
+ .
2691
+ We then deduce that for any θ ∈ Rd:
2692
+ Gtf(θ)
2693
+ =
2694
+
2695
+ n
2696
+
2697
+ i=1
2698
+ ⟨∇UXi, ∇f(θ)⟩mt(Xi|θ) + ∆f(θ)
2699
+ =
2700
+ aρ(∥θ∥2
2701
+ 2 + 1)ρ−2f(θ)
2702
+
2703
+ − (∥θ∥2
2704
+ 2 + 1)
2705
+ n
2706
+
2707
+ i=1
2708
+ ⟨θ, ∇θUXi(θ)⟩mt(Xi|θ)
2709
+ +aρ(∥θ∥2
2710
+ 2 + 1)ρ∥θ∥2
2711
+ 2 + (d + 2ρ − 2) ∥θ∥2
2712
+ 2 + d
2713
+
2714
+
2715
+ aρ(∥θ∥2
2716
+ 2 + 1)ρ−2f(θ)
2717
+
2718
+ − (∥θ∥2
2719
+ 2 + 1)
2720
+ n
2721
+
2722
+ i=1
2723
+ (UXi(θ) − UXi(0)) mt(Xi|θ)
2724
+ +aρ(∥θ∥2
2725
+ 2 + 1)ρ+1 + d
2726
+
2727
+ ∥θ∥2
2728
+ 2 + 1
2729
+ � �
2730
+
2731
+ aρ(∥θ∥2
2732
+ 2 + 1)ρ−1f(θ)
2733
+
2734
+
2735
+ n
2736
+
2737
+ i=1
2738
+ (UXi(θ) − UXi(0)) mt(Xi|θ) + a��(∥θ∥2
2739
+ 2 + 1)ρ + d
2740
+
2741
+ ,
2742
+ where we used the convexity of Ux for any position x.
2743
+ Let us establish the bounds of UXi(θ) and UXi(0).
2744
+ We denote by θi = arg min UXi and from
2745
+ Hypothesis Hmin, there exist two positive constants K1 and K2 independent on n and d such that:
2746
+ maxi ∥θi∥2
2747
+ 2 ≤ K1d log2β(n)
2748
+ and
2749
+ maxi UXi(θi) ≤ K2d.
2750
+ We apply Proposition 4.2 to each non-negative function UXi that satisfies Hr
2751
+ KL
2752
+
2753
+ cn1+r, nL + ℓ0
2754
+
2755
+ , then
2756
+ we obtain that:
2757
+ UXi(θ) ≥ n
2758
+ �(1 + r)c
2759
+ 2
2760
+
2761
+ 1
2762
+ 1+r
2763
+ ∥θ − θi∥
2764
+ 2
2765
+ 1+r
2766
+ 2
2767
+ .
2768
+ Since
2769
+ 2
2770
+ 1+r > 1, the Jensen inequality yields (u + v)
2771
+ 2
2772
+ 1+r ≤ 2
2773
+ 1−r
2774
+ 1+r
2775
+
2776
+ u
2777
+ 2
2778
+ 1+r + v
2779
+ 2
2780
+ 1+r
2781
+
2782
+ , for all (u, v) ∈ R2
2783
+ + and
2784
+ we deduce that:
2785
+ ∥θ − θi∥
2786
+ 2
2787
+ 1+r
2788
+ 2
2789
+ ≥ 2
2790
+ r−1
2791
+ 1+r ∥θ∥
2792
+ 2
2793
+ 1+r
2794
+ 2
2795
+ − ∥θi∥
2796
+ 2
2797
+ 1+r
2798
+ 2
2799
+ ≥ 2
2800
+ r−1
2801
+ 1+r ∥θ∥
2802
+ 2
2803
+ 1+r
2804
+ 2
2805
+
2806
+
2807
+ K1d log2β(n)
2808
+
2809
+ 1
2810
+ 1+r .
2811
+ 22
2812
+
2813
+ Then we use this inequality to obtain a lower bound of UXi:
2814
+ UXi(θ) ≥ 2n
2815
+ �(1 + r)c
2816
+ 8
2817
+
2818
+ 1
2819
+ 1+r
2820
+ ∥θ∥
2821
+ 2
2822
+ 1+r
2823
+ 2
2824
+ − n
2825
+ �(1 + r)c
2826
+ 2
2827
+
2828
+ 1
2829
+ 1+r
2830
+ (K1d log2β(n))
2831
+ 1
2832
+ 1+r .
2833
+ Moreover an upper bound of max UXi(0) comes from Proposition 1.1 and 4.2 as follows:
2834
+ UXi(0) ≤ UXi(θi) + nL + ℓ0
2835
+ 2
2836
+ ∥θi∥2
2837
+ 2 ≤ K2d + K1(nL + ℓ0)d log2β(n)
2838
+ 2
2839
+ .
2840
+ Using the previous bounds and the fact that �n
2841
+ i=1 mt(Xi|θ) = 1, it yields:
2842
+ n
2843
+
2844
+ i=1
2845
+ (UXi(θ) − UXi(0)) mt(Xi|θ)
2846
+
2847
+ 2n
2848
+ �(1 + r)c
2849
+ 8
2850
+
2851
+ 1
2852
+ 1+r
2853
+ ∥θ∥
2854
+ 2
2855
+ 1+r
2856
+ 2
2857
+ − n
2858
+ �(1 + r)c
2859
+ 2
2860
+
2861
+ 1
2862
+ 1+r
2863
+ (K1d log2β(n))
2864
+ 1
2865
+ 1+r − K2d − K1(nL + ℓ0)d log2β(n)
2866
+ 2
2867
+
2868
+ nc
2869
+ 1
2870
+ 1+r
2871
+ 4
2872
+ ∥θ∥
2873
+ 2
2874
+ 1+r
2875
+ 2
2876
+ − nc
2877
+ 1
2878
+ 1+r (K1d log2β(n))
2879
+ 1
2880
+ 1+r − K2d − K1(nL + ℓ0)d log2β(n)
2881
+ 2
2882
+ ,
2883
+ where we used some uniform upper bounds when r ∈ [0, 1). We then choose ρ =
2884
+ 1
2885
+ 1+r and we deduce
2886
+ that:
2887
+ Gtf(θ)
2888
+
2889
+ a
2890
+ 1 + r (∥θ∥2
2891
+ 2 + 1)−
2892
+ r
2893
+ 1+r f(θ)
2894
+
2895
+ −nc
2896
+ 1
2897
+ 1+r
2898
+ 4
2899
+ ∥θ∥
2900
+ 2
2901
+ 1+r
2902
+ 2
2903
+ + nc
2904
+ 1
2905
+ 1+r (K1d log2β(n))
2906
+ 1
2907
+ 1+r + K2d
2908
+ +K1(nL + ℓ0)d log2β(n)
2909
+ 2
2910
+ +
2911
+ a
2912
+ (1 + r)(∥θ∥2
2913
+ 2 + 1)
2914
+ 1
2915
+ 1+r + d
2916
+
2917
+
2918
+ a
2919
+ 1 + r (∥θ∥2
2920
+ 2 + 1)−
2921
+ r
2922
+ 1+r f(θ)
2923
+
2924
+
2925
+
2926
+ nc
2927
+ 1
2928
+ 1+r
2929
+ 4
2930
+
2931
+ a
2932
+ (1 + r)
2933
+
2934
+ ∥θ∥
2935
+ 2
2936
+ 1+r
2937
+ 2
2938
+ + nc
2939
+ 1
2940
+ 1+r (K1d log2β(n))
2941
+ 1
2942
+ 1+r
2943
+ +(K2 + 1)d + K1(nL + ℓ0)d log2β(n)
2944
+ 2
2945
+ +
2946
+ a
2947
+ (1 + r)
2948
+
2949
+ ,
2950
+ where we used (∥θ∥2
2951
+ 2 + 1)
2952
+ 1
2953
+ 1+r ≤ ∥θ∥
2954
+ 2
2955
+ 1+r
2956
+ 2
2957
+ + 1 in the second line.
2958
+ We now fix a = n(1+r)c
2959
+ 1
2960
+ 1+r
2961
+ 8
2962
+ and deduce that:
2963
+ Gtf(θ)
2964
+ f(θ)
2965
+
2966
+ n2c
2967
+ 2
2968
+ 1+r
2969
+ 64
2970
+ (∥θ∥2
2971
+ 2 + 1)−
2972
+ r
2973
+ 1+r
2974
+
2975
+ −∥θ∥
2976
+ 2
2977
+ 1+r
2978
+ 2
2979
+ + 8(K1d log2β(n))
2980
+ 1
2981
+ 1+r +
2982
+ +8(K2 + 1)d + 4K1(nL + ℓ0)d log2β(n)
2983
+ nc
2984
+ 1
2985
+ 1+r
2986
+ + 1
2987
+
2988
+ .
2989
+ (39)
2990
+ We then study two complementary situations and below, we denote by Kn,d the radius of the key
2991
+ compact set involved by the previous Lyapunov contraction:
2992
+ K
2993
+ 2
2994
+ 1+r
2995
+ n,d = Cd log2β(n).
2996
+ • When ∥θ∥2 is large enough (∥θ∥2 ≥ Kn,d), we observe that a large enough C > 0 independent from
2997
+ n and d exists such that:
2998
+ ∥θ∥
2999
+ 2
3000
+ 1+r
3001
+ 2
3002
+ ≥ Cd log2β(n) =⇒ Gtf(θ)
3003
+ f(θ)
3004
+ ≤ −
3005
+ n2 �
3006
+ d log2β(n)
3007
+
3008
+ 1
3009
+ 1+r c
3010
+ 2
3011
+ 1+r
3012
+ 128
3013
+ = −an,d.
3014
+ (40)
3015
+ 23
3016
+
3017
+ • When ∥θ∥2 is upper bounded (∥θ∥2 ≤ Kn,d), we use the upper bound stated in Equation (39) and
3018
+ obtain that a universal C1 (whose value may change from line to line) exists such that :
3019
+ ∥θ∥
3020
+ 2
3021
+ 1+r
3022
+ 2
3023
+ ≤ Cd log2β(n) =⇒
3024
+ Gtf(θ) ≤ C1n2f(θ)
3025
+
3026
+ 8(K1d log2β(n))
3027
+ 1
3028
+ 1+r + 8(K2 + 1)d + 4K1(nL + ℓ0)d log2β(n)
3029
+ nc
3030
+ 1
3031
+ 1+r
3032
+ + 1
3033
+
3034
+ ≤ C1n2d log2β(n) exp
3035
+
3036
+ (C + 1)c
3037
+ 1
3038
+ 1+r nd log2β(n)
3039
+ 8
3040
+
3041
+ ≤ bn,deδn,d.
3042
+ (41)
3043
+ We then use Equations (40) and (41) as follows. We define the function ψn,d as ψn,d(t) = E[f(θt)] and
3044
+ use Lemma 2.1:
3045
+ ψ′
3046
+ n,d(t)
3047
+ =
3048
+ E[Gtf(θt)]
3049
+ =
3050
+ E
3051
+
3052
+ Gtf(θt)
3053
+
3054
+ 1∥θt∥2≥Kn,d +
3055
+ 1∥θt∥2≤Kn,d
3056
+ ��
3057
+
3058
+ E
3059
+
3060
+ −an,df(θt)1∥θt∥2≥Kn,d + bn,deδn,d
3061
+ 1∥θt∥2≤Kn,d
3062
+
3063
+
3064
+ −an,dψn,d(t) + an,d
3065
+ sup
3066
+ ∥θ∥2≤Kn,d
3067
+ f(θ) + bn,deδn,d
3068
+
3069
+ −an,dψn,d(t) + (an,d + bn,d)eδn,d.
3070
+ We apply the Gronwall Lemma and obtain that:
3071
+ ∀t > 0
3072
+ ψn,d(t) ≤
3073
+
3074
+ 1 + bn,d
3075
+ an,d
3076
+
3077
+ eδn,d + ψn,d(0)e−an,dt.
3078
+ (42)
3079
+ Using that n0 is a Gaussian distribution, which was fixed in Hn0(L, ℓ0) hypothesis, we find an
3080
+ upper bound for ψn,d(0) = E[f(θ0)] =
3081
+
3082
+ Rd f(θ)dn0(θ) as follows :
3083
+ ψn,d(0)
3084
+ =
3085
+
3086
+ 2πσ2�− d
3087
+ 2
3088
+
3089
+ Rd e
3090
+ a
3091
+ 2(∥θ∥2
3092
+ 2+1)
3093
+ 1
3094
+ 1+r −
3095
+ ∥θ∥2
3096
+ 2
3097
+ 2σ2 dθ
3098
+
3099
+
3100
+ 2πσ2�− d
3101
+ 2 e
3102
+ a
3103
+ 2
3104
+
3105
+ Rd e−
3106
+ ∥θ∥2
3107
+ 2
3108
+ 2 ( 1
3109
+ σ2 −a)dθ,
3110
+ if σ2 ≤
3111
+ 1
3112
+ a =
3113
+ 8
3114
+ n(1+r)c
3115
+ 1
3116
+ 1+r then the integral above is finite. Since c2 < 1 ≤
3117
+ 8L
3118
+ (1+r)c
3119
+ 1
3120
+ 1+r , it guarantees
3121
+ σ2 < 1
3122
+ a, then:
3123
+ ψn,d(0)
3124
+
3125
+
3126
+ 1 − aσ2�− d
3127
+ 2 e
3128
+ a
3129
+ 2
3130
+
3131
+ Cd
3132
+ 3e
3133
+ (1+r)nc
3134
+ 1
3135
+ 1+r
3136
+ 16
3137
+ ,
3138
+ where C3 is a constant independent from n and d.
3139
+ Finally, using the value of an,d and bn,d in (42), we deduce that:
3140
+ E
3141
+
3142
+ e
3143
+ (1+r)nc
3144
+ 1
3145
+ 1+r
3146
+ 16
3147
+ (∥θt∥2
3148
+ 2+1)
3149
+ 1
3150
+ 1+r
3151
+
3152
+ ≤ C1
3153
+
3154
+ d log2β(n)
3155
+
3156
+ r
3157
+ 1+r eC2nd log2β(n) + Cd
3158
+ 3e
3159
+ (1+r)nc
3160
+ 1
3161
+ 1+r
3162
+ 16
3163
+ ,
3164
+ ∀t > 0.
3165
+ where C2 is another universal constant, which concludes the proof.
3166
+ Proof of ii). We consider α > 1 and below, C > 0 refers to a “constant” independent from n and d,
3167
+ whose value may change from line to line. Our starting point is the upper bound of the exponential
3168
+ moments obtained in i). Proposition 1.1 shows that Uνn satisfies Hr
3169
+ KL
3170
+
3171
+ cn1+r, nL + ℓ0
3172
+
3173
+ , then thanks
3174
+ to Proposition 4.2:
3175
+ E[U α
3176
+ νn(θt)] ≤ E
3177
+ ��
3178
+ min Uνn + Cn∥θt − θ∗
3179
+ n∥2
3180
+ 2
3181
+ �α�
3182
+ ≤ E
3183
+ ��
3184
+ min Uνn + Cn∥θ∗
3185
+ n∥2
3186
+ 2 + Cn∥θt∥2
3187
+ 2
3188
+ �α�
3189
+ ,
3190
+ 24
3191
+
3192
+ where θ∗
3193
+ n = arg min Uνn.
3194
+ By using Proposition 4.4 and the inequality derived from the Jensen inequality (a+b)β ≤ cβ(aβ+bβ)
3195
+ for (a, b) ∈ R2
3196
+ + and β ≥ 1, we obtain that:
3197
+ (min Uνn+ Cn∥θ∗
3198
+ n∥2
3199
+ 2 + Cn∥θt∥2
3200
+ 2
3201
+ �α
3202
+ ≤ C
3203
+
3204
+ nd log2β(n) + nd1+r log2β(1+r)(n) + n∥θt∥2
3205
+ 2
3206
+ �α
3207
+ ≤ Cnα
3208
+ ��
3209
+ d log2β(n)
3210
+ �α(1+r)
3211
+ + ∥θt∥2α
3212
+ 2
3213
+
3214
+ ≤ Cnα
3215
+ ��
3216
+ d log2β(n)
3217
+ �α(1+r)
3218
+ + k−α(1+r) logα(1+r)
3219
+
3220
+ ek∥θt∥
3221
+ 2
3222
+ 1+r
3223
+ 2
3224
+ ��
3225
+ ≤ Cnα
3226
+ ��
3227
+ d log2β(n)
3228
+ �α(1+r)
3229
+ + k−α(1+r) logα(1+r)
3230
+
3231
+ eα(1+r)−1+k∥θt∥
3232
+ 2
3233
+ 1+r
3234
+ 2
3235
+ ��
3236
+ .
3237
+ The Jensen inequality and the concavity of x �→ logp(x) on [ep−1, +∞[ when p ≥ 1 yield
3238
+ E[U α
3239
+ νn(θt)]
3240
+ ≤ Cnα
3241
+ ��
3242
+ d log2β(n)
3243
+ �α(1+r)
3244
+ + k−α(1+r)E
3245
+
3246
+ logα(1+r)
3247
+
3248
+ eα(1+r)−1+k∥θt∥
3249
+ 2
3250
+ 1+r
3251
+ 2
3252
+ ���
3253
+ ≤ Cnα
3254
+ ��
3255
+ d log2β(n)
3256
+ �α(1+r)
3257
+ + k−α(1+r) logα(1+r)
3258
+
3259
+ E
3260
+
3261
+ eα(1+r)−1+k∥θt∥
3262
+ 2
3263
+ 1+r
3264
+ 2
3265
+ ���
3266
+ ≤ Cnα
3267
+ ��
3268
+ d log2β(n)
3269
+ �α(1+r)
3270
+ + k−α(1+r)
3271
+
3272
+ α(1 + r) − 1 + log E
3273
+
3274
+ ek∥θt∥
3275
+ 2
3276
+ 1+r
3277
+ 2
3278
+ ��α(1+r)�
3279
+ ≤ Cnα
3280
+ ��
3281
+ d log2β(n)
3282
+ �α(1+r)
3283
+ + k−α(1+r)
3284
+
3285
+ α(1 + r) − 1 + log E
3286
+
3287
+ ek(∥θt∥2
3288
+ 2+1)
3289
+ 1
3290
+ 1+r
3291
+ ��α(1+r)�
3292
+ ,
3293
+ where we used in the last inequality that ∥θ∥2
3294
+ 2 ≤ ∥θ∥2
3295
+ 2 + 1.
3296
+ We then apply i) in Proposition 5.1, we choose k = (1+r)nc
3297
+ 1
3298
+ 1+r
3299
+ 16
3300
+ and obtain that:
3301
+ E[U α
3302
+ νn(θt)]
3303
+ ≤ Cnα
3304
+
3305
+
3306
+
3307
+ d log2β(n)
3308
+ �α(1+r)
3309
+ +
3310
+ 1
3311
+ nα(1+r)
3312
+
3313
+ 1 + log E
3314
+
3315
+ e
3316
+ (1+r)nc
3317
+ 1
3318
+ 1+r
3319
+ 16
3320
+ (∥θt∥2
3321
+ 2+1)
3322
+ 1
3323
+ 1+r
3324
+ ��α(1+r)
3325
+
3326
+ ≤ C
3327
+
3328
+ nα �
3329
+ d log2β(n)
3330
+ �α(1+r)
3331
+ + 1
3332
+ nαr
3333
+
3334
+ 1 + log
3335
+
3336
+ C1
3337
+
3338
+ d log2β(n)
3339
+
3340
+ r
3341
+ 1+r eC2nd log2β(n) + Cd
3342
+ 3e
3343
+ (1+r)nc
3344
+ 1
3345
+ 1+r
3346
+ 16
3347
+ ��α(1+r)
3348
+
3349
+ ≤ Cnα �
3350
+ d log2β(n)
3351
+ �α(1+r)
3352
+ ,
3353
+ where we used in the previous lines simple algebra and log(a+b) ≤ log(2)+log(a)+log(b) when a ≥ 1
3354
+ and b ≥ 1. This concludes the proof.
3355
+ References
3356
+ [1] Bakry, D. and Cattiaux, P. and Guillin, A. : Rate of convergence for ergodic continuous Markov
3357
+ processes: Lyapunov versus Poincar´e. Journal of Functional Analysis 254, 3, (2008), 727–759.
3358
+ [2] Bakry, D. and Emery, M. : Diffusions hypercontractives. S´eminaire de probabilit´es 1123, XIX,
3359
+ (1985), 177–206.
3360
+ 25
3361
+
3362
+ [3] Bakry, D. and Gentil, I. and Ledoux, M. : Analysis and geometry of Markov diffusion operators.
3363
+ Springer. 103, (2014).
3364
+ [4] Bobkov, S. G. : Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures.
3365
+ Annals of Probability 27, (1999), 1903–1921.
3366
+ [5] Bolte, J. and Daniilidis, A. and Ley, O. and Mazet, L. : Characterizations of �Lojasiewicz inequal-
3367
+ ities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc. 362, (2010), 3319–3363.
3368
+ [6] Cattiaux, P. and Fathi, M. and Guillin, A. : Self-improvement of the Bakry-Emery criterion for
3369
+ Poincar´e inequalities and Wasserstein contraction using variable curvature bounds. Journal de
3370
+ Math´ematiques Pures et Appliqu´ees, (2022).
3371
+ [7] Cattiaux, P. and Gentil, I. and Guillin, A. : Weak logarithmic Sobolev inequalities and entropic
3372
+ convergence. Probability theory and related fields 139, 3, (2007), 563–603.
3373
+ [8] Cattiaux, P. and Guillin, A. : Hitting times, functional inequalities, Lyapunov conditions and
3374
+ uniform ergodicity. Journal of Functional Analysis 272, 6, (2017), 2361–2391.
3375
+ [9] Bakry, D. and Cattiaux, P. and Guillin, A. : Rate of convergence for ergodic continuous Markov
3376
+ processes : Lyapunov versus Poincar´e. Journal of Functional Analysis 254, 3, (2008), 727–759.
3377
+ [10] Cattiaux, P. and Guillin, A. and Wang, F. and Wu, L. : Lyapunov conditions for Super Poincar´e
3378
+ inequalities. Journal of Functional Analysis. 256, 6, (2009), 1821–1841.
3379
+ [11] Dalalyan, A. and Tsybakov, A. : Sparse regression learning by aggregation and Langevin Monte-
3380
+ Carlo. J. Comput. System Sci. , 78, 5, (2012), 1423–1443.
3381
+ [12] Dalalyan, A. : Theoretical guarantees for approximate sampling from a smooth and log-concave
3382
+ density. J. R. Stat. Soc. B,79, (2017), 651–676.
3383
+ [13] Dalalyan, A. and Karagulyan, A. : User-friendly guarantees for the Langevin Monte Carlo with
3384
+ inaccurate gradient. Stoch. Proc. Appl., 129, 12, (2019), 5278–5311.
3385
+ [14] Dalalyan, A. and Riou-Durand, L. :
3386
+ On sampling from a log-concave density using kinetic
3387
+ Langevin diffusions. Bernoulli, 26, 3, 1956–1988.
3388
+ [15] Dalalyan, A. and Karagulyan, A. and Riou-Durand, L. : Bounding the Error of Discretized
3389
+ Langevin Algorithms for Non-Strongly Log-Concave Targets. Journal of Machine Learning Re-
3390
+ search, 23, 235, (2022), 1–38.
3391
+ [16] Durmus, A. and Moulines, E. : High-dimensional Bayesian inference via the unadjusted Langevin
3392
+ algorithm, Bernoulli, 25, 4A, (2019), 2854–2882.
3393
+ [17] Ethier, S. N. and Kurtz, T. G. : Markov processes – characterization and convergence, John
3394
+ Wiley & Sons Inc. Wiley Series in Probability and Mathematical Statistics: Probability and
3395
+ Mathematical Statistics, New York, (1986).
3396
+ [18] Freidlin, M. and Wentzell, A. : Random Perturbations of Dynamical Systems, Springer Verlag,
3397
+ 1984.
3398
+ [19] Gadat, S. and Gavra, I. and Risser, L. : How to calculate the barycenter of a weighted graph.
3399
+ Mathematics of Operation Research, 43, 4, (2018).
3400
+ [20] Gadat, S. and Panloup, F. : Optimal non-asymptotic bound of the Ruppert-Polyak averaging
3401
+ without strong convexity. Stochastic Processes and their Applications, 156, (2022), 312–348.
3402
+ [21] Gadat, S. and Panloup, F. and Pellegrini, C. : On the cost of Bayesian posterior mean strategy
3403
+ for log-concave models. Preprint, (2022).
3404
+ 26
3405
+
3406
+ [22] Gadat, S. and Panloup, F. and Pellegrini, C. : Large Deviation Principle for invariant distributions
3407
+ of Memory Gradient Diffusions. Electronic Journal of Probability, 81, (2013), 1–34.
3408
+ [23] Gross, L. : Logarithmic Sobolev inequalities. American Journal of Mathematics, 4, 97, (1975),
3409
+ 1061–1083.
3410
+ [24] Hajeck, B.: Cooling schedules for optimal annealing. Mathematics of Operation Research, 12, 2,
3411
+ (1988), 311–329.
3412
+ [25] H¨ormander, L. : Hypoelliptic second order differential equations. Acta Mathematica 119, (1967),
3413
+ 147–171.
3414
+ [26] Holley, R. and Stroock, D. : Simulated annealing via Sobolev inequalities. Communications in
3415
+ Mathematical Physics 115, 4, (1988), 553–569.
3416
+ [27] Khasminskii , R. : Stochastic Stability of Differential Equations. Stochastic Modelling and Applied
3417
+ Probability, Springer, (2012).
3418
+ [28] Kurdyka, K. : On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier
3419
+ (Grenoble) 48, 3, (1998), 769–783.
3420
+ [29] Kusuoka, S. and Stroock, D. : Applications of the Malliavin Calculus, Part I. Stochastic Analysis.
3421
+ Elsevier 32, North-Holland Mathematical Library, (1984), 271–306.
3422
+ [30] Lojasiewicz, S. : Une propri´et´e topologique des sous-ensembles analytiques r´eels. Editions du
3423
+ centre National de la Recherche Scientifique, Paris, Les ´Equations aux D´eriv´ees Partielles. (1963),
3424
+ 87–89.
3425
+ [31] Ma, Y. and Chen, Y. and Jin, C. and Flammarion, N. and Jordan, M. I : Sampling can be faster
3426
+ than optimization. Proceedings of the National Academy of Sciences 116, 42, 20881–20885.
3427
+ [32] Meyn, S. and Tweedie, R. : Markov chains and stochastic stability. Springer Science & Business
3428
+ Media. (2012).
3429
+ [33] Miclo, L. : Recuit simul´e sur Rn. ´Etude de l’´evolution de l’´energie libre. Annales de l’IHP Proba-
3430
+ bilit´es et statistiques 28, 2, (1992), 235–266.
3431
+ [34] Mou, W. and Flammarion, N. and Wainwright, M. J. and Bartlett, P. L. : Improved bounds
3432
+ for discretization of Langevin diffusions: Near-optimal rates without convexity. Bernoulli 28, 3,
3433
+ (2022), 1577–1601.
3434
+ [35] Raginsky, M. and Rakhlin, A. and Telgarsky, M. : Non-Convex Learning via Stochastic Gradient
3435
+ Langevin Dynamics: A Nonasymptotic Analysis. Proceedings of Machine Learning Research, 65,
3436
+ (2017), 1–30.
3437
+ [36] Robbins, H. and Monro, S. : A Stochastic Approximation Method. The Annals of Mathematical
3438
+ Statistics 22, 3, (1951): 400-407.
3439
+ [37] Wang, F. : Functional Inequalities for Empty Essential Spectrum. Journal of Functional Analysis
3440
+ 170, 1, (2000), 219–245.
3441
+ [38] Wang, B. and Zou, D. and Gu, Q. and Osher, S. J. : Laplacian Smoothing Stochastic Gradient
3442
+ Markov Chain Monte Carlo. SIAM Journal on Scientific Computing 43, 1, (2021), A26–A53.
3443
+ [39] Welling, M. and Teh, Y. W. : Bayesian learning via stochastic gradient Langevin dynamics.
3444
+ Proceedings of the 28th international conference on machine learning (ICML-11) 28, 3, (2011),
3445
+ 681–688.
3446
+ [40] Xu, P. and Chen, J. and Zou, D. and Gu, Q. : Global Convergence of Langevin Dynamics Based
3447
+ Algorithms for Nonconvex Optimization. Proceedings of the 32nd International Conference on
3448
+ Neural Information Processing Systems. NIPS’18. Curran Associates Inc. (2018), 3126—3137.
3449
+ 27
3450
+
6tE1T4oBgHgl3EQfTQPr/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dAzT4oBgHgl3EQf-f5K/content/tmp_files/2301.01934v1.pdf.txt ADDED
@@ -0,0 +1,920 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ HYPERBOLIC AND SATELLITE LORENZ LINKS
2
+ OBTAINED BY TWISTING
3
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
4
+ Abstract. A Lorenz link is equivalent to a T-link, which is a positive
5
+ braid built by concatenating torus braids of increasing size. When each
6
+ torus braid except the largest is obtained by full twists, then the T-link
7
+ can be described as the Dehn filling of a parent link. In this paper, we
8
+ completely classify when such parent links are hyperbolic. This gives
9
+ a classification of the geometry of T-links obtained by full twists when
10
+ the amount of twisting is large, although the bound on the number
11
+ of required twists is not effective. We also present effective results on
12
+ hyperbolicity for two families of T-links obtained by twisting. Finally,
13
+ we identify families of satellite T-links obtained by half-twists.
14
+ 1. Introduction
15
+ Lorenz links are the closed periodic orbits of a system of equations in-
16
+ vestigated by Lorenz in the 1960s [18]. They exhibit interesting dynamics
17
+ that has led to significant further investigation over the years, in the fields of
18
+ dynamics, geometry, and topology; see for example [9]. These links can be
19
+ described as links on an embedded branched surface in R3, called the Lorenz
20
+ template, due to work of Guckenheimer and Williams [12], and Tucker [22].
21
+ Birman and Williams were the first to investigate Lorenz links through the
22
+ lens of knot theory, in the 1980s [2], and the first to show such links are
23
+ closed positive braids. Birman and Kofman [1] showed that Lorenz links are
24
+ equivalent to T-links, which are positive braids with a particular form; see
25
+ Section 2 below. Thus techniques from braid theory can be brought to bear
26
+ upon Lorenz links via T-links.
27
+ We are interested in the complement of these links, and in particular their
28
+ geometrisation. Thurston showed in the 1980s that all knots in the 3-sphere
29
+ are either torus knots, satellite, or hyperbolic [20], and we refer to this as
30
+ the knot’s geometric type. The geometric type of Lorenz links has been
31
+ considered since work of Birman and Williams in the 1980s [2]. They showed
32
+ that all torus knots are Lorenz knots, and satellites obtained as certain cables
33
+ of Lorenz knots are Lorenz knots. Hyperbolic geometry has been considered
34
+ by Gomes, Franco, and Silva [10, 11], who proved hyperbolicity of Lorenz
35
+ links satisfying certain conditions based on the Lorenz template. Satellite
36
+ links have received additional attention, by El Rifai [7], de Paiva [4], and
37
+ de Paiva and Purcell [6].
38
+ 1
39
+ arXiv:2301.01934v1 [math.GT] 5 Jan 2023
40
+
41
+ 2
42
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
43
+ In spite of this work, there remains no systematic way of determining
44
+ whether a Lorenz link is hyperbolic, toroidal, or satellite using its description
45
+ either on the Lorenz template, or as a closed braid in the form of a T-link.
46
+ These descriptions uniquely determine a link, and hence uniquely determine
47
+ its geometric type, so it is natural to ask for a simple description of geometric
48
+ type based on the description. We focus on T-links in this paper.
49
+ The paper [6] begins a classification of the geometry of T-links, by finding
50
+ examples that are satellite and also by identifying certain “parent links”,
51
+ which give classes of T-links under Dehn filling. While the work in that
52
+ paper finds examples of satellite and hyperbolic links, it is incomplete for
53
+ two reasons:
54
+ (1) First, the hyperbolic geometry of the parent links is used to determine
55
+ geometry of T-links for many examples. But the classification of the
56
+ hyperbolic geometry of the parent links is incomplete.
57
+ (2) Second, because the results are obtained by Dehn filling, they apply
58
+ only to links that admit full twists as T-link parameters, which are
59
+ not required for general T-links.
60
+ In this paper, we extend the classification of geometry of T-links as
61
+ follows. First, we complete the classification of item (1) above: Theorem 3.8
62
+ completely classifies when parent links of fully twisted T-links are hyperbolic.
63
+ This can be seen as an extension of work of Lee [16, Proposition 5.7], who
64
+ proved a similar result for twisted torus knots. Positive twisted torus knots
65
+ are T-links with only one additional torus braid besides the largest. Lee’s
66
+ result essentially proves Theorem 3.8 in the case of only one additional link
67
+ component in the parent. Our result applies to any number of additional
68
+ link components in the parent.
69
+ Theorem 3.8 leads to new infinite families of hyperbolic T-links, determined
70
+ only by parameters in a braid describing the link.
71
+ Theorem 1.1. Fix relatively prime integers q < p, and let a1, . . . , an be
72
+ integers less than p and increasing in value.
73
+ There exists B ≫ 0 with
74
+ the following property. Consider the T-link obtained from the (p, q)-torus
75
+ knot by full twisting at least B times in regions with a1, a2, . . . , an strands,
76
+ respectively. This Lorenz link is hyperbolic if and only if either all ai < q, or
77
+ there is ai > q that is not a multiple of q.
78
+ The T-links of Theorem 1.1 must be obtained by full twisting, and we
79
+ currently do not have a concrete, universal bound on the number of full
80
+ twists that are required in general; this is the constant B in the above result.
81
+ In Section 4 we improve this: We present two theorems that guarantee
82
+ hyperbolicity of T-links with full twists, given only their parameters, where
83
+ the bounds on numbers of full twists required are explicit and relatively
84
+ simple. The results are Theorem 4.3 and Theorem 4.5.
85
+ It seems much more difficult to address item (2), especially in the hyperbolic
86
+ case. There are some partial results known, for example by de Paiva for
87
+ torus knots [5]. In this paper, we give more results in the satellite case. We
88
+
89
+ LORENZ LINKS OBTAINED BY TWISTING
90
+ 3
91
+ extend the results on satellite knots, requiring full twists in [6], to families of
92
+ T-links with both full twists and half twists, which gives many more families
93
+ in a very natural way.
94
+ Theorem 1.2. For q < p integers, let K be a T-link obtained from the
95
+ (p, q)-torus link by half-twisting in circles encircling less than q strands, or
96
+ encircling multiples of q strands. Then S3 − K is satellite.
97
+ The precise statement is Theorem 5.4.
98
+ 1.1. Acknowledgements. This work was partially supported by the Aus-
99
+ tralian Research Council, grant DP210103136.
100
+ 2. Results on braids
101
+ This section reviews results on braids that will be used throughout. As
102
+ usual, let σi be the standard generator of the braid group, giving a positive
103
+ crossing between the i-th and (i + 1)-th strands.
104
+ For 1 < p, q, define the (p, q)-torus braid as:
105
+ (σ1 . . . σp−1)q
106
+ Note that within the braid group on p strands, its closure is the torus link
107
+ T(p, q). When p, q are coprime, this is a torus knot, but we will not always
108
+ restrict to coprime p and q unless specifically stated.
109
+ We will also consider such braids within larger braid groups. When r < p,
110
+ the (r, s) braid within the braid group on p strands is still defined to be
111
+ (σ1 . . . σr−1)s, but now note this has p − r strands with no crossings lying to
112
+ the right of the braid, viewing the braid arranged from top to bottom.
113
+ Let r1, . . . , rk and si, . . . , sk be integers such that 2 ≤ r1 < · · · < rk, and
114
+ si > 0 for all i. The T-link T((r1, s1), . . . , (rk, sk)) is defined to be the closure
115
+ of the braid
116
+ (σ1σ2 . . . σr1−1)s1(σ1σ2 . . . σr2−1)s2 . . . (σ1σ2 . . . σrk−1)sk.
117
+ Thus T((r1, s1), . . . , (rk, sk)) is obtained by concatenating the braids (ri, si)
118
+ within the braid group on rk strands, and then taking the closure.
119
+ Taking closures of torus braids and related braids allows additional sym-
120
+ metries and restrictions on the braid. For example, we will use the following
121
+ standard result on torus knots and links.
122
+ Lemma 2.1. Let 1 < p, q be integers. Then the torus link T(p, q) is equiva-
123
+ lent to the torus link T(q, p) via a homeomorphism of S3 fixing the Heegaard
124
+ torus containing T(p, q) and switching the two solid tori bounded by F.
125
+ The proof of Lemma 2.1 is well known, and appears in many knot theory
126
+ texts. We visualise the proof in Figure 1.
127
+ The next result generalises [6, Lemma 2.7]. There the result only holds
128
+ when each si is a multiple of ri. Here we extend more generally.
129
+
130
+ 4
131
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
132
+ p
133
+ q
134
+ p
135
+ q
136
+ Figure 1. The equivalence of T(p, q) and T(q, p) is given by
137
+ rotating 180◦ in the diagonal axis shown for the Heegaard
138
+ torus for S3. This exchanges the solid tori in the standard
139
+ genus-1 Heegaard splitting for S3.
140
+ Proposition 2.2. Let 0 < r1 < · · · < ri−1 < q < ri+1 < · · · < rn < p be
141
+ integers. Then, for k > 0, the T-link
142
+ K = T((r1, s1), . . . , (ri−1, si−1), (q, qk), (ri+1, si+1), . . . , (rn, sn), (p, q))
143
+ is equivalent to the T-link
144
+ K′ = T((r1, s1), . . . , (ri−1, si−1), (ri+1, si+1), . . . , (rn, sn), (p + qk, q)).
145
+ Note that Proposition 2.2 allows us to assume there are no full twists on
146
+ q strands in a T-link of the form T(· · · , (p, q)).
147
+ Proof. The braid (q, qk) is obtained by performing k full twists on q strands.
148
+ We know that these full twists commute in the braid group. Thus in the
149
+ braid representing K, we may isotope (q, qk) to the top of the braid, leaving
150
+ the rest of the braid unchanged.
151
+ Now perform the isotopy of K of Lemma 2.1, switching p and q in the
152
+ (p, q)-torus link. The rotation in the diagonal shown in Figure 1 takes the
153
+ (vertical) braids (r1, s1) ∗ · · · ∗ (rn, sn) to inverted braids, forming a tangle in
154
+ the horizontal direction on a quadrilateral representing the projection torus.
155
+ (The form of this tangle is not important for the argument here, but more
156
+ details can be found in [6, Lemma 2.3].) The result is a link of the form
157
+ T(q, p) with a tangle along the horizontal p-strands. The first such tangle
158
+ is the braid (q, qk), which is unchanged by this isotopy because it is a full
159
+ twist (see, for example, Birman and Kofman [1, Corollary 3]). Then the link
160
+ diagram is formed by the braid (q, p) followed by (q, qk). These two braids
161
+ can be combined to form the braid (q, p + qk). Now apply the inverse of the
162
+ isotopy of Figure 1. This changes the link from T(q, p + qk) with tangles
163
+ along the p horizontal strands to a link of the form T(p + qk, p) with these
164
+ tangles returned to their form as braids (r1, s1) ∗ · · · ∗ (rn, sn). The result is
165
+ the link K′.
166
+
167
+ Proposition 2.3. Let p, q, and r be positive integers with 0 < q ≤ r < p.
168
+ Consider the (p, q) torus link, which is the closure of the braid on p strands
169
+ given by (σ1 . . . σp−1)q. There is an ambient isotopy of S3 taking this to the
170
+
171
+ LORENZ LINKS OBTAINED BY TWISTING
172
+ 5
173
+ Figure 2. Illustration of Proposition 2.3 in the case that
174
+ q = 2, r = 4, p = 7, for an arbitrary tangle shown as a
175
+ gray box. The left-most picture shows the original link. The
176
+ (r + 1)-st strand, shown in blue, can be pulled tight beneath
177
+ the diagram, resulting in the middle picture. The right-most
178
+ picture shows the result after isotoping strands (r + 1) to p.
179
+ closure of the braid on r strands given by
180
+ (σr−1 . . . σr−q+1)p−r(σ1 . . . σr−1)q.
181
+ Moreover, an ambient isotopy realising the equivalence fixes the portion of
182
+ the braid (σ1 . . . σp−1)q corresponding to the r left-most strands at the top the
183
+ braid. Thus, we may replace a neighbourhood of these strands above the braid
184
+ (σ1 . . . σp−1)q with any tangle τ on r strands, and we find that the resulting
185
+ link is ambient isotopic to the closure of the link obtained by concatenating the
186
+ braid on r strands (σr−1 . . . σr−q+1)p−r, with τ, and then with (σ1 . . . σr−1)q.
187
+ See Figure 2.
188
+ Proof. Because r ≥ q, the (r + 1)-st strand at the top of the braid only runs
189
+ under the q overcrossing strands in the braid corresponding to the (p, q)
190
+ torus link. It then runs around the braid closure back to the top, returning
191
+ to the r − q + 1 position. Together with a horizontal line from the r − q + 1
192
+ position to the r + 1 position, this strand bounds a disc in S3, lying under
193
+ the plane of projection. Use this disc to push the strand in S3 to become a
194
+ horizontal strand lying below the plane of projection, running from the r + 1
195
+ position, then behind q strands, to the r + 1 − q position. Adjust slightly,
196
+ pulling the right side up, so that the result is a closed braid; see Figure 2,
197
+ middle. Note that the resulting braid consists of only p − 1 strands. This
198
+ isotopy generalises the isotopy given by Lee in [17, Figure 6], and by de Paiva
199
+ in [5, Figure 1].
200
+
201
+ 6
202
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
203
+ This move can be repeated for all the p − r strands to the right of the
204
+ (r+1)-st strand. When finished, we obtain a link on r strands as claimed.
205
+
206
+ 2.1. Braid index. Recall that the braid index of a knot K, which we will
207
+ denote β(K), is the minimal number of strands required to form a braid
208
+ with closure isotopic to K. We will repeatedly use the following result of
209
+ Franks and Williams [8] on braid index of the closure of a positive braid.
210
+ Theorem 2.4 (Corollary 2.4 of [8]). Let B be a positive braid on p strands
211
+ that contains a full twist
212
+ ∆2 = (σ1 . . . σp−1)p.
213
+ Then B has braid index p.
214
+
215
+ Lemma 2.5. Let p, q, d and r be positive integers such that q ≤ r < p and
216
+ d + q ≥ r. Let Br be a positive braid on r strands, and let Bp denote the
217
+ braid on p strands obtained by adding p − r trivial strands to the right of the
218
+ braid Br. Then the closure of the braid on p strands
219
+ Bp(σ1 . . . σr−1)d(σ1 . . . σp−1)q
220
+ has braid index equal to r.
221
+ Proof. By Proposition 2.3, the closure of the given braid on p strands is
222
+ equivalent to the closure of the braid on r strands
223
+ B′ = (σr−1 . . . σr−q+1)p−rBr(σ1 . . . σr−1)d(σ1 . . . σr−1)q.
224
+ Because this is a positive braid, and because d + q ≥ r, the braid B′ has at
225
+ least one positive full twist on r strands. Thus Theorem 2.4 implies that the
226
+ closure of B (and B′) has braid index equal to r.
227
+
228
+ Corollary 2.6. Suppose 0 < r1 < · · · < rn < p are integers, s1, . . . , sn and
229
+ q are positive integers, and suppose q ≤ rn ≤ sn + q. Then the T-link
230
+ K = T((r1, s1), . . . , (rn, sn), (p, q))
231
+ has braid index equal to rn.
232
+ Proof. Let Brn be the braid on rn strands obtained as the concatenation of
233
+ torus braids (r1, s1) . . . (rn−1, sn−1), where we view each (ri, si) as a braid
234
+ on rn strands by adding rn − ri trivial strands to the right of the braid
235
+ (ri, si) = (σ1 . . . σri−1)si. Then the given T-link is the closure of the braid
236
+ Brn(σ1 . . . σrn−1)sn(σ1 . . . σp−1)q.
237
+ Since q ≤ rn ≤ sn + q, the result follows from Lemma 2.5.
238
+
239
+ The next definition is from Williams [23].
240
+ Definition 2.7. A generalized q-cabling of a link L is a link L′ contained in
241
+ the interior of a tubular neighbourhood L × D2 of L such that
242
+ (1) each fiber D2 intersects L′ transversely in q points; and
243
+ (2) all strands of L′ are oriented in the same direction as L itself.
244
+
245
+ LORENZ LINKS OBTAINED BY TWISTING
246
+ 7
247
+ Williams showed the following result on generalised q-cablings for knotted
248
+ L in [23].
249
+ Theorem 2.8 (Theorem 1 of Williams [23]). The braid index is multiplicative
250
+ under generalized cabling. That is, if L is a link with each component a
251
+ non-trivial knot and L′ is a generalized q-cabling of L then β(L′) = qβ(L),
252
+ where β(∗) is the braid index of ∗.
253
+
254
+ This result was extended to unknotted L in the case of positive braids by
255
+ de Paiva in [3]. The following result is from that paper.
256
+ Lemma 2.9 (Lemma 2.3 of [3]). Let L′ be a generalized q-cabling of the
257
+ unknot L, with L given by a positive braid on n strands, where n > 1. Also,
258
+ assume the knot inside L is given by a positive braid. Then L′ has braid
259
+ index equal to q.
260
+
261
+ 3. Parents of T-links
262
+ In this section, we build the “parent links” mentioned in the introduction.
263
+ Dehn filling on such links produces T-links with full twists. By classifying
264
+ when such links are hyperbolic, and applying Thurston’s hyperbolic Dehn
265
+ filling theorem, we show that, in an appropriate sense, most T-links with
266
+ only full twists are hyperbolic. This is an extension of work by de Paiva and
267
+ Purcell [6]. There, the same links were constructed, and some conditions
268
+ were given to guarantee hyperbolicity. Here, we strengthen the result by
269
+ completely characterising when such links are hyperbolic.
270
+ Definition 3.1. Let p, q be relatively prime integers such that 1 < q < p.
271
+ Consider the (p, q)-torus braid on p strands, and its closure, the torus link
272
+ T(p, q). Let F denote the Heegaard torus on which T(p, q) lies. Let a be
273
+ an integer with 0 < a < p. Denote by Ja an unknot lying horizontally with
274
+ respect to the (p, q)-torus braid, positioned just above the crossings of the
275
+ braid, bounding a disc such that the interior of that disc meets F transversely
276
+ in a single arc intersecting the a leftmost strands of the braid.
277
+ More generally, given a1, . . . , an satisfying 1 < a1 < · · · < an < p, take
278
+ disjoint unknots Ja1, . . . , Jan as above, positioned so that the i-th is pushed
279
+ vertically above the (i + 1)-th with respect to the braid, so that all are
280
+ disjoint. Figure 3 shows an example.
281
+ Proposition 3.2. Let p, q be relatively prime integers with 1 < q < p. Let
282
+ an, . . . , a1 be integers such that 1 < a1 < · · · < an < p, with n > 1. Also,
283
+ assume that there is ai > q which is not a multiple of q. Then the link
284
+ K = T(p, q) ∪ Jan ∪ · · · ∪ Ja1 is atoroidal.
285
+ In [6], it is shown that K is hyperbolic if all the ai > q are not multiples
286
+ of q. Here, we show only one needs not be a multiple of q for hyperbolicity.
287
+ Proof. Suppose S3 − N(K) admits an essential torus T. Then T bounds a
288
+ solid torus V that must contain at least one component of K.
289
+
290
+ 8
291
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
292
+ Figure 3. Shows T(7, 2) augmented at the top right by J2,
293
+ J3, and J4.
294
+ First we show that we may choose V to contain T(p, q). For suppose V is
295
+ disjoint from T(p, q). Then it must contain at least one Jaj. The component
296
+ Jaj must have positive wrapping number in V , for otherwise T(p, q) and Jaj
297
+ would have zero linking number, which is a contradiction. Because there
298
+ is no essential torus in the exterior of the unknot in S3, it follows in this
299
+ case that T is unknotted in S3. Therefore, T bounds a second solid torus V ′
300
+ containing T(p, q). Thus in all cases we may assume T bounds a solid torus
301
+ containing T(p, q).
302
+ As an ≥ q, by Proposition 2.3, the torus knot T(p, q) is isotopic to a
303
+ closed braid with an strands so that under the isotopy, the largest unknot
304
+ Jan becomes the braid axis. Because the isotopy moves only the right-most
305
+ p − an strands, all unknots Ja1, . . . , Jan are untouched by the isotopy.
306
+ The torus T is then contained in the solid torus S3 − N(Jan), and bounds
307
+ a solid torus V containing T(p, q). It follows that Jan is disjoint from V .
308
+ The torus T must intersect the disc Dan bounded by Jan in a series of
309
+ circles, with each circle bounding a meridian of V . Each meridian of V
310
+ can be isotoped to meet the same number of strands of T(p, q), as follows.
311
+ The boundary of a meridian defines an unknot in S3, and all such unknots
312
+ are isotopic in S3 − N(K), where the isotopy is obtained by pushing the
313
+ boundary of the meridian disc along the torus T. Because T(p, q) forms a
314
+ braid, it meets these discs monotonically. Let b denote the number of times
315
+ that a meridian of V intersects the strands of T(p, q) on the disc Dan. Note
316
+ b > 1, or else T would be boundary parallel.
317
+ Note also that V winds some number of times around the solid torus
318
+ S3 − N(Jan), and note that each meridian of this solid torus meets exactly
319
+ an strands of T(p, q), since this is the number of strands in the closed
320
+ braid isotopic to T(p, q) obtained from Proposition 2.3. Since V meets each
321
+
322
+ LORENZ LINKS OBTAINED BY TWISTING
323
+ 9
324
+ meridian of S3 − N(Jan) a total of an times, and each meridian of V meets
325
+ T(p, q) a total of b times, b must divide an.
326
+ It follows that T(p, q) is a generalised b-cabling of L, where L is the core
327
+ of the solid torus V .
328
+ Observe that T is embedded in exterior of the torus knot S3 − N(T(p, q)).
329
+ By work of Tsau [21], there are no essential tori in a torus knot exterior.
330
+ Because b > 1, it follows that T must be compressible to its outside. That
331
+ is, V is unknotted in S3. Thus, Lemma 2.9 implies that T(p, q) has braid
332
+ index equal to b.
333
+ On the other hand, the torus knot T(p, q) with 1 < q < p has braid index
334
+ equal to q; for example this follows from Franks and Williams’ Theorem 2.4.
335
+ Then, b = q, and b divides an. Hence, q divides an.
336
+ By hypothesis, there is ai ∈ {a1, . . . , an} which is greater than q and not
337
+ a multiple of q. Since ai > q, it must be the case that Jai is disjoint from the
338
+ solid torus V . Since T(p, q) intersects the disc Dai bounded by Jai a total
339
+ of ai times, and T(p, q) is a generalised q-cabling of L, it must be the case
340
+ that L intersects the disc ai/q times. However, q does not divide ai. This is
341
+ a contradiction.
342
+
343
+ Lemma 3.3. Let p, q be relatively prime integers with 1 < q < p. Let
344
+ an, . . . , a1 be integers such that 1 < a1 < · · · < an < p with n > 1. Then
345
+ the link K = T(p, q) ∪ Jan ∪ · · · ∪ Ja1 has no annuli with boundaries in two
346
+ different components.
347
+ Proof. Suppose that S3 − N(K) has an annulus A with boundaries ∂1A
348
+ and ∂2A that lie in two different components, C1 and C2, respectively, of
349
+ ∂(S3 − N(K)).
350
+ Case 1: Consider first that C1 and C2 are Jaj and Jak, respectively, for
351
+ some j ̸= k ∈ {1, . . . , n}.
352
+ Note ∂1A and ∂2A are isotopic in S3−N(K). The linking number between
353
+ Cj and ∂jA is zero if and only if ∂jA is the longitude of Cj, in which case
354
+ Cj and ∂jA are isotopic, for j = 1, 2.
355
+ Suppose ∂1A is the longitude of C1, but ∂2A is not the longitude of C2.
356
+ Since ∂1A and ∂2A are isotopic, C1 and C2 would have nonzero linking
357
+ number in this case, but this is not possible. Similarly ∂2A cannot be the
358
+ longitude of C2 if ∂1A is not the longitude of C1.
359
+ Thus either ∂1A is the longitude of C1 and ∂2A is the longitude of C2, or
360
+ neither is a longitude. If both are longitudes, then C1 and C2 are isotopic,
361
+ which is not possible. Thus neither are longitudes.
362
+ Then the linking number between C2 and ∂2A is positive. However, C1
363
+ and C2 have zero linking number, so ∂1A and C2 must have zero linking
364
+ number. But ∂2A is isotopic to ∂1A, and so ∂1A and C2 have nonzero linking
365
+ number equal to the linking number of C2 and ∂2A. This is a contradiction.
366
+ Case 2: Now suppose that C1 and C2 are Jaj and T(p, q), respectively,
367
+ for some j ∈ {1, . . . , n}. Again ∂1A and ∂2A are isotopic.
368
+
369
+ 10
370
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
371
+ Suppose first that ∂2A wraps at least one time along the longitude of
372
+ C2 = T(p, q).
373
+ Then ∂2A has positive linking number with each of the
374
+ components Jak, because T(p, q) has positive linking number with each. But
375
+ the linking number between ∂2A and Jak for Jak ̸= C1 is zero, because C1
376
+ has linking number zero with each such component, and ∂2A has the same
377
+ linking number with C1 as ∂1A. This is a contradiction.
378
+ Thus ∂2A is a meridian of C2 = T(p, q). So ∂2A and T(p, q) have linking
379
+ number equal to one. The curve ∂1A is some torus knot T(a, b) on ∂N(C1).
380
+ If a is equal to zero, then ∂1A is a meridian of C1. Because a meridian
381
+ of C1 has linking number zero with C2 = T(p, q), it follows that ∂1A and
382
+ T(p, q) have linking number equal to zero. However, this is not possible as
383
+ ∂1A and ∂2A are isotopic. So, a ̸= 0. The linking number between ∂1A and
384
+ C2 = T(p, q) is equal to a · aj, where C1 = Jaj. Because ∂2A and T(p, q)
385
+ have linking number 1, and ∂1A and T(p, q) have linking number identical
386
+ to ∂2A and T(p, q), it follows that a · aj = 1. This is impossible since aj > 1.
387
+ Therefore, no such annulus exists.
388
+
389
+ Lemma 3.4. Let K be as in Proposition 3.2. Then K has no essential
390
+ annuli with both boundary components in ∂N(T(p, q)).
391
+ Proof. Suppose that S3 −N(K) has an essential annulus A with both bound-
392
+ ary components in ∂N(T(p, q)).
393
+ The exterior of a torus knot has just one essential annulus by work of
394
+ Tsau [21]. By work of Lee, [16, Lemma 5.1] that essential annulus would be
395
+ punctured by Jai, where ai > q is not a multiple of q. Thus A is not essential
396
+ in S3 − N(T(p, q)). Thus A is compressible, boundary compressible, or
397
+ boundary parallel in S3 − N(T(p, q)). Observe that a boundary compressible
398
+ annulus is in fact boundary parallel, using the fact that S3 − N(T(p, q)) is
399
+ irreducible and boundary irreducible.
400
+ Consider first that A is boundary parallel to an annulus B in ∂N(T(p, q)).
401
+ Then A ∪ B bounds a solid torus V in S3 − N(T(p, q)). Since A is not
402
+ boundary parallel in S3 − N(K), at least one Jaj must be inside V . In
403
+ addition, Jaj has wrapping number greater than zero in V , or else T(p, q)
404
+ and Jaj would have linking number equal to zero, which is a contradiction.
405
+ But Jaj is an unknot, whose complement admits no essential tori (e.g. [13,
406
+ page 15]). Thus V is also unknotted in S3. This implies that B is a meridional
407
+ annulus of ∂N(T(p, q)). If ∂V is boundary parallel to Jaj, then Jaj is the
408
+ core of ∂V . Hence, the linking number between T(p, q) and Jaj would be
409
+ one, which is not possible. Thus, as ∂V is not boundary parallel to Jaj, ∂V
410
+ is an essential torus for S3 − N(K). This contradicts Proposition 3.2.
411
+ Assume now that A is compressible in S3 − N(T(p, q)). Then there is a
412
+ compression disk D for A in S3 − N(T(p, q)). Surgering A along D yields
413
+ two discs, D1 and D2, such that ∂A = ∂D1 ∪ ∂D2. Since S3 − N(T(p, q))
414
+ is boundary irreducible, ∂Di bounds a disk Ei on ∂N(T(p, q)). Thus, by
415
+ pushing Ei slightly off of ∂N(T(p, q)) in S3 −N(K), we obtain a compressing
416
+
417
+ LORENZ LINKS OBTAINED BY TWISTING
418
+ 11
419
+ disc for A in S3−N(K), which contradicts our assumption that A is essential.
420
+ Therefore, A is not compressible.
421
+ Thus A cannot have both boundary components on ∂N(T(p, q)).
422
+
423
+ Lemma 3.5. Let K be as in Proposition 3.2. Then K has no essential
424
+ annulus with both boundary components on one ∂N(Jaj).
425
+ Proof. Suppose that S3 −N(K) has an essential annulus A with both bound-
426
+ ary components on ∂N(Jaj). Since S3 −N(Jaj) is a solid torus, and the solid
427
+ torus admits no essential annuli, A is not essential in S3 − N(Jaj). Thus A
428
+ is either compressible or boundary parallel in S3 − N(Jaj).
429
+ Case A: Suppose A is boundary parallel, parallel to an annulus B in
430
+ ∂N(Jaj). Then A ∪ B bounds a solid torus V in S3 − N(Jaj). Since A is not
431
+ boundary parallel in S3 − N(K), at least one component C of K must be
432
+ inside V .
433
+ Case A1:
434
+ Consider first that C = T(p, q). Then T(p, q) has wrapping
435
+ number greater than zero in V , for otherwise Jaj and T(p, q) would have zero
436
+ linking number, a contradiction. Note this implies that ∂V is incompressible
437
+ to its inside.
438
+ Suppose that some circle Jak with j ̸= k lies in S3 − V . Then we may
439
+ isotope Jak to lie outside of W = N(Jaj) ∪ V , which is a regular solid torus
440
+ neighbourhood of the unknot Jaj. Denote by ω the winding number of Jak in
441
+ S3 − W. If ω = 0, then the linking number between Jak and T(p, q) is zero.
442
+ Thus, ω ̸= 0. But then this implies that the linking number between Jaj and
443
+ Jak is nonzero, a contradiction. Thus all circles Ja1, . . . , Jai−1, Jai+1, . . . , Jan
444
+ are inside V in this case. Because at least two components of K lie inside V ,
445
+ ∂V is not boundary parallel to the inside.
446
+ The core of V forms a torus knot T(a, b) on N(Jaj). Note b > 0 or else
447
+ T(p, q) runs around a longitude of N(Jaj) and hence has linking number zero
448
+ with Jaj, a contradiction.
449
+ Suppose b = ±1, so the core of V has the form of the trivial knot T(a, ±1).
450
+ Then there exists a disc in S3 − N(K) that is a longitude for ∂N(Jaj) whose
451
+ boundary can be divided into two arcs, one of which meets A ⊂ ∂V in
452
+ a nontrivial arc, and the other meets ∂N(Jaj). See Figure 4. This is an
453
+ essential boundary compression disc for A, contradicting the fact that A is
454
+ essential.
455
+ Since |b| > 1, ∂V = ∂N(T(a, b)) is incompressible and not boundary
456
+ parallel to the outside, i.e. in the solid torus S3 − Jaj.
457
+ This implies that in all cases ∂V is essential in S3 − N(K) contradicting
458
+ Proposition 3.2.
459
+ Case A2:
460
+ The torus knot T(p, q) cannot lie inside V by the previous
461
+ case. So some C = Jak with j ̸= k lies inside V . The wrapping number of
462
+ Jak inside V must be different from zero as Jak and T(p, q) have positive
463
+ linking number. Since Jak and Jaj have zero linking number, V must be a
464
+ longitude of ∂N(Jaj). If Jak is the core of V , then Jaj and Jak are isotopic
465
+
466
+ 12
467
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
468
+ Figure 4. A disc with boundary an arc on each of A ⊂ ∂V
469
+ and ∂N(Jaj).
470
+ in S3 − N(T(p, q)), a contradiction. So Jak is not the core of V . But then
471
+ ∂V is incompressible and not boundary parallel to the inside in S3 − K,
472
+ and incompressible and not boundary parallel to the outside in S3 − K,
473
+ contradicting Proposition 3.2.
474
+ Case B:
475
+ Suppose A is compressible in S3 − N(Jaj). Then there is a
476
+ compression disk D for A in S3 − N(Jaj). Surgering A along D yields two
477
+ discs, D1 and D2, such that ∂A = ∂D1 ∪ ∂D2. If one of ∂D1 or ∂D2 bounds
478
+ a disk E on ∂N(Jaj), then by considering a disc with boundary in A close
479
+ to E, we see that A is also compressible in S3 − N(K), a contradiction. So
480
+ suppose that neither ∂D1 nor ∂D2 bounds a disk on ∂N(Jaj). Then D1 and
481
+ D2 are discs in the solid torus S3 − N(Jaj) with nontrivial boundary on
482
+ ∂N(Jaj) and hence both are meridians of S3 − N(Jaj), i.e. with ∂D1 and
483
+ ∂D2 forming longitudes of ∂N(Jaj). Undoing the surgery along D, it follows
484
+ that A is boundary parallel in S3 − N(Jaj). Thus we have a contradiction
485
+ to Case A.
486
+ Therefore, S3 − N(K) has no essential annulus with both boundary com-
487
+ ponents in one ∂N(Jaj).
488
+
489
+ Proposition 3.6. The link K as in Proposition 3.2 has no essential annuli.
490
+ Proof. By Lemma 3.3, any essential annulus has both boundary components
491
+ on the same component of K. By Lemma 3.4, the two boundary components
492
+ cannot lie on ∂N(T(p, q)). By Lemma 3.5 the two boundary components
493
+ cannot lie on one of the ∂N(Jaj). Thus no such annulus exists.
494
+
495
+ Theorem 3.7. Let p, q be relatively prime integers with 1 < q < p. Let
496
+ an, . . . , a1 be integers such that 1 < a1 < · · · < an < p with n > 1. Also,
497
+ assume that there is ai > q which is not a multiple of q. Then, the link
498
+ K = T(p, q) ∪ Jan ∪ · · · ∪ Ja1 is hyperbolic.
499
+ Proof. By de Paiva and Purcell [6, Lemma 5.1], the link exterior is irre-
500
+ ducible and boundary irreducible. By Proposition 3.2, it is atoroidal. By
501
+ Proposition 3.6, it is anannular. Therefore it is hyperbolic by Thurston’s
502
+ hyperbolisation theorem for Haken manifolds [20].
503
+
504
+ Combining Theorem 3.7 and de Paiva and Purcell [6, Theorem 5.6], we
505
+ completely classify the geometric types of the links T(p, q) ∪ Ja1 ∪ . . . Jan.
506
+
507
+ LORENZ LINKS OBTAINED BY TWISTING
508
+ 13
509
+ Theorem 3.8. Let p, q be relatively prime integers with 1 < q < p. Let
510
+ a1, . . . , an be integers such that 1 < a1 < · · · < an < p. Then the link
511
+ K = T(p, q) ∪ Ja1 ∪ . . . Jan is hyperbolic if and only if either all ai < q, or
512
+ there is ai > q which is not a multiple of q.
513
+ Proof. When n = 1, the link K = T(p, q) ∪ Ja1 is the Dehn-filling parent of
514
+ a twisted torus knot; this has been treated by Lee [15, 16]. If n = 1 and
515
+ a1 = q, then [15, Theorem 1] implies that infinitely many Dehn surgeries
516
+ along Ja1 yield non-hyperbolic knots. Therefore, Thurston’s hyperbolic Dehn
517
+ filling theorem [19] implies K is not hyperbolic. In fact, the proof of [15,
518
+ Theorem 1] implies K is annular. If n = 1 and a1 is not a multiple of q, then
519
+ K is hyperbolic by [16, Proposition 5.7].
520
+ In the case n > 1, if there is ai > q that is not a multiple of q, then K is
521
+ hyperbolic by Theorem 3.7.
522
+ If n > 1 and all ai are less than q, then no ai is a multiple of q, and K is
523
+ hyperbolic by [6, Theorem 5.6].
524
+ Finally, if n > 1, there is some ai > q and all ai > q are multiples of q,
525
+ then K is satellite by [6, Theorem 5.6].
526
+
527
+ Corollary 3.9. Let p, q be relatively prime integers with 1 < q < p, and let
528
+ a1, . . . , an and s1, . . . , sn be integers such that 1 < a1 < · · · < an < p and
529
+ si > 0 for all i. Then, there exists B ≫ 0 such that if each si > B, the
530
+ T-link
531
+ T((a1, a1s1), . . . , (an, ansn), (p, q))
532
+ is hyperbolic if and only if either all ai < q, or there is ai > q which is not a
533
+ multiple of q.
534
+ Proof. By Theorem 3.8, the link K = T(p, q) ∪ Ja1 ∪ · · · ∪ Jan is hyperbolic
535
+ if and only if the ai satisfy the hypotheses of the corollary. Obtain the
536
+ given T-link by Dehn filling the link components Ja1, . . . , Jan along slopes
537
+ 1/s1, . . . , 1/sn, respectively. When the link K is hyperbolic, the Dehn filling
538
+ remains hyperbolic by Thurston’s hyperbolic Dehn filling theorem [19] pro-
539
+ vided the si are sufficiently large. On the other hand, Dehn filling a satellite
540
+ K yields a satellite T-link, by de Paiva and Purcell [6, Theorem 5.6], and in
541
+ the case n = 1 and a1 = q, Dehn filling yields an annular link by Lee [15].
542
+
543
+ Note that Theorem 1.1 in the introduction follows immediately from
544
+ Corollary 3.9.
545
+ 4. Hyperbolicity with effective full twist bounds
546
+ While Corollary Corollary 3.9 is quite broad, unfortunately the constant B
547
+ in that theorem is not explicit, and so it may be difficult to apply in practice.
548
+ In this section we find explicit parameters which produce hyperbolic T-knot
549
+ obtained by full twists. Because we are considering full twists exclusively in
550
+ this section, Proposition 2.2 implies that we may assume that none of the ai
551
+ are equal to q.
552
+
553
+ 14
554
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
555
+ Proposition 4.1. Let a1, . . . , an, s1, . . . , sn, and p, q, k be integers satisfying
556
+ the following hypotheses:
557
+ • p and q are relatively prime,
558
+ • 1 < a1 < · · · < an, and 0 < q < an < p,
559
+ • each si > 0, and sn ≥ 2,
560
+ • p and an are relatively prime,
561
+ • k ≥ 2.
562
+ Then the T-knot K = T((a1, a1s1), . . . , (an, ansn), (p, q + kp)) is atoroidal.
563
+ Proof. Suppose that the exterior of K in S3 admits an essential torus T. By
564
+ work of Ito [14, Theorem 1.2(3)], because K is the closure of a braid with at
565
+ least two positive full twists on p strands, the torus T does not intersect the
566
+ braid axis C. Moreover, the knot inside T is given by a braid. Thus there
567
+ exists some integer d > 1 such that K is a generalized d-cabling of a knot L,
568
+ where L is the core of the solid torus bounded by T. As a consequence, d
569
+ must divide p.
570
+ After (−1/k)-Dehn surgery along the braid axis C, the knot K becomes
571
+ the T-knot
572
+ K′ = T((a1, a1s1), . . . , (an, ansn), (p, q))
573
+ and the torus T becomes a new torus T ′. This will bound a solid torus V ′ in
574
+ S3, with core L′. Because q < an < ansn + q, the knot K′ has braid index
575
+ equal to an by Corollary 2.6.
576
+ If L′ is trivial, then an is equal to d by Lemma 2.9. However, this is not
577
+ possible since gcd(p, an) = 1.
578
+ So L′ is knotted. Then by Theorem 2.8, an is equal to dβ(L′), where
579
+ β(L′) is the braid index of L′. But then d divides p and d divides an, again
580
+ contradicting gcd(p, an) = 1.
581
+ Therefore, the exterior of K admits no essential torus.
582
+
583
+ We will combine the previous result with the following from [5], which
584
+ gives information on torus knots.
585
+ Theorem 4.2 (Theorem 1.2 of de Paiva [5]). Let p, q, a1, . . . , an, s1, . . . , sn
586
+ be positive integers such that 1 < q < p and 1 < a1 < · · · < an < p with
587
+ ai ̸= q. If gcd(p, q) = 1 and in addition one of the following hold:
588
+ • q < an, or
589
+ • q > an and p is not of the form bq + 1 for some b > 0, or
590
+ • q > an and p = bq + 1 for some b > 0, but s1 > 1, or
591
+ • q > an, p = bq + 1 for some b > 0, and s1 = 1, but a2 ̸= a1 + 1,
592
+ then T((a1, s1a1), (a2, s2a2), . . . , (an, snan), (p, q)) is not a torus knot.
593
+
594
+ Theorem 4.3. Let a1, . . . , an, s1, . . . , sn, and p, q, k be integers satisfying
595
+ the following hypotheses:
596
+ • p and q are relatively prime,
597
+ • 1 < a1 < · · · < an and 1 < q < an < p,
598
+ • each si > 0 and sn ≥ 2,
599
+
600
+ LORENZ LINKS OBTAINED BY TWISTING
601
+ 15
602
+ • p and an are relatively prime,
603
+ • k ≥ 2, n ≥ 2.
604
+ Then if in addition, one of the following hold:
605
+ • q ̸= 1,
606
+ • or s1 > 1,
607
+ • or a2 ̸= a1 + 1,
608
+ then the T-link K = T((a1, a1s1), . . . , (an, ansn), (p, q + kp)) is hyperbolic.
609
+ Proof. Because gcd(p, q) = 1, K is a knot. By Proposition 4.1, K is atoroidal,
610
+ so not a satellite knot.
611
+ The T-knot K is equivalent to the T-knot
612
+ T((a1, s1), . . . , (an, ansn), (q + kp, p))
613
+ by [1, Corollary 3]. The integer q + kp does not have the form bp + 1 if and
614
+ only if q is different from 1. So under these conditions, K is not a torus knot
615
+ by Theorem 4.2.
616
+ Therefore, by Thurston’s hyperbolisation Theorem for knots [20], K is
617
+ hyperbolic.
618
+
619
+ Proposition 4.4. Let a1, . . . , an, s1, . . . , sn, and p, q, k be integers satisfying
620
+ the following hypotheses:
621
+ • p and q are relatively prime,
622
+ • 1 < a1 < · · · < an, and 1 < q < an < p,
623
+ • each si > 0 and both sn and sn−1 are at least 2.
624
+ Suppose also that one of the following holds:
625
+ • q < an−1 and an and an−1 are relatively prime, or
626
+ • q > an−1 and an and q are relatively prime.
627
+ Then the knot K = T((a1, a1s1), . . . , (an, ansn), (p, q)) is atoroidal.
628
+ Proof. Suppose the exterior of K in S3 admits an essential torus T.
629
+ By Proposition 2.3, K is equivalent to the knot given by the closure of
630
+ the braid
631
+ B = (σan−1 . . . σan−q+1)p−an · τ · (σ1 . . . σan−1)snan+q,
632
+ where τ is the concatination of braids (a1, a1s1) . . . (an−1, an−1sn−1).
633
+ Since B has at least two positive full twists on an strands, it follows from
634
+ [14, Theorem 1.2(3)] that T does not intersect the braid axis C of B. Thus
635
+ there is an integer d > 0 such that K is a generalized d-cabling of the core L
636
+ of the solid torus bounded by T. Hence d divides an.
637
+ Perform (−1/sn)-Dehn surgery along the braid axis C to obtain the braid
638
+ B′ = (σan−1 . . . σan−q+1)p−an · τ · (σ1 . . . σan−1)q.
639
+ Its closure gives K′ = T((a1, a1s1), . . . , (an−1, an−1sn−1), (an, q)). The torus
640
+ T becomes a new essential torus T ′ in the exterior of K′.
641
+ The torus T ′ bounds a solid torus with core L′, which is either trivial or
642
+ knotted.
643
+
644
+ 16
645
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
646
+ Suppose first the case that q < an−1. Then q ≤ an−1 ≤ an−1sn−1 + q, so
647
+ Corollary 2.6 implies that K′ has braid index equal to an−1. If L′ is the
648
+ trivial knot, then an−1 is equal to d by Lemma 2.9. This implies that d
649
+ divides both an and an−1, contradicting the assumption in this case that
650
+ these are relatively prime. Similarly, if L′ is knotted, then Theorem 2.8
651
+ implies that an−1 is a multiple of d, with the same contradiction.
652
+ Now suppose q > an−1. Then K′ has braid index q by Franks and Williams,
653
+ Theorem 2.4. If L′ is trivial, then as above, Lemma 2.9 implies q equals d, and
654
+ therefore d divides both an and q, contradicting the hypothesis. Similarly, if
655
+ L′ is knotted, Theorem 2.8 implies q is a multiple of d, and again d divides
656
+ both an and q, which is a contradiction.
657
+
658
+ Theorem 4.5. Let a1, . . . , an, s1, . . . , sn, and p, q, k be integers satisfying
659
+ the following hypotheses:
660
+ • p and q are relatively prime,
661
+ • 1 < a1 < · · · < an and 1 < q < an < p,
662
+ • each si > 0 and both sn and sn−1 are at least 2.
663
+ Suppose also that one of the following holds:
664
+ • q < an−1 and an and an−1 are relatively prime, or
665
+ • q > an−1 and an and q are relatively prime.
666
+ Then K = T((a1, a1s1), . . . , (an, ansn), (p, q)) is hyperbolic.
667
+ Proof. By Proposition 4.4, the knot K is atoroidal. By Theorem 4.2, using
668
+ the fact that q < an, K is anannular.
669
+ Therefore, K is hyperbolic.
670
+
671
+ 5. Satellite T-links obtained by Half-twists
672
+ In this section we switch from discussions of hyperbolic links to satellite
673
+ links. We find families of Lorenz links that are satellites using half-twists,
674
+ rather than full-twists. Previous work by de Paiva and Purcell found con-
675
+ ditions that ensure a T-link is satellite, namely [6, Theorem 4.3]. Lee has
676
+ similar results for the case of twisted torus knots [15, Theorem 1]. We extend
677
+ these results.
678
+ Definition 5.1. Suppose B is a diagram given as a closed braid; we consider
679
+ the braid to have strands running vertically on the plane of projection. A
680
+ positive half-twist on the strands from a to b is the braid
681
+ ∆a,b = (σa . . . σb)(σa . . . σb−1) . . . (σa).
682
+ This can be thought of as cutting the braid between the a-th and b-th strands,
683
+ rotating in the anticlockwise direction by 180◦, and gluing back. In braid
684
+ theory literature, the positive half-twist on all strands is well known as the
685
+ Garside fundamental braid. A negative half-twist is defined similarly, only
686
+ the rotation is in the clockwise direction. See Figure 5.
687
+
688
+ LORENZ LINKS OBTAINED BY TWISTING
689
+ 17
690
+ Figure 5. An example of half twists when r = 2, q = 3, t =
691
+ 1. Left: A positive half-twist ∆1,rq, a negative half-twist
692
+ ∆1,(r−t)q and a positive half-twist ∆(r−t)q+1,tq. The green
693
+ circle indicates the braid axis. Middle: The negative half-
694
+ twist cancels crossings above. Right: The additional positive
695
+ half-twist gives the braid (rq, tq).
696
+ Lemma 5.2. Let r, q, s be positive integers, and suppose s is not a multiple
697
+ of r. The (rq, sq)-torus braid is obtained by the following procedure. Start
698
+ with the trivial braid on rq strands; let J1,rq be an unknot encircling all rq
699
+ strands. Let t be an integer such that 0 < t < r and s = t + kr for some
700
+ integer k. Insert a positive half-twist ∆1,rq, followed by a negative half-twist
701
+ ∆1,(r−t)q and a positive half-twist ∆(r−t)q+1,rq. Finally, perform 1/k-Dehn
702
+ filling on J1,rq. The result is the (rq, sq)-torus braid.
703
+ Proof. The process is illustrated in Figure 5. The positive half-twist ∆1,rq
704
+ yields a braid
705
+ (σ1σ2 . . . σrq−1)(σ1 . . . σrq−2) . . . (σ1),
706
+ encircled by J1,rq. Perform the negative half-twist ∆1,(r−t)q. This concate-
707
+ nates the previous braid with
708
+ (σ−1
709
+ (r−t)q−1 . . . σ−1
710
+ 2 σ−1
711
+ 1 )(σ−1
712
+ (r−t)q−1 . . . σ−1
713
+ 2 ) . . . (σ−1
714
+ (r−t)q−1).
715
+ This braid cancels with the positive half-twist along the first (r − t)q strands,
716
+ as shown in Figure 5, middle. Finally, the positive half-twist ∆(r−t)q+1,rq
717
+ concatenates a positive half-twist along the last tq strands, giving the braid
718
+ (σ1 . . . σrq−1)tq = (rq, tq),
719
+ still augmented by the unlink J1,rq.
720
+ To obtain the braid (rq, sq), perform 1/k Dehn filling on J1,rq, removing
721
+ that link component and inserting an additional krq overstrands into the
722
+ braid, for a total of tq+krq = sq overstrands, giving the desired (rq, sq)-torus
723
+ braid.
724
+
725
+ Lemma 5.3. Let r, q, s be positive integers, with s not a multiple of r.
726
+ Consider the torus braid (rq, sq). At the top of the braid, consider r disjoint
727
+ discs arranged horizontally, each encircling q strands of the braid, and similar
728
+ discs at the bottom of the braid. The boundary of each disc at the top connects
729
+
730
+ 18
731
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
732
+ via a cylinder, embedded in the complement of the braid and enclosing q
733
+ strands, to the boundary of a disc at the bottom of the braid.
734
+ Moreover, the solid cylinders enclosed by these cylinders, containing q
735
+ strands each, forms the (r, s)-torus braid.
736
+ Proof. Let t be an integer such that 0 < t < r and s = t+kr for some integer
737
+ k. By Lemma 5.2, the (rq, sq) torus braid is formed from k full twists on
738
+ rq strands, followed by a positive half-twist ∆1,rq, then a negative half-twist
739
+ −∆1,(r−t)q and a positive half-twist ∆(r−t)q+1,rq. Each half-twist is on a
740
+ multiple of q strands.
741
+ Observe that the cylinders described above can be arranged to completely
742
+ contain any half-twist on q strands. For a half-twist on a multiple of q strands,
743
+ say xq strands, x disjoint cylinders enter the top of the half-twist, and then
744
+ are half-twisted themselves, remaining disjoint, to exit the bottom of the
745
+ half-twist. Thus the cylinders remain embedded as claimed when passing
746
+ through half-twists. Finally, each full twist also preserves the cylinders,
747
+ sending each through a full twist.
748
+ To see that the braid formed by the solid cylinders is as claimed, observe
749
+ that the cylinders form k full twists, followed by one positive half-twist on all
750
+ strands. The (r−t) left-most cylinders then pass through a negative half-twist,
751
+ and the remaining t right-most cylinders pass through a positive half-twist.
752
+ As in Lemma 5.2, this creates braid on r strands, with rk overstrands at
753
+ the top coming from the full twists, followed by t overstrands coming from
754
+ the concatenation of half-twists. Thus this is an (r, rk + t) = (r, s)-torus
755
+ braid.
756
+
757
+ Theorem 5.4. Let p, q be integers such that 1 < q < p, and let (a1, b1), . . . ,
758
+ (an, bn) be pairs of integers such that 1 < a1 < · · · < an ≤ q and bi > 0
759
+ for i = 1, . . . , n. Finally let r1, . . . , rm and s1, . . . , sm be integers such that
760
+ q < r1q < · · · < rmq < p, and si > 0 for i = 1, . . . , m. Then the T-link
761
+ K = T((a1, b1), . . . , (an, bn), (r1q, s1q), . . . , (rmq, smq), (p, q))
762
+ is satellite with companion the T-link T((r1, s1), . . . , (rm, sm+1)) and pattern
763
+ given by the closure of the braid
764
+ (a1, b1) . . . (an, bn)(σq−1 . . . σ1)p−rm
765
+
766
+ q, q
767
+ � m
768
+
769
+ i=1
770
+ risi
771
+
772
+ + qrm
773
+
774
+ Proof. As before, we think of the T-link as the closure of a braid on p
775
+ strands arranged vertically, the concatenation of braids (a1, b1), . . . , (an, bn),
776
+ (r1q, s1q), . . . , (rmq, smq), (p, q) in that order.
777
+ First apply Proposition 2.3 to change the closed braid of the T-link to a
778
+ closed braid B′ on rmq strands. This isotopy fixes all of the rmq strands at
779
+ the top left of the original braid; thus it does not affect any of the braids
780
+ (aj, bj) or (riq, siq), for any i, j. In other words, B′ is the braid given by
781
+ concatenating (σrmq−1 . . . σrmq−q+1)p−rm with braids (a1, b1), . . . , (an, bn),
782
+ (r1q, s1q), . . . , (rmq, smq), and finally the braid (σ1 . . . σrmq−1)q.
783
+
784
+ LORENZ LINKS OBTAINED BY TWISTING
785
+ 19
786
+ By Lemma 5.3, there are rm disjoint embedded cylinders in the complement
787
+ of the portion of the braid starting just above the braid (a1, b1), and ending
788
+ just below the braid (σ1 . . . σrmq−1)q at the bottom. These cylinders each
789
+ enclose q strands. They extend around the braid closure to give rm disjoint
790
+ embedded cylinders running to the top of the braid, each enclosing q strands,
791
+ arranged right to left across the top of the braid.
792
+ The only portion of the braid that is not already enclosed in one of these
793
+ cylinders is the braid (σrmq−1 . . . σrmq−q+1)p−rm lying at the top. This is
794
+ a braid whose left-most strand is the (rmq − q + 1)-th strand, and whose
795
+ right-most strand is the rmq-th strand. In other words, this is a braid on the
796
+ right-most q strands of the rmq-strand braid. Thus the right-most cylinder,
797
+ enclosing q strands, can be extended to enclose this braid. Then all cylinders
798
+ connect to form a closed embedded torus Σ, encircling q strands of the braid.
799
+ The torus Σ bounds a solid torus containing q strands, which we check
800
+ has the claimed form of the companion in the theorem statement. This solid
801
+ torus forms a braid on rm strands. By Lemma 5.3, each (riq, siq)-torus braid
802
+ from the original T-link causes the solid cylinder to form a braid (ri, si).
803
+ The braids (aj, bj) and (σrmq−1 . . . σrmq−q+1)p−rm lie completely inside the
804
+ solid cylinder, so they do not affect the braid it forms. Finally, consider
805
+ the braid (σ1 . . . σrmq−1)q at the bottom of B′. This is formed by q strands
806
+ running over all the rmq strands. When the collection of solid cylinders
807
+ encounter this braid, the left-most solid cylinder encircles exactly these q
808
+ strands, and runs over all others to lie on the right-most side. Thus it
809
+ forms a (rm, 1)-torus braid. So the solid torus enclosing q strands has the
810
+ form of the closure of a braid (r1, s1) . . . (rm, sm), (rm, 1). This is the T-link
811
+ T((r1, s1), . . . (rm, sm + 1)) as claimed. Since it forms a nontrivial knot in
812
+ S3, Σ is an incompressible torus.
813
+ Finally we check the form of the pattern. Starting at the top-left of
814
+ the braid B′, the torus Σ encloses the braid (a1, b1) . . . (an, bn), which will
815
+ form part of the braid describing the pattern. As Σ follows the companion
816
+ into each of the braids (ri, si), all the q strands will make one full twist
817
+ each time Σ runs completely through an overstrand. There are si of these,
818
+ i = 1, . . . m − 1, plus sm + 1 for the (rm, sm + 1) braid that the compan-
819
+ ion runs over. These will occur in some order, with Σ also enclosing the
820
+ braid (σq−1 . . . σ1)p−rm, coming from the top right of B′, at some point.
821
+ Because full twists commute in the braid group, we may write the braid
822
+ as (a1, b1) . . . (an, bn)(σq−1 . . . σ1)p−rm · τ where τ is an appropriate number
823
+ of full twists. To obtain the appropriate number of full twists, we need
824
+ to consider the homological longitude of the companion. The pattern is
825
+ the braid obtained when we apply a homeomorphism taking the solid torus
826
+ bounded by the companion to an unknotted solid torus, with homological
827
+ longitude mapped to a standard longitude of the unknot. The effect is to
828
+ add �m−1
829
+ i=1 (ri − 1)si + (rm − 1)(sm + 1) additional full twists, for a total of
830
+
831
+ 20
832
+ THIAGO DE PAIVA AND JESSICA S. PURCELL
833
+ �m
834
+ i=1 risi + rm full twists. Thus the pattern can be written as the braid
835
+ (a1, b1) . . . (an, bn)(σq−1 . . . σ1)p−rm(q, q(
836
+
837
+ risi) + qrm)
838
+
839
+ References
840
+ 1. Joan Birman and Ilya Kofman, A new twist on Lorenz links, J. Topol. 2 (2009), no. 2,
841
+ 227–248. MR 2529294 [1, 4, 15]
842
+ 2. Joan S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems. I.
843
+ Lorenz’s equations, Topology 22 (1983), no. 1, 47–82. MR 682059 [1]
844
+ 3. Thiago de Paiva, Hyperbolic knots given by positive braids with at least two full twists,
845
+ Proc. Amer. Math. Soc. 150 (2022), no. 12, 5449–5458. MR 4494619 [7]
846
+ 4.
847
+ , Satellite knots over lorenz knots which are not lorenz knots, arXiv:2211.12816,
848
+ 2022. [1]
849
+ 5.
850
+ , Torus Lorenz links obtained by full twists along torus links, Proc. Amer. Math.
851
+ Soc., to appear (2022), arXiv preprint arXiv:2203.10935. [2, 5, 14]
852
+ 6. Thiago de Paiva and Jessica S. Purcell, Satellites and Lorenz knots, Int. Math. Res.
853
+ Not., to appear (2021), arXiv preprint arXiv:2103.09500. [1, 2, 3, 4, 7, 12, 13, 16]
854
+ 7. E. A. El-Rifai, Necessary and sufficient condition for Lorenz knots to be closed under
855
+ satellite construction, Chaos Solitons Fractals 10 (1999), no. 1, 137–146. MR 1682295
856
+ [1]
857
+ 8. John Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math.
858
+ Soc. 303 (1987), no. 1, 97–108. MR 896009 [6]
859
+ 9. E.
860
+ Ghys
861
+ and
862
+ J
863
+ Leys,
864
+ Lorenz
865
+ and
866
+ modular
867
+ flows:
868
+ a
869
+ visual
870
+ introduction,
871
+ www.ams.org/publicourtreach/feature-column/fcarc-lorenz, 2006. [1]
872
+ 10. Paulo Gomes, Nuno Franco, and Lu´ıs Silva, Partial classification of Lorenz knots:
873
+ syllable permutations of torus knots words, Phys. D 306 (2015), 16–24. MR 3367570
874
+ [1]
875
+ 11.
876
+ , Farey neighbors and hyperbolic Lorenz knots, J. Knot Theory Ramifications
877
+ 26 (2017), no. 9, 1743004, 14. MR 3687479 [1]
878
+ 12. John Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst.
879
+ Hautes ´Etudes Sci. Publ. Math. (1979), no. 50, 59–72. MR 556582 [1]
880
+ 13. Allen Hatcher, Notes on basic 3-manifold topology, 2007. [10]
881
+ 14. Tetsuya Ito, Braid ordering and the geometry of closed braid, Geom. Topol. 15 (2011),
882
+ no. 1, 473–498. MR 2788641 [14, 15]
883
+ 15. Sangyop Lee, Twisted torus knots T(p, q; kq, s) are cable knots, J. Knot Theory Rami-
884
+ fications 21 (2012), no. 1, 1250005, 4. MR 2887898 [13, 16]
885
+ 16.
886
+ , Twisted torus knots that are unknotted, Int. Math. Res. Not. IMRN (2014),
887
+ no. 18, 4958–4996. MR 3264672 [2, 10, 13]
888
+ 17.
889
+ , Positively twisted torus knots which are torus knots, J. Knot Theory Ramifi-
890
+ cations 28 (2019), no. 3, 1950023, 13. MR 3938086 [5]
891
+ 18. E.˜N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963), 130–141. [1]
892
+ 19. William
893
+ P.
894
+ Thurston,
895
+ The
896
+ geometry
897
+ and
898
+ topology
899
+ of
900
+ three-
901
+ manifolds,
902
+ Princeton
903
+ Univ.
904
+ Math.
905
+ Dept.
906
+ Notes,
907
+ 1979,
908
+ Available
909
+ at
910
+ http://www.msri.org/communications/books/gt3m. [13]
911
+ 20.
912
+ , Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull.
913
+ Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. [1, 12, 15]
914
+ 21. Chichen M. Tsau, Incompressible surfaces in the knot manifolds of torus knots, Topology
915
+ 33 (1994), no. 1, 197–201. MR 1259522 [9, 10]
916
+ 22. Warwick Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comput.
917
+ Math. 2 (2002), no. 1, 53–117. MR 1870856 [1]
918
+ 23. R. F. Williams, The braid index of generalized cables, Pacific J. Math. 155 (1992),
919
+ no. 2, 369–375. MR 1178031 [6, 7]
920
+
7dAzT4oBgHgl3EQf-f5K/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tFJT4oBgHgl3EQfmyyq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89FST4oBgHgl3EQfajh_/content/2301.13796v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55196067e5de5850431193f1604bcbff932ab29c4d12b870552c24d7b8694e97
3
+ size 632158
ANE1T4oBgHgl3EQfowXh/content/tmp_files/2301.03325v1.pdf.txt ADDED
@@ -0,0 +1,1553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ EMAHA-DB1: A New Upper Limb sEMG Dataset
3
+ for Classification of Activities of Daily Living
4
+ Naveen Kumar Karnam, Anish Chand Turlapaty, Member, IEEE, Shiv Ram Dubey, Senior Member, IEEE and
5
+ Balakrishna Gokaraju, Member, IEEE
6
+ Abstract—In this paper, we present electromyography analysis
7
+ of human activity - database 1 (EMAHA-DB1), a novel dataset
8
+ of multi-channel surface electromyography (sEMG) signals to
9
+ evaluate the activities of daily living (ADL). The dataset is
10
+ acquired from 25 able-bodied subjects while performing 22 activ-
11
+ ities categorised according to functional arm activity behavioral
12
+ system (FAABOS) (3 - full hand gestures, 6 - open/close office
13
+ draw, 8 - grasping and holding of small office objects, 2 - flexion
14
+ and extension of finger movements, 2 - writing and 1 - rest). The
15
+ sEMG data is measured by a set of five Noraxon Ultium wireless
16
+ sEMG sensors with Ag/Agcl electrodes placed on a human hand.
17
+ The dataset is analyzed for hand activity recognition classification
18
+ performance. The classification is performed using four state-of-
19
+ the-art machine learning classifiers, including Random Forest
20
+ (RF), Fine K-Nearest Neighbour (KNN), Ensemble KNN (sKNN)
21
+ and Support Vector Machine (SVM) with seven combinations of
22
+ time domain and frequency domain feature sets. The state-of-the-
23
+ art classification accuracy on five FAABOS categories is 83.21%
24
+ by using the SVM classifier with the third order polynomial
25
+ kernel using energy feature and auto regressive feature set
26
+ ensemble. The classification accuracy on 22 class hand activities
27
+ is 75.39% by the same SVM classifier with the log moments in
28
+ frequency domain (LMF) feature, modified LMF, time domain
29
+ statistical (TDS) feature, spectral band powers (SBP), channel
30
+ cross correlation and local binary patterns (LBP) set ensemble.
31
+ The analysis depicts the technical challenges addressed by the
32
+ dataset. The developed dataset can be used as a benchmark for
33
+ various classification methods as well as for sEMG signal analysis
34
+ corresponding to ADL and for the development of prosthetics and
35
+ other wearable robotics.
36
+ Index Terms—Machine learning, Classification Algorithms,
37
+ Surface Electromyography (sEMG), Activities of Daily Living
38
+ (ADL), Features, Dataset and Benchmark.
39
+ I. INTRODUCTION
40
+ P
41
+ ERFORMING hand movements during activities of daily
42
+ living (ADL) [1] without any difficulty provides func-
43
+ tional independence and a decent quality of life [2]. However,
44
+ it is quite difficult to perform simple hand movements for
45
+ individuals affected by the following disorders: upper limb
46
+ disabilities [3], [4], disorders related to aging [5], neuromus-
47
+ cular disorders [6], and stroke related disabilities [7], [8], [9],
48
+ [10]. Human computer interfaces and human robot interfaces
49
+ N.K. Karnam and A.C. Turlapaty are with the Biosignal Analysis Lab at
50
+ the Indian Institute of Information Technology, Sri City, A.P., India (email:
51
+ anish.turlapaty@iiits.in).
52
+ S.R. Dubey is with the Computer Vision and Biometrics Laboratory at
53
+ Indian Institute of Information Technology, Allahabad, Prayagraj-211015,
54
+ U.P., India (email: srdubey@iiita.ac.in).
55
+ B. Gokaraju is with the Visualizations and Computing Advanced Research
56
+ Center (ViCAR) and Department of Computational Data Science an Engineer-
57
+ ing, North Carolina A and T State University, Greensboro, North Carolina
58
+ (email: bgokaraju@ncat.edu).
59
+ can support the rehabilitation process to recover from the
60
+ above mentioned disorders. For instance, hand gesture-based
61
+ interfaces based on computer vision techniques for identifying
62
+ and classifying gestures are currently under development [11].
63
+ Moreover, many researchers have explored robotic control
64
+ using visual gestures [12], [13], [14]. However, vision based
65
+ control methods are inadequate to determine the appropriate
66
+ control for actuation and the amount of force exerted by a
67
+ muscle during action. One approach to quantify the upper
68
+ limb activity is to use wearable sensors such as inertial
69
+ motion sensors (IMUs) including accelerometers, gyroscopes
70
+ and magnetometers. These sensors are utilised to measure
71
+ and monitor limb activities, quantify muscle motor deficits
72
+ [15], and classify the types of physical activity [16], [17].
73
+ Although wearable sensors can recognize human activity, they
74
+ are deficient in precise identification of hand gestures, finer
75
+ finger movements and the amount of muscle strength used to
76
+ execute the movement [18].
77
+ Alternatively, hand movement classification and the limb
78
+ control [19], [20] through surface electromyography (sEMG)
79
+ signals facilitates the design of prosthetic devices, exoskeleton
80
+ arms, advanced realistic bio-mechanical models, and rehabili-
81
+ tation therapies [21]. In these applications, utilization of multi-
82
+ modal signals is also very common. In the literature, fusion of
83
+ the IMU’s and sEMG signals [22], [23], [24] for hand activity
84
+ classification and estimation of the continuous orientation of
85
+ the forearm is analyzed. The electroencephalography signals
86
+ (EEG)) and sEMG signals are also fused to decode the
87
+ intention of the person. This fusion process can generate better
88
+ control signals compared to a standalone sEMG signal based
89
+ control [25], [26], [27]. In order to obtain better classification
90
+ accuracies the features from sEMG signals can be fused with
91
+ those from the vision based image classification network [28].
92
+ In practice, the multi-modal methods increase the complexity
93
+ of the hardware as well as software systems, hence they pose
94
+ difficulty for different real-life applications. Hand movement
95
+ analysis and classification through standalone sEMG signals
96
+ is gaining attention [29], [30], [31], [32], [33] and is the focus
97
+ of our current work.
98
+ In this paper, we present electromyography analysis of
99
+ human activity - database 1 (EMAHA-DB1), a novel sEMG
100
+ dataset on ADL for the Indian population. Following are the
101
+ salient features of EMAHA-DB1:
102
+ • There are several sEMG datasets available that include
103
+ activities such as hand gestures, hand movements, wrist
104
+ movements, and grasping objects. These datasets are
105
+ mainly collected for western populations and there is no
106
+ arXiv:2301.03325v1 [eess.SP] 9 Jan 2023
107
+
108
+ 2
109
+ dataset for ADL from the Indian population. EMAHA-
110
+ DB1 fills this gap.
111
+ • There is a tradition of anthropometric data collection in
112
+ India [34], [35]. For any population, there is an influence
113
+ of anthropometrics on their kinematics and kinetics [36],
114
+ [37]. EMAHA-DB1 will compliment existing anthropo-
115
+ metrics, kinematics and kinetics datasets [30], [37] which
116
+ will be helpful in conducting upper limb rehabilitation
117
+ therapies, physiological studies and clinical studies for
118
+ Indian population.
119
+ • The ADL performance is analyzed by grouping the
120
+ actions according to the functional arm activity behav-
121
+ ioral observation system (FAABOS [38]). The functional
122
+ taxonomy provided by Uswatte et al. quantifies group of
123
+ hand actions based on the behavioral significance.
124
+ • There are publicly available ADL datasets such as the
125
+ NinaPro [39], the BioPatRec [40], the Ramikushaba [41]
126
+ and the UCI Gesture [42] that have not covered a few
127
+ important ADL categories. The hand activities are usually
128
+ performed in an experimental set up with a fixed duration
129
+ for each of the activities, however we have considered
130
+ different durations for distinct activities to approximate
131
+ corresponding durations of real time hand movements.
132
+ • The dataset can be used to benchmark classification
133
+ algorithms or perform statistical studies. The developed
134
+ dataset consists of a larger number of subjects and a
135
+ higher number of activity repetitions compared to any
136
+ other publicly available ADL datasets.
137
+ The main contributions of the paper are:
138
+ 1) In this work, we have carried out muscle activity mea-
139
+ surements corresponding to activities of daily living and
140
+ collected a novel multichannel sEMG data from Indian
141
+ population.
142
+ 2) The EMAHA-DB1 dataset is organized according to
143
+ custom FAABOS functional categories to perform anal-
144
+ ysis using state-of-the-art machine learning classifiers.
145
+ Specifically the sEMG signals are analyzed to classify
146
+ into the functional groups as well as individual activities.
147
+ 3) We also perform extensive feature analysis with respect
148
+ to the FAABOS functional categories.
149
+ The rest of the paper is organised as follows: Section II
150
+ details about the proposed EMAHA-DB1 dataset; Section
151
+ III presents experiments in machine learning frameworks;
152
+ Section IV demonstrates the experimental results; and Section
153
+ V provides a conclusion along with the future scope.
154
+ II. EMAHA-DB1: PROPOSED SEMG DATASET
155
+ A. Data Collection
156
+ 1) Study participants: The institutional ethics committee
157
+ of Indian Institute of Information Technology Sri City (No.
158
+ IIITS/EC/2022/01) approved the proposed data collection pro-
159
+ tocol developed in general accordance with the declaration of
160
+ Helsinki and specific accordance with the “National Ethical
161
+ Guidelines for Biomedical and Health Research involving hu-
162
+ man participants” of India. Twenty-five healthy subjects with
163
+ no history of upper limb pathology, including 22 males and 3
164
+ females, participated in the sEMG data collection process. The
165
+ TABLE I: List of hand activities
166
+ Activity No.
167
+ Activity description
168
+ A0
169
+ Hand at rest (sitting)
170
+ A1
171
+ Tossing a coin (sitting)
172
+ A2
173
+ Finger snapping (sitting)
174
+ A3
175
+ Pulling an empty draw - Posterior view (sitting)
176
+ A4
177
+ Pulling a draw with weight (2kg) - Posterior view (sitting)
178
+ A5
179
+ Pulling an empty draw - Anterior view (sitting)
180
+ A6
181
+ Pulling a draw with weight (2kg) - Anterior view (sitting)
182
+ A7
183
+ Pushing an empty draw - Posterior view (sitting)
184
+ A8
185
+ Pushing a draw with weight (2kg) - Posterior view (sitting)
186
+ A9
187
+ Clasping both hands (sitting)
188
+ A10
189
+ Hand clapping (sitting)
190
+ A11
191
+ Grasping and holding 1L water bottle (sitting)
192
+ A12
193
+ Grasping and holding small hammer (sitting)
194
+ A13
195
+ Grasping and holding small saw (sitting)
196
+ A14
197
+ Writing the phrase ”Bio signal lab” on paper with pen -
198
+ lateral grasp (sitting)
199
+ A15
200
+ Writing the phrase ”Bio signal lab” on board with marker
201
+ - lateral grasp (standing)
202
+ A16
203
+ Lifting a small bucket with 4L water (standing)
204
+ A17
205
+ Typing the phrase ”Bio signal lab” on keyboard using
206
+ single finger (sitting)
207
+ A18
208
+ Drinking tea/water from a cup - lateral grasp (sitting)
209
+ A19
210
+ Picking up the phone, placing it to his/her ear and hanging
211
+ up the phone on table (sitting)
212
+ A20
213
+ Grasping and holding a book (sitting)
214
+ A21
215
+ Grasping and holding a tennis ball (sitting)
216
+ TABLE II: Sensor placement on hand muscle
217
+ Channel No.
218
+ Sensor No.
219
+ Hand muscle name
220
+ 1
221
+ 21621
222
+ Brachio Radialis (BR) muscle
223
+ 2
224
+ 21623
225
+ Flexor Carpi Radialis(FCR) muscle
226
+ 3
227
+ 21624
228
+ Flexor Carpi Ulnaris (FCU) muscle
229
+ 4
230
+ 21625
231
+ Biceps Brachii (BB) muscle
232
+ 5
233
+ 21626
234
+ Abductor Pollicis Brevis (APB) muscle
235
+ average age is 28±6 years. Before the first session of activities,
236
+ each of the participants gave written informed consent and the
237
+ data collection process is completely non-invasive.
238
+ 2) Experimental setup and acquisition protocol: The 22
239
+ activities performed by each subject are listed in Table I.
240
+ Each of the hand muscle activity is recorded with a 5-channel
241
+ Noraxon Ultium wireless sEMG sensor setup [43] as shown
242
+ in Fig. 1. Five self-adhesive Ag/AgCL dual electrodes were
243
+ placed at the centre of the five most representative muscle sites
244
+ of the right arm as shown in Fig. 1. Each subject is instructed
245
+ to sit comfortably with one elbow resting on a table and an arm
246
+ flexed 90◦ compared to the forearm. The muscle locations are
247
+ selected according to the atlas in chapter 17 [44] and is given
248
+ in Table II. At the beginning of each session, the participant’s
249
+ hands are cleaned with an alcohol based wet wipe.
250
+ Prior to each session, the subject is acquainted with the
251
+ experiment protocol including a video demonstration of the
252
+ proposed activities. The total duration of each session is up-to
253
+ one hour per subject depending on adaptability. Each activity
254
+ is performed for a maximum duration of 10s and repeated
255
+ 10 times. There is a rest period of 5s between each of the
256
+ repetitions and a 30s gap between the sessions of different
257
+ activities. Each of the activities consists of two phases: (1) an
258
+ action and (2) rest. However, some of the activities included
259
+ an extra release phase. During the action phase, the subject
260
+ performs the corresponding activity; during the release phase,
261
+ the subject transitions from the action state to rest state; and
262
+ during the rest phase, the subject completely relaxes each of
263
+
264
+ 3
265
+ Fig. 1: Learning steps from sEMG dataset collection to classification of hand activities
266
+ TABLE III: Phase-wise durations of each activity.
267
+ No.
268
+ TX TA TR TT
269
+ No.
270
+ TX TA TR TT
271
+ No.
272
+ TX TA TR TT
273
+ A1
274
+ 3
275
+ 5
276
+ 0
277
+ 8
278
+ A8
279
+ 3
280
+ 5
281
+ 0
282
+ 8
283
+ A15 3
284
+ 15
285
+ 2
286
+ 20
287
+ A2
288
+ 3
289
+ 5
290
+ 0
291
+ 8
292
+ A9
293
+ 3
294
+ 5
295
+ 0
296
+ 8
297
+ A16 5
298
+ 5
299
+ 3
300
+ 13
301
+ A3
302
+ 3
303
+ 5
304
+ 0
305
+ 8
306
+ A10 3
307
+ 5
308
+ 0
309
+ 8
310
+ A17 3
311
+ 10
312
+ 2
313
+ 15
314
+ A4
315
+ 3
316
+ 5
317
+ 0
318
+ 8
319
+ A11 3
320
+ 5
321
+ 3
322
+ 11
323
+ A18 5
324
+ 5
325
+ 3
326
+ 13
327
+ A5
328
+ 3
329
+ 5
330
+ 0
331
+ 8
332
+ A12 3
333
+ 5
334
+ 3
335
+ 11
336
+ A19 5
337
+ 5
338
+ 3
339
+ 13
340
+ A6
341
+ 3
342
+ 5
343
+ 0
344
+ 8
345
+ A13 3
346
+ 5
347
+ 3
348
+ 11
349
+ A20 5
350
+ 5
351
+ 3
352
+ 13
353
+ A7
354
+ 3
355
+ 5
356
+ 0
357
+ 8
358
+ A14 3
359
+ 10
360
+ 2
361
+ 15
362
+ A21 5
363
+ 5
364
+ 3
365
+ 13
366
+ his/her muscles. The time duration for each activity is given
367
+ in Table III, where TX, TA, TR, and TT are the rest, action,
368
+ release, and total duration, respectively.
369
+ 3) Comparisons with existing datasets : The characteristics
370
+ of EMAHA-DB1 data are compared against those of existing
371
+ sEMG hand activity datasets in TABLE IV. Apart from those
372
+ mentioned in salient features in Introduction, a few additional
373
+ and distinct characteristics of the EMAHA-DB1 are: 1) the
374
+ experiments are designed such that hand activities performed
375
+ consists of three phases of action (contraction/relaxation of
376
+ muscles), release (retreating of action), and rest (relaxing of
377
+ muscles), 2) the measurements are acquired with a minimal
378
+ number of sensors hence requires lower computational re-
379
+ sources compared to the existing datasets.
380
+ B. Data Preparation
381
+ 1) Activity
382
+ segmentation:
383
+ For
384
+ the
385
+ sEMG
386
+ signals
387
+ in
388
+ EMAHA-DB1, the preliminary annotations for onset and
389
+ offset of the actions are performed based on the respective
390
+ durations of action phases shown in Table III. To improve the
391
+ quality of activity labels, based on the procedure developed in
392
+ [46], an improved signal segmentation process (listed below)
393
+ is implemented:
394
+ 1) Initially, for each trial of each activity performed by each
395
+ subject, the multi-channel signal is rectified.
396
+ 2) For each of these trials, the maximum and minimum
397
+ values are identified to determine the range R.
398
+ 3) The signal strengths at R/
399
+
400
+ 2 (3dB amplitude) are
401
+ considered the thresholds on either side.
402
+ 4) The first signal strength, past the preliminary onset,
403
+ crossing the 3dB threshold is identified for each channel.
404
+ The earliest location among the threshold crossings from
405
+ the five channels is considered the onset of action.
406
+ 5) The trial data is parsed backwards from the end of the
407
+ action. The first point from the end i.e., the final 3dB
408
+ crossing is identified for each channel. The right most
409
+ location among the crossings from these channels is
410
+ labelled the offset of action.
411
+ 6) Finally, the signal samples between the onset and the
412
+ offsets are annotated as the action and assigned the
413
+ corresponding activity number, and the remaining signal
414
+ is considered to be rest state.
415
+ The above procedure is illustrated in Fig. 2 for a single trial
416
+ of ADL. It is observed that signal segmentation improves the
417
+ annotation process of activity vs. rest which further improves
418
+ veracity of the classification process.
419
+ 2) FAABOS categories: The EMAHA-DB1 is mapped ac-
420
+ cording to function arm activity behavioral observation system
421
+ (FAABOS) [38], [29]. Specifically, actions in the EMAHA-
422
+ DB1 are reorganized into the following five major groups:
423
+ 1) No object action, 2) object holding, 3) object grasping, 4)
424
+ Flexion and Extension of Fingers, and 5) writing. The action
425
+ categories that are mapped into these groups are listed in Table
426
+ V.
427
+
428
+ Multi-channel sEMG signals
429
+ Output hand activity classification
430
+ A sample of hand
431
+ movements performed in
432
+ Learning
433
+ Activities of Daily Living
434
+ kinematic
435
+ (ADL)
436
+ characteristics of -
437
+ uu m d
438
+ the hand activities
439
+ ML classifier
440
+ Testing
441
+ training (KNN, RF,
442
+ SKNN, SVM3)
443
+ Grasping and holding
444
+ Grasping and holding
445
+ small hammer
446
+ a book
447
+ Preprocessing
448
+ O
449
+ Training
450
+ Notch filtering at 50Hz
451
+ Feature set visualisation by
452
+ sEMG Data acquired for
453
+ Low pass filtering with
454
+ fc = 500Hz
455
+ t-SNE plot
456
+ ADL by Noraxon Ultium
457
+ Wavelet denoising
458
+ Feature extraction with six
459
+ sEMG sensor setup
460
+ 4
461
+ feature sets of F0, F1, F2, F3,
462
+ Trial wise
463
+ segmentation
464
+ 3
465
+ F4, F5, and F6
466
+ 2
467
+ LO
468
+ 1
469
+ 0
470
+ -1
471
+ Data train and test split-up
472
+ 3
473
+ Train data with
474
+ Test data with
475
+ 4
476
+ trial no.
477
+ trial no. 2, 5
478
+ 1,3,4,6,8,9 and 10
479
+ and 7
480
+ 6
481
+ Datset is curated and
482
+ -4
483
+ -2
484
+ 0
485
+ Dimension1
486
+ labelled using audio cue
487
+ Relabelled by an
488
+ algorithm4
489
+ TABLE IV: Comparisons of basic data characteristics with benchmark datasets
490
+ Dataset
491
+ Name
492
+ Action categories
493
+ Sensor
494
+ No.
495
+ of
496
+ Subjects
497
+ (S)
498
+ No.
499
+ of
500
+ activities
501
+ (NA)
502
+ (including
503
+ rest)
504
+ No.
505
+ of
506
+ channels
507
+ (Nc)
508
+ Sampling
509
+ frequency
510
+ (Ns)
511
+ (samples
512
+ per sec)
513
+ Rest
514
+ dura-
515
+ tion
516
+ (TX)(s)
517
+ Action
518
+ dura-
519
+ tion
520
+ (TA)(s)
521
+ Release
522
+ dura-
523
+ tion
524
+ (TR)(s)
525
+ No.
526
+ of
527
+ repe-
528
+ titions
529
+ (NR)
530
+ Total
531
+ no.
532
+ of
533
+ pat-
534
+ terns
535
+ (N)
536
+ NinaPro
537
+ DB1 [39]
538
+ Gestures, Wrist move-
539
+ ments,
540
+ and
541
+ Grasping
542
+ Objects
543
+ Otto Bock
544
+ 27
545
+ 53
546
+ 10
547
+ 100
548
+ 3
549
+ 5
550
+ -
551
+ 10
552
+ 14310
553
+ NinaPro
554
+ DB2 [39]
555
+ Gestures, Wrist move-
556
+ ments, Grasping Ob-
557
+ jects, and Finger press-
558
+ ing movements
559
+ Delsys Trigno
560
+ wireless
561
+ 40
562
+ 50
563
+ 12
564
+ 2000
565
+ 3
566
+ 5
567
+ -
568
+ 6
569
+ 12000
570
+ NinaPro
571
+ DB4 [45]
572
+ Gestures, Wrist move-
573
+ ments,
574
+ and
575
+ Grasping
576
+ Objects
577
+ Cometa Mini-
578
+ Wave
579
+ 10
580
+ 53
581
+ 12
582
+ 2000
583
+ 3
584
+ 5
585
+ -
586
+ 6
587
+ 3180
588
+ BioPatRec
589
+ DB2 [40]
590
+ Gestures,
591
+ and
592
+ Wrist
593
+ and hand movements
594
+ Thalmic
595
+ myoarm band
596
+ 17
597
+ 27
598
+ 8
599
+ 2000
600
+ 3
601
+ 3
602
+ -
603
+ 3
604
+ 1377
605
+ UCI Ges-
606
+ ture [42]
607
+ Wrist and hand move-
608
+ ments
609
+ Myo Thalmic
610
+ bracelet
611
+ 36
612
+ 7
613
+ 8
614
+ 1000
615
+ 3
616
+ 3
617
+ -
618
+ 4
619
+ 1008
620
+ Rami-
621
+ kushaba
622
+ DB6 [41]
623
+ Hand movements
624
+ Delsys DE
625
+ 2.x series
626
+ EMG sensors
627
+ 11
628
+ 40
629
+ 7
630
+ 4000
631
+ 3-5
632
+ 5
633
+ -
634
+ 6
635
+ 2640
636
+ EMAHA-
637
+ DB1
638
+ (Our
639
+ dataset)
640
+ Daily activities -
641
+ Grasping and
642
+ holding, writing, and
643
+ draw open/close
644
+ Noraxon Ul-
645
+ tium
646
+ sEMG
647
+ sensor
648
+ 25
649
+ 22
650
+ 5
651
+ 2000
652
+ 3-5
653
+ 5-15
654
+ 3-5
655
+ 10
656
+ 5500
657
+ Fig. 2: Illustration of manual segmentation of sEMG signals for a trial of ADL
658
+ TABLE V: FAABOS groups of activities.
659
+ Group label
660
+ Group Name
661
+ Activity No.
662
+ 0
663
+ Rest
664
+ A0
665
+ 1
666
+ No object action
667
+ A2, A9 and A10
668
+ 2
669
+ Hold object
670
+ A3, A4, A5, A6, A7 and A8
671
+ 3
672
+ Object grasping
673
+ A11, A12, A13, A16, A18,
674
+ A19, A20 and A21
675
+ 4
676
+ Flexion
677
+ and
678
+ Exten-
679
+ sion of Fingers
680
+ A1 and A17
681
+ 5
682
+ Writing
683
+ A14 and A15
684
+ III. METHODOLOGY
685
+ A. Problem Statement
686
+ The total number of sEMG patterns in the EMAHA-DB1
687
+ is N = S × NA × NR, where S is the total number of
688
+ subjects, NA is the number of different activities, and NR
689
+ corresponds to the number of repetitions per action per subject.
690
+ The proposed sEMG dataset can be represented as:
691
+ x = {xn}N
692
+ n=1
693
+ (1)
694
+ where each observation array xn consists of multiple channels
695
+ as:
696
+ xn = {xn,m}NC
697
+ m=1,
698
+ n = 1, · · · , N
699
+ (2)
700
+ TABLE VI: Summary of extracted features
701
+ Feature
702
+ Set
703
+ Features
704
+ Feature Length
705
+ F0 [47] Mean Absolute Value (MAV), Temporal Spec-
706
+ tral Energies (TSE) and Spectral Band Ener-
707
+ gies (SBE)
708
+ 1×NC, 4×NC,
709
+ and 4 × NC
710
+ F1 [48] MAV, Zero Crossings (ZC), Slope Changes
711
+ (SC), and Wavelength (WL)
712
+ 1×NC, 1×NC,
713
+ 1×NC, and 1×
714
+ NC
715
+ F2 [49] F1 and Auto Regression Coefficients (ARC)
716
+ 9 × NC and 2 ×
717
+ NC
718
+ F3 [50] F1, Myopulse Rate (MPR), Willison Ampli-
719
+ tude (WAMP), and Cardinality
720
+ 9×NC, 1×NC,
721
+ 1×NC, and 1×
722
+ NC
723
+ F4 [51] Log moments in frequency domain (LMF)
724
+ 5 × NC
725
+ F5 [52] F4, modified LMF, Time domain statistics
726
+ (TDS), Spectral Band Powers (SBP), Max
727
+ channel cross correlations, and Local Binary
728
+ Patterns (LBP)
729
+ 5 × NC, 10 ×
730
+ NC, 4 × NC,
731
+ 4×NC, 2×NC,
732
+ and 2 × NC
733
+ F6 [53] Root Mean Square (RMS), Time Dependent
734
+ Power spectrum Descriptors (TD-PSD) [51],
735
+ Difference Absolute Standard Deviation Value
736
+ (DASDV), and Difference Absolute Mean
737
+ Value (DAMV)
738
+ 1×NC, 6×NC,
739
+ 1×NC, and 1×
740
+ NC
741
+ where NC is the number of channels (from different elec-
742
+ trodes) and each of these channels consists of an array as:
743
+ xn,m = {xn,m(i)}NT
744
+ i=1
745
+ (3)
746
+ where NT = Ns × TT is the number of values in one trial of
747
+ duration TT and Ns is the sampling rate (samples/sec). For a
748
+ given trial, for feature extraction purposes, the signal is divided
749
+ into Nseg segments. Each segment sg consists of an array as:
750
+ sj
751
+ g = {xn,m(i)}Ng
752
+ i=1
753
+ j = 1, · · · Nseg
754
+ (4)
755
+ where Ng is the number of samples in one segment such that
756
+ NT = Nseg × Ng.
757
+ The objective of this study is to map the segmented sEMG
758
+ signals to the corresponding activity labels (i.e., tg - targets),
759
+
760
+ Channel 3
761
+ cue-ON
762
+ 6
763
+ Cue-OFF
764
+ OFF
765
+ 40
766
+ SEMG
767
+ 20
768
+ 0
769
+ 2000
770
+ 4000
771
+ 6000
772
+ 8000
773
+ 10000
774
+ 12000
775
+ 14000
776
+ 16000
777
+ Channel 4
778
+ 10
779
+ cue-OFFl
780
+ cue-ON
781
+ NO
782
+ OFF
783
+ sEMG Amp
784
+
785
+ 0
786
+ 8000
787
+ 2000
788
+ 4000
789
+ 6000
790
+ 10000
791
+ 12000
792
+ 14000
793
+ 16000
794
+ 0
795
+ Rest vs. Action
796
+ Action-OFF
797
+ SEMG
798
+ Action-
799
+ norm
800
+ 0
801
+ 2000
802
+ 4000
803
+ 6000
804
+ 8000
805
+ 10000
806
+ 12000
807
+ 14000
808
+ 16000
809
+ 0
810
+ Sample Index5
811
+ (a)
812
+ (b)
813
+ (c)
814
+ (d)
815
+ (e)
816
+ Fig. 3: Performance comparison (a) with different Feature Ensembles with Cubic SVM (Polynomial SVM of order 3), (b) with different classifiers for the benchmark feature
817
+ ensemble F5, (c) against benchmark frameworks, (d) against benchmark frameworks in terms of various metrics, and (e) against FAABOS categories frameworks.
818
+ TABLE VII: Numerical setup for classifiers.
819
+ Classifier
820
+ Model Setup
821
+ Fine KNN
822
+ No.of neighbours = 5, Distance Metric = Cityblock, Dis-
823
+ tance weight = Squared Inverse
824
+ Ensemble
825
+ KNN
826
+ No.of learning cycles = 30, learners = KNN, Subspace
827
+ dimension = 25
828
+ Cubic SVM
829
+ Polynomial kernel, Order = 3, Box constraint = 1, Multi-
830
+ class Method = one-vs-one
831
+ Random Forest No.of bags for bootstrapping = 300
832
+ which can be formulated as:
833
+ f{sg} → tg
834
+ (5)
835
+ where tg denotes targets (group labels) as specified in TABLE
836
+ V or individual activity labels as specified in TABLE I. The
837
+ mapping function in (5) is implemented by a supervised
838
+ classifier. For the mapping function, appropriate features are
839
+ required that represent the underlying inverse kinematic rela-
840
+ tionships between the sEMG signals and the corresponding
841
+ activity performed.
842
+ B. Feature Extraction
843
+ In this work, the following feature sets are adapted from
844
+ [47]: F0, F1, F2, F3, F4, and F5 with an additional feature
845
+ set F6 consisting of root mean square (RMS), time dependent
846
+ power spectrum descriptors (TD-PSD), difference absolute
847
+ standard deviation value (DASDV), and difference absolute
848
+ mean value (DAMV). Note the features are computed for each
849
+ segment and concatenated to build the full feature vector. The
850
+ extracted feature sets are summarized in Table VI.
851
+ C. Supervised Classifiers
852
+ In this paper, four algorithms including random forest (RF),
853
+ fine K-nearest neighbour (FKNN), ensemble KNN (sKNN)
854
+ and cubic support vector machine (SVM3) are considered for
855
+ sEMG signal classification task. The classifiers are trained and
856
+ TABLE VIII: Feature ensemble vs benchmark classifier setup.
857
+ FE FL
858
+ BF
859
+ Classifier
860
+ FE FL
861
+ BF
862
+ Classifier
863
+ F0
864
+ 9 × NC
865
+ B0 [47]
866
+ Fine KNN
867
+ F4
868
+ 5 × NC
869
+ B4 [54]
870
+ SVM3
871
+ F1
872
+ 4 × NC
873
+ B1 [48]
874
+ SVM3
875
+ F5
876
+ 27×NC
877
+ B5 [52]
878
+ SVM3
879
+ F2
880
+ 11×NC
881
+ B2 [49]
882
+ Fine KNN
883
+ F6
884
+ 9 × NC
885
+ B6 [39]
886
+ RF
887
+ F3
888
+ 12×NC
889
+ B3 [50]
890
+ SVM3
891
+ tested with subject-wise data and the average performance is
892
+ reported. The hyperparameter settings for different machine
893
+ learning algorithms used in this work are summarized in Table
894
+ VII. The performance of classifiers is evaluated using the
895
+ standard metrics such as cross validation accuracy (α), testing
896
+ accuracy (β), Kappa coefficient (κ), precision (γ), recall (ρ)
897
+ and F-1 score (F1).
898
+ IV. CLASSIFICATION EXPERIMENTS, RESULTS &
899
+ ANALYSIS
900
+ The developed EMAHA-DB1 sEMG dataset is analyzed
901
+ using the state-of-the-art classification and feature extraction
902
+ methods as detailed below.
903
+ A. Pre-processing and Data Split-up
904
+ Based on the procedure described in [55], the recorded
905
+ sEMG data is pre-processed as follows. First, the sEMG data is
906
+ filtered to remove power line noise at 50Hz. Then a first order
907
+ Butterworth low pass filter is applied at a cut-off frequency of
908
+ 500Hz. Finally, wavelet denoising of order 8 with the symlet
909
+ as the mother wavelet is applied. The data from each subject
910
+ is split trials-wise into 70% for training and 30% for testing as
911
+ per the splitting method in [55]. A non overlapping moving
912
+ window segment of Ng = 200 samples is considered with
913
+ duration Tseg = 100ms. The number of features obtained per
914
+ segment sg are summarized in Table VIII.
915
+
916
+ 80
917
+ Cross Validation (α)
918
+ Testing (B)
919
+ 75
920
+ (%)
921
+ Accuracy
922
+ 70
923
+ 65
924
+ 60
925
+ F2
926
+ F3
927
+ F1
928
+ F4
929
+ F5
930
+ F6
931
+ F0
932
+ Feature sets80
933
+ Cross Validation (α)
934
+ Testing (β)
935
+ 75
936
+ %
937
+ 70
938
+ Accuracy
939
+ 65
940
+ 60
941
+ 55
942
+ RF
943
+ SKNN
944
+ SVM3
945
+ FKNN
946
+ Classifiers80
947
+ Cross Validation (α)
948
+ Testing (β)
949
+ 75
950
+ (%)
951
+ Accuracy
952
+ 70
953
+ 65
954
+ 60
955
+ B1
956
+ B2
957
+ B3
958
+ B4
959
+ B5
960
+ B0
961
+ B6
962
+ Feature sets0.8
963
+ -Precision ()kappa ()
964
+ *F, score (F,)
965
+ Recall (p)
966
+ 0.75
967
+ Metric
968
+ 0.7
969
+ rmance
970
+ 0.65
971
+ 0.6
972
+ 0.55
973
+ B2
974
+ B3
975
+ B4
976
+ B5
977
+ B6
978
+ B0
979
+ B1
980
+ Benchmarks85
981
+ Feature set F0
982
+ Feature set F5
983
+ Feature set F2
984
+ 80
985
+ 75
986
+ 70
987
+ 65
988
+ RF
989
+ SKNN
990
+ SVM3
991
+ FKNN
992
+ Classifier6
993
+ TABLE IX: Muscle vs action mapping.
994
+ Muscle
995
+ Major functionality of the mus-
996
+ cle
997
+ Biceps Brachii (BB) muscle
998
+ Flexes elbow joint, Supinates fore-
999
+ arm and hand at radioulnar joint
1000
+ Brachio Radialis (BR) muscle
1001
+ Flexes elbow joint
1002
+ Flexor Carpi Radialis (FCR) muscle
1003
+ Flexes and abducts hand at wrist
1004
+ Flexor Carpi Ulnaris (FCU) muscle
1005
+ Flexes and adducts wrist
1006
+ Abductor Pollocis Brevis (APB) muscle Abducts joints of thumb
1007
+ B. Experiments
1008
+ In this paper, as mentioned earlier two case studies are
1009
+ carried out as follows, 1) classification of individual action
1010
+ categories listed in Table I, in this case study, the performance
1011
+ is analyzed with respect to feature ensembles, classifiers,
1012
+ benchmark classification frameworks and finally feature vi-
1013
+ sualization; 2) classification of FAABOS categories listed in
1014
+ Table V, in the second case study, the performance is analyzed
1015
+ with respect to feature ensembles followed by an analysis of
1016
+ the most relevant features with respect to the muscle sites.
1017
+ C. Case Study 1: Results and Analysis
1018
+ 1) Comparison with feature ensembles: The feature sets
1019
+ F0-F6 are analyzed in this comparison study. Each of the
1020
+ feature set is utilised as input for SVM3 and their performance
1021
+ metrics α and β are evaluated. As shown in Fig. 3a, the best
1022
+ performance is produced by the feature set F5 (α = 77.42 and
1023
+ β = 75.39). The next best feature ensemble F2 lags behind by
1024
+ 0.3% at α = 78.06 and β = 75.09. The feature ensemble F6
1025
+ has produced the least classification performance (α = 66.68
1026
+ and β = 66.79).
1027
+ 2) Comparison with classifiers: In this experiment, the
1028
+ classification performance of the standard machine learning
1029
+ algorithms such as the RF, FKNN, sKNN and SVM3 using
1030
+ the F5 feature set is analyzed. As shown in Fig. 3b, the best
1031
+ performance is produced by the SVM3 classifier (α = 77.42
1032
+ and β
1033
+ = 75.39) and then by FKNN (α = 74.83 and
1034
+ β = 72.42). The least performance is obtained with SKNN
1035
+ classifier (α = 58.4 and β = 58.3). Thus, it is observed from
1036
+ this experiment that for the feature set F5 the SVM3 classifier
1037
+ outperforms other benchmark classifiers.
1038
+ 3) Comparison with benchmark algorithms: The most suit-
1039
+ able classification framework for the EMAHA-DB1 is deter-
1040
+ mined by comparisons with the existing sEMG benchmark
1041
+ classification methods consisting of respective combinations
1042
+ of a feature ensemble and a classification framework as listed
1043
+ in Table VIII. The benchmark Bi indicates the classification
1044
+ framework with feature set Fi for i = 0, 1, · · · , 6. The param-
1045
+ eter setups of the different classifiers used in the numerical
1046
+ analysis are also shown in Table VII. The performance of these
1047
+ classifiers is analyzed based on the cross validation accuracy
1048
+ (α) and the test accuracy (β) with the corresponding results
1049
+ shown in Fig. 3c. The benchmark B5 has achieved state-of-
1050
+ the-art performance with α = 77.42 and β = 75.39. The lowest
1051
+ performance among the compared benchmarks is for B6 with
1052
+ α = 74.2 and β = 69.04. The other performance metrics (i.e., κ,
1053
+ γ, ρ, and F1) of the benchmark frameworks are shown in Fig.
1054
+ 3d. The benchmark framework F5 has achieved highest values
1055
+ for each of the performance metrics, i.e., κ = 0.73, γ=0.66,
1056
+ ρ=0.71, and F1 = 0.68. The runner-up is B6 framework with
1057
+ metric values κ = 0.66, γ= 0.60, ρ= 0.64, and F1 = 0.66.
1058
+ 4) Feature Visualization by t-SNE: The following analysis
1059
+ is meant for the 22 individual action categories however
1060
+ carried out FAABOS group wise. Among the feature sets F0
1061
+ to F6, it is observed that F5 is the best performing feature
1062
+ set, hence used for sequential feature selection analysis (SFS).
1063
+ From SFS, the most relevant features for each group of hand
1064
+ activities are identified and further used for analysis with
1065
+ t-distributed Stochastic Neighbourhood Embedding (t-SNE)
1066
+ [56]. The top 6 feature columns of 84, 85, 96, 97, 101, and
1067
+ 105 are used in this study. The columns with higher ranking
1068
+ are 84 and 85 that correspond to the features of mean and
1069
+ variance respectively (from TDS feature set), and 96, 97, 101,
1070
+ and 105 that correspond to the spectral bands [0 (Ns/8)] and
1071
+ [(Ns/8) (Ns/4)] of SBP feature set [47]. The flexion and
1072
+ extension of elbow and wrist flexion and extension are mainly
1073
+ supported by the muscle groups BB, BR, FCR and FCU [57]
1074
+ as given in TABLE IX. The action categories in group 2 and
1075
+ group 3 involve the common muscle movements including
1076
+ elbow flexion and extension, wrist flexion and extension and
1077
+ pronation and supination as shown in TABLE X. Hence From
1078
+ Fig. 4b and 4c, the clusters for some of the actions overlap
1079
+ due to involvement of similar muscle groups across actions
1080
+ with same basic muscle movements. The actions within group
1081
+ 1, group 4 and group 5 are clearly separable which can be
1082
+ observed from Fig. 4a, Fig. 4d and Fig. 4e, respectively.
1083
+ D. Case Study 2: Results and Analysis
1084
+ 1) Comparison of FAABOS categories with feature ensem-
1085
+ bles: The sEMG signals from the EMAHA-DB1 are classified
1086
+ based on FAABOS categories specified in Table V. The six
1087
+ FAABOS categories of sEMG signals are trained and tested
1088
+ with the top three feature sets such as F0, F2 and F5 and
1089
+ the corresponding results are plotted in Fig. 3e. The best
1090
+ performance is produced by the SVM3 classifier (α = 86.54
1091
+ and β = 83.21) with the feature set F2. The next best
1092
+ performance is produced by the same SVM3 classifier (α =
1093
+ 85.85 and β = 83.14), but with the feature set F5 having a
1094
+ slight variation of 0.07%. The least performance is observed
1095
+ for feature set F0 with SKNN classifier (α = 85.66 and β =
1096
+ 82.39).
1097
+ 2) Feature Visualization by t-SNE for FAABOS groups:
1098
+ This analysis is carried out for 6 FAABOS categories. Among
1099
+ the feature sets F0, F2, and F5, it is observed that F2 is the
1100
+ best performing feature set and used for SFS analysis. From
1101
+ SFS, the top 6 feature columns 1, 3, 4, 5, 19, and 23 are
1102
+ used in this study. The columns with higher ranking are 1,
1103
+ 3, 4, and 5 that correspond to mean absolute value (MAV),
1104
+ 19 corresponds to the waveform length, and 23 corresponds
1105
+ to auto regressive coefficients. The t-SNE plot is generated
1106
+ with high ranking column features as shown in Fig. 5. It is
1107
+ observed that the action and rest clusters are clearly separable,
1108
+ but clusters within action groups are overlapping due to similar
1109
+ muscle group involvement. Based on a recent review of sEMG
1110
+ studies of muscle groups and their functions [58], the muscles
1111
+
1112
+ 7
1113
+ (a)
1114
+ (b)
1115
+ (c)
1116
+ (d)
1117
+ (e)
1118
+ Fig. 4: t-SNE plots of feature set for (a) group 1, (b) group 2, (c) group 3, (d) group 4,
1119
+ and (e) group 5, respectively.
1120
+ Fig. 5: t-SNE plot of feature set for six FAABOS groups
1121
+ FCR, FCU, BR and BB are mapped to the major functions
1122
+ involved in each of the FAABOS categories in our study and
1123
+ detailed in Table X.
1124
+ E. Discussion
1125
+ The SVM3 method has the best classification performance
1126
+ in case of the FAABOS categories (no. classes = 5). This can
1127
+ be explained by relatively less number of classes and ability
1128
+ of feature ensemble F5 to better capture the representation at
1129
+ functional category level. The ML framework’s performance
1130
+ TABLE X: FAABOS group vs actions vs muscle mapping.
1131
+ Group
1132
+ Major actions involved
1133
+ Muscles
1134
+ No object ac-
1135
+ tion (1)
1136
+ Wrist flexion & extension and hand digit ma-
1137
+ nipulation
1138
+ FCR, FCU,
1139
+ BR
1140
+ Hold
1141
+ object
1142
+ (2)
1143
+ Elbow flexion & extension, Wrist flexion & ex-
1144
+ tension, and Forearm Pronation & Supination
1145
+ BB,
1146
+ BR,
1147
+ FCR, FCU
1148
+ Object grasp-
1149
+ ing (3)
1150
+ Elbow flexion & extension, Wrist flexion &
1151
+ extension, Forearm Pronation & Supination,
1152
+ and hand digit manipulation
1153
+ FCR, FCU,
1154
+ BR, BB
1155
+ Flexion
1156
+ and
1157
+ Extension
1158
+ of
1159
+ Fingers (4)
1160
+ Wrist flexion & extension and hand digit ma-
1161
+ nipulation
1162
+ BB,
1163
+ BR,
1164
+ FCR, FCU
1165
+ Writing (5)
1166
+ Elbow flexion & extension, Wrist flexion &
1167
+ extension, and hand digit manipulation
1168
+ FCR,
1169
+ BB,
1170
+ FCU, APB
1171
+ may need further improvement. This performance can be
1172
+ explained by relatively higher number of activities and higher
1173
+ intra-class correlations. The feature visualizations with t-SNE
1174
+ has shown better separability of activities within FAABOS
1175
+ groups. A clear separation between rest and action is also
1176
+ observed in t-SNE plot across FAABOS groups.
1177
+ V. CONCLUSION & FUTURE SCOPE
1178
+ In this paper, we have collected a novel sEMG dataset
1179
+ (EMAHA-DB1) of 22 activities of daily living from Indian
1180
+ population. The EMAHA-DB1 includes a few activities that
1181
+ are not considered in existing datasets. The sEMG EMAHA-
1182
+ DB1 dataset is compared against the publicly available ex-
1183
+ isting sEMG datasets. The dataset is analyzed from different
1184
+ perspectives including feature set analysis in time domain and
1185
+ frequency domain, individual action classification, FAABOS
1186
+ category classification and feature visualization using t-SNE.
1187
+ In the above mentioned analysis, the modified LMF, time
1188
+ domain statistical (TDS) feature, spectral band powers (SBP),
1189
+ channel cross correlation and local binary patterns (LBP)
1190
+ ensemble feature set (F5) with Cubic SVM classifier has
1191
+ obtained highest test accuracy of β = 75.39%. Additionally,
1192
+ in the FAABOS groups classification, the best performance is
1193
+ again produced by the cubic SVM classifier (β = 83.21) with
1194
+ the feature set consisting of energy features and auto regressive
1195
+ coefficients (F2). Finally, the visual analysis using t-SNE
1196
+ plots showed that the extracted feature set is able to clearly
1197
+ distinguish the ADL activities within a group. The obtained
1198
+ results indicate that the EMAHA-DB1 can be successfully
1199
+ used as a benchmark for the development of hand gesture
1200
+ recognition system, physiological analysis and clinical studies
1201
+ of sEMG for ADL.
1202
+ In terms of future work, the framework may need further in-
1203
+ novation in terms of features to improve the classification per-
1204
+ formance; the EMAHA-DB1 is analysed using only machine
1205
+ learning classifiers, there is a scope for improvement with deep
1206
+ learning; the dataset can also be analysed by decomposing the
1207
+ time series with wavelets or empirical mode decomposition
1208
+ (EMD) techniques; finally, the EMAHA-DB1 dataset can also
1209
+ be analysed for learning the statistical distributions.
1210
+ ACKNOWLEDGMENT
1211
+ This research is funded by SERB, Govt. of India under
1212
+ Project Grant No. CRG/2019/003801.
1213
+
1214
+ 50
1215
+ 40
1216
+ 30
1217
+ 20
1218
+ Dimension
1219
+ 10
1220
+ 12
1221
+ 10
1222
+ 13
1223
+ 16
1224
+ -20
1225
+ 18
1226
+ -30
1227
+ 19
1228
+ 20
1229
+ -40
1230
+ 21
1231
+ -50
1232
+ -60
1233
+ -40
1234
+ -20
1235
+ 20
1236
+ 40
1237
+ 60
1238
+ Dimension.
1239
+ 717
1240
+ 10
1241
+ 5
1242
+ 2
1243
+ Dimension
1244
+ 5
1245
+ -10
1246
+ -15
1247
+ -20
1248
+ -15
1249
+ -10
1250
+ 5
1251
+ 10
1252
+ -5
1253
+ 15
1254
+ Dimension.40
1255
+ 14
1256
+ 15
1257
+ 30
1258
+ 20
1259
+ Dimension
1260
+ 10
1261
+ -10
1262
+ -20
1263
+ -20
1264
+ -10
1265
+ 20
1266
+ 30
1267
+ 10
1268
+ 0
1269
+ Dimension 180
1270
+ 0
1271
+ 60
1272
+ 1
1273
+ 2
1274
+ 40
1275
+ 3
1276
+ 4
1277
+ 20
1278
+ 5
1279
+ Dimension
1280
+ 0
1281
+ -20
1282
+ -40
1283
+ -60
1284
+ -80
1285
+ -100
1286
+ -100
1287
+ -50
1288
+ 50
1289
+ 100
1290
+ 0
1291
+ Dimension 12
1292
+ 3
1293
+ 9
1294
+ 10
1295
+ 2
1296
+ 1
1297
+ Dimension
1298
+ .2
1299
+ -3
1300
+ -5
1301
+ 6
1302
+ 2
1303
+ 2
1304
+ 4
1305
+ 8
1306
+ 0
1307
+ 6
1308
+ Dimension20
1309
+ 3
1310
+ 4
1311
+ 15
1312
+ 5
1313
+ 6
1314
+ 10
1315
+ 7
1316
+ 8
1317
+ 5
1318
+ Dimension
1319
+ 5
1320
+ -10
1321
+ -15
1322
+ -20
1323
+ -10
1324
+ 10
1325
+ 15
1326
+ -5
1327
+ 5
1328
+ 20
1329
+ 08
1330
+ REFERENCES
1331
+ [1] T.-H.-C. Nguyen, J.-C. Nebel, and F. Florez-Revuelta, “Recognition of
1332
+ activities of daily living with egocentric vision: A review,” Sensors,
1333
+ vol. 16, no. 1, p. 72, 2016.
1334
+ [2] F. Monjazebi, A. Dalvandi, A. Ebadi, H. R. Khankeh, M. Rahgozar, and
1335
+ J. Richter, “Functional status assessment of COPD based on ability to
1336
+ perform daily living activities: a systematic review of paper and pencil
1337
+ instruments,” Global Journal of Health Science, vol. 8, no. 3, p. 210,
1338
+ 2016.
1339
+ [3] W. H. Organization et al., “Brief model disability survey: 2019 results
1340
+ for India, Lao People’s Democratic Republic and Tajikistan,” 2021.
1341
+ [4] I. Narang, B. Mathur, P. Singh, and V. Jape, “Clinical survey of upper
1342
+ extremity amputees in India,” Orthot Prosthet, vol. 40, no. 2, pp. 29–37,
1343
+ 1986.
1344
+ [5] E. J. Overdorp, R. P. Kessels, J. A. Claassen, and J. M. Oosterman, “The
1345
+ combined effect of neuropsychological and neuropathological deficits
1346
+ on instrumental activities of daily living in older adults: a systematic
1347
+ review,” Neuropsychology review, vol. 26, no. 1, pp. 92–106, 2016.
1348
+ [6] J. C. Deenen, C. G. Horlings, J. J. Verschuuren, A. L. Verbeek, and
1349
+ B. G. van Engelen, “The epidemiology of neuromuscular disorders: a
1350
+ comprehensive overview of the literature,” Journal of neuromuscular
1351
+ diseases, vol. 2, no. 1, pp. 73–85, 2015.
1352
+ [7] R. Chieffo, G. Comi, and L. Leocani, “Noninvasive neuromodulation
1353
+ in poststroke gait disorders: rationale, feasibility, and state of the art,”
1354
+ Neurorehabilitation and neural repair, vol. 30, no. 1, pp. 71–82, 2016.
1355
+ [8] C. L. Kenmuir, M. Hammer, T. Jovin, V. Reddy, L. Wechsler, and
1356
+ A. Jadhav, “Predictors of outcome in patients presenting with acute
1357
+ ischemic stroke and mild stroke scale scores,” Journal of Stroke and
1358
+ Cerebrovascular Diseases, vol. 24, no. 7, pp. 1685–1689, 2015.
1359
+ [9] J. D. Pandian and P. Sudhan, “Stroke epidemiology and stroke care
1360
+ services in India,” Journal of stroke, vol. 15, no. 3, p. 128, 2013.
1361
+ [10] C. Wang, M. Sivan, D. Wang, Z.-Q. Zhang, G.-Q. Li, T. Bao, and
1362
+ S. Q. Xie, “Quantitative elbow spasticity measurement based on mus-
1363
+ cle activation estimation using maximal voluntary contraction,” IEEE
1364
+ Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11,
1365
+ 2022.
1366
+ [11] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans-
1367
+ actions on Systems, Man, and Cybernetics, Part C (Applications and
1368
+ Reviews), vol. 37, no. 3, pp. 311–324, 2007.
1369
+ [12] S. Waldherr, R. Romero, and S. Thrun, “A gesture based interface for
1370
+ human-robot interaction,” Autonomous Robots, vol. 9, no. 2, pp. 151–
1371
+ 173, 2000.
1372
+ [13] H.-D. Yang, A.-Y. Park, and S.-W. Lee, “Gesture spotting and recog-
1373
+ nition for human–robot interaction,” IEEE Transactions on robotics,
1374
+ vol. 23, no. 2, pp. 256–270, 2007.
1375
+ [14] B. Burger, I. Ferran´e, F. Lerasle, and G. Infantes, “Two-handed gesture
1376
+ recognition and fusion with speech to command a robot,” Autonomous
1377
+ Robots, vol. 32, no. 2, pp. 129–147, 2012.
1378
+ [15] N. Makaram, P. A. Karthick, and R. Swaminathan, “Analysis of Dy-
1379
+ namics of EMG Signal Variations in Fatiguing Contractions of Muscles
1380
+ Using Transition Network Approach,” IEEE Transactions on Instrumen-
1381
+ tation and Measurement, vol. 70, pp. 1–8, 2021.
1382
+ [16] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G.
1383
+ Celler, “Implementation of a real-time human movement classifier using
1384
+ a triaxial accelerometer for ambulatory monitoring,” IEEE transactions
1385
+ on information technology in biomedicine, vol. 10, no. 1, pp. 156–167,
1386
+ 2006.
1387
+ [17] J.-Y. Yang, J.-S. Wang, and Y.-P. Chen, “Using acceleration mea-
1388
+ surements for activity recognition: An effective learning algorithm for
1389
+ constructing neural classifiers,” Pattern recognition letters, vol. 29,
1390
+ no. 16, pp. 2213–2220, 2008.
1391
+ [18] W. Qi, H. Su, and A. Aliverti, “A smartphone-based adaptive recognition
1392
+ and real-time monitoring system for human activities,” IEEE Trans Hum
1393
+ Mach Syst, vol. 50, no. 5, pp. 414–423, 2020.
1394
+ [19] C. J. Bell, P. Shenoy, R. Chalodhorn, and R. P. Rao, “Control of a
1395
+ humanoid robot by a noninvasive brain–computer interface in humans,”
1396
+ Journal of NeuroEngineering and Rehabilitation, vol. 5, no. 2, p. 214,
1397
+ June 2008, doi: 10.1088/1741-2560/5/2/012.
1398
+ [20] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and
1399
+ O. C. Aszmann, “The extraction of neural information from the surface
1400
+ EMG for the control of upper-limb prostheses: emerging avenues and
1401
+ challenges,” IEEE Transactions on Neural Systems and Rehabilitation
1402
+ Engineering, vol. 22, no. 4, pp. 797–809, 2014.
1403
+ [21] R. Wen, W. Tay, B. P. Nguyen, C.-B. Chng, and C.-K. Chui, “Hand
1404
+ gesture guided robot-assisted surgery based on a direct augmented reality
1405
+ interface,” Comput Methods Programs Biomed, vol. 116, no. 2, pp. 68–
1406
+ 80, 2014.
1407
+ [22] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm, and H. L. Jethani,
1408
+ “Gesture-based robot control with variable autonomy from the JPL
1409
+ BioSleeve,” in 2013 IEEE International Conference on Robotics and
1410
+ Automation.
1411
+ IEEE, 2013, pp. 1160–1165.
1412
+ [23] Z. Lu, X. Chen, Q. Li, X. Zhang, and P. Zhou, “A hand gesture
1413
+ recognition framework and wearable gesture-based interaction prototype
1414
+ for mobile devices,” IEEE transactions on human-machine systems,
1415
+ vol. 44, no. 2, pp. 293–299, 2014.
1416
+ [24] S. Jiang, B. Lv, W. Guo, C. Zhang, H. Wang, X. Sheng, and P. B. Shull,
1417
+ “Feasibility of wrist-worn, real-time hand, and surface gesture recog-
1418
+ nition via sEMG and IMU sensing,” IEEE Transactions on Industrial
1419
+ Informatics, vol. 14, no. 8, pp. 3376–3385, 2017.
1420
+ [25] J. A. Mucarquer, P. Prado, M.-J. Escobar, W. El-Deredy, and M. Za˜nartu,
1421
+ “Improving EEG Muscle Artifact Removal With an EMG Array,” IEEE
1422
+ Transactions on Instrumentation and Measurement, vol. 69, no. 3, pp.
1423
+ 815–824, 2020.
1424
+ [26] J.-H. Jeong, J.-H. Cho, K.-H. Shim, B.-H. Kwon, B.-H. Lee, D.-Y. Lee,
1425
+ D.-H. Lee, and S.-W. Lee, “Multimodal signal dataset for 11 intuitive
1426
+ movement tasks from single upper extremity during multiple recording
1427
+ sessions,” GigaScience, vol. 9, no. 10, p. giaa098, 2020.
1428
+ [27] J. Tryon and A. L. Trejos, “Evaluating Convolutional Neural Networks
1429
+ as a Method of EEG–EMG Fusion,” Frontiers in Neurorobotics, vol. 15,
1430
+ p. 692183, 2021.
1431
+ [28] M. Zandigohar, M. Han, M. Sharif, S. Y. Gunay, M. P. Furmanek,
1432
+ M. Yarossi, P. Bonato, C. Onal, T. Padir, D. Erdogmus et al., “Mul-
1433
+ timodal fusion of EMG and vision for human grasp intent inference in
1434
+ prosthetic hand control,” arXiv preprint arXiv:2104.03893, 2021.
1435
+ [29] M. S. Totty and E. Wade, “Muscle Activation and Inertial Motion
1436
+ Data for Noninvasive Classification of Activities of Daily Living,” IEEE
1437
+ Transactions on Biomedical Engineering, vol. 65, no. 5, pp. 1069–1076,
1438
+ 2018.
1439
+ [30] N. J. Jarque-Bou, M. Vergara, J. L. Sancho-Bru, V. Gracia-Ib´a˜nez, and
1440
+ A. Roda-Sales, “A calibrated database of kinematics and EMG of the
1441
+ forearm and hand during activities of daily living,” Scientific data, vol. 6,
1442
+ no. 1, pp. 1–11, 2019.
1443
+ [31] X. Song, S. S. Van De Ven, L. Liu, F. J. Wouda, H. Wang, and P. B. Shull,
1444
+ “Activities of daily living-based rehabilitation system for arm and hand
1445
+ motor function retraining after stroke,” IEEE Transactions on Neural
1446
+ Systems and Rehabilitation Engineering, vol. 30, pp. 621–631, 2022.
1447
+ [32] A. Vijayvargiya, P. Singh, R. Kumar, and N. Dey, “Hardware Imple-
1448
+ mentation for Lower Limb Surface EMG Measurement and Analysis
1449
+ Using Explainable AI for Activity Recognition,” IEEE Transactions on
1450
+ Instrumentation and Measurement, vol. 71, pp. 1–9, 2022.
1451
+ [33] Q. Li, Z. Luo, and J. Zheng, “A New Deep Anomaly Detection-Based
1452
+ Method for User Authentication Using Multichannel Surface EMG
1453
+ Signals of Hand Gestures,” IEEE Transactions on Instrumentation and
1454
+ Measurement, vol. 71, pp. 1–11, 2022.
1455
+ [34] D.
1456
+ N.
1457
+ Majumdar,
1458
+ “Discussion
1459
+ on
1460
+ the
1461
+ application
1462
+ of
1463
+ statistical
1464
+ methods in anthropometry,” Sankhy¯a: The Indian Journal of Statistics
1465
+ (1933-1960), vol. 4, no. 4, pp. 591–598, 1940. [Online]. Available:
1466
+ http://www.jstor.org/stable/40383967
1467
+ [35] P. P. Majumder, “Anthropometry, mahalanobis and human genetics,”
1468
+ Sankhya B, vol. 80, no. 1, pp. 224–236, 2018.
1469
+ [36] P. Liang, W. H. Kwong, A. Sidarta, C. K. Yap, W. K. Tan, L. S. Lim,
1470
+ P. Y. Chan, C. W. K. Kuah, S. K. Wee, K. Chua et al., “An asian-centric
1471
+ human movement database capturing activities of daily living,” Scientific
1472
+ data, vol. 7, no. 1, pp. 1–13, 2020.
1473
+ [37] J. Wojtusch and O. von Stryk, “Humod - a versatile and open database
1474
+ for the investigation, modeling and simulation of human motion dynam-
1475
+ ics on actuation level,” in 2015 IEEE-RAS 15th International Conference
1476
+ on Humanoid Robots (Humanoids), 2015, pp. 74–79.
1477
+ [38] G. Uswatte and L. Hobbs Qadri, “A behavioral observation system
1478
+ for quantifying arm activity in daily life after stroke.” Rehabilitation
1479
+ psychology, vol. 54, no. 4, p. 398, 2009.
1480
+ [39] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
1481
+ S. Elsig, G. Giatsidis, F. Bassetto, and H. M¨uller, “Electromyography
1482
+ data for non-invasive naturally-controlled robotic hand prostheses,” Sci.
1483
+ Data, vol. 1, no. 1, p. 140053, Dec 2014.
1484
+ [40] M. Ortiz-Catalan, R. Br˚anemark, and B. H˚akansson, “Biopatrec: A
1485
+ modular research platform for the control of artificial limbs based on
1486
+ pattern recognition algorithms,” Source Code Biol Med, vol. 8, no. 1,
1487
+ p. 11, Apr 2013.
1488
+ [41] R. N. Khushaba, M. Takruri, J. V. Miro, and S. Kodagoda, “Towards limb
1489
+ position invariant myoelectric pattern recognition using time-dependent
1490
+ spectral features,” Neural Networks, vol. 55, pp. 42–58, 2014.
1491
+
1492
+ 9
1493
+ [42] S. Lobov, N. Krilova, I. Kastalskiy, V. Kazantsev, and V. A. Makarov,
1494
+ “Latent factors limiting the performance of sEMG-interfaces,” Sensors,
1495
+ vol. 18, no. 4, p. 1122, 2018.
1496
+ [43] “Noraxon Ultium EMG system,” Available at https://www.noraxon.com/
1497
+ our-products/ultium-emg/, 2022.
1498
+ [44] E. Criswell, Cram’s introduction to surface electromyography. Burling-
1499
+ ton: Jones & Bartlett Publishers, 2010.
1500
+ [45] S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. M¨uller,
1501
+ and M. Atzori, “Comparison of six electromyography acquisition setups
1502
+ on hand movement classification tasks,” PLoS One, vol. 12, no. 10, pp.
1503
+ 1–17, 10 2017.
1504
+ [46] N. Maleˇsevi´c, A. Olsson, P. Sager, E. Andersson, C. Cipriani, M. Con-
1505
+ trozzi, A. Bj¨orkman, and C. Antfolk, “A database of high-density
1506
+ surface electromyogram signals comprising 65 isometric hand gestures,”
1507
+ Scientific Data, vol. 8, no. 1, pp. 1–10, 2021.
1508
+ [47] N. K. Karnam, A. C. Turlapaty, S. R. Dubey, and B. Gokaraju, “Clas-
1509
+ sification of sEMG signals of hand gestures based on energy features,”
1510
+ Biomed Signal Process Control, vol. 70, p. 102948, 2021.
1511
+ [48] A. J. Young, L. H. Smith, E. J. Rouse, and L. J. Hargrove, “Classification
1512
+ of simultaneous movements using surface EMG pattern recognition,”
1513
+ IEEE Trans Biomed Eng, vol. 60, no. 5, pp. 1250–1258, May 2012,
1514
+ doi: 10.1109/TBME.2012.2232293.
1515
+ [49] P. Geethanjali and K. Ray, “A low-cost real-time research platform for
1516
+ EMG pattern recognition-based prosthetic hand,” IEEE/ASME Transac-
1517
+ tions on Mechatronics, vol. 20, no. 4, pp. 1948–1955, Aug 2014, doi:
1518
+ 10.1109/TMECH.2014.2360119.
1519
+ [50] A. Waris, I. K. Niazi, M. Jamil, K. Englehart, W. Jensen, and E. N.
1520
+ Kamavuako, “Multiday evaluation of techniques for EMG-based clas-
1521
+ sification of hand motions,” IEEE Journal of Biomedical and Health
1522
+ Informatics, vol. 23, no. 4, pp. 1526–1534, July 2018, doi: 10.1109/
1523
+ JBHI.2018.2864335.
1524
+ [51] A. H. Al-Timemy, R. N. Khushaba, G. Bugmann, and J. Escudero,
1525
+ “Improving the performance against force variation of EMG controlled
1526
+ multifunctional upper-limb prostheses for transradial amputees,” IEEE
1527
+ Transactions on Neural Systems and Rehabilitation Engineering, vol. 24,
1528
+ no. 6, pp. 650–661, June 2015, doi: 10.1109/TNSRE.2015.2445634.
1529
+ [52] A. C. Turlapaty and B. Gokaraju, “Feature analysis for classification
1530
+ of physical actions using surface EMG data,” IEEE Sensors Journal,
1531
+ vol. 19, no. 24, pp. 12 196–12 204, Dec 2019, doi: 10.1109/JSEN.2019.
1532
+ 2937979.
1533
+ [53] E. Campbell, A. Phinyomark, and E. Scheme, “Current trends and con-
1534
+ founding factors in myoelectric control: Limb position and contraction
1535
+ intensity,” Sensors, vol. 20, no. 6, p. 1613, 2020.
1536
+ [54] A. H. Al-Timemy, G. Bugmann, J. Escudero, and N. Outram, “Classi-
1537
+ fication of finger movements for the dexterous hand prosthesis control
1538
+ with surface electromyography,” IEEE J Biomed Health Inform, vol. 17,
1539
+ no. 3, pp. 608–618, May 2013, doi: 10.1109/JBHI.2013.2249590.
1540
+ [55] N. K. Karnam, S. R. Dubey, A. C. Turlapaty, and B. Gokaraju,
1541
+ “EMGHandNet: A hybrid CNN and Bi-LSTM architecture for hand
1542
+ activity classification using surface EMG signals,” Biocybernetics and
1543
+ Biomedical Engineering, vol. 42, no. 1, pp. 325–340, 2022.
1544
+ [56] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”
1545
+ Journal of machine learning research, vol. 9, no. 11, 2008.
1546
+ [57] K. M. K. M. Van De Graaff, Human anatomy / Kent M. Van De Graaff.,
1547
+ 6th ed.
1548
+ Boston, Mass.: WCB/McGraw-Hill, 1998.
1549
+ [58] N. J. Jarque-Bou, J. L. Sancho-Bru, and M. Vergara, “A systematic
1550
+ review of EMG applications for the characterization of forearm and hand
1551
+ muscle activity during activities of daily living: Results, challenges, and
1552
+ open issues,” Sensors, vol. 21, no. 9, 2021.
1553
+
ANE1T4oBgHgl3EQfowXh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BdE2T4oBgHgl3EQfRge6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb98d20c7a47fd65b12339f3b93a2349c22522aaf896fd57ec1842db3d97d528
3
+ size 4194349
CtAyT4oBgHgl3EQfefgG/content/tmp_files/2301.00320v1.pdf.txt ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Relevance Classification of Flood-related Twitter Posts
2
+ via Multiple Transformers
3
+ Wisal Mukhtiar1,†, Waliiya Rizwan1,†, Aneela Habib1,†, Yasir Saleem Afridi1,
4
+ Laiq Hasan1 and Kashif Ahmad2
5
+ 1Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan.
6
+ 2Department of Computer Science, Munsters Technological University, Cork, Ireland.
7
+ Abstract
8
+ In recent years, social media has been widely explored as a potential source of communication and informa-
9
+ tion in disasters and emergency situations. Several interesting works and case studies of disaster analytics
10
+ exploring different aspects of natural disasters have been already conducted. Along with the great potential,
11
+ disaster analytics comes with several challenges mainly due to the nature of social media content. In this
12
+ paper, we explore one such challenge and propose a text classification framework to deal with Twitter noisy
13
+ data. More specifically, we employed several transformers both individually and in combination, so as to
14
+ differentiate between relevant and non-relevant Twitter posts, achieving the highest F1-score of 0.87.
15
+ 1. Introduction
16
+ Natural disasters, which are hazardous events and occur frequently in different parts of the world,
17
+ can have devastating effects on society. Depending on the severity of the disaster, it may result in
18
+ significant damage to the infrastructure and human lives. Rapid response to natural disasters may
19
+ help in mitigating their adverse impact on society. In disasters and emergency situations, access
20
+ to relevant and timely information is key to a rapid and effective response. However, the literature
21
+ reports several situations where access to relevant and timely information may not be possible
22
+ due to several factors [1].
23
+ In recent years, social media outlets, such as Twitter, Facebook, and Instagram, have been
24
+ explored as a source of communication and information dissemination in emergency situations
25
+ [2]. The literature already reports the feasibility and effectiveness of social media for a diversified
26
+ list of tasks in disaster analytics. For instance, Ahmad et al. [3] explored social media outlets as a
27
+ source of information collection and dissemination during natural disasters by proposing a system
28
+ that is able to collect and analyze disaster-related multimedia content from social media. Similarly,
29
+ social media content has also been utilized for disaster severity and damage assessment [4, 5].
30
+ Despite being very effective in disaster analytics, social media data also come with several
31
+ limitations. For instance, social media content contains a lot of noise and irrelevant information.
32
+ This paper targets one of such challenges by proposing several solutions for the Relevance Classi-
33
+ fication of Twitter Posts (RCTP), sub-task introduced in DisasterMM challenge of MediaEval 2022
34
+ MediaEval’22: Multimedia Evaluation Workshop, January 13–15, 2023, Bergen, Norwa,y and Online
35
+ *Corresponding author.
36
+ †These authors contributed equally.
37
+ � kashif.ahmad@mtu.ie (K. Ahmad)
38
+ © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
39
+ CEUR
40
+ Workshop
41
+ Proceedings
42
+ http://ceur-ws.org
43
+ ISSN 1613-0073
44
+ CEUR Workshop Proceedings (CEUR-WS.org)
45
+ arXiv:2301.00320v1 [cs.CL] 1 Jan 2023
46
+
47
+ [6]. The task aims at automatically analyzing and classifying flood-related tweets into relevant
48
+ and non-relevant tweets.
49
+ 2. Related Work
50
+ Disaster analysis in social media content has been one of the active topics of research in the
51
+ domain over the last few years [2]. During this time, different aspects and applications of disaster
52
+ analytics in social media content have been explored [7]. Some key applications include com-
53
+ munication/information dissemination, damage assessment, response management, sentiment
54
+ analysis, and identification of the needs of affected individuals. The literature already reports
55
+ several interesting works on these applications. For instance, Nguyen et al. [8] utilized social
56
+ media content for damage assessment by analyzing disaster-related visual media posts. Ahmad
57
+ et al. [9] analyzed social media imagery for monitoring road conditions after floods. Moreover,
58
+ a vast majority of the literature demonstrates how social media outlets can be used as means of
59
+ communication in disasters and emergency situations [10, 1].
60
+ In the literature, different types of disasters including natural disasters, such as earthquakes,
61
+ landslides, droughts, wildfires, and floods, as well as man-made disasters, such as accidents, have
62
+ been explored [1, 11]. However, the majority of the works have targeted floods, being one of
63
+ the most common natural disasters. The literature reports several interesting works on flood
64
+ analysis in social media content for different tasks. For instance, Ahmad et al. [9] proposed a
65
+ late fusion-based framework for the automatic detection of passable roads after a flood. For this
66
+ purpose, several deep learning models are trained on flood-related images from social media. Alam
67
+ et al. [4], on the other hand, employed social media imagery for post floods damage severity
68
+ assessment.
69
+ Flood detection and analysis in social content have also been a part of the MediaEval benchmark
70
+ initiative as a shared task for several years. Each time a separate aspect of flood analysis has
71
+ been explored. For instance, in MediaEval 2017 the task aimed at the retrieval of flood-related
72
+ images from social media. The task mainly involved analyzing the water level in different areas to
73
+ differentiate between floods and regular water reservoirs, such as lakes [12]. In MediaEval 2018,
74
+ the task was slightly modified by asking the participants to propose multi-modal classification
75
+ frameworks for flood-related multimedia content [13]. In MediaEval 2019 and 2020, the tasks
76
+ aimed at analyzing flood severity and flood events recognition in social media posts.
77
+ 3. Approach
78
+ Figure 1 provides the block diagram of the proposed framework for the RCTP task. The framework
79
+ is composed of three main components namely (i) Pre-processing, (ii) Training and Classification,
80
+ and (iii) Fusion. In the first step, different pre-processing techniques are employed to clean the
81
+ dataset. Three different transformers are then trained on the data to obtain classification scores.
82
+ In the final step, the classification scores of the individual models are combined in a late fusion
83
+ scheme. The details of these steps are provided below.
84
+
85
+ Figure 1: Block diagram of the proposed approach.
86
+ 3.1. Pre-processing
87
+ In the pre-processing step, we employed different techniques for cleaning the dataset. More
88
+ specifically, we removed unnecessary information, such as user names, URLs, emojis, punctuation
89
+ marks, stop words, etc. Besides this, we also performed the necessary pre-possessing tasks that
90
+ are required to transform the raw text into a form that is suitable for the transformers. To achieve
91
+ this, we used the TF.text library1.
92
+ 3.2. Classification via Transformers
93
+ After cleaning and pre-processing the data, we trained three different models, namely BERT [14],
94
+ RoBERTa [15], and XLNet [16]. The selection of these models for the task is motivated by their
95
+ proven performance on similar tasks [17]. A brief overview of these models is provided below.
96
+ • BERT: Bidirectional Encoder Representations from Transformers (BERT) is one of the state-
97
+ of-the-art NLP algorithms for text processing. The model is pre-trained on a large collection
98
+ of unlabeled text and can be fine-tuned for different text-analysis applications. The key
99
+ attributes of the model include its bi-directional nature, pre-training with Masked Language
100
+ Modeling (MLM), and Next Structure Prediction (NSP) objectives. In the experiments with
101
+ BERT, we used the Adam optimizer with a learning rate of 0.001 and a batch size of 8 for 3
102
+ epochs.
103
+ • RoBERTa: Robustly Optimized BERT is a modified version of the BERT model with an
104
+ improved training mechanism. More specifically, in RoBERTa the NSP capabilities are
105
+ removed. Moreover, dynamic masking is introduced. In addition, a larger batch size and a
106
+ larger amount of training data were used in the training process. In this work, we used a
107
+ learning rate of 0.001, batch size of 20, and 10 epochs during the fine-tuning of the model
108
+ for the desired task.
109
+ • XLNet: XLNet is another state-of-the-art NLP algorithm. Similar to BERT, XLNet is also
110
+ a bidirectional transformer and uses an improved training approach. In contrast to BERT
111
+ and traditional NLP algorithms, XLNet relies on Permutation Language Modeling (PLM) by
112
+ predicting all the tokens in random order. This allows XLNet to handle dependencies and
113
+ bidirectional relationships in a better way. In this work, we used a learning rate of 0.002, a
114
+ batch size of 32, and 4 epochs during the fine-tuning of the model for the desired task.
115
+ 1https://www.tensorflow.org/text/guide/bert_preprocessing_guide#text_preprocessing_with_tftext#
116
+
117
+ Input Data
118
+ Data Pre-processing
119
+ Classification
120
+ Late Fusion
121
+ Model 1
122
+ F = S1+S2....Sn
123
+ Score obtained with M2
124
+ TextStreams
125
+ Pre-processing
126
+ Model 2
127
+ Mn
128
+ Final Score
129
+ Score
130
+ Model NWe obtained the results in the form of posterior probabilities from these models, which are then
131
+ used in the fusion scheme to obtain the final predicted labels. The fusion method used in this work
132
+ is described in the next section.
133
+ 3.3. Fusion
134
+ Our fusion method is based on late fusion, where we combined the classification scores obtained
135
+ with the individual models for the final classification decision as shown in Equ. 1. In the equation,
136
+ 𝑆𝑓𝑖𝑛𝑎𝑙 represents the final classification score while 𝑠𝑛 is the score obtained with the nth model.
137
+ We note that in the current implementation, we used a simple fusion method by treating all the
138
+ models equally (i.e., simple aggregation of the individual scores).
139
+ 𝑆𝑓𝑖𝑛𝑎𝑙 = 𝑆1 + 𝑆2 + 𝑠3 + .... + 𝑆𝑛
140
+ (1)
141
+ 4. Results and Analysis
142
+ Table 1 provides the experimental results of the proposed solutions on the development set. As
143
+ can be been in the table, overall better results are obtained with the BERT model, and surprisingly,
144
+ a lower F1-score is observed for RoBERTa. In the future, we will further investigate the potential
145
+ causes of the lower performance of RoBERTa by exploring different implementations and hyper-
146
+ parameter settings for it. As far as the performance of the fusion methods is concerned, overall
147
+ better results are obtained with the pair of XLNet and BERT. One of the potential reasons for the
148
+ lower performance of the fusion of all the models is the less accurate prediction of RoBERTa, as
149
+ also evident from the performance of the individual models.
150
+ Table 1
151
+ Experimental results of the proposed solutions on the development set.
152
+ Method
153
+ F1-Score
154
+ BERT
155
+ 0.94
156
+ RoBERTa
157
+ 0.78
158
+ XLNet
159
+ 0.93
160
+ Fusion 1 (RoBERTa, BERT, XLNet)
161
+ 0.75
162
+ Fusion 2 (BERT, XLNet)
163
+ 0.93
164
+ Fusion 3 (RoBERTa, XLNet)
165
+ 0.92
166
+ Table 2 provides the official results of the proposed solutions on the test set. In total, three
167
+ different runs were submitted. The first run is based on the fusion of all three models used in this
168
+ work. The remaining two runs are based on the fusion of the models in pairs of two. In run 2,
169
+ BERT and XLNet are combined while in run 3 RoBERTa and XLNet are jointly used. As can be
170
+ seen in the table, better results are obtained for the fusion of the models in pairs of two where the
171
+ best performing pair of two models obtained an improvement of 20% over the fusion of all three
172
+ models.
173
+
174
+ Table 2
175
+ Experimental results of the proposed solutions on the test set.
176
+ Run
177
+ Precision
178
+ Recall
179
+ F1-Score
180
+ 1 (Fusion of BERT, RoBERTa, XLNet)
181
+ 0.6738
182
+ 0.5431
183
+ 0.6014
184
+ 2 (Fusion of BERT and XLNet)
185
+ 0.8044
186
+ 0.6948
187
+ 0.7456
188
+ 3 (Fusion of RoBERTa and XLNet)
189
+ 0.8977
190
+ 0.8598
191
+ 0.8784
192
+ 5. Conclusions
193
+ In this paper, we presented our solutions for the RCTP subtask of DisasterMM challenge posted
194
+ in MediaEval 2022. We proposed a late fusion framework incorporating several state-of-the-art
195
+ transformers for the task. In the current implementation, all the models are treated equally by
196
+ assigning them equal weights (i.e., 1). In the future, we aim to employ merit-based fusion methods
197
+ to further improve the final classification score.
198
+ References
199
+ [1] K. Ahmad, K. Pogorelov, M. Riegler, N. Conci, P. Halvorsen, Social media and satellites, Multimedia
200
+ Tools and Applications 78 (2019) 2837–2875.
201
+ [2] N. Said, K. Ahmad, M. Riegler, K. Pogorelov, L. Hassan, N. Ahmad, N. Conci, Natural disasters
202
+ detection in social media and satellite imagery: a survey, Multimedia Tools and Applications 78 (2019)
203
+ 31267–31302.
204
+ [3] K. Ahmad, M. Riegler, A. Riaz, N. Conci, D.-T. Dang-Nguyen, P. Halvorsen, The jord system: Linking
205
+ sky and social multimedia data to natural disasters, in: Proceedings of the 2017 ACM on International
206
+ Conference on Multimedia Retrieval, 2017, pp. 461–465.
207
+ [4] F. Alam, M. Imran, F. Ofli, Image4act: Online social media image processing for disaster response, in:
208
+ Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis
209
+ and mining 2017, 2017, pp. 601–604.
210
+ [5] F. Alam, F. Ofli, M. Imran, Crisismmd: Multimodal twitter datasets from natural disasters, in: Twelfth
211
+ international AAAI conference on web and social media, 2018.
212
+ [6] S. Andreadis, A. Bozas, I. Gialampoukidis, A. Moumtzidou, R. Fiorin, F. Lombardo, T. Mavropoulos,
213
+ D. Norbiato, S. Vrochidis, M. Ferri, I. Kompatsiaris, DisasterMM: Multimedia Analysis of Disaster-
214
+ Related Social Media Data Task at MediaEval 2022, in: Proceedings of the MediaEval 2022 Workshop,
215
+ Bergen, Norway and Online, 2023.
216
+ [7] F. Ofli, M. Imran, F. Alam, Using artificial intelligence and social media for disaster response and
217
+ management: an overview, AI and Robotics in Disaster Studies (2020) 63–81.
218
+ [8] D. T. Nguyen, F. Ofli, M. Imran, P. Mitra, Damage assessment from social media imagery data during
219
+ disasters, in: Proceedings of the 2017 IEEE/ACM international conference on advances in social
220
+ networks analysis and mining 2017, 2017, pp. 569–576.
221
+ [9] K. Ahmad, K. Pogorelov, M. Riegler, O. Ostroukhova, P. Halvorsen, N. Conci, R. Dahyot, Automatic
222
+ detection of passable roads after floods in remote sensed and social media data, Signal Processing:
223
+ Image Communication 74 (2019) 110–118.
224
+ [10] L. Palen, A. L. Hughes, Social media in disaster communication, Handbook of disaster research (2018)
225
+ 497–518.
226
+ [11] K. Ahmad, A. Sohail, N. Conci, F. De Natale, A comparative study of global and deep features for
227
+ the analysis of user-generated natural disaster related images, in: 2018 IEEE 13th image, video, and
228
+ multidimensional signal processing workshop (IVMSP), IEEE, 2018, pp. 1–5.
229
+
230
+ [12] B. Bischke, P. Helber, C. Schulze, V. Srinivasan, A. Dengel, D. Borth, The multimedia satellite task at
231
+ mediaeval 2017., in: MediaEval, 2017.
232
+ [13] B. Benjamin, H. Patrick, Z. Zhengyu, B. Damian, et al., The multimedia satellite task at mediaeval
233
+ 2018: Emergency response for flooding events (2018).
234
+ [14] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for
235
+ language understanding, arXiv preprint arXiv:1810.04805 (2018).
236
+ [15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
237
+ Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692 (2019).
238
+ [16] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le, Xlnet: Generalized autoregressive
239
+ pretraining for language understanding, Advances in neural information processing systems 32 (2019).
240
+ [17] K. Ahmad, M. Ayub, J. Khan, N. Ahmad, A. Al-Fuqaha, Social media as an instant source of feedback
241
+ on water quality, IEEE Transactions on Technology and Society (2022).
242
+
CtAyT4oBgHgl3EQfefgG/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf,len=270
2
+ page_content='Relevance Classification of Flood-related Twitter Posts via Multiple Transformers Wisal Mukhtiar1,†, Waliiya Rizwan1,†, Aneela Habib1,†, Yasir Saleem Afridi1, Laiq Hasan1 and Kashif Ahmad2 1Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
3
+ page_content=' 2Department of Computer Science, Munsters Technological University, Cork, Ireland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
4
+ page_content=' Abstract In recent years, social media has been widely explored as a potential source of communication and informa- tion in disasters and emergency situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
5
+ page_content=' Several interesting works and case studies of disaster analytics exploring different aspects of natural disasters have been already conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
6
+ page_content=' Along with the great potential, disaster analytics comes with several challenges mainly due to the nature of social media content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
7
+ page_content=' In this paper, we explore one such challenge and propose a text classification framework to deal with Twitter noisy data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
8
+ page_content=' More specifically, we employed several transformers both individually and in combination, so as to differentiate between relevant and non-relevant Twitter posts, achieving the highest F1-score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
9
+ page_content='87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
10
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
11
+ page_content=' Introduction Natural disasters, which are hazardous events and occur frequently in different parts of the world, can have devastating effects on society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
12
+ page_content=' Depending on the severity of the disaster, it may result in significant damage to the infrastructure and human lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
13
+ page_content=' Rapid response to natural disasters may help in mitigating their adverse impact on society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
14
+ page_content=' In disasters and emergency situations, access to relevant and timely information is key to a rapid and effective response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
15
+ page_content=' However, the literature reports several situations where access to relevant and timely information may not be possible due to several factors [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
16
+ page_content=' In recent years, social media outlets, such as Twitter, Facebook, and Instagram, have been explored as a source of communication and information dissemination in emergency situations [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
17
+ page_content=' The literature already reports the feasibility and effectiveness of social media for a diversified list of tasks in disaster analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
18
+ page_content=' For instance, Ahmad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
19
+ page_content=' [3] explored social media outlets as a source of information collection and dissemination during natural disasters by proposing a system that is able to collect and analyze disaster-related multimedia content from social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
20
+ page_content=' Similarly, social media content has also been utilized for disaster severity and damage assessment [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
21
+ page_content=' Despite being very effective in disaster analytics, social media data also come with several limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
22
+ page_content=' For instance, social media content contains a lot of noise and irrelevant information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
23
+ page_content=' This paper targets one of such challenges by proposing several solutions for the Relevance Classi- fication of Twitter Posts (RCTP), sub-task introduced in DisasterMM challenge of MediaEval 2022 MediaEval’22: Multimedia Evaluation Workshop, January 13–15, 2023, Bergen, Norwa,y and Online Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
24
+ page_content=' †These authors contributed equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
25
+ page_content=' � kashif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
26
+ page_content='ahmad@mtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
27
+ page_content='ie (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
28
+ page_content=' Ahmad) © 2022 Copyright for this paper by its authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
29
+ page_content=' Use permitted under Creative Commons License Attribution 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
30
+ page_content='0 International (CC BY 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
31
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
32
+ page_content=' CEUR Workshop Proceedings http://ceur-ws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
33
+ page_content='org ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
34
+ page_content='org) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
35
+ page_content='00320v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
36
+ page_content='CL] 1 Jan 2023 [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
37
+ page_content=' The task aims at automatically analyzing and classifying flood-related tweets into relevant and non-relevant tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
38
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
39
+ page_content=' Related Work Disaster analysis in social media content has been one of the active topics of research in the domain over the last few years [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
40
+ page_content=' During this time, different aspects and applications of disaster analytics in social media content have been explored [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
41
+ page_content=' Some key applications include com- munication/information dissemination, damage assessment, response management, sentiment analysis, and identification of the needs of affected individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
42
+ page_content=' The literature already reports several interesting works on these applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
43
+ page_content=' For instance, Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
44
+ page_content=' [8] utilized social media content for damage assessment by analyzing disaster-related visual media posts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
45
+ page_content=' Ahmad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
46
+ page_content=' [9] analyzed social media imagery for monitoring road conditions after floods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
47
+ page_content=' Moreover, a vast majority of the literature demonstrates how social media outlets can be used as means of communication in disasters and emergency situations [10, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
48
+ page_content=' In the literature, different types of disasters including natural disasters, such as earthquakes, landslides, droughts, wildfires, and floods, as well as man-made disasters, such as accidents, have been explored [1, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
49
+ page_content=' However, the majority of the works have targeted floods, being one of the most common natural disasters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
50
+ page_content=' The literature reports several interesting works on flood analysis in social media content for different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
51
+ page_content=' For instance, Ahmad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
52
+ page_content=' [9] proposed a late fusion-based framework for the automatic detection of passable roads after a flood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
53
+ page_content=' For this purpose, several deep learning models are trained on flood-related images from social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
54
+ page_content=' Alam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
55
+ page_content=' [4], on the other hand, employed social media imagery for post floods damage severity assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
56
+ page_content=' Flood detection and analysis in social content have also been a part of the MediaEval benchmark initiative as a shared task for several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
57
+ page_content=' Each time a separate aspect of flood analysis has been explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
58
+ page_content=' For instance, in MediaEval 2017 the task aimed at the retrieval of flood-related images from social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
59
+ page_content=' The task mainly involved analyzing the water level in different areas to differentiate between floods and regular water reservoirs, such as lakes [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
60
+ page_content=' In MediaEval 2018, the task was slightly modified by asking the participants to propose multi-modal classification frameworks for flood-related multimedia content [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
61
+ page_content=' In MediaEval 2019 and 2020, the tasks aimed at analyzing flood severity and flood events recognition in social media posts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
62
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
63
+ page_content=' Approach Figure 1 provides the block diagram of the proposed framework for the RCTP task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
64
+ page_content=' The framework is composed of three main components namely (i) Pre-processing, (ii) Training and Classification, and (iii) Fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
65
+ page_content=' In the first step, different pre-processing techniques are employed to clean the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
66
+ page_content=' Three different transformers are then trained on the data to obtain classification scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
67
+ page_content=' In the final step, the classification scores of the individual models are combined in a late fusion scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
68
+ page_content=' The details of these steps are provided below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
69
+ page_content=' Figure 1: Block diagram of the proposed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
70
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
71
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
72
+ page_content=' Pre-processing In the pre-processing step, we employed different techniques for cleaning the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
73
+ page_content=' More specifically, we removed unnecessary information, such as user names, URLs, emojis, punctuation marks, stop words, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
74
+ page_content=' Besides this, we also performed the necessary pre-possessing tasks that are required to transform the raw text into a form that is suitable for the transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
75
+ page_content=' To achieve this, we used the TF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
76
+ page_content='text library1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
77
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
78
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
79
+ page_content=' Classification via Transformers After cleaning and pre-processing the data, we trained three different models, namely BERT [14], RoBERTa [15], and XLNet [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
80
+ page_content=' The selection of these models for the task is motivated by their proven performance on similar tasks [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
81
+ page_content=' A brief overview of these models is provided below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
82
+ page_content=' BERT: Bidirectional Encoder Representations from Transformers (BERT) is one of the state- of-the-art NLP algorithms for text processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
83
+ page_content=' The model is pre-trained on a large collection of unlabeled text and can be fine-tuned for different text-analysis applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
84
+ page_content=' The key attributes of the model include its bi-directional nature, pre-training with Masked Language Modeling (MLM), and Next Structure Prediction (NSP) objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
85
+ page_content=' In the experiments with BERT, we used the Adam optimizer with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
86
+ page_content='001 and a batch size of 8 for 3 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
87
+ page_content=' RoBERTa: Robustly Optimized BERT is a modified version of the BERT model with an improved training mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
88
+ page_content=' More specifically, in RoBERTa the NSP capabilities are removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
89
+ page_content=' Moreover, dynamic masking is introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
90
+ page_content=' In addition, a larger batch size and a larger amount of training data were used in the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
91
+ page_content=' In this work, we used a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
92
+ page_content='001, batch size of 20, and 10 epochs during the fine-tuning of the model for the desired task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
93
+ page_content=' XLNet: XLNet is another state-of-the-art NLP algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
94
+ page_content=' Similar to BERT, XLNet is also a bidirectional transformer and uses an improved training approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
95
+ page_content=' In contrast to BERT and traditional NLP algorithms, XLNet relies on Permutation Language Modeling (PLM) by predicting all the tokens in random order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
96
+ page_content=' This allows XLNet to handle dependencies and bidirectional relationships in a better way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
97
+ page_content=' In this work, we used a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
98
+ page_content='002, a batch size of 32, and 4 epochs during the fine-tuning of the model for the desired task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
99
+ page_content=' 1https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
100
+ page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
101
+ page_content='org/text/guide/bert_preprocessing_guide#text_preprocessing_with_tftext# Input Data Data Pre-processing Classification Late Fusion Model 1 F = S1+S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
102
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
103
+ page_content='.Sn Score obtained with M2 TextStreams Pre-processing Model 2 Mn Final Score Score Model NWe obtained the results in the form of posterior probabilities from these models, which are then used in the fusion scheme to obtain the final predicted labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
104
+ page_content=' The fusion method used in this work is described in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
105
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
106
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
107
+ page_content=' Fusion Our fusion method is based on late fusion, where we combined the classification scores obtained with the individual models for the final classification decision as shown in Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
108
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
109
+ page_content=' In the equation, 𝑆𝑓𝑖𝑛𝑎𝑙 represents the final classification score while 𝑠𝑛 is the score obtained with the nth model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
110
+ page_content=' We note that in the current implementation, we used a simple fusion method by treating all the models equally (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
111
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
112
+ page_content=', simple aggregation of the individual scores).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
113
+ page_content=' 𝑆𝑓𝑖𝑛𝑎𝑙 = 𝑆1 + 𝑆2 + 𝑠3 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
114
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
115
+ page_content='. + 𝑆𝑛 (1) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
116
+ page_content=' Results and Analysis Table 1 provides the experimental results of the proposed solutions on the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
117
+ page_content=' As can be been in the table, overall better results are obtained with the BERT model, and surprisingly, a lower F1-score is observed for RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
118
+ page_content=' In the future, we will further investigate the potential causes of the lower performance of RoBERTa by exploring different implementations and hyper- parameter settings for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
119
+ page_content=' As far as the performance of the fusion methods is concerned, overall better results are obtained with the pair of XLNet and BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
120
+ page_content=' One of the potential reasons for the lower performance of the fusion of all the models is the less accurate prediction of RoBERTa, as also evident from the performance of the individual models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
121
+ page_content=' Table 1 Experimental results of the proposed solutions on the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
122
+ page_content=' Method F1-Score BERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
123
+ page_content='94 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
124
+ page_content='78 XLNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
125
+ page_content='93 Fusion 1 (RoBERTa, BERT, XLNet) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
126
+ page_content='75 Fusion 2 (BERT, XLNet) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
127
+ page_content='93 Fusion 3 (RoBERTa, XLNet) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
128
+ page_content='92 Table 2 provides the official results of the proposed solutions on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
129
+ page_content=' In total, three different runs were submitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
130
+ page_content=' The first run is based on the fusion of all three models used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
131
+ page_content=' The remaining two runs are based on the fusion of the models in pairs of two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
132
+ page_content=' In run 2, BERT and XLNet are combined while in run 3 RoBERTa and XLNet are jointly used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
133
+ page_content=' As can be seen in the table, better results are obtained for the fusion of the models in pairs of two where the best performing pair of two models obtained an improvement of 20% over the fusion of all three models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
134
+ page_content=' Table 2 Experimental results of the proposed solutions on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
135
+ page_content=' Run Precision Recall F1-Score 1 (Fusion of BERT, RoBERTa, XLNet) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
136
+ page_content='6738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
137
+ page_content='5431 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
138
+ page_content='6014 2 (Fusion of BERT and XLNet) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
139
+ page_content='8044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
140
+ page_content='6948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
141
+ page_content='7456 3 (Fusion of RoBERTa and XLNet) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
142
+ page_content='8977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
143
+ page_content='8598 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
144
+ page_content='8784 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
145
+ page_content=' Conclusions In this paper, we presented our solutions for the RCTP subtask of DisasterMM challenge posted in MediaEval 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
146
+ page_content=' We proposed a late fusion framework incorporating several state-of-the-art transformers for the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
147
+ page_content=' In the current implementation, all the models are treated equally by assigning them equal weights (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
148
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
149
+ page_content=', 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
150
+ page_content=' In the future, we aim to employ merit-based fusion methods to further improve the final classification score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
151
+ page_content=' References [1] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
152
+ page_content=' Ahmad, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
153
+ page_content=' Pogorelov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
154
+ page_content=' Riegler, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
155
+ page_content=' Conci, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
156
+ page_content=' Halvorsen, Social media and satellites, Multimedia Tools and Applications 78 (2019) 2837–2875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
157
+ page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
158
+ page_content=' Said, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
159
+ page_content=' Ahmad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
160
+ page_content=' Riegler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
161
+ page_content=' Pogorelov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
162
+ page_content=' Hassan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
163
+ page_content=' Ahmad, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
164
+ page_content=' Conci, Natural disasters detection in social media and satellite imagery: a survey, Multimedia Tools and Applications 78 (2019) 31267–31302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
165
+ page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
166
+ page_content=' Ahmad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
167
+ page_content=' Riegler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
168
+ page_content=' Riaz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
169
+ page_content=' Conci, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
170
+ page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
171
+ page_content=' Dang-Nguyen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
172
+ page_content=' Halvorsen, The jord system: Linking sky and social multimedia data to natural disasters, in: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
173
+ page_content=' 461–465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
174
+ page_content=' [4] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
175
+ page_content=' Alam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
176
+ page_content=' Imran, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
177
+ page_content=' Ofli, Image4act: Online social media image processing for disaster response, in: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
178
+ page_content=' 601–604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
179
+ page_content=' [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
180
+ page_content=' Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
181
+ page_content=' Ofli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
182
+ page_content=' Imran, Crisismmd: Multimodal twitter datasets from natural disasters, in: Twelfth international AAAI conference on web and social media, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
183
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
184
+ page_content=' Andreadis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
185
+ page_content=' Bozas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
186
+ page_content=' Gialampoukidis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
187
+ page_content=' Moumtzidou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
188
+ page_content=' Fiorin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
189
+ page_content=' Lombardo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
190
+ page_content=' Mavropoulos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
191
+ page_content=' Norbiato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
192
+ page_content=' Vrochidis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
193
+ page_content=' Ferri, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
194
+ page_content=' Kompatsiaris, DisasterMM: Multimedia Analysis of Disaster- Related Social Media Data Task at MediaEval 2022, in: Proceedings of the MediaEval 2022 Workshop, Bergen, Norway and Online, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
195
+ page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
196
+ page_content=' Ofli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
197
+ page_content=' Imran, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
198
+ page_content=' Alam, Using artificial intelligence and social media for disaster response and management: an overview, AI and Robotics in Disaster Studies (2020) 63–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
199
+ page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
200
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
201
+ page_content=' Nguyen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
202
+ page_content=' Ofli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
203
+ page_content=' Imran, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
204
+ page_content=' Mitra, Damage assessment from social media imagery data during disasters, in: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
205
+ page_content=' 569–576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
206
+ page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
207
+ page_content=' Ahmad, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
208
+ page_content=' Pogorelov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
209
+ page_content=' Riegler, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
210
+ page_content=' Ostroukhova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
211
+ page_content=' Halvorsen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
212
+ page_content=' Conci, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
213
+ page_content=' Dahyot, Automatic detection of passable roads after floods in remote sensed and social media data, Signal Processing: Image Communication 74 (2019) 110–118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
214
+ page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
215
+ page_content=' Palen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
216
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
217
+ page_content=' Hughes, Social media in disaster communication, Handbook of disaster research (2018) 497–518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
218
+ page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
219
+ page_content=' Ahmad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
220
+ page_content=' Sohail, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
221
+ page_content=' Conci, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
222
+ page_content=' De Natale, A comparative study of global and deep features for the analysis of user-generated natural disaster related images, in: 2018 IEEE 13th image, video, and multidimensional signal processing workshop (IVMSP), IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
223
+ page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
224
+ page_content=' [12] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
225
+ page_content=' Bischke, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
226
+ page_content=' Helber, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
227
+ page_content=' Schulze, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
228
+ page_content=' Srinivasan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
229
+ page_content=' Dengel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
230
+ page_content=' Borth, The multimedia satellite task at mediaeval 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
231
+ page_content=', in: MediaEval, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
232
+ page_content=' [13] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
233
+ page_content=' Benjamin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
234
+ page_content=' Patrick, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
235
+ page_content=' Zhengyu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
236
+ page_content=' Damian, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
237
+ page_content=', The multimedia satellite task at mediaeval 2018: Emergency response for flooding events (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
238
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
239
+ page_content=' Devlin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
240
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
241
+ page_content=' Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
242
+ page_content=' Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
243
+ page_content=' Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
244
+ page_content='04805 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
245
+ page_content=' [15] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
246
+ page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
247
+ page_content=' Ott, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
248
+ page_content=' Goyal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
249
+ page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
250
+ page_content=' Joshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
251
+ page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
252
+ page_content=' Levy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
253
+ page_content=' Lewis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
254
+ page_content=' Zettlemoyer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
255
+ page_content=' Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
256
+ page_content='11692 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
257
+ page_content=' [16] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
258
+ page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
259
+ page_content=' Dai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
260
+ page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
261
+ page_content=' Carbonell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
262
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
263
+ page_content=' Salakhutdinov, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
264
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
265
+ page_content=' Le, Xlnet: Generalized autoregressive pretraining for language understanding, Advances in neural information processing systems 32 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
266
+ page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
267
+ page_content=' Ahmad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
268
+ page_content=' Ayub, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
269
+ page_content=' Khan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
270
+ page_content=' Ahmad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
271
+ page_content=' Al-Fuqaha, Social media as an instant source of feedback on water quality, IEEE Transactions on Technology and Society (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtAyT4oBgHgl3EQfefgG/content/2301.00320v1.pdf'}
DNE1T4oBgHgl3EQfqAUl/content/tmp_files/2301.03337v1.pdf.txt ADDED
@@ -0,0 +1,1067 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Adiabatic theory of one-dimensional curved polariton waveguides
2
+ D. A. Zezyulin∗1 and I. A. Shelykh2, 1
3
+ 1Department of Physics, ITMO University, Saint Petersburg 197101, Russia
4
+ 2Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
5
+ (Dated: January 10, 2023)
6
+ We construct a general theory of adiabatic propagation of spinor exciton-polaritons in waveguides
7
+ of arbitrary shape, accounting for the effects of TE-TM splitting in linear polarizations and Zeeman
8
+ splitting in circular polarizations. The developed theory is applied for the description of waveguides
9
+ of periodically curved shape. We show that in this geometry the periodic rotation of the effective
10
+ in-plane magnetic field produced by TE-TM interaction results in a nontrivial band-gap structure,
11
+ which can be additionally tuned by application of an external magnetic field. It is also demonstrated,
12
+ that spin-dependent interactions between polaritons lead to the formation of stable gap solitons.
13
+ Introduction.
14
+ Exciton-polaritons are composite half-
15
+ light half-matter quasiparticles emerging in the regime
16
+ of the strong coupling between a photonic mode of a
17
+ planar semiconductor microcavity and an exciton in a
18
+ quantum well (QW) brought in resonance with it. They
19
+ possess a set of remarkable properties, which allow po-
20
+ laritonic systems to serve as a convenient playground for
21
+ study of collective nonlinear phenomena at elevated tem-
22
+ peratures [1]. From their photonic component polaritons
23
+ get extremely small effective mass (about 10−5 of the
24
+ mass of free electrons) and macroscopically large coher-
25
+ ence length [2], while the presence of an excitonic com-
26
+ ponent enables efficient polariton-polariton interactions
27
+ [3–5] and leads to the sensitivity of the polariton systems
28
+ to external electric [6–8] and magnetic [9–11] fields.
29
+ An important property of cavity polaritons is their spin
30
+ (or pseudo-spin) [12], inherited from the spins of QW ex-
31
+ citons and cavity photons. Similar to photons, polari-
32
+ tons have two possible spin projections on the structure
33
+ growth axis corresponding to the two opposite circular
34
+ polarizations which can be mixed by effective magnetic
35
+ fields of various origin. Real magnetic field applied along
36
+ the structure growth axis and acting on the excitonic
37
+ component splits in energy the polariton states with op-
38
+ posite circular polarizations, while TE-TM splitting of
39
+ the photonic modes of a planar resonator couples these
40
+ states to each other via a k-dependent term, thus playing
41
+ a role of an effective spin-orbit interaction [12]. Impor-
42
+ tantly, polariton-polariton interactions are also spin de-
43
+ pendent, as they stem from the interactions of excitonic
44
+ components which are dominated by the exchange term
45
+ [13]. This leads to the fact that polaritons of the same cir-
46
+ cular polarization interact orders of magnitude stronger
47
+ than polaritons with opposite circular polarizations [3].
48
+ Remarkable tunability of cavity polaritons allows to
49
+ engineer their spatial confinement in a variety of ex-
50
+ perimental geometries, ranging from individual micropil-
51
+ lars [14–17] to systems of several coupled pillars form-
52
+ ∗email: d.zezyulin@gmail.com
53
+ ing so-called polariton molecules [18, 19] or periodically
54
+ arranged arrays of the pillars forming polariton super-
55
+ lattices [20–24].
56
+ Realization of quasi one-dimensional
57
+ (1D) geometries, where the motion of the polaritons is
58
+ restricted to individual waveguides [7, 25], rings [26–28]
59
+ or systems of coupled waveguides [29, 30], represents par-
60
+ ticular interest from the point of view of the applications
61
+ of polaritonics, as they can form basis for classical [31–33]
62
+ and quantum [34, 35] polaritonic circuits.
63
+ Current state of technology allows routine production
64
+ of quasi 1D polariton waveguides of arbitrary shape, in-
65
+ cluding ones with periodically modulated curvature. Cre-
66
+ ation of the general theory of the polariton propagation
67
+ in these structures, which includes polarization dynam-
68
+ ics and polariton-polariton interactions, is the goal of the
69
+ present Letter.
70
+ The model. The presence of the in-plane spatial con-
71
+ finement results in the strong nonequivalency of the
72
+ states polarized normally and tangentially to a waveg-
73
+ uide, which leads to the appearance of a local effective
74
+ magnetic field, acting on a polariton pseudospin and di-
75
+ rected tangentially to the waveguide. Although one can
76
+ safely assume that in the case of a narrow waveguide of
77
+ a constant width the absolute value of this field remains
78
+ constant (see Supplementary material [36] for further de-
79
+ tails), its direction changes along the curved waveguide,
80
+ and, as we demonstrate below, this has crucial effect on
81
+ polariton dynamics.
82
+ Let us suppose that the shape of a waveguide in (x, y)-
83
+ plane is given parametrically as x = x(ξ), y = y(ξ). The
84
+ components of the effective magnetic field Ωx,y produced
85
+ by TE-TM interaction are proportional to the compo-
86
+ nents of the unit vector tangential to a waveguide τx,y
87
+ and thus read
88
+ Ωx = Ω0τx =
89
+ Ω0x��(ξ)
90
+
91
+ x′(ξ)2 + y′(ξ)2 ,
92
+ (1)
93
+ Ωy = Ω0τy =
94
+ Ω0y′(ξ)
95
+
96
+ x′(ξ)2 + y′(ξ)2 ,
97
+ (2)
98
+ arXiv:2301.03337v1 [cond-mat.mes-hall] 9 Jan 2023
99
+
100
+ 2
101
+ FIG. 1: (a) Schematic representation of the considered geom-
102
+ etry of a 1D polariton waveguide etched in planar semicon-
103
+ ductor microcavity. The arc length ℓ measures the distance
104
+ along the waveguide. Direction of the in-plane tangential unit
105
+ vector ⃗τ = (τx, τy) changes along the waveguide and leads to
106
+ emergence of an effective space-dependent field for the spinor
107
+ polariton wavefunction.
108
+ (b,c) Real and imaginary parts of
109
+ the L-periodic effective potentials Ω(ℓ) for a waveguide com-
110
+ posed of a chain of touching halfcircles (b) and a sine-shaped
111
+ waveguide (c).
112
+ where primes correspond to derivatives, and
113
+ Ω0 ≈ ℏ2
114
+ 4d2
115
+ � 1
116
+ ml
117
+ − 1
118
+ mt
119
+
120
+ .
121
+ (3)
122
+ In the above equation, ml and mt stand for the effective
123
+ longitudinal and transverse masses of 2D polaritons, and
124
+ d is an effective width of a polariton channel [37]. As it
125
+ was already mentioned, the presence of the field Ω splits
126
+ in energy the modes polarized normally and tangentially
127
+ to a waveguide.
128
+ Additional splitting in circular polar-
129
+ izations, denoted by ∆z, can be induced by application
130
+ of an external magnetic field perpendicular to a cavity
131
+ interface.
132
+ Let us introduce the coordinate ℓ along the waveguide,
133
+ ℓ =
134
+ � ξ
135
+ 0
136
+
137
+ x′(η)2 + y′(η)2dη.
138
+ In the adiabatic approxi-
139
+ mation, the effective 1D Hamiltonian governing the dy-
140
+ namics of the spinor wavefunction of polaritons can be
141
+ then represented in the following form (see Supplemen-
142
+ tary material [36] for corresponding derivation):
143
+ ˆH =
144
+
145
+
146
+
147
+
148
+
149
+ ℏ2
150
+ 2meff
151
+ d2
152
+ dℓ2 + ∆z
153
+ 2
154
+ Ω−
155
+ Ω+
156
+
157
+ ℏ2
158
+ 2meff
159
+ d2
160
+ dℓ2 − ∆z
161
+ 2
162
+
163
+
164
+
165
+ � , (4)
166
+ where
167
+ Ω± = Ω(ℓ) = Ω0(τx ± iτy)2,
168
+ (5)
169
+ and meff is the effective mass.
170
+ The physical meaning of the above Hamiltonian is
171
+ pretty clear: it describes a motion of a one-dimensional
172
+ spinor particle affected by a constant z-directed magnetic
173
+ field and in-plane magnetic field whose direction changes
174
+ along the way, being always tangential to the waveguide.
175
+ In what follows, we will work with the effective Hamil-
176
+ tonian rewritten in the dimensionless form. To this end,
177
+ we introduce the unit length λ0 and the unit energy
178
+ ε0 ≡ ℏ2/(2meffλ2
179
+ 0), and then rescale the variables of
180
+ (22) as ℓ → λ0ℓ and ∆z → ε0∆z.
181
+ Additionally, we
182
+ rescale time as t → (ℏ/ε0)t.
183
+ Assuming, for instance,
184
+ that the unit length λ0 corresponds to 5 µm and meff
185
+ is about 10−5 of the free electron mass, we obtain that
186
+ the unit energy ε0 is about 0.2 meV, and the time unit
187
+ ℏ/ε0 is equivalent to few picoseconds. Supplementing the
188
+ obtained dimensionless Hamiltonian with the interaction
189
+ terms [38], we obtain the following nonlinear evolution
190
+ problem that governs the dynamics of the spinor wave-
191
+ function (Ψ1, Ψ2):
192
+ i∂Ψ1
193
+ ∂t
194
+ = −∂2Ψ1
195
+ ∂ℓ2 + ∆z
196
+ 2 Ψ1 + Ω−(ℓ)Ψ2
197
+ +(|Ψ1|2 + σ|Ψ2|2)Ψ1,
198
+ (6)
199
+ i∂Ψ2
200
+ ∂t
201
+ = −∂2Ψ2
202
+ ∂ℓ2 − ∆z
203
+ 2 Ψ2 + Ω+(ℓ)Ψ1
204
+ +(|Ψ2|2 + σ|Ψ1|2)Ψ2.
205
+ (7)
206
+ Small negative coefficient σ takes into account weak at-
207
+ traction between polaritons of opposite polarizations (in
208
+ our numerical calculations the value σ = −0.05 was
209
+ used).
210
+ Examples: The chain of halfcircles and the sine-shaped
211
+ waveguide.
212
+ In what follows, we focus on the situation
213
+ when the shape of the curved waveguide can be de-
214
+ scribed by function y(x), see Fig. 1(a) for a schemat-
215
+ ics of the assumed geometry.
216
+ Then the effective field,
217
+ as a function of the arc length ℓ, can be computed as
218
+ Ω±(ℓ) = Ω0 exp{±2i arctan(dy/dx)}, where the deriva-
219
+ tive dy/dx should be expressed as a function of ℓ. In our
220
+ further consideration we focus on the case of periodically
221
+ curved waveguides.
222
+ As a first analytically tractable example we consider
223
+ the situation when the waveguide is composed of a peri-
224
+ odic chain of touching halfcircles of a radius R. In terms
225
+
226
+ a
227
+ yRe
228
+ [m
229
+ Re, Im (2/20)
230
+ (°/) I
231
+ 0
232
+ Re,
233
+ 0.25
234
+ 0.5
235
+ 0
236
+ 0.75
237
+ 1
238
+ 0
239
+ 0.25
240
+ 0.5
241
+ 0.75
242
+ L3
243
+ FIG. 2: Transformation of the band-gap structure for the sine-shaped waveguide under the fixed TE-TM splitting coefficient
244
+ Ω0 = 0.45 and increasing strength of the external magnetic field ∆z. Here the Bloch quasimomentum k varies within the reduced
245
+ Brillouin zone [−π/L, π/L), where L is the spatial period of the structure. The periodic curvature results in a nontrivial band-
246
+ gap structure. Finite bandgaps are present even in the absence of the external magnetic field (∆z = 0). The increase of ∆z
247
+ leads to the anticrossings of the bands touching at k = 0 and related shift of the band minima and maxima to k ̸= 0.
248
+ of coordinates x and y, the unit cell of the resulting
249
+ periodic structure is given as y(x) =
250
+
251
+ R2 − (x − R)2
252
+ for x
253
+
254
+ [0, 2R] (the upper halfcircle) and y(x)
255
+ =
256
+
257
+
258
+ R2 − (x − 3R)2 for x ∈ [2R, 4R] (the lower halfcir-
259
+ cle).
260
+ In terms of the arc length ℓ, the unit cell cor-
261
+ responds to the interval ℓ ∈ [0, L] where L = 2πR
262
+ is the period of the structure.
263
+ The first halfperiod
264
+ ℓ ∈ [0, πR] corresponds to the first halfcircle, where
265
+ x(ℓ) = R[1 − cos(ℓ/R)] and y(ℓ) = R sin(ℓ/R), and the
266
+ second halfperiod ℓ ∈ [πR, 2πR] corresponds to the sec-
267
+ ond halfcircle, where we have parametrization x(ℓ) =
268
+ R[3 + cos(ℓ/R)] and y(ℓ) = R sin(ℓ/R), and the rest of
269
+ waveguide is obtained by the periodic repetition of the
270
+ unit cell. Performing straightforward calculations, we ob-
271
+ tain that within the unit cell the resulting potential reads
272
+ Ω±(ℓ) = −Ω0 exp{∓2iℓ sign (πR − ℓ)/R}.
273
+ The shape
274
+ of the resulting dependency is illustrated in Fig. 1(b).
275
+ While the obtained dependence is rather simple, its imag-
276
+ inary part is not a smooth function: it has a cusp exactly
277
+ at the center of the unit cell ℓ = πR, where the two half-
278
+ circles touch.
279
+ As a second example, which results in a smooth peri-
280
+ odic potential (which is therefore better suited for the
281
+ numerical analysis), we consider a sine-shaped waveg-
282
+ uide y(x) = V0 sin x.
283
+ Then the arc length along the
284
+ waveguide is given by the incomplete elliptic integral of
285
+ the second kind [39]: ℓ(x) =
286
+
287
+ 1 + V 2
288
+ 0 E(sin x, m), where
289
+ m = V 2
290
+ 0 /(1 + V 2
291
+ 0 ). To the best of our knowledge, there
292
+ is neither a commonly used special function nor a closed-
293
+ form expression that allows to invert the incomplete el-
294
+ liptic integral of the second kind, i.e., to express x and
295
+ y through ℓ in our case. In the meantime, there exists a
296
+ simple iterative numerical procedure for inversion of the
297
+ incomplete elliptic integral of the second kind [40]. Us-
298
+ ing this procedure, one can easily obtain the dependence
299
+ Ω(ℓ), see Fig. 1(c) for a representative example.
300
+ The
301
+ resulting 1D Hamiltonian ˆH defined by (22) becomes ef-
302
+ fectively periodic with the spatial period in ℓ given as
303
+ L = 4E(m), where E(m) is the complete elliptic integral
304
+ of the second kind.
305
+ Band structure. Periodic nature of the resulting sys-
306
+ tem suggests to look at the band structure which can
307
+ be presented in the form of the dependencies of the en-
308
+ ergy E versus Bloch quasimomentum k, which, without
309
+ loss of generality, can be assumed to belong to the Bril-
310
+ louin zone [−π/L, π/L), where L is the period. For sinu-
311
+ soidal waveguide the result computed for system (6)–(7)
312
+ with omitted nonlinear terms (|Ψ1,2|2 + σ|Ψ2,1|2)Ψ1,2 is
313
+ shown in Fig. 2.
314
+ We have focused on the transforma-
315
+ tion of the spectral structure subject the the increase
316
+ of the external magnetic field, which is characterized by
317
+ the Zeeman splitting coefficient ∆z. As one can see, the
318
+ periodic curvature of a waveguide results in a nontriv-
319
+ ial band-gap structure as the effective periodic potential
320
+ Ω(ℓ) opens finite gaps even in the absence of the external
321
+ magnetic field (∆z = 0). The increase of ∆z leads to
322
+ a transformation of the band-gap structure. In particu-
323
+ lar, it leads to the anticrossing of the bands touching at
324
+ k = 0 and related shift of the band minima and max-
325
+ ima to k ̸= 0. Dispersion curves having two degenerate
326
+ extrema at k = ±k0 ̸= 0 can be, in particular, relevant
327
+ for the observation of the so-called stripe phase charac-
328
+ terized by spinor wavefunctions carrying a more complex
329
+ internal structure, see e.g. [41–45] and [46] for discussion
330
+ of stripe phase and stripe solitons in spin-orbit coupled
331
+ atomic and polariton condensates, respectively.
332
+ Gap solitons. The presence of finite gaps in the band-
333
+ gap structure suggests that when the repulsive interac-
334
+ tions between the polaritons of the same circular po-
335
+ larization are taken into account, the waveguide can
336
+ support formation of polariton gap solitons [22, 46–51].
337
+ These localized states can be found using the substitu-
338
+ tion Ψ1,2(t, ℓ) = e−iµtψ1,2(ℓ), where stationary wavefunc-
339
+ tions ψ1,2(ℓ) satisfy zero boundary conditions at ℓ → ∞
340
+ and ℓ → −∞, and µ characterizes the chemical poten-
341
+ tial of the polariton condensate.
342
+ The numerical study
343
+
344
+ =0
345
+ △= 0.4
346
+ △= 1.0
347
+ △z = 1.4
348
+ △= 2.0
349
+ 8
350
+ 8
351
+ 8
352
+ 6
353
+ 6
354
+ 6
355
+ 6
356
+ E
357
+ 2
358
+ 2
359
+ 0
360
+ 0
361
+ 0
362
+ 0
363
+ kL/π
364
+ kL/π
365
+ kL/π
366
+ kL/π
367
+ kL/π4
368
+ indicates that the system supports a variety of solitons
369
+ which form continuous families, i.e., can be parameter-
370
+ ized by the continuous change of the chemical potential
371
+ µ within the energy spectrum bandgap. To describe the
372
+ found solitons, we introduce the polariton density inte-
373
+ gral N =
374
+ � ∞
375
+ −∞(|ψ1|2 + |ψ2|2)dℓ which characterizes the
376
+ squared norm of the solution. In Fig. 3(a) we illustrate
377
+ the family of fundamental (simplest) gap solitons as a de-
378
+ pendence N on µ. The soliton family detaches from the
379
+ left edge of the bandgap, where the soliton norm van-
380
+ ishes: N → 0.
381
+ In this limit, small-amplitude solitons
382
+ transform to a linear Bloch wave. As the chemical po-
383
+ tential increases towards the right gap edge, the total
384
+ norm N grows monotonously. To quantify the degree of
385
+ the soliton localization, we introduce an additional char-
386
+ acteristics n99 which amounts to the number of spatial
387
+ periods where 99% of quasiparticles are confined. The de-
388
+ pendence n99 on µ is also plotted in Fig. 3(a). It demon-
389
+ strates nonmonotonic behavior approaching its minimal
390
+ values in the center of the gap. In this regime the soli-
391
+ tons are most localized, and almost all energy can be
392
+ trapped in the segment of waveguide composed of ap-
393
+ proximately from five to ten unit cells. At the same time,
394
+ the quantity n99 becomes extremely large near the edges
395
+ of the gap, which means that the corresponding solitons
396
+ are very broad and relatively poorly localized. Examples
397
+ of spatial profiles of solitons having different amplitudes
398
+ and degrees of localization are shown in Fig. 3(b).
399
+ It is known that gap solitons and, in particular, those
400
+ in systems dominated by repulsive nonlinearities, can be
401
+ be prone to dynamical instabilities [52–55]. In the mean-
402
+ time, using the dynamical simulations, we found that the
403
+ family of fundamental gap solitons presented in Fig. 3(a)
404
+ contains stable solutions which can robustly preserve the
405
+ steady shape for the indefinite simulation time (much
406
+ larger than typical polariton lifetimes), even if the ini-
407
+ tial profiles are perturbed by a small-amplitude random
408
+ noise. Example of such stable dynamics is presented in
409
+ Fig. 3(c,d). At the same time, more complex solitons can
410
+ develop dynamical instabilities which eventually lead to
411
+ their delocalization. The corresponding example is shown
412
+ in Fig. 3(e,f).
413
+ Conclusion. In conclusion, we constructed a theory of
414
+ the propagation of cavity polaritons in narrow quasi-1D
415
+ waveguides of arbitrary shape and applied it to the case of
416
+ periodically curved waveguides. We demonstrated that
417
+ the periodic rotation of an effective in-plane magnetic
418
+ field produced by TE-TM splitting in linear polarizations
419
+ leads to the formation of nontrivial band structure. The
420
+ shape of the bands, the bandgaps and the positions of
421
+ the band extrema can be tuned by application of an ex-
422
+ ternal magnetic field. In the nonlinear regime the system
423
+ supports formation of dynamically stable gap solitons.
424
+ Acknowledgements.
425
+ The research was supported by
426
+ Priority 2030 Federal Academic Leadership Program.
427
+ IAS acknowledges support from Icelandic Research Fund
428
+ FIG. 3: (a) Gap solitons norm N and the localization measure
429
+ n99 as functions of chemical potential µ for a family of funda-
430
+ mental gap solitons in the first finite gap. Here the coefficient
431
+ of TE-TM splitting Ω0 = 0.4 and amplitude of the Zeeman
432
+ splitting ∆z = 0.3. Shaded regions correspond to the values of
433
+ µ that belong to spectral bands. (b) Example of a broad soli-
434
+ ton near the left edge of the gap (specifically, at µ = 0.24) and
435
+ a strongly localized soliton in the center of the gap at µ = 0.5.
436
+ (c,d) Stable dynamics of the gap soliton with chemical poten-
437
+ tial µ = 0.29. Initial conditions correspond to the stationary
438
+ wavefunctions perturbed with a random noise whose ampli-
439
+ tude is about 2% of the soliton’s amplitude. (e,f) Example
440
+ of unstable evolution of a gap soliton of more complex shape
441
+ corresponding to Ω0 = 0.4, µ = 0.4, and ∆z = 0.009.
442
+ (Rannis), project No. 163082-051.
443
+ [1] I.
444
+ Carusotto
445
+ and
446
+ C.
447
+ Ciuti,
448
+ Rev.
449
+ Mod.
450
+ Phys.
451
+ 85,
452
+ 299 (2013), URL https://link.aps.org/doi/10.1103/
453
+ RevModPhys.85.299.
454
+ [2] D. Ballarini, D. Caputo, C. S. Mu˜noz, M. De Giorgi,
455
+
456
+ 10
457
+ 30
458
+ 0.1
459
+ (b)
460
+ 20
461
+ 99
462
+ N5
463
+ +
464
+ 0.5
465
+ 2
466
+ 10
467
+ a
468
+ 0
469
+ 0.3
470
+ 0.5
471
+ 0.6
472
+ 0
473
+ 10
474
+ 20
475
+ 0.2
476
+ 0.4
477
+ μ
478
+ l/L
479
+ 亚1
480
+ 亚2
481
+ (c)
482
+ (d)
483
+ 0
484
+ 0
485
+ 0
486
+ [亚1
487
+ [亚2]
488
+ (e)
489
+ (f)
490
+ 1>
491
+ 05
492
+ L. Dominici, M. H. Szyma´nska, K. West, L. N. Pfeif-
493
+ fer, G. Gigli, F. P. Laussy, et al., Phys. Rev. Lett.
494
+ 118, 215301 (2017), URL https://link.aps.org/doi/
495
+ 10.1103/PhysRevLett.118.215301.
496
+ [3] M. M. Glazov, H. Ouerdane, L. Pilozzi, G. Malpuech,
497
+ A. V. Kavokin, and A. D’Andrea, Phys. Rev. B 80,
498
+ 155306 (2009), URL https://link.aps.org/doi/10.
499
+ 1103/PhysRevB.80.155306.
500
+ [4] M. Vladimirova, S. Cronenberger, D. Scalbert, K. V.
501
+ Kavokin, A. Miard, A. Lemaˆıtre, J. Bloch, D. Sol-
502
+ nyshkov, G. Malpuech, and A. V. Kavokin, Phys. Rev.
503
+ B 82, 075301 (2010), URL https://link.aps.org/doi/
504
+ 10.1103/PhysRevB.82.075301.
505
+ [5] E. Estrecho, T. Gao, N. Bobrovska, D. Comber-Todd,
506
+ M. D. Fraser, M. Steger, K. West, L. N. Pfeiffer,
507
+ J. Levinsen, M. M. Parish, et al., Phys. Rev. B 100,
508
+ 035306 (2019), URL https://link.aps.org/doi/10.
509
+ 1103/PhysRevB.100.035306.
510
+ [6] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fis-
511
+ cher, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf,
512
+ L. Worschech, V. D. Kulakovskii, et al., Nature 497,
513
+ 348 (2013), URL https://www.nature.com/articles/
514
+ nature12036.
515
+ [7] D. G. Su´arez-Forero, F. Riminucci, V. Ardizzone, M. D.
516
+ Giorgi, L. Dominici, F. Todisco, G. Lerario, L. N. Pfeif-
517
+ fer, G. Gigli, D. Ballarini, et al., Optica 7, 1579 (2020),
518
+ URL https://opg.optica.org/optica/abstract.cfm?
519
+ URI=optica-7-11-1579.
520
+ [8] J. F. Gonzalez Marin, D. Unuchek, Z. Sun, C. Y. Cheon,
521
+ F. Tagarelli, K. Watanabe, T. Taniguchi, and A. Kis,
522
+ Nature Comm. 13, 4884 (2022), URL https://www.
523
+ nature.com/articles/s41467-022-32292-2.
524
+ [9] D. D. Solnyshkov, M. M. Glazov, I. A. Shelykh, A. V.
525
+ Kavokin, E. L. Ivchenko, and G. Malpuech, Phys. Rev.
526
+ B 78, 165323 (2008), URL https://link.aps.org/doi/
527
+ 10.1103/PhysRevB.78.165323.
528
+ [10] P. Walker, T. C. H. Liew, D. Sarkar, M. Durska, A. P. D.
529
+ Love, M. S. Skolnick, J. S. Roberts, I. A. Shelykh, A. V.
530
+ Kavokin, and D. N. Krizhanovskii, Phys. Rev. Lett.
531
+ 106, 257401 (2011), URL https://link.aps.org/doi/
532
+ 10.1103/PhysRevLett.106.257401.
533
+ [11] M. Kr´ol,
534
+ R. Mirek,
535
+ D. Stephan,
536
+ K. Lekenta,
537
+ J.-
538
+ G. Rousset,
539
+ W. Pacuski,
540
+ A. V. Kavokin,
541
+ M. Ma-
542
+ tuszewski, J. Szczytko, and B. Pietka, Phys. Rev. B
543
+ 99, 115318 (2019), URL https://link.aps.org/doi/
544
+ 10.1103/PhysRevB.99.115318.
545
+ [12] I.
546
+ Shelykh,
547
+ A.
548
+ Kavokin,
549
+ Y.
550
+ Rubo,
551
+ T.
552
+ Liew,
553
+ and
554
+ G. Malpuech, Semicond. Sci. Technol. 25, 013001 (2010).
555
+ [13] C.
556
+ Ciuti,
557
+ V.
558
+ Savona,
559
+ C.
560
+ Piermarocchi,
561
+ A.
562
+ Quat-
563
+ tropani,
564
+ and P. Schwendimann,
565
+ Phys. Rev. B 58,
566
+ 7926
567
+ (1998),
568
+ URL
569
+ https://link.aps.org/doi/10.
570
+ 1103/PhysRevB.58.7926.
571
+ [14] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Mi-
572
+ ard, A. Lemaˆıtre, and J. Bloch, Phys. Rev. Lett. 100,
573
+ 047401 (2008), URL https://link.aps.org/doi/10.
574
+ 1103/PhysRevLett.100.047401.
575
+ [15] G. Ctistis, A. Hartsuiker, E. van der Pol, J. Claudon,
576
+ W. L. Vos,
577
+ and J.-M. G´erard,
578
+ Phys. Rev. B 82,
579
+ 195330 (2010), URL https://link.aps.org/doi/10.
580
+ 1103/PhysRevB.82.195330.
581
+ [16] L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov,
582
+ P. Senellart, I. Sagnes, A. Lemaˆıtre, G. Malpuech, and
583
+ J. Bloch, Phys. Rev. Lett. 106, 126401 (2011), URL
584
+ https://link.aps.org/doi/10.1103/PhysRevLett.
585
+ 106.126401.
586
+ [17] B. Real, N. Carlon Zambon, P. St-Jean, I. Sagnes,
587
+ A. Lemaˆıtre, L. Le Gratiet, A. Harouri, S. Ravets,
588
+ J.
589
+ Bloch,
590
+ and
591
+ A.
592
+ Amo,
593
+ Phys.
594
+ Rev.
595
+ Research
596
+ 3,
597
+ 043161 (2021), URL https://link.aps.org/doi/10.
598
+ 1103/PhysRevResearch.3.043161.
599
+ [18] M. Galbiati, L. Ferrier, D. D. Solnyshkov, D. Tanese,
600
+ E.
601
+ Wertz,
602
+ A.
603
+ Amo,
604
+ M.
605
+ Abbarchi,
606
+ P.
607
+ Senellart,
608
+ I. Sagnes, A. Lemaˆıtre, et al., Phys. Rev. Lett. 108,
609
+ 126403 (2012), URL https://link.aps.org/doi/10.
610
+ 1103/PhysRevLett.108.126403.
611
+ [19] V. G. Sala, D. D. Solnyshkov, I. Carusotto, T. Jacqmin,
612
+ A. Lemaˆıtre,
613
+ H. Ter¸cas,
614
+ A. Nalitov,
615
+ M. Abbarchi,
616
+ E.
617
+ Galopin,
618
+ I.
619
+ Sagnes,
620
+ et
621
+ al.,
622
+ Phys.
623
+ Rev.
624
+ X
625
+ 5,
626
+ 011034 (2015), URL https://link.aps.org/doi/10.
627
+ 1103/PhysRevX.5.011034.
628
+ [20] M. Mili´cevi´c, T. Ozawa, G. Montambaux, I. Carusotto,
629
+ E. Galopin, A. Lemaˆıtre, L. Le Gratiet, I. Sagnes,
630
+ J.
631
+ Bloch,
632
+ and
633
+ A.
634
+ Amo,
635
+ Phys.
636
+ Rev.
637
+ Lett.
638
+ 118,
639
+ 107403 (2017), URL https://link.aps.org/doi/10.
640
+ 1103/PhysRevLett.118.107403.
641
+ [21] H. Suchomel, S. Klembt, T. H. Harder, M. Klaas,
642
+ O. A. Egorov, K. Winkler, M. Emmerling, R. Thomale,
643
+ S. H¨ofling, and C. Schneider, Phys. Rev. Lett. 121,
644
+ 257402 (2018), URL https://link.aps.org/doi/10.
645
+ 1103/PhysRevLett.121.257402.
646
+ [22] C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R.
647
+ Gulevich, H. Schomerus, D. Vaitiekus, B. Royall, D. M.
648
+ Whittaker, E. Clarke, I. V. Iorsh, et al., Phys. Rev. Lett.
649
+ 120, 097401 (2018), URL https://link.aps.org/doi/
650
+ 10.1103/PhysRevLett.120.097401.
651
+ [23] C. E. Whittaker, T. Dowling, A. V. Nalitov, A. V.
652
+ Yulin, B. Royall, E. Clarke, M. S. Skolnick, I. A.
653
+ Shelykh, and D. N. Krizhanovskii, Nat. Photon. 15,
654
+ 193 (2021), URL https://www.nature.com/articles/
655
+ s41566-020-00729-z.
656
+ [24] T. Kuriakose, P. M. Walker, T. Dowling, O. Kyri-
657
+ ienko, I. A. Shelykh, P. St-Jean, N. Carlon Zambon,
658
+ A. Lemaitre, I. Sagnes, L. Legratiet, et al., Nat. Pho-
659
+ ton. 16, 566 (2022), URL https://www.nature.com/
660
+ articles/s41566-022-01019-6.
661
+ [25] M. Sich, J. K. Chana, O. A. Egorov, H. Sigurdsson,
662
+ I. A. Shelykh, D. V. Skryabin, P. M. Walker, E. Clarke,
663
+ B. Royall, M. S. Skolnick, et al., Phys. Rev. Lett.
664
+ 120, 167402 (2018), URL https://link.aps.org/doi/
665
+ 10.1103/PhysRevLett.120.167402.
666
+ [26] V. A. Lukoshkin, V. K. Kalevich, M. M. Afanasiev,
667
+ K.
668
+ V.
669
+ Kavokin,
670
+ Z.
671
+ Hatzopoulos,
672
+ P.
673
+ G.
674
+ Savvidis,
675
+ E. S. Sedov, and A. V. Kavokin, Phys. Rev. B 97,
676
+ 195149 (2018), URL https://link.aps.org/doi/10.
677
+ 1103/PhysRevB.97.195149.
678
+ [27] S. Mukherjee,
679
+ D. M. Myers,
680
+ R. G. Lena,
681
+ B. Oz-
682
+ den, J. Beaumariage, Z. Sun, M. Steger, L. N. Pfeif-
683
+ fer, K. West, A. J. Daley, et al., Phys. Rev. B 100,
684
+ 245304 (2019), URL https://link.aps.org/doi/10.
685
+ 1103/PhysRevB.100.245304.
686
+ [28] E. S. Sedov, V. A. Lukoshkin, V. K. Kalevich, P. G.
687
+ Savvidis, and A. V. Kavokin, Phys. Rev. Research
688
+ 3, 013072 (2021), URL https://link.aps.org/doi/10.
689
+ 1103/PhysRevResearch.3.013072.
690
+ [29] K. Winkler, H. Flayac, S. Klembt, A. Schade, D. Nevin-
691
+ skiy, M. Kamp, C. Schneider, and S. H¨ofling, Phys. Rev.
692
+ B 95, 201302(R) (2017), URL https://link.aps.org/
693
+ doi/10.1103/PhysRevB.95.201302.
694
+
695
+ 6
696
+ [30] J. Beierlein, E. Rozas, O. A. Egorov, M. Klaas, A. Yulin,
697
+ H. Suchomel, T. H. Harder, M. Emmerling, M. D.
698
+ Mart´ın, I. A. Shelykh, et al., Phys. Rev. Lett. 126,
699
+ 075302 (2021), URL https://link.aps.org/doi/10.
700
+ 1103/PhysRevLett.126.075302.
701
+ [31] T. C. H. Liew, A. V. Kavokin, T. Ostatnick´y, M. Kali-
702
+ teevski, I. A. Shelykh, and R. A. Abram, Phys. Rev.
703
+ B 82, 033302 (2010), URL https://link.aps.org/doi/
704
+ 10.1103/PhysRevB.82.033302.
705
+ [32] T. C. H. Liew, I. A. Shelykh, and G. Malpuech, Physica
706
+ E 43, 1543 (2011).
707
+ [33] F. Chen, H. Li, H. Zhou, S. Luo, Z. Sun, Z. Ye, F. Sun,
708
+ J. Wang, Y. Zheng, X. Chen, et al., Phys. Rev. Lett.
709
+ 129, 057402 (2022), URL https://link.aps.org/doi/
710
+ 10.1103/PhysRevLett.129.057402.
711
+ [34] Y. Xue, I. Chestnov, E. Sedov, E. Kiktenko, A. K. Fe-
712
+ dorov, S. Schumacher, X. Ma, and A. Kavokin, Phys.
713
+ Rev. Research 3, 013099 (2021), URL https://link.
714
+ aps.org/doi/10.1103/PhysRevResearch.3.013099.
715
+ [35] D. Nigro, V. D’Ambrosio, D. Sanvitto, and D. Gerace,
716
+ Communications Physics 3, 34 (2022), URL https://
717
+ www.nature.com/articles/s42005-022-00810-9.
718
+ [36] See Supplemental Material for the derivation of the ef-
719
+ fective one-dimensional Hamiltonian.
720
+ [37] I. A. Shelykh, A. V. Nalitov, and I. V. Iorsh, Phys. Rev.
721
+ B 98, 155428 (2018), URL https://link.aps.org/doi/
722
+ 10.1103/PhysRevB.98.155428.
723
+ [38] H. Flayac,
724
+ I. A. Shelykh,
725
+ D. D. Solnyshkov,
726
+ and
727
+ G.
728
+ Malpuech,
729
+ Phys.
730
+ Rev.
731
+ B
732
+ 81,
733
+ 045318
734
+ (2010),
735
+ URL
736
+ https://link.aps.org/doi/10.1103/PhysRevB.
737
+ 81.045318.
738
+ [39] F. W. J. Olver, , D. W. Lozier, R. F. Boisvert, and C. W.
739
+ Clark, The NIST Handbook of Mathematical Functions
740
+ (Cambridge Univ. Press, 2010).
741
+ [40] J. P. Boyd, Appl. Math. Comput. 218, 7005 (2012).
742
+ [41] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev.
743
+ Lett. 105, 160403 (2010), URL https://link.aps.org/
744
+ doi/10.1103/PhysRevLett.105.160403.
745
+ [42] T.-L.
746
+ Ho
747
+ and
748
+ S.
749
+ Zhang,
750
+ Phys.
751
+ Rev.
752
+ Lett.
753
+ 107,
754
+ 150403 (2011), URL https://link.aps.org/doi/10.
755
+ 1103/PhysRevLett.107.150403.
756
+ [43] Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett.
757
+ 108, 225301 (2012), URL https://link.aps.org/doi/
758
+ 10.1103/PhysRevLett.108.225301.
759
+ [44] V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis,
760
+ and D. E. Pelinovsky, Phys. Rev. Lett. 110, 264101
761
+ (2013),
762
+ URL
763
+ https://link.aps.org/doi/10.1103/
764
+ PhysRevLett.110.264101.
765
+ [45] Y. V. Kartashov, V. V. Konotop, and F. K. Abdullaev,
766
+ Phys. Rev. Lett. 111, 060402 (2013), URL https://
767
+ link.aps.org/doi/10.1103/PhysRevLett.111.060402.
768
+ [46] D. A. Zezyulin, Y. V. Kartashov, and I. A. Shelykh, Phys.
769
+ Rev. B 101, 245305 (2020), URL https://link.aps.
770
+ org/doi/10.1103/PhysRevB.101.245305.
771
+ [47] M. Sich, D. N. Krizhanovskii, , M. S. Skolnick, A. V.
772
+ Gorbach, R. Hartley, E. A. C´erda-Mendez, K. Biermann,
773
+ R. Hey, and P. V. Santos, Nat. Photonics 6, 50 (2012),
774
+ URL https://doi.org/10.1038/nphoton.2011.267.
775
+ [48] D.
776
+ Tanese,
777
+ H.
778
+ Flayac,
779
+ D.
780
+ Solnyshkov,
781
+ A.
782
+ Amo,
783
+ A. Lemaˆıtre,
784
+ E. Galopin,
785
+ P. Braive,
786
+ R. Senellart,
787
+ I. Sagnes, G. Malpuech, and J. Bloch, Nat. Com-
788
+ mun. 4, 1749 (2013), URL https://doi.org/10.1038/
789
+ ncomms2760.
790
+ [49] E. A. Cerda-M´endez, D. Sarkar, D. N. Krizhanovskii,
791
+ S. S. Gavrilov, K. Biermann, M. S. Skolnick, and P. V.
792
+ Santos, Phys. Rev. Lett. 111, 146401 (2013), URL
793
+ https://link.aps.org/doi/10.1103/PhysRevLett.
794
+ 111.146401.
795
+ [50] E. A. Ostrovskaya, J. Abdullaev, M. D. Fraser, A. S.
796
+ Desyatnikov, and Y. S. Kivshar, Phys. Rev. Lett. 110,
797
+ 170407 (2013), URL https://link.aps.org/doi/10.
798
+ 1103/PhysRevLett.110.170407.
799
+ [51] D. A. Zezyulin, Y. V. Kartashov, D. V. Skryabin, and
800
+ I. A. Shelykh, ACS Photonics 5, 3634 (2018), URL
801
+ https://doi.org/10.1021/acsphotonics.8b00536.
802
+ [52] P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S.
803
+ Kivshar, Phys. Rev. A 67, 013602 (2003), URL https:
804
+ //link.aps.org/doi/10.1103/PhysRevA.67.013602.
805
+ [53] N. K. Efremidis and D. N. Christodoulides, Phys. Rev.
806
+ A 67, 063608 (2003), URL https://link.aps.org/doi/
807
+ 10.1103/PhysRevA.67.063608.
808
+ [54] D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar,
809
+ Phys. Rev. E 70, 036618 (2004), URL https://link.
810
+ aps.org/doi/10.1103/PhysRevE.70.036618.
811
+ [55] P. P. Kizin, D. A. Zezyulin, and G. L. Alfimov, Phys-
812
+ ica D: Nonlinear Phenomena 337, 58 (2016), ISSN 0167-
813
+ 2789, URL https://www.sciencedirect.com/science/
814
+ article/pii/S0167278916301440.
815
+
816
+ 7
817
+ SUPPLEMENTAL MATERIAL: DERIVATION OF
818
+ THE 1D ADIABATIC HAMILTONIAN
819
+ The two-dimensional Hamiltonian of a polariton mov-
820
+ ing inside a waveguide defined by a confining potential
821
+ U(x, y) is [38]:
822
+ ˆH2D =
823
+
824
+
825
+
826
+
827
+
828
+ ℏ2
829
+ 2meff
830
+ � ∂2
831
+ ∂x2 + ∂2
832
+ ∂y2
833
+
834
+ + ∆z
835
+ 2 + U(x, y)
836
+ β
837
+
838
+
839
+ ∂y + i ∂
840
+ ∂x
841
+ �2
842
+ β
843
+
844
+
845
+ ∂y − i ∂
846
+ ∂x
847
+ �2
848
+
849
+ ℏ2
850
+ 2meff
851
+ � ∂2
852
+ ∂x2 + ∂2
853
+ ∂y2
854
+
855
+ − ∆z
856
+ 2 + U(x, y)
857
+
858
+
859
+
860
+ � ,
861
+ (8)
862
+ where
863
+ β = ℏ2
864
+ 4
865
+ � 1
866
+ ml
867
+ − 1
868
+ mt
869
+
870
+ .
871
+ (9)
872
+ Let us introduce in each point of a waveguide local
873
+ coordinate system with axis ℓ directed tangential to it
874
+ and n normal to it. The elementary lengths dℓ and dn
875
+ read:
876
+ dℓ = τx(ℓ)dx + τy(ℓ)dy,
877
+ (10)
878
+ dn = −τy(ℓ)dx + τx(ℓ)dy
879
+ (11)
880
+ where τx,y are components of the unit vector tangential
881
+ to the waveguide at a given point characterized by coor-
882
+ dinate ℓ along the waveguide.
883
+ We can now right down:
884
+
885
+ ∂x = ∂ℓ
886
+ ∂x
887
+
888
+ ∂ℓ + ∂n
889
+ ∂x
890
+
891
+ ∂n = τx
892
+
893
+ ∂ℓ − τy
894
+
895
+ ∂n,
896
+ (12)
897
+
898
+ ∂y = ∂ℓ
899
+ ∂y
900
+
901
+ ∂ℓ + ∂n
902
+ ∂y
903
+
904
+ ∂n = τy
905
+
906
+ ∂ℓ + τx
907
+
908
+ ∂n,
909
+ (13)
910
+
911
+ ∂y ± i ∂
912
+ ���x = ±iτ∓
913
+
914
+ ∂ℓ + τ∓
915
+
916
+ ∂n,
917
+ (14)
918
+ where
919
+ τ± = τx ± iτy.
920
+ (15)
921
+ We thus have:
922
+ ∂2
923
+ ∂x2 + ∂2
924
+ ∂y2 = ∂2
925
+ ∂ℓ2 + ∂2
926
+ ∂n2 +
927
+
928
+ τy
929
+ ∂τx
930
+ ∂ℓ − τx
931
+ ∂τy
932
+ ∂ℓ
933
+ � ∂
934
+ ∂n,(16)
935
+ where we used that
936
+ τ 2
937
+ x + τ 2
938
+ y = 1.
939
+ (17)
940
+ Similarly
941
+ � ∂
942
+ ∂y ± i ∂
943
+ ∂x
944
+ �2
945
+ = (18)
946
+ = τ 2
947
+
948
+ ∂2
949
+ ∂n2 − τ∓
950
+
951
+ ∂ℓτ∓
952
+
953
+ ∂ℓ ± iτ∓
954
+
955
+ τ∓
956
+
957
+ ∂ℓ + ∂
958
+ ∂ℓτ∓
959
+ � ∂
960
+ ∂n.
961
+ Let us now suggest that the confining potential locally
962
+ depends on the transverse coordinate n only, and use adi-
963
+ abatic approximation for the spinor wavefunction Ψ(x, y)
964
+ representing it as:
965
+ Ψ(x, y) = ψ(ℓ)φ(n),
966
+ (19)
967
+ where the part ψ(ℓ) describes the propagation of the po-
968
+ laritons along the waveguide, and φ(n) corresponds to
969
+ their 1D lateral confinement and can be taken real. This
970
+ approximation holds if an effective thickness of a waveg-
971
+ uide d is much less then its local curvature R, which for
972
+ a parametrically given curve is given by
973
+ R =
974
+
975
+ x′(ξ)2 + y′(ξ)2�3/2
976
+ |x′(ξ)y′′(ξ) − y′(ξ)x′′(ξ)|.
977
+ (20)
978
+ Multiplying the Schr¨odinger equation ˆH2DΨ = EΨ by
979
+ φ(n) and integrating by n from −∞ to +∞, one gets for
980
+ the dynamics of the propagation along the channel the
981
+ following 1D Schr¨odinger equation:
982
+ ˆHψ(ℓ) = Eψ(ℓ),
983
+ (21)
984
+ where
985
+
986
+ 8
987
+ ˆH =
988
+
989
+
990
+
991
+
992
+
993
+
994
+ E0 −
995
+ ℏ2
996
+ 2meff
997
+ d2
998
+ dℓ2 + ∆z
999
+ 2
1000
+ Ω− − βτ−
1001
+ d
1002
+ dℓτ−
1003
+ d
1004
+ dℓ
1005
+ Ω+ − βτ+
1006
+ d
1007
+ dℓτ+
1008
+ d
1009
+ dℓ
1010
+ E0 −
1011
+ ℏ2
1012
+ 2meff
1013
+ d2
1014
+ dℓ2 − ∆z
1015
+ 2
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+
1022
+ ,
1023
+ (22)
1024
+ and we have used that
1025
+ � +∞
1026
+ −∞
1027
+ φ(n)dφ
1028
+ dn dn = 0,
1029
+ (23)
1030
+ and
1031
+ E0 =
1032
+ � +∞
1033
+ −∞
1034
+ φ(n)
1035
+
1036
+
1037
+ ℏ2
1038
+ 2meff
1039
+ d2
1040
+ dn2 + U(n)
1041
+
1042
+ φ(n)dn
1043
+ (24)
1044
+ is the energy of the confinement, and
1045
+ Ω± = βτ 2
1046
+ ±
1047
+ � +∞
1048
+ −∞
1049
+ φ(n) d2φ
1050
+ ∂n2 dn ≈ β
1051
+ d2 τ 2
1052
+ ± = Ω0τ 2
1053
+ ±,
1054
+ (25)
1055
+ where d is an effective width of the confining channel, and
1056
+ we used Gaussion approximation, φ(n) = d√πe−n2/(2d2)
1057
+ Note, that E0 is just a constant, which can be safely
1058
+ dropped. As for the off-diagonal terms βτ± d
1059
+ dℓτ± d
1060
+ dℓ, one
1061
+ can note, that by the order of magnitude d/dℓ ∼ k, where
1062
+ k is a wavenumber, describing the propagation of the
1063
+ polaritons along the waveguide. Therefore, for narrow
1064
+ waveguides and small k, when k ≪ d−1, these terms
1065
+ can be neglected as compared to Ω±, and one gets the
1066
+ Hamiltonian (4) of the main text.
1067
+
DNE1T4oBgHgl3EQfqAUl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DdAyT4oBgHgl3EQf4vob/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a5f96a6073749c07a6aa9601dcc7efab068057113855ce987561e81f4c74b3
3
+ size 250788
EtAyT4oBgHgl3EQfevi1/content/tmp_files/2301.00328v1.pdf.txt ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
2
+ Internet of Things: Digital Footprints Carry A Device
3
+ Identity
4
+ Rajarshi Roy Chowdhury1, 2, a), Azam Che Idris1 and Pg Emeroylariffion Abas1
5
+ 1Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
6
+ Darussalam
7
+ 2Department of Computer Science and Engineering, Sylhet International University, Shamimabad Road, Sylhet
8
+ 3100, Bangladesh
9
+
10
+ Corresponding author: a) 19h0901@ubd.edu.bn or rajarshiry@gmail.com
11
+
12
+ ABSTRACT. The usage of technologically advanced devices has seen a boom in many domains, including education,
13
+ automation, and healthcare; with most of the services requiring Internet-connectivity. To secure a network, device
14
+ identification plays key role. In this paper, a device fingerprinting (DFP) model, which is able to distinguish between
15
+ Internet of Things (IoT) and non-IoT devices, as well as uniquely identify individual devices, has been proposed. Four
16
+ statistical features have been extracted from the consecutive five device-originated packets, to generate individual device
17
+ fingerprints. The method has been evaluated using the Random Forest (RF) classifier and different datasets. Experimental
18
+ results have shown that the proposed method achieves up to 99.8% accuracy in distinguishing between IoT and non-IoT
19
+ devices and over 97.6% in classifying individual devices. These signify that the proposed method is useful in assisting
20
+ operators in making their networks more secure and robust to security breaches and unauthorised access.
21
+ Keywords : digital footprint; network traffic traces; machine learning algorithm; internet of things; device
22
+ fingerprinting
23
+
24
+ INTRODUCTION
25
+
26
+ It has been predicted that the number of network-connected Internet of Things (IoT) and non-IoT devices
27
+ worldwide will reach approximately 30.9 billion and 10.3 billion, respectively, by the year 2025 [1]⁠. Proliferated
28
+ growth of these devices with their heterogeneous functionalities, has imposed new challenges to network
29
+ administrators and operators, in providing, managing, and controlling the operations and security of the network
30
+ services [2]⁠. Accurate device identification is one key aspect that needs to be seriously considered in securing
31
+ network-connected devices. Conventionally, internet protocol (IP) enabled devices have been using user-defined
32
+ identifiers, such as IP and media access control (MAC) addresses, as a form of identifications. However, these
33
+ identifiers have been proven to be vulnerable [3]⁠ to various attacks, such as spoofing [4]⁠ and device mobility, due to
34
+ the availability of malicious software [5]⁠, for performing such attacks. Device fingerprinting (DFP) [3]⁠ represents
35
+ one technique that may be used to identify devices based on their communication traffic traces (or digital footprints)
36
+ without using explicit identifiers, and it can be performed, either actively or passively, from different layers of the
37
+ communication model [6]⁠.
38
+
39
+ Due to the prominent characteristics of network traffic features, many researchers [2, 7]⁠ have used packet-level
40
+ features for different purposes [8]⁠, including for device identification [9]⁠. Sivanathan et al. [10]⁠ have described a
41
+ DFP scheme based on the analysis of passively observed network traffic traces. A total of 11 statistical features are
42
+ used as device fingerprints, from packet traffic-flows over a period of one day, by looking at the devices’ sleeping
43
+ time, average packet size and traffic rate, active time, number of servers and protocols used in a flow, number of
44
+
45
+ 8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
46
+ unique domain name system (DNS) request, and intervals of DNS and network time protocol (NTP) requests.
47
+ Subsequently, these features are used to train an ML model for classification. It has been shown that the DFP
48
+ scheme is able to distinguish between IoT and non-IoT devices with high accuracy and achieve over 95% accuracy
49
+ in identifying individual IoT devices. The same researchers [9]⁠ have also presented another device fingerprinting
50
+ scheme, by utilizing statistical characteristics of hourly network traffic traces, to generate 8 device-specific
51
+ fingerprints. Experimental result has shown over 99% accuracy using the UNSW dataset. Charyyev et al. [11]⁠ have
52
+ utilized Nilsimsa hash value of packet flows (n packets) for device-specific fingerprints, to classify individual IoT
53
+ devices, to achieve 93% precision.
54
+
55
+ Researchers in [2, 12]⁠ have used 12 packets information, to generate device signatures for classifying IoT
56
+ devices, with 81.5% global accuracy and 76.15% accuracy using an aggregated model, whilst Aksoy and Gunes [13]⁠
57
+ have presented a DFP approach, known as SysID, which utilizes features from a single packet, for identifying smart
58
+ home IoT devices with 82% average classification accuracy. Bezawada et al. [14]⁠ have utilized 5 consecutive
59
+ packets information, including protocols headers and payload (20 features), for classifying IoT devices uniquely
60
+ with mean identification accuracy of 93% to 100% using a laboratory dataset of 14 IoT devices. In [15]⁠, the authors
61
+ have used a one second window to group packets, for generating statistical fingerprinting features. These features
62
+ are then used to train a binary classifier for categorizing IoT and non-IoT devices with high accuracy of 99%, whilst
63
+ a multi-class classifier has been used to uniquely identify IoT devices with about 96% accuracy. All these existing
64
+ DFP models, however, require either a large number of features set from different layers of the communication
65
+ model, or a large number of network packets information for generating fingerprints. Consequently, these models
66
+ consume a long period of time, and require complex computation. As such, a more efficient DFP model is required
67
+ for classifying devices with high accuracy, but with less computation cost.
68
+
69
+ In this paper, a supervised machine learning (ML) based DFP model, which generates device-specific signatures
70
+ by computing four statistical features from consecutive five packets of the network traffic, has been proposed. An
71
+ intuition that these features carry device-specific characteristics in terms of device memory and processing speed.
72
+ Experimental results have shown that over 97.0% accuracy is achievable in classifying individual non-IoT devices
73
+ from traffic collected in a laboratory environment, and 97.3% accuracy on the non-IoT traffic traces from the
74
+ UNSW dataset. The proposed DFP model is also capable of distinguishing between IoT and non-IoT devices with
75
+ up to 99.8% accuracy on the UNSW dataset. The key contributions of this research work are:
76
+
77
+
78
+ Identifying device-specific features from the device-originated communication traffic traces, to generate
79
+ device signatures for classification.
80
+
81
+ Instrument an experimental testbed of non-IoT devices in a laboratory environment for data collection.
82
+
83
+ Evaluate the proposed DFP scheme performance based on a supervised ML algorithm, to distinguish between
84
+ IoT and non-IoT devices and identify individual devices.
85
+
86
+ The rest of the paper is organized as follows. The proposed ML-based device fingerprinting method, as well as
87
+ the datasets, data collection procedure, and an ML classifier are described in Section II. Section III describes
88
+ experimental results on various datasets, and finally, conclusion is given in Section IV.
89
+
90
+ METHODOLOGY
91
+
92
+ The proposed DFP method is used to extract unique device features from network traffic traces. These features
93
+ are used to train an ML classifier, and subsequently, used to test the performance of the proposed DFP method on
94
+ different datasets. This section describes the proposed DFP method, the datasets used for training and testing, as
95
+ well as the classification method used to test the model.
96
+
97
+ Datasets: IoT and Non-IoT
98
+
99
+ The proposed device fingerprinting model performance has been evaluated by utilizing a publicly available
100
+ dataset: UNSW [9]⁠, and a testbed dataset of non-IoT devices, which has been collected from a laboratory
101
+ environment. Summary of the datasets are listed in Table 1. The UNSW dataset comprises network traffic traces
102
+ from both IoT and non-IoT devices, including TP-Link camera, smart bulb, Belkin camera, smart doorbell, printer,
103
+
104
+ 8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
105
+ smart photo frame, laptop, smartphone, and tablet devices, with these heterogeneous devices coming from different
106
+ manufacturers: Belkin, Philips Hue, Netatmo, TP-Link, Withings, HP, Apple. On the other hand, the laboratory
107
+ dataset comprises 7 non-IoT devices, including laptops, smartphones, and desktops, from different manufacturers.
108
+ The data collection procedure from the 7 non-IoT devices is described in the following section.
109
+
110
+ TABLE 1. List of IoT and non-IoT Datasets.
111
+ Dataset
112
+ Devices
113
+ Total Packets
114
+ Source
115
+ IoT
116
+ Non-IoT
117
+ UNSW
118
+ 22
119
+ --
120
+ 6,844,740
121
+ [9]⁠
122
+ --
123
+ 7
124
+ 3,515,705
125
+ Lab Dataset
126
+ --
127
+ 7
128
+ 442,970
129
+ --
130
+
131
+ TABLE 2. List of non-IoT devices for experimental set up.
132
+ No.
133
+ Device Category
134
+ Device Name/Model
135
+ Operating System
136
+ Connectivity
137
+ MAC Address
138
+ 1
139
+ Laptop
140
+ Aspire-S7
141
+ Windows
142
+ WiFi
143
+ 34:23:87:b7:56:17
144
+ 2
145
+ ProBook-4410s
146
+ WiFi/Ethernet
147
+ 00:25:b3:47:da:6f
148
+ 3
149
+ Desktop
150
+ Asus
151
+ Ethernet
152
+ 08:60:6e:c1:79:c2
153
+ 4
154
+ HP-EliteDesk
155
+ Ethernet
156
+ 80:e8:2c:d6:9e:49
157
+ 5
158
+ Smart Phone
159
+ MYA-U29
160
+ Android
161
+ WiFi
162
+ d0:ff:98:95:57:af
163
+ 6
164
+ MLXP2ZA-A
165
+ iOS
166
+ WiFi
167
+ e0:c7:67:45:a3:62
168
+ 7
169
+ MWC22KH-A
170
+ WiFi
171
+ 06:44:b7:aa:20:98
172
+
173
+ Dataset Collection Methodology
174
+
175
+ An experimental design, consisting of local area network (LAN) and wireless local area network (WLAN) with
176
+ non-IoT devices, was set up in a laboratory environment at Universiti Brunei Darussalam (UBD). Design of the
177
+ testbed is depicted in Figure 1, with the seven non-IoT devices from different manufacturers and of different types, as
178
+ listed in Table 2. These devices were configured, to connect with an access point (AP) either using ethernet or wireless
179
+ fidelity (WiFi) interfaces.
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+ FIGURE 1. An experimental testbed of non-IoT devices network (LAN/WLAN).
199
+
200
+ DNS
201
+ NTP
202
+ Server
203
+ Connectivity:
204
+ Server
205
+ Server
206
+ N
207
+ Ethernet
208
+ WiFi
209
+ Other
210
+ a
211
+ Internet
212
+ WiFi
213
+ Hotspot
214
+ Gateway
215
+ ubuntu?
216
+ (UBD Network)
217
+ Hub
218
+ Ethernet
219
+ USB Ethernet
220
+ Port
221
+ Port
222
+ Monitoring Station
223
+ (Capture Network Traffic)8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
224
+ A laptop was used to configure an access point (AP), which was used to provide network services to the non-IoT
225
+ devices, as well as to monitor and capture communication footprints from the devices. The Dell Inspiron 15 5000
226
+ Series laptop runs Ubuntu 18.04 as an operating system (OS), and was connected to the UBD network via its built-in
227
+ Ethernet interface, to provide the Internet connections. The built-in WiFi interface was configured as a WiFi Hotspot,
228
+ providing wireless connectivity to the WiFi-enabled (IEEE 802.11 standard) devices. Additionally, a TU3-ETG USB
229
+ Ethernet adapter was connected to the laptop, and used to set up a LAN network using the D-Link Switch Hub DES-
230
+ 1005A hub for providing network services to the connected non-IoT devices. On the Ubuntu OS, the network
231
+ connection editor tool, i.e. nm-connection-editor, was been utilised for connection establishment.
232
+
233
+ Devices generally generate two types of traffic [9]⁠: autonomous traffic, including traffic generated for
234
+ connection establishment, application and system synchronizations, and activity traffic, which is generated due to
235
+ human or object interactions. These inbound and outbound communication traffic traces, flowing over both
236
+ interfaces (external Ethernet and built-in WiFi interfaces) were captured using tcpdump 4.9.3 utility, and stored into
237
+ .pcap (packet capture) files format, similar to [16]⁠. Device-originated traffic traces were then extracted using TShark
238
+ utility and stored in .csv (comma-separated values) files format, along with labelling of individual devices names.
239
+ Finally, the recorded dataset was cleaned for further processing, by eliminating inconsistent instances, including
240
+ empty rows, and duplicate values.
241
+
242
+ Device Fingerprinting Model
243
+
244
+ The proposed DFP scheme architecture is depicted in Figure 2, which uses device-originated communication
245
+ traffic traces to generate device fingerprints for classification. Device-originated traffic traces are filtered according
246
+ to individual device MAC addresses, with tcp.window_size and ip.len values extracted from each packet from the
247
+ available captured data. These two values of a network packet carry significant device-specific information.
248
+ tcp.window_size value depends on a device buffer size and computation speed [14]⁠ whilst ip.len value specifies the
249
+ total length of a packet to represent unique characteristics of a devices communication pattern [15]⁠. tcp.window_size
250
+ and ip.len values from five consecutive packets (as one instance) are utilized, to compute mean (µ) and standard
251
+ deviation (σ), for constructing device-specific fingerprints, i.e. iplen_µ, iplen_σ, tcpwinsiz_µ, and tcpwinsiz_σ.
252
+ These 4 statistical fingerprints have been used for training a machine learning (ML) model, and subsequently, to
253
+ evaluate the performance, of the model in classifying devices using datasets, which have been randomly split into
254
+ training (80% instances) and testing (20% instances) datasets.
255
+
256
+ FIGURE 2. The proposed device fingerprinting scheme.
257
+
258
+ Random Forest Classifier
259
+
260
+ Random Forest (RF) classifier is a supervised machine learning (ML) algorithm, that can be used for both
261
+ classification [9]⁠ and regression [17]⁠ problems. The algorithm randomly generates a group of trees, with majority
262
+ voting used to make a decision from the ensemble of decision trees [18, 19]⁠, for the classification task, as presented
263
+ in Figure 3. This assists in avoiding over-fitting problem. Researchers in different domains have utilized RF
264
+ classifier for different classification tasks. In [9]⁠, the RF algorithm has been used for classifying IoT devices with
265
+ high accuracy. Primartha et al. [20] have performed anomaly detection using the algorithm, and it has also been used
266
+
267
+ Testing Dataset
268
+ (20%)
269
+ Training Dataset
270
+ (80%)
271
+ Capture
272
+ Filter and Extract
273
+ Fingerprint Generation
274
+ Training Model
275
+ Test Model
276
+ Classification
277
+ Network Traffic
278
+ Traffie Traces
279
+ (Mean, Standard Deviation)
280
+ ML Algorithm
281
+ ML Algorithm
282
+ IoT and Non-IoT
283
+ # Inbound and outbound
284
+ # Outbound traffic traces
285
+ # Statistical analysis
286
+ # Train a machine
287
+ # Test model performance
288
+ # Category: IoT and non-loT
289
+ traffic traces
290
+ # Packet header features
291
+ # Device fingerprint/Signature
292
+ Learning (ML) model
293
+ # Device identification
294
+ (Store in pcap files fomat)
295
+ # Label instances
296
+ # Tune hyperparameter
297
+ # Train and test datasets (csv files)8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
298
+ for disease identification in medical science [21]⁠. In this paper, RF classifier is used to appraise the performance of
299
+ the proposed DFP method, by using the extracted features for training the RF classifier, and subsequently, using the
300
+ trained RF classifier to determine classification performance. Some of the significant tunable hyper-parameters are
301
+ set experimentally, including the number of iterations (or number of trees) = 100, seed = 1, and batch size (number
302
+ of instances) = 100, to improve classification accuracy and reduce the root mean squared error (RMSE) [22]⁠.
303
+
304
+
305
+ FIGURE 3. An abstract representation of a RF classifier.
306
+
307
+ RESULTS AND DISCUSSION
308
+
309
+ The proposed DFP method has been evaluated using waikato environment for knowledge analysis (Weka) tool
310
+ [23]⁠. An online dataset: UNSW [9]⁠ dataset, and an experimental dataset, as presented in Table 3, have been utilized
311
+ to evaluate the classification performance based on the RF classifier. The UNSW dataset consists of network traffic
312
+ traces from IoT and non-IoT devices, which are referred to as the U-IoT and U-NonIoT datasets, respectively. On
313
+ the other hand, the experimental dataset contains only network traffic traces from non-IoT devices, and it is referred
314
+ to as the L-NonIoT dataset.
315
+
316
+ TABLE 3. Total number of instances used for evaluating the proposed DFP model.
317
+ Dataset
318
+ Devices
319
+ Training Dataset
320
+ (80%)
321
+ Test Dataset
322
+ (20%)
323
+ Total Instances
324
+ (100%)
325
+ IoT
326
+ Non-IoT
327
+ UNSW (U-IoT)
328
+ *
329
+ ---
330
+ 1,095,158
331
+ 273,790
332
+ 1,368,948
333
+ UNSW (U-NonIoT)
334
+ ---
335
+ *
336
+ 562,513
337
+ 140,628
338
+ 703,141
339
+ Lab
340
+ (L-NonIoT)
341
+ ---
342
+ *
343
+ 70,875
344
+ 17,719
345
+ 88,594
346
+
347
+
348
+ The proposed DFP method utilises 5 network traffic packets as one instance to generate fingerprint. As such, a
349
+ total of 1,368,948 (6,844,740 / 5) and 703,141 (3,515,705 / 5) instances have been used from the U-IoT and U-
350
+ NonIoT datasets, respectively, whilst a total of 88,594 (442,970 / 5) instances have been used from the L-NonIoT
351
+ dataset. 80% of the datasets have been used for training and the remainder for testing. The performance of the
352
+ trained RF classifier has been measured with respect to its ability to a) distinguish between IoT and non-IoT devices,
353
+ and b) classify individual devices.
354
+
355
+ Device Category: IoT and Non-IoT Devices
356
+
357
+ Classification performances of the proposed DFP model in distinguishing between IoT and non-IoT devices are
358
+ presented in Figure 4, on combined U-IoT and U-NonIoT datasets (i.e. UNSW dataset), and combined U-IoT and L-
359
+
360
+ Dataset
361
+ Data
362
+ Subset of Data
363
+ Subset of Data
364
+ Subset of Data
365
+ Random Samples
366
+ 1
367
+ 2
368
+ n
369
+ Decision Trees
370
+ Selected Class
371
+ Selected Class
372
+ Class
373
+ Selected Class
374
+ (Vote)
375
+ (Vote)
376
+ (Vote)
377
+ Majority Voting
378
+ Final Decision
379
+ (Class)8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
380
+ NonIoT datasets. The figure shows that device categorization accuracy reaches up to 99.9% using the RF classifier
381
+ on the combined U-IoT and L-NonIoT datasets. On the UNSW dataset [9]⁠, which consists of instances from 22 IoT
382
+ and 7 non-IoT devices, the proposed DFP method achieves 99.8% accuracy.
383
+
384
+
385
+ FIGURE 4. Categorize IoT and non-IoT devices: UNSW and Lab datasets.
386
+
387
+
388
+ FIGURE 5. Classification performance of the non-IoT devices: UNSW and Lab datasets.
389
+
390
+ Individual Device Classification
391
+
392
+ The performances of the proposed DFP method in classifying individual IoT and non-IoT devices on different
393
+ datasets, are depicted in Figure 5 and Figure 6. In Figure 5, the proposed DFP model achieves over 97.0% accuracy
394
+ in classifying non-IoT devices from the L-NonIoT and U-NonIoT datasets, with accuracy a little bit higher on the U-
395
+ NonIoT dataset. Individual IoT devices classification performance of the proposed DFP model, on the U-IoT dataset
396
+ with 22 IoT devices, is given in Figure 6. Most of the IoT devices in the dataset can be classified with over 97.6%
397
+ accuracy, with the exception of the BlipcareBPmeter, the BelkinWemoSensor and BelkinWemoSwitch devices,
398
+ which give classification accuracies of about 75.0%, 96.5% and 91.4%, respectively. The lowest accuracy for the
399
+ BlipcareBPmeter device is due to the limited number of instances available from this device for training and testing.
400
+
401
+ CONCLUSION
402
+
403
+ A large number of heterogeneous IoT and non-IoT devices from different manufacturers are being connected to
404
+ the Internet, to obtain network-based services. In terms of network security, it is challenging for network
405
+ administrators and operators to identify the connected devices using conventional identifiers, as they are prone to
406
+ security breaches. In this paper, a DFP model based on the analysis of network traffic traces has been proposed,
407
+ which is capable of distinguishing between IoT and non-IoT devices as well as classifying individual IoT and non-
408
+ IoT devices. As opposed to other methods in the literature, which require relatively large number of features and
409
+
410
+ loTvs NonloT
411
+ U-loT: UNSW-loT, U-NonloT: UNSW-NonloT, L-NonloT: Lab-NonloT Datasets
412
+ U-loT vs
413
+ U-NonloT
414
+ 0.998
415
+ Datasets
416
+ U-loT vs
417
+ L-NonloT
418
+ 0.999
419
+ 0.00
420
+ 0.25
421
+ 0.50
422
+ 0.75
423
+ 1.00
424
+ AccuracyNonloTDevices
425
+ L-NonloT: Lab-NonloT, U-NonloT: UNSW-NonloT Datasets
426
+ L-NonloT
427
+ 0.970
428
+ Datasets
429
+ U-NonloT
430
+ 0.973
431
+ 0.00
432
+ 0.25
433
+ 0.50
434
+ 0.75
435
+ 1.00
436
+ Accuracy8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
437
+ requiring longer sequence of packet network traffics to construct their DFP features, only 4 statistical features from
438
+ 5 consecutive packet network traffics are required to construct the DFP features. These are used for training and
439
+ testing an ML classifier. Evaluations on the UNSW dataset have shown that the proposed DFP method is able to
440
+ distinguish between IoT and non-IoT devices with up to 99.8% accuracy, and individually classify most of the IoT
441
+ and non-IoT devices with over 97.6% accuracy. On the laboratory collected network traces, the proposed DFP
442
+ model is able to classify individual devices with 97.0% accuracy. The research outcomes signify that the proposed
443
+ DFP model is useful for device identification and may assist network administrators in providing a more secure
444
+ network.
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+ FIGURE 6. Individual IoT device classification performance: U-IoT dataset.
465
+
466
+ ACKNOWLEDGEMENTS
467
+
468
+ The authors are profoundly grateful to the Faculty of Integrated Technologies (FIT), Universiti Brunei
469
+ Darussalam (UBD), for supporting this research work, as well as to UBD for awarding the UBD Graduate
470
+ Scholarship (UGS) to the first author.
471
+
472
+ REFERENCES
473
+
474
+ 1.
475
+ L.
476
+ S.
477
+ Vailshery,
478
+ IoT
479
+ and
480
+ non-IoT
481
+ connections
482
+ worldwide
483
+ 2010-2025,
484
+ (2020).
485
+ https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/ (accessed May 12,
486
+ 2021).
487
+ 2.
488
+ M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma, IoT Sentinel: Automated
489
+ device-type identification for security enforcement in IoT, in 2017 IEEE 37th International Conference on
490
+ Distributed Computing Systems (2017) 2177–2184.
491
+ 3.
492
+ Q. Xu, R. Zheng, W. Saad, and Z. Han, Device fingerprinting in wireless networks: Challenges and
493
+ opportunities, IEEE Commun. Surv. Tutorials, 18 (2016) 94–104. doi: 10.1109/COMST.2015.2476338.
494
+ 4.
495
+ N. Vlajic, M. Chowdhury, and M. Litoiu, IP spoofing in and out of the public cloud: From policy to practice,
496
+ Computers 8 (2019). doi: 10.3390/computers8040081.
497
+ 5.
498
+ Technitium MAC Address Changer | A Freeware Utility To Spoof MAC Address Instantly (2021).
499
+ https://technitium.com/tmac/ (accessed Jul. 06, 2021).
500
+ 6.
501
+ P. Ravali, A Comparative Evaluation of OSI and TCP/IP Models, International Journal of Science and
502
+ Research (2015). https://www.ijsr.net/get_abstract.php?paper_id=SUB155737.
503
+ 7.
504
+ R. R. Chowdhury, S. Aneja, N. Aneja, and E. Abas, Network Traffic Analysis based IoT Device
505
+ Identification,
506
+ in
507
+ ACM
508
+ International
509
+ Conference
510
+ Proceeding
511
+ Series
512
+ (2020)
513
+ 79–89.
514
+ doi:
515
+ 10.1145/3421537.3421545.
516
+
517
+ 1.00
518
+ 0.994
519
+ 0.965
520
+ .000
521
+ 0.986
522
+ 1.998
523
+ 0.982
524
+ 266'0
525
+ 0.914
526
+ 0.75
527
+ 0.750
528
+ Accuracy
529
+ 0.50
530
+ 0.25
531
+ 0.00
532
+ loTDevicesName8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei
533
+ 8.
534
+ M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, CorrAUC: a Malicious Bot-IoT Traffic Detection
535
+ Method in IoT Network Using Machine Learning Techniques, IEEE Internet Things J. (2020). doi:
536
+ 10.1109/jiot.2020.3002255.
537
+ 9.
538
+ A. Sivanathan et al., Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics,
539
+ IEEE Trans. Mob. Comput. 18 (2019) 1745–1759. doi: 10.1109/TMC.2018.2866249.
540
+ 10.
541
+ A. Sivanathan et al., Characterizing and classifying IoT traffic in smart cities and campuses, 2017 IEEE Conf.
542
+ Comput.
543
+ Commun.
544
+ Work.
545
+ INFOCOM
546
+ WKSHPS
547
+ 2017,
548
+ (2017)
549
+ 559–564.
550
+ doi:
551
+ 10.1109/INFCOMW.2017.8116438.
552
+ 11.
553
+ B. Charyyev and M. H. Gunes, IoT Traffic Flow Identification using Locality Sensitive Hashes, IEEE Int.
554
+ Conf. Commun. 2020-June (2020). doi: 10.1109/ICC40277.2020.9148743.
555
+ 12.
556
+ N. Yousefnezhad, M. Madhikermi, and K. Framling, MeDI: Measurement-based Device Identification
557
+ Framework for Internet of Things, Proc. - IEEE 16th Int. Conf. Ind. Informatics (2018) 95–100. doi:
558
+ 10.1109/INDIN.2018.8472080.
559
+ 13.
560
+ A. Aksoy and M. H. Gunes, Automated iot device identification using network traffic, in ICC 2019-2019
561
+ IEEE International Conference on Communications (ICC) (2019) 1–7.
562
+ 14.
563
+ B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray, Behavioral fingerprinting of iot devices,
564
+ in Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security. (2018) 41–50.
565
+ 15.
566
+ A. J. Pinheiro, J. de M. Bezerra, C. A. P. Burgardt, and D. R. Campelo, Identifying IoT devices and events
567
+ based on packet length from encrypted traffic, Comput. Commun. 144 (2019) 8–17. doi:
568
+ 10.1016/j.comcom.2019.05.012.
569
+ 16.
570
+ R. R. Chowdhury, S. Aneja, N. Aneja, and P. E. Abas, Packet-level and IEEE 802.11 MAC frame-level
571
+ Network Traffic Traces Data of the D-Link IoT devices, Data Br. 37 (2021). doi: 10.1016/j.dib.2021.107208.
572
+ 17.
573
+ E. Mussumeci and F. Codeço Coelho, Large-scale multivariate forecasting models for Dengue - LSTM versus
574
+ random forest regression, Spat. Spatiotemporal. Epidemiol. 35 (2020). doi: 10.1016/j.sste.2020.100372.
575
+ 18.
576
+ T. K. Ho, Random Decision Forests Tin Kam Ho Perceptron training, Proc. 3rd Int. Conf. Doc. Anal.
577
+ Recognit. (1995) 278–282.
578
+ 19.
579
+ M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens, Why MAC address randomization is not
580
+ enough: An analysis of Wi-Fi network discovery mechanisms, in Proceedings of the 11th ACM on Asia
581
+ Conference on Computer and Communications Security (2016) 413–424.
582
+ 20.
583
+ R. Primartha and B. A. Tama, Anomaly detection using random forest: A performance revisited, Proc. 2017
584
+ Int. Conf. Data Softw. Eng. ICoDSE 2017. 2018-Janua (2018) 1–6. doi: 10.1109/ICODSE.2017.8285847.
585
+ 21.
586
+ L. Yang et al., Study of cardiovascular disease prediction model based on random forest in eastern China, Sci.
587
+ Rep. 10 (2020) 1–8. doi: 10.1038/s41598-020-62133-5.
588
+ 22.
589
+ L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32. doi: 10.1023/A:1010933404324.
590
+ 23.
591
+ E. Frank, M. A. Hall, and I. H. Witten, The WEKA Workbench. Online Appendix for Data Mining: Practical
592
+ Machine Learning Tools and Techniques, 4th ed. Morgan Kaufmann (2016).
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+
EtAyT4oBgHgl3EQfevi1/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf,len=522
2
+ page_content='8th Brunei International Conference on Engineering and Technology (BICET 2021),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
3
+ page_content=' Universiti Teknologi Brunei Internet of Things: Digital Footprints Carry A Device Identity Rajarshi Roy Chowdhury1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
4
+ page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
5
+ page_content=' a),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
6
+ page_content=' Azam Che Idris1 and Pg Emeroylariffion Abas1 1Faculty of Integrated Technologies,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
7
+ page_content=' Universiti Brunei Darussalam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
8
+ page_content=' Jalan Tungku Link,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
9
+ page_content=' Gadong BE1410,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
10
+ page_content=' Brunei Darussalam 2Department of Computer Science and Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
11
+ page_content=' Sylhet International University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
12
+ page_content=' Shamimabad Road,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
13
+ page_content=' Sylhet 3100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
14
+ page_content=' Bangladesh Corresponding author: a) 19h0901@ubd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
15
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
16
+ page_content='bn or rajarshiry@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
17
+ page_content='com ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
18
+ page_content=' The usage of technologically advanced devices has seen a boom in many domains, including education, automation, and healthcare;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
19
+ page_content=' with most of the services requiring Internet-connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
20
+ page_content=' To secure a network, device identification plays key role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
21
+ page_content=' In this paper, a device fingerprinting (DFP) model, which is able to distinguish between Internet of Things (IoT) and non-IoT devices, as well as uniquely identify individual devices, has been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
22
+ page_content=' Four statistical features have been extracted from the consecutive five device-originated packets, to generate individual device fingerprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
23
+ page_content=' The method has been evaluated using the Random Forest (RF) classifier and different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
24
+ page_content=' Experimental results have shown that the proposed method achieves up to 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
25
+ page_content='8% accuracy in distinguishing between IoT and non-IoT devices and over 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
26
+ page_content='6% in classifying individual devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
27
+ page_content=' These signify that the proposed method is useful in assisting operators in making their networks more secure and robust to security breaches and unauthorised access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
28
+ page_content=' Keywords : digital footprint;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
29
+ page_content=' network traffic traces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
30
+ page_content=' machine learning algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
31
+ page_content=' internet of things;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
32
+ page_content=' device fingerprinting INTRODUCTION It has been predicted that the number of network-connected Internet of Things (IoT) and non-IoT devices worldwide will reach approximately 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
33
+ page_content='9 billion and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
34
+ page_content='3 billion, respectively, by the year 2025 [1]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
35
+ page_content=' Proliferated growth of these devices with their heterogeneous functionalities, has imposed new challenges to network administrators and operators, in providing, managing, and controlling the operations and security of the network services [2]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
36
+ page_content=' Accurate device identification is one key aspect that needs to be seriously considered in securing network-connected devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
37
+ page_content=' Conventionally, internet protocol (IP) enabled devices have been using user-defined identifiers, such as IP and media access control (MAC) addresses, as a form of identifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
38
+ page_content=' However, these identifiers have been proven to be vulnerable [3]\u2060 to various attacks, such as spoofing [4]\u2060 and device mobility, due to the availability of malicious software [5]\u2060, for performing such attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
39
+ page_content=' Device fingerprinting (DFP) [3]\u2060 represents one technique that may be used to identify devices based on their communication traffic traces (or digital footprints) without using explicit identifiers, and it can be performed, either actively or passively, from different layers of the communication model [6]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
40
+ page_content=' Due to the prominent characteristics of network traffic features, many researchers [2, 7]\u2060 have used packet-level features for different purposes [8]\u2060, including for device identification [9]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
41
+ page_content=' Sivanathan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
42
+ page_content=' [10]\u2060 have described a DFP scheme based on the analysis of passively observed network traffic traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
43
+ page_content=' A total of 11 statistical features are used as device fingerprints, from packet traffic-flows over a period of one day, by looking at the devices’ sleeping time, average packet size and traffic rate, active time, number of servers and protocols used in a flow, number of 8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei unique domain name system (DNS) request, and intervals of DNS and network time protocol (NTP) requests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
44
+ page_content=' Subsequently, these features are used to train an ML model for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
45
+ page_content=' It has been shown that the DFP scheme is able to distinguish between IoT and non-IoT devices with high accuracy and achieve over 95% accuracy in identifying individual IoT devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
46
+ page_content=' The same researchers [9]\u2060 have also presented another device fingerprinting scheme, by utilizing statistical characteristics of hourly network traffic traces, to generate 8 device-specific fingerprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
47
+ page_content=' Experimental result has shown over 99% accuracy using the UNSW dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
48
+ page_content=' Charyyev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
49
+ page_content=' [11]\u2060 have utilized Nilsimsa hash value of packet flows (n packets) for device-specific fingerprints, to classify individual IoT devices, to achieve 93% precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
50
+ page_content=' Researchers in [2, 12]\u2060 have used 12 packets information, to generate device signatures for classifying IoT devices, with 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
51
+ page_content='5% global accuracy and 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
52
+ page_content='15% accuracy using an aggregated model, whilst Aksoy and Gunes [13]\u2060 have presented a DFP approach, known as SysID, which utilizes features from a single packet, for identifying smart home IoT devices with 82% average classification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
53
+ page_content=' Bezawada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
54
+ page_content=' [14]\u2060 have utilized 5 consecutive packets information, including protocols headers and payload (20 features), for classifying IoT devices uniquely with mean identification accuracy of 93% to 100% using a laboratory dataset of 14 IoT devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
55
+ page_content=' In [15]\u2060, the authors have used a one second window to group packets, for generating statistical fingerprinting features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
56
+ page_content=' These features are then used to train a binary classifier for categorizing IoT and non-IoT devices with high accuracy of 99%, whilst a multi-class classifier has been used to uniquely identify IoT devices with about 96% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
57
+ page_content=' All these existing DFP models, however, require either a large number of features set from different layers of the communication model, or a large number of network packets information for generating fingerprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
58
+ page_content=' Consequently, these models consume a long period of time, and require complex computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
59
+ page_content=' As such, a more efficient DFP model is required for classifying devices with high accuracy, but with less computation cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
60
+ page_content=' In this paper, a supervised machine learning (ML) based DFP model, which generates device-specific signatures by computing four statistical features from consecutive five packets of the network traffic, has been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
61
+ page_content=' An intuition that these features carry device-specific characteristics in terms of device memory and processing speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
62
+ page_content=' Experimental results have shown that over 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
63
+ page_content='0% accuracy is achievable in classifying individual non-IoT devices from traffic collected in a laboratory environment, and 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
64
+ page_content='3% accuracy on the non-IoT traffic traces from the UNSW dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
65
+ page_content=' The proposed DFP model is also capable of distinguishing between IoT and non-IoT devices with up to 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
66
+ page_content='8% accuracy on the UNSW dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
67
+ page_content=' The key contributions of this research work are: Identifying device specific features from the device originated communication traffic traces, to generate device signatures for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
68
+ page_content=' Instrument an experimental testbed of non IoT devices in a laboratory environment for data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
69
+ page_content=' Evaluate the proposed DFP scheme performance based on a supervised ML algorithm, to distinguish between IoT and non IoT devices and identify individual devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
70
+ page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
71
+ page_content=' The proposed ML-based device fingerprinting method, as well as the datasets, data collection procedure, and an ML classifier are described in Section II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
72
+ page_content=' Section III describes experimental results on various datasets, and finally, conclusion is given in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
73
+ page_content=' METHODOLOGY The proposed DFP method is used to extract unique device features from network traffic traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
74
+ page_content=' These features are used to train an ML classifier, and subsequently, used to test the performance of the proposed DFP method on different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
75
+ page_content=' This section describes the proposed DFP method, the datasets used for training and testing, as well as the classification method used to test the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
76
+ page_content=' Datasets: IoT and Non IoT The proposed device fingerprinting model performance has been evaluated by utilizing a publicly available dataset: UNSW [9]\u2060, and a testbed dataset of non-IoT devices, which has been collected from a laboratory environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
77
+ page_content=' Summary of the datasets are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
78
+ page_content=' The UNSW dataset comprises network traffic traces from both IoT and non-IoT devices, including TP-Link camera, smart bulb, Belkin camera, smart doorbell, printer, 8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei smart photo frame, laptop, smartphone, and tablet devices, with these heterogeneous devices coming from different manufacturers: Belkin, Philips Hue, Netatmo, TP-Link, Withings, HP, Apple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
79
+ page_content=' On the other hand, the laboratory dataset comprises 7 non-IoT devices, including laptops, smartphones, and desktops, from different manufacturers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
80
+ page_content=' The data collection procedure from the 7 non-IoT devices is described in the following section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
81
+ page_content=' TABLE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
82
+ page_content=' List of IoT and non-IoT Datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
83
+ page_content=' Dataset Devices Total Packets Source IoT Non-IoT UNSW 22 -- 6,844,740 [9]\u2060 -- 7 3,515,705 Lab Dataset -- 7 442,970 -- TABLE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
84
+ page_content=' List of non-IoT devices for experimental set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
85
+ page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
86
+ page_content=' Device Category Device Name/Model Operating System Connectivity MAC Address 1 Laptop Aspire-S7 Windows WiFi 34:23:87:b7:56:17 2 ProBook-4410s WiFi/Ethernet 00:25:b3:47:da:6f 3 Desktop Asus Ethernet 08:60:6e:c1:79:c2 4 HP-EliteDesk Ethernet 80:e8:2c:d6:9e:49 5 Smart Phone MYA-U29 Android WiFi d0:ff:98:95:57:af 6 MLXP2ZA-A iOS WiFi e0:c7:67:45:a3:62 7 MWC22KH-A WiFi 06:44:b7:aa:20:98 Dataset Collection Methodology An experimental design,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
87
+ page_content=' consisting of local area network (LAN) and wireless local area network (WLAN) with non-IoT devices,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
88
+ page_content=' was set up in a laboratory environment at Universiti Brunei Darussalam (UBD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
89
+ page_content=' Design of the testbed is depicted in Figure 1, with the seven non-IoT devices from different manufacturers and of different types, as listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
90
+ page_content=' These devices were configured, to connect with an access point (AP) either using ethernet or wireless fidelity (WiFi) interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
91
+ page_content=' FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
92
+ page_content=' An experimental testbed of non-IoT devices network (LAN/WLAN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
93
+ page_content=' DNS NTP Server Connectivity: Server Server N Ethernet WiFi Other a Internet WiFi Hotspot Gateway ubuntu?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
94
+ page_content=' (UBD Network) Hub Ethernet USB Ethernet Port Port Monitoring Station (Capture Network Traffic)8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei A laptop was used to configure an access point (AP), which was used to provide network services to the non-IoT devices, as well as to monitor and capture communication footprints from the devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
95
+ page_content=' The Dell Inspiron 15 5000 Series laptop runs Ubuntu 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
96
+ page_content='04 as an operating system (OS), and was connected to the UBD network via its built-in Ethernet interface, to provide the Internet connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
97
+ page_content=' The built-in WiFi interface was configured as a WiFi Hotspot, providing wireless connectivity to the WiFi-enabled (IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
98
+ page_content='11 standard) devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
99
+ page_content=' Additionally, a TU3-ETG USB Ethernet adapter was connected to the laptop, and used to set up a LAN network using the D-Link Switch Hub DES- 1005A hub for providing network services to the connected non-IoT devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
100
+ page_content=' On the Ubuntu OS, the network connection editor tool, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
101
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
102
+ page_content=' nm-connection-editor, was been utilised for connection establishment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
103
+ page_content=' Devices generally generate two types of traffic [9]\u2060: autonomous traffic, including traffic generated for connection establishment, application and system synchronizations, and activity traffic, which is generated due to human or object interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
104
+ page_content=' These inbound and outbound communication traffic traces, flowing over both interfaces (external Ethernet and built-in WiFi interfaces) were captured using tcpdump 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
105
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
106
+ page_content='3 utility, and stored into .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
107
+ page_content='pcap (packet capture) files format, similar to [16]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
108
+ page_content=' Device-originated traffic traces were then extracted using TShark utility and stored in .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
109
+ page_content='csv (comma-separated values) files format, along with labelling of individual devices names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
110
+ page_content=' Finally, the recorded dataset was cleaned for further processing, by eliminating inconsistent instances, including empty rows, and duplicate values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
111
+ page_content=' Device Fingerprinting Model The proposed DFP scheme architecture is depicted in Figure 2, which uses device-originated communication traffic traces to generate device fingerprints for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
112
+ page_content=' Device-originated traffic traces are filtered according to individual device MAC addresses, with tcp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
113
+ page_content='window_size and ip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
114
+ page_content='len values extracted from each packet from the available captured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
115
+ page_content=' These two values of a network packet carry significant device-specific information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
116
+ page_content=' tcp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
117
+ page_content='window_size value depends on a device buffer size and computation speed [14]\u2060 whilst ip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
118
+ page_content='len value specifies the total length of a packet to represent unique characteristics of a devices communication pattern [15]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
119
+ page_content=' tcp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
120
+ page_content='window_size and ip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
121
+ page_content='len values from five consecutive packets (as one instance) are utilized, to compute mean (µ) and standard deviation (σ), for constructing device-specific fingerprints, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
122
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
123
+ page_content=' iplen_µ, iplen_σ, tcpwinsiz_µ, and tcpwinsiz_σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
124
+ page_content=' These 4 statistical fingerprints have been used for training a machine learning (ML) model, and subsequently, to evaluate the performance, of the model in classifying devices using datasets, which have been randomly split into training (80% instances) and testing (20% instances) datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
125
+ page_content=' FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
126
+ page_content=' The proposed device fingerprinting scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
127
+ page_content=' Random Forest Classifier Random Forest (RF) classifier is a supervised machine learning (ML) algorithm, that can be used for both classification [9]\u2060 and regression [17]\u2060 problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
128
+ page_content=' The algorithm randomly generates a group of trees, with majority voting used to make a decision from the ensemble of decision trees [18, 19]\u2060, for the classification task, as presented in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
129
+ page_content=' This assists in avoiding over-fitting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
130
+ page_content=' Researchers in different domains have utilized RF classifier for different classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
131
+ page_content=' In [9]\u2060, the RF algorithm has been used for classifying IoT devices with high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
132
+ page_content=' Primartha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
133
+ page_content=' [20] have performed anomaly detection using the algorithm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
134
+ page_content=' and it has also been used Testing Dataset (20%) Training Dataset (80%) Capture Filter and Extract Fingerprint Generation Training Model Test Model Classification Network Traffic Traffie Traces (Mean,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
135
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
136
+ page_content='Standard ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
137
+ page_content='Deviation) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
138
+ page_content='ML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
139
+ page_content='Algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
140
+ page_content='ML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
141
+ page_content='Algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
142
+ page_content='IoT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
143
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
144
+ page_content='Non-IoT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
145
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
146
+ page_content='Inbound ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
147
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
148
+ page_content='outbound ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
149
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
150
+ page_content='Outbound ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
151
+ page_content='traffic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
152
+ page_content='traces ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
153
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
154
+ page_content='Statistical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
155
+ page_content='analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
156
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
157
+ page_content='Train ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
158
+ page_content='a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
159
+ page_content='machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
160
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
161
+ page_content='Test ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
162
+ page_content='model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
163
+ page_content='performance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
164
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
165
+ page_content='Category: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
166
+ page_content='IoT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
167
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
168
+ page_content='non-loT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
169
+ page_content='traffic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
170
+ page_content='traces ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
171
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
172
+ page_content='Packet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
173
+ page_content='header ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
174
+ page_content='features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
175
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
176
+ page_content='Device ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
177
+ page_content='fingerprint/Signature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
178
+ page_content='Learning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
179
+ page_content='(ML) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
180
+ page_content='model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
181
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
182
+ page_content='Device ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
183
+ page_content='identification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
184
+ page_content='(Store ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
185
+ page_content='in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
186
+ page_content='pcap ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
187
+ page_content='files ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
188
+ page_content='fomat) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
189
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
190
+ page_content='Label ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
191
+ page_content='instances ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
192
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
193
+ page_content='Tune ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
194
+ page_content='hyperparameter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
195
+ page_content='# ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
196
+ page_content='Train ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
197
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
198
+ page_content='test ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
199
+ page_content='datasets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
200
+ page_content='(csv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
201
+ page_content='files)8th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
202
+ page_content='Brunei ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
203
+ page_content='International ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
204
+ page_content='Conference ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
205
+ page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
206
+ page_content='Engineering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
207
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
208
+ page_content='Technology ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
209
+ page_content='(BICET ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
210
+ page_content='2021),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
211
+ page_content=' Universiti Teknologi Brunei for disease identification in medical science [21]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
212
+ page_content=' In this paper, RF classifier is used to appraise the performance of the proposed DFP method, by using the extracted features for training the RF classifier, and subsequently, using the trained RF classifier to determine classification performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
213
+ page_content=' Some of the significant tunable hyper-parameters are set experimentally, including the number of iterations (or number of trees) = 100, seed = 1, and batch size (number of instances) = 100, to improve classification accuracy and reduce the root mean squared error (RMSE) [22]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
214
+ page_content=' FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
215
+ page_content=' An abstract representation of a RF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
216
+ page_content=' RESULTS AND DISCUSSION The proposed DFP method has been evaluated using waikato environment for knowledge analysis (Weka) tool [23]\u2060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
217
+ page_content=' An online dataset: UNSW [9]\u2060 dataset, and an experimental dataset, as presented in Table 3, have been utilized to evaluate the classification performance based on the RF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
218
+ page_content=' The UNSW dataset consists of network traffic traces from IoT and non-IoT devices, which are referred to as the U-IoT and U-NonIoT datasets, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
219
+ page_content=' On the other hand, the experimental dataset contains only network traffic traces from non-IoT devices, and it is referred to as the L-NonIoT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
220
+ page_content=' TABLE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
221
+ page_content=' Total number of instances used for evaluating the proposed DFP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
222
+ page_content=' Dataset Devices Training Dataset (80%) Test Dataset (20%) Total Instances (100%) IoT Non-IoT UNSW (U-IoT) * --- 1,095,158 273,790 1,368,948 UNSW (U-NonIoT) --- * 562,513 140,628 703,141 Lab (L-NonIoT) --- * 70,875 17,719 88,594 The proposed DFP method utilises 5 network traffic packets as one instance to generate fingerprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
223
+ page_content=' As such, a total of 1,368,948 (6,844,740 / 5) and 703,141 (3,515,705 / 5) instances have been used from the U-IoT and U- NonIoT datasets, respectively, whilst a total of 88,594 (442,970 / 5) instances have been used from the L-NonIoT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
224
+ page_content=' 80% of the datasets have been used for training and the remainder for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
225
+ page_content=' The performance of the trained RF classifier has been measured with respect to its ability to a) distinguish between IoT and non-IoT devices, and b) classify individual devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
226
+ page_content=' Device Category: IoT and Non-IoT Devices Classification performances of the proposed DFP model in distinguishing between IoT and non-IoT devices are presented in Figure 4, on combined U-IoT and U-NonIoT datasets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
227
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
228
+ page_content=' UNSW dataset), and combined U-IoT and L- Dataset Data Subset of Data Subset of Data Subset of Data Random Samples 1 2 n Decision Trees Selected Class Selected Class Class Selected Class (Vote) (Vote) (Vote) Majority Voting Final Decision (Class)8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei NonIoT datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
229
+ page_content=' The figure shows that device categorization accuracy reaches up to 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
230
+ page_content='9% using the RF classifier on the combined U-IoT and L-NonIoT datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
231
+ page_content=' On the UNSW dataset [9]\u2060, which consists of instances from 22 IoT and 7 non-IoT devices, the proposed DFP method achieves 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
232
+ page_content='8% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
233
+ page_content=' FIGURE 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
234
+ page_content=' Categorize IoT and non-IoT devices: UNSW and Lab datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
235
+ page_content=' FIGURE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
236
+ page_content=' Classification performance of the non-IoT devices: UNSW and Lab datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
237
+ page_content=' Individual Device Classification The performances of the proposed DFP method in classifying individual IoT and non-IoT devices on different datasets, are depicted in Figure 5 and Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
238
+ page_content=' In Figure 5, the proposed DFP model achieves over 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
239
+ page_content='0% accuracy in classifying non-IoT devices from the L-NonIoT and U-NonIoT datasets, with accuracy a little bit higher on the U- NonIoT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
240
+ page_content=' Individual IoT devices classification performance of the proposed DFP model, on the U-IoT dataset with 22 IoT devices, is given in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
241
+ page_content=' Most of the IoT devices in the dataset can be classified with over 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
242
+ page_content='6% accuracy, with the exception of the BlipcareBPmeter, the BelkinWemoSensor and BelkinWemoSwitch devices, which give classification accuracies of about 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
243
+ page_content='0%, 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
244
+ page_content='5% and 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
245
+ page_content='4%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
246
+ page_content=' The lowest accuracy for the BlipcareBPmeter device is due to the limited number of instances available from this device for training and testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
247
+ page_content=' CONCLUSION A large number of heterogeneous IoT and non-IoT devices from different manufacturers are being connected to the Internet, to obtain network-based services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
248
+ page_content=' In terms of network security, it is challenging for network administrators and operators to identify the connected devices using conventional identifiers, as they are prone to security breaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
249
+ page_content=' In this paper, a DFP model based on the analysis of network traffic traces has been proposed, which is capable of distinguishing between IoT and non-IoT devices as well as classifying individual IoT and non- IoT devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
250
+ page_content=' As opposed to other methods in the literature, which require relatively large number of features and loTvs NonloT U-loT: UNSW-loT, U-NonloT: UNSW-NonloT, L-NonloT: Lab-NonloT Datasets U-loT vs U-NonloT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
251
+ page_content='998 Datasets U-loT vs L-NonloT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
252
+ page_content='999 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
253
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
254
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
255
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
256
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
257
+ page_content='00 AccuracyNonloTDevices L-NonloT: Lab-NonloT, U-NonloT: UNSW-NonloT Datasets L-NonloT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
258
+ page_content='970 Datasets U-NonloT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
259
+ page_content='973 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
260
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
261
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
262
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
263
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
264
+ page_content='00 Accuracy8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei requiring longer sequence of packet network traffics to construct their DFP features, only 4 statistical features from 5 consecutive packet network traffics are required to construct the DFP features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
265
+ page_content=' These are used for training and testing an ML classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
266
+ page_content=' Evaluations on the UNSW dataset have shown that the proposed DFP method is able to distinguish between IoT and non-IoT devices with up to 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
267
+ page_content='8% accuracy, and individually classify most of the IoT and non-IoT devices with over 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
268
+ page_content='6% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
269
+ page_content=' On the laboratory collected network traces, the proposed DFP model is able to classify individual devices with 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
270
+ page_content='0% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
271
+ page_content=' The research outcomes signify that the proposed DFP model is useful for device identification and may assist network administrators in providing a more secure network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
272
+ page_content=' FIGURE 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
273
+ page_content=' Individual IoT device classification performance: U-IoT dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
274
+ page_content=' ACKNOWLEDGEMENTS The authors are profoundly grateful to the Faculty of Integrated Technologies (FIT), Universiti Brunei Darussalam (UBD), for supporting this research work, as well as to UBD for awarding the UBD Graduate Scholarship (UGS) to the first author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
275
+ page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
276
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
277
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
278
+ page_content=' Vailshery, IoT and non-IoT connections worldwide 2010-2025, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
279
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
280
+ page_content='statista.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
281
+ page_content='com/statistics/1101442/iot-number-of-connected-devices-worldwide/ (accessed May 12, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
282
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
283
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
284
+ page_content=' Miettinen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
285
+ page_content=' Marchal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
286
+ page_content=' Hafeez, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
287
+ page_content=' Asokan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
288
+ page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
289
+ page_content=' Sadeghi, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
290
+ page_content=' Tarkoma, IoT Sentinel: Automated device-type identification for security enforcement in IoT, in 2017 IEEE 37th International Conference on Distributed Computing Systems (2017) 2177–2184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
291
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
292
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
293
+ page_content=' Xu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
294
+ page_content=' Zheng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
295
+ page_content=' Saad, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
296
+ page_content=' Han, Device fingerprinting in wireless networks: Challenges and opportunities, IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
297
+ page_content=' Surv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
298
+ page_content=' Tutorials, 18 (2016) 94–104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
299
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
300
+ page_content='1109/COMST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
301
+ page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
302
+ page_content='2476338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
303
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
304
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
305
+ page_content=' Vlajic, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
306
+ page_content=' Chowdhury, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
307
+ page_content=' Litoiu, IP spoofing in and out of the public cloud: From policy to practice, Computers 8 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
308
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
309
+ page_content='3390/computers8040081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
310
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
311
+ page_content=' Technitium MAC Address Changer | A Freeware Utility To Spoof MAC Address Instantly (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
312
+ page_content=' https://technitium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
313
+ page_content='com/tmac/ (accessed Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
314
+ page_content=' 06, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
315
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
316
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
317
+ page_content=' Ravali, A Comparative Evaluation of OSI and TCP/IP Models, International Journal of Science and Research (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
318
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
319
+ page_content='ijsr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
320
+ page_content='net/get_abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
321
+ page_content='php?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
322
+ page_content='paper_id=SUB155737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
323
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
324
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
325
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
326
+ page_content=' Chowdhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
327
+ page_content=' Aneja, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
328
+ page_content=' Aneja, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
329
+ page_content=' Abas, Network Traffic Analysis based IoT Device Identification, in ACM International Conference Proceeding Series (2020) 79–89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
330
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
331
+ page_content='1145/3421537.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
332
+ page_content='3421545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
333
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
334
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
335
+ page_content='994 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
336
+ page_content='965 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
337
+ page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
338
+ page_content='986 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
339
+ page_content='998 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
340
+ page_content="982 266'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
341
+ page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
342
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
343
+ page_content='750 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
344
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
345
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
346
+ page_content='00 loTDevicesName8th Brunei International Conference on Engineering and Technology (BICET 2021), Universiti Teknologi Brunei 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
347
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
348
+ page_content=' Shafiq, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
349
+ page_content=' Tian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
350
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
351
+ page_content=' Bashir, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
352
+ page_content=' Du, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
353
+ page_content=' Guizani, CorrAUC: a Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine Learning Techniques, IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
354
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
355
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
356
+ page_content='1109/jiot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
357
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
358
+ page_content='3002255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
359
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
360
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
361
+ page_content=' Sivanathan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
362
+ page_content=', Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
363
+ page_content=' Mob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
364
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
365
+ page_content=' 18 (2019) 1745–1759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
366
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
367
+ page_content='1109/TMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
368
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
369
+ page_content='2866249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
370
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
371
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
372
+ page_content=' Sivanathan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
373
+ page_content=', Characterizing and classifying IoT traffic in smart cities and campuses, 2017 IEEE Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
374
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
375
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
376
+ page_content=' Work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
377
+ page_content=' INFOCOM WKSHPS 2017, (2017) 559–564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
378
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
379
+ page_content='1109/INFCOMW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
380
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
381
+ page_content='8116438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
382
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
383
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
384
+ page_content=' Charyyev and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
385
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
386
+ page_content=' Gunes, IoT Traffic Flow Identification using Locality Sensitive Hashes, IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
387
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
388
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
389
+ page_content=' 2020-June (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
390
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
391
+ page_content='1109/ICC40277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
392
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
393
+ page_content='9148743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
394
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
395
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
396
+ page_content=' Yousefnezhad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
397
+ page_content=' Madhikermi, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
398
+ page_content=' Framling, MeDI: Measurement-based Device Identification Framework for Internet of Things, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
399
+ page_content=' - IEEE 16th Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
400
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
401
+ page_content=' Ind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
402
+ page_content=' Informatics (2018) 95–100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
403
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
404
+ page_content='1109/INDIN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
405
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
406
+ page_content='8472080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
407
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
408
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
409
+ page_content=' Aksoy and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
410
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
411
+ page_content=' Gunes, Automated iot device identification using network traffic, in ICC 2019-2019 IEEE International Conference on Communications (ICC) (2019) 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
412
+ page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
413
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
414
+ page_content=' Bezawada, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
415
+ page_content=' Bachani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
416
+ page_content=' Peterson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
417
+ page_content=' Shirazi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
418
+ page_content=' Ray, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
419
+ page_content=' Ray, Behavioral fingerprinting of iot devices, in Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
420
+ page_content=' (2018) 41–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
421
+ page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
422
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
423
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
424
+ page_content=' Pinheiro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
425
+ page_content=' de M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
426
+ page_content=' Bezerra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
427
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
428
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
429
+ page_content=' Burgardt, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
430
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
431
+ page_content=' Campelo, Identifying IoT devices and events based on packet length from encrypted traffic, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
432
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
433
+ page_content=' 144 (2019) 8–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
434
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
435
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
436
+ page_content='comcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
437
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
438
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
439
+ page_content='012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
440
+ page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
441
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
442
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
443
+ page_content=' Chowdhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
444
+ page_content=' Aneja, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
445
+ page_content=' Aneja, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
446
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
447
+ page_content=' Abas, Packet-level and IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
448
+ page_content='11 MAC frame-level Network Traffic Traces Data of the D-Link IoT devices, Data Br.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
449
+ page_content=' 37 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
450
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
451
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
452
+ page_content='dib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
453
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
454
+ page_content='107208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
455
+ page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
456
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
457
+ page_content=' Mussumeci and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
458
+ page_content=' Codeço Coelho, Large-scale multivariate forecasting models for Dengue - LSTM versus random forest regression, Spat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
459
+ page_content=' Spatiotemporal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
460
+ page_content=' Epidemiol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
461
+ page_content=' 35 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
462
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
463
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
464
+ page_content='sste.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
465
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
466
+ page_content='100372.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
467
+ page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
468
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
469
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
470
+ page_content=' Ho, Random Decision Forests Tin Kam Ho Perceptron training, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
471
+ page_content=' 3rd Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
472
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
473
+ page_content=' Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
474
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
475
+ page_content=' Recognit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
476
+ page_content=' (1995) 278–282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
477
+ page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
478
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
479
+ page_content=' Vanhoef, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
480
+ page_content=' Matte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
481
+ page_content=' Cunche, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
482
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
483
+ page_content=' Cardoso, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
484
+ page_content=' Piessens, Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms, in Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (2016) 413–424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
485
+ page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
486
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
487
+ page_content=' Primartha and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
488
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
489
+ page_content=' Tama, Anomaly detection using random forest: A performance revisited, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
490
+ page_content=' 2017 Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
491
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
492
+ page_content=' Data Softw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
493
+ page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
494
+ page_content=' ICoDSE 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
495
+ page_content=' 2018-Janua (2018) 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
496
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
497
+ page_content='1109/ICODSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
498
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
499
+ page_content='8285847.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
500
+ page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
501
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
502
+ page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
503
+ page_content=', Study of cardiovascular disease prediction model based on random forest in eastern China, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
504
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
505
+ page_content=' 10 (2020) 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
506
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
507
+ page_content='1038/s41598-020-62133-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
508
+ page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
509
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
510
+ page_content=' Breiman, Random forests, Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
511
+ page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
512
+ page_content=' 45 (2001) 5–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
513
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
514
+ page_content='1023/A:1010933404324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
515
+ page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
516
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
517
+ page_content=' Frank, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
518
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
519
+ page_content=' Hall, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
520
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
521
+ page_content=' Witten, The WEKA Workbench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
522
+ page_content=' Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
523
+ page_content=' Morgan Kaufmann (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf'}
EtFLT4oBgHgl3EQfFS_K/content/tmp_files/2301.11987v1.pdf.txt ADDED
@@ -0,0 +1,1063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ J/ψ polarization in large-PT semi-inclusive deep-inelastic scattering at the EIC
2
+ Umberto D’Alesio,1, 2, ∗ Luca Maxia,1, 2, † Francesco Murgia,2, ‡ Cristian Pisano,1, 2, § and Sangem Rajesh3, 4, ¶
3
+ 1Dipartimento di Fisica, Universit`a di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
4
+ 2INFN, Sezione di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
5
+ 3Department of Physics, School of Advanced Sciences,
6
+ Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
7
+ 4INFN, Sezione di Perugia, via A. Pascoli snc, 06123, Perugia, Italy
8
+ (Dated: January 31, 2023)
9
+ We present a detailed phenomenological study of J/ψ polarization in semi-inclusive deep inelastic
10
+ scattering processes, focusing on the kinematics accessible at the future Electron-Ion Collider. We
11
+ show theoretical estimates for the standard polarization parameters for different frames usually
12
+ adopted in the literature, in the large PT region, namely PT ≫ ΛQCD, where collinear factorization
13
+ is expected to hold. We adopt both the Color Singlet Model and the Nonrelativistic QCD approach,
14
+ paying special attention to the role of different sets of Long Distance Matrix Elements. Finally we
15
+ present a preliminary analysis of some frame independent polarization invariants.
16
+ I.
17
+ INTRODUCTION
18
+ Our understanding of the J/ψ production mechanism at high energies has improved significantly since its discovery
19
+ almost 50 years ago [1, 2], thanks to the combined efforts from both the theoretical and experimental communities.
20
+ However, there are still major problems in the theoretical analyses of the available data, such as the long-standing
21
+ J/ψ polarization puzzle. Namely, J/ψ polarization measurements cannot yet be explained in a way entirely consistent
22
+ with the world experimental results for the unpolarized J/ψ yields.
23
+ The present theoretical frameworks all agree in providing a perturbative description of the creation of the charm
24
+ quark-antiquark (c¯c) pair. The charm mass mc plays the role of the hard scale, since it is much larger than the
25
+ asymptotic scale parameter of QCD, ΛQCD. These approaches nonetheless differ in the treatment of the subsequent
26
+ nonperturbative transition to the hadronic bound state. For instance, in the traditional Color-Singlet Model (CSM) [3]
27
+ the c¯c pair is produced at short distances directly with the quantum numbers of the J/ψ meson, i.e. in a color-singlet
28
+ (CS) state with spin one and no orbital angular momentum. This is possible by the emission of an additional hard
29
+ gluon, which implies the suppression of the cross section by one power of the strong coupling constant αs. However,
30
+ the CSM cannot be considered as a complete theory, since at the next-to-leading order (NLO) P-wave quarkonia are
31
+ affected by uncanceled infrared singularities.
32
+ These singularities are properly removed in the effective field theory approach of nonrelativistic QCD (NRQCD),
33
+ based on a rigorous factorization theorem, which was assumed in the original paper by Bodwin, Braaten, and Lep-
34
+ age [4], and later explicitly proven to next-to-next-to-leading order (NNLO) [5]. NRQCD therefore implies a sep-
35
+ aration of process-dependent short-distance coefficients, to be calculated perturbatively as expansions in αs, from
36
+ long-distance matrix elements (LDMEs), which are expected to be universal and have to be extracted from experi-
37
+ ments. Scaling rules [6] predict each of the LDMEs to scale with a definite power of the relative velocity v of the heavy
38
+ quark-antiquark pair in the quarkonium rest frame in the limit v ≪ 1. Observables are hence evaluated by means of
39
+ a double expansion in αs and in v, with αs ≃ 0.2 and v2 ≃ 0.3 for charmonium states. An essential feature of this
40
+ approach is that the c¯c pair at short distance can be produced in any Fock state n = 2S+1L[c]
41
+ J with definite orbital
42
+ angular momentum L, spin S, total angular momentum J and color configuration c = 1, 8. NRQCD hence predicts
43
+ the existence of intermediate color-octet (CO) states, which subsequently evolve into physical, CS quarkonia by the
44
+ emission of soft gluons. For S-wave quarkonia, the CSM is recovered in the limit v → 0. In the specific case of J/ψ
45
+ production, the CSM prediction is based only on the 3S[1]
46
+ 1
47
+ CS state, while NRQCD includes the leading relativistic
48
+ corrections as well, which at the relative order O(v4) are given by the CO states 1S[8]
49
+ 0 , 3S[8]
50
+ 1 , and 3P [8]
51
+ J
52
+ with J = 0, 1, 2.
53
+ The values of the CO LDMEs extracted from different fits to data on J/ψ and Υ yields [7–11] are not compatible
54
+ with each other, even within the large uncertainties [12–14]. Therefore, any new method to determine them with
55
+ better precision is worth exploring [15–17]. In this paper we propose to look at the J/ψ polarization parameters in
56
+ ∗ umberto.dalesio@ca.infn.it
57
+ † luca.maxia@ca.infn.it
58
+ ‡ francesco.murgia@ca.infn.it
59
+ § cristian.pisano@unica.it
60
+ ¶ sangem.rajesh@vit.ac.in
61
+ arXiv:2301.11987v1 [hep-ph] 27 Jan 2023
62
+
63
+ 2
64
+ semi-inclusive deep-inelastic scattering (SIDIS), e p → e′ J/ψ X, in a kinematic region where the transverse momentum
65
+ of the J/ψ meson PT is large, namely PT ≫ ΛQCD, and collinear factorization is expected to hold. Analysing SIDIS at
66
+ finite values of the exchanged photon virtuality Q2 has certain experimental and theoretical advantages as compared to
67
+ photoproduction. Namely, as Q2 increases theoretical uncertainties in the different frameworks decrease and resolved
68
+ photon contributions are expected to be negligible. Moreover, background from diffractive J/ψ production is expected
69
+ to decrease with Q2 faster than the SIDIS cross section. The distinct signature of the scattered lepton makes the
70
+ process particularly easy to detect. Clearly, cross sections are smaller than those expected in the photoproduction
71
+ case, however, considering the achievable high luminosities, this study should be feasible at the future Electron-Ion
72
+ Collider (EIC) planned in the United States [18–20].
73
+ So far, only a single experimental study of J/ψ polarization in SIDIS has been performed, by the H1 Collaboration
74
+ at HERA [21]. Such a measurement is limited to the polarization parameter λ in the helicity frame. This result turns
75
+ out to be compatible with the predictions provided in Refs. [22, 23], but it can hardly discriminate among the different
76
+ models. In analogy with Refs. [22, 23], our phenomenological analysis has been carried out at the perturbative order
77
+ α2
78
+ s, which has to be considered as the state of the art for these observables. Higher-order effects have been calculated
79
+ very recently only for the unpolarized cross section within the CSM [24]. Anyway, we expect these effects (at least
80
+ in the large Q2 region) to be small for the observables we are investigating, because they are ratios of cross sections.
81
+ We point out that our estimates include also the polarization parameters µ and ν, not addressed in Refs. [22, 23],
82
+ which are studied in different reference frames. Furthermore, we perform a preliminary study of rotational invariant
83
+ combinations of these parameters.
84
+ The remainder of the paper is organized as follows. In section II we recall the standard SIDIS variables and collect
85
+ the expressions of the differential cross section for quarkonium production and its leptonic decay in terms of the helicity
86
+ structure functions and the polarization parameters. In section III we discuss the three polarization parameters λ, µ,
87
+ ν, showing their estimates in two reference frames and paying special attention to their energy, z and PT dependences
88
+ as well as to the impact of the LDME set adopted. To overcome the intrinsic frame dependence of the polarization
89
+ parameters, in section IV we present two classes of the so-called rotational invariant quantities, and show, as a case
90
+ of study, some results for one of them. Finally in section V we gather our conclusions.
91
+ II.
92
+ KINEMATICS AND FORMALISM
93
+ In this section we provide the main analytic expressions needed to carry out the phenomenological analysis. For
94
+ more details and the complete formalism we refer the reader to Ref. [25]. We consider the SIDIS process
95
+ e(k) + p(P) → e′(k′) + J/ψ(Pψ) + X(PX) ,
96
+ (1)
97
+ with the subsequent J/ψ decay into a lepton pair
98
+ J/ψ(Pψ) → l+(l) + l−(l′) ,
99
+ (2)
100
+ where, in brackets, we have shown the four-momenta of each particle. The J/ψ meson is produced via the partonic
101
+ subprocess
102
+ γ∗(q) + a(pa) → c¯c[n](Pψ) + a(p′
103
+ a) ,
104
+ (3)
105
+ with q2 = −Q2 and P 2
106
+ ψ = M 2
107
+ ψ = (2mc)2. The initial parton momentum, pa, is related to the parent proton one, P, as
108
+ pa = ξP .
109
+ (4)
110
+ We adopt the following three standard invariant quantities, defined in terms of the photon and hadron momenta
111
+ xB =
112
+ Q2
113
+ 2P · q ,
114
+ y = P · q
115
+ P · k ,
116
+ z = P · Pψ
117
+ P · q ,
118
+ (5)
119
+ where xB is the Bjorken variable, y is the inelasticity and z is the energy fraction carried out by the J/ψ (in the
120
+ proton rest frame). All these variables are constrained in the region 0 ≤ xB, y, z ≤ 1 and they are connected to other
121
+ kinematical quantities of the system, like the total center-of-mass (cm) energy √s and the virtual photon-proton cm
122
+ energy, W.
123
+ The cross section that describes the J/ψ formation and its decay into a lepton pair can be written as
124
+ 1
125
+ Bll
126
+
127
+ dxB dy dz d2PT dΩ =
128
+ α
129
+ 8 y z Q2
130
+ 3
131
+
132
+
133
+ WT (1 + cos2 θ) + WL(1 − cos2 θ) + W∆ sin 2θ cos φ + W∆∆ sin2 θ cos 2φ
134
+
135
+ ,
136
+ (6)
137
+
138
+ 3
139
+ where PT is the J/ψ transverse momentum in the cm frame of the virtual photon and the proton, Bll is the branching
140
+ ratio for the decay process J/ψ → ℓ+ℓ− and Ω(θ, φ) refers to the solid angle spanned by the lepton ℓ+ in a reference
141
+ frame where the system formed by ℓ+ and ℓ− is at rest. Moreover, we have introduced the following helicity structure
142
+ functions
143
+ WT ≡ W11 = W−1,−1 ,
144
+ WL ≡ W00 ,
145
+ W∆ ≡
146
+ 1
147
+
148
+ 2 (W10 + W01) =
149
+
150
+ 2 Re [W10] ,
151
+ W∆∆ ≡ W1,−1 = W−1,1 ,
152
+ (7)
153
+ where the subscripts refer to the J/ψ polarization states. More specifically, WT and WL are respectively the structure
154
+ functions for transversely and longitudinally polarized J/ψ mesons, W∆ is the single-helicity flip structure function,
155
+ and W∆∆ is the double-helicity flip one. Notice that in Eq. (6) we have introduced a proper overall constant factor
156
+ w.r.t. Eq. (2.35) of Ref. [25] to ensure the normalization when integrated over the solid angle, see Eq. (8) below.
157
+ This does not affect any conclusion of Ref. [25], where all relevant quantities are defined as ratios of helicity structure
158
+ functions.
159
+ As shown in Ref. [25], the structure functions in Eq. (7) can be further decomposed in terms of the contributions
160
+ coming from the longitudinal ( ) and transverse (⊥) polarizations of the virtual photon. Moreover, within a collinear
161
+ factorization scheme, they are given as convolutions of collinear parton distribution functions (PDFs) with partonic
162
+ helicity structure functions (weighted by proper LDMEs). These, in turn, can be expressed as functions of the partonic
163
+ Mandelstam invariants.
164
+ The unpolarized cross section is obtained by integrating Eq. (6) over the solid angle Ω,
165
+ 1
166
+ Bll
167
+
168
+ dxB dy dz d2PT
169
+ =
170
+ α
171
+ 8 y z Q2 (2WT + WL) .
172
+ (8)
173
+ It is then useful to introduce the ratio of polarized and unpolarized cross sections
174
+ dN
175
+ dΩ ≡
176
+
177
+ dxB dy dz d2PT dΩ
178
+
179
+
180
+ dxB dy dz d2PT
181
+ �−1
182
+ ,
183
+ (9)
184
+ which can be expressed as follows
185
+ dN
186
+ dΩ = 3
187
+
188
+ 1
189
+ λ + 3
190
+
191
+ 1 + λ cos2 θ + µ sin 2θ cos ϕ + 1
192
+ 2 ν sin2 θ cos 2ϕ
193
+
194
+ ,
195
+ (10)
196
+ where we have defined the polarization parameters
197
+ λ = W11 − W00
198
+ W11 + W00
199
+ ,
200
+ µ =
201
+
202
+ 2 Re [W10]
203
+ W11 + W00
204
+ ,
205
+ ν =
206
+ W1, −1
207
+ W11 + W00
208
+ ,
209
+ (11)
210
+ or alternatively adopting Eq. (7),
211
+ λ = WT − WL
212
+ WT + WL
213
+ ,
214
+ µ =
215
+ W∆
216
+ WT + WL
217
+ ,
218
+ ν =
219
+ 2 W∆∆
220
+ WT + WL
221
+ .
222
+ (12)
223
+ The parameterizations shown in Eqs. (6) and (10) are standard for the study of the angular distribution of a spin-one
224
+ particle decay into a lepton pair and, indeed, they are commonly adopted in Drell-Yan processes [26] and in J/ψ
225
+ photoproduction [27].
226
+ Among the polarization coefficients, λ, µ and ν, the most investigated experimentally is λ.
227
+ Moreover, from
228
+ the phenomenological point of view it has a very intuitive interpretation, with λ = +1(−1) describing a trans-
229
+ verse(longitudinal) polarization state for the J/ψ (i.e. a J/ψ helicity equal to ±1 or 0), while λ = 0 for an unpolarized
230
+ one.
231
+ The main goal of our study is to present estimates for these polarization quantities, within both the CSM and the
232
+ NRQCD frameworks, focusing on the kinematic region accessible at the future EIC. As we will show in the following,
233
+ such a detailed phenomenological study could help in disentangling among the production mechanisms.
234
+
235
+ 4
236
+ LDME Set
237
+ ⟨O1[ 3S1]⟩
238
+
239
+ GeV3� ⟨O8[ 1S0]⟩
240
+
241
+ GeV3� ⟨O8[ 3S1]⟩
242
+
243
+ GeV3� ⟨O8[ 3P0]⟩
244
+
245
+ GeV5�
246
+ C12
247
+ 1.16
248
+ 0.089
249
+ 0.003
250
+ 0.0126
251
+ G13
252
+ 1.16
253
+ 0.097
254
+ −0.0046
255
+ −0.0214
256
+ BK11
257
+ 1.32
258
+ 0.0304
259
+ 0.00168
260
+ −0.00908
261
+ Table I. LDME set (central) values for the J/ψ state: C12 [8], G13 [28] and BK11 [29]. For the other 3PJ states we use the
262
+ standard spin-symmetry relation ⟨O8[ 3PJ]⟩ = (2J + 1) ⟨O8[ 3P0]⟩.
263
+ III.
264
+ ANGULAR DISTRIBUTIONS
265
+ In this section we analyze the polarization parameters defined in Eq. (11) showing both their z and PT distributions.
266
+ The explicit analytic expressions of the underlying partonic structure functions, calculated at the perturbative order
267
+ α2
268
+ s, are presented in Ref. [25] for the so-called Gottfried-Jackson frame, together with all prescriptions needed to
269
+ transform them in the other relevant frames. For the predictions based on the NRQCD approach, in addition to the
270
+ CS contribution, given by a pure gluon fusion channel, we consider the CO channels up to the order v4, which involve
271
+ both gluon and quark final states. The CTEQ6L1 set [30] is used for the unpolarized parton distribution functions.
272
+ Moreover, in order to assess the stability of our results against higher order corrections, we produce uncertainty bands
273
+ by varying the factorization scale µF in the range µ0/2 < µF < 2µ0, around the central value µ0 =
274
+
275
+ Q2 + M 2
276
+ ψ.
277
+ Concerning the CO LDME values, three different sets are adopted, see Table I. Here we only recall their main
278
+ features: the C12 set [8] has been extracted simultaneously from both polarized and unpolarized J/ψ production
279
+ data in pp collision at PT > 7 GeV, measured by the CDF (Run II) Collaboration; the G13 set [28] is obtained
280
+ including only PT > 7 GeV unpolarized data from the CDF and LHCb Collaborations and then used to predict
281
+ the J/ψ polarization in pp collisions; it is in agreement with the C12 set if feed-down contribution is negligible; the
282
+ BK11 set [29] is based on a fit without any polarization data, but starting from a lower PT value, around 3 GeV, and
283
+ including both photoproduction and hadroproduction data.
284
+ The high cm energy kinematical set-ups expected at the EIC are an ideal environment to study J/ψ polarization in
285
+ electroproduction. Moreover, they will allow to better explore high photon virtualities (Q), avoiding the competing
286
+ contributions from photoproduction. Furthermore, since we are interested in the region where collinear factorization
287
+ holds, our results will be shown only for PT values above PT min = 1 GeV. Notice that around this value we actually
288
+ enter the region where the transverse momentum dependent (TMD) factorization could be applied and therefore our
289
+ estimates are pushed down to the overlapping region of validity of the two factorization schemes.
290
+ A.
291
+ The λ parameter
292
+ In Fig. 1 we present our predictions for λ at √s = 140 GeV, as a function of both the J/ψ energy fraction z
293
+ (left panels) and its transverse momentum PT (right panels). Two quarkonium rest frames are explicitly considered:
294
+ the Gottfried-Jackson (upper panels) and the Helicity (lower panels) ones. In this and in the following figures, the
295
+ kinematical ranges explored are indicated in the legend boxes. For completeness we report here the corresponding
296
+ regions explored in xB and y at √s = 140 GeV, 10−3 ≲ xB ≲ 0.2 and y ≲ 0.5 respectively, even if the effectively
297
+ probed maximum value in xB is around 0.07.
298
+ Concerning other typical frames, like the Target and Collins-Soper ones, we only notice that the first one give
299
+ estimates very close to those in the Helicity frame, while predictions obtained in the second one, at least for the
300
+ kinematics considered, are in general much smaller than those in the Gottfried-Jackson frame or even close to zero.
301
+ Notice that for such observable, defined as a ratio of cross sections, the dependence on the scale µF in the range
302
+ [µ0/2, 2µ0] is barely appreciable and therefore is not shown.
303
+ The study of the λ parameter as a function of z presents very interesting features from the phenomenological
304
+ point of view. The reasons are manifold: first of all its expected relative large size as compared to the µ and ν
305
+ parameters. Moreover, it is experimentally under more active investigation. On the other hand, theoretical estimates
306
+ for λ as a function of z (for small and moderate values) do not vary significantly adopting different frameworks
307
+ (Fig. 1, left panels), which implies that, in order to get information on the quarkonium formation mechanism, one
308
+ would need highly precise measurements. The same problem was found in different analyses performed by the HERA
309
+ Collaborations, Refs. [21, 23].
310
+ The situation changes considerably at z > 0.6, which represents a very interesting region from the phenomenological
311
+ point of view. As is well known, NRQCD estimates for the unpolarized cross section manifest a divergent behavior as
312
+
313
+ 5
314
+ 0.50
315
+ 0.25
316
+ 0.00
317
+ 0.25
318
+ 0.50
319
+ 0.75
320
+ 1.00
321
+ Gottfried-Jackson
322
+ 0.4
323
+ 0.2
324
+ 0.0
325
+ 0.2
326
+ 0.4
327
+ 0.6
328
+ 0.2
329
+ 0.4
330
+ 0.6
331
+ 0.8
332
+ z
333
+ 0.50
334
+ 0.25
335
+ 0.00
336
+ 0.25
337
+ 0.50
338
+ 0.75
339
+ 1.00
340
+ Helicity
341
+ CSM
342
+ NRQCD (C12)
343
+ NRQCD (BK11)
344
+ NRQCD (G13)
345
+ 2
346
+ 4
347
+ 6
348
+ 8
349
+ 10
350
+ PT [GeV]
351
+ 0.4
352
+ 0.2
353
+ 0.0
354
+ 0.2
355
+ 0.4
356
+ 0.6
357
+ s = 140 GeV
358
+ 9 GeV2 < Q2 < 100 GeV2
359
+ 20 GeV < W < 100 GeV
360
+ 0.2 < z < 0.9 or PT > 1 GeV
361
+ Figure 1. Estimates for λ at √s = 140 GeV as a function of z (left panels) and PT (right panels) for different models and
362
+ LDME sets and two reference frames: Gottfried-Jackson (upper panels) and Helicity (lower panels) frames. Integration ranges
363
+ are given in the light-blue legend box.
364
+ z → 1, due to the corresponding ˆt → 0 singularities. This can potentially spoil the validity of NRQCD factorization.
365
+ As shown in Ref. [31], in order to extend the region of applicability of NRQCD up to 1 − z ∼ v2, one can introduce
366
+ a new set of functions, the so-called shape functions [32], that allow to improve noticeably the convergence for
367
+ photoproduction. We expect such quantities to be relevant also for the SIDIS process, together with their TMD
368
+ extensions, which have been adopted in the study of pp collisions in Refs. [33, 34] and whose perturbative tails have
369
+ been derived in Ref. [35] for unpolarized and in Ref. [25] for polarized J/ψ SIDIS. On the other hand, the impact of
370
+ the shape functions on λ is expected to be strongly reduced since λ is a ratio of cross sections. This can be tested
371
+ with future available data.
372
+ A much more powerful tool to assess the relevance of the CO contributions is the study of the PT distribution
373
+ (Fig. 1, right panels). In the Gottfried-Jackson frame (upper panel) we see a clear separation as well as a different
374
+ behavior between the CSM and NRQCD curves, in particular in the region 4 < PT < 7 GeV; similarly in the Helicity
375
+ frame there is a wide separation between the CSM and the NRQCD curves, while different LDME sets give predictions
376
+ much closer to each other and closer to λ = 0. It is worth noticing that, even if the unpolarized cross section decreases
377
+ as PT increases, a good separation can be found already around PT ≃ 5 GeV, which is also far away from the TMD
378
+ region.
379
+ Before concluding the analysis of λ at large cm energies, a comment on the contributions from different partonic
380
+ channels and/or different NRQCD waves can be useful. Concerning the z distribution, we find that the main con-
381
+ tribution to the numerator of λ comes from the (gluon) CS wave, while the differences among NRQCD predictions,
382
+ especially around z → 0.9, are due to the gluon P-wave, modulated by the corresponding LDME parameter. For the
383
+ PT distribution we find, similarly, that the CS term is on the whole the most relevant contribution, followed again by
384
+ the gluon P-wave one. In particular at PT → 1 GeV the size of the gluon P-wave contribution becomes comparable
385
+ to (or even larger than) the CS one; moreover, since the low-PT region dominates the integration over PT , one can
386
+ also understand why the gluon P-wave is so relevant in our estimates vs. z, with the most visible effects for z → 0.9.
387
+ At medium PT values the quark P-wave starts becoming important and at even higher PT values it is similar in
388
+ size to the gluon one; this means that in this region, the full P-wave contribution (gluon+quark) dominates over the
389
+ CS one.
390
+ Another interesting possibility given by the future EIC facility is the corresponding analysis at smaller energies:
391
+ in the following we will adopt √s = 45 GeV. In this case, different integration ranges have been considered for W
392
+ and Q2, as reported in the legend box of Fig. 2. These, in turn, correspond to 10−3 ≲ xB ≲ 0.5 (with an effective
393
+
394
+ 6
395
+ 0.25
396
+ 0.00
397
+ 0.25
398
+ 0.50
399
+ 0.75
400
+ 1.00
401
+ Gottfried-Jackson
402
+ 0.2
403
+ 0.0
404
+ 0.2
405
+ 0.4
406
+ 0.2
407
+ 0.4
408
+ 0.6
409
+ 0.8
410
+ z
411
+ 0.25
412
+ 0.00
413
+ 0.25
414
+ 0.50
415
+ 0.75
416
+ 1.00
417
+ Helicity
418
+ s = 45 GeV
419
+ 2.5 GeV2 < Q2 < 100 GeV2
420
+ 10 GeV < W < 40 GeV
421
+ 0.2 < z < 0.9 or PT > 1 GeV
422
+ 2
423
+ 4
424
+ 6
425
+ 8
426
+ 10
427
+ PT [GeV]
428
+ 0.2
429
+ 0.0
430
+ 0.2
431
+ 0.4
432
+ CSM
433
+ NRQCD (C12)
434
+ NRQCD (BK11)
435
+ NRQCD (G13)
436
+ Figure 2.
437
+ Estimates for λ at cm energy √s = 45 GeV. The integration region, different with respect to the higher-energy case,
438
+ is given in the red legend box, while curves and panels have the same meaning as in Fig. 1. The scale error bands are sizable
439
+ and explicitly shown only for the CSM prediction as a function of PT .
440
+ upper limit around xB ≃ 0.2) and y ≲ 0.8, a more valence-like region w.r.t. the previous case. Moreover, since at
441
+ lower energies it is more difficult to reach high photon virtualities, we get contributions mostly from moderately low
442
+ Q2. Consistently we adopt a lower limit, Qmin ≃ 1.6 GeV, in the integration. Notice that in this kinematic region, at
443
+ least for the high PT dependence of λ within the CSM, the scale error bands are once again sizeable enough.
444
+ From Fig. 2 (left panels) we can see that the z distribution does not depend significantly on the energy for z ≤ 0.6,
445
+ while at higher z values the estimates are closer to zero, at variance with those at higher cm energy. As said, a
446
+ polarization study pushed up to this regime can suffer from factorization breaking effects in NRQCD even if data in
447
+ this region could be relevant from the phenomenological point of view. We also observe a rapid variation of all curves
448
+ in the Helicity frame at z ∼ 0.1. This is due to geometrical factors which are energy dependent (see also Eq. (A16)
449
+ of Ref. [25]). The same variation is also present at higher cm energy, but for z < 0.1 (outside the range shown in the
450
+ lower-left panel of Fig. 1).
451
+ Concerning the PT dependence, Fig. 2 (right panels), we notice that the CSM results are very different with respect
452
+ to the corresponding ones in Fig. 1, while the same is not true for the NRQCD cases. This is related to the different
453
+ virtualities explored, on which the CSM estimates depend heavily. This difference can be considered as an extra tool
454
+ in the quest of discerning among different frameworks.
455
+ Finally, we briefly comment on how the parton and/or wave contributions vary with the energy.
456
+ While the z
457
+ distribution manifests almost no energy dependence, the PT spectrum presents interesting features in the two frames
458
+ considered. For the Gottfried-Jackson one the relative contribution from the quark P-wave is widely increased at this
459
+ lower energy, making it the leading term in the numerator at medium/high PT . Regarding the Helicity frame the
460
+ situation is, potentially, even more interesting, since the CSM and P-wave (both gluon and quark) contributions are
461
+ highly suppressed at this energy, especially at large PT . The main role is then played by the 3S(8)
462
+ 1
463
+ quark wave, which
464
+ is responsible for the difference among the predictions based on the LDME sets considered. Even if in this region it
465
+ is quite hard to expect precise enough data to discriminate between models, it is nevertheless worth stressing that it
466
+ could be very useful in constraining the nonperturbative physics.
467
+
468
+ 7
469
+ 0.8
470
+ 0.6
471
+ 0.4
472
+ 0.2
473
+ 0.0
474
+ 0.2
475
+ Gottfried-Jackson
476
+ 0.75
477
+ 0.50
478
+ 0.25
479
+ 0.00
480
+ 0.25
481
+ 0.50
482
+ 0.2
483
+ 0.4
484
+ 0.6
485
+ 0.8
486
+ z
487
+ 0.8
488
+ 0.6
489
+ 0.4
490
+ 0.2
491
+ 0.0
492
+ 0.2
493
+ Helicity
494
+ s = 140 GeV
495
+ 9 GeV2 < Q2 < 100 GeV2
496
+ 20 GeV < W < 100 GeV
497
+ 0.2 < z < 0.9 or PT > 1 GeV
498
+ 2
499
+ 4
500
+ 6
501
+ 8
502
+ 10
503
+ PT [GeV]
504
+ 0.75
505
+ 0.50
506
+ 0.25
507
+ 0.00
508
+ 0.25
509
+ 0.50
510
+ CSM
511
+ NRQCD (C12)
512
+ NRQCD (BK11)
513
+ NRQCD (G13)
514
+ Figure 3. Estimates for the parameter µ at √s = 140 GeV. Paneling order is the same as in Fig. 1. Integration ranges are
515
+ given in the blue legend box.
516
+ B.
517
+ The µ parameter
518
+ Estimates for the µ parameter are again provided both in the Gottfried-Jackson and in the Helicity frames, as a
519
+ function of z and PT at √s = 140 GeV, Fig. 3, and √s = 45 GeV, Fig. 4.
520
+ From these figures we see that the Gottfried-Jackson frame is the best choice to discern among the CSM and
521
+ NRQCD approach. A similar conclusion holds for the parameter ν as well, see the discussion in Sec. III C. Indeed,
522
+ in Fig. 3 the separation between the CSM estimates and the corresponding NRQCD ones are remarkably sizeable for
523
+ z ≳ 0.5 and PT ≳ 5 GeV. On the contrary, estimates in the Helicity frame both with respect to z and PT are so close
524
+ to each other that one cannot draw any conclusion.
525
+ The wave/parton decomposition of the W∆ helicity function, that is directly related to the µ numerator, allows us
526
+ to get some further insights. The main CO contribution comes from the P-wave term. In particular, differences in
527
+ NRQCD predictions as a function of z (left panels of Fig. 3) are driven by the gluon P-wave LDMEs. Moreover, the
528
+ gluon P-wave dominates the numerator behavior with respect to PT too (right panels of Fig. 3). In addition, we find
529
+ that the NRQCD predictions in the Gottfried-Jackson frame receive a significant contribution from the gluon P-wave
530
+ also at low-PT , namely PT ≲ 3 GeV. At variance with the behavior in z, here the quark P-wave channel is relevant
531
+ at high PT , especially when considering the Helicity frame.
532
+ Moving to the lower cm energy, we see that the CSM µ estimates in the Gottfried-Jackson frame, Fig. 4 (upper
533
+ panels), vary significantly for z ≳ 0.5 and PT ≳ 5 GeV, as compared with what happens at √s = 140 GeV. We
534
+ remark that this variation can also appear via a proper Q-binning in the higher cm energy case (√s = 140 GeV).
535
+ In contrast, estimates within the Helicity frame at lower energies (lower panels of Fig. 4) do not present the same
536
+ energy/Q-binning dependence. The only remarkable exception resides in the PT distribution, where CSM predictions
537
+ increase up to ∼ 40%, to be compared with the √s = 140 GeV case where the CSM result is at most ∼ 25%. Despite
538
+ this, µ estimates in the Helicity frame do not differ enough to discern among different models.
539
+ Looking at the wave/parton decomposition, we confirm that also for the µ numerator the role of quarks is enhanced
540
+ at lower energies. This is particularly true for the PT dependence. Here we find that NRQCD predictions at the
541
+ higher PT values, namely PT ≳ 6 GeV, are mostly driven by the quark P-wave; moreover, in the same PT region we
542
+ observe that the 3S[8]
543
+ 1
544
+ quark wave is non-negligible.
545
+
546
+ 8
547
+ 0.75
548
+ 0.50
549
+ 0.25
550
+ 0.00
551
+ 0.25
552
+ 0.50
553
+ Gottfried-Jackson
554
+ 0.6
555
+ 0.4
556
+ 0.2
557
+ 0.0
558
+ 0.2
559
+ 0.4
560
+ 0.2
561
+ 0.4
562
+ 0.6
563
+ 0.8
564
+ z
565
+ 0.75
566
+ 0.50
567
+ 0.25
568
+ 0.00
569
+ 0.25
570
+ 0.50
571
+ Helicity
572
+ s = 45 GeV
573
+ 2.5 GeV2 < Q2 < 100 GeV2
574
+ 10 GeV < W < 40 GeV
575
+ 0.2 < z < 0.9 or PT > 1 GeV
576
+ 2
577
+ 4
578
+ 6
579
+ 8
580
+ 10
581
+ PT [GeV]
582
+ 0.6
583
+ 0.4
584
+ 0.2
585
+ 0.0
586
+ 0.2
587
+ 0.4
588
+ CSM
589
+ NRQCD (C12)
590
+ NRQCD (BK11)
591
+ NRQCD (G13)
592
+ Figure 4. Estimates for the parameter µ at √s = 45 GeV. Paneling order is the same as in Fig. 1. Integration ranges are given
593
+ in the red legend box.
594
+ C.
595
+ The ν parameter
596
+ We now discuss the parameter ν, which is particularly important in the TMD framework, since it is directly related
597
+ to the TMD distribution of linearly polarized gluons inside an unpolarized proton, h⊥g
598
+ 1 . This could play a role in the
599
+ region of moderately low PT , where the two factorization schemes overlap.
600
+ Again, we focus initially on the higher cm energy (√s = 140 GeV), Fig. 5, and then we describe the main differences
601
+ with respect to the smaller cm energy (√s = 45 GeV), Fig. 6.
602
+ Starting from the z-dependent distribution in Fig. 5 (left panels), we see once again that even if the estimated
603
+ ν values are potentially sizeable, at least in the Helicity frame, the separation among the different approaches is in
604
+ general very poor. Nevertheless, it is worth remarking that at high z we find more sensitivity to the LDME sets in
605
+ the NRQCD framework. The situation is slightly different for the PT case (right panels): if the Helicity frame does
606
+ not show a promising scenario, in the Gottfried-Jackson case the differences in the medium/high-PT region between
607
+ the two approaches are sizeable.
608
+ As said, results at high z and/or small PT are in general promising for future analyses regarding the h⊥g
609
+ 1
610
+ gluon
611
+ distribution in the TMD region. Nevertheless, it is important to remark that for the ν parameter the shape functions
612
+ and their TMD extensions enter, potentially, in a different way in the numerator and the denominator, and their role
613
+ could be important. This requires further investigation, together with a full higher-order description in αs, which is
614
+ not available at present.
615
+ It is once again interesting to look into the parton and wave decomposition. The z-dependent W∆∆ is dominated,
616
+ for almost all z values, by the CS wave; only for z → 0.9 the CS contribution becomes negligible, and the results
617
+ are driven by the CO P-wave, in particular by the gluon term. Moving to the PT dependence, we find again some
618
+ similarities with the λ case: the CS term is the relevant contribution to the numerator over the whole PT spectrum,
619
+ together with the gluon P-wave. At variance with the λ parameter case, the quark contribution to the P-wave term
620
+ starts becoming important already at small-PT values.
621
+ Moving to the lower cm energy, from Fig. 6 we see that the z distribution is sensitive to the energy change in the
622
+ whole spectrum, at variance with the λ case. The differences, particularly noticeable in the Gottfried-Jackson frame,
623
+ are mostly in size and not in the general behavior, implying that even in this case it would be difficult to extract any
624
+ information. Again, we remark that the rapid variation of ν estimates at low-z values is due to a geometrical factor
625
+ (Eq. (A16) of Ref. [25]). The PT -dependent distributions, instead, have a quite different behavior for the two frames
626
+
627
+ 9
628
+ 0.2
629
+ 0.0
630
+ 0.2
631
+ 0.4
632
+ Gottfried-Jackson
633
+ s = 140 GeV
634
+ 9 GeV2 < Q2 < 100 GeV2
635
+ 20 GeV < W < 100 GeV
636
+ 0.2 < z < 0.9 or PT > 1 GeV
637
+ 0.6
638
+ 0.4
639
+ 0.2
640
+ 0.0
641
+ 0.2
642
+ 0.2
643
+ 0.4
644
+ 0.6
645
+ 0.8
646
+ z
647
+ 0.2
648
+ 0.0
649
+ 0.2
650
+ 0.4
651
+ Helicity
652
+ 2
653
+ 4
654
+ 6
655
+ 8
656
+ 10
657
+ PT [GeV]
658
+ 0.6
659
+ 0.4
660
+ 0.2
661
+ 0.0
662
+ 0.2
663
+ CSM
664
+ NRQCD (C12)
665
+ NRQCD (BK11)
666
+ NRQCD (G13)
667
+ Figure 5. Estimates for the parameter ν at √s = 140 GeV. Paneling order is the same as in Fig. 1. Integration ranges are
668
+ given in the blue legend box.
669
+ displayed. The Gottfried-Jackson estimates vary significantly in size, especially if one considers the CSM; moreover all
670
+ the LDME sets give similar predictions, compatible with zero, for PT > 5 GeV, while predictions, in both approaches,
671
+ are sizeable (up to ∼ 20%) at low-PT values. This could be very promising for further extensions to the TMD region.
672
+ The curves in the Helicity frame, instead, do not show the same dependence on the energy. In general, we conclude
673
+ that the study of the ν parameter, at least in this frame, is not very effective. Nevertheless it becomes more interesting
674
+ when its information is combined with other parameters, as done in the study of the invariant quantities in the next
675
+ section, Sec. IV.
676
+ Concerning the wave decomposition, we find that both quark and gluon P-wave contributions to the PT and z
677
+ distributions are enhanced at lower energies, even if for the latter this is true only at large z values. Notice that
678
+ the different (larger) size of the ν parameter at z → 0.9 could also affect the TMD region, increasing the possibility
679
+ of extracting information on the linearly polarized gluon distribution.
680
+ The main source of this enhancement at
681
+ √s = 45 GeV is related once again to the lower photon virtualities explored. In this sense, very similar predictions
682
+ might be expected at higher cm energy via a binned analysis with 1.6 GeV < Q < Mψ.
683
+ IV.
684
+ ROTATIONAL INVARIANTS
685
+ The polarization parameters λ, µ and ν, as widely discussed in the previous sections, are frame dependent by
686
+ definition, since they are expressed with respect to the solid angle Ω spanned by the l+ particle in the J/ψ decay and
687
+ in its rest frame. As already pointed out, the frame choice is not unique and the results appear different from frame
688
+ to frame. On the other hand, the relations among the most used reference frames are computable, since they differ
689
+ only in the Z-axis direction.
690
+ A complementary and powerful tool to study J/ψ polarization, both from the experimental and the phenomeno-
691
+ logical points of view, is the use of rotational invariant parameters, that are rest-frame independent by construction.
692
+ These can be defined taking into account what follows.
693
+ For all the most common choices, the Z- and X-axes, lying in the J/ψ production plane, are defined in terms of
694
+ physical momenta in the quarkonium rest frame (see Appendix A of Ref. [25]), with the Y -axis always perpendicular
695
+ with respect to this plane and always pointing in the same direction. This implies that two frames (F, F ′) can be
696
+ connected by a simple rotation of an angle ψ around the Y -axis, and the corresponding polarization parameters can
697
+
698
+ 10
699
+ 0.1
700
+ 0.0
701
+ 0.1
702
+ 0.2
703
+ 0.3
704
+ 0.4
705
+ 0.5
706
+ Gottfried-Jackson
707
+ s = 45 GeV
708
+ 2.5 GeV2 < Q2 < 100 GeV2
709
+ 10 GeV < W < 40 GeV
710
+ 0.2 < z < 0.9 or PT > 1 GeV
711
+ 0.2
712
+ 0.1
713
+ 0.0
714
+ 0.1
715
+ 0.2
716
+ 0.3
717
+ 0.4
718
+ CSM
719
+ NRQCD (C12)
720
+ NRQCD (BK11)
721
+ NRQCD (G13)
722
+ 0.2
723
+ 0.4
724
+ 0.6
725
+ 0.8
726
+ z
727
+ 0.1
728
+ 0.0
729
+ 0.1
730
+ 0.2
731
+ 0.3
732
+ 0.4
733
+ 0.5
734
+ Helicity
735
+ 2
736
+ 4
737
+ 6
738
+ 8
739
+ 10
740
+ PT [GeV]
741
+ 0.2
742
+ 0.1
743
+ 0.0
744
+ 0.1
745
+ 0.2
746
+ 0.3
747
+ 0.4
748
+ Figure 6. Estimates for the parameter ν at √s = 45 GeV. Paneling order is the same as in Fig. 1. Integration ranges are given
749
+ in the red legend box.
750
+ be directly related as1
751
+
752
+
753
+ λ
754
+ µ
755
+ ν
756
+
757
+
758
+ F ′
759
+ =
760
+ 1
761
+ 1 + ρ
762
+
763
+
764
+ 1 − 3
765
+ 2 sin2 ψ
766
+ 3
767
+ 2 sin 2ψ
768
+ 3
769
+ 4 sin2 ψ
770
+ − 1
771
+ 2 sin 2ψ
772
+ cos 2ψ
773
+ 1
774
+ 4 sin 2ψ
775
+ sin2 ψ
776
+ − sin 2ψ 1 − 1
777
+ 2 sin2 ψ
778
+
779
+
780
+
781
+
782
+ λ
783
+ µ
784
+ ν
785
+
786
+
787
+ F
788
+ ,
789
+ (13)
790
+ with
791
+ ρ = sin2 ψ
792
+ 2
793
+
794
+ λF − νF
795
+ 2
796
+
797
+ − sin 2ψ µF
798
+ 2 ,
799
+ (14)
800
+ as given in Eqs. (A.18) and (A.19) of Ref. [25], where we have changed the rotation angle from θ to ψ to avoid any
801
+ confusion with the polar angle of the final lepton l+. Notice that the quantity ρ depends on the kinematics, since the
802
+ rotation angle itself depends on the partonic Mandelstam variables (see Eqs. (A.14)-(A.16) of Ref. [25] for details).
803
+ From Eq. (13), one can construct several quantities which do not change upon rotation around the Y direction.
804
+ The following relations are extremely useful in this respect:
805
+ 3 + λF ′ =
806
+ 1
807
+ 1 + ρ (3 + λF ) ,
808
+ 1 − νF ′
809
+ 2
810
+ =
811
+ 1
812
+ 1 + ρ
813
+
814
+ 1 − νF
815
+ 2
816
+
817
+ .
818
+ (15)
819
+ A group of rotational invariants, as initially proposed in Ref. [36], can be defined in terms of two polarization
820
+ parameters, namely λ and ν,
821
+ F(ci) = c0(3 + λ) + c1(1 − ν/2)
822
+ c2(3 + λ) + c3(1 − ν/2) ,
823
+ (16)
824
+ where ci are suitable free constants.
825
+ 1 Here µF stands for the µ parameter in a specific frame F, not to be confused with the factorization scale µF defined in the previous
826
+ sections.
827
+
828
+ 11
829
+ 0.20
830
+ 0.25
831
+ 0.30
832
+ 0.35
833
+ 0.40
834
+ 0.45
835
+ 0.50
836
+ s = 140 GeV
837
+ s = 140 GeV
838
+ 9 GeV2 < Q2 < 100 GeV2
839
+ 20 GeV < W < 100 GeV
840
+ 0.2 < z < 0.9 or PT > 1 GeV
841
+ 0.25
842
+ 0.30
843
+ 0.35
844
+ 0.40
845
+ 0.2
846
+ 0.4
847
+ 0.6
848
+ 0.8
849
+ z
850
+ 0.20
851
+ 0.25
852
+ 0.30
853
+ 0.35
854
+ 0.40
855
+ 0.45
856
+ 0.50
857
+ s = 45 GeV
858
+ CSM
859
+ NRQCD (C12)
860
+ NRQCD (BK11)
861
+ NRQCD (G13)
862
+ 2
863
+ 4
864
+ 6
865
+ 8
866
+ 10
867
+ PT [GeV]
868
+ 0.25
869
+ 0.30
870
+ 0.35
871
+ 0.40
872
+ s = 45 GeV
873
+ 2.5 GeV2 < Q2 < 100 GeV2
874
+ 10 GeV < W < 40 GeV
875
+ 0.2 < z < 0.9 or PT > 1 GeV
876
+ Figure 7. Estimates for the invariant F, Eq. (17), as a function of z (left panels) and PT (right panels) at two cm energies,
877
+ √s = 140 GeV (upper panels) and √s = 45 GeV (lower panels), for different approaches and LDME sets. Kinematic ranges
878
+ are given in the legend boxes.
879
+ Among all possible combinations, two of them play an important role and have received special attention [37–41]
880
+ F ≡ F(1,−2,1,0) = 1 + λ + ν
881
+ 3 + λ
882
+ (17)
883
+ and
884
+ ˜λ ≡ F(1,−3,0,1) = 2 λ + 3 ν
885
+ 2 − ν
886
+ .
887
+ (18)
888
+ These invariants have been widely studied in pp and heavy-ion processes [42, 43].
889
+ It is worth noticing that both invariants can be similarly defined for Drell-Yan processes, where they acquire a
890
+ constant value if the Lam-Tung relation (1 − λ = 2ν) holds [26]: FDY = 1/2 and ˜λDY = +1, as pointed out in
891
+ Refs. [38, 41].
892
+ Another interesting feature is that ˜λ = +1(−1) is related to a natural transverse (longitudinal)
893
+ polarization [36]. It is important to stress that the constant behavior is purely dynamical, and in particular for the
894
+ Drell-Yan case is a consequence of rotational invariance and helicity conservation [44]. Since J/ψ couples differently
895
+ in SIDIS processes, the Lam-Tung relation is expected to be broken in this case.
896
+ Not all the invariants belong to the previous family. Indeed, one can exploit another relation that involves all
897
+ polarization parameters in two frames and that, upon rotation around the Y -axis, reads
898
+ (λF ′ − νF ′/2)2 + 4µ2
899
+ F ′ = (λF − νF /2)2 + 4µ2
900
+ F
901
+ (1 + ρ)2
902
+ .
903
+ (19)
904
+ From this, one can construct an invariant quantity involving the polarization parameters squared, as first pointed
905
+ out in Ref. [45]. As an example, we recall
906
+ ˜λ′ = (λ − ν/2)2 + 4µ2
907
+ (3 + λ)2
908
+ ,
909
+ (20)
910
+ as introduced in Ref. [41].
911
+
912
+ 12
913
+ The study of rotational invariants has not only a theoretical interest, but it is relevant also from the experimental
914
+ point of view, since their expected equality among different frames is an important check of experimental acceptances
915
+ and systematics as shown, for instance, by the ATLAS Collaboration [46].
916
+ For these reasons, we consider, as a case of study, one of these quantities at the kinematics explored by the EIC.
917
+ In Fig. 7 we show the theoretical estimates in the collinear framework, for the invariant F, Eq. (17), as a function of
918
+ z (left panels) and PT (right panels). Once again we compute this quantity at two energies, √s = 140 GeV (upper
919
+ panels) and √s = 45 GeV (lower panels) for different approaches and LDME sets.
920
+ From Fig. 7 we clearly see that F is not equal to 1/2, as expected from the Lam-Tung relation. Moreover, it is
921
+ neither a constant, since its value depends on both z and PT variables. In principle, for some LDME sets a constant
922
+ behavior could accidentally appear, but this would be limited to a specific kinematic region.
923
+ Another interesting remark is that, while the denominator of F is proportional to the unpolarized cross section, its
924
+ numerator is controlled by the relative size of the λ and ν parameters. This can vary significantly, depending on the
925
+ frames and approaches adopted, as discussed in the previous Section.
926
+ From this preliminary study we can conclude that, even if not easily accessible from the experimental point of view,
927
+ these invariant quantities could represent an invaluable tool to learn on the J/ψ polarization mechanism.
928
+ V.
929
+ CONCLUSIONS
930
+ The study of quarkonium polarization, interesting by itself, is also a powerful tool to explore the still challenging
931
+ issue of its formation mechanism within QCD. In this spirit, we have presented a phenomenological analysis of J/ψ
932
+ polarization in SIDIS at large PT .
933
+ More specifically, we have looked at the dilepton angular distribution in the
934
+ J/ψ → ℓ+ℓ− decay in terms of the associated polarization parameters, that could be accessed at the future EIC. By
935
+ exploiting the theoretical results of Ref. [25], we have computed the parameters, λ, µ and ν, in different frames, trying
936
+ to emphasize whether one can use these observables to discriminate among two well consolidated frameworks, still
937
+ under investigation: the Color Singlet Model and the NRQCD approach. Moreover, for the latter we have employed
938
+ three different LDME sets, based on different extractions and assumptions, highlighting their impact on quarkonium
939
+ polarization estimates.
940
+ We have shown results both as a function of z and PT , adopting two quite different cm energies, for standard
941
+ kinematics at the EIC, together with a detailed analysis in terms of parton and NRQCD wave contributions.
942
+ The main findings of our study can be summarized as follows: i) concerning the λ parameter, the large-z region,
943
+ both in the Gottfried-Jackson and the Helicity frame, turns out to be very promising, with the only caveat of possible
944
+ contributions from (TMD) shape functions (even if expected to be reduced being λ a ratio of helicity structure
945
+ functions); similarly its PT distribution, at medium-large values, could be an ideal ground to disentangle the formation
946
+ mechanisms, both at high and low energies. ii) The µ parameter displays some interesting features when studied in
947
+ the Gottfried-Jackson frame, namely: a clear separation among the estimates in different frameworks at medium-large
948
+ z or as a function of PT in the high-energy set-up; a different behavior with respect to the corresponding lower-energy
949
+ estimates at medium-large z or at moderate PT . Moreover, in the Helicity frame at low energies one could extract
950
+ important information by looking in the large PT region. iii) Similarly, for the ν parameter, relevant also in the
951
+ context of the TMD framework, medium-large PT values in the Gottfried-Jackson frame are certainly worth to be
952
+ explored.
953
+ Finally, we have discussed a selection of frame-independent (rotational invariant) polarization parameters, relevant
954
+ not only from the theory point of view, but extremely useful as an important check of experimental acceptances and
955
+ systematics. In particular, we have focused on the invariant F, controlled by the relative weight of the λ and ν
956
+ parameters, that strongly depend on the frames and frameworks adopted. As shown, this observable could clearly
957
+ help in getting information on the J/ψ formation mechanism, both at large z (high- and low-energy set-ups) and as
958
+ a function of PT (at large energy).
959
+ We can certainly conclude that a study of the dilepton angular distribution in J/ψ decay in SIDIS at the EIC could
960
+ be an invaluable tool to shed light on the J/ψ polarization as well as on its formation mechanism.
961
+ ACKNOWLEDGMENTS
962
+ We thank P. Faccioli, T. Stebel and R. Venugopalan for clarifying some aspects concerning the rotational invariants.
963
+ This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
964
+ grant agreement STRONG 2020—No 824093. U.D. and C.P. also acknowledge financial support by Fondazione di
965
+ Sardegna under the project “Proton tomography at the LHC”, project number F72F20000220007 (University of
966
+
967
+ 13
968
+ Cagliari).
969
+ [1] E598 Collaboration, J. J. Aubert et al., “Experimental Observation of a Heavy Particle J,” Phys. Rev. Lett. 33 (1974)
970
+ 1404–1406.
971
+ [2] SLAC-SP-017 Collaboration, J. E. Augustin et al., “Discovery of a Narrow Resonance in e+e− Annihilation,” Phys.
972
+ Rev. Lett. 33 (1974) 1406–1408.
973
+ [3] R. Baier and R. Ruckl, “Hadronic collisions: A quarkonium factory,” Z. Phys. C 19 (1983) 251.
974
+ [4] G. T. Bodwin, E. Braaten, and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy
975
+ quarkonium,” Phys. Rev. D 51 (1995) 1125–1171, arXiv:hep-ph/9407339. [Erratum: Phys.Rev.D 55, 5853 (1997)].
976
+ [5] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, “NRQCD factorization and the velocity dependence of NNLO poles in
977
+ heavy quarkonium production,” Phys. Rev. D 74 (2006) 074007, arXiv:hep-ph/0608066.
978
+ [6] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K. Hornbostel, “Improved nonrelativistic QCD for heavy-quark
979
+ physics,” Phys. Rev. D 46 (1992) 4052–4067, arXiv:hep-lat/9205007.
980
+ [7] M. Butenschoen and B. A. Kniehl, “Reconciling J/ψ production at HERA, RHIC, Tevatron, and LHC with NRQCD
981
+ factorization at next-to-leading order,” Phys. Rev. Lett. 106 (2011) 022003, arXiv:1009.5662 [hep-ph].
982
+ [8] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J. Zhang, “J/ψ Polarization at Hadron Colliders in Nonrelativistic
983
+ QCD,” Phys. Rev. Lett. 108 (2012) 242004, arXiv:1201.2675 [hep-ph].
984
+ [9] R. Sharma and I. Vitev, “High transverse momentum quarkonium production and dissociation in heavy ion collisions,”
985
+ Phys. Rev. C 87 no. 4, (2013) 044905, arXiv:1203.0329 [hep-ph].
986
+ [10] G. T. Bodwin, H. S. Chung, U.-R. Kim, and J. Lee, “Fragmentation contributions to J/ψ production at the Tevatron
987
+ and the LHC,” Phys. Rev. Lett. 113 no. 2, (2014) 022001, arXiv:1403.3612 [hep-ph].
988
+ [11] H.-F. Zhang, Z. Sun, W.-L. Sang, and R. Li, “Impact of ηc hadroproduction data on charmonium production and
989
+ polarization within the NRQCD framework,” Phys. Rev. Lett. 114 no. 9, (2015) 092006, arXiv:1412.0508 [hep-ph].
990
+ [12] N. Brambilla et al., “Heavy Quarkonium: Progress, Puzzles, and Opportunities,” Eur. Phys. J. C 71 (2011) 1534,
991
+ arXiv:1010.5827 [hep-ph].
992
+ [13] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion
993
+ collisions,” Eur. Phys. J. C 76 no. 3, (2016) 107, arXiv:1506.03981 [nucl-ex].
994
+ [14] J.-P. Lansberg, “New observables in inclusive production of quarkonia,” Phys. Rept. 889 (2020) 1–106,
995
+ arXiv:1903.09185 [hep-ph].
996
+ [15] H.-F. Zhang, W.-L. Sang, and Y.-P. Yan, “Statistical analysis of the azimuthal asymmetry in the J/ψ leptoproduction in
997
+ unpolarized ep collisions,” JHEP 10 (2019) 234, arXiv:1908.02521 [hep-ph].
998
+ [16] J.-W. Qiu, X.-P. Wang, and H. Xing, “Exploring J/ψ Production Mechanism at the Future Electron-Ion Collider,” Chin.
999
+ Phys. Lett. 38 no. 4, (2021) 041201, arXiv:2005.10832 [hep-ph].
1000
+ [17] D. Boer, C. Pisano, and P. Taels, “Extracting color octet NRQCD matrix elements from J/ψ production at the EIC,”
1001
+ Phys. Rev. D 103 no. 7, (2021) 074012, arXiv:2102.00003 [hep-ph].
1002
+ [18] R. Abdul Khalek et al., “Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow
1003
+ Report,” Nucl. Phys. A 1026 (2022) 122447, arXiv:2103.05419 [physics.ins-det].
1004
+ [19] A. Accardi et al., “Electron Ion Collider: The next QCD frontier - Understanding the glue that binds us all,” Eur. Phys.
1005
+ J. A 52 no. 9, (2016) 268, arXiv:1212.1701 [nucl-ex].
1006
+ [20] D. Boer et al., “Gluons and the quark sea at high energies: Distributions, polarization, tomography,” arXiv:1108.1713
1007
+ [nucl-th].
1008
+ [21] H1 Collaboration, C. Adloff et al., “Inelastic leptoproduction of J/ψ mesons at HERA,” Eur. Phys. J. C 25 (2002)
1009
+ 41–53, arXiv:hep-ex/0205065.
1010
+ [22] S. Fleming and T. Mehen, “Leptoproduction of J/ψ,” Phys. Rev. D 57 (1998) 1846–1857, arXiv:hep-ph/9707365.
1011
+ [23] F. Yuan and K.-T. Chao, “Polarized J/ψ production in deep inelastic scattering at DESY HERA,” Phys. Rev. D 63
1012
+ (2001) 034017, arXiv:hep-ph/0008301. [Erratum: Phys.Rev.D 66, 079902 (2002)].
1013
+ [24] Z. Sun and H.-F. Zhang, “QCD corrections to the color-singlet J/ψ production in deeply inelastic scattering at HERA,”
1014
+ Phys. Rev. D 96 no. 9, (2017) 091502, arXiv:1705.05337 [hep-ph].
1015
+ [25] U. D’Alesio, L. Maxia, F. Murgia, C. Pisano, and S. Rajesh, “J/ψ polarization in semi-inclusive DIS at low and high
1016
+ transverse momentum,” JHEP 03 (2022) 037, arXiv:2110.07529 [hep-ph].
1017
+ [26] C. S. Lam and W.-K. Tung, “Systematic approach to inclusive lepton pair production in hadronic collisions,” Phys. Rev.
1018
+ D 18 (1978) 2447.
1019
+ [27] M. Beneke, M. Kramer, and M. Vanttinen, “Inelastic photoproduction of polarized J/ψ,” Phys. Rev. D 57 (1998)
1020
+ 4258–4274, arXiv:hep-ph/9709376.
1021
+ [28] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, “Polarization for Prompt J/ψ and ψ(2s) Production at the Tevatron
1022
+ and LHC,” Phys. Rev. Lett. 110 no. 4, (2013) 042002, arXiv:1205.6682 [hep-ph].
1023
+ [29] M. Butenschoen and B. A. Kniehl, “World data of J/ψ production consolidate NRQCD factorization at next-to-leading
1024
+ order,” Phys. Rev. D 84 (2011) 051501, arXiv:1105.0820 [hep-ph].
1025
+ [30] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky, and W. K. Tung, “New generation of parton
1026
+ distributions with uncertainties from global QCD analysis,” JHEP 07 (2002) 012, arXiv:hep-ph/0201195.
1027
+
1028
+ 14
1029
+ [31] M. Beneke, G. A. Schuler, and S. Wolf, “Quarkonium momentum distributions in photoproduction and B decay,” Phys.
1030
+ Rev. D 62 (2000) 034004, arXiv:hep-ph/0001062.
1031
+ [32] M. Beneke, I. Z. Rothstein, and M. B. Wise, “Kinematic enhancement of non-perturbative corrections to quarkonium
1032
+ production,” Phys. Lett. B 408 (1997) 373–380, arXiv:hep-ph/9705286.
1033
+ [33] M. G. Echevarria, “Proper TMD factorization for quarkonia production: pp → ηc,b as a study case,” JHEP 10 (2019)
1034
+ 144, arXiv:1907.06494 [hep-ph].
1035
+ [34] S. Fleming, Y. Makris, and T. Mehen, “An effective field theory approach to quarkonium at small transverse
1036
+ momentum,” JHEP 04 (2020) 122, arXiv:1910.03586 [hep-ph].
1037
+ [35] D. Boer, U. D’Alesio, F. Murgia, C. Pisano, and P. Taels, “J/ψ meson production in SIDIS: matching high and low
1038
+ transverse momentum,” JHEP 09 (2020) 040, arXiv:2004.06740 [hep-ph].
1039
+ [36] P. Faccioli, C. Lourenco, and J. Seixas, “New approach to quarkonium polarization studies,” Phys. Rev. D 81 (2010)
1040
+ 111502, arXiv:1005.2855 [hep-ph].
1041
+ [37] P. Faccioli, C. Lourenco, and J. Seixas, “Rotation-invariant relations in vector meson decays into fermion pairs,” Phys.
1042
+ Rev. Lett. 105 (2010) 061601, arXiv:1005.2601 [hep-ph].
1043
+ [38] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, “Towards the experimental clarification of quarkonium
1044
+ polarization,” Eur. Phys. J. C 69 (2010) 657–673, arXiv:1006.2738 [hep-ph].
1045
+ [39] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, “Quarkonium polarization in pp and p-nucleus collisions,” Nucl.
1046
+ Phys. A 855 (2011) 116–124.
1047
+ [40] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, “Quarkonium polarization measurements,” Nucl. Phys. B Proc.
1048
+ Suppl. 214 (2011) 97–102.
1049
+ [41] J.-C. Peng, D. Boer, W.-C. Chang, R. E. McClellan, and O. Teryaev, “On the rotational invariance and non-invariance of
1050
+ lepton angular distributions in Drell–Yan and quarkonium production,” Phys. Lett. B 789 (2019) 356–359,
1051
+ arXiv:1808.04398 [hep-ph].
1052
+ [42] Y.-Q. Ma, T. Stebel, and R. Venugopalan, “J/ψ polarization in the CGC+NRQCD approach,” JHEP 12 (2018) 057,
1053
+ arXiv:1809.03573 [hep-ph].
1054
+ [43] ALICE Collaboration, S. Acharya et al., “Measurement of the inclusive J/ψ polarization at forward rapidity in pp
1055
+ collisions at √s = 8 TeV,” Eur. Phys. J. C 78 no. 7, (2018) 562, arXiv:1805.04374 [hep-ex].
1056
+ [44] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, “Model-independent constraints on the shape parameters of
1057
+ dilepton angular distributions,” Phys. Rev. D 83 (2011) 056008, arXiv:1102.3946 [hep-ph].
1058
+ [45] S. Palestini, “Angular distribution and rotations of frame in vector meson decays into lepton pairs,” Phys. Rev. D 83
1059
+ (2011) 031503, arXiv:1012.2485 [hep-ph].
1060
+ [46] ATLAS Collaboration, G. Aad et al., “Measurement of the differential cross-sections of inclusive, prompt and
1061
+ non-prompt J/ψ production in proton-proton collisions at √s = 7 TeV,” Nucl. Phys. B 850 (2011) 387–444,
1062
+ arXiv:1104.3038 [hep-ex].
1063
+
EtFLT4oBgHgl3EQfFS_K/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtE3T4oBgHgl3EQfVwq1/content/tmp_files/2301.04463v1.pdf.txt ADDED
@@ -0,0 +1,3332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. main
2
+ © ESO 2023
3
+ January 12, 2023
4
+ New members of the Lupus I cloud based on Gaia astrometry
5
+
6
+ Physical and accretion properties from X-Shooter spectra
7
+ F. Z. Majidi1,2, J. M. Alcal´a3, A. Frasca4, S. Desidera2, C. F. Manara5, G. Beccari5, V. D’Orazi2,6, A.
8
+ Bayo5,7, K. Biazzo8, R. Claudi2, E. Covino3, G. Mantovan1,2, M. Montalto4, D. Nardiello2,9, G. Piotto1, and
9
+ E. Rigliaco2
10
+ 1 Dipartimento di Fisica e Astronomia, Universit´a degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova,
11
+ Italy
12
+ 2 INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy
13
+ 3 INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy
14
+ 4 INAF-Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy
15
+ 5 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei M¨unchen, Germany
16
+ 6 Department of Physics, University of Rome Tor Vergata, via della ricerca scientifica 1, 00133, Rome, Italy
17
+ 7 Instituto de F´ısica y Astronom´ıa, Facultad de Ciencias, Universidad de Valpara´ıso, Av. Gran Breta˜na 1111, Valpara´ıso,
18
+ Chile
19
+ 8 INAF - Rome Astronomical Observatory, Via di Frascati, 33, I-00044, Monte Porzio Catone, Italy
20
+ 9 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
21
+ Received
22
+ ABSTRACT
23
+ We characterize twelve young stellar objects (YSOs) located in the Lupus I region, spatially overlapping with the Upper
24
+ Centaurus Lupus (UCL) sub-stellar association. The aim of this study is to understand whether the Lupus I cloud has
25
+ more members than what has been claimed so far in the literature and gain a deeper insight into the global properties
26
+ of the region. We selected our targets using Gaia DR2 catalog, based on their consistent kinematic properties with the
27
+ Lupus I bona fide members. In our sample of twelve YSOs observed by X-Shooter, we identified ten Lupus I members.
28
+ We could not determine the membership status of two of our targets, namely Gaia DR2 6014269268967059840 and
29
+ 2MASS J15361110-3444473 due to technical issues. We found out that four of our targets are accretors, among them
30
+ 2MASS J15551027-3455045, with a mass of ∼0.03 M⊙, is one of the least massive accretors in the Lupus complex to
31
+ date. Several of our targets (including accretors) are formed in-situ and off-cloud with respect to the main filaments of
32
+ Lupus I, hence, our study may hint that there are diffused populations of M-dwarfs around Lupus I main filaments. In
33
+ this context, we would like to emphasize that our kinematic analysis with Gaia catalogs played a key role in identifying
34
+ the new members of the Lupus I cloud.
35
+ Key words. Accretion, Accretion Disks – Stars: activity, atmospheres, chromospheres, low-mass, pre-main sequence
36
+ 1. Introduction
37
+ Observation of young stellar populations in nearby star-
38
+ forming regions and comparison of their properties with
39
+ more massive and distant ones is a key to understanding
40
+ the impact of the environment on the star formation process
41
+ and the properties of protoplanetary disks.
42
+ The Lupus dark cloud complex is one of the main low-
43
+ mass star-forming regions (SFRs) within 200 pc of the Sun.
44
+ It consists of a loosely connected group of dark clouds
45
+ and low-mass pre-main sequence (PMS) stars. The complex
46
+ hosts four active SFRs plus five other looser dark clouds
47
+ with signs of moderate star-formation activity (Comer´on
48
+ 2008). Infrared (IR) and optical surveys (Evans et al. 2009;
49
+ Rygl et al. 2012) have shown that objects in all evolution-
50
+ ary phases, from embedded Class I objects to evolved Class
51
+ III stars, are found majorly concentrated in the Lupus I, II
52
+ and III clouds with Lupus III being the richest in YSOs.
53
+ ⋆ Based on observations collected at the European Southern
54
+ Observatory at Paranal, under program 105.20P9.001
55
+ Different distances to the Lupus stellar sub-groups have
56
+ been claimed in the past from Hipparcos parallaxes and
57
+ extinction star counts (Comer´on 2008), but recent investi-
58
+ gations based on Gaia DR2 showed that the vast majority
59
+ of YSOs in all Lupus clouds are at a distance of ∼160 pc
60
+ (see the Appendix in Alcal´a et al. 2019). Out of the three
61
+ main clouds, Lupus III has been recognized as the most
62
+ massive and active star-forming region in Lupus by far,
63
+ with a great number of young low-mass and very-low mass
64
+ stars (Comer´on 2008), while Lupus I, II and IV represent
65
+ regions of low star-formation activity, with Lupus V and
66
+ VI lacking star-formation (Spezzi et al. 2011; Manara et al.
67
+ 2018).
68
+ In this paper we investigate the Lupus I cloud. This
69
+ cloud has less than thirty bona fide members, which from
70
+ now on we refer to as Lupus I core members. The main
71
+ motivation for selecting this cloud over the others with a
72
+ low star-forming activity was the recent discovery of the
73
+ star GQ Lup C (Alcal´a et al. 2020; Lazzoni et al. 2020),
74
+ which is located on the main filament.
75
+ 1
76
+ arXiv:2301.04463v1 [astro-ph.SR] 11 Jan 2023
77
+
78
+ Majidi et al.: New members of the Lupus I cloud
79
+ This target was specifically selected by our team for
80
+ discovering possible wide companions to SPHERE-GTO
81
+ targets on Gaia DR2 with a high specific interest in the
82
+ presence of planets, brown dwarfs, or spatially resolved cir-
83
+ cumstellar disks (Alcal´a et al. 2020; Majidi et al. 2020). GQ
84
+ Lup C was proved to be a strong accretor that surprisingly
85
+ had escaped detection in previous IR and Hα surveys, sug-
86
+ gesting the possibility that many YSOs in the region are
87
+ yet to be discovered. This discovery hence motivated us to
88
+ conduct a more extended search in Gaia DR2 to select new
89
+ YSO candidates in the same region. In this work, we present
90
+ the spectroscopic characterization of 12 YSOs in the Lupus
91
+ I cloud.
92
+ The outline of this paper is as follows: in Sect. 2, we
93
+ discuss the target selection criteria, as well as compiling
94
+ a complete list of the bona fide Lupus I members, in ad-
95
+ dition to the observation and data reduction methods; in
96
+ Sect. 3, we discuss the data analysis methods employed for
97
+ analyzing the X-Shooter spectra, the membership criteria,
98
+ and accreting objects; in Sect. 4, we discuss the results of
99
+ our analysis; in Sect. 5, we introduce additional qualities of
100
+ our targets in Lupus I, present their spectral energy distri-
101
+ butions (SEDs), and evaluate them as potential wide com-
102
+ panion candidates; and eventually, Sect. 6 will present our
103
+ conclusions.
104
+ 2. Target selection, observations, and data
105
+ reduction
106
+ 2.1. Target selection
107
+ The Gaia astrometric catalog (Gaia Collaboration 2018)
108
+ has been recently used to efficiently identify young clus-
109
+ ters and associations within 1.5 kpc from the Sun (see
110
+ Prisinzano et al. 2022, and references therein). We selected
111
+ our sample of YSO candidates based on a statistical anal-
112
+ ysis using the Gaia DR2 catalog detailed in the following.
113
+ As a first step, we identified the genuine population (core
114
+ members) of Lupus I. These core members were gathered
115
+ from the catalogs existing in the literature (Hughes et al.
116
+ 1994; Mer´ın et al. 2008; Mortier et al. 2011; Galli et al.
117
+ 2013; Alcal´a et al. 2014; Frasca et al. 2017; Benedettini et
118
+ al. 2018; Dzib et al. 2018; Comer´on et al. 2013; Galli et al.
119
+ 2020), and are listed in Table 1. We calculated the member-
120
+ ship probability of these targets to Upper Centaurus Lupus
121
+ (UCL) with BANYAN Σ (Gagn´e et al. 2018) which are also
122
+ quoted in Table 1. It should be noted that the catalog does
123
+ not evaluate the Lupus membership.
124
+ We then extracted the kinematic properties (i.e., par-
125
+ allaxes, ϖ, and proper motions µα∗ and µδ) of these core
126
+ members from Gaia DR2, and constrained a range over
127
+ these parameters (see Appendix B of Alcal´a et al. 2020).
128
+ Using this constrained range, we searched for the objects
129
+ with similar kinematic properties to Lupus I core members
130
+ in Gaia DR2 in a radius of 3 degrees from the center of
131
+ the Lupus I cloud. At this stage, we found 247 objects. We
132
+ placed these objects on a color-magnitude diagram (CMD)
133
+ with Main Sequence (MS) stars (Pecaut & Mamajek 2013)
134
+ and we removed those that were close to the limiting magni-
135
+ tude of Gaia (with photometric errors preventing a reliable
136
+ classification according to their position on CMD) and we
137
+ ended up with 186 targets. For generating this CMD, we
138
+ used G magnitudes and Bp − Rp colors. This sample was
139
+ then restricted to objects with a parallax within 5.5 to 7.5
140
+ mas (140-170 pc), within the < ϖ > ±4·σϖ parallax range
141
+ of Lupus I core members, but we kept both sources lying
142
+ close and far from the main filaments of the Lupus I to
143
+ be inclusive both with the kinematic properties and spatial
144
+ location of the selected targets. We also excluded those ob-
145
+ jects which were too faint for X-Shooter to observe (J > 15
146
+ mag) or older than typical YSOs in Lupus I (inconsistent
147
+ with the Lupus I core members on our generated CMD).
148
+ Taking into account all these constraints, we identi-
149
+ fied 43 candidates as potential members of Lupus I. As
150
+ shown in the CMD in Fig. 1, all of our eventual candidates
151
+ lie above the MS stars identified by Pecaut & Mamajek
152
+ (2013) and possess magnitudes and colors very similar to
153
+ those of Lupus I members. Among these 43 objects, there
154
+ are targets that i) have never been recognized as poten-
155
+ tial members of Lupus I (17 objects), ii) were introduced
156
+ as candidate members of Lupus I according to their con-
157
+ sistent kinematic and/or photometric properties, but need
158
+ spectroscopic confirmation (23 objects), iii) were known as
159
+ members of Lupus I, but were poorly characterized in the
160
+ literature, and, were never observed with X-Shooter (3 ob-
161
+ jects). We chose to include all these categories of objects
162
+ to be followed up by X-Shooter, and the main reason for
163
+ keeping the third category was that with X-Shooter spec-
164
+ troscopy we can determine their radial velocity (RV) and
165
+ projected radial velocity (v sin i), or further explore their
166
+ chromospheric and accretion properties in a more detailed
167
+ fashion than previously done.
168
+ Targets in this category are Sz 70 (Hughes et al. 1994),
169
+ 2MASS J15383733-3422022 (Comer´on et al. 2013), and
170
+ 2MASS J15464664-3210006 (Eisner et al. 2007). Among the
171
+ eight objects selected in Lupus I in the unbiased photomet-
172
+ ric survey by Comer´on et al. (2013, see their Table 2), only
173
+ three were selected by our criteria and are those for which
174
+ these authors provide stellar parameters, qualifying them
175
+ as genuine YSOs. The other five were suspected to be fore-
176
+ ground objects. Indeed, we confirmed that the astrometric
177
+ parameters of the latter are out of range of our selection
178
+ criteria.
179
+ As a final step, we cross-matched our full sample of
180
+ 43 objects with the OmegaCAM Hα survey in Lupus (see
181
+ Beccari et al. 2018, for details of this survey), with only 4
182
+ being recognized as Hα emitters. This confirms that many
183
+ potential YSOs may have escaped detection in Hα imag-
184
+ ing surveys and motivated us to spectroscopically charac-
185
+ terize our full sample, giving a high priority to the four
186
+ OmegaCAM Hα emitters as potentially strong accretors.
187
+ 2.2. Observations
188
+ The observations were done with the X-Shooter spectro-
189
+ graph (Vernet et al. 2011) at the VLT, within a filler pro-
190
+ gram, and terminated at the end of the observing period,
191
+ when only ∼28% of the proposed sample was observed.
192
+ Hence, of the 43 proposed targets, only 12 were eventu-
193
+ ally observed which are fully characterized in this paper,
194
+ and are listed in Table 2. The list of the targets that were
195
+ not observed is reported in Appendix A. These 12 targets
196
+ were selected by ESO staff from the list of our proposed
197
+ 43 targets, and include all of the Hα emitters. Although
198
+ the observed sample is small, all the 12 observed targets
199
+ were confirmed to be YSOs whose physical and chromo-
200
+ spheric/accretion properties are worth to be investigated.
201
+ For two stars the OBs were not validated by ESO observing
202
+ 2
203
+
204
+ Majidi et al.: New members of the Lupus I cloud
205
+ Table 1: Lupus I core members known from the literature (measurement errors are displayed in parenthesis). The column
206
+ under Prob stands for the UCL membership probability percentage of the targets calculated by BANYAN Σ (Gagn´e et
207
+ al. 2018).
208
+ Name
209
+ α (J2000)
210
+ δ (J2000)
211
+ ϖ
212
+ µα∗
213
+ µδ
214
+ RV
215
+ Prob
216
+ age
217
+ (h:m:s)
218
+ (d:m:s)
219
+ (mas)
220
+ (mas/yr)
221
+ (mas/yr)
222
+ (km/s)
223
+ %
224
+ Myr
225
+ RX J1529.7-3628
226
+ 15 29 47.26
227
+ –36 28 37.41
228
+ 6.04(0.09)
229
+ –14.69(0.10)
230
+ –19.66(0.08)
231
+ 0.90(0.27)a
232
+ 98.6
233
+ -
234
+ IRAS 15334-3411
235
+ 15 36 39.92
236
+ –34 21 42.17
237
+ 6.89(0.13)
238
+ –11.80(0.19)
239
+ –19.84(0.12)
240
+ -
241
+ 91.6
242
+ -
243
+ Sz 65/V∗ IK Lup
244
+ 15 39 27.77
245
+ –34 46 17.21
246
+ 6.44(0.05)
247
+ –13.27(0.12)
248
+ –22.24(0.07)
249
+ –2.70(2.00)
250
+ 98.6
251
+ 1.9b
252
+ Sz 66
253
+ 15 39 28.28
254
+ –34 46 18.09
255
+ 6.36(0.09)
256
+ –13.60(0.19)
257
+ –21.56(0.12)
258
+ 2.40(1.80)
259
+ 99.5
260
+ 3.9b
261
+ RX J1539.7-3450A
262
+ 15 39 46.38
263
+ –34 51 02.54
264
+ 6.40(0.04)
265
+ –15.25(0.09)
266
+ –22.33(0.05)
267
+ 7.17(1.28)a
268
+ 99.6
269
+ -
270
+ UCAC4 274-081081
271
+ 15 48 06.26
272
+ –35 15 48.13
273
+ 6.61(0.09)
274
+ –12.12(0.19)
275
+ –22.33(0.13)
276
+ -
277
+ 97.4
278
+ -
279
+ RX J1539.7-3450B
280
+ 15 39 46.37
281
+ –34 51 03.66
282
+ 6.40(0.13)
283
+ –13.52(0.26)
284
+ –20.85(0.13)
285
+ -
286
+ 98.2
287
+ -
288
+ 2MASS J15440096-3531056
289
+ 15 44 00.96
290
+ –35 31 05.72
291
+ 6.45(0.14)
292
+ –11.49(0.26)
293
+ –24.07(0.19)
294
+ -
295
+ 89.3
296
+ -
297
+ AKC2006 18
298
+ 15 41 40.81
299
+ –33 45 18.86
300
+ 6.69(0.35)
301
+ –18.84(0.33)
302
+ –22.06(0.27)
303
+ 9.10(2.30)
304
+ 95.3
305
+ 8.3
306
+ AKC2006 19
307
+ 15 44 57.89
308
+ –34 23 39.36
309
+ 6.54(0.14)
310
+ –18.94(0.089)
311
+ –22.75(0.06)
312
+ 9.60(2.10)
313
+ 97.0
314
+ 8.0
315
+ Sz 68/HT LUP A-B
316
+ 15 45 12.87
317
+ –34 17 30.65
318
+ 6.49(0.06)
319
+ –13.63(0.13)
320
+ –21.60(0.08)
321
+ –4.3(1.8)
322
+ 99.1
323
+ 0.5b
324
+ HT Lup C
325
+ 15 45 12.67
326
+ –34 17 29.37
327
+ 6.55(0.19)
328
+ –15.43(0.22)
329
+ –20.27(0.15)
330
+ 1.2(3.9)d
331
+ 97.8
332
+ -
333
+ Sz 69
334
+ 15 45 17.41
335
+ –34 18 28.29
336
+ 6.47(0.08)
337
+ –15.05(0.15)
338
+ –22.15(0.11)
339
+ 5.40(2.90)
340
+ 99.6
341
+ 2.6b
342
+ 2MASS J15451851-3421246
343
+ 15 45 18.52
344
+ –34 21 24.56
345
+ 6.59(0.18)
346
+ –15.14(0.34)
347
+ –21.77(0.22)
348
+ 4.40(2.90)
349
+ 99.7
350
+ 0.5b
351
+ IRAS 15422-3414
352
+ 15 45 29.78
353
+ –34 23 38.81
354
+ 6.46(0.17)
355
+ –15.25(0.31)
356
+ –22.52(0.24)
357
+ -
358
+ 99.1
359
+ -
360
+ RX J1546.6-3618
361
+ 15 46 41.20
362
+ –36 18 47.44
363
+ 6.69(0.07)
364
+ –17.38(0.12)
365
+ –24.29(0.08)
366
+ 7.20(0.10)c
367
+ 99.8
368
+ -
369
+ Sz 71/GW LUP
370
+ 15 46 44.73
371
+ –34 30 35.68
372
+ 6.41(0.06)
373
+ –14.03(0.10)
374
+ –23.36(0.07)
375
+ –3.30(1.90)
376
+ 99.0
377
+ 2.0b
378
+ Sz 72/HM LUP
379
+ 15 47 50.63
380
+ –35 28 35.40
381
+ 6.41(0.05)
382
+ –14.26(0.09)
383
+ –23.16(0.06)
384
+ 6.90(2.40)
385
+ 99.6
386
+ 2.9b
387
+ Sz 73/THA 15-5
388
+ 15 47 56.94
389
+ –35 14 34.79
390
+ 6.38(0.06)
391
+ –14.20(0.11)
392
+ –22.26(0.07)
393
+ 5.00(2.20)
394
+ 99.7
395
+ 3.7b
396
+ GQ LUP/CD-3510525
397
+ 15 49 12.11
398
+ –35 39 05.05
399
+ 6.59(0.05)
400
+ –14.26(0.09)
401
+ –23.59(0.07)
402
+ –3.60(1.30)
403
+ 99.4
404
+ 0.9b
405
+ Sz 76
406
+ 15 49 30.74
407
+ –35 49 51.42
408
+ 6.27(0.05)
409
+ –12.77(0.11)
410
+ –23.37(0.08)
411
+ 1.40(1.00)
412
+ 99.4
413
+ 2.3b
414
+ Sz 77
415
+ 15 51 46.96
416
+ –35 56 44.11
417
+ 6.46(0.05)
418
+ –12.42(0.09)
419
+ –24.16(0.06)
420
+ 2.40(1.50)
421
+ 99.3
422
+ 3.0b
423
+ RX J1556.0-3655
424
+ 15 56 02.09
425
+ –36 55 28.27
426
+ 6.33(0.04)
427
+ –11.66(0.07)
428
+ –22.50(0.05)
429
+ 2.60(1.20)
430
+ 99.3
431
+ 7.8b
432
+ 2MASS J15443392-3352540d
433
+ 15 44 33.92
434
+ –33 52 54.11
435
+ 7.48(0.24)
436
+ –22.03(0.27)
437
+ –24.92(0.16)
438
+ 0.9(3.8)
439
+ 96.3
440
+ 4.5e
441
+ 2MASS J15392180-3400195d
442
+ 15 39 21.81
443
+ –34 00 19.56
444
+ 6.39(0.19)
445
+ –17.23(0.2)
446
+ –20.18(0.15)
447
+ 1.1(3.8)
448
+ 97.8
449
+ 7.1e
450
+ a Gaia Collaboration (2018)
451
+ b Both RV and age are obtained by Frasca et al. (2017)
452
+ c Torres et al. (2006)
453
+ d RV for this YSO candidate is the optimal RV determined by BANYAN Σ as a member of UCL.
454
+ e Age obtained by Comer´on et al. (2013).
455
+ Fig. 1: CMD of all the potential members of Lupus I in our
456
+ original sample of 43 objects (blue dots), with the MS stars
457
+ (Pecaut & Mamajek 2013) (orange dots) and the Lupus I
458
+ core members (red triangles) included in Table 1.
459
+ staff (due to not fulfilling some of our requirements). But
460
+ the spectra are nevertheless useful for classification pur-
461
+ poses and are used in this work.
462
+ X-Shooter spectra are divided into three arms (Vernet
463
+ et al. 2011), the UVB (λ ∼ 300–500 nm), VIS (λ ∼ 500-
464
+ 1050 nm), and NIR (λ ∼ 1000–2500 nm). We decided to
465
+ observe all our targets with 1.′′0, 0.′′9, and 0.′′9 slit widths
466
+ (for UVB, VIS, and NIR arms respectively) for one or two
467
+ cycles based on their J band magnitudes. For our faintest
468
+ objects with J > 14 mag, we considered two cycles of ABBA
469
+ nodding mode. Among our observed targets, only 2MASS
470
+ J15551027-3455045 belongs to this category, and due to its
471
+ faintness, the final signal-to-noise ratio (SNR) of its spec-
472
+ tra was lower than expected. The exposure time for each
473
+ arm and the total execution time taking into account the
474
+ overheads are reported for each target in Table 3. For our
475
+ brightest target, TYC7335-550-1 with J = 9.65 mag, we
476
+ decided that only one cycle of ABBA nodding would be
477
+ sufficient for our scientific aims.
478
+ For some targets with a higher scientific significance to
479
+ our program or because of their faintness, we decided to also
480
+ observe telluric standard stars. Only a few of our targets
481
+ (analyzed in this work) did not have a telluric star observa-
482
+ tion included in their observation block (OB) and these are
483
+ UCAC4 273-083363, 2MASS J15414827-3501458 (with J =
484
+ 11.55 mag and 11.05 mag respectively), UCAC4 269-083981
485
+ (J = 10.72 mag), and Gaia DR2 6014269268967059840 (J
486
+ = 13.64 mag) which had a lower scientific priority for our
487
+ program – either were not lying on the main filament, were
488
+ not strong candidates for membership in Lupus I, were not
489
+ 3
490
+
491
+ OurLupusICandidates
492
+ Pecaut and Mamajek Objects
493
+ Lupus ICore Members
494
+ G
495
+ 10
496
+ 15
497
+ 20
498
+ 1
499
+ 1.5
500
+ 2
501
+ 2.5
502
+ 3
503
+ 3.5
504
+ 4
505
+ 4.5
506
+ 5
507
+ Bp-RpMajidi et al.: New members of the Lupus I cloud
508
+ Table 2: Objects observed with X-Shooter (measurement errors are displayed in parenthesis). The column under Prob
509
+ stands for the UCL membership probability percentage of the targets calculated by BANYAN Σ (Gagn´e et al. 2018).
510
+ The four candidates detected in the OmegaCAM Hα imaging survey are flagged with ( Hα) right to their names (See
511
+ Sect. 2.1).
512
+ Name
513
+ α (J2000)
514
+ δ (J2000)
515
+ ϖ
516
+ µα∗
517
+ µδ
518
+ Prob
519
+ G
520
+ (h:m:s)
521
+ (d:m:s)
522
+ (mas)
523
+ (mas/yr)
524
+ (mas/yr)
525
+ %
526
+ (mag)
527
+ Partially known targets:
528
+ 2MASS J15383733-3422022
529
+ 15 38 37.34
530
+ –34 22 02.26
531
+ 6.79(0.15)
532
+ –18.25(0.26)
533
+ –24.15(0.19)
534
+ 99.4
535
+ 16.78
536
+ Sz 70
537
+ 15 46 42.99
538
+ –34 30 11.55
539
+ 6.09(0.21)
540
+ –12.58(0.39)
541
+ –22.16(0.25)
542
+ 95.7
543
+ 14.50
544
+ Candidates:
545
+ TYC 7335-550-1a
546
+ 15 36 11.55
547
+ –34 45 20.54
548
+ 6.26(0.07)
549
+ –13.93(2.43)
550
+ –19.51(1.01)
551
+ 99.2
552
+ 11.31
553
+ 2MASS J15361110-3444473b ( Hα)
554
+ 15 36 11.09
555
+ –34 44 47.82
556
+ 5.83(0.29)
557
+ –13.56(0.29)
558
+ –20.21(0.23)
559
+ 94.8
560
+ 18.92
561
+ 2MASS J15523574-3344288c ( Hα)
562
+ 15 52 35.74
563
+ –33 44 28.87
564
+ 5.98(0.17)
565
+ –20.06(0.37)
566
+ –22.17(0.23)
567
+ 50.2
568
+ 17.06
569
+ 2MASS J15551027-3455045d ( Hα)
570
+ 15 55 10.28
571
+ –34 55 04.67
572
+ 6.78(0.26)
573
+ –11.09(0.54)
574
+ –23.94(0.31)
575
+ 93.8
576
+ 18.23
577
+ 2MASS J16011870-3437332e ( Hα)
578
+ 16 01 18.70
579
+ –34 37 33.20
580
+ 7.35(0.07)
581
+ –16.59(0.07)
582
+ –24.97(0.05)
583
+ 98.5
584
+ 16.46
585
+ UCAC4 269-083981f
586
+ 15 56 19.06
587
+ –36 13 25.15
588
+ 6.095(0.04)
589
+ –13.77(0.09)
590
+ –22.29(0.06)
591
+ 98.7
592
+ 13.02
593
+ Gaia DR2 6010590577947703936
594
+ 15 56 55.36
595
+ –36 11 10.73
596
+ 6.83(0.11)
597
+ –15.64(0.24)
598
+ –25.82(0.15)
599
+ 98.7
600
+ 16.37
601
+ 2MASS J15414827-3501458g
602
+ 15 41 48.28
603
+ –35 01 45.84
604
+ 6.74(0.13)
605
+ –17.99(0.25)
606
+ –25.39(0.18)
607
+ 99.5
608
+ 13.98
609
+ UCAC4 273-083363
610
+ 15 46 46.15
611
+ –35 24 11.40
612
+ 6.99(0.06)
613
+ –18.14(0.11)
614
+ –25.04(0.08)
615
+ 99.6
616
+ 14.46
617
+ Gaia DR2 6014269268967059840
618
+ 15 36 55.30
619
+ –33 45 22.19
620
+ 6.68(0.24)
621
+ –16.23(0.37)
622
+ –22.29(0.27)
623
+ 95.3
624
+ 17.39
625
+ a Proposed candidate member of Lupus I by Zari et al. (2018).
626
+ b aka Gaia DR1 6014141205925321984.
627
+ c aka Gaia DR2 6012155767105823616.
628
+ d aka Gaia DR2 6011827867821601792, candidate Lupus I member also proposed by Galli et al. (2020).
629
+ e Gaia DR3 6011165313293141760.
630
+ f Dipper, candidate member of Lupus I also proposed by Nardiello et al. (2020).
631
+ g aka SSTc2dJ154148.3-350145, a candidate Lupus I member previously proposed by Comer´on et al. (2009).
632
+ Table 3: Observing log of the new candidate members of Lupus I.
633
+ Name
634
+ Date
635
+ Exposure time
636
+ Seeing
637
+ Ttot
638
+ airmass
639
+ SNR
640
+ J
641
+ Grade
642
+ (yyyy-mm-dd)
643
+ (sec)
644
+ (′′)
645
+ (hour)
646
+ (mag)
647
+ 2MASS J15383733-3422022
648
+ 2021-08-03
649
+ 1920/1800/1920 1.72/1.72/1.72
650
+ 0.67
651
+ 1.04
652
+ 5.4/47.1/68.6
653
+ 13.39
654
+ A
655
+ Sz 70
656
+ 2021-07-06
657
+ 600/500/600
658
+ 0.55/0.52/0.52
659
+ 0.33
660
+ 1.03
661
+ 6.9/67.8/132.4
662
+ 10.85
663
+ A
664
+ TYC7335-550-1
665
+ 2021-06-27
666
+ 300/200/300
667
+ 0.72/0.77/0.77
668
+ 0.33
669
+ 1.36
670
+ 71.1/117.0/245.6
671
+ 9.65
672
+ A
673
+ 2MASS J15361110-3444473
674
+ 2021-06-27
675
+ 3600/3400/3840 0.73/0.69/0.70
676
+ 1.25
677
+ 1.15
678
+ 0.1/4.9/21.3
679
+ 14.91
680
+ A
681
+ 2MASS J15523574-3344288
682
+ 2021-06-27
683
+ 1800/1700/1920 0.72/0.72/0.69
684
+ 0.7
685
+ 1.43
686
+ 0.4/12.2/33.3
687
+ 13.49
688
+ A
689
+ 2MASS J15551027-3455045
690
+ 2021-08-01
691
+ 1800/1700/1920 1.73/1.79/1.79
692
+ 0.62
693
+ 1.11
694
+ 0.7/15.0/41.2
695
+ 13.76
696
+ A
697
+ 2MASS J16011870-3437332
698
+ 2021-08-08
699
+ 1800/1700/1920 1.49/1.49/1.49
700
+ 0.72
701
+ 1.35
702
+ 5.6/48.9/76.8
703
+ 13.07
704
+ A
705
+ UCAC4 269-083981
706
+ 2021-08-01
707
+ 600/500/600
708
+ 2.27/2.27/2.27
709
+ 0.33
710
+ 1.19
711
+ 39.5/108.4/123.2 10.72
712
+ Ca
713
+ Gaia DR2 6010590577947703936
714
+ 2021-08-06
715
+ 1920/1820/1920 2.04/1.92/1.92
716
+ 0.67
717
+ 1.14
718
+ 5.9/51.0/78.9
719
+ 13.08
720
+ A
721
+ 2MASS J15414827-3501458
722
+ 2021-07-14
723
+ 600/500/600
724
+ 1.13/1.13/1.13
725
+ 0.33
726
+ 1.12
727
+ 25.4/100.2/232.3 11.05
728
+ A
729
+ UCAC4 273-083363
730
+ 2021-07-14
731
+ 600/500/600
732
+ 1.33/1.29/1.33
733
+ 0.33
734
+ 1.08
735
+ 18.3/73.6/171.0
736
+ 11.55
737
+ A
738
+ Gaia DR2 6014269268967059840
739
+ 2021-08-04
740
+ 1800/1700/1800 2.49/2.49/2.49
741
+ 0.65
742
+ 1.13
743
+ 1.5/26.1/50.5
744
+ 13.64
745
+ Cb
746
+ Notes. Date of observation, exposure time allocated to each arm, mean seeing, and SNR (in order for UVB, VIS, and NIR
747
+ wavelengths) as well as the total execution time, mean airmass, and the observation grades (as provided by the ESO observing
748
+ staff) are reported.
749
+ a UCAC4 269-083981 had an out of constraint seeing (2.′′0 which was exceeded).
750
+ b Gaia DR2 6014269268967059840 was reported to have an out of constraint seeing.
751
+ Hα emitters, or were not faint for X-shooter to necessitate
752
+ the observation of a telluric template. As we will detail
753
+ later, we will also adopt a different approach to remove
754
+ telluric lines for these objects. For the targets containing
755
+ telluric observation in their OBs, the same nodding strat-
756
+ egy as those of the targets was employed to minimize noise
757
+ 4
758
+
759
+ Majidi et al.: New members of the Lupus I cloud
760
+ and cosmetics, with an airmass as close as possible to the
761
+ targets. The airmass and seeing reported in Table 3 are
762
+ averaged over the exposure times for each arm.
763
+ 2.3. Data reduction
764
+ The data used in this work have been reduced with the X-
765
+ Shooter pipeline xshoo of version 2.3.12 and higher1, and
766
+ hence they have been de-biased, flat-fielded, wavelength-
767
+ calibrated, order-merged, extracted, sky-subtracted and
768
+ eventually flux-calibrated. The result of this pipeline output
769
+ is an ESO one-dimensional standard binary table and the
770
+ two-dimensional ancillary files ready for scientific analysis.
771
+ Flux calibration based on the photometric data available
772
+ in the literature was done later directly on the available
773
+ spectra, along with the telluric removal process which is
774
+ not done for the distributed spectra reduced by the xshoo
775
+ pipeline.
776
+ We used the Image Reduction and Analysis Facility
777
+ (IRAF, Tody 1986, 1993) to remove the telluric lines from
778
+ the target spectra and to flux calibrate them, as well as
779
+ to derive the stellar parameters from the spectra, which
780
+ we shall discuss in detail in the upcoming sections. Since
781
+ the strategy for arranging our observation blocks did not
782
+ include wide slit observations, the flux calibration of our
783
+ targets totally relies on the photometric data available in
784
+ the literature, which have been collected in various surveys
785
+ (with the corresponding flux errors of e-16 W.m−2 for the
786
+ UVB arm, e-16 W.m−2 for the VIS arm, and 2.5e-15 W.m−2
787
+ for the NIR arm). For some of our faint objects, we only
788
+ had access to very limited photometric data and had to cal-
789
+ ibrate the UVB portion of the spectra in accordance with
790
+ the available photometric data in the VIS range.
791
+ For the objects with observations of telluric standard
792
+ stars, we removed the telluric lines and molecular bands
793
+ using the IRAF task Telluric. For the three targets with-
794
+ out telluric star observations in our sample, which namely
795
+ are 2MASS J15414827-3501458, UCAC4 273-083363, and
796
+ Gaia DR2 6014269268967059840, we used the TelFit
797
+ Python code. This code fits the telluric absorption spec-
798
+ trum in the observed spectra (Gullikson et al. 2014) using
799
+ the LBLRTM code which models the line-by-line radiative
800
+ transfer (Clough et al. 2005). Applying TelFit, we cor-
801
+ rected the spectra for oxygen and water molecular bands
802
+ in the visible range (∼550-1000 nm), as well as for water,
803
+ oxygen, and CO2 molecular bands in the NIR (∼1000-2500
804
+ nm) (for the details on the wavelength ranges where these
805
+ molecular bands dominate the spectrum the reader is re-
806
+ ferred to Smette et al. 2015).
807
+ 3. Data Analysis
808
+ There are several immediate aims that we planned to fulfill
809
+ through our program. With the X-Shooter spectra, we can
810
+ confirm the youth of the selected candidates through the
811
+ presence of the Li i (6708 ˚A) absorption line, in addition to
812
+ Hα emission, and other lines of the Balmer series as further
813
+ hints. We also determine the spectral type (SpT) classifi-
814
+ cation and the determination of stellar physical parameters
815
+ such as effective temperature (Teff), luminosity (L), mass
816
+ (M) and age. It is also possible that some of our candidates
817
+ 1 https://www.eso.org/sci/software/pipelines/
818
+ xshooter/
819
+ may belong to Scorpius-Centaurus Association (with an age
820
+ 10-18 Myr, UCL sub-association) rather than Lupus (1-2
821
+ Myr). We can single out these objects once we have fully
822
+ characterized them. The disentanglement between the two
823
+ associations would be useful for clarifying their relation-
824
+ ship. Using spectral lines of the Balmer series, we will also
825
+ measure the accretion luminosity (Lacc) and mass accretion
826
+ rate ( ˙Macc) of those objects that we qualify as accretors. In
827
+ the following, we describe the methods used for achieving
828
+ our immediate goals.
829
+ 3.1. Spectroscopic analysis methods
830
+ 3.1.1. Spectral typing and line equivalent widths
831
+ To obtain the SpTs of our objects, we first compared the
832
+ spectrum obtained with X-Shooter’s VIS arm with a li-
833
+ brary of visible spectra of already characterized stars and
834
+ brown dwarfs formerly observed by X-Shooter (Manara et
835
+ al. 2013). For the quantitative spectral typing of the stars,
836
+ we then calculated the spectral indices described in Riddick
837
+ et al. (2007) based on the ratios of the average flux of
838
+ molecular absorption bands within narrow wavelength re-
839
+ gions, yielding in all cases an uncertainty of 0.5 subclasses.
840
+ For TYC 7335-550-1 and UCAC4 269-083981, which are
841
+ brighter than the rest of the targets and do not show clear
842
+ molecular bands in their spectra suitable for measuring the
843
+ Riddick’s indices, the SpT is instead estimated through the
844
+ Teff obtained by the ROTFIT code (see Sect. 3.1.2). The
845
+ results can be found in Table 7.
846
+ The EW of the atomic lines reported in Table 5 is mea-
847
+ sured by taking an average over i) the direct integration of
848
+ the line profiles between two marked pixels and ii) fitting
849
+ a Gaussian. The errors associated with these values thus
850
+ report the difference between the measurements made with
851
+ these methods. There are cases for which we could not de-
852
+ tect the Li i line at 6708 ˚A. Hence, for these objects we
853
+ only report an upper limit on the measurement of EWLi i.
854
+ As suggested by Cayrel (1988), a three-sigma upper limit
855
+ on the flux of the lithium line can be calculated as:
856
+ dEW = 3 × 1.06
857
+
858
+ (FWHM)dx/(S/N),
859
+ (1)
860
+ in which FWHM is the full width at half maximum, S/N is
861
+ the signal-to-noise ratio, and the bin size (dx) can be fixed
862
+ to 0.2 ˚A for the VIS arm. The values of these measurements
863
+ are reported in Table 5 and Table 6 for TYC7335-550-1.
864
+ 3.1.2. ROTFIT
865
+ We used ROTFIT as the basis of our analysis for assessing
866
+ the stellar parameters of our targets. Using ROTFIT, we
867
+ evaluated their RV, v sin i, and surface gravity (log g). The
868
+ version of ROTFIT used for this purpose is the one designed
869
+ for the optimal usage of the X-Shooter spectra (Frasca et al.
870
+ 2017). The stellar parameters obtained with ROTFIT can
871
+ be found in Table 4. The fitting process with ROTFIT code
872
+ was carried out within a veiling (the UV excess continuum
873
+ that influences the entire photosphere of the star from UVB
874
+ to NIR) range from 0 to 1. None of our objects showed
875
+ significant veiling, hence the veiling parameter for all our
876
+ studied targets in this paper is equal to zero.
877
+ 5
878
+
879
+ Majidi et al.: New members of the Lupus I cloud
880
+ Table 4: Physical stellar parameters of the targets obtained with the ROTFIT code.
881
+ Name
882
+ Teff
883
+ log g
884
+ vsini
885
+ RV
886
+ Prob
887
+ (K)
888
+ (km/s)
889
+ (km/s)
890
+ %
891
+ 2MASS J15383733-3422022
892
+ 3111±70
893
+ 4.75±0.13
894
+ <8
895
+ 4.1±2.7
896
+ 99.8
897
+ Sz 70
898
+ 3038±76
899
+ 4.02±0.11
900
+ 14.0±14.0
901
+ 1.1±2.6
902
+ 84.6
903
+ TYC 7335-550-1
904
+ 4488±140
905
+ 4.06±0.22
906
+ <8
907
+ 2.6±2.0
908
+ 99.2
909
+ 2MASS J15361110-3444473
910
+ 2883±104
911
+ 4.41±0.12
912
+ 13.0±10.0
913
+ 6.9±2.6
914
+ 97.9
915
+ 2MASS J15523574-3344288
916
+ 2981±44
917
+ 4.54±0.10
918
+ <8
919
+ 2.6±2.7
920
+ 75.3
921
+ 2MASS J15551027-3455045
922
+ 2700±103
923
+ 3.60±0.11
924
+ 19.0±8.0
925
+ 0.1±2.9
926
+ 97.9
927
+ 2MASS J16011870-3437332
928
+ 3121±90
929
+ 4.73±0.14
930
+ 12.0±8.0
931
+ –0.5±2.3
932
+ 98.7
933
+ UCAC4 269-083981
934
+ 3846±47
935
+ 4.53±0.11
936
+ <8
937
+ 0.6±2.7
938
+ 99.6
939
+ Gaia DR2 6010590577947703936
940
+ 3154±72
941
+ 4.77±0.13
942
+ 40.8±3.6
943
+ 0.5±4.7
944
+ 99.2
945
+ 2MASS J15414827-3501458
946
+ 3213±94
947
+ 4.52±0.23
948
+ 53.3±5.7
949
+ 3.4±4.3
950
+ 99.8
951
+ UCAC4 273-083363
952
+ 3211±56
953
+ 4.51±0.15
954
+ <8
955
+ 1.3±2.3
956
+ 99.8
957
+ Gaia DR2 6014269268967059840
958
+ 3019±108
959
+ 4.75±0.14
960
+ 44.0±12.0
961
+ 1.7±4.6
962
+ 98.3
963
+ Notes. The column Prob represents the probability of the target to be member of Lupus I according to BANYAN Σ, which is
964
+ based on the RVs measured with ROTFIT and the kinematic properties reported by Gaia DR2.
965
+ Table 5: EWs of the relevant lines indicating the chromospheric and accretion tracers for our targets. Negative values
966
+ indicate the lines that are in emission.
967
+ Name
968
+ EWLi i
969
+ EWHα
970
+ EWHβ
971
+ EWHγ
972
+ EWHδ
973
+ WHα(10%)
974
+ (˚A)
975
+ (˚A)
976
+ (˚A)
977
+ (˚A)
978
+ (˚A)
979
+ (km/s)
980
+ 2MASS J15383733-3422022
981
+ 0.74±0.04
982
+ –8.77±0.92
983
+ –7.71±0.04
984
+ –7.99±0.21
985
+ –7.20±0.52
986
+ 128±18
987
+ Sz 70
988
+ 0.55±0.05
989
+ –43.37±3.97
990
+ –9.97±1.07
991
+ –10.28±1.04
992
+ –11.14±1.51
993
+ 366±14
994
+ 2MASS J15361110-3444473
995
+ < 0.25a
996
+ –71.4±8.77
997
+ . . .
998
+ . . .
999
+ . . .
1000
+ 292±14
1001
+ 2MASS J15523574-3344288
1002
+ 0.81±0.09
1003
+ –13.52±0.76
1004
+ –10.9±0.88
1005
+ –3.9±1.1
1006
+ –2.84±0.49
1007
+ 146±9
1008
+ 2MASS J15551027-3455045
1009
+ -b
1010
+ –88.9±1.17
1011
+ –29.7±0.85
1012
+ –6.68±0.24
1013
+ –5.09±0.49
1014
+ 229±14
1015
+ 2MASS J16011870-3437332
1016
+ 0.67±0.03
1017
+ –21.47±1.59
1018
+ –21.61±1.28
1019
+ –19.41±0.75
1020
+ –13.34±2.18
1021
+ 274±14
1022
+ UCAC4 269-083981
1023
+ 0.56±0.01
1024
+ –1.69±0.07
1025
+ –1.63±0.08
1026
+ –1.56±0.24
1027
+ –1.44±0.21
1028
+ 174±5
1029
+ Gaia DR2 6010590577947703936
1030
+ 0.68±0.06
1031
+ –6.53±0.38
1032
+ –6.75±0.25
1033
+ –6.97±0.09
1034
+ –6.69±0.22
1035
+ 183±5
1036
+ 2MASS J15414827-3501458
1037
+ < 0.012a
1038
+ –10.04±0.53
1039
+ –9.55±0.61
1040
+ –10.64±0.29
1041
+ –10.21±0.7
1042
+ 210±18
1043
+ UCAC4 273-083363
1044
+ < 0.017a
1045
+ –11.4±0.94
1046
+ –11.12±0.45
1047
+ –11.15±1.35
1048
+ –8.59±0.67
1049
+ 155±9
1050
+ Gaia DR2 6014269268967059840
1051
+ < 0.047a
1052
+ –17.53±2.20
1053
+ . . .
1054
+ . . .
1055
+ . . .
1056
+ 219±14
1057
+ a Three-sigma upper limits on the measurement (read Subsection for further explanation).
1058
+ b Li I line was affected by a cosmic ray hit and could not be measured.
1059
+ Table 6: EWs of the relevant lines indicating the chromospheric and accretion tracers for TYC 7335-550-1.
1060
+ Name
1061
+ EWLi i
1062
+ EWHα
1063
+ EWHϵ
1064
+ EW H
1065
+ Ca ii
1066
+ EW K
1067
+ Ca ii
1068
+ EW 8498
1069
+ Ca ii
1070
+ EW 8542
1071
+ Ca ii
1072
+ EW 8662
1073
+ Ca ii
1074
+ (˚A)
1075
+ (˚A)
1076
+ (˚A)
1077
+ (˚A)
1078
+ (˚A)
1079
+ (˚A)
1080
+ (˚A)
1081
+ (˚A)
1082
+ TYC 7335-550-1
1083
+ 0.39±0.02
1084
+ –0.45±0.06
1085
+ –0.32±0.16
1086
+ –1.07±0.14
1087
+ –1.41±0.19
1088
+ –0.47±0.03
1089
+ –0.78±0.06
1090
+ –0.68±0.06
1091
+ Notes. The EW of Hα, Hϵ, and Ca ii lines relate to the emission in the cores of these lines obtained by the subtraction of the photospheric
1092
+ template.
1093
+ 3.1.3. Physical parameters
1094
+ We used the bolometric correction (BC) relation proposed
1095
+ by Pecaut & Mamajek (2013, 2016) for evaluating the lu-
1096
+ minosity in both V and J bands and the radius of can-
1097
+ didates according to their observed parallaxes and magni-
1098
+ tudes. This is possible because none of our targets show
1099
+ significant near-IR excess (Fig. 2) nor strong veiling (Sect.
1100
+ 3.1.2).
1101
+ For the objects only resolved in Gaia DR2 catalog, the
1102
+ BC relationship introduced by the Gaia DR2 science team2
1103
+ is used. In order to have a correct estimation of the lu-
1104
+ minosity, we have also taken into account the extinction
1105
+ 2 https://gea.esac.esa.int/archive/documentation/
1106
+ GDR2/Data_analysis/chap_cu8par/sec_cu8par_process/
1107
+ ssec_cu8par_process_flame.html
1108
+ of the objects which was determined using the grid of X-
1109
+ Shooter spectra of zero-extinction non-accreting T Tauri
1110
+ stars (Manara et al. 2013), as explained in Sect. 3.2 of
1111
+ Alcal´a et al. (2014). It is evident from Fig. 2 that the targets
1112
+ have low extinction and little or no NIR excess, probably
1113
+ except for the rightmost point in the diagram, which corre-
1114
+ sponds to 2MASS J15361110-3444473. The relatively red-
1115
+ der H −Ks color of this object in comparison with the oth-
1116
+ ers, may be due to the presence of an unresolved very late-
1117
+ type companion. This will be further discussed in Appendix
1118
+ C.
1119
+ Once the Teff (from ROTFIT), luminosity, and ra-
1120
+ dius of the targets are derived, their mass, age, and log g
1121
+ can be evaluated through various evolutionary tracks and
1122
+ isochrones available in the literature. The corresponding
1123
+ values of these parameters, which are reported in Table
1124
+ 6
1125
+
1126
+ Majidi et al.: New members of the Lupus I cloud
1127
+ Table 7: Physical stellar parameters of the targets.
1128
+ Name
1129
+ SpT
1130
+ AV
1131
+ L⋆
1132
+ R⋆
1133
+ M⋆
1134
+ Age
1135
+ log g
1136
+ (mag)
1137
+ (L⊙)
1138
+ (R⊙)
1139
+ (M⊙)
1140
+ (Myr)
1141
+ 2MASS J15383733-3422022
1142
+ M5
1143
+ 0
1144
+ 0.012±0.006
1145
+ 0.39±0.01
1146
+ 0.09±0.05
1147
+ 10.7±5
1148
+ 4.20±0.5
1149
+ Sz 70
1150
+ M5
1151
+ 0.5
1152
+ 0.25±0.11
1153
+ 1.87±0.05
1154
+ 0.17±0.05
1155
+ 0.5±0.3
1156
+ 3.28±0.2
1157
+ TYC 7335-550-1
1158
+ K4.5
1159
+ 0.7
1160
+ 0.94±0.56
1161
+ 1.60±0.05
1162
+ 1.1±0.1
1163
+ 3.50±1
1164
+ 4.04±0.2
1165
+ 2MASS J15361110-3444473
1166
+ M5.5
1167
+ 1.75
1168
+ 0.006±0.003
1169
+ 0.32±0.01
1170
+ 0.05±0.05
1171
+ 9.77±5
1172
+ 4.13±0.3
1173
+ 2MASS J15523574-3344288
1174
+ M5.5
1175
+ 0.5
1176
+ 0.02±0.01
1177
+ 0.55±0.01
1178
+ 0.11±0.03
1179
+ 6.3±3
1180
+ 4.04±0.4
1181
+ 2MASS J15551027-3455045
1182
+ M7.5
1183
+ 0.75
1184
+ 0.0072±0.0034
1185
+ 0.39±0.02
1186
+ 0.03±0.02
1187
+ 1.7±1.5
1188
+ 3.71±0.3
1189
+ 2MASS J16011870-3437332
1190
+ M5
1191
+ 0
1192
+ 0.013±0.006
1193
+ 0.41±0.01
1194
+ 0.09±0.04
1195
+ 9.55±5
1196
+ 4.16±0.5
1197
+ UCAC4 269-083981
1198
+ M0
1199
+ 0.5
1200
+ 0.30±0.14
1201
+ 1.23±0.02
1202
+ 0.6±0.3
1203
+ 4.2±1
1204
+ 4.03±0.5
1205
+ Gaia DR2 6010590577947703936
1206
+ M4.5
1207
+ 0
1208
+ 0.017±0.007
1209
+ 0.45±0.01
1210
+ 0.11±0.05
1211
+ 8.8±4
1212
+ 4.16±0.3
1213
+ 2MASS J15414827-3501458
1214
+ M4
1215
+ 0
1216
+ 0.12±0.06
1217
+ 1.13±0.03
1218
+ 0.2±0.08
1219
+ 1.82±1
1220
+ 3.64±0.4
1221
+ UCAC4 273-083363
1222
+ M3.5
1223
+ 0
1224
+ 0.069±0.032
1225
+ 0.83±0.01
1226
+ 0.2±0.04
1227
+ 3.63±1.5
1228
+ 3.88±0.3
1229
+ Gaia DR2 6014269268967059840
1230
+ M6
1231
+ 0
1232
+ 0.01±0.005
1233
+ 0.41±0.02
1234
+ 0.05±0.03
1235
+ 6.46±2
1236
+ 3.93±0.5
1237
+ Notes. The methods used for calculating SpT, AV , L⋆, and R⋆ are described in the text. M⋆, log g, and age of the stars are
1238
+ evaluated according to Baraffe et al. (2015) isochrones, except for TYC 7335-550-1, for which we have used the MIST isochrones.
1239
+ The SpT for TYC 7335-550-1 and UCAC4 269-083981 (in italic) are obtained using the temperatures derived by the ROTFIT code
1240
+ (Table 4) and the SpT–Teff calibration of Pecaut & Mamajek (2013). The errors associated with SpT and AV are 0.5 subclasses
1241
+ and 0.4 mag respectively. The errors associated with mass and age are internal to the tracks and isochrones.
1242
+ Fig. 2: J − H (mag) vs. H − Ks (mag) diagram of all our
1243
+ targets. The red dots show the chromospherically-dominant
1244
+ targets, the cyan dots are the accretors, and the blue line
1245
+ represents the colors of MS objects, down to spectral type
1246
+ M9.5. The normal reddening vector, shown with the black
1247
+ arrow, corresponds to AV = 2 mag. The rightmost target is
1248
+ 2MASS J15361110-3444473 which is suspected to be a bi-
1249
+ nary, hence, it might have color contribution from a second
1250
+ target.
1251
+ 7, are derived by the evolutionary models calculated by
1252
+ Baraffe et al. (2015). The Hertzsprung-Russel (HR) dia-
1253
+ gram of the Lupus I targets, including the previously known
1254
+ and the newly discovered members, is displayed Fig. 3. One
1255
+ of our targets, namely TYC 7335-550-1, is much brighter
1256
+ than the other stars investigated in the present work, and
1257
+ falls outside the range covered by the Baraffe et al. (2015)
1258
+ models. Therefore, to derive its stellar parameters, we used
1259
+ MESA Isochrones and Stellar Tracks (MIST Paxton et al.
1260
+ 2015; Choi et al. 2016; Dotter 2016). For modeling pur-
1261
+ poses, we assumed that all targets have solar metallicity
1262
+ (Baratella et al. 2020).
1263
+ Some of our objects display strong emission lines which
1264
+ is a sign of noticeable chromospheric activity (see the EW of
1265
+ some of the chromospheric activity indicators in Table 5) or
1266
+ magnetospheric accretion from a circumstellar disk. If the
1267
+ magnetic activity is relevant, the position of the star in the
1268
+ HR diagram can be significantly affected by photospheric
1269
+ starspots and by the changes in the internal structure in-
1270
+ duced by the magnetic fields (see Gangi et al. 2022, for in-
1271
+ teresting cases in the Taurus SFR). In this case, isochrones
1272
+ that do not take into account these effects (such as Baraffe
1273
+ et al. 2015) may lead to systematic effects in the estimate
1274
+ of mass and age. In particular, they may indicate an age
1275
+ half the real age of star (Asensio-Torres et al. 2019; Feiden
1276
+ 2016). This is crucial for our study which also aims at de-
1277
+ termining the membership of the stars in Lupus I or UCL
1278
+ associations. Thus, in addition to MIST and the isochrones
1279
+ provided by Baraffe et al. (2015), we used other isochrones.
1280
+ A set of evolutionary models that considers the mag-
1281
+ netic activity of the stars is the Dartmouth magnetic
1282
+ isochrones (Feiden 2016), which we also use in this work to
1283
+ estimate the ages of all our targets. These isochrones were
1284
+ originally developed for estimating the age of the Upper
1285
+ Scorpius members (11±2 Myr), almost coeval to the UCL
1286
+ (15±3 Myr), and hence are quite useful to fulfill our sci-
1287
+ entific aims. In addition to Baraffe et al. (2015) and MIST
1288
+ models, we used both Dartmouth std and Dartmouth mag
1289
+ (Feiden 2016, and the references therein) models, as well as
1290
+ PARSEC + COLIBRI S37 (Bressan et al. 2012; Pastorelli
1291
+ et al. 2019, 2020). For all our targets, we obtained over-
1292
+ estimated ages using PARSEC + COLIBRI S37 isochrones
1293
+ totally inconsistent with the other isochrones, hence, we
1294
+ do not report our results obtained with this isochrone to
1295
+ avoid confusion. The results of age estimation with all the
1296
+ other isochrones are included in Table B.1. For all the mod-
1297
+ els, we have assumed our targets have solar metallicity. For
1298
+ PARSEC models, extinction is also a free parameter that
1299
+ can be fixed and was thus set to the corresponding ex-
1300
+ tinction of the targets reported in Table 7. Eventually, we
1301
+ would like to point out that it is not straightforward to
1302
+ state which targets may have an under-estimated age, par-
1303
+ ticularly in the case of objects that are as young as the
1304
+ members of Lupus I and UCL considered in this work.
1305
+ 7
1306
+
1307
+ 1.5
1308
+ 1
1309
+ J-H
1310
+ 0.5
1311
+ 0
1312
+ 0
1313
+ 0.5
1314
+ 1
1315
+ H-KsMajidi et al.: New members of the Lupus I cloud
1316
+ Fig. 3: log L⋆(L⊙) vs log Teff (K) diagram for all our tar-
1317
+ gets (cyan and red dots represent accretors and non-
1318
+ accretors, respectively), together with the previously char-
1319
+ acterized Lupus members (black dots, Alcal´a et al. 2019,
1320
+ sub-luminous objects are not plotted). Blue dashed lines
1321
+ represent evolutionary tracks of Baraffe et al. (2015) for
1322
+ stars with masses indicated by the number (in M⊙) next
1323
+ to the top or bottom of each track. The red lines indicate
1324
+ isochrones calculated with the same models at ages of 1, 3,
1325
+ 30 Myrs, and 10 Gyrs, from the right to the left.
1326
+ 3.2. Lupus I membership criteria
1327
+ According to the works previously done in the Lupus com-
1328
+ plex (Alcal´a et al. 2014, and the references therein), in ad-
1329
+ dition to the kinematical properties expressed by the Gaia
1330
+ parallax and proper motions, membership criteria in this
1331
+ star-forming region are:
1332
+ i) the presence of lithium in their atmospheres, which
1333
+ is the main signature of youth. Despite the obviousness of
1334
+ this criterion, there are previously acknowledged members
1335
+ of the Lupus cloud that lack lithium. An example is rep-
1336
+ resented by Sz 94 in the Lupus III cloud (Manara et al.
1337
+ 2013; Biazzo et al. 2017; Frasca et al. 2017); ii) an age con-
1338
+ sistent with the core members of the cloud. Although the
1339
+ estimated age of the Lupus complex is ∼ 1–2 Myr, there are
1340
+ previously recognized members of the complex that exceed
1341
+ this age range. Examples of such targets are AKC2006 18
1342
+ and AKC2006 19 in Lupus I, although their apparent old
1343
+ age may be ascribed to disks seen edge-on that obscure
1344
+ the central objects making them sub-luminous on the HR
1345
+ diagram (see other examples in Sect. 7.4 in Alcal´a et al.
1346
+ 2014); iii) an RV consistent with the values of the genuine
1347
+ members of the Lupus I (Frasca et al. 2017).
1348
+ If an object does not match the membership criteria
1349
+ defined above, there are two possibilities. Either it is older
1350
+ than the UCL (age>20 Myr), and we would hence identify it
1351
+ as field star; or it has a consistent age with UCL (∼15 Myr)
1352
+ which would confirm its membership to this sub-cloud of
1353
+ the Scorpius-Centaurus stellar association. To this aim, we
1354
+ have used various isochrones to evaluate the age of our tar-
1355
+ gets.
1356
+ Fig. 4: |EWHα| vs SpT of our targets with the weak lined T
1357
+ Tauri stars studied by Manara et al. (2013, blue dots). The
1358
+ cyan dots represent accretors, and the red dots represent
1359
+ chromospherically-dominant objects. The horizontal lines
1360
+ in red represent the thresholds that separate non-accreting
1361
+ and accreting objects considering their SpTs (White &
1362
+ Basri 2003).
1363
+ 3.3. Accreting objects
1364
+ There are several criteria for determining whether an object
1365
+ is actively accreting matter. Usually, an accreting object is
1366
+ characterized by strong emission lines, strong UV and NIR
1367
+ continuum excess emission, or structured line profiles (e.g.,
1368
+ Manara et al. 2013). Here, to establish whether an object is
1369
+ an accretor, we use the criterion proposed by White & Basri
1370
+ (2003) which distinguishes the accreting and non-accreting
1371
+ objects based on the EW of their Hα emission versus SpT.
1372
+ The method used in this paper for calculating the Lacc (ac-
1373
+ cretion luminosity) and
1374
+ ˙Macc (mass accretion rate) of our
1375
+ targets involves measuring the line luminosity of the emis-
1376
+ sion lines of the accreting targets and using the established
1377
+ relationships between the Lline (for each emission line) with
1378
+ Lacc (Alcal´a et al. 2017). We quote the eventual accretion
1379
+ line luminosity that is obtained this way as log Lacc−line in
1380
+ Table 8 and Table 9.
1381
+ The whole procedure that we carried out for this task
1382
+ can be summarized as follows: we corrected the spectra for
1383
+ telluric lines and flux-calibrated them, then measured the
1384
+ flux at Earth of the emission lines by integrating their pro-
1385
+ file above the local continuum, corrected the flux for ex-
1386
+ tinction, calculated the luminosity of each emission line by
1387
+ multiplying the flux at Earth for 4πd (adopting a distance
1388
+ d = 1000/ϖ pc, with ϖ in mas), and eventually took an
1389
+ average over all the values of log Lacc−line. We chose Hα,
1390
+ Hβ, and Hγ emission lines to measure the accretion lumi-
1391
+ nosity of our targets. After deducing the log Lacc for each
1392
+ target, we obtained their
1393
+ ˙Macc accordingly (Alcal´a et al.
1394
+ 2017). The results of our measurements are presented in
1395
+ Table 8.
1396
+ Among all our targets, only TYC 7335-550-1 does not
1397
+ show Hydrogen emission lines above the continuum, and
1398
+ its Hα line is instead in absorption. For this target, we
1399
+ used ROTFIT to subtract the photospheric template in or-
1400
+ der to measure the flux of the emission components that
1401
+ fill the cores of Hydrogen and Ca ii lines. This method has
1402
+ been successfully used to emphasize chromospheric emis-
1403
+ sion or a moderate accretion whenever the photospheric
1404
+ 8
1405
+
1406
+ 1.0
1407
+ 0
1408
+ (o)
1409
+ logL
1410
+ 0.5
1411
+ 0.05
1412
+ 0.4
1413
+ 2
1414
+ 0.3
1415
+ 0.2
1416
+ 0.02
1417
+ Y
1418
+ 3.8
1419
+ 3.7
1420
+ 3.6
1421
+ 3.5
1422
+ 3.4
1423
+ logTeff (K)100
1424
+ 10
1425
+ IEWHαl
1426
+ 1
1427
+ 0.1
1428
+ K3
1429
+ K4
1430
+ K5
1431
+ K6
1432
+ K7
1433
+ K8
1434
+ K9
1435
+ MO
1436
+ M1M2
1437
+ M3
1438
+ M4
1439
+ M5
1440
+ M6
1441
+ M7
1442
+ M8M9M10
1443
+ SpTMajidi et al.: New members of the Lupus I cloud
1444
+ flux is large and the emission is only detectable as a filling of
1445
+ the line core or an emission bump within the photospheric
1446
+ line wings that do not emerge above the continuum (e.g.,
1447
+ Frasca et al. 2015, 2017, and references therein). The spec-
1448
+ tral subtraction allows us to recognize and measure the EW
1449
+ of the emission that fills in the Hα line (Fig. 5). Adopting
1450
+ the same method, we measured the fluxes of the H&K lines
1451
+ of the Ca ii and in the cores of the three infrared lines of
1452
+ the Ca ii IRT at λ =849.8, 854.2, and 866.2 nm (Fig. 6).
1453
+ We were also able to separate the contribution of the Hϵ
1454
+ emission from the nearby Ca ii H line.
1455
+ Fig. 5: X-Shooter spectrum of TYC 7335-550-1 in the Hα
1456
+ region, normalized to the local continuum (black solid line)
1457
+ along with the inactive photospheric template (red dotted
1458
+ line). The latter is produced by ROTFIT with the BT-
1459
+ Settl synthetic spectrum at the Teff and log g of this target
1460
+ that is degraded to the resolution of X-Shooter, rotationally
1461
+ broadened, and wavelength shifted according to the target
1462
+ RV. The difference target − template is displayed at the
1463
+ bottom of the box and emphasizes the Hα emission that
1464
+ fills in the line core (green hatched area), which has been
1465
+ integrated to obtain the Hα line flux.
1466
+ 4. Results
1467
+ 4.1. Stellar parameters and membership
1468
+ The physical stellar parameters that we obtained from
1469
+ the spectral analysis and the HR diagram as described in
1470
+ Sects. 3.1.1 and 3.1.3 are reported in Table 7. The stellar pa-
1471
+ rameters obtained with ROTFIT are presented in Table 4,
1472
+ where the membership probability was recalculated with
1473
+ the BANYAN Σ using the values of RVs measured with
1474
+ ROTFIT. Both Teff and log g found with ROTFIT are in
1475
+ good agreement with those derived from SpT and the HR
1476
+ diagram and reported in Table 7.
1477
+ We note that, at the resolution of the X-Shooter VIS
1478
+ spectra, the minimum value of v sin i that can be measured
1479
+ is 8 km/s (see, e.g., Frasca et al. 2017) and hence this value
1480
+ should be considered as an upper limit. With this knowl-
1481
+ edge, we can classify targets with v sin i < 8 km/s as slow
1482
+ rotators, and those with v sin i > 40 km/s as fast rotators.
1483
+ Moreover, the large RV range of the bona fide members of
1484
+ Lupus I (∼ –5-12 km/s, according to Table 1) denies us to
1485
+ Fig. 6: a) X-Shooter UVB spectrum of TYC 7335-550-1 in
1486
+ the Ca ii H&K region (black solid line) along with the in-
1487
+ active photospheric template (red dotted line). b) and c)
1488
+ Residual (target − template) spectrum around the Ca ii K
1489
+ and Ca ii H line, respectively. The hatched green areas mark
1490
+ the residual H and K emissions that have been integrated to
1491
+ obtain the EWs and fluxes. The purple-filled area relates to
1492
+ Hϵ. d) and e) Observed Ca ii IRT line profiles (black solid
1493
+ lines) with the photospheric template overlaid with red dot-
1494
+ ted lines. The residual spectra are shown at the bottom of
1495
+ each panel shifted downward by 0.2 in relative flux units
1496
+ for clarity.
1497
+ put a strict constraint on the Lupus I membership of our
1498
+ targets (Fig. 7). The RVs of the Lupus I members confirmed
1499
+ in this work, however, are within a smaller range with re-
1500
+ spect to the previously confirmed core members of the same
1501
+ region, except for 2MASS J15361110-3444473 which may or
1502
+ may not be a Lupus I member.
1503
+ According
1504
+ to
1505
+ our
1506
+ full
1507
+ characterization,
1508
+ besides
1509
+ TYC 7335-550-1 which is a K4.5 type star, all the
1510
+ others have M spectral types. Three-quarters of our
1511
+ targets, have spectral types between M4 and M6, which
1512
+ is in accordance with the previously identified members
1513
+ of the Lupus complex (Alcal´a et al. 2014; Frasca et al.
1514
+ 2017; Krautter et al. 1997; Herczeg & Hillenbrand 2014;
1515
+ Comer´on et al. 2013; Galli et al. 2020). The ages of these
1516
+ targets cover a large range of 0.7-11 Myrs, with masses in
1517
+ the range of 0.02 to 1.1 M⊙ (as also indicated in Fig. 3).
1518
+ As discussed in Sect. 2.1, Sz 70 and 2MASS J15383733-
1519
+ 3422022 were partially known in the literature. The phys-
1520
+ ical parameters that we report here for Sz 70 are in excel-
1521
+ lent agreement with the results of Hughes et al. (1994). For
1522
+ 9
1523
+
1524
+ Tyc7335-550-
1525
+ 1.0
1526
+ 0.8
1527
+ 0.6
1528
+ 0.4
1529
+ 0.2
1530
+ 0.0
1531
+ LAW
1532
+ 0.2
1533
+ 6520
1534
+ 6540
1535
+ 6560
1536
+ 6580
1537
+ 6600
1538
+ x (A)Tyc7335-550-1
1539
+ 2.0
1540
+ 1.5
1541
+ 1.0
1542
+ 0.5
1543
+ 3920
1544
+ 3940
1545
+ 3960
1546
+ 3980
1547
+ (A)
1548
+ 6
1549
+ 1.5
1550
+ 1.5
1551
+ 0
1552
+ Call K
1553
+ Call H
1554
+ 1.0
1555
+ 1.0
1556
+ 0.5
1557
+ 0.5
1558
+ He
1559
+ 0.0
1560
+ 0.0
1561
+ 3926
1562
+ 3929
1563
+ 39.32
1564
+ 3935
1565
+ 3938
1566
+ 3941
1567
+ 3962
1568
+ 3965
1569
+ 3968
1570
+ 3971
1571
+ 3974
1572
+ 3977
1573
+ ^ (A)
1574
+ > (A)1.0
1575
+ 0.5
1576
+ 0.5
1577
+ 0.0
1578
+ 0'0
1579
+ 8480
1580
+ 8500
1581
+ B520
1582
+ 8540
1583
+ 8560
1584
+ 8640 8650 8660 8670 8680 8690
1585
+ ^ (A)
1586
+ A (A)Majidi et al.: New members of the Lupus I cloud
1587
+ Table 8: Accretion luminosity of the accretors derived from the line luminosities. The mass accretion rates are derived
1588
+ from the average of these values (Lacc−average).
1589
+ Name
1590
+ log Lacc−Hα
1591
+ log Lacc−Hβ
1592
+ log Lacc−Hγ
1593
+ log Lacc−average
1594
+ log
1595
+ ˙Macc
1596
+ (L⊙)
1597
+ (L⊙)
1598
+ (L⊙)
1599
+ (L⊙)
1600
+ (M⊙yr−1)
1601
+ Accretors:
1602
+ Sz 70
1603
+ –2.73
1604
+ –2.95
1605
+ –2.91
1606
+ –2.85
1607
+ –9.22
1608
+ 2MASS J15361110-3444473
1609
+ –3.62
1610
+ . . .
1611
+ . . .
1612
+ –3.62
1613
+ –10.21
1614
+ 2MASS J15551027-3455045
1615
+ –3.85
1616
+ –3.95
1617
+ –3.96
1618
+ –3.92
1619
+ –10.20
1620
+ 2MASS J16011870-3437332
1621
+ –4.04
1622
+ –4.29
1623
+ –4.20
1624
+ –4.16
1625
+ –10.91
1626
+ Active stars:
1627
+ 2MASS J15383733-3422022
1628
+ –5.41
1629
+ –5.43
1630
+ –5.52
1631
+ –5.45
1632
+ –12.21
1633
+ 2MASS J15523574-3344288
1634
+ –4.62
1635
+ –4.87
1636
+ –4.80
1637
+ –4.75
1638
+ -11.46
1639
+ UCAC4 269-083981
1640
+ –4.07
1641
+ –4.09
1642
+ –4.24
1643
+ –4.13
1644
+ -11.22
1645
+ Gaia DR2 6010590577947703936
1646
+ –5.12
1647
+ –5.09
1648
+ –5.03
1649
+ –5.08
1650
+ –11.86
1651
+ 2MASS J15414827-3501458
1652
+ –3.97
1653
+ –3.93
1654
+ –4.07
1655
+ -3.99
1656
+ -10.63
1657
+ UCAC4 273-083363
1658
+ –4.01
1659
+ –4.14
1660
+ –4.19
1661
+ –4.11
1662
+ –10.89
1663
+ Gaia DR2 6014269268967059840
1664
+ –5.22
1665
+ . . .
1666
+ . . .
1667
+ –5.22
1668
+ –11.07
1669
+ Table 9: Accretion luminosity of TYC 7335-550-1 derived from its line luminosities. Its mass accretion rate is derived
1670
+ from the average of these values (Lacc−average).
1671
+ Name
1672
+ log Lacc log Lacc
1673
+ log Lacc
1674
+ log Lacc
1675
+ log Lacc
1676
+ log Lacc
1677
+ log Lacc
1678
+ log Lacc
1679
+ log
1680
+ ˙
1681
+ Macc
1682
+
1683
+
1684
+ Ca II (H) Ca II (K) Ca II (8498.02) Ca II (8542.09) Ca II (8662.14) average
1685
+ (L⊙)
1686
+ (L⊙)
1687
+ (L⊙)
1688
+ (L⊙)
1689
+ (L⊙)
1690
+ (L⊙)
1691
+ (L⊙)
1692
+ (L⊙)
1693
+ (M⊙yr−1)
1694
+ TYC 7335-550-1
1695
+ –3.43
1696
+ –2.82
1697
+ –2.31
1698
+ –2.19
1699
+ –2.01
1700
+ –1.94
1701
+ –1.88
1702
+ –2.16
1703
+ –9.40
1704
+ Fig. 7: RV of our accretors (cyan dots), chromospherically-
1705
+ dominant targets (red dots), and the Lupus I core members
1706
+ (black dots).
1707
+ 2MASS J15383733-3422022, our results are again in good
1708
+ agreement with those reported by Comer´on et al. (2013),
1709
+ but their difference emanates from the fact that Comer´on et
1710
+ al. (2013) measured AV = 1.2 mag for 2MASS J15383733-
1711
+ 3422022, which results in a discrepancy in luminosity, mass,
1712
+ and radius.
1713
+ 4.2. Equivalent widths
1714
+ The EWs of several lines are quoted in Table 5, and sepa-
1715
+ rately for TYC 7335-550-1, in Table 6, as for this star the
1716
+ flux and EW measurements were performed by subtracting
1717
+ the photospheric spectrum.
1718
+ We could not detect the Li i line in the spectra of some
1719
+ of our targets for various reasons, which can be i) solely
1720
+ due to the low SNR of their spectra; ii) based on the simu-
1721
+ lations conducted by Constantino et al. (2021), for initially
1722
+ lithium-rich stars we know that slow rotators could deplete
1723
+ their lithium (also considering their SpT) at early ages (<
1724
+ 10 Myr), while fast rotators tend to retain their lithium; iii)
1725
+ a combination of the low SNR and fast rotation (which may
1726
+ be especially true for Gaia DR2 6014269268967059840),
1727
+ which would further complicate the issues associated with
1728
+ Li i detection; iv) a complex relationship between the ac-
1729
+ cretion processes, early angular momentum evolution, and
1730
+ possibly planet formation for young stars (∼ 5 Myr) that
1731
+ yet needs to be fully explored (Bouvier et al. 2016); v) no
1732
+ obvious relationship between the rotation of YSOs and the
1733
+ lithium depletion process (Binks et al. 2022).
1734
+ The non-detection of Li i in the spectra of some objects
1735
+ has been reported as a three-sigma upper limit on the flux
1736
+ of the lithium line which is a sensitive enough threshold for
1737
+ separating them from objects containing lithium.
1738
+ 4.3. Evolutionary status of the targets
1739
+ The main properties and final status of all our targets are
1740
+ summarized in Table 10. Based on all the criteria discussed
1741
+ in Sect. 3.2, we confirm that all our objects are YSOs, with
1742
+ ages < 11 Myrs.
1743
+ The
1744
+ targets
1745
+ 2MASS
1746
+ J15414827-3501458
1747
+ and
1748
+ UCAC4 273-083363 do not show the presence of the
1749
+ lithium line in the spectra, but their effective temperature
1750
+ is compatible with the possible presence of a large amount
1751
+ of Li depletion for fully convective pre-main sequence stars
1752
+ (Bildsten et al. 1997). Lithium depletion was investigated
1753
+ in several star forming regions, like some sub-groups of
1754
+ Orion (Palla et al. 2007; Sacco et al. 2007), but also
1755
+ in Lupus I and III (see, e.g., Biazzo et al. 2017, and
1756
+ references therein). Due to their very young age (< 4 Myr),
1757
+ 10
1758
+
1759
+ 12
1760
+ 10
1761
+ 8
1762
+ 6
1763
+ (s/w>)
1764
+ -2
1765
+ -4
1766
+ -6
1767
+ -8
1768
+ 5.8
1769
+ 6
1770
+ 6.2
1771
+ 6.4
1772
+ 6.6
1773
+ 6.8
1774
+ 7
1775
+ 7.2
1776
+ 7.4
1777
+ 7.6
1778
+ Parallax (mas)Majidi et al.: New members of the Lupus I cloud
1779
+ Table 10: Overall status checklist for our targets. The rotation column refers to fast (F) or slow (S) rotators.
1780
+ Name
1781
+ Membership
1782
+ Active
1783
+ Accreting
1784
+ Contains Li i
1785
+ Rotation
1786
+ Av
1787
+ Conclusion
1788
+ (UCL/Lup I)
1789
+ (yes/no)
1790
+ (yes/no)
1791
+ (yes/no)
1792
+ (F/S)
1793
+ (mag)
1794
+ 2MASS J15383733-3422022
1795
+ Lup I
1796
+ yes
1797
+ no
1798
+ yes
1799
+ S
1800
+ 0
1801
+ Genuine member of Lup I
1802
+ Sz 70
1803
+ Lup I
1804
+ yes
1805
+ yes
1806
+ yes
1807
+ S
1808
+ 0.5
1809
+ Genuine Lup I member +
1810
+ wide companion candidate
1811
+ TYC 7335-550-1
1812
+ Lup I
1813
+ yes
1814
+ no
1815
+ yes
1816
+ S
1817
+ 0.7
1818
+ Genuine member of Lup I +
1819
+ wide companion candidate
1820
+ 2MASS J15361110-3444473
1821
+ ?
1822
+ yes
1823
+ yes
1824
+ no
1825
+ S
1826
+ 1.75
1827
+ Unresolved binary (?) +
1828
+ wide companion candidate
1829
+ 2MASS J15523574-3344288
1830
+ Lup I
1831
+ yes
1832
+ no
1833
+ yes
1834
+ S
1835
+ 0.5
1836
+ New member of Lup I
1837
+ 2MASS J15551027-3455045
1838
+ Lup I
1839
+ yes
1840
+ yes
1841
+ ?
1842
+ S
1843
+ 0.75
1844
+ Genuine member of Lup I
1845
+ 2MASS J16011870-3437332
1846
+ Lup I
1847
+ yes
1848
+ yes
1849
+ yes
1850
+ S
1851
+ 0
1852
+ New member of Lup I
1853
+ UCAC4 269-083981
1854
+ Lup I
1855
+ yes
1856
+ no
1857
+ yes
1858
+ S
1859
+ 0.5
1860
+ Genuine member of Lup I
1861
+ Gaia DR2 6010590577947703936
1862
+ Lup I
1863
+ yes
1864
+ no
1865
+ yes
1866
+ F
1867
+ 0
1868
+ New member of Lup I
1869
+ 2MASS J15414827-3501458
1870
+ Lup I
1871
+ yes
1872
+ no
1873
+ no
1874
+ F
1875
+ 0
1876
+ Genuine member of Lup I
1877
+ UCAC4 273-083363
1878
+ Lup I
1879
+ yes
1880
+ no
1881
+ no
1882
+ S
1883
+ 0
1884
+ Genuine member of Lup I
1885
+ Gaia DR2 6014269268967059840
1886
+ ?
1887
+ yes
1888
+ no
1889
+ no
1890
+ F
1891
+ 0
1892
+ ?
1893
+ we
1894
+ therefore
1895
+ classify
1896
+ 2MASS
1897
+ J15414827-3501458
1898
+ and
1899
+ UCAC4 273-083363 as Lupus I members. Newly discovered
1900
+ members of Lupus I in this work are 2MASS J15523574-
1901
+ 3344288,
1902
+ 2MASS
1903
+ J16011870-3437332,
1904
+ and
1905
+ Gaia
1906
+ DR2
1907
+ 6010590577947703936.
1908
+ There are also two objects analyzed in this work that
1909
+ we could not identify either as a member of Lupus I or
1910
+ UCL. These are 2MASS J15361110-3444473, whose spec-
1911
+ trum indicates an unresolved binary star of spectral types
1912
+ M5.5 (VIS arm) and M8 (NIR arm), and we could not
1913
+ detect lithium in its spectrum (see Appendix C for more
1914
+ details on the analysis of this target). However, we would
1915
+ like to emphasize that 2MASS J15361110-3444473 is an ac-
1916
+ creting source that has consistent kinematic and physical
1917
+ properties with the genuine members of Lupus I, hence,
1918
+ there is a possibility that this target also qualifies as a
1919
+ new member of Lupus I. The other object is Gaia DR2
1920
+ 6014269268967059840, for which we acquired a spectrum
1921
+ with poor SNR (see Sect. 2 for details on the observation
1922
+ conditions of this target). The poor SNR of its UVB spec-
1923
+ trum hindered us from carrying out any measurements on
1924
+ its Hβ and Hγ lines in emission (as reported in Table 5),
1925
+ which also leads to evaluating its accretion properties only
1926
+ according to its Hα emission line (as reported in Table 8).
1927
+ Therefore, the non-detection of lithium in its spectrum can
1928
+ be purely due the poor SNR in the VIS arm, and we do not
1929
+ approve nor rule out the possibility of this target being a
1930
+ member of Lupus I.
1931
+ We hence confirm that all our targets are YSOs, with
1932
+ Hydrogen lines in emission above the continuum. Therefore,
1933
+ this investigation suggests that although only four of our
1934
+ targets were retrieved as Hα emitters in the OmegaCAM
1935
+ survey (flagged in Table 2), it is likely that our entire sample
1936
+ of 43 candidate YSOs could include Hα emitters or objects
1937
+ with filled Hα profiles, which can only be confirmed by a
1938
+ high- or mid-resolution spectroscopic study or in deep X-
1939
+ ray surveys.
1940
+ As a further investigation to strengthen our argument,
1941
+ we cross-matched all of the Lupus I core members included
1942
+ in Table 1 with the OmegaCAM survey. Except for three
1943
+ objects, they were all retrieved in the survey as Hα emit-
1944
+ ters. These exceptional three core members are RXJ1529.7-
1945
+ 3628 (which was out of the field of view of the survey), RX
1946
+ J1539.7-3450B and Sz 68/HT Lup C, for which only one
1947
+ object was resolved in the survey. Combining this result
1948
+ with the results of this paper, we emphasize the necessity
1949
+ of observing all our sample to characterize all the members
1950
+ of Lupus I that have escaped the Hα surveys.
1951
+ 4.4. Accretion versus chromospheric–dominated objects
1952
+ We realized that four of our targets in the current sam-
1953
+ ple are accretors. We measured the Lacc of these tar-
1954
+ gets, in addition to our chromospherically-dominant objects
1955
+ (Table 8 and Table 9). The measured Lacc for all our tar-
1956
+ gets are displayed in Fig. 8. In the same figure, we have
1957
+ included the limits suggested by Manara et al. (2017b)
1958
+ for objects with Teff > 4000 K and Teff < 4000 K, be-
1959
+ low which the chromospheric activity of targets is domi-
1960
+ nant. All our four accretors exceed this limit for targets
1961
+ with Teff < 4000 K, confirming that they are accretion-
1962
+ dominated. The rest of our targets within the same ef-
1963
+ fective temperature range are below this threshold, which
1964
+ make them chromospheric-dominated objects, as expected.
1965
+ 2MASS J15523574-3344288, however, lies exactly on the
1966
+ threshold between these two regimes, which is consistent
1967
+ with its significant Hα emission. We also emphasize that
1968
+ this target was retrieved in the OmegaCAM survey as an
1969
+ Hα emitter.
1970
+ Fig. 9 shows the
1971
+ ˙Macc versus M∗ for the four accre-
1972
+ tors in our sample in comparison with the Lupus members.
1973
+ Among the four accretors, 2MASS J15551027-3455045 is
1974
+ the least massive target, and has a very high mass accretion
1975
+ rate in comparison with Lupus members of similar mass.
1976
+ This target also stands above the double power-law rela-
1977
+ tionship between
1978
+ ˙Macc and M∗ established by Vorobyov &
1979
+ Basu (2009), based on modeling self-regulated accretion by
1980
+ gravitational torques in self-gravitating disks. As concluded
1981
+ by Alcal´a et al. (2017), only the strongest accretors stand
1982
+ above this model. Our three other accretors have values of
1983
+ mass accretion rates typical of Lupus accretors.
1984
+ Finally, it is worth noting that three of our accretors (Sz
1985
+ 70, 2MASS J15361110-3444473, and 2MASS J16011870-
1986
+ 3437332) have WHα(10%)>270 km/s (see Table 5), which
1987
+ is expected from accreting stars. Our chromospherically-
1988
+ dominant targets have much narrower Hα profiles.
1989
+ 11
1990
+
1991
+ Majidi et al.: New members of the Lupus I cloud
1992
+ Fig. 8: Log < Lacc/L∗ > vs Teff for all our targets. The
1993
+ cyan dots represent accretors, and the red dots represent
1994
+ chromospherically-dominant targets. The lines indicate the
1995
+ limit below which the chromospheric activity for a star is
1996
+ dominant (Manara et al. 2017b), for two regimes of stars
1997
+ with Teff ≤ 4000 K (the diagonal blue line) and those with
1998
+ Teff ≥ 4000 K (the horizontal orange line).
1999
+ Fig. 9: Log Macc(M⊙/yr) vs log M∗(M⊙) for the four accre-
2000
+ tors in our sample (cyan dots), together with the previously
2001
+ identified members of the Lupus (black dots). The blue
2002
+ crossed squares represent the substellar accreting compan-
2003
+ ions detected at wide orbits by Zhou et al. (2014) around
2004
+ GQ Tau, GSC 06214 00210 and DH Tau as labeled. 2MASS
2005
+ J15551027-3455045, GQ Lup c and 2MASS J16085953-
2006
+ 3856275 are also labelled. 2MASS J15523574-3344288 is
2007
+ labelled as red dot. The continuous red line indicates the
2008
+ double power-law prediction of Vorobyov & Basu (2009),
2009
+ while the magenta dashed line shows the prediction of disk
2010
+ fragmentation model by Samatellos & Herczeg (2015).
2011
+ 5. Discussion
2012
+ In this paper, we analyzed 12 objects observed by X-
2013
+ Shooter out of our original sample of 43 proposed new
2014
+ candidate members of Lupus I. We confirm that all these
2015
+ 12 objects are YSOs, and ten out of 12 are members of
2016
+ Lupus I. We could not determine the membership of two of
2017
+ our targets, namely 2MASS J15361110-3444473 and Gaia
2018
+ DR2 6014269268967059840, as explained in the previous
2019
+ Section. We could not fully measure the accretion prop-
2020
+ erties of Gaia DR2 6014269268967059840 and hence our
2021
+ analysis in this regard for this specific target is not reliable.
2022
+ 2MASS J15361110-3444473, on the other hand, is a rather
2023
+ (intrinsic) faint object to be followed up by any available
2024
+ spectrographs, but perhaps can be followed up with ALMA
2025
+ to understand whether it is surrounded by a disk. Although
2026
+ recognized to have an older age with respect to Lupus I
2027
+ members (9 Myr), it can be still strongly accreting matter,
2028
+ consistent with the members of γ Vel with age ∼10 Myr
2029
+ (Frasca et al. 2015). One of the interesting targets discussed
2030
+ in this work is TYC 7335-550-1, a lithium-rich K-type star
2031
+ with Hα in absorption and without IR excess. We would
2032
+ like to emphasize that YSOs with these particular charac-
2033
+ teristics would never appear in Hα imaging surveys such as
2034
+ OmegaCAM, although one of their main aims is to identify
2035
+ the members of young star forming regions. All the above
2036
+ points considered, we have fully characterized ten members
2037
+ of Lupus I in this work.
2038
+ In the following, we will discuss further qualities of our
2039
+ targets, which are mainly based on the data available in
2040
+ the literature in connection with the targets analyzed in
2041
+ this work.
2042
+ 5.1. Spectral energy distributions / Circumstellar disks
2043
+ For all our objects, we also investigated whether there are
2044
+ hints of continuum flux excess suggestive of circumstellar
2045
+ disks. To this aim, we extracted their SEDs from literature
2046
+ which are collectively exhibited in Figs. 10 and 11. For this
2047
+ work, we only concentrate on the morphology and trends
2048
+ of the SEDs of our targets, as well as their near- to mid-
2049
+ infrared photometric data (published by 2MASS and WISE
2050
+ surveys). For generating the SEDs, we have used the follow-
2051
+ ing WISE filters: W1 (3.4 microns), W2 (4.6 microns), W3
2052
+ (12 microns), W4 (22 microns). In a parallel paper (Majidi
2053
+ et al. in prep), we will study the variability of these stars
2054
+ and model their disks.
2055
+ The photometric data for all four accretors significantly
2056
+ deviate from their BT-Settl spectral model (based on their
2057
+ Teff, log g, and zero metallicity) in W3 and W4 filters
2058
+ (with the average flux errors of 5e-17 W.m−2 and 1.7e-16
2059
+ W.m−2 respectively). This trend can be observed for our
2060
+ less massive, stronger accretors 2MASS J15551027-3455045
2061
+ and 2MASS J15361110-3444473 in all four WISE filters
2062
+ (W1, W2, W3, and W4). According to Sicilia-Aguilar et
2063
+ al. (2014), the morphology of the SEDs of all our four ac-
2064
+ cretors in addition to 2MASS J15523574-3344288 is com-
2065
+ patible with objects surrounded by full disks. This is further
2066
+ confirmed by the disk categorization of Bredall et al. (2020)
2067
+ based on Ks−W3 and Ks−W4 magnitudes for Lupus dip-
2068
+ pers, Lupus YSOs, Upper Scorpius and Taurus members.
2069
+ Hence, also according to Bredall et al. (2020), all our four
2070
+ accretors in addition to 2MASS J15523574-3344288 are sur-
2071
+ rounded by a full disk. Note, however, that the “valley”
2072
+ around W3 in the SED of 2MASS J15361110-3444473 is
2073
+ typical of those seen in transitional disks.
2074
+ For the rest of our targets, we have two categories
2075
+ of circumstellar disks based on the morphology of their
2076
+ SEDs further approved by their Ks − W3 and Ks − W4
2077
+ magnitudes: i) Evolved disks, which are characterized by
2078
+ only W4 excess with respect to the theoretical BT-Settl
2079
+ model, and are evident in the SEDs of 2MASS J15383733-
2080
+ 3422022, Gaia DR2 6010590577947703936, and Gaia DR2
2081
+ 6014269268967059840 (Fig. 11), ii) Debris disks, which are
2082
+ 12
2083
+
2084
+ -8
2085
+ (Mo yr-1)
2086
+ GQ Lup
2087
+
2088
+ GQ/Lup
2089
+ c
2090
+
2091
+ -10
2092
+ 2MASS15551
2093
+ GSC 06214 b
2094
+
2095
+ 2MASS16085
2096
+ -DH Tau
2097
+ b
2098
+ -12
2099
+ 2
2100
+ 0
2101
+ logM* (Mo)-1
2102
+ -1.5
2103
+ -2
2104
+ -2.5
2105
+ 60
2106
+ -3
2107
+ -3.5
2108
+ -4
2109
+ 5000
2110
+ 4500
2111
+ 4000
2112
+ 3500
2113
+ 3000
2114
+ 2500
2115
+ Teff (K)Majidi et al.: New members of the Lupus I cloud
2116
+ Fig. 10: BT-Settl models (in grey) with the photometric data (red dots) for our accretors.
2117
+ characterized by little to no mid-infrared excess, and is ev-
2118
+ ident in the SEDs of TYC 7335-550-1, UCAC4 269-083981,
2119
+ 2MASS J15414827-3501458, and UCAC4 273-083363 (Fig.
2120
+ 11).
2121
+ 5.2. High accretion in the low-mass regime
2122
+ Deriving
2123
+ ˙Macc for the lowest mass accretors is relevant for
2124
+ the studies of disk evolution. There is growing evidence
2125
+ of a change in the slope of the M⋆– ˙Macc relationship for
2126
+ YSOs with ages of 2-3 Myr at M⋆<0.2 M⊙ (Manara et al.
2127
+ 2017b and Alcal´a et al. 2017, and see Fig. 9). Such a break
2128
+ could be related to a faster disk evolution at the low-masses
2129
+ (e.g. Vorobyov & Basu (2009)). To verify this, the
2130
+ ˙Macc–
2131
+ M⋆ relationship needs to be sampled at much lower M⋆ and
2132
+ ˙Macc values than done so far.
2133
+ Our target 2MASS J15551027-3455045 is one of the
2134
+ lowest
2135
+ mass
2136
+ accretors
2137
+ in
2138
+ Lupus
2139
+ (see
2140
+ Fig.
2141
+ 3).
2142
+ With
2143
+ M⋆=0.02 M⊙, 2MASS J16085953-3856275 is the accretor
2144
+ with comparable mass reported in the previous Lupus stud-
2145
+ ies (Alcal´a et al. 2017, 2019). Considering the very low mass
2146
+ of this YSO, its accretion rate
2147
+ ˙Macc∼10−11 M⊙/yr (Alcal´a
2148
+ et al. 2019) is relatively high. Yet the ˙Macc value for 2MASS
2149
+ J15551027-3455045 is about an order of magnitude higher
2150
+ (see Fig. 9); hence, it is one of strongest accretors in Lupus
2151
+ in the mass range 0.02–0.03M⊙, i.e. close to the planetary
2152
+ mass regime. From modeling of a shock at the surface of
2153
+ a planetary-mass object, Aoyama et al. (2021) have pre-
2154
+ dicted much higher Lacc values than what the scaling Lacc–
2155
+ Lline relations for stars would predict. The relationships by
2156
+ these authors would yield an even higher ˙Macc value, almost
2157
+ an order of magnitude higher than our estimate. This ob-
2158
+ ject falls above the model prediction by Vorobyov & Basu
2159
+ (2009), in contrast with the idea of faster disk evolution at
2160
+ very low masses. However, statistics are still rather poor at
2161
+ this mass regime for a firm conclusion.
2162
+ Other very low-mass YSOs, companions to T Tauri
2163
+ stars, have been found to exhibit similar, or even higher
2164
+ rates of mass accretion (Betti et al. 2022; Zhou et al. 2014,
2165
+ see Fig. 9). To explain the very high levels of accretion
2166
+ observed in such sub-stellar and planetary-mass compan-
2167
+ ions, Samatellos & Herczeg (2015) modeled the accretion
2168
+ onto very low-mass objects that formed by the fragmenta-
2169
+ tion of the disk around the hosting star. During the early
2170
+ evolution the individual disks of sub-stellar companions,
2171
+ including those at the planetary-mass regime, accrete addi-
2172
+ tional material from the gas-rich parent disk, hence, their
2173
+ disks are more massive and their accretion rates are higher
2174
+ than if they were formed in isolation. Therefore, these very
2175
+ low-mass objects have disk masses and accretion rates that
2176
+ are independent of the mass of the central object and are
2177
+ higher than expected from the scaling relation
2178
+ ˙Macc ∝ M 2
2179
+
2180
+ of more massive YSOs. These models predict that
2181
+ ˙Macc is
2182
+ independent of M⋆.
2183
+ Using Gaia DR3, we have investigated whether 2MASS
2184
+ J15551027-3455045 might be a wide companion of another
2185
+ star, but it is an isolated object. Hence, the high mass ac-
2186
+ cretion rate cannot be explained in terms of the Samatellos
2187
+ & Herczeg (2015) scenario. Due to its intrinsic faintness,
2188
+ 2MASS J15551027-3455045 would be an interesting target
2189
+ to be followed up by CUBES, which is a next-generation
2190
+ spectrograph suitable for investigating fainter, low-mass ac-
2191
+ creting YSOs (Alcal´a et al. 2022).
2192
+ 13
2193
+
2194
+ 2MASSJ15551027-3455045
2195
+ -10
2196
+ Teff = 2700 K, log g = 3.5
2197
+ 10.5
2198
+ PhotometricData
2199
+ cm-2)
2200
+ -11
2201
+ (erg S-1
2202
+ 11.5
2203
+ -12
2204
+ 12.5
2205
+ -13
2206
+ 13.5
2207
+ -14
2208
+ 1000
2209
+ 10000
2210
+ 入 (nm)2MASSJ15361110-3444473
2211
+ Teff = 2900 K, log g = 4.5
2212
+ -11
2213
+ Photometric Data
2214
+ L cm-2)
2215
+ 11.5
2216
+ 12
2217
+ -12.5
2218
+ -13
2219
+ 1000
2220
+ 10000
2221
+ 入 (nm)Sz 70
2222
+ 6
2223
+ Teff = 3000 K, log g = 4.0
2224
+ PhotometricData
2225
+ 9.5
2226
+ -10
2227
+ -10.5
2228
+ log 入 Flux
2229
+ 11
2230
+ 11.5
2231
+ -12
2232
+ 1000
2233
+ 10000
2234
+ 入 (nm)2MASSJ16011870-3437332
2235
+ -10
2236
+ Teff = 3100 K, log g = 4.5
2237
+ Photometric Data
2238
+ 10.5
2239
+ -11
2240
+ 11.5
2241
+ log 入Flux
2242
+ 12
2243
+ 12.5
2244
+ 13
2245
+ 1000
2246
+ 10000
2247
+ 入 (nm)Majidi et al.: New members of the Lupus I cloud
2248
+ Fig. 11: BT-Settl models (in grey) with the photometric data (red dots) for our chromospherically-dominant targets.
2249
+ 5.3. Possible wide companions
2250
+ While studying the kinematic properties of the targets, we
2251
+ also noticed that a few of our targets and core members
2252
+ of the Lupus I share similar kinematic properties, and can
2253
+ be considered as wide companion candidates. These wide
2254
+ companion candidates are presented in Table 12 and Table
2255
+ 13, divided into two categories of candidates studied in this
2256
+ 14
2257
+
2258
+ TYC 7335-550-1
2259
+ 8
2260
+ Teff = 4500 K, log g = 4.0
2261
+ Photometric Data
2262
+ (erg s-1 cm-2)
2263
+ -10
2264
+ log 入Flux
2265
+ -11
2266
+ 12
2267
+ 13
2268
+ 1000
2269
+ 10000
2270
+ 入 (nm)2MASSJ15523574-3344288
2271
+ -10
2272
+ Teff = 3000 K, log g = 4.5
2273
+ PhotometricData
2274
+ 10.5
2275
+ -11
2276
+ -11.5
2277
+ log 入Flux
2278
+ 12
2279
+ 12.5
2280
+ -13
2281
+ 1000
2282
+ 10000
2283
+ 入 (nm)UCAC4269-083981
2284
+ -9
2285
+ Teff = 3800 K, log g = 4.5
2286
+ 9.5
2287
+ Photometric Data
2288
+ cm-2)
2289
+ -10
2290
+ (erg s-1
2291
+ 10.5
2292
+ -11
2293
+ log 入Flux
2294
+ 11.5
2295
+ -12
2296
+ 12.5
2297
+ 13
2298
+ 1000
2299
+ 10000
2300
+ 入 (nm)2MASSJ15383733-3422022
2301
+ -10
2302
+ Teff = 3100 K, log g = 4.5
2303
+ Photometric Data
2304
+ -10.5
2305
+ -11
2306
+ -11.5
2307
+ log 入Flux
2308
+ -12
2309
+ 12.5
2310
+ 13
2311
+ 1000
2312
+ 10000
2313
+ 入 (nm)2MASSJ15414827-3501458
2314
+ -9
2315
+ Teff = 3200 K, log g = 4.5
2316
+ 9.5
2317
+ PhotometricData
2318
+ cm-2)
2319
+ -10
2320
+ (erg s-1
2321
+ 10.5
2322
+ 11
2323
+ log 入Flux
2324
+ 11.5
2325
+ -12
2326
+ 12.5
2327
+ 13
2328
+ 1000
2329
+ 10000
2330
+ 入 (nm)GaiaDR26010590577947703936
2331
+ -10
2332
+ Teff = 3100 K, log g = 4.5
2333
+ Photometric Data
2334
+ 10.5
2335
+ -11
2336
+ -11.5
2337
+ log 入Flux
2338
+ -12.5
2339
+ 13
2340
+ 1000
2341
+ 10000
2342
+ 入 (nm)UCAC4273-083363
2343
+ -9
2344
+ Teff = 3000 K, log g = 4.5
2345
+ 9.5
2346
+ Photometric Data
2347
+ cm-2)
2348
+ -10
2349
+ 10.5
2350
+ -11
2351
+ log 入Flux
2352
+ 11.5
2353
+ -12
2354
+ 12.5
2355
+ 13
2356
+ 1000
2357
+ 10000
2358
+ 入 (nm)GaiaDR26014269268967059840
2359
+ -10
2360
+ Teff = 3000 K, log g = 4.5
2361
+ 10.5
2362
+ Photometric Data
2363
+ . cm-2)
2364
+ -11
2365
+ (erg s-1
2366
+ 11.5
2367
+ -12
2368
+ 12.5
2369
+ 13
2370
+ 13.5
2371
+ -14
2372
+ 1000
2373
+ 10000
2374
+ 入 (nm)Majidi et al.: New members of the Lupus I cloud
2375
+ Table 11: Disk categorization of all our targets, in addition to their reddest colors available in the 2MASS and WISE
2376
+ catalogs.
2377
+ Name
2378
+ Ks − W3
2379
+ Ks − W4
2380
+ Bredall et al. (2020)
2381
+ Sicilia-Aguilar et al. (2014)
2382
+ mag
2383
+ mag
2384
+ Disk type
2385
+ SED/Disk type
2386
+ 2MASS J15383733-3422022
2387
+ 0.75
2388
+ 3.93
2389
+ Evolved disk
2390
+ Sz 70
2391
+ 2.28
2392
+ 3.9
2393
+ Full disk
2394
+ Full disk
2395
+ TYC 7335-550-1
2396
+ 0.20
2397
+ 1.14
2398
+ Debris disk
2399
+ 2MASS J15361110-3444473
2400
+ 2.70
2401
+ 5.04
2402
+ Full disk
2403
+ Full disk
2404
+ 2MASS J15523574-3344288
2405
+ 2.69
2406
+ 4.31
2407
+ Full disk
2408
+ Full disk
2409
+ 2MASS J15551027-3455045
2410
+ 3.24
2411
+ 5.7
2412
+ Full disk
2413
+ Full disk
2414
+ 2MASS J16011870-3437332
2415
+ 2.18
2416
+ 4.09
2417
+ Full disk
2418
+ Full disk
2419
+ UCAC4 269-083981
2420
+ 0.13
2421
+ 1.06
2422
+ Debris disk
2423
+ Gaia DR2 6010590577947703936
2424
+ 0.61
2425
+ 3.79
2426
+ Evolved disk
2427
+ 2MASS J15414827-3501458
2428
+ 0.39
2429
+ 1.16
2430
+ Debris disk
2431
+ UCAC4 273-083363
2432
+ 0.4
2433
+ 1.86
2434
+ Debris disk
2435
+ Gaia DR2 6014269268967059840
2436
+ 0.89
2437
+ 3.58
2438
+ Evolved disk
2439
+ Notes. The overall SED of 2MASS J15361110-3444473 may be affected by a possible unresolved M8-type companion.
2440
+ work and the Lupus I core members. In order to understand
2441
+ whether two objects with similar kinematic properties are
2442
+ gravitationally bound, we calculated their total velocity dif-
2443
+ ference (∆v) and compared it with the maximum total ve-
2444
+ locity difference (∆vmax) as a function of projected sepa-
2445
+ ration between the two binary components, suggested by
2446
+ Andrews et al. (2017). If ∆v exceeds ∆vmax, we do not ex-
2447
+ pect the two targets to be gravitationally bound. It should
2448
+ be noted, however, that the theoretical maximum velocity
2449
+ difference modeled by Andrews et al. (2017) is only for bina-
2450
+ ries of total mass 10 M⊙ in circular orbits. We summarize
2451
+ our results on identifying wide companions candidates in
2452
+ the Lupus I cloud as follows:
2453
+ Sz 70 and Sz 71 – Same as the GQ Lup triple system
2454
+ (Alcal´a et al. 2020), Sz 70 and Sz 71 (GW Lup) are located
2455
+ on the main filament of Lupus I. Sz 70 lies at a separation of
2456
+ 32.32 arcseconds from GW Lup, and in between these ob-
2457
+ jects lies the X-ray source [KWS97] Lupus I 37 (Krautter
2458
+ et al. 1997) at a separation of 24.23 arcseconds from Sz 70.
2459
+ We conducted a chance projection study in Alcal´a et al.
2460
+ (2020, Appendix E), which was focused on understanding
2461
+ how probable it is to find a field object around a genuine
2462
+ member of Lupus I, lying on the same filament where GQ
2463
+ Lup stellar system and Sz 70/Sz 71 are located. The linear
2464
+ density of this filament is 0.0024 objects/arcsec, or an av-
2465
+ erage object separation of 418 arcsec, which is 13 times the
2466
+ observed separation between Sz 70 and Sz 71. As exhibited
2467
+ in Fig. 12, Sz 70 and Sz 71 do not qualify as gravitation-
2468
+ ally bound stars, but we would like to emphasize that the
2469
+ test proposed by Andrews et al. (2017) is only valid for
2470
+ gravitationally bound binaries, and not systems of higher
2471
+ multiplicities (if this is the case for this stellar system).
2472
+ Hence, we would consider this case as a wide companion
2473
+ candidate that cannot be confirmed or ruled out according
2474
+ to the available information.
2475
+ TYC
2476
+ 7335-550-1
2477
+ and
2478
+ 2MASS
2479
+ J15361110-
2480
+ 3444473 – As discussed in Sect. 4, 2MASS J15361110-
2481
+ 3444473 might be an unresolved binary, composed of an
2482
+ M6 (VIS spectrum) and an M8 (NIR spectrum) star. The
2483
+ RV calculated for this target based on the ROTFIT code
2484
+ is obtained by cross-correlations conducted on the VIS
2485
+ spectrum of this target, which is also used for calculating
2486
+ the maximum velocity difference between TYC 7335-550-1
2487
+ and 2MASS J15361110-3444473. As exhibited in Fig. 12,
2488
+ the two objects can be gravitationally bound. However,
2489
+ Fig. 12: Log-log plot of total velocity difference ∆v (km/s)
2490
+ versus projected separation s (au) for the wide companion
2491
+ candidates analyzed in this work, in addition to the genuine
2492
+ wide companions GQ Lup and GQ Lup C. ∆vmax (km/s)
2493
+ (orange line) indicates the maximum total velocity differ-
2494
+ ence that bound binaries with a total mass equal to 10 M⊙
2495
+ in circular orbits can possess (Andrews et al. 2017). Each
2496
+ point is marked as one of the wide companion candidates
2497
+ involved. For the detailed information, see Tables 12 and
2498
+ 13.
2499
+ TYC 7335-550-1 has an age of ∼ 4 Myr and 2MASS
2500
+ J15361110-3444473 an age of ∼ 9 Myr, which states
2501
+ the two stellar systems are probably not coeval. Also,
2502
+ unlike TYC 7335-550-1, we could not determine whether
2503
+ 2MASS J15361110-3444473 is a member of Lupus I due to
2504
+ many uncertainties explained earlier. Hence, any further
2505
+ comments on its physical association with TYC 7335-550-1
2506
+ would be misleading and inconclusive.
2507
+ Sz 65 and Sz 66 – At a separation of 6.45 arcseconds,
2508
+ with ∆V = 5.26±2.69 km/s, Sz 65 and Sz 66 (although
2509
+ coeval) according to the test suggested by Andrews et al.
2510
+ (2017) are not gravitationally bound. There are no other
2511
+ objects located in a close separation with respect to either
2512
+ Sz 65 or Sz 66. Hence, we rule out the possibility of Sz 65
2513
+ and Sz 66 as wide companion candidates.
2514
+ HT Lup A-B-C – This stellar system is located in
2515
+ an over-crowded region on the same filament of Lupus I
2516
+ as GQ Lup stellar system. In Gaia DR2 catalog, HT Lup
2517
+ 15
2518
+
2519
+ 1.4
2520
+ 1.2
2521
+ 1
2522
+ (km/s)
2523
+ 0.8
2524
+ (△ v)
2525
+ 0.6
2526
+ 0.4
2527
+ 0.2
2528
+ 0
2529
+ -0.2
2530
+ 2.6
2531
+ 2.8
2532
+ 3
2533
+ 3.2
2534
+ 3.4
2535
+ 3.6
2536
+ 3.8
2537
+ 4
2538
+ log s (au)
2539
+ GQLupC
2540
+ SZ 66
2541
+ HT Lup
2542
+ Sz 70
2543
+ TYC 7335-550-1
2544
+ △ Vmax (km/s)Majidi et al.: New members of the Lupus I cloud
2545
+ Table 12: Kinematic properties of the Lupus I members from this work (measurement errors are displayed in parenthesis).
2546
+ Name
2547
+ α (J2000)
2548
+ δ (J2000)
2549
+ ϖ
2550
+ µα∗
2551
+ µδ
2552
+ RV
2553
+ Age
2554
+ ∆V
2555
+ δ∆V
2556
+ S
2557
+ (h:m:s)
2558
+ (d:m:s)
2559
+ (mas)
2560
+ (mas/yr)
2561
+ (mas/yr)
2562
+ (km/s)
2563
+ (Myr)
2564
+ (km/s)
2565
+ (km/s)
2566
+ (′′)
2567
+ Sz 71/GW LUP∗
2568
+ 15 46 44.73
2569
+ –34 30 35.68
2570
+ 6.41(0.06)
2571
+ –14.03(0.10)
2572
+ –23.36(0.07)
2573
+ –3.30(1.90)
2574
+ 2.0
2575
+ 6.07
2576
+ 3.24
2577
+ 32.32
2578
+ Sz 70
2579
+ 15 46 42.99
2580
+ –34 30 11.55
2581
+ 6.09(0.21)
2582
+ –12.58(0.39)
2583
+ –22.16(0.25)
2584
+ 1.1(2.6)
2585
+ 0.5
2586
+ 2MASS J15361110-3444473
2587
+ 15 36 11.09
2588
+ –34 44 47.82
2589
+ 5.83(0.29)
2590
+ –13.56(0.29)
2591
+ –20.21(0.23)
2592
+ 6.9(2.6)
2593
+ 9.77
2594
+ 4.72
2595
+ 3.47
2596
+ 16.28
2597
+ TYC 7335-550-1
2598
+ 15 36 11.55
2599
+ –34 45 20.54
2600
+ 6.26(0.07)
2601
+ –13.93(2.43)
2602
+ –19.51(1.01)
2603
+ 2.6(2.0)
2604
+ 3.55
2605
+ ∗ RV obtained by Frasca et al. (2017).
2606
+ Table 13: Core members of Lupus I sharing similar kinematic properties (measurement errors are displayed in parenthesis).
2607
+ Name
2608
+ α (J2000)
2609
+ δ (J2000)
2610
+ ϖ
2611
+ µα∗
2612
+ µδ
2613
+ RV
2614
+ Age
2615
+ ∆V
2616
+ δ∆V
2617
+ S
2618
+ (h:m:s)
2619
+ (d:m:s)
2620
+ (mas)
2621
+ (mas/yr)
2622
+ (mas/yr)
2623
+ (km/s)
2624
+ (Myr)
2625
+ (km/s)
2626
+ (km/s)
2627
+ (′′)
2628
+ Sz 65/V∗ IK Lup∗
2629
+ 15 39 27.77
2630
+ –34 46 17.21
2631
+ 6.44(0.05)
2632
+ –13.27(0.12)
2633
+ –22.24(0.07)
2634
+ –2.70(2.00)
2635
+ 1.9
2636
+ 5.26
2637
+ 2.69
2638
+ 6.41
2639
+ Sz 66∗
2640
+ 15 39 28.28
2641
+ –34 46 18.09
2642
+ 6.36(0.09)
2643
+ –13.60(0.19)
2644
+ –21.56(0.12)
2645
+ 2.40(1.80)
2646
+ 3.9
2647
+ Sz 68/HT LUP A-B∗
2648
+ 15 45 12.87
2649
+ –34 17 30.65
2650
+ 6.49(0.06)
2651
+ –13.63(0.13)
2652
+ –21.60(0.08)
2653
+ –4.30(1.80)
2654
+ 0.5
2655
+ 6.30
2656
+ 4.30
2657
+ 2.82
2658
+ CD-33 10685C/HT Lup C∗∗
2659
+ 15 45 12.67
2660
+ –34 17 29.37
2661
+ 6.55(0.19)
2662
+ –15.43(0.22)
2663
+ –20.27(0.15)
2664
+ 1.2(3.9)
2665
+
2666
+ ∗ RV and age obtained by Frasca et al. (2017).
2667
+ ∗∗ RV for this target is adopted from the optimal RV calculated by BANYAN Σ, considering HT Lup C is a member of UCL.
2668
+ A and B are not resolved separately, hence we assume the
2669
+ central star to be Sz 68 (or HT Lup A), composed of two
2670
+ unresolved stars, and adopt its stellar characteristics from
2671
+ Frasca et al. (2017). As genuine members of Lupus I, we
2672
+ assume all the components of this triple system to have an
2673
+ age consistent with the other bona fide members of Lupus I
2674
+ (≤ 2 Myr), and hence, to be coeval. However, the RVs used
2675
+ here should be taken with caution, both because HT Lup
2676
+ A-B are not resolved, and also because we have adopted
2677
+ the optimal RV calculated by BANYAN σ for HT Lup C
2678
+ considered as a member of UCL. With a separation of 2.82
2679
+ arc seconds, we have shown in Fig. 12 that as expected, this
2680
+ triple system is possibly gravitationally bound.
2681
+ We thus conclude that the possibility of Sz 70 & Sz 71
2682
+ being wide companions is rather low and for TYC 7335-
2683
+ 550-1 & 2MASS J15361110-344447, follow-up studies on
2684
+ 2MASS J15361110-344447 are required. As for the previ-
2685
+ ously identified members of Lupus I, we understood that
2686
+ Sz 65 and Sz 66 are not gravitationally bound, and HT
2687
+ Lup A-B-C are the components of a triple system.
2688
+ 6. Conclusion
2689
+ The main conclusions of this paper can be summarized as
2690
+ follows:
2691
+ – Out of the 12 objects fully characterized in this work,
2692
+ ten are recognized as genuine members of Lupus I, and
2693
+ two remain ambiguous in terms of stellar properties.
2694
+ – Out of the ten members of Lupus I analyzed in this
2695
+ work, three were recognized to be accretors (Sz 70,
2696
+ 2MASS J15551027-3455045, and 2MASS J16011870-
2697
+ 3437332), and Sz 70 and 2MASS J15551027-3455045 are
2698
+ likely to be surrounded by full disks. 2MASS J15551027-
2699
+ 3455045 is among the least massive accretors discovered
2700
+ so far in the Lupus complex, formed in full isolation and
2701
+ is an off-cloud member of Lupus I.
2702
+ – All of the three off-cloud targets included in our
2703
+ program
2704
+ turned
2705
+ out
2706
+ to
2707
+ be
2708
+ genuine
2709
+ members
2710
+ of
2711
+ Lupus I. These targets are 2MASS J15523574-3344288,
2712
+ 2MASS J15551027-3455045, and 2MASS J16011870-
2713
+ 3437332, with 2MASS J15551027-3455045 and 2MASS
2714
+ J16011870-3437332
2715
+ actively
2716
+ accreting
2717
+ matter,
2718
+ and
2719
+ 2MASS J15523574-3344288 mildly accreting matter.
2720
+ Further investigation in this area may reveal a diffused
2721
+ population of M dwarfs close to the main filament of
2722
+ Lupus I. We thus would like to acknowledge that this
2723
+ work also contributes to revealing the diffused popula-
2724
+ tions of M-dwarfs around the Lupus cloud by Comer´on
2725
+ (2008).
2726
+ – Although the sample studied in this work is small, we
2727
+ proved that many interesting targets in young star form-
2728
+ ing regions can escape Hα surveys due to various rea-
2729
+ sons. Hence, using the kinematic properties of candi-
2730
+ date YSOs can play a key role in identifying the gen-
2731
+ uine members of the young stellar associations. This is
2732
+ specifically true for genuine members such as TYC 7335-
2733
+ 550-1 that have Hα in absorption, and hence would not
2734
+ appear in Hα surveys.
2735
+ – We have identified a plausible binary system among
2736
+ the targets analyzed in this work, namely, TYC 7335-
2737
+ 550-1 and 2MASS J15361110-3444473. It is noteworthy,
2738
+ however, that 2MASS J15361110-3444473 might be an
2739
+ unresolved binary, and its kinematic properties (espe-
2740
+ cially RV) should be revised with next-generation spec-
2741
+ trographs (due to its intrinsic faintness).
2742
+ – All the above points considered, we conclude that char-
2743
+ acterizing only a small portion of our sample has proved
2744
+ to have a high success rate for discovering the new mem-
2745
+ bers of Lupus I. This shows that the spectroscopy of our
2746
+ entire sample of 43 objects could have resulted in a far
2747
+ more solid investigation of the region in terms of de-
2748
+ termining the disk fraction, stellar properties, and the
2749
+ number of new members of Lupus I.
2750
+ Acknowledgements. FZM is grateful to Eugene Vasiliev for fruitful
2751
+ discussions on how to use Gaia catalogs. AFR is grateful to Giovanni
2752
+ Catanzaro for helping us with the analysis of TYC 7335-550-1. FZM is
2753
+ funded by ”Bando per il Finanziamento di Assegni di Ricerca Progetto
2754
+ Dipartimenti di Eccellenza Anno 2020” and is co-funded in agree-
2755
+ ment with ASI-INAF n.2019-29-HH.0 from 26 Nov/2019 for ”Italian
2756
+ participation in the operative phase of CHEOPS mission” (DOR -
2757
+ Prof. Piotto). A.B. acknowledges partial funding by the Deutsche
2758
+ Forschungsgemeinschaft Excellence Strategy - EXC 2094 - 390783311
2759
+ and the ANID BASAL project FB210003. JMA, AFR, CFM, KBI
2760
+ and ECO acknowledge ��nancial support from the project PRIN-
2761
+ INAF 2019 “Spectroscopically Tracing the Disk Dispersal Evolution”
2762
+ 16
2763
+
2764
+ Majidi et al.: New members of the Lupus I cloud
2765
+ (STRADE). CFM is funded by the European Union under the
2766
+ European Union’s Horizon Europe Research & Innovation Programme
2767
+ 101039452 (WANDA). This work has also been supported by the
2768
+ PRIN-INAF 2019 ”Planetary systems at young ages (PLATEA)” and
2769
+ ASI-INAF agreement n.2018-16-HH.0. Views and opinions expressed
2770
+ are however those of the author(s) only and do not necessarily re-
2771
+ flect those of the European Union or the European Research Council.
2772
+ Neither the European Union nor the granting authority can be held
2773
+ responsible for them.
2774
+ This work has made use of data from the European Space
2775
+ Agency
2776
+ (ESA)
2777
+ mission
2778
+ Gaia
2779
+ (https://www.cosmos.esa.int/gaia),
2780
+ processed by the Gaia Data Processing and Analysis Consortium
2781
+ (DPAC,
2782
+ https://www.cosmos.esa.int/web/gaia/dpac/consortium).
2783
+ Funding for the DPAC has been provided by national institutions,
2784
+ in particular, the institutions participating in the Gaia Multilateral
2785
+ Agreement.
2786
+ This research has made use of the SIMBAD database and Vizier
2787
+ services, operated at CDS, Strasbourg, France. This research has
2788
+ made use of the services of the ESO Science Archive Facility.
2789
+ Finally, we would like to thank the anonymous referee who also
2790
+ contributed to this paper with his/her valuable comments.
2791
+ References
2792
+ Alcal´a, J. M., Natta, A., Manara, C., et al. 2014, A&A, 561, A2
2793
+ Alcal´a, J. M., Manara, C., Natta, A., et al. 2017, A&A, 600, 20
2794
+ Alcal´a, J. M., Manara, C., France, K., et al. 2019, A&A, 629, A108
2795
+ Alcal´a, J. M., Majidi, F. Z., Desidera, S., et al. 2020, A&A, 635, L1
2796
+ Alcal´a, J. M., Cupani, G., Evans, C., et al. 2022, Exp Astron, in press
2797
+ as part of the Special Issue
2798
+ Andrews, J. J., Chanam´e, J., Agueros, M. A., et al. 2017, MNRAS,
2799
+ 472, 675
2800
+ Asensio-Torres, R., Currie, T., Janson, M., et al. 2019, A&A, 622,
2801
+ A42
2802
+ Aoyama, Y., Marleau, G.-D., Ikoma, M., Mordasini, Ch. 2021, ApJ,
2803
+ 917, 30
2804
+ Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577,42
2805
+ Baratella, M., D’Orazi, V., Carraro, G., et al. 2020, A&A, 634, A34
2806
+ Beccari, G., Petr-Gotzens, M., Boffin, et al. 2018, The Messenger, 173,
2807
+ 17–21
2808
+ Benedettini, M., Pezzuto, S., Schisano, E. et al. 2018, A&A, 619, 52
2809
+ Betti, S. K., Follette, K. B., Ward-Duong, K., et al. 2022, ApJL, 935,
2810
+ L18
2811
+ Biazzo, K., Frasca, A., Alcal´a, J. M., et al. 2017, A&A, 605, A66
2812
+ Bildsten, L., Brown, E. F., Matzner, C. D., Ushomirsky, G. 1997, ApJ,
2813
+ 482, 442
2814
+ Binks, A. S., Jeffries, R. D., Sacco, G. G., et al. 2022, MNRAS, 513,
2815
+ 5727
2816
+ Bouvier, J., Lanzafame, A. C., Venuti, L., et al. 2016, A&A, 590, A78
2817
+ Bredall, J. W., Shappee, B. J., Gaidos, E., et al. 2020, MNRAS, 496,
2818
+ 3257
2819
+ Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
2820
+ Cayrel, R., Proceedings of of the Alpbach Summer school, 1988
2821
+ Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102
2822
+ Clough, S., Shephard, M., Mlawer, E., et al. 2005, JQSRT, 91, 233
2823
+ Comer´on, F. 2008, Handbook of Star Forming Regions, Volume II, 5,
2824
+ 295
2825
+ Comer´on, F., Spezzi, L., & L´opez Mart´ı, B. 2009, A&A, 500, 1045
2826
+ Comer´on, F., Spezzi, L., L´opez Mart´ı, B., & Mer´ın, B., 2013, A&A,
2827
+ 554, A86
2828
+ Constantino, T., Baraffe, I., Goffrey, T., et al. 2021, A&A, 654, A146
2829
+ Dotter, A. 2016, ApJS, 222, 8
2830
+ Dzib, S. A., Loinard, L., Ortiz-Le´on, G. N., et al. 2018, ApJ, 867, 151
2831
+ Eisner, J. A., Hillenbrand, L. A., White, R. J., et al. 2007, ApJ, 669,
2832
+ 1072
2833
+ Evans, N. J., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS,
2834
+ 181, 321- 350
2835
+ Feiden, G. A. 2016, A&A, 593, A99
2836
+ Frasca, A., Biazzo, K., Lanzafame, A. C., et al. 2015, A&A, 575, A4
2837
+ Frasca, A., Biazzo, K., Alcal´a, J. M., et al. 2017, A&A, 602, A33
2838
+ Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A,
2839
+ 616, A1
2840
+ Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A,
2841
+ 649, A1
2842
+ Gagn´e, J., Mamajek, E. E., Malo, L., et al. 2018a, ApJ, 856, 23
2843
+ Gangi,
2844
+ M.,
2845
+ Antoniucci,
2846
+ S.,
2847
+ Biazzo,
2848
+ K.
2849
+ et
2850
+ al.
2851
+ 2022,
2852
+ in
2853
+ press
2854
+ (arXiv:2208.14895)
2855
+ Galli, P. A. B., Bertout, C., Teixeira, R., Ducourant, C. 2013, A&A,
2856
+ 558, A77
2857
+ Galli, P. A. B., Bouy, H., Olivares, J., et al. 2020, A&A 643, A148
2858
+ Gullikson, K., Dodson-Robinson, S., & Kraus, A. 2014, AJ, 148, 53
2859
+ Herczeg, G. J., & Hillenbrand, L. A. 2014, ApJ, 786, 97
2860
+ Hughes, S.M. G., Gear, W. K., & Robson, E. I. 1994, ApJ, 428, 143
2861
+ Krautter, J., Wichmann, R., Schmit, J. H. M. M., et al. 1997, A&ASS,
2862
+ 123, 329
2863
+ Lazzoni, C., Gratton, R., Alcal´a, J., et al. 2020, A&A, 635, L11
2864
+ Majidi, F. Z., Desidera, S., Alcal´a, J. M. et al. et al. 2020, A&A, 644,
2865
+ A169
2866
+ Manara,
2867
+ C.F.,
2868
+ Ansdell,
2869
+ M.,
2870
+ Rosotti,
2871
+ G.P.,
2872
+ et
2873
+ al.
2874
+ 2022,
2875
+ arXiv:2203.09930 [astro-ph.SR]
2876
+ Manara, C. F., Testi, L., Rigliaco, E., et al. 2013, A&A, 551, A107
2877
+ Manara, C. F., Frasca, A., Alcal´a, J. M., et al. 2017b, A&A, 605, A86
2878
+ Manara, C. F., Prusti, T., Comeron, F., et al. 2018, A&A, 615, L1
2879
+ Mer´ın, B., Jørgensen, J., Spezzi, L., et al. 2008, ApJS, 177, 551
2880
+ Mortier, A., Oliveira, I., & van Dishoeck, E. F. 2011, MNRAS, 418,
2881
+ 1194
2882
+ Nardiello, D., Piotto, G., Deleuil, M., et al. 2020, MNRAS, 495, 4924
2883
+ Palla, F., Randich, S., Pavlenko, Ya. V., Flaccomio, E., Pallavicini,
2884
+ R. 2007, ApJ, 659, 41L
2885
+ Pastorelli, G., Marigo, P., Girardi, L., et al. 2019, MNRAS, 485, 5666
2886
+ Pastorelli, G., Marigo, P., Girardi, L., et al. 2020, MNRAS, 498, 3283
2887
+ Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
2888
+ Pecaut, M. J., Mamajek, E. E. 2013, ApJS, 208, 9
2889
+ Pecaut, M. J., Mamajek, E. E. 2016, MNRAS, 461, 794
2890
+ Prisinzano, L., Damiani, F., Sciortino, S. et al. 2022, ˚a, 664, 175
2891
+ Riddick, F., Roche, P., & Lucas, P. 2007, MNRAS, 381, 1067
2892
+ Rygl, K. L. J., Brunthaler, A., Sanna, A., et al. 2012, A&A, 539, A79
2893
+ Sacco, G. G., Randich, S., Franciosini, E., Pallavicini, R., & Palla, F.
2894
+ 2007, A&A, 462, L23
2895
+ Sicilia-Aguilar, A., Roccatagliata, V., Getman, K., et al. 2014, A&A,
2896
+ 562, A131
2897
+ Smette, A., Sana, H., Noll, S., et al. 2015, A&A,
2898
+ Stamatellos, D., Herczeg, G. J. 2015, MNRAS, 449, 3432
2899
+ Spezzi, L., Vernazza, P., Mer´ın, B., et al. 2011, ApJ, 730, 65
2900
+ Tody, D. 1986, SPIE Conf. Ser., 627, 733
2901
+ Tody, D. 1993, ASP Conf. Ser., 52, 173
2902
+ Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A&A, 460,
2903
+ 695–708
2904
+ Vernet, J., Dekker, H., D’Odorico, S., et al., 2011, A&A, 536, A105
2905
+ Vorobyov, E. I., & Basu, S. 2009, ApJ, 703, 922
2906
+ White, R. J., Basri, G. 2003, ApJ, 582, 1109
2907
+ Zari, E., Hashemi, H., Brown, A. G. A., et al. 2018, A&A, 620, A172
2908
+ Zhou, Y., Herczeg, G. J., Kraus, A. L. et al. 2014, ApJ, 783, 17
2909
+ 17
2910
+
2911
+ Majidi et al.: New members of the Lupus I cloud
2912
+ Appendix A: Candidate members of Lupus I
2913
+ As we explained in Sect. 2, we proposed 43 objects to be ob-
2914
+ served with X-Shooter. Twelve out of these 43 objects were
2915
+ observed during a filler program, and in this work we fully
2916
+ characterized them. The rest of our targets in this sam-
2917
+ ple that were not observed are listed in Table A.1. Among
2918
+ these targets, only 2MASS J15464664-3210006 (Eisner et
2919
+ al. 2007) is partly characterized, and 20 objects are identi-
2920
+ fied as candidate YSOs using Gaia DR2 (Zari et al. 2018).
2921
+ Appendix B: Age estimation and isochrones
2922
+ For estimating the age of our targets we used multiple
2923
+ isochrones for the reasons explained in Sect. 3.2. In this
2924
+ Appendix, we present the ages of our targets using various
2925
+ isochrones. We repeat that the ages estimated for all our
2926
+ targets were overestimated by PARSEC models in compar-
2927
+ ison with all the other models with a considerable gap. We
2928
+ thus decided to remove the results achieved by the PARSEC
2929
+ models to avoid confusion. This is, however, a well-known
2930
+ problem of PARSEC isochrones that they overestimate the
2931
+ age of cool stars, and all our targets fall in this category.
2932
+ Appendix C: 2MASS J15361110-3444473
2933
+ Fig. C.1: Flux-calibrated, extinction-corrected NIR spec-
2934
+ trum of 2MASS J15361110-3444473 (in black) with its BT-
2935
+ Settl model (Teff = 2500 K and log g = 4.5, in grey).
2936
+ 2MASS J15361110-3444473 is an M5.5 star according to
2937
+ its VIS spectrum (as we quantitatively indicated) and an
2938
+ M8 star based on its NIR spectrum (based on the fitting
2939
+ done with the BT-Settl model Teff = 2500 K and log g
2940
+ = 4.5, as exhibited in Fig. C.1), with a total extinction
2941
+ of AV = 1.75 mag. All the spectral typing and analysis
2942
+ that we have performed in this paper are based on the VIS
2943
+ spectrum of this target, especially the ROTFIT results are
2944
+ all based on the VIS spectrum. Hence, although we keep our
2945
+ analysis limited to the spectroscopy conducted on the VIS
2946
+ spectrum, we would like to emphasize that the possibility
2947
+ of this target being an unresolved binary (composed of two
2948
+ M dwarfs) with SpTs of M5.5 and M8 is viable. Considering
2949
+ the available data, we also cannot rule out the possibility
2950
+ that the star is heavily spotted instead of being a binary.
2951
+ Appendix D: Updates with Gaia DR3
2952
+ As stated in Sect. 2, we used the Gaia DR2 catalog to select
2953
+ our targets. Very recently, Gaia DR3 (Gaia Collaboration
2954
+ 2021) became public and gave us the opportunity to check
2955
+ the catalog for any possible changes or updates on the
2956
+ kinematic or stellar properties of our objects analyzed in
2957
+ this work. We did not find any considerable difference be-
2958
+ tween the kinematic properties reported in both catalogs.
2959
+ However, we report the highlights of our search using these
2960
+ two catalogs in the following:
2961
+ TYC 7335-550-1 – as obtained in this work, for TYC
2962
+ 7335-550-1 we obtained Teff = 4488 K, while in both Gaia
2963
+ DR2 and Gaia DR3 its reported temperature is 5000 K.
2964
+ The reported RV for TYC 7335-550-1 in Gaia DR2 is
2965
+ 1.20±1.65 km/s, which is better constrained than the RV
2966
+ we report here (2.6±2.0 km/s). As the wide companion can-
2967
+ didate of 2MASS J15361110-3444473, we recalculated their
2968
+ ∆v using the Gaia DR3 kinematic properties of TYC 7335-
2969
+ 550-1, and it resulted in ∆v = 5.34±3.30 (km/s) which is
2970
+ consistent with the previous ∆v = 4.72±3.47 (km/s). For
2971
+ both of these calculations, we use the RVs calculated by
2972
+ ROTFIT.
2973
+ Sz 70 – has a high RUWE in both catalogs (4.86), but
2974
+ we saw no signs of binarity in the spectrum of Sz 70. Using
2975
+ the kinematic properties of Sz 70 reported in Gaia DR3
2976
+ and those of Sz 71 (which is also updated in Gaia DR3),
2977
+ we recalculated their maximum velocity difference, and it
2978
+ resulted in ∆v = 8.36±3.24 (km/s), which is consistent with
2979
+ the ∆v = 6.07±3.24 (km/s) calculated based on Gaia DR2.
2980
+ 2MASS J15414827-3501458 – has a high RUWE
2981
+ (4.198) in both Gaia DR2 and Gaia DR3 catalogs, but we
2982
+ detected no signs of binarity in the spectrum of the object.
2983
+ We report that the kinematic properties of all our tar-
2984
+ gets (parallax and proper motions) are consistent within 3σ
2985
+ in the two catalogs. Also according to Manara et al. (2022),
2986
+ we do not expect the stellar physical parameters of our core
2987
+ sample to be changed with the astrometry reported in Gaia
2988
+ DR3.
2989
+ 18
2990
+
2991
+ -11
2992
+ Teff = 2500, log g = 4.5
2993
+ 2MASS|15361110-3444473
2994
+ -11.2
2995
+ nm-1)
2996
+ (erg s-1 cm-2 I
2997
+ 11.4
2998
+ 11.6
2999
+ log 入Flux
3000
+ 11.8
3001
+ -12
3002
+ -12.2
3003
+ 500
3004
+ 1000
3005
+ 1500
3006
+ 2000
3007
+ 2500
3008
+ 3000
3009
+ 3500
3010
+ 4000
3011
+ 入 (nm)Majidi et al.: New members of the Lupus I cloud
3012
+ Table A.1: Astrometric properties of the candidate Lupus I members that were not observed by X-Shooter, with their
3013
+ errors in parentheses.
3014
+ Name
3015
+ α (J2000)
3016
+ δ (J2000)
3017
+ ϖ
3018
+ µα∗
3019
+ µδ
3020
+ J
3021
+ (h:m:s)
3022
+ (d:m:s)
3023
+ (mas)
3024
+ (mas/yr)
3025
+ (mas/yr)
3026
+ (mag)
3027
+ 2MASS J15464664-3210006a
3028
+ 15 46 46.64
3029
+ –32 10 00.62
3030
+ 7.05(0.021)
3031
+ –19.47(0.023)
3032
+ –23.76(0.014)
3033
+ 11.22
3034
+ Gaia DR2 6013000844869745664
3035
+ 15 39 24.47
3036
+ –35 58 50.88
3037
+ 6.62(0.039)
3038
+ –18.00(0.081)
3039
+ –22.23(0.057)
3040
+ 10.11
3041
+ Gaia DR2 6013065853493820416b
3042
+ 15 43 15.62
3043
+ –35 39 38.18
3044
+ 6.88(0.015)
3045
+ –17.68(0.018)
3046
+ –24.51(0.012)
3047
+ 10.20
3048
+ Gaia DR2 6011737574730221568c
3049
+ 15 50 46.50
3050
+ –34 22 38.49
3051
+ 6.69(0.019)
3052
+ –16.20(0.020)
3053
+ –22.52(0.015)
3054
+ 10.74
3055
+ Gaia DR2 6012258330925877632d
3056
+ 15 53 36.13
3057
+ –33 31 02.60
3058
+ 6.92(0.016)
3059
+ –16.97(0.018)
3060
+ –24.57(0.016)
3061
+ 10.75
3062
+ Gaia DR2 6039383622075982848e
3063
+ 15 57 09.76
3064
+ –32 04 33.91
3065
+ 6.72(0.02)
3066
+ –14.24(0.023)
3067
+ –23.58(0.015)
3068
+ 10.56
3069
+ Gaia DR2 6011518462675791872f
3070
+ 15 48 13.16
3071
+ –35 43 31.08
3072
+ 6.62(0.023)
3073
+ –16.65(0.028)
3074
+ –24.31(0.023)
3075
+ 11.48
3076
+ Gaia DR2 6011797738632729216g
3077
+ 15 57 20.96
3078
+ –35 00 01.21
3079
+ 6.71(0.027)
3080
+ –16.29(0.033)
3081
+ –24.21(0.024)
3082
+ 11.65
3083
+ Gaia DR2 6014049985115937408
3084
+ 15 34 59.21
3085
+ –34 58 16.16
3086
+ 6.83(0.097)
3087
+ –17.76(0.16)
3088
+ –24.03(0.11)
3089
+ 12.16
3090
+ Gaia DR2 6014830844535625344h
3091
+ 15 47 58.08
3092
+ –33 46 59.53
3093
+ 6.84(0.027)
3094
+ –17.73(0.031)
3095
+ –24.48(0.025)
3096
+ 11.31
3097
+ Gaia DR2 6014224051546189568
3098
+ 15 34 42.05
3099
+ –34 17 48.09
3100
+ 6.66(0.098)
3101
+ –17.36(0.134)
3102
+ –23.67(0.094)
3103
+ 11.94
3104
+ Gaia DR2 6009936093645659136
3105
+ 15 43 49.43
3106
+ –36 48 38.64
3107
+ 6.94(0.13)
3108
+ –20.45(0.28)
3109
+ –22.89(0.19)
3110
+ 10.92
3111
+ Gaia DR2 6039633559115225344i
3112
+ 15 52 59.02
3113
+ –31 38 33.57
3114
+ 6.59(0.03)
3115
+ –18.34(0.036)
3116
+ –22.89(0.029)
3117
+ 11.93
3118
+ Gaia DR2 6013187040287810944j
3119
+ 15 37 53.31
3120
+ –35 55 12.42
3121
+ 6.74(0.027)
3122
+ –17.9(0.03)
3123
+ –24.08(0.024)
3124
+ 11.95
3125
+ Gaia DR2 6016139332082870272
3126
+ 15 39 25.88
3127
+ –32 10 04.68
3128
+ 6.42(0.40)
3129
+ –20.32(0.54)
3130
+ –23.65(0.37)
3131
+ 10.81
3132
+ Gaia DR2 6013126738951338624k
3133
+ 15 43 28.48
3134
+ –35 17 27.40
3135
+ 6.77(0.032)
3136
+ –17.67(0.035)
3137
+ –24.48(0.022)
3138
+ 11.91
3139
+ Gaia DR2 6013190201383772288
3140
+ 15 37 53.00
3141
+ –35 52 28.70
3142
+ 6.75(0.055)
3143
+ –19.08(0.13)
3144
+ –22.62(0.087)
3145
+ 12.22
3146
+ Gaia DR2 6013077192207599232m
3147
+ 15 43 11.42
3148
+ –35 26 34.43
3149
+ 6.78(0.032)
3150
+ –17.32(0.034)
3151
+ –24.29(0.025)
3152
+ 11.82
3153
+ Gaia DR2 6015181897983193728m
3154
+ 15 51 57.84
3155
+ –33 29 33.17
3156
+ 6.74(0.032)
3157
+ –16.22(0.039)
3158
+ –22.37(0.026)
3159
+ 12.03
3160
+ Gaia DR2 6014590429442468096m
3161
+ 15 45 06.91
3162
+ –35 06 21.73
3163
+ 6.99(0.036)
3164
+ –16.97(0.042)
3165
+ –23.09(0.029)
3166
+ 11.82
3167
+ Gaia DR2 6009995742152335232m
3168
+ 15 44 26.97
3169
+ –36 25 42.75
3170
+ 6.52(0.034)
3171
+ –18.30(0.043)
3172
+ –23.21(0.031)
3173
+ 11.82
3174
+ Gaia DR2 6011607694917034112m
3175
+ 15 50 00.76
3176
+ –35 29 19.71
3177
+ 7.23(0.044)
3178
+ –20.18(0.052)
3179
+ –25.32(0.034)
3180
+ 12.37
3181
+ Gaia DR2 6011695690208264320m
3182
+ 15 47 59.03
3183
+ –34 56 38.36
3184
+ 6.99(0.06)
3185
+ –17.93(0.069)
3186
+ –25.07(0.045)
3187
+ 12.69
3188
+ Gaia DR2 6011261726715424128
3189
+ 15 50 29.19
3190
+ –36 25 11.80
3191
+ 6.92(0.11)
3192
+ –17.08(0.23)
3193
+ –23.52(0.16)
3194
+ 13.32
3195
+ Gaia DR2 6015222957871475584
3196
+ 15 48 46.12
3197
+ –33 18 35.48
3198
+ 6.69(0.13)
3199
+ –19.21(0.26)
3200
+ –23.77(0.17)
3201
+ 13.77
3202
+ Gaia DR2 6013030875279571328
3203
+ 15 41 55.22
3204
+ –35 59 35.36
3205
+ 6.97(0.12)
3206
+ –17.12(0.24)
3207
+ –25.52(0.14)
3208
+ 13.17
3209
+ Gaia DR2 6014112107523072640m
3210
+ 15 34 35.79
3211
+ –34 36 01.54
3212
+ 6.88(0.084)
3213
+ –16.89(0.087)
3214
+ –24.841(0.066)
3215
+ 13.14
3216
+ Gaia DR2 6012977136650130560m
3217
+ 15 39 48.47
3218
+ –36 13 48.07
3219
+ 6.94(0.10)
3220
+ –20.069(0.11)
3221
+ –23.61(0.069)
3222
+ 12.81
3223
+ Gaia DR2 6015141830223216640
3224
+ 15 50 19.17
3225
+ –33 50 07.12
3226
+ 6.84(0.15)
3227
+ –17.29(0.29)
3228
+ –26.46(0.19)
3229
+ 13.92
3230
+ Gaia DR2 6011581856393988352n
3231
+ 15 48 06.26
3232
+ –35 15 48.15
3233
+ 6.05(0.07)
3234
+ –12.22(0.084)
3235
+ –21.04(0.057)
3236
+ 10.56
3237
+ Gaia DR2 6016191485871670400
3238
+ 15 38 35.63
3239
+ –32 02 37.66
3240
+ 6.53(0.26)
3241
+ –18.90(0.39)
3242
+ –23.38(0.28)
3243
+ 14.35
3244
+ a 2MASS J15464664-3210006 is an M2, T Tauri star (Eisner et al. 2007).
3245
+ b aka UCAC4 272-080482, this target is a YSO candidate (Zari et al. 2018).
3246
+ c aka UCAC4 279-083370, this target is a YSO candidate (Zari et al. 2018).
3247
+ d aka UCAC4 283-086052, this target is a YSO candidate (Zari et al. 2018).
3248
+ e aka RX J1557.1-3204A, this target is a YSO candidate (Zari et al. 2018).
3249
+ f aka UCAC4 272-081081, this target is a YSO candidate (Zari et al. 2018).
3250
+ g aka UCAC4 275-083957, this target is a YSO candidate (Zari et al. 2018).
3251
+ h aka UCAC4 282-082547, this target is a YSO candidate (Zari et al. 2018).
3252
+ i aka UCAC4 292-084899, this target is a YSO candidate (Zari et al. 2018).
3253
+ j aka UCAC4 271-080669, this target is a YSO candidate (Zari et al. 2018).
3254
+ k aka UCAC4 274-080590, this target is a YSO candidate (Zari et al. 2018).
3255
+ l aka UCAC4 274-080590, this target is a YSO candidate (Zari et al. 2018).
3256
+ m This target is a YSO candidate (Zari et al. 2018).
3257
+ n aka UCAC4 274-081081, this target is a YSO candidate (Zari et al. 2018).
3258
+ 19
3259
+
3260
+ Majidi et al.: New members of the Lupus I cloud
3261
+ Table B.1: Ages of our targets estimated using various isochrones. The ages are all in Myr.
3262
+ Name
3263
+ Dartmouth
3264
+ Dartmouth
3265
+ MIST
3266
+ Baraffe
3267
+ std
3268
+ mag
3269
+ models
3270
+ 2MASS J15383733-3422022
3271
+ 11
3272
+ 20
3273
+ 12.6
3274
+ 10.7
3275
+ Sz 70
3276
+ <1
3277
+ 1
3278
+ <0.25
3279
+ 0.5
3280
+ TYC 7335-550-1
3281
+ 3
3282
+ 5
3283
+ 3.5
3284
+ 3.55
3285
+ 2MASS J15361110-3444473
3286
+ 9
3287
+ 20
3288
+ 9
3289
+ 9.77
3290
+ 2MASS J15523574-3344288
3291
+ 8
3292
+ 13
3293
+ 8
3294
+ 6.3
3295
+ 2MASS J15551027-3455045
3296
+ -
3297
+ -
3298
+ -a
3299
+ 1.7
3300
+ 2MASS J16011870-3437332
3301
+ 9.5
3302
+ 14
3303
+ 9.5
3304
+ 9.55
3305
+ UCAC4 269-083981
3306
+ 4.5
3307
+ 8
3308
+ 3.5
3309
+ 4.2
3310
+ Gaia DR2 6010590577947703936
3311
+ 8
3312
+ 14
3313
+ 8
3314
+ 8.8
3315
+ 2MASS J15414827-3501458
3316
+ 2.5
3317
+ 3
3318
+ 1.78
3319
+ 1.82
3320
+ UCAC4 273-083363
3321
+ 4.5
3322
+ 8
3323
+ 3.5
3324
+ 3.63
3325
+ Gaia DR2 6014269268967059840
3326
+ 8
3327
+ 13
3328
+ 8
3329
+ 6.46
3330
+ a None of the three isochrones used here were able to reproduce the stellar parameters of this target due to its dimness.
3331
+ 20
3332
+
FtE3T4oBgHgl3EQfVwq1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JNFRT4oBgHgl3EQfzTgG/content/tmp_files/2301.13649v1.pdf.txt ADDED
@@ -0,0 +1,636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Studies of New Physics in 𝑩0
2
+ 𝒒 − ¯𝑩0
3
+ 𝒒 Mixing and
4
+ Implications for Leptonic Decays
5
+ Kristof De Bruyn,𝑎,𝑏 Robert Fleischer,𝑎,𝑐 Eleftheria Malami𝑎,𝑑,∗ and Philine van Vliet𝑒
6
+ 𝑎Nikhef,
7
+ Science Park 105, 1098 XG Amsterdam, Netherlands
8
+ 𝑏Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,
9
+ 9747 Groningen, Netherlands
10
+ 𝑐Faculty of Science, Vrije Universiteit Amsterdam,
11
+ 1081 HV Amsterdam, Netherlands
12
+ 𝑑Center for Particle Physics Siegen (CPPS), Theoretische Physik 1, Universität Siegen,
13
+ D-57068 Siegen, Germany
14
+ 𝑒Deutsches Elektronen-Synchrotron DESY,
15
+ Notkestr. 85, 22607 Hamburg, Germany
16
+ E-mail: Eleftheria.Malami@uni-siegen.de
17
+ The phenomenon of 𝐵0
18
+ 𝑞- ¯𝐵0
19
+ 𝑞 mixing (𝑞 = 𝑑, 𝑠) provides a sensitive probe for physics beyond the
20
+ Standard Model. We have a careful look at the determination of the Unitarity Triangle apex, which
21
+ is needed for the Standard Model predictions of the 𝐵𝑞 mixing parameters, and explore how much
22
+ space for New Physics is left through the current data. We study the impact of tensions between
23
+ inclusive and exclusive determinations of the CKM matrix elements |𝑉𝑢𝑏| and |𝑉𝑐𝑏|, and focus on
24
+ the 𝛾 angle extraction. We present various future scenarios and discuss the application of these
25
+ results for leptonic rare 𝐵 decays, which allows us to minimise the CKM parameter impact in
26
+ the New Physics searches. Performing future projections, we explore and illustrate the impact of
27
+ increased precision on key input quantities. It will be exciting to see how more precise data in the
28
+ future high-precision era of flavour physics can lead to a much sharper picture.
29
+ 8th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2022)
30
+ 7-11 November, 2022
31
+ Baden-Baden, Germany
32
+ ∗Speaker
33
+ © Copyright owned by the author(s) under the terms of the Creative Commons
34
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
35
+ https://pos.sissa.it/
36
+ arXiv:2301.13649v1 [hep-ph] 31 Jan 2023
37
+
38
+ Studies of New Physics in 𝐵0
39
+ 𝑞 − ¯𝐵0
40
+ 𝑞 Mixing and Implications for Leptonic Decays
41
+ Eleftheria Malami
42
+ 1.
43
+ Introduction
44
+ The phenomenon of 𝐵0
45
+ 𝑞- ¯𝐵0
46
+ 𝑞 mixing (where 𝑞 = 𝑑, 𝑠) arises only from loop processes in the
47
+ Standard Model (SM) and is sensitive to possible New Physics (NP) contributions, which could
48
+ enter the loop topologies or even at the tree level, for instance in 𝑍 ′ models. Associated to the mixing
49
+ phenomenon are the mixing parameters and the CP-violating phases for which we have impressive
50
+ experimental data. In this presentation, we follow Ref. [1] and explore the space allowed for NP
51
+ by current measurements and the state-of-the-art parameters. In addition, we point out interesting
52
+ connections to the studies of leptonic rare 𝐵 decays.
53
+ In order to determine the parameter space of possible NP effects to 𝐵0
54
+ 𝑞– ¯𝐵0
55
+ 𝑞 mixing, we have to
56
+ compare the SM predictions of the mixing parameters with the corresponding experimental values.
57
+ For these SM predictions, a careful analysis of the Unitarity Triangle (UT) apex is required. We
58
+ pay special attention to the different determinations of the Cabibbo-Kobayashi-Maskawa (CKM)
59
+ parameters and the tensions that arise between the extractions of the |𝑉𝑢𝑏| and |𝑉𝑐𝑏| matrix elements
60
+ through inclusive and exclusive semileptonic 𝐵 meson decays. These longstanding tensions have a
61
+ profound impact on the whole analysis.
62
+ 2.
63
+ Unitarity Triangle
64
+ Using the parametrisation of the Particle Data Group (PDG), the UT apex is given as [2]:
65
+ 𝑅𝑏 𝑒𝑖𝛾 = ¯𝜌 + 𝑖 ¯𝜂 ,
66
+ ¯𝜌 ≡
67
+
68
+ 1 − (𝜆2/2)
69
+
70
+ 𝜌 ,
71
+ ¯𝜂 ≡
72
+
73
+ 1 − (𝜆2/2)
74
+
75
+ 𝜂 .
76
+ (1)
77
+ Here, 𝜌, 𝜂 and 𝜆 are the Wolfenstein parameters [3, 4], 𝑅𝑏 is the side from the origin to the apex of
78
+ the UT, defined with the help of the CKM matrix elements 𝜆 ≡ |𝑉𝑢𝑠|, |𝑉𝑢𝑏| and |𝑉𝑐𝑏| as:
79
+ 𝑅𝑏 ≡
80
+
81
+ 1 − 𝜆2
82
+ 2
83
+ � 1
84
+ 𝜆
85
+ ����
86
+ 𝑉𝑢𝑏
87
+ 𝑉𝑐𝑏
88
+ ���� =
89
+ √︃
90
+ ¯𝜌 2 + ¯𝜂 2 ,
91
+ (2)
92
+ and 𝛾 ≡ arg �−𝑉𝑢𝑑𝑉∗
93
+ 𝑢𝑏/𝑉𝑐𝑑𝑉∗
94
+ 𝑐𝑏
95
+ � is the angle between the 𝑅𝑏 side and the UT basis.
96
+ 2.1 Determining the UT Apex Utilising 𝛾 and 𝑅𝑏
97
+ In this subsection, we work in the SM and are interested in obtaining the UT apex in a way
98
+ that is not affected by possible NP in 𝐵0
99
+ 𝑞- ¯𝐵0
100
+ 𝑞 mixing. One way of determining the apex is utilising
101
+ the side 𝑅𝑏 and the angle 𝛾, which can both be determined from decays that proceed only via tree
102
+ decays. The value of 𝛾 can be determined either from 𝐵 → 𝐷𝐾 decays or from a 𝐵 → 𝜋𝜋, 𝜌𝜋, 𝜌𝜌
103
+ isospin analysis.
104
+ More specifically, one option is to use the time-dependent 𝐵0
105
+ 𝑠 → 𝐷∓
106
+ 𝑠 𝐾± system, where mixing-
107
+ induced CP violation plays a key role. Through interference effects caused by 𝐵0
108
+ 𝑞- ¯𝐵0
109
+ 𝑞 mixing, the
110
+ CP asymmetry parameters allow the determination of 𝜙𝑠 + 𝛾, where 𝜙𝑠 is the 𝐵0
111
+ 𝑠- ¯𝐵0
112
+ 𝑠 mixing phase.
113
+ Since 𝜙𝑠 is determined through the 𝐵0
114
+ 𝑠 → 𝐽/𝜓𝜙 channel, including penguin corrections [5, 6], 𝛾
115
+ can be obtained in a theoretically clean way [7, 8]. However, the surprisingly large value arising in
116
+ this case still needs to be further explored. An alternative way of getting the 𝛾 value is using the
117
+ time-independent 𝐵 → 𝐷𝐾 transitions, where the sensitivity to 𝛾 comes from direct CP violation
118
+ [9]. Last but not least, another interesting system is provided by 𝐵 → 𝜋𝜋, 𝜌𝜋, 𝜌𝜌 modes [10, 11],
119
+ 2
120
+
121
+ Studies of New Physics in 𝐵0
122
+ 𝑞 − ¯𝐵0
123
+ 𝑞 Mixing and Implications for Leptonic Decays
124
+ Eleftheria Malami
125
+ which usually are used to determine 𝛼 from an isospin analysis. Actually this value corresponds to
126
+ 𝛾 when we use the 𝐵0
127
+ 𝑑- ¯𝐵0
128
+ 𝑑 mixing phase 𝜙𝑑, determined from 𝐵0
129
+ 𝑑 → 𝐽/𝜓𝐾0 [5, 6], taking penguin
130
+ effects into account. Thus, we can convert the result 𝜙𝑑 + 2𝛾 into 𝛾. The value from the latter case
131
+ is in good agreement with the one coming from 𝐵 → 𝐷𝐾 modes. Therefore, for our analysis, we
132
+ average these two results [1]:
133
+ 𝛾avg = (68.4 ± 3.4)◦.
134
+ (3)
135
+ Regarding 𝑅𝑏 there are tensions between the various theoretical and experimental approaches.
136
+ Even though there are different determinations of the |𝑉𝑢𝑠| element and the tensions between them
137
+ are intriguing, they only have a negligible impact on NP studies in neutral 𝐵𝑞 mixing. Thus, we
138
+ choose to work with the value |𝑉𝑢𝑠| = 0.22309 ± 0.00056 [12, 13]. Contrary to the |𝑉𝑢𝑠| case, the
139
+ deviations between determinations of |𝑉𝑢𝑏| and |𝑉𝑐𝑏| from inclusive and exclusive semileptonic 𝐵
140
+ decays, which are given as follows [14, 15]:
141
+ |𝑉𝑢𝑏|incl = (4.19 ± 0.17) × 10−3 ,
142
+ |𝑉𝑢𝑏|excl = (3.51 ± 0.12) × 10−3 ,
143
+ differing by 3.9 𝜎,
144
+ (4)
145
+ |𝑉𝑐𝑏|incl = (42.16 ± 0.50) × 10−3 ,
146
+ |𝑉𝑐𝑏|excl = (39.10 ± 0.50) × 10−3 ,
147
+ differing by 4.3 𝜎,
148
+ (5)
149
+ have a significant impact on the allowed parameter space for NP in 𝐵0
150
+ 𝑞- ¯𝐵0
151
+ 𝑞 mixing. Trying to
152
+ understand and resolve these tensions, another case is studied in the literature [15–18], which is a
153
+ hybrid scenario combining the exclusive |𝑉𝑢𝑏| with the inclusive |𝑉𝑐𝑏| determination. Therefore,
154
+ we consider for the rest of our analysis all these three cases. The corresponding 𝑅𝑏 results are:
155
+ 𝑅𝑏,incl = 0.434 ± 0.018 ,
156
+ 𝑅𝑏,excl = 0.392 ± 0.014 ,
157
+ 𝑅𝑏,hybrid = 0.364 ± 0.013 .
158
+ (6)
159
+ Making a fit to 𝑅𝑏 and 𝛾, the UT apex is determined [1]:
160
+ Incl.
161
+ ¯𝜌 = 0.160 ± 0.025 ,
162
+ ¯𝜂 = 0.404 ± 0.022 ,
163
+ (7)
164
+ Excl.
165
+ ¯𝜌 = 0.144 ± 0.022 ,
166
+ ¯𝜂 = 0.365 ± 0.018 ,
167
+ (8)
168
+ Hybrid
169
+ ¯𝜌 = 0.134 ± 0.021 ,
170
+ ¯𝜂 = 0.338 ± 0.017 .
171
+ (9)
172
+ The results are illustrated in Fig. 1. The plot also shows the hyperbola coming from the |𝜀𝐾 |
173
+ observable, which is related to indirect CP violation in the neutral kaon system and is highly
174
+ sensitive to the |𝑉𝑐𝑏| numerical value. The hybrid case gives the most consistent picture of the
175
+ UT apex within the SM, which illustrates the strong dependence on |𝑉𝑐𝑏|. In the future, this could
176
+ help us to understand the inclusive-exclusive puzzle, if NP in the kaon system can be controlled or
177
+ ignored.
178
+ 2.2 Determining the UT Apex Utilising 𝑅𝑏 and 𝑅𝑡
179
+ An alternative way of determining the UT apex is utilising the 𝑅𝑡 side, which is defined as:
180
+ 𝑅𝑡 ≡ |𝑉𝑡𝑑𝑉𝑡𝑏/𝑉𝑐𝑑𝑉𝑐𝑏| =
181
+ √︃
182
+ (1 − ¯𝜌)2 + ¯𝜂 2.
183
+ (10)
184
+ 3
185
+
186
+ Studies of New Physics in 𝐵0
187
+ 𝑞 − ¯𝐵0
188
+ 𝑞 Mixing and Implications for Leptonic Decays
189
+ Eleftheria Malami
190
+ 0
191
+ 0.2
192
+ 0.4
193
+ 0.6
194
+ 0.8
195
+ 1
196
+ ρ
197
+ 0
198
+ 0.1
199
+ 0.2
200
+ 0.3
201
+ 0.4
202
+ 0.5
203
+ 0.6
204
+ 0.7
205
+ η
206
+ avg
207
+ γ
208
+ b
209
+ R
210
+ Fit Solution
211
+ |
212
+ K
213
+ ε|
214
+ contours hold 39%, 87% CL
215
+ | from Kl3
216
+ us
217
+ & |V
218
+ b
219
+ Incl. R
220
+ 0
221
+ 0.2
222
+ 0.4
223
+ 0.6
224
+ 0.8
225
+ 1
226
+ ρ
227
+ 0
228
+ 0.1
229
+ 0.2
230
+ 0.3
231
+ 0.4
232
+ 0.5
233
+ 0.6
234
+ 0.7
235
+ η
236
+ avg
237
+ γ
238
+ b
239
+ R
240
+ Fit Solution
241
+ |
242
+ K
243
+ ε|
244
+ contours hold 39%, 87% CL
245
+ | from Kl3
246
+ us
247
+ & |V
248
+ b
249
+ Excl. R
250
+ 0
251
+ 0.2
252
+ 0.4
253
+ 0.6
254
+ 0.8
255
+ 1
256
+ ρ
257
+ 0
258
+ 0.1
259
+ 0.2
260
+ 0.3
261
+ 0.4
262
+ 0.5
263
+ 0.6
264
+ 0.7
265
+ η
266
+ avg
267
+ γ
268
+ b
269
+ R
270
+ Fit Solution
271
+ |
272
+ K
273
+ ε|
274
+ contours hold 39%, 87% CL
275
+ | from Kl3
276
+ us
277
+ & |V
278
+ b
279
+ Hybrid R
280
+ Figure 1: Determination of the UT apex from the 𝑅𝑏 and 𝛾 measurements for the inclusive (left), exclusive
281
+ (right) and hybrid (botttom) case [1].
282
+ In this case, only information on the two UT sides 𝑅𝑏 and 𝑅𝑡 is required without needing any
283
+ information from 𝛾. However, in order to get the 𝑅𝑡, we have to assume SM expressions for the
284
+ mixing parameters Δ𝑚𝑑 and Δ𝑚𝑠. The numerical predictions are given in [1].
285
+ The side 𝑅𝑡 can be written as
286
+ 𝑅𝑡 = 1
287
+ 𝜆
288
+ ����
289
+ 𝑉𝑡𝑑
290
+ 𝑉𝑡𝑠
291
+ ����
292
+
293
+ 1 − 𝜆2
294
+ 2 (1 − 2 ¯𝜌)
295
+
296
+ + O
297
+
298
+ 𝜆4�
299
+ ,
300
+ (11)
301
+ where
302
+ ����
303
+ 𝑉𝑡𝑑
304
+ 𝑉𝑡𝑠
305
+ ���� = 𝜉
306
+ √︄
307
+ 𝑚𝐵𝑠Δ𝑚SM
308
+ 𝑑
309
+ 𝑚𝐵𝑑Δ𝑚SM
310
+ 𝑠
311
+ .
312
+ (12)
313
+ Here the SU(3)-breaking parameter 𝜉 is the ratio of bag parameters and decay constants of the
314
+ 𝐵𝑑 and the 𝐵𝑠 systems that can be calculated on the lattice. The advantage of the ratio is that
315
+ uncertainties cancel, making it cleaner than using individual results.
316
+ Making a fit to the 𝑅𝑏 and 𝑅𝑡 sides, we obtain [1]:
317
+ Incl.
318
+ ¯𝜌 = 0.180 ± 0.014 ,
319
+ ¯𝜂 = 0.395 ± 0.020 ,
320
+ (13)
321
+ Excl.
322
+ ¯𝜌 = 0.163 ± 0.013 ,
323
+ ¯𝜂 = 0.357 ± 0.017 ,
324
+ (14)
325
+ Hybrid
326
+ ¯𝜌 = 0.153 ± 0.013 ,
327
+ ¯𝜂 = 0.330 ± 0.016 .
328
+ (15)
329
+ We note that the UT apex determinations relying on 𝛾 are a factor 2 less precise than those without
330
+ information from 𝛾. However, the determination through 𝑅𝑏 and 𝑅𝑡 requires the SM expressions
331
+ of Δ𝑚𝑑 and Δ𝑚𝑠, thus ignores possible NP contributions in 𝐵0
332
+ 𝑞- ¯𝐵0
333
+ 𝑞 mixing.
334
+ 4
335
+
336
+ Studies of New Physics in 𝐵0
337
+ 𝑞 − ¯𝐵0
338
+ 𝑞 Mixing and Implications for Leptonic Decays
339
+ Eleftheria Malami
340
+ 0
341
+ 50
342
+ 100
343
+ 150
344
+ 200
345
+ 250
346
+ 300
347
+ 350
348
+
349
+ [
350
+ σ
351
+ 0
352
+ 0.1
353
+ 0.2
354
+ 0.3
355
+ 0.4
356
+ 0.5
357
+ κ
358
+ System (Scenario I)
359
+ d
360
+ B
361
+ System (Scenario I)
362
+ s
363
+ B
364
+ FUNP (Scenario II)
365
+ contours hold 39%, 87% CL
366
+ | from Kl3
367
+ us
368
+ & |V
369
+ b
370
+ Incl. R
371
+ 0
372
+ 50
373
+ 100
374
+ 150
375
+ 200
376
+ 250
377
+ 300
378
+ 350
379
+
380
+ [
381
+ σ
382
+ 0
383
+ 0.1
384
+ 0.2
385
+ 0.3
386
+ 0.4
387
+ 0.5
388
+ κ
389
+ System (Scenario I)
390
+ d
391
+ B
392
+ System (Scenario I)
393
+ s
394
+ B
395
+ FUNP (Scenario II)
396
+ contours hold 39%, 87% CL
397
+ | from Kl3
398
+ us
399
+ & |V
400
+ b
401
+ Excl. R
402
+ 0
403
+ 50
404
+ 100
405
+ 150
406
+ 200
407
+ 250
408
+ 300
409
+ 350
410
+
411
+ [
412
+ σ
413
+ 0
414
+ 0.1
415
+ 0.2
416
+ 0.3
417
+ 0.4
418
+ 0.5
419
+ κ
420
+ System (Scenario I)
421
+ d
422
+ B
423
+ System (Scenario I)
424
+ s
425
+ B
426
+ FUNP (Scenario II)
427
+ contours hold 39%, 87% CL
428
+ | from Kl3
429
+ us
430
+ & |V
431
+ b
432
+ Hybrid R
433
+ Figure 2: Comparing Scenario I and Scenario II fits for 𝜅𝑞 and 𝜎𝑞 for the inclusive (left), exclusive (right)
434
+ and hybrid (bottom) case [1].
435
+ 3.
436
+ NP in 𝐵0
437
+ 𝑞- ¯𝐵0
438
+ 𝑞 mixing
439
+ The neutral 𝐵𝑞-meson mixing is a sensitive phenomenon for NP. In order to quantify its impact,
440
+ we introduce NP parameters 𝜅𝑞, which describes the size of the NP effects, and 𝜎𝑞, which is a
441
+ complex phase accounting for additional CP-violating effects. The generalised expressions of the
442
+ mixing parameters take the following form [19]:
443
+ Δ𝑚𝑞 = Δ𝑚SM
444
+ 𝑞
445
+ ��1 + 𝜅𝑞𝑒𝑖𝜎𝑞�� ,
446
+ (16)
447
+ 𝜙𝑞 = 𝜙SM
448
+ 𝑞
449
+ + 𝜙NP
450
+ 𝑞
451
+ = 𝜙SM
452
+ 𝑞
453
+ + arg �1 + 𝜅𝑞𝑒𝑖𝜎𝑞� .
454
+ (17)
455
+ This is a model independent parametrization. Utilising these relations, we explore two different NP
456
+ scenarios; the first one is the most general case and the second one assumes Flavour Universal NP
457
+ (FUNP) [1].
458
+ Let us firstly discuss the general case, namely Scenario I. The only assumption here is that there
459
+ is no NP in the angle 𝛾 and 𝑅𝑏. The determination from 𝑅𝑏 and 𝛾 does not rely on information from
460
+ mixing. We make use of this determination to obtain the UT apex, which we then need for getting
461
+ the SM predictions for the mixing parameters Δ𝑚𝑞 and 𝜙𝑞. Comparing them with their measured
462
+ values, we can constrain the NP parameters. Here, the NP parameters (𝜅𝑑, 𝜎𝑑) and (𝜅𝑠, 𝜎𝑠) are
463
+ determined independently from each other.
464
+ In the second case, Scenario II, we have the FUNP assumption where we consider that the NP
465
+ contributions are equal in the 𝐵𝑑 and 𝐵𝑠 systems, thus (𝜅𝑑, 𝜎𝑑) = (𝜅𝑠, 𝜎𝑠). This is not a Minimal
466
+ Flavour Violation scenario but it can be realised in NP models with 𝑈(2) symmetry [20, 21]. The
467
+ UT apex fit relies on 𝑅𝑏 and 𝑅𝑡, without using 𝛾 information, therefore possible NP in the angle 𝛾
468
+ 5
469
+
470
+ Studies of New Physics in 𝐵0
471
+ 𝑞 − ¯𝐵0
472
+ 𝑞 Mixing and Implications for Leptonic Decays
473
+ Eleftheria Malami
474
+ will not affect the findings. Comparing the two scenarios, we have a test of the FUNP assumption
475
+ and we see the impact of the assumptions on the constraints on the parameter space of NP in mixing.
476
+ Fig. 2 illustrates this comparison of the two fits for 𝜅𝑞 and 𝜎𝑞 for the inclusive, the exclusive and
477
+ the hybrid cases.
478
+ 4.
479
+ Rare Leptonic Decays 𝐵0
480
+ 𝑞 → 𝜇+𝜇−
481
+ The tensions between the CKM matrix elements have an impact not only on the UT apex
482
+ determination and possible NP in 𝐵0
483
+ 𝑞- ¯𝐵0
484
+ 𝑞 mixing but also on the branching ratios of rare decays. A
485
+ key example is the leptonic 𝐵0
486
+ 𝑞 → 𝜇+𝜇− transition. These modes are pure loop processes and helicity
487
+ suppressed in the SM. This helicity suppression could be lifted by new scalar and pseudoscalar
488
+ conttributions, therefore putting these decays in an outstanding position to probe NP in this sector.
489
+ As these are decays of neutral 𝐵 mesons, 𝐵0
490
+ 𝑞- ¯𝐵0
491
+ 𝑞 mixing enters and leads to subtleties concerning the
492
+ measurement of the experimental branching ratio and comparison with the theoretical prediction
493
+ [22]. However, NP in 𝐵0
494
+ 𝑠- ¯𝐵0
495
+ 𝑠 mixing is included through the experimental values of the mixing
496
+ parameters.
497
+ The SM predictions require information on |𝑉𝑡𝑠| which we determine through |𝑉𝑐𝑏|, which
498
+ again depends on inclusive and exclusive determinations. In order to minimise the dependence on
499
+ |𝑉𝑐𝑏| and the UT apex, we create the following ratio with the 𝐵𝑠 mass difference Δ𝑚𝑠 [23–25]:
500
+ R𝑠𝜇 ≡ ¯B(𝐵𝑠 → 𝜇+𝜇−)/Δ𝑚𝑠 .
501
+ (18)
502
+ Using this ratio, we can eliminate the leading dependence on the CKM elements but we have to
503
+ correct for the possible NP contributions to 𝐵0
504
+ 𝑞- ¯𝐵0
505
+ 𝑞 mixing. This is now possible following our
506
+ analysis in [1].
507
+ So, we include NP effects in Δ𝑚𝑠 and then we can use the ratio R𝑠𝜇 to constrain NP in the
508
+ scalar and pseudoscalar sector. We obtain the generalised expression:
509
+ R𝑠𝜇 = RSM
510
+ 𝑠𝜇 ×
511
+ 1 + A𝜇𝜇
512
+ ΔΓ𝑠 𝑦𝑠
513
+ 1 + 𝑦𝑠
514
+ |𝑃𝑠
515
+ 𝜇𝜇|2 + |𝑆𝑠
516
+ 𝜇𝜇|2
517
+ √︁
518
+ 1 + 2𝜅𝑠 cos 𝜎𝑠 + 𝜅2𝑠
519
+ ,
520
+ (19)
521
+ with 𝑃𝑠
522
+ 𝜇𝜇 ≡ |𝑃𝑠
523
+ 𝜇𝜇|𝑒𝑖𝜑𝑃, 𝑆𝑠
524
+ 𝜇𝜇 ≡ |𝑆𝑠
525
+ 𝜇𝜇|𝑒𝑖𝜑𝑆, where 𝜑𝑃, 𝜑𝑆 are CP-violating phases, and the observable
526
+ A𝜇𝜇
527
+ ΔΓ𝑠 in terms of the NP phase 𝜙NP
528
+ 𝑠 :
529
+ A𝜇𝜇
530
+ ΔΓ =
531
+ |𝑃𝑠
532
+ 𝜇𝜇|2 cos(2𝜑𝑃 − 𝜙NP
533
+ 𝑠 ) − |𝑆𝑠
534
+ 𝜇𝜇|2 cos(2𝜑𝑆 − 𝜙NP
535
+ 𝑠 )
536
+ |𝑃𝑠𝜇𝜇|2 + |𝑆𝑠𝜇𝜇|2
537
+ .
538
+ (20)
539
+ The R𝑠𝜇 has only a dependence on the CKM matrix elements through the NP parameters 𝜅𝑞
540
+ and 𝜎𝑞, determined as described above. Therefore, we have another constraint on the scalar and
541
+ pseudoscalar contributions. The same strategy can be applied to the 𝐵0
542
+ 𝑑 → 𝜇+𝜇− channel once in
543
+ the future accurate measurements of the branching ratio will become available.
544
+ 5.
545
+ Future Prospects and Final Remarks
546
+ It will be important in the future to achieve improved precision on the NP parameters 𝜅𝑞 and
547
+ 𝜎𝑞. In order to get a feeling of the prospects, we assume a hypothetical reduction of 50% on each
548
+ 6
549
+
550
+ Studies of New Physics in 𝐵0
551
+ 𝑞 − ¯𝐵0
552
+ 𝑞 Mixing and Implications for Leptonic Decays
553
+ Eleftheria Malami
554
+ one of the three input parameters, which are the |𝑉𝑐𝑏|, the lattice calculations and the UT apex [1].
555
+ We obtain interesting findings, which of course depend on these assumptions. In our studies, we
556
+ demonstrate that in the 𝐵𝑑-system the apex plays a limiting factor and in order to fully explore the
557
+ potentials of this system, progress on the UT apex has to be made. On the other hand, in the 𝐵𝑠-
558
+ system we do not have this situation as the SM prediction of 𝜙𝑠 is more robust. Therefore, searches
559
+ of NP in 𝐵0
560
+ 𝑠- ¯𝐵0
561
+ 𝑠 mixing are more promising than in the 𝐵𝑑-system but it is of key importance to
562
+ constrain NP in both systems as much as possible.
563
+ Another essential future prospect is related to the angle 𝛾. Improved precision on the input
564
+ measurements might lead to significant discrepancies between the different 𝛾 determinations due
565
+ to NP effects. In this case, averaging over the different results, as we did in this analysis, would
566
+ no longer be justified. Therefore, the UT should then be revisited. Independent information from
567
+ additional observables would be necessary to resolve such a situation. Exciting new opportunities
568
+ might come up to search for NP, both in 𝛾 and in 𝐵0
569
+ 𝑞- ¯𝐵0
570
+ 𝑞 mixing, which is strongly correlated with
571
+ the UT apex coordinates.
572
+ Last but not least, the branching ratios of the 𝐵0
573
+ 𝑞 → 𝜇+𝜇− decays might offer interesting
574
+ opportunities. The ratio of the branching fractions between 𝐵0
575
+ 𝑑 → 𝜇+𝜇− and 𝐵0
576
+ 𝑠 → 𝜇+𝜇− can
577
+ provide an alternative way to determine the UT side 𝑅𝑡. Another useful application for the ratio of
578
+ the branching fractions between these channels is the quantity [26]:
579
+ 𝑈𝑑𝑠
580
+ 𝜇𝜇 ∝
581
+ �����
582
+ 𝑉𝑡𝑠
583
+ 𝑉𝑡𝑑
584
+ ����
585
+ 2 ¯B(𝐵𝑑 → 𝜇+𝜇−)
586
+ ¯B(𝐵𝑠 → 𝜇+𝜇−)
587
+ �1/2
588
+ (21)
589
+ which requires knowledge of 𝑅𝑡 and offers a very powerful test of the SM, where 𝑈𝑑𝑠
590
+ 𝜇𝜇 = 1.
591
+ In the future, 𝐵0
592
+ 𝑞- ¯𝐵0
593
+ 𝑞 mixing will remain a key element for constraining NP. It will be exciting
594
+ to see how more precise data in the high-precision era of flavour physics ahead of us can lead to a
595
+ much sharper picture.
596
+ Acknowledgements
597
+ We would like to thank the DISCRETE 2022 organisers for the invitation and for giving us the
598
+ opportunity to present our studies. This research has been supported by the Netherlands Organisation
599
+ for Scientific Research (NWO). PvV acknowledges support from the DFG through the Emmy
600
+ Noether research project 400570283, and through the German-Israeli Project Cooperation (DIP).
601
+ References
602
+ [1] K. De Bruyn, R. Fleischer, E. Malami and P. van Vliet, 2022 J. Phys. G: Nucl. Part. Phys.
603
+ https://doi.org/10.1088/1361-6471/acab1d
604
+ [2] R. L. Workman et al. [Particle Data Group], PTEP 2022 (2022), 083C01
605
+ [3] L. Wolfenstein, Phys. Rev. Lett. 51 (1983), 1945 doi:10.1103/PhysRevLett.51.1945
606
+ [4] A. J. Buras, M. E. Lautenbacher and G. Ostermaier, Phys. Rev. D 50 (1994), 3433-3446
607
+ 7
608
+
609
+ Studies of New Physics in 𝐵0
610
+ 𝑞 − ¯𝐵0
611
+ 𝑞 Mixing and Implications for Leptonic Decays
612
+ Eleftheria Malami
613
+ [5] M. Z. Barel, K. De Bruyn, R. Fleischer and E. Malami, [arXiv:2203.14652 [hep-ph]].
614
+ [6] M. Z. Barel, K. De Bruyn, R. Fleischer and E. Malami, J. Phys. G 48 (2021) no.6, 065002
615
+ [7] R. Fleischer and E. Malami, Phys. Rev. D 106 (2022) no.5, 056004
616
+ [8] R. Fleischer and E. Malami, [arXiv:2110.04240 [hep-ph]].
617
+ [9] R. Aaij et al. [LHCb], JHEP 12 (2021), 141
618
+ [10] M. Gronau and D. London, Phys. Rev. Lett. 65 (1990), 3381-3384
619
+ [11] J. Charles et al., Eur. Phys. J. C 77 (2017) no.8, 574
620
+ [12] C. Y. Seng et al., Phys. Rev. D 105 (2022) no.1, 013005
621
+ [13] C. Y. Seng, D. Galviz, M. Gorchtein and U. G. Meißner, JHEP 07 (2022), 071
622
+ [14] Y. Amhis et al. [HFLAV], [arXiv:2206.07501 [hep-ex]].
623
+ [15] M. Bordone, B. Capdevila and P. Gambino, Phys. Lett. B 822 (2021), 136679
624
+ [16] M. Bordone, N. Gubernari, D. van Dyk and M. Jung, Eur. Phys. J. C 80 (2020) no.4, 347
625
+ [17] G. Ricciardi, PoS BEAUTY2020 (2021), 031
626
+ [18] A. J. Buras and E. Venturini, Eur. Phys. J. C 82 (2022) no.7, 615
627
+ [19] P. Ball and R. Fleischer, Eur. Phys. J. C 48 (2006), 413-426
628
+ [20] R. Barbieri, D. Buttazzo, F. Sala and D. M. Straub, JHEP 07 (2012), 181
629
+ [21] J. Charles et al., Phys. Rev. D 89 (2014) no.3, 033016
630
+ [22] K. De Bruyn et al., Phys. Rev. Lett. 109 (2012), 041801
631
+ [23] A. J. Buras, Phys. Lett. B 566 (2003), 115-119
632
+ [24] A. J. Buras and E. Venturini, Acta Phys. Polon. B 53 no.6, A1
633
+ [25] C. Bobeth and A. J. Buras, Acta Phys. Polon. B 52 (2021) no.10, 1189
634
+ [26] R. Fleischer, R. Jaarsma and G. Tetlalmatzi-Xolocotzi, JHEP 05 (2017), 156
635
+ 8
636
+
JNFRT4oBgHgl3EQfzTgG/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf,len=386
2
+ page_content='Studies of New Physics in 𝑩0 𝒒 − ¯𝑩0 𝒒 Mixing and Implications for Leptonic Decays Kristof De Bruyn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
3
+ page_content='𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
4
+ page_content='𝑏 Robert Fleischer,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
5
+ page_content='𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
6
+ page_content='𝑐 Eleftheria Malami𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
7
+ page_content='𝑑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
8
+ page_content='∗ and Philine van Vliet𝑒 𝑎Nikhef,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
9
+ page_content=' Science Park 105,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
10
+ page_content=' 1098 XG Amsterdam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
11
+ page_content=' Netherlands 𝑏Van Swinderen Institute for Particle Physics and Gravity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
12
+ page_content=' University of Groningen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
13
+ page_content=' 9747 Groningen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
14
+ page_content=' Netherlands 𝑐Faculty of Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
15
+ page_content=' Vrije Universiteit Amsterdam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
16
+ page_content=' 1081 HV Amsterdam,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
17
+ page_content=' Netherlands 𝑑Center for Particle Physics Siegen (CPPS),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
18
+ page_content=' Theoretische Physik 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
19
+ page_content=' Universität Siegen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
20
+ page_content=' D-57068 Siegen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
21
+ page_content=' Germany 𝑒Deutsches Elektronen-Synchrotron DESY,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
22
+ page_content=' Notkestr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
23
+ page_content=' 85, 22607 Hamburg, Germany E-mail: Eleftheria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
24
+ page_content='Malami@uni-siegen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
25
+ page_content='de The phenomenon of 𝐵0 𝑞- ¯𝐵0 𝑞 mixing (𝑞 = 𝑑, 𝑠) provides a sensitive probe for physics beyond the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
26
+ page_content=' We have a careful look at the determination of the Unitarity Triangle apex, which is needed for the Standard Model predictions of the 𝐵𝑞 mixing parameters, and explore how much space for New Physics is left through the current data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
27
+ page_content=' We study the impact of tensions between inclusive and exclusive determinations of the CKM matrix elements |𝑉𝑢𝑏| and |𝑉𝑐𝑏|, and focus on the 𝛾 angle extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
28
+ page_content=' We present various future scenarios and discuss the application of these results for leptonic rare 𝐵 decays, which allows us to minimise the CKM parameter impact in the New Physics searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
29
+ page_content=' Performing future projections, we explore and illustrate the impact of increased precision on key input quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
30
+ page_content=' It will be exciting to see how more precise data in the future high-precision era of flavour physics can lead to a much sharper picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
31
+ page_content=' 8th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2022) 7-11 November, 2022 Baden-Baden, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
32
+ page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
33
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
34
+ page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
35
+ page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
36
+ page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
37
+ page_content='13649v1 [hep-ph] 31 Jan 2023 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
38
+ page_content=' Introduction The phenomenon of 𝐵0 𝑞- ¯𝐵0 𝑞 mixing (where 𝑞 = 𝑑, 𝑠) arises only from loop processes in the Standard Model (SM) and is sensitive to possible New Physics (NP) contributions, which could enter the loop topologies or even at the tree level, for instance in 𝑍 ′ models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
39
+ page_content=' Associated to the mixing phenomenon are the mixing parameters and the CP-violating phases for which we have impressive experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
40
+ page_content=' In this presentation, we follow Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
41
+ page_content=' [1] and explore the space allowed for NP by current measurements and the state-of-the-art parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
42
+ page_content=' In addition, we point out interesting connections to the studies of leptonic rare 𝐵 decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
43
+ page_content=' In order to determine the parameter space of possible NP effects to 𝐵0 𝑞– ¯𝐵0 𝑞 mixing, we have to compare the SM predictions of the mixing parameters with the corresponding experimental values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
44
+ page_content=' For these SM predictions, a careful analysis of the Unitarity Triangle (UT) apex is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
45
+ page_content=' We pay special attention to the different determinations of the Cabibbo-Kobayashi-Maskawa (CKM) parameters and the tensions that arise between the extractions of the |𝑉𝑢𝑏| and |𝑉𝑐𝑏| matrix elements through inclusive and exclusive semileptonic 𝐵 meson decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
46
+ page_content=' These longstanding tensions have a profound impact on the whole analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
47
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
48
+ page_content=' Unitarity Triangle Using the parametrisation of the Particle Data Group (PDG), the UT apex is given as [2]: 𝑅𝑏 𝑒𝑖𝛾 = ¯𝜌 + 𝑖 ¯𝜂 , ¯𝜌 ≡ � 1 − (𝜆2/2) � 𝜌 , ¯𝜂 ≡ � 1 − (𝜆2/2) � 𝜂 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
49
+ page_content=' (1) Here, 𝜌, 𝜂 and 𝜆 are the Wolfenstein parameters [3, 4], 𝑅𝑏 is the side from the origin to the apex of the UT, defined with the help of the CKM matrix elements 𝜆 ≡ |𝑉𝑢𝑠|, |𝑉𝑢𝑏| and |𝑉𝑐𝑏| as: 𝑅𝑏 ≡ � 1 − 𝜆2 2 � 1 𝜆 ���� 𝑉𝑢𝑏 𝑉𝑐𝑏 ���� = √︃ ¯𝜌 2 + ¯𝜂 2 , (2) and 𝛾 ≡ arg �−𝑉𝑢𝑑𝑉∗ 𝑢𝑏/𝑉𝑐𝑑𝑉∗ 𝑐𝑏 � is the angle between the 𝑅𝑏 side and the UT basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
50
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
51
+ page_content='1 Determining the UT Apex Utilising 𝛾 and 𝑅𝑏 In this subsection, we work in the SM and are interested in obtaining the UT apex in a way that is not affected by possible NP in 𝐵0 𝑞- ¯𝐵0 𝑞 mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
52
+ page_content=' One way of determining the apex is utilising the side 𝑅𝑏 and the angle 𝛾, which can both be determined from decays that proceed only via tree decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
53
+ page_content=' The value of 𝛾 can be determined either from 𝐵 → 𝐷𝐾 decays or from a 𝐵 → 𝜋𝜋, 𝜌𝜋, 𝜌𝜌 isospin analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
54
+ page_content=' More specifically, one option is to use the time-dependent 𝐵0 𝑠 → 𝐷∓ 𝑠 𝐾± system, where mixing- induced CP violation plays a key role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
55
+ page_content=' Through interference effects caused by 𝐵0 𝑞- ¯𝐵0 𝑞 mixing, the CP asymmetry parameters allow the determination of 𝜙𝑠 + 𝛾, where 𝜙𝑠 is the 𝐵0 𝑠- ¯𝐵0 𝑠 mixing phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
56
+ page_content=' Since 𝜙𝑠 is determined through the 𝐵0 𝑠 → 𝐽/𝜓𝜙 channel, including penguin corrections [5, 6], 𝛾 can be obtained in a theoretically clean way [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
57
+ page_content=' However, the surprisingly large value arising in this case still needs to be further explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
58
+ page_content=' An alternative way of getting the 𝛾 value is using the time-independent 𝐵 → 𝐷𝐾 transitions, where the sensitivity to 𝛾 comes from direct CP violation [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
59
+ page_content=' Last but not least, another interesting system is provided by 𝐵 → 𝜋𝜋, 𝜌𝜋, 𝜌𝜌 modes [10, 11], 2 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami which usually are used to determine 𝛼 from an isospin analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
60
+ page_content=' Actually this value corresponds to 𝛾 when we use the 𝐵0 𝑑- ¯𝐵0 𝑑 mixing phase 𝜙𝑑, determined from 𝐵0 𝑑 → 𝐽/𝜓𝐾0 [5, 6], taking penguin effects into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
61
+ page_content=' Thus, we can convert the result 𝜙𝑑 + 2𝛾 into 𝛾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
62
+ page_content=' The value from the latter case is in good agreement with the one coming from 𝐵 → 𝐷𝐾 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
63
+ page_content=' Therefore, for our analysis, we average these two results [1]: 𝛾avg = (68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
64
+ page_content='4 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
65
+ page_content='4)◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
66
+ page_content=' (3) Regarding 𝑅𝑏 there are tensions between the various theoretical and experimental approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
67
+ page_content=' Even though there are different determinations of the |𝑉𝑢𝑠| element and the tensions between them are intriguing, they only have a negligible impact on NP studies in neutral 𝐵𝑞 mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
68
+ page_content=' Thus, we choose to work with the value |𝑉𝑢𝑠| = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
69
+ page_content='22309 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
70
+ page_content='00056 [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
71
+ page_content=' Contrary to the |𝑉𝑢𝑠| case, the deviations between determinations of |𝑉𝑢𝑏| and |𝑉𝑐𝑏| from inclusive and exclusive semileptonic 𝐵 decays, which are given as follows [14, 15]: |𝑉𝑢𝑏|incl = (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
72
+ page_content='19 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
73
+ page_content='17) × 10−3 , |𝑉𝑢𝑏|excl = (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
74
+ page_content='51 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
75
+ page_content='12) × 10−3 , differing by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
76
+ page_content='9 𝜎, (4) |𝑉𝑐𝑏|incl = (42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
77
+ page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
78
+ page_content='50) × 10−3 , |𝑉𝑐𝑏|excl = (39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
79
+ page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
80
+ page_content='50) × 10−3 , differing by 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
81
+ page_content='3 𝜎, (5) have a significant impact on the allowed parameter space for NP in 𝐵0 𝑞- ¯𝐵0 𝑞 mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
82
+ page_content=' Trying to understand and resolve these tensions, another case is studied in the literature [15–18], which is a hybrid scenario combining the exclusive |𝑉𝑢𝑏| with the inclusive |𝑉𝑐𝑏| determination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
83
+ page_content=' Therefore, we consider for the rest of our analysis all these three cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
84
+ page_content=' The corresponding 𝑅𝑏 results are: 𝑅𝑏,incl = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
85
+ page_content='434 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
86
+ page_content='018 , 𝑅𝑏,excl = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
87
+ page_content='392 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
88
+ page_content='014 , 𝑅𝑏,hybrid = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
89
+ page_content='364 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
90
+ page_content='013 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
91
+ page_content=' (6) Making a fit to 𝑅𝑏 and 𝛾, the UT apex is determined [1]: Incl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
92
+ page_content=' ¯𝜌 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
93
+ page_content='160 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
94
+ page_content='025 , ¯𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
95
+ page_content='404 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
96
+ page_content='022 , (7) Excl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
97
+ page_content=' ¯𝜌 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
98
+ page_content='144 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
99
+ page_content='022 , ¯𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
100
+ page_content='365 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
101
+ page_content='018 , (8) Hybrid ¯𝜌 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
102
+ page_content='134 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
103
+ page_content='021 , ¯𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
104
+ page_content='338 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
105
+ page_content='017 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
106
+ page_content=' (9) The results are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
107
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
108
+ page_content=' The plot also shows the hyperbola coming from the |𝜀𝐾 | observable, which is related to indirect CP violation in the neutral kaon system and is highly sensitive to the |𝑉𝑐𝑏| numerical value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
109
+ page_content=' The hybrid case gives the most consistent picture of the UT apex within the SM, which illustrates the strong dependence on |𝑉𝑐𝑏|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
110
+ page_content=' In the future, this could help us to understand the inclusive-exclusive puzzle, if NP in the kaon system can be controlled or ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
111
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
112
+ page_content='2 Determining the UT Apex Utilising 𝑅𝑏 and 𝑅𝑡 An alternative way of determining the UT apex is utilising the 𝑅𝑡 side, which is defined as: 𝑅𝑡 ≡ |𝑉𝑡𝑑𝑉𝑡𝑏/𝑉𝑐𝑑𝑉𝑐𝑏| = √︃ (1 − ¯𝜌)2 + ¯𝜂 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
113
+ page_content=' (10) 3 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
114
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
115
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
116
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
117
+ page_content='8 1 ρ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
118
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
119
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
120
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
121
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
122
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
123
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
124
+ page_content='7 η avg γ b R Fit Solution | K ε| contours hold 39%, 87% CL | from Kl3 us & |V b Incl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
125
+ page_content=' R 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
126
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
127
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
128
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
129
+ page_content='8 1 ρ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
130
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
131
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
132
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
133
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
134
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
135
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
136
+ page_content='7 η avg γ b R Fit Solution | K ε| contours hold 39%, 87% CL | from Kl3 us & |V b Excl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
137
+ page_content=' R 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
138
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
139
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
140
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
141
+ page_content='8 1 ρ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
142
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
143
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
144
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
145
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
146
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
147
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
148
+ page_content='7 η avg γ b R Fit Solution | K ε| contours hold 39%, 87% CL | from Kl3 us & |V b Hybrid R Figure 1: Determination of the UT apex from the 𝑅𝑏 and 𝛾 measurements for the inclusive (left), exclusive (right) and hybrid (botttom) case [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
149
+ page_content=' In this case, only information on the two UT sides 𝑅𝑏 and 𝑅𝑡 is required without needing any information from 𝛾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
150
+ page_content=' However, in order to get the 𝑅𝑡, we have to assume SM expressions for the mixing parameters Δ𝑚𝑑 and Δ𝑚𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
151
+ page_content=' The numerical predictions are given in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
152
+ page_content=' The side 𝑅𝑡 can be written as 𝑅𝑡 = 1 𝜆 ���� 𝑉𝑡𝑑 𝑉𝑡𝑠 ���� � 1 − 𝜆2 2 (1 − 2 ¯𝜌) � + O � 𝜆4� , (11) where ���� 𝑉𝑡𝑑 𝑉𝑡𝑠 ���� = 𝜉 √︄ 𝑚𝐵𝑠Δ𝑚SM 𝑑 𝑚𝐵𝑑Δ𝑚SM 𝑠 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
153
+ page_content=' (12) Here the SU(3)-breaking parameter 𝜉 is the ratio of bag parameters and decay constants of the 𝐵𝑑 and the 𝐵𝑠 systems that can be calculated on the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
154
+ page_content=' The advantage of the ratio is that uncertainties cancel, making it cleaner than using individual results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
155
+ page_content=' Making a fit to the 𝑅𝑏 and 𝑅𝑡 sides, we obtain [1]: Incl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
156
+ page_content=' ¯𝜌 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
157
+ page_content='180 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
158
+ page_content='014 , ¯𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
159
+ page_content='395 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
160
+ page_content='020 , (13) Excl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
161
+ page_content=' ¯𝜌 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
162
+ page_content='163 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
163
+ page_content='013 , ¯𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
164
+ page_content='357 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
165
+ page_content='017 , (14) Hybrid ¯𝜌 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
166
+ page_content='153 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
167
+ page_content='013 , ¯𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
168
+ page_content='330 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
169
+ page_content='016 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
170
+ page_content=' (15) We note that the UT apex determinations relying on 𝛾 are a factor 2 less precise than those without information from 𝛾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
171
+ page_content=' However, the determination through 𝑅𝑏 and 𝑅𝑡 requires the SM expressions of Δ𝑚𝑑 and Δ𝑚𝑠, thus ignores possible NP contributions in 𝐵0 𝑞- ¯𝐵0 𝑞 mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
172
+ page_content=' 4 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami 0 50 100 150 200 250 300 350 ]° [ σ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
173
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
174
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
175
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
176
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
177
+ page_content='5 κ System (Scenario I) d B System (Scenario I) s B FUNP (Scenario II) contours hold 39%, 87% CL | from Kl3 us & |V b Incl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
178
+ page_content=' R 0 50 100 150 200 250 300 350 ]° [ σ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
179
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
180
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
181
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
182
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
183
+ page_content='5 κ System (Scenario I) d B System (Scenario I) s B FUNP (Scenario II) contours hold 39%, 87% CL | from Kl3 us & |V b Excl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
184
+ page_content=' R 0 50 100 150 200 250 300 350 ]° [ σ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
185
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
186
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
187
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
188
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
189
+ page_content='5 κ System (Scenario I) d B System (Scenario I) s B FUNP (Scenario II) contours hold 39%, 87% CL | from Kl3 us & |V b Hybrid R Figure 2: Comparing Scenario I and Scenario II fits for 𝜅𝑞 and 𝜎𝑞 for the inclusive (left), exclusive (right) and hybrid (bottom) case [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
190
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
191
+ page_content=' NP in 𝐵0 𝑞- ¯𝐵0 𝑞 mixing The neutral 𝐵𝑞-meson mixing is a sensitive phenomenon for NP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
192
+ page_content=' In order to quantify its impact, we introduce NP parameters 𝜅𝑞, which describes the size of the NP effects, and 𝜎𝑞, which is a complex phase accounting for additional CP-violating effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
193
+ page_content=' The generalised expressions of the mixing parameters take the following form [19]: Δ𝑚𝑞 = Δ𝑚SM 𝑞 ��1 + 𝜅𝑞𝑒𝑖𝜎𝑞�� , (16) 𝜙𝑞 = 𝜙SM 𝑞 + 𝜙NP 𝑞 = 𝜙SM 𝑞 + arg �1 + 𝜅𝑞𝑒𝑖𝜎𝑞� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
194
+ page_content=' (17) This is a model independent parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
195
+ page_content=' Utilising these relations, we explore two different NP scenarios;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
196
+ page_content=' the first one is the most general case and the second one assumes Flavour Universal NP (FUNP) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
197
+ page_content=' Let us firstly discuss the general case, namely Scenario I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
198
+ page_content=' The only assumption here is that there is no NP in the angle 𝛾 and 𝑅𝑏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
199
+ page_content=' The determination from 𝑅𝑏 and 𝛾 does not rely on information from mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
200
+ page_content=' We make use of this determination to obtain the UT apex, which we then need for getting the SM predictions for the mixing parameters Δ𝑚𝑞 and 𝜙𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
201
+ page_content=' Comparing them with their measured values, we can constrain the NP parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
202
+ page_content=' Here, the NP parameters (𝜅𝑑, 𝜎𝑑) and (𝜅𝑠, 𝜎𝑠) are determined independently from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
203
+ page_content=' In the second case, Scenario II, we have the FUNP assumption where we consider that the NP contributions are equal in the 𝐵𝑑 and 𝐵𝑠 systems, thus (𝜅𝑑, 𝜎𝑑) = (𝜅𝑠, 𝜎𝑠).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
204
+ page_content=' This is not a Minimal Flavour Violation scenario but it can be realised in NP models with 𝑈(2) symmetry [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
205
+ page_content=' The UT apex fit relies on 𝑅𝑏 and 𝑅𝑡, without using 𝛾 information, therefore possible NP in the angle 𝛾 5 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami will not affect the findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
206
+ page_content=' Comparing the two scenarios, we have a test of the FUNP assumption and we see the impact of the assumptions on the constraints on the parameter space of NP in mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
207
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
208
+ page_content=' 2 illustrates this comparison of the two fits for 𝜅𝑞 and 𝜎𝑞 for the inclusive, the exclusive and the hybrid cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
209
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
210
+ page_content=' Rare Leptonic Decays 𝐵0 𝑞 → 𝜇+𝜇− The tensions between the CKM matrix elements have an impact not only on the UT apex determination and possible NP in 𝐵0 𝑞- ¯𝐵0 𝑞 mixing but also on the branching ratios of rare decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
211
+ page_content=' A key example is the leptonic 𝐵0 𝑞 → 𝜇+𝜇− transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
212
+ page_content=' These modes are pure loop processes and helicity suppressed in the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
213
+ page_content=' This helicity suppression could be lifted by new scalar and pseudoscalar conttributions, therefore putting these decays in an outstanding position to probe NP in this sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
214
+ page_content=' As these are decays of neutral 𝐵 mesons, 𝐵0 𝑞- ¯𝐵0 𝑞 mixing enters and leads to subtleties concerning the measurement of the experimental branching ratio and comparison with the theoretical prediction [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
215
+ page_content=' However, NP in 𝐵0 𝑠- ¯𝐵0 𝑠 mixing is included through the experimental values of the mixing parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
216
+ page_content=' The SM predictions require information on |𝑉𝑡𝑠| which we determine through |𝑉𝑐𝑏|, which again depends on inclusive and exclusive determinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
217
+ page_content=' In order to minimise the dependence on |𝑉𝑐𝑏| and the UT apex, we create the following ratio with the 𝐵𝑠 mass difference Δ𝑚𝑠 [23–25]: R𝑠𝜇 ≡ ¯B(𝐵𝑠 → 𝜇+𝜇−)/Δ𝑚𝑠 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
218
+ page_content=' (18) Using this ratio, we can eliminate the leading dependence on the CKM elements but we have to correct for the possible NP contributions to 𝐵0 𝑞- ¯𝐵0 𝑞 mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
219
+ page_content=' This is now possible following our analysis in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
220
+ page_content=' So, we include NP effects in Δ𝑚𝑠 and then we can use the ratio R𝑠𝜇 to constrain NP in the scalar and pseudoscalar sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
221
+ page_content=' We obtain the generalised expression: R𝑠𝜇 = RSM 𝑠𝜇 × 1 + A𝜇𝜇 ΔΓ𝑠 𝑦𝑠 1 + 𝑦𝑠 |𝑃𝑠 𝜇𝜇|2 + |𝑆𝑠 𝜇𝜇|2 √︁ 1 + 2𝜅𝑠 cos 𝜎𝑠 + 𝜅2𝑠 , (19) with 𝑃𝑠 𝜇𝜇 ≡ |𝑃𝑠 𝜇𝜇|𝑒𝑖𝜑𝑃, 𝑆𝑠 𝜇𝜇 ≡ |𝑆𝑠 𝜇𝜇|𝑒𝑖𝜑𝑆, where 𝜑𝑃, 𝜑𝑆 are CP-violating phases, and the observable A𝜇𝜇 ΔΓ𝑠 in terms of the NP phase 𝜙NP 𝑠 : A𝜇𝜇 ΔΓ = |𝑃𝑠 𝜇𝜇|2 cos(2𝜑𝑃 − 𝜙NP 𝑠 ) − |𝑆𝑠 𝜇𝜇|2 cos(2𝜑𝑆 − 𝜙NP 𝑠 ) |𝑃𝑠𝜇𝜇|2 + |𝑆𝑠𝜇𝜇|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
222
+ page_content=' (20) The R𝑠𝜇 has only a dependence on the CKM matrix elements through the NP parameters 𝜅𝑞 and 𝜎𝑞, determined as described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
223
+ page_content=' Therefore, we have another constraint on the scalar and pseudoscalar contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
224
+ page_content=' The same strategy can be applied to the 𝐵0 𝑑 → 𝜇+𝜇− channel once in the future accurate measurements of the branching ratio will become available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
225
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
226
+ page_content=' Future Prospects and Final Remarks It will be important in the future to achieve improved precision on the NP parameters 𝜅𝑞 and 𝜎𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
227
+ page_content=' In order to get a feeling of the prospects, we assume a hypothetical reduction of 50% on each 6 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami one of the three input parameters, which are the |𝑉𝑐𝑏|, the lattice calculations and the UT apex [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
228
+ page_content=' We obtain interesting findings, which of course depend on these assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
229
+ page_content=' In our studies, we demonstrate that in the 𝐵𝑑-system the apex plays a limiting factor and in order to fully explore the potentials of this system, progress on the UT apex has to be made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
230
+ page_content=' On the other hand, in the 𝐵𝑠- system we do not have this situation as the SM prediction of 𝜙𝑠 is more robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
231
+ page_content=' Therefore, searches of NP in 𝐵0 𝑠- ¯𝐵0 𝑠 mixing are more promising than in the 𝐵𝑑-system but it is of key importance to constrain NP in both systems as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
232
+ page_content=' Another essential future prospect is related to the angle 𝛾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
233
+ page_content=' Improved precision on the input measurements might lead to significant discrepancies between the different 𝛾 determinations due to NP effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
234
+ page_content=' In this case, averaging over the different results, as we did in this analysis, would no longer be justified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
235
+ page_content=' Therefore, the UT should then be revisited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
236
+ page_content=' Independent information from additional observables would be necessary to resolve such a situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
237
+ page_content=' Exciting new opportunities might come up to search for NP, both in 𝛾 and in 𝐵0 𝑞- ¯𝐵0 𝑞 mixing, which is strongly correlated with the UT apex coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
238
+ page_content=' Last but not least, the branching ratios of the 𝐵0 𝑞 → 𝜇+𝜇− decays might offer interesting opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
239
+ page_content=' The ratio of the branching fractions between 𝐵0 𝑑 → 𝜇+𝜇− and 𝐵0 𝑠 → 𝜇+𝜇− can provide an alternative way to determine the UT side 𝑅𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
240
+ page_content=' Another useful application for the ratio of the branching fractions between these channels is the quantity [26]: 𝑈𝑑𝑠 𝜇𝜇 ∝ ����� 𝑉𝑡𝑠 𝑉𝑡𝑑 ���� 2 ¯B(𝐵𝑑 → 𝜇+𝜇−) ¯B(𝐵𝑠 → 𝜇+𝜇−) �1/2 (21) which requires knowledge of 𝑅𝑡 and offers a very powerful test of the SM, where 𝑈𝑑𝑠 𝜇𝜇 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
241
+ page_content=' In the future, 𝐵0 𝑞- ¯𝐵0 𝑞 mixing will remain a key element for constraining NP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
242
+ page_content=' It will be exciting to see how more precise data in the high-precision era of flavour physics ahead of us can lead to a much sharper picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
243
+ page_content=' Acknowledgements We would like to thank the DISCRETE 2022 organisers for the invitation and for giving us the opportunity to present our studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
244
+ page_content=' This research has been supported by the Netherlands Organisation for Scientific Research (NWO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
245
+ page_content=' PvV acknowledges support from the DFG through the Emmy Noether research project 400570283, and through the German-Israeli Project Cooperation (DIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
246
+ page_content=' References [1] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
247
+ page_content=' De Bruyn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
248
+ page_content=' Fleischer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
249
+ page_content=' Malami and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
250
+ page_content=' van Vliet, 2022 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
251
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
252
+ page_content=' G: Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
253
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
254
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
255
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
256
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
257
+ page_content='1088/1361-6471/acab1d [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
258
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
259
+ page_content=' Workman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
260
+ page_content=' [Particle Data Group], PTEP 2022 (2022), 083C01 [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
261
+ page_content=' Wolfenstein, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
262
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
263
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
264
+ page_content=' 51 (1983), 1945 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
265
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
266
+ page_content='51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
267
+ page_content='1945 [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
268
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
269
+ page_content=' Buras, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
270
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
271
+ page_content=' Lautenbacher and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
272
+ page_content=' Ostermaier, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
273
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
274
+ page_content=' D 50 (1994), 3433-3446 7 Studies of New Physics in 𝐵0 𝑞 − ¯𝐵0 𝑞 Mixing and Implications for Leptonic Decays Eleftheria Malami [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
275
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
276
+ page_content=' Barel, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
277
+ page_content=' De Bruyn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
278
+ page_content=' Fleischer and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
279
+ page_content=' Malami, [arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
280
+ page_content='14652 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
281
+ page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
282
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
283
+ page_content=' Barel, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
284
+ page_content=' De Bruyn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
285
+ page_content=' Fleischer and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
286
+ page_content=' Malami, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
287
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
288
+ page_content=' G 48 (2021) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
289
+ page_content='6, 065002 [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
290
+ page_content=' Fleischer and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
291
+ page_content=' Malami, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
292
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
293
+ page_content=' D 106 (2022) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
294
+ page_content='5, 056004 [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
295
+ page_content=' Fleischer and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
296
+ page_content=' Malami, [arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
297
+ page_content='04240 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
298
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
299
+ page_content=' Aaij et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
300
+ page_content=' [LHCb], JHEP 12 (2021), 141 [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
301
+ page_content=' Gronau and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
302
+ page_content=' London, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
303
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
304
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
305
+ page_content=' 65 (1990), 3381-3384 [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
306
+ page_content=' Charles et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
307
+ page_content=', Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
308
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
309
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
310
+ page_content=' C 77 (2017) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
311
+ page_content='8, 574 [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
312
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
313
+ page_content=' Seng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
314
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
315
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
316
+ page_content=' D 105 (2022) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
317
+ page_content='1, 013005 [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
318
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
319
+ page_content=' Seng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
320
+ page_content=' Galviz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
321
+ page_content=' Gorchtein and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
322
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
323
+ page_content=' Meißner, JHEP 07 (2022), 071 [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
324
+ page_content=' Amhis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
325
+ page_content=' [HFLAV], [arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
326
+ page_content='07501 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
327
+ page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
328
+ page_content=' Bordone, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
329
+ page_content=' Capdevila and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
330
+ page_content=' Gambino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
331
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
332
+ page_content=' B 822 (2021), 136679 [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
333
+ page_content=' Bordone, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
334
+ page_content=' Gubernari, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
335
+ page_content=' van Dyk and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
336
+ page_content=' Jung, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
337
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
338
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
339
+ page_content=' C 80 (2020) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
340
+ page_content='4, 347 [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
341
+ page_content=' Ricciardi, PoS BEAUTY2020 (2021), 031 [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
342
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
343
+ page_content=' Buras and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
344
+ page_content=' Venturini, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
345
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
346
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
347
+ page_content=' C 82 (2022) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
348
+ page_content='7, 615 [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
349
+ page_content=' Ball and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
350
+ page_content=' Fleischer, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
351
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
352
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
353
+ page_content=' C 48 (2006), 413-426 [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
354
+ page_content=' Barbieri, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
355
+ page_content=' Buttazzo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
356
+ page_content=' Sala and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
357
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
358
+ page_content=' Straub, JHEP 07 (2012), 181 [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
359
+ page_content=' Charles et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
360
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
361
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
362
+ page_content=' D 89 (2014) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
363
+ page_content='3, 033016 [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
364
+ page_content=' De Bruyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
365
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
366
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
367
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
368
+ page_content=' 109 (2012), 041801 [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
369
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
370
+ page_content=' Buras, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
371
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
372
+ page_content=' B 566 (2003), 115-119 [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
373
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
374
+ page_content=' Buras and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
375
+ page_content=' Venturini, Acta Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
376
+ page_content=' Polon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
377
+ page_content=' B 53 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
378
+ page_content='6, A1 [25] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
379
+ page_content=' Bobeth and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
380
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
381
+ page_content=' Buras, Acta Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
382
+ page_content=' Polon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
383
+ page_content=' B 52 (2021) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
384
+ page_content='10, 1189 [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
385
+ page_content=' Fleischer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
386
+ page_content=' Jaarsma and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
387
+ page_content=' Tetlalmatzi-Xolocotzi, JHEP 05 (2017), 156 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf'}
K9E5T4oBgHgl3EQfYQ9F/content/tmp_files/2301.05572v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
K9E5T4oBgHgl3EQfYQ9F/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LNAyT4oBgHgl3EQfgPhD/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc1ee6431154cd9755410808ba31021d33546b8d3e22d05bad4abc6e8ea0527f
3
+ size 165953
NNE4T4oBgHgl3EQfjQ2i/content/tmp_files/2301.05141v1.pdf.txt ADDED
@@ -0,0 +1,1567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Spin-orbital order and excitons in magnetoresistive HoBi
2
+ J. Gaudet,1, 2, 3, ∗ H.-Y. Yang,4 E. M. Smith,5 T. Halloran,1 J. P. Clancy,5 J. A. Rodriguez-Rivera,2, 3 Guangyong
3
+ Xu,2 Y. Zhao,2, 3 W. C. Chen,2 G. Sala,6 A. A. Aczel,7 B. D. Gaulin,5, 8, 9 F. Tafti,4 and C. Broholm1, 2, 7
4
+ 1Institute for Quantum Matter and Department of Physics and Astronomy,
5
+ Johns Hopkins University, Baltimore, MD 21218, USA
6
+ 2Center for Neutron Research, National Institute of Standards and Technology, MS 6100 Gaithersburg, Maryland 20899, USA
7
+ 3Department of Materials Science and Eng., University of Maryland, College Park, MD 20742-2115
8
+ 4Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
9
+ 5Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
10
+ 6Spallation Neutron Source, Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
11
+ 7Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
12
+ 8Canadian Institute for Advanced Research, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada.
13
+ 9Brockhouse Institute for Materials Research, Hamilton, ON L8S 4M1 Canada
14
+ (Dated: January 13, 2023)
15
+ The magnetism of the rock-salt fcc rare-earth monopnictide HoBi, a candidate topological material with
16
+ extreme magnetoresistance, is investigated. From the Ho3+ non-Kramers J=8 spin-orbital multiplet, the cubic
17
+ crystal electric field yields six nearly degenerate low-energy levels. These constitute an anisotropic magnetic
18
+ moment with a Jahn-Teller-like coupling to the lattice. In the cubic phase for T > TN
19
+ =
20
+ 5.72(1) K, the
21
+ paramagnetic neutron scattering is centered at k = ( 1
22
+ 2
23
+ 1
24
+ 2
25
+ 1
26
+ 2) and was fit to dominant antiferromagnetic interactions
27
+ between Ho spins separated by {100} and ferromagnetic interactions between spins displaced by { 1
28
+ 2
29
+ 1
30
+ 20}. For
31
+ T < TN, a type-II AFM long-range order with k = ( 1
32
+ 2
33
+ 1
34
+ 2
35
+ 1
36
+ 2) develops along with a tetragonal lattice distortion.
37
+ While neutron diffraction from a multi-domain sample cannot unambiguously determine the spin orientation
38
+ within a domain, the bulk magnetization, structural distortion, and our measurements of the magnetic excitations
39
+ all show the easy axis coincides with the tetragonal axis. The weakly dispersive excitons for T < TN can be
40
+ accounted for by a spin Hamiltonian that includes the crystal electric field and exchange interactions within the
41
+ Random Phase Approximation.
42
+ I.
43
+ INTRODUCTION
44
+ In spite of their structural simplicity, the fcc rare-earth
45
+ monopnictides (see Fig. 1), RX (R=Ce to Yb and X=N, As,
46
+ P, Sb, and Bi1,2), display a wide variety of anisotropic mag-
47
+ netism and electronic transport properties. The lattice param-
48
+ eter varies by 30% across the pnictide series and this provides
49
+ opportunities to tune the relative strength of crystal field and
50
+ exchange interactions. In the 1960s to 1980s, the rare-earth
51
+ monopnictides were studied to understand magnetic phases
52
+ driven by oscillatory and highly anisotropic Ruderman-Kittel-
53
+ Kasuya-Yosida (RKKY) exchange interactions 3–8. Work on
54
+ CeSb for example gave rise to an extensive literature on the
55
+ anisotropic nearest and next nearest neighbor Ising model
56
+ (ANNNI)9.
57
+ This work also resulted in progress towards
58
+ a quantitative understanding of their anisotropic exchange
59
+ interactions10.
60
+ A recent resurgence of interest in these rare-earth monop-
61
+ nictides is driven by their extreme magnetoresistance (XMR)
62
+ and resistivity plateaus, and the possible connection to the
63
+ 3D topological state of the non-magnetic lanthanum monop-
64
+ nictides LaX11,12. LaAs, LaSb, and LaBi have unsaturated
65
+ XMR arising from near perfect electron-hole compensation
66
+ and there is a topological transition from a trivial electronic
67
+ band structure in LaAs to a topologically non-trivial band
68
+ structure in LaBi13–17.
69
+ Several studies have confirmed the
70
+ presence of protected surface states in LaBi18–21. Since then,
71
+ extensive works have been devoted to characterizing the XMR
72
+ and topological states of various RX including for example
73
+ CeX, HoX, and PrX. XMR has been found in each reported
74
+ magnetic RX with characteristics that depend on the rare-earth
75
+ ion22–30. The stabilization of topological non-trivial electronic
76
+ bands generating protected surface states was proposed for
77
+ several of the magnetic monopnictides29,31–33.
78
+ FIG. 1. The rock-salt structure of the rare-earth monopnictide HoBi.
79
+ Yellow and blue spheres respectively correspond to Ho and Bi. Spins
80
+ interacting through the J1 and J2 exchange interaction are shown by
81
+ the dashed black arrows. The k = ( 1
82
+ 2
83
+ 1
84
+ 2
85
+ 1
86
+ 2) magnetic order of the Ho3+
87
+ spins is represented by the red arrows. The local spin orientations of
88
+ the Ho3+ spins that are consistent with neutron diffraction are indi-
89
+ cated for the Ho ion at (0,0,0). The magnetization, structural distor-
90
+ tion, and inelastic neutron scattering however, provide clear evidence
91
+ for easy [001] axis anisotropy.
92
+ arXiv:2301.05141v1 [cond-mat.str-el] 12 Jan 2023
93
+
94
+ 2
95
+ Here we study the magnetism of HoBi using modern neu-
96
+ tron scattering techniques to gain insights into its unique
97
+ magneto-transport properties29,34.
98
+ Consistent with previ-
99
+ ous works35–37, we confirm the antiferromagnetic (AFM)
100
+ k
101
+ =
102
+ ( 1
103
+ 2
104
+ 1
105
+ 2
106
+ 1
107
+ 2) structure and the associated tetragonal lattice
108
+ distortion. Due to multi-domain averaging, our single-crystal
109
+ neutron diffraction cannot unambiguously determine the local
110
+ spin anisotropy of the k
111
+ =
112
+ ( 1
113
+ 2
114
+ 1
115
+ 2
116
+ 1
117
+ 2) AFM structure. How-
118
+ ever, we could resolve this ambiguity by measuring and mod-
119
+ eling the magnetic excitations of HoBi, which take the form of
120
+ weakly propagating spin-orbital excitons whose energies and
121
+ intensities are sensitive to the local orientation of the Ho3+
122
+ moments. Using this method, we found the k
123
+ =
124
+ ( 1
125
+ 2
126
+ 1
127
+ 2
128
+ 1
129
+ 2)
130
+ AFM structure has an Ising local spin anisotropy, which is
131
+ consistent with the Ising easy-axis bulk magnetization and the
132
+ tetragonal distortion. Through analysis of the paramagnetic
133
+ diffuse scattering of HoBi and the crystal field excitons in the
134
+ low T ordered state, we obtain a spin Hamiltonian with com-
135
+ parable crystal field (CEF) and exchange energy scales.
136
+ II.
137
+ EXPERIMENTAL METHODS
138
+ HoBi single crystals with mass of 10-50 mg were grown
139
+ following a previously published procedure34. Single crys-
140
+ tal low-temperature X-ray diffraction was performed using
141
+ a Huber four-circle diffractometer with a Rigaku Rotaflex
142
+ 18 kW rotating copper anode X-ray generator and a Bicron
143
+ point detector.
144
+ We used a Ge (111) monochromator with
145
+ d111 = 3.266 Å. The sample was aligned for diffraction in the
146
+ (HHL) plane and mounted in a closed cycle cryogenic system
147
+ with a base temperature of 2.17 K.
148
+ We performed thermal neutron diffraction using the HB-1A
149
+ triple-axis instrument at Oak Ridge National Laboratory. We
150
+ used PG filtered 14.5 meV neutrons, and collected rocking
151
+ scans at all accessible magnetic and nuclear Bragg positions
152
+ in the (HHL) plane. Polarized neutron diffraction measure-
153
+ ments were conducted with the triple-axis instrument BT-7
154
+ at the Center for Neutron Research (NCNR), NIST. Nuclear
155
+ spin-polarized 3He gas was used to polarize the incident neu-
156
+ tron beam and to analyze the polarization of scattered neu-
157
+ trons38,39. Horizontal guide fields were present throughout
158
+ the beam path to allow measurements of the spin-flip (SF) and
159
+ non-spin-flip (NSF) scattering cross-sections for incident neu-
160
+ tron spins polarized parallel to momentum transfer Q. The
161
+ flipping ratio measured at nuclear Bragg peaks was greater
162
+ than 30.
163
+ Cold neutron triple-axis experiments were performed using
164
+ the SPINS and the MACS spectrometers at the NCNR. On
165
+ both instruments we employed a fixed final neutron energy
166
+ E f = 3.7 meV or 5 meV and measured the elastic and inelas-
167
+ tic scattering for a single crystal of HoBi aligned for scattering
168
+ within the (HHL) and the (HK0) plane in two different exper-
169
+ iments. For the E f = 3.7 meV configuration, we used poly-
170
+ crystalline cooled Be and BeO filters before and after the sam-
171
+ ple, respectively. For the 5 meV configuration we only used
172
+ a Be filter after the sample while the incident beam from the
173
+ cold neutron source was unfiltered. For both experiments, we
174
+ co-mounted 11 HoBi single crystals on an aluminum mount.
175
+ We acquired background data using an identical mount with-
176
+ out HoBi crystals. We used an ”orange” 4He flow cryostat to
177
+ reach a base temperature of 1.6 K for these experiments.
178
+ For the highest energy resolution and energy transfer, we
179
+ performed time-of-flight neutron scattering experiments us-
180
+ ing the CNCS spectrometer at Oak Ridge National Labora-
181
+ tory. There we co-aligned two HoBi single crystals on an alu-
182
+ minum mount and collected inelastic neutron scattering data
183
+ with fixed incident energy Ei = 25 meV at T
184
+ = 13 K with
185
+ a total proton charge of 47 C. We used the high flux mode of
186
+ operation of CNCS with a Fermi Chopper, Chopper 2, Chop-
187
+ per 3, and a Double Disk frequency of 60, 60, 60, 300, and
188
+ 300 Hz respectively. The energy resolution (FWHM) at the
189
+ elastic line for this configuration is 2.0(1) meV. Finally, we
190
+ note that the error bars associated with the neutron scattering
191
+ experiments represent one standard deviation.
192
+ Both the magnetization and heat capacity measurements
193
+ presented here were performed in a Quantum Design physical
194
+ properties measurement system (PPMS). We used a PPMS di-
195
+ lution refrigerator option for the low-temperature heat capac-
196
+ ity.
197
+ III.
198
+ RESULTS AND ANALYSIS
199
+ A.
200
+ 1st order phase transition
201
+ FIG. 2. Low temperature heat capacity of HoBi collected using the
202
+ long-pulse method. The red and blue curves respectively correspond
203
+ to the warming and cooling protocol and shows a thermal hysteresis
204
+ of 13(2) mK. The observation of a plateau at TN in the heating profile
205
+ for both warming and cooling protocol (top inset panel) suggests a
206
+ 1st order phase transition in HoBi.
207
+ The thermodynamic properties of HoBi were previously
208
+ reported and a long-range k
209
+ =
210
+ ( 1
211
+ 2
212
+ 1
213
+ 2
214
+ 1
215
+ 2) antiferromagnetic
216
+ (AFM) order is known to occur concomitantly with a struc-
217
+ tural distortion around TN
218
+ =
219
+ 5.7 K14,35,36. The order of
220
+ the transition, however, remains unknown. To determine the
221
+
222
+ AT. = 13(2) mK
223
+ HoBi
224
+ 5.6
225
+ C
226
+ K
227
+ 1000
228
+ 5.8
229
+ Cp (J/mol K)
230
+ 6
231
+ 200
232
+ 400
233
+ 0
234
+ Time (s)
235
+ Warming
236
+ 500
237
+ Cooling
238
+ 5.6
239
+ 5.7
240
+ 5.8
241
+ 5.9
242
+ T(K)3
243
+ order of the phase transition, we measured the temperature
244
+ dependent specific heat capacity using the long-pulse heat
245
+ method40.
246
+ The resulting Cp data for HoBi is reported in
247
+ Fig. 2 for both warming and cooling protocols.
248
+ A sharp
249
+ peak with a thermal hysteresis of 13(2) mK is observed in
250
+ Cp. Correspondingly the inset shows a distinct plateau in the
251
+ temperature versus time curves during heating and cooling.
252
+ These observations indicate a 1st order phase transition at TN
253
+ in HoBi.
254
+ B.
255
+ Paramagnetic phase
256
+ To determine the magnetic interactions leading to this phase
257
+ transition, we mapped the neutron elastic scattering for mo-
258
+ mentum transfer Q covering the (HHL) plane and for temper-
259
+ atures between 150 K and 1.6 K. Representative data sets are
260
+ shown in Fig. 3.
261
+ In
262
+ the
263
+ cubic
264
+ paramagnetic
265
+ phase
266
+ for
267
+ T
268
+ =
269
+ 12 K
270
+ >
271
+ TN
272
+ =
273
+ 5.72(1) K, the scattering is
274
+ broad in Q and is centered at k = ( 1
275
+ 2
276
+ 1
277
+ 2
278
+ 1
279
+ 2) positions ((Fig. 3(a)).
280
+ This indicates short-range AFM correlations preceding the
281
+ long-range order.
282
+ The ”butterfly” pattern of paramagnetic
283
+ diffuse scattering is consistent with the equal time structure
284
+ factor S(Q) of an fcc Heisenberg paramagnet with FM inter-
285
+ actions between the first nearest-neighbor (n.n.) Ho3+ ions
286
+ (J1), and AFM interactions between the 2nd n.n. (J2). Dashed
287
+ lines in Fig. 1 indicate the lattice geometry associated with
288
+ these interactions. The scattered intensity was modeled using
289
+ I(Q) = 2
290
+ 3N| f(Q)|2 �
291
+ ij⟨Si ·Sj⟩ cos(Q·rij) where N is the num-
292
+ ber of spins, ri j is the displacement vector from Ho3+ site j to
293
+ i, and f(Q) is the Ho3+ atomic form factor41. Including only
294
+ self-correlations and correlations between spins separated by
295
+ {100} and { 1
296
+ 2
297
+ 1
298
+ 20}, a ratio of ⟨Si ·Sj⟩{100}/⟨Si ·S j⟩{ 1
299
+ 2
300
+ 1
301
+ 2 0} = −2.2(2)
302
+ was obtained at T = 12 K. The calculated magnetic diffuse
303
+ scattering corresponding to the best fit shown in Fig. 3(d)
304
+ accounts for all major features in the data (Fig. 3(a)) and the
305
+ introduction of third n.n. correlations does not improve the
306
+ fit significantly. A high temperature expansion allows us to
307
+ associate the ratio of correlations to the ratio of the corre-
308
+ sponding exchange interactions42,43 so that we may infer that
309
+ J2/J1 ≈ −2.2(2). Even if some of the J1 bond interactions are
310
+ frustrated, this resulting fitted ratio of exchange parameters
311
+ stabilize a k = ( 1
312
+ 2
313
+ 1
314
+ 2
315
+ 1
316
+ 2) order, which is driven by the dominant
317
+ AFM J2 interactions44–46.
318
+ Upon cooling, the elastic magnetic scattering gets stronger
319
+ (T = 5.5 K ≈ TN in Fig. 3(b)) and eventually forms mag-
320
+ netic Bragg peaks (T = 1.6 K << TN in Fig. 3(c)) indi-
321
+ cating long range magnetic order. To quantify the tempera-
322
+ ture dependence of the diffuse and Bragg scattering, as shown
323
+ in Fig. 3(e), we fitted the integrated intensity obtained from
324
+ one-dimensional (HHH) scans acquired through the magnetic
325
+ Bragg peak at Q = ( 1
326
+ 2
327
+ 1
328
+ 2
329
+ 1
330
+ 2). Each scan was fit to the sum of
331
+ a Gaussian function and a Lorentzian function to describe the
332
+ long and short range components of the spin correlations, and
333
+ a linear background (needed to describe the temperature in-
334
+ dependent nuclear and temperature-dependent magnetic inco-
335
+ FIG. 3. The elastic diffuse neutron scattering from HoBi measured
336
+ in the (HHL) reciprocal lattice plane at (a) 12 K, (b) 5.5 K, and (c)
337
+ 1.7 K with an incident neutrons energy of 3.7 meV . The scattering
338
+ for panels (a,b,c) have been symmetrized to increase statistics. (d)
339
+ Calculated paramagnetic diffuse scattering with J1/J2 = -2.17 on an
340
+ fcc lattice where J1 is the first n.n. ferromagnetic interaction and J2
341
+ is the 2nd n.n. antiferromagnetic interaction. Panel (e) is the elastic
342
+ neutron scattering near the Q = ( 1
343
+ 2
344
+ 1
345
+ 2
346
+ 1
347
+ 2) Bragg peak acquired through
348
+ scans along the the (HHH) direction. The data in panel (e) were fitted
349
+ using a Lorentzian function for the diffuse scattering and a Gaussian
350
+ function for the resolution limited Bragg component. The inferred
351
+ integrated intensity for each component of the scattering are plotted
352
+ in panel (f) as a function of temperature. The temperature depen-
353
+ dence of the magnetic correlation length is plotted in the inset panel
354
+ of (f).
355
+ herent elastic scattering). The fits included as dashed curves
356
+ in Fig. 3(e) provide a good account of the data.
357
+ The temperature dependence of the integrated intensity of
358
+ both the Bragg and the diffuse components of the scattering
359
+ are reported in Fig. 3(f). The integrated intensity of the diffuse
360
+ scattering (red markers) is peaked at TN where the appearance
361
+ of Bragg scattering (blue markers) reveals the onset of long
362
+ range order and translation symmetry breaking. The tempera-
363
+ ture variation of the correlation length ξ, as inferred from the
364
+ Lorentzian after correcting for resolution e���ects, is reported
365
+ in the inset of Fig. 3(f). As expected, ξ increases dramatically
366
+ at TN.
367
+
368
+ do/dQ(b/sr/f.u.
369
+ (a)
370
+ (d)
371
+ a.u.
372
+ 4
373
+ 0 1
374
+ 0
375
+ 4
376
+ HoBi
377
+ Calc.
378
+ 1.5
379
+ 1.5
380
+ 1
381
+ 1
382
+ 0.5
383
+ 0.5
384
+ (T00)
385
+ (T00)
386
+ 0
387
+ 0
388
+ -0.5
389
+ 0.5
390
+ -1
391
+ -1.5
392
+ -1.5
393
+ 12 K
394
+ -0.5
395
+ 0
396
+ 0.5
397
+ -1
398
+ -0.5
399
+ 0
400
+ 0.5
401
+ (b)
402
+ (0HH)
403
+ (HHO)
404
+ (e
405
+ ●150K
406
+ 1.5
407
+ ·30K
408
+ 1
409
+ 10
410
+ 15 K
411
+ 10 K
412
+ 0.5
413
+ ● 6.7 K
414
+ 5.7 K
415
+ [00
416
+ 0
417
+ -0.5
418
+ .6
419
+ -1
420
+ -1.5
421
+ 5.5 K
422
+ -1
423
+ -0.5
424
+ 0
425
+ 0.5
426
+ 1
427
+ 0.2
428
+ 0.4
429
+ 0.6
430
+ 0.8
431
+ (c)
432
+ (HHO)
433
+ ()
434
+ (HHH)
435
+ 1.5
436
+ 1.5
437
+ 200
438
+ 6
439
+ 1
440
+ wS 100
441
+ (n'j/q)o
442
+ 0.5
443
+ D
444
+ 4
445
+ 100)
446
+ 0
447
+ 0
448
+ 20
449
+ 40
450
+ 60.
451
+ T(K)
452
+ -0.5
453
+ 0.5
454
+ 2
455
+ Elastic
456
+ -1
457
+ Diffuse
458
+ -1.5
459
+ 1.7 K
460
+ 0
461
+ -1
462
+ -0.5
463
+ 0
464
+ 0.5
465
+ 1
466
+ 10
467
+ 100
468
+ (HHO)
469
+ T(K4
470
+ C.
471
+ Structural distortion
472
+ A previous X-ray diffraction study revealed that a tetrago-
473
+ nal distortion accompanies magnetic ordering in HoBi35. We
474
+ confirmed the occurrence of this distortion in HoBi with a
475
+ four-circle X-ray diffractometer experiment. The θ-2θ scans
476
+ of various nuclear Bragg peaks were collected above and be-
477
+ low TN with a base temperature of 5 K. Consistent with previ-
478
+ ous work35, we observed a splitting of the (H00), (0K0), and
479
+ (00L) nuclear Bragg peaks whereas the (HHH) Bragg peaks
480
+ do not split. This indicates a tetragonal distortion and specifi-
481
+ cally precludes a rhombohedral distortion.
482
+ The temperature dependence of a longitudinal θ-2θ scan
483
+ through the Q = (006) peak is plotted in Fig. 4(a). This is
484
+ an unfiltered copper source with Kα1 and Kα2 radiation. Both
485
+ components yield a split (006) peak below TN. The distortion
486
+ was quantified by fitting the θ-2θ scans to Lorentzian func-
487
+ tions while constraining the ratio of the Kα1 / Kα2t integrated
488
+ intensity to be temperature independent and set by its fitted
489
+ value obtained at high temperatures. Examples of these fits
490
+ are included in Fig. 4(a). The temperature dependent lattice
491
+ parameters inferred from this analysis are shown in Fig. 4(b).
492
+ The order parameter-like temperature dependence is similar
493
+ for both warming and cooling with no hysteresis detected
494
+ down to the 100 mK temperature scale. For comparison the
495
+ hysteresis detected through heat capacity measurements was
496
+ 13 mK (Fig. 2). A single (006) Bragg peak with a lattice pa-
497
+ rameter of 6.2095(1) Å above TN, splits into two peaks with
498
+ lattice parameters 6.2143(1) Å and 6.2075(1) Å below TN.
499
+ Assuming an approximately volume conserving phase transi-
500
+ tion implies that the lattice parameter that changes most is the
501
+ c-axis. This indicates the structural unit cell elongates along
502
+ the c-axis in the AFM state with c/a = 1.0011(1) at 5 K. We
503
+ note that an orthorhombic distortion with the a and b axis dif-
504
+ fering by less than 0.002 Å is not excluded by these data.
505
+ A possible space group for HoBi below TN is the maximal
506
+ tetragonal subgroup of the paramagnetic space group Fm3m,
507
+ which is I4/mmm. The structural parameters in the tetragonal
508
+ phase are aT = bT = 6.2075(1)/
509
+
510
+ 2Å and cT = 6.2143(1) Å
511
+ where the aT and bT axes are rotated by 45° relative to the
512
+ a and b axes of the paramagnetic simple cubic cell. In this
513
+ space group Ho3+ ions occupy a single 2a Wyckoff site and
514
+ the magnetic ordering vector is k = ( 3
515
+ 20 3
516
+ 2). While we must
517
+ use the tetragonal space group below TN, we continue to use
518
+ the cubic unit cell to index wave vector transfer in the neu-
519
+ tron scattering experiments, which do not resolve the multi-
520
+ domain tetragonal distortion.
521
+ D.
522
+ Spin structure
523
+ As described in the previous sections, the magnetic order
524
+ has a characteristic wavevector k = ( 1
525
+ 2
526
+ 1
527
+ 2
528
+ 1
529
+ 2). In addition to the
530
+ corresponding low T magnetic Bragg peaks, the intensities of
531
+ all nuclear Bragg peaks are observed to increase below TN.
532
+ The increase of intensity is approximately proportional to the
533
+ intensity in the paramagnetic phase, which indicates it arises
534
+ from secondary extinction release47. To check this hypothesis,
535
+ FIG. 4. A series of θ-2θ X-ray diffraction scans through the Q = (006)
536
+ Bragg peak. The inferred temperature dependence of the lattice pa-
537
+ rameters is shown in panel (b). The neutron magnetic and nuclear
538
+ refinement of HoBi are presented in (c) where the observed cross-
539
+ sections for various Bragg peaks are plotted as a function of the cal-
540
+ culated cross-sections. The inset in (c) reports the variation of the
541
+ χ2 goodness of fit for the magnetic refinement of HoBi assuming a
542
+ multi-domain k = ( 1
543
+ 2
544
+ 1
545
+ 2
546
+ 1
547
+ 2) spin structure with an easy axis defined
548
+ by spherical coordinates θ and φ (φ = 0 corresponds to the [110] di-
549
+ rection). Panel (d) shows the low-temperature magnetization versus
550
+ field for fields applied parallel to the [001] and [110] directions. The
551
+ data show that [001] is the easy axis.
552
+ we performed polarized neutron diffraction on the (002) and
553
+ (220) Bragg peaks below TN and found them to be exclusively
554
+ nuclear in origin.
555
+ We note that weak k = (001) Bragg peaks also onset at TN.
556
+ Examples of these peaks include the (001) and (111) Bragg
557
+ peaks (see Fig. 3(c)), which are forbidden within the Fm3m
558
+ space group. These Bragg peaks are attributed to multiple
559
+ magnetic scattering as their presence depends on both the em-
560
+ ployed incident neutron wavelength and the scattering plane,
561
+ and they are absent in powder neutron diffraction measure-
562
+ ments36. The multiple scattering processes involve magnetic
563
+ k = ( 1
564
+ 2
565
+ 1
566
+ 2
567
+ 1
568
+ 2) Bragg reflections so they occur only for T < TN.
569
+ Referring to fcc close packing, the AFM k = ( 1
570
+ 2
571
+ 1
572
+ 2
573
+ 1
574
+ 2) spin
575
+ structure can be described as an AFM stacking of FM trian-
576
+ gular lattices. As the magnetic order and structural distortion
577
+ in HoBi occur in a single 1st order phase transition, the direc-
578
+ tion of the spins in each FM sheet is not constrained by the
579
+ usual Landau argument for second order phase transitions. To
580
+ determine the local spin orientation of the Ho3+ ions, we col-
581
+ lected 18 rocking scans at different magnetic Bragg positions
582
+ for a sample presumed to be in an unbiased multi-domain
583
+ state. The data were compared to a cubic domain average
584
+ of the calculated magnetic Bragg diffraction for a general spin
585
+ orientation within one domain given by spherical angles θ, φ
586
+ and k = ( 1
587
+ 2
588
+ 1
589
+ 2
590
+ 1
591
+ 2). Here θ = 0 corresponds to the tetragonal
592
+ c-direction and θ = π/2 and φ = 0 corresponds to the [110]
593
+ direction. Minimizing with respect to the moment size at each
594
+
595
+ (a)
596
+ (b)
597
+
598
+ Warming
599
+ 6K
600
+ 。 c (Tetragonal)
601
+ HoBi
602
+ 6.214
603
+ Cooling
604
+ 5.8 K
605
+ 600
606
+ Q = (006)
607
+ 5.6 K
608
+ (cts/s)
609
+ . Par.
610
+ 6.212
611
+ 5 K
612
+ 400
613
+ Ka2
614
+ Latt.
615
+ 6.210
616
+ a (Cubic)
617
+ 200
618
+ 6.208
619
+ 0
620
+ a (Tetragonal)
621
+ 96
622
+ 96.4
623
+ 96.6
624
+ 5
625
+ 96.2
626
+ 5.5
627
+ 6
628
+ 6.5
629
+ 20
630
+ T(K)
631
+ (c)
632
+ 20
633
+ (d)
634
+ 12
635
+ ●H[001]
636
+ O H I [110]
637
+ CCCCCCCCCCCCCCCCC
638
+ 15
639
+ Magnetic
640
+ Oobs(b/f.u.)
641
+ Nuclear
642
+ M(μB/Ho)
643
+ 8
644
+ 2
645
+ X
646
+ Xmin
647
+ 10
648
+ 180
649
+ 4
650
+ 90
651
+ 5
652
+ 45
653
+ 90
654
+ 0
655
+ d
656
+ 0
657
+ 0
658
+ 5
659
+ 10
660
+ 15
661
+ 20
662
+ 0
663
+ 2
664
+ 4
665
+ 6
666
+ Ocalc(b/f.u.)
667
+ H(T)5
668
+ point, the χ2 measure of fit quality is shown versus θ and φ
669
+ in the inset panel of Fig. 4(c). The manifold of states rep-
670
+ resented by the red arrows in Fig. 1 are indistinguishable by
671
+ neutron diffraction. This degeneracy arises because the mag-
672
+ netic diffraction intensity for a multi-domain sample only de-
673
+ pends on the smallest angle between the spin and a ⟨111⟩ axis.
674
+ From our refinement, we find this angle is 47(10)°. This is ex-
675
+ perimentally indistinguishable from the angle between [001]
676
+ and [111], which is 55°. This means the magnetic diffraction
677
+ data are consistent with spins pointing along the [001] direc-
678
+ tions, but also with many other directions including close to
679
+ the [110] direction.
680
+ Fortunately the spin anisotropy of the Ho3+ ions can be
681
+ deduced from other pieces of information.
682
+ First, the low-
683
+ temperature magnetization of HoBi shown in Fig. 4(d) reveals
684
+ the saturation magnetization is larger for fields along the [001]
685
+ direction than along [110]. Second, the structural distortion
686
+ also occurs along the [001] direction. Both of these measure-
687
+ ments are consistent with spins oriented along the tetragonal
688
+ cT-axis in the AFM ordered state. Additionally, in Sec. III F
689
+ we show that a [001] easy axis anisotropy is needed to ac-
690
+ curately model the inelastic neutron scattering spectrum be-
691
+ low TN.
692
+ We thus conclude the spins in the AFM type II
693
+ order of HoBi are oriented along the cT direction, which is
694
+ the direction of the structural elongation.
695
+ The comparison
696
+ between measured and calculated magnetic Bragg intensities
697
+ is shown in Fig. 4(c). The corresponding spin structure is
698
+ shown in Fig. 1. An ordered moment of 10.3(6) µB was de-
699
+ termined, which is experimentally indistinguishable from the
700
+ gJµB = 5
701
+ 4 · 8 µB = 10 µB saturation magnetization of Ho3+.
702
+ E.
703
+ Crystal electrical field interaction
704
+ For Ho3+ ions, the J = 8 spin-orbit ground state manifold
705
+ is (2J+1) = 17 fold degenerate under full rotation symmetry.
706
+ This degeneracy is, however, lifted by the symmetry break-
707
+ ing crystal electric fields (CEF). Using the Stevens operator
708
+ formalism, the CEF Hamiltonian appropriate for Ho3+ in the
709
+ high-temperature cubic phase of HoBi can be expressed as
710
+ follows:
711
+ ˆHcubic
712
+ ce f
713
+ = B4( ˆO0
714
+ 4 + 5 ˆO4
715
+ 4) + B6( ˆO0
716
+ 6 − 21 ˆO4
717
+ 6).
718
+ (1)
719
+ Here ˆOm
720
+ n are Stevens operators48 that can be written in terms
721
+ of the spin-orbital angular momentum operators ˆJ+, ˆJ− and
722
+ ˆJz where ˆz ∥ c. The CEF parameters Bn are scalars of dimen-
723
+ sion energy that dictate the strength of the different CEF terms
724
+ and can be determined by fitting spectroscopic or thermo-
725
+ magnetic data sensitive to the crystal field level scheme. Bn
726
+ can also be estimated through the point-charge model49.
727
+ Following Hutching’s formalism49 the point charge model
728
+ yields
729
+ B4 = 7|e||qBi|βJ⟨r4⟩
730
+ 64πϵ0d5
731
+ Bi
732
+ (2)
733
+ and
734
+ B6 = 3|e||qBi|γJ⟨r6⟩
735
+ 256πϵ0d7
736
+ Bi
737
+ .
738
+ (3)
739
+ Here e is the electron charge, qBi is the charge of the Bi ligand
740
+ and ϵ0 is the vacuum permitivity. βJ and γJ are reduced matrix
741
+ elements calculated in ref48 whereas the radial integrals for the
742
+ 4f state ⟨rn⟩ are tabulated in ref50. We used qBi =
743
+ − 3e and
744
+ the distance between a holmium ion and its first n.n. bismuth
745
+ ion dBi = a/2 = 6.2093(1)/2 Å. Introducing these values in
746
+ Eqs. 2 and 3 we obtain B4 = −2.2709(2) × 10−4 meV and
747
+ B6 = −1.0468(1) × 10−7 meV.
748
+ FIG. 5. Determination of the crystal electric field (CEF) level scheme
749
+ for the J=8 Ho3+ ion in HoBi.
750
+ (a) shows the results of a point
751
+ charge (PC) calculation for the cubic and tetragonal phases. The cu-
752
+ bic CEF scheme may be compared to the level scheme for the fitted
753
+ CEF Hamiltonian of HoBi. Panel (b) and (c) respectively show the
754
+ temperature dependence of the magnetic heat capacity (Cp) and the
755
+ inverse magnetic susceptibility of HoBi compared to corresponding
756
+ properties based on the fitted CEF Hamiltonian. The magnetic en-
757
+ tropy obtained from integrating the Cp of HoBi is shown in the inset
758
+ of (b). The measured (d) and calculated (e) inelastic neutron scatter-
759
+ ing spectra of HoBi are shown for T = 12 K. The neutron inelastic
760
+ scattering data were acquired using a 25 meV incident neutron beam.
761
+ The corresponding CEF level scheme for Ho3+ in the cubic
762
+ phase of HoBi is shown in Fig. 5(a). The Ho3+ J−multiplet
763
+ is split into 4 triplets, 2 doublets, and 1 singlet that form three
764
+ groups. Group I includes one doublet, one triplet, and one
765
+ singlet between 0 and 0.2 meV. Group II is formed by two
766
+
767
+ (a)HoBi
768
+ P.C. cubic
769
+ Fit cubic
770
+ P.C. Tetragonal
771
+ 10
772
+ 888888888888888888 T
773
+ D
774
+ S
775
+ 8
776
+ D
777
+ D
778
+ 6
779
+ 4
780
+ E
781
+ 2
782
+ S
783
+ D
784
+ S
785
+ 0
786
+ D
787
+ D
788
+ S
789
+ (b)
790
+ (c)
791
+ 60
792
+ (J/mol/K)
793
+ 25
794
+ R ln(17)
795
+ 20
796
+ /emu)
797
+ R ln(6)
798
+ 20
799
+ 15
800
+ H=10 0e
801
+ (J/mol/K)
802
+ 40
803
+ 10
804
+ (mol Oe/
805
+ H II [001]
806
+ mag
807
+ S
808
+ 0
809
+ 10
810
+ 100
811
+ 10
812
+ 20
813
+ T(K)
814
+ %/ 1
815
+ CEF fit
816
+ CEF
817
+ 0
818
+ 0
819
+ 10
820
+ 100
821
+ 0
822
+ 100
823
+ 200
824
+ 300
825
+ T(K)
826
+ (e)
827
+ T(K)
828
+ (d)
829
+ 1
830
+ 12 K
831
+ Data
832
+ 12 K
833
+ Calc.
834
+ 12
835
+ Ei=25 meV
836
+ 12
837
+ hw (meV)
838
+ I (a.u.)
839
+ 8
840
+ 8
841
+ 4
842
+ 0
843
+ 0
844
+ 0
845
+ 1
846
+ 3
847
+ 4
848
+ 2
849
+ 3
850
+ 4
851
+ IQ(A)
852
+ IQ(A)6
853
+ triplets between 6 meV and 7 meV, and group III consists of a
854
+ doublet and a triplet between 9 meV and 10 meV.
855
+ The CEF Hamiltonian estimated from our point-charge cal-
856
+ culation can reproduce the temperature dependence of the
857
+ magnetic heat capacity Cp (Fig. 5(b)) and magnetic suscepti-
858
+ bility χ (Fig. 5(c)). Obtained by integrating Cp/T, the temper-
859
+ ature dependence of the entropy shown in the inset of Fig. 5(b)
860
+ is informative. A first entropy plateau near 10 K is associ-
861
+ ated with the sharp Cp anomaly at the phase transition to long
862
+ range magnetic order. The corresponding change in entropy
863
+ of ∆S = R ln 6 is that associated with the group I CEF states.
864
+ The second plateau at S = R ln 17 is reached at room temper-
865
+ ature and encompasses all of the entropy associated with the
866
+ three groups of crystal field levels.
867
+ For a more stringent test of the point charge model, we turn
868
+ to inelastic neutron scattering. Fig. 5(d) shows the 12 K in-
869
+ elastic neutron scattering spectrum with energy transfer rang-
870
+ ing from 0 to 15 meV. At this temperature, the group II and
871
+ III of CEF states are so scarcely populated that only CEF
872
+ excitations originating from group I should be visible. No
873
+ significant intrinsic broadening of the CEF excitations is ob-
874
+ served and we note, also, that the experimental resolution is
875
+ too coarse to resolve CEF levels within a group. The mag-
876
+ netic neutron scattering cross section associated with CEF
877
+ transition from group I to II and from group I to III can
878
+ be computed based on the point charge CEF Hamiltonian
879
+ (Imn ∝
880
+
881
+ i |⟨m|Ji|n⟩|2). This calculation predicts the cross
882
+ section for transitions from group I to group II is 250 times
883
+ stronger than for transitions from group I to group III. The in-
884
+ tensity of the transition from I to III is thus predicted to be too
885
+ weak to be detected. This explains why Fig. 5(d) shows just a
886
+ single peak that we associate with transitions from group I to
887
+ group II crystal field levels.
888
+ While the measured 7.2 meV gap between group I and
889
+ group II CEF levels is just 0.4 meV off from the point charge
890
+ prediction of 6.8 meV, we can improve our estimate of the
891
+ CEF Hamiltonian by simultaneously fitting B4 and B6 for
892
+ the best possible account of the neutron scattering spectra
893
+ (Fig. 5(d)), the specific heat data (Fig. 5(b)), and the mag-
894
+ netic susceptibility data (Fig. 5(c)).
895
+ The best fit parame-
896
+ ters thus obtained are B4
897
+ =
898
+ − 2.24(1) × 10−4 meV and
899
+ B6 = − 2.4(1) × 10−7 meV and with them the CEF Hamilto-
900
+ nian provides an excellent account of all single ion properties
901
+ that we’ve measured, as shown in Fig. 5.
902
+ The CEF scheme obtained from our fit (Fig. 5(a)) is remark-
903
+ ably similar to the point-charge calculation. Also a re-scaling
904
+ of our CEF Hamiltonian for HoBi using Eq. 2 and Eq. 3 con-
905
+ sidering only the different ligand spacing successfully predicts
906
+ the level scheme for HoN ref51. This is in contrast with the
907
+ praseodymium case where a pnictide ligand charge of q = −2e
908
+ is needed to bring the point charge model into agreement with
909
+ experimental data5. This indicates that holmium monopnic-
910
+ tides are more ionic than praseodymium monopnictides.
911
+ Finally, we estimated the effect of the tetragonal distortion
912
+ on the CEF interaction in HoBi. We performed a point-charge
913
+ calculation assuming that the first n.n. Ho-Bi bond is shorter
914
+ along the a and b direction (da) as compared to the c direction
915
+ (dc). The calculated CEF Hamiltonian can be written as:
916
+ Htet
917
+ ce f = |e||qBi|
918
+ 4πϵ0
919
+ [αJ⟨r2⟩( 1
920
+ d3c
921
+ − 1
922
+ d3a
923
+ ) ˆO0
924
+ 2+
925
+ (4)
926
+ βJ⟨r4⟩(( 1
927
+ 4d5c
928
+ +
929
+ 3
930
+ 16d5a
931
+ ) ˆO0
932
+ 4 +
933
+ 35
934
+ 16d5a
935
+ ˆO4
936
+ 4)+
937
+ γJ⟨r6⟩(( 1
938
+ 8d7c
939
+
940
+ 5
941
+ 64d7a
942
+ ) ˆO0
943
+ 6 −
944
+ 63
945
+ 64d7a
946
+ ˆO4
947
+ 6)].
948
+ The corresponding level scheme is shown in Fig. 5(a). For
949
+ this calculation, we used the lattice parameters determined
950
+ in our high-resolution X-ray scattering experiment. The de-
951
+ generacy of all the triplets and doublets associated with cubic
952
+ symmetry is lifted. This results in four doublets and nine sin-
953
+ glets and a significant broadening of each of the three groups
954
+ of crystal field levels.
955
+ F.
956
+ Low energy spin dynamics
957
+ We now turn our attention to the collective physics of HoBi,
958
+ which we explore using inelastic magnetic neutron scatter-
959
+ ing. Fig. 6(a) shows the temperature dependence of the in-
960
+ elastic scattering for Q = ( 1
961
+ 2
962
+ 1
963
+ 2
964
+ 1
965
+ 2). Just above TN, the scat-
966
+ tering is quasi-elastic with a physical (resolution corrected)
967
+ FWHM of 0.30(5) meV. No inelastic intensity is observed up
968
+ to 2 meV. This is consistent with the CEF energy scheme
969
+ shown in Fig. 5(c). Below TN, the quasi-elastic scattering
970
+ splits into an elastic and an inelastic component.
971
+ To probe any dispersion of the low energy spin excitations,
972
+ we acquired low energy spectra at momentum transfer Q cor-
973
+ responding to high symmetry points in the Brillouin zone.
974
+ Fig. 6(b) shows the spectrum consists of a peak that is broader
975
+ than the experimental resolution (FWHM indicated by hor-
976
+ izontal bar) and that shifts by less than the peak width be-
977
+ tween the different values of Q. A gaussian fit finds the peak
978
+ centered at 1.7(2) meV with a FWHM of 0.48(4) meV that
979
+ exceeds the instrumental resolution (FWHM of 0.22 meV).
980
+ The limited resolution and statistical accuracy of the data does
981
+ not rule out the possibility of multiple dispersive components
982
+ within the approximately Gaussian envelope of the peak.
983
+ We also examined the higher energy excitations for T < TN
984
+ by acquiring momentum resolved inelastic scattering data up
985
+ to 11.5 meV. A representative slice through the data is dis-
986
+ played as a color image versus Q along the (HH0) direction
987
+ and energy transfer in Fig. 6(c). No dispersion is resolved.
988
+ The data are similar to the high-temperature plot of intensity
989
+ versus |Q| and ℏω in Fig. 5(d) though with additional inelastic
990
+ features at 9.0(3) meV and 1.7(2) meV.
991
+ Fig. 6(e) shows the momentum dependence of the inte-
992
+ grated intensity of the 1.7 meV mode throughout the (HHL)
993
+ zone.
994
+ The Q dependence of the intensity is subtle albeit
995
+ peaked at the magnetic ( 1
996
+ 2
997
+ 1
998
+ 2
999
+ 1
1000
+ 2) zone center and smoothly de-
1001
+ creases with |Q| in accordance with the Ho3+ magnetic form
1002
+ factor41. We note that the 1.7 meV gap is about an order of
1003
+ magnitude greater than the predicted CEF gap arising from
1004
+ the tetragonal distortion. This indicates the phase transition is
1005
+ driven by the magnetic interactions, which we model below.
1006
+
1007
+ 7
1008
+ FIG. 6. The temperature dependence of the low energy inelastic neu-
1009
+ tron spectrum of HoBi at Q = ( 1
1010
+ 2
1011
+ 1
1012
+ 2
1013
+ 1
1014
+ 2) is shown in panel (a). The spec-
1015
+ trum of neutron scattering at some high symmetry positions within
1016
+ the first Brillouin zone of HoBi are shown in (b).The horizontal
1017
+ black bar indicates the FWHM energy resolution of the spectrom-
1018
+ eter while the black dashed lines show the predicted spectrum based
1019
+ on the spin Hamiltonian presented in this work. The energies asso-
1020
+ ciated with each exciton are indicated by vertical black dashed lines.
1021
+ The observed and calculated inelastic neutron scattering spectrum
1022
+ up to 11.5 meV are respectively plotted in (c) and (d) for momentum
1023
+ transfer Q along the [HH0] direction. The observed and calculated
1024
+ momentum dependence of the 1.75 meV exciton scattering inten-
1025
+ sity is shown in (e) and (f). The energy integration for panel (e) is
1026
+ ±0.25 meV.
1027
+ IV.
1028
+ MODELING SPIN DYNAMICS OF SPIN-ORBITAL
1029
+ EXCITONS
1030
+ The low-temperature excitations in HoBi are similar to
1031
+ other rare-earth metallic compounds where exchange interac-
1032
+ tions are strong enough to mix crystal field levels4,52,53. Be-
1033
+ cause components that are longitudinal with respect to the or-
1034
+ dered moment are involved, these are not conventional trans-
1035
+ verse spin wave excitations. They may be described as crystal
1036
+ field excitations that can propagate through the lattice due to
1037
+ inter-site interactions. We shall adopt the practice of calling
1038
+ these “crystal field exciton” or simply “exciton”54–56.
1039
+ A common theoretical approach to describing excitons in
1040
+ rare-earth magnets is to use a pseudo-boson theory where the
1041
+ exciton creation operator is a linear combination of single-ion
1042
+ operators53,57,58. In this theory, the Q = 0 single-ion opera-
1043
+ tors are obtained by diagonalizing the mean-field spin Hamil-
1044
+ tonian and the dispersion at finite Q is produced by the ex-
1045
+ change terms. We use this pseudo-boson theory to describe
1046
+ the magnetic excitation spectrum of HoBi below TN.
1047
+ The
1048
+ Hamiltonian Hs includes the single-ion tetragonal crystal field
1049
+ terms and isotropic exchange interactions. Hs is decomposed
1050
+ into a mean-field term (H0,k) and an interacting part (Hint) so
1051
+ Hs = �
1052
+ k H0,k + Hint where:
1053
+ H0,k = Htet
1054
+ ce f,k + (−1)kHzJk
1055
+ jz
1056
+ (5)
1057
+ and
1058
+ Hint =
1059
+
1060
+ j, j′,k,k′
1061
+ Jk,k′
1062
+ j, j′ Jk
1063
+ j · Jk′
1064
+ j′ −
1065
+
1066
+ j,k
1067
+ (−1)kHzJk
1068
+ jz.
1069
+ (6)
1070
+ Here j indexes the unit cell while k = 1, 2 specifies the
1071
+ anti-parallel sub-lattices of the AFM order (Fig. 1). We define
1072
+ Hz = 2 �
1073
+ r ZrJr⟨Jz⟩ where Jr and Zr are respectively the ex-
1074
+ change constant and coordination number associated with the
1075
+ rth neighbor. ⟨Jz⟩ is the thermal average of Jz on each site,
1076
+ which we found to be ⟨Jz⟩ = 8 in our diffraction and CEF
1077
+ analysis. By definition, Hint carries no mean value and so can
1078
+ be written in terms of creation (ˆa†
1079
+ n,k = |n, k⟩⟨0, k|) and annihila-
1080
+ tion (ˆan,k = |0, k⟩⟨n, k|) operators that connect the ground state
1081
+ |0, k⟩ and the excited eigenstates |n, k⟩ of ˆH0,k. In this case,
1082
+ ˆH0,k = �
1083
+ n Enˆa†
1084
+ n,kˆan,k where En,k is the eigenvalue of the |n, k⟩
1085
+ eigenstate of ˆHo,k. After writing ˆHs in terms of these operators
1086
+ and Fourier transforming it, we obtain:
1087
+ ˆHs = 1
1088
+ 2
1089
+
1090
+ Q
1091
+
1092
+ ˆa†(Q)A(Q)ˆa(Q) + ˆa†(−Q)A(−Q)ˆa(−Q)
1093
+ (7)
1094
+ +ˆa†(Q)B(Q)ˆa†(−Q) + ˆa(−Q)B(Q)ˆa(−Q)
1095
+
1096
+ with
1097
+ ˆA =
1098
+ ˆ∆ + 2ˆhzz + ˆh+− + ˆh−+ and
1099
+ ˆB = 2ˆhzz
1100
+ +
1101
+ ˆh++
1102
+ +
1103
+ ˆh−−
1104
+ where
1105
+ ˆ∆
1106
+ =
1107
+ En,kδk,k′δn,n′
1108
+ and
1109
+ ˆhαβ(k, k′, n, n′, Q) = J(Q)⟨k, n| ˆJα|0, k⟩⟨k′, 0| ˆJβ|n′, k′⟩.
1110
+ The procedure to compute the spin dynamics first consist of
1111
+ diagonalizing ˆH0,k to obtain the eigenvalues En,k and eigenvec-
1112
+ tors |n, k⟩ for Q = 0. At finite Q, the matrix ˆHs =
1113
+ � ˆA
1114
+ ˆB
1115
+ − ˆB − ˆA
1116
+
1117
+ is
1118
+ then computed and diagonalized to obtain the perturbed ener-
1119
+ gies (E˜n(Q)) and eigenstates |˜n(Q)⟩ for each exciton. We con-
1120
+ sider all the excited CEF states belonging to the (2J+1) spin-
1121
+ orbit manifold of HoBi so there are 32 creation and annihla-
1122
+ tion operators for each of the 2 Ho3+ spins within the magnetic
1123
+ unit cell. This give a Hilbert space of 64 states for ˆHs. The
1124
+ associated inelastic magnetic neutron scattering cross-section
1125
+ for a single magnetic domain is then53,57:
1126
+ d2σ
1127
+ dEdΩ = N(γr0)2 k f
1128
+ ki
1129
+ |g
1130
+ 2 f(Q)|2
1131
+ (8)
1132
+ ×
1133
+
1134
+ ˜n,q,τm
1135
+ |⟨˜n(q)| ˆJQ|GS ⟩|2δ(E − E˜n(q))∆(Q − q − τm)
1136
+ Here N is the number of primitive magnetic unit cells, γ = -
1137
+ 1.91 is the gyromagnetic ratio of the neutron, r0 = 2.818 ×
1138
+
1139
+ (a)
1140
+ I (a.u.)
1141
+ 0
1142
+ 3
1143
+ HoBi
1144
+ AE
1145
+ (Aaw) m
1146
+ 100
1147
+ 7
1148
+ (a.u.)
1149
+ 50
1150
+ 0
1151
+ 0
1152
+ 2
1153
+ 4
1154
+ 6
1155
+ 8
1156
+ 10
1157
+ 12
1158
+ 1.5
1159
+ 2
1160
+ 2.5
1161
+ T(K)
1162
+ hw (meV)
1163
+ (c)
1164
+ (d)
1165
+ 4
1166
+ Data
1167
+ Calc.
1168
+ 10
1169
+ 10
1170
+ (meV)
1171
+ 8
1172
+ 8
1173
+ (a.u.)
1174
+ 6
1175
+ 6
1176
+ hw
1177
+ 4
1178
+ 2
1179
+ 2
1180
+ 1.7 K
1181
+ 0
1182
+ 0
1183
+ 0
1184
+ 2
1185
+ 3
1186
+ 0
1187
+ 2
1188
+ 3
1189
+ 0
1190
+ [HH0]
1191
+ [HHO]
1192
+ (f)
1193
+ (e)
1194
+ 5
1195
+ 1.75 meV
1196
+ 1.75 meV
1197
+ Data
1198
+ Calc.
1199
+ 2
1200
+ 2
1201
+ 1.7 K
1202
+ [00L]
1203
+ L
1204
+ 1001
1205
+ (a.u.)
1206
+ I
1207
+ L
1208
+ UX
1209
+ U
1210
+ X
1211
+ 0
1212
+ 0
1213
+ 0
1214
+ 0.5
1215
+ 1
1216
+ 1.5
1217
+ 0
1218
+ 0.5
1219
+ 1
1220
+ 1.5
1221
+ 2
1222
+ [HH0]
1223
+ [HH0]8
1224
+ 10−15 m is the classical electron radius, τm is the magnetic
1225
+ zone center, q is the reduced momentum transfer within the
1226
+ first magnetic Brillouin zone, while k f and ki respectively are
1227
+ the scattered and incoming neutron wave vector. The mea-
1228
+ sured spectrum is subject to the finite resolution of the instru-
1229
+ ment which we account for by replacing the delta functions by
1230
+ a united normalized Gaussian functions with the Q-integrated
1231
+ energy resolution width. The final calculated spectrum was
1232
+ averaged over all possible magnetic domains.
1233
+ V.
1234
+ MICROSCOPIC SPIN HAMILTONIAN FOR HOLMIUM
1235
+ BISMUTH
1236
+ We determined the microscopic parameters of ˆHs for HoBi
1237
+ by fitting the Q = 0 spectrum consisting of three excitons
1238
+ at E1 = 1.7(2) meV, E2 = 7.4(2) meV and E3 = 9.0(3) meV
1239
+ with relative intensities I2/I1 = 5.5(3) and I2/I3 = 37(7). Em-
1240
+ ploying the ratio ∥J2/J1∥ = 2.17 obtained by analyzing the
1241
+ magnetic diffuse scattering (section III B) leaves just one free
1242
+ parameter. The tetragonal CEF Hamiltonian has six free pa-
1243
+ rameters that were initially estimated from the point-charge
1244
+ model. To reproduce the exact energies of the excitons at E2
1245
+ and E3, we allowed the CEF parameters to relax away from
1246
+ their point-charge values which results in many combinations
1247
+ of parameters consistent with the data. We estimated the ex-
1248
+ change constants by varying the CEF parameters away from
1249
+ their point-charge calculation values and keeping all solutions
1250
+ that have a χ2 within 20% (1/Nobs) of the global minimum.
1251
+ The exchange parameters refined to J1 = − 1.4(2) µeV and
1252
+ J2
1253
+ =
1254
+ 3.0(5) µeV.
1255
+ A mean-field critical temperature of
1256
+ 20(7) K is obtained from these parameters. For comparison,
1257
+ the actual ordering temperature is only TN
1258
+ =
1259
+ 5.72(1) K.
1260
+ We hypothesize that fluctuations arising from competition be-
1261
+ tween the ferromagnetic J1 and the antiferromagnetic J2 in-
1262
+ teractions lead to the reduced critical temperature.
1263
+ The right column of Fig. 6 compares the optimized model
1264
+ for a multi-domain sample to the experimental data. Fig. 6(d)
1265
+ shows the full intensity versus ℏω and Q ∥ (HH0) for com-
1266
+ parison with Fig. 6(c). The position and relative intensity of
1267
+ the three modes are well reproduced. Looking more closely
1268
+ at the 1.75 meV mode, Fig. 6(b) compares the intensity ver-
1269
+ sus energy transfer at select high symmetry points in the Bril-
1270
+ louin zone. The vertical dashed lines show that multiple ex-
1271
+ citons contribute at each Q. This is generally consistent with
1272
+ the featured spectrum observed though there is more broad-
1273
+ ening/dispersion observed than reproduced by the model. In-
1274
+ clusion of anisotropic or longer range interactions might be
1275
+ needed to remedy this discrepancy though data with higher
1276
+ energy resolution is needed to justify the greater model com-
1277
+ plexity. Fig. 6(f) shows the calculated Q-dependent integrated
1278
+ intensity of the 1.75 meV mode. The dominant features of
1279
+ the experimental result in Fig. 6(e) are reproduced, includ-
1280
+ ing mainly the increase of scattered intensity at the magnetic
1281
+ zone centers. We note the presence of phonon scattering near
1282
+ Q
1283
+ =
1284
+ (002) that may account for the discrepancy between
1285
+ the calculation and the experimental data at that momentum
1286
+ point.
1287
+ VI.
1288
+ DISCUSSION AND CONCLUSION
1289
+ In this manuscript, we have characterized an antiferro-
1290
+ magnetic order and the associated crystal field excitons
1291
+ that develop below TN
1292
+ =
1293
+ 5.72(1) K in the rare-earth
1294
+ monopnictide HoBi. This magnetic state is driven by strong
1295
+ 2nd n.n. antiferromagnetic and weaker 1st n.n. ferromag-
1296
+ netic interactions, which we quantified via modeling of the
1297
+ diffuse paramagnetic and low temperature inelastic neutron
1298
+ scattering. The excitation spectrum is sensitive to the local
1299
+ orientation of the Ho3+ ordered spins, which allowed us
1300
+ to establish the Ising nature of the antiferromagnetic order
1301
+ in HoBi that cannot be deduced from neutron diffraction
1302
+ of a multi-domain sample.
1303
+ We used X-ray diffraction to
1304
+ provide evidence for a tetragonal structural distortion that
1305
+ accompanies magnetic ordering.
1306
+ Our CEF analysis and
1307
+ modelling of inelastic scattering data indicates the elongated
1308
+ c-axis coincides with the easy magnetic axis within a domain.
1309
+ The magnetic excitations that we have documented here
1310
+ surely have significant impacts on the magneto-transport
1311
+ properties of HoBi34. For example, we found strong quasi-
1312
+ elastic neutron scattering in the paramagnetic state.
1313
+ The
1314
+ associated short range correlated spin fluctuations, which
1315
+ may be accompanied by short range tetragonal lattice dis-
1316
+ tortions too given the non-Kramers nature of the Ho3+, are
1317
+ expected to enhance the electrical resistivity above TN. Below
1318
+ TN, these gapless fluctuations are replaced by a coherent
1319
+ exciton at 1.7(2) meV and correspondingly the electrical
1320
+ resistivity is reduced by an order of magnitude upon cooling
1321
+ below TN34. The field-dependence of spin-orbital excitons
1322
+ may be responsible for various features observed in the
1323
+ magnetoresistance of HoBi and more broadly in the rare-earth
1324
+ monopnictides23–29.
1325
+ VII.
1326
+ ACKNOWLEDGEMENTS
1327
+ This work was supported as part of the Institute for Quan-
1328
+ tum Matter, an Energy Frontier Research Center funded by the
1329
+ U.S. Department of Energy, Office of Science, Basic Energy
1330
+ Sciences Under Award No.DE-SC0019331. CB was further
1331
+ supported by the Gordon and Betty Moore foundation EPIQS
1332
+ program under GBMF9456. The work at Boston College was
1333
+ supported by the U.S. Department of Energy, Office of Basic
1334
+ Energy Sciences, Division of Physical Behavior of Materials
1335
+ under Award DE-SC0023124. This work was supported in
1336
+ part by the Natural Sciences and Engineering Research Coun-
1337
+ cil of Canada (NSERC). We acknowledge the support of the
1338
+ National Institute of Standards and Technology, U.S. Depart-
1339
+ ment of Commerce. Access to MACS was provided by the
1340
+ Center for High Resolution Neutron Scattering, a partnership
1341
+ between the National Institute of Standards and Technology
1342
+ and the National Science Foundation under Agreement No.
1343
+ DMR-1508249. The identification of any commercial prod-
1344
+ uct or trade name does not imply endorsement or recommen-
1345
+ dation by the National Institute of Standards and Technology.
1346
+
1347
+ 9
1348
+ A portion of this research used resources at the High Flux Iso-
1349
+ tope Reactor, a DOE Office of Science User Facility operated
1350
+ by the Oak Ridge National Laboratory.
1351
+ ∗ Correspondence email address: Jonathan.Gaudet@nist.gov
1352
+ 1 C.-G. Duan, R. F. Sabirianov, W. N. Mei, P. A. Dowben, S. S.
1353
+ Jaswal, and E.Y. Tsymbal, “Electronic, magnetic and transport
1354
+ properties of rare-earth monopnictides,” J. Condens. Matter Phys.
1355
+ 19, 315220 (2007).
1356
+ 2 L. Petit, R. Tyer, Z. Szotek, W.M. Temmerman, and A. Svane,
1357
+ “Rare earth monopnictides and monochalcogenides from first
1358
+ principles: towards an electronic phase diagram of strongly corre-
1359
+ lated materials,” New J. Phys. 12, 113041 (2010).
1360
+ 3 H. R. Child, M. K. Wilkinson, J. W. Cable, W. C. Koehler, and
1361
+ E. O. Wollan, “Neutron diffraction investigation of the magnetic
1362
+ properties of compounds of rare-earth metals with group V an-
1363
+ ions,” Phys. Rev. 131, 922–931 (1963).
1364
+ 4 K. C. Turberfield, L. Passell, R. J. Birgeneau,
1365
+ and E. Bucher,
1366
+ “Neutron crystal-field spectroscopy in rare-earth metallic com-
1367
+ pounds,” J. Appl. Phys. 42, 1746–1754 (1971).
1368
+ 5 R. J. Birgeneau, E. Bucher, J. P. Maita, L. Passell,
1369
+ and K. C.
1370
+ Turberfield, “Crystal fields and the effective-point-charge model
1371
+ in the rare-earth pnictides,” Phys. Rev. B 8, 5345–5347 (1973).
1372
+ 6 P. Schobinger-Papamantellos, A. Niggli, P. Fischer, E. Kaldis,
1373
+ and V. Hildebrandt, “Magnetic ordering of rare earth monochalco-
1374
+ genides. I. neutron diffraction investigation of CeS, NdS, NdSe,
1375
+ NdTe and TbSe,” J. Solid State Phys. 7, 2023 (1974).
1376
+ 7 P. Fischer,
1377
+ P. Schobinger-Papamantellos,
1378
+ E. Kaldis,
1379
+ and
1380
+ A. Ernst, “Magnetic ordering of rare earth monochalcogenides.
1381
+ II. Neutron diffraction investigation of terbium sulphide, telluride
1382
+ and holmium telluride,” J. Phys. C: Solid State Phys 10, 3601
1383
+ (1977).
1384
+ 8 H. Heer, A. Furrer, W. Halg, and O. Vogt, “Neutron spectroscopy
1385
+ in the cerium monopnictides,” J. Phys. C: Solid State Phys 12,
1386
+ 5207–5220 (1979).
1387
+ 9 W. Selke, “The ANNNI model — Theoretical analysis and exper-
1388
+ imental application,” Phys. Rep. 170, 213 – 264 (1988).
1389
+ 10 Q.G. Sheng and B.R. Cooper, “Combined effect of hybridiza-
1390
+ tion and exchange coulomb interaction on magnetic ordering in
1391
+ correlated-f-electron cerium systems,” Phys. Rev. B 50, 965–977
1392
+ (1994).
1393
+ 11 F.F. Tafti, Q.D. Gibson, S.K. Kushwaha, N. Haldolaarachchige,
1394
+ and R.J. Cava, “Resistivity plateau and extreme magnetoresis-
1395
+ tance in lasb,” Nat. Phys. 12, 272–277 (2016).
1396
+ 12 F.F. Tafti, Q.D. Gibson, S. Kushwaha, J.W. Krizan, N. Hal-
1397
+ dolaarachchige, and R.J. Cava, “Temperature-field phase diagram
1398
+ of extreme magnetoresistance,” PNAS 113, E3475–E3481 (2016).
1399
+ 13 P.-J. Guo, H.-C. Yang, B.-J. Zhang, K. Liu,
1400
+ and Z.-Y. Lu,
1401
+ “Charge compensation in extremely large magnetoresistance ma-
1402
+ terials LaSb and LaBi revealed by first-principles calculations,”
1403
+ Phys. Rev. B 93, 235142 (2016).
1404
+ 14 H.-Y. Yang, T. Nummy, H. Li, S. Jaszewski, M. Abramchuk, D.S.
1405
+ Dessau, and F.F. Tafti, “Extreme magnetoresistance in the topo-
1406
+ logically trivial lanthanum monopnictide LaAs,” Phys. Rev. B 96,
1407
+ 235128 (2017).
1408
+ 15 R. Lou, B.-B. Fu, Q.N. Xu, P.-J. Guo, L.-Y. Kong, L.-K. Zeng,
1409
+ J.-Z. Ma, P. Richard, C. Fang, Y.-B. Huang, S.S. Sun, Q. Wang,
1410
+ L. Wang, Y.-G. Shi, H.C. Lei, K. Liu, H.M. Weng, T. Qian,
1411
+ H. Ding, and S.-C. Wang, “Evidence of topological insulator state
1412
+ in the semimetal LaBi,” Phys. Rev. B 95, 115140 (2017).
1413
+ 16 H. Oinuma, S. Souma, D. Takane, T. Nakamura, K. Nakayama,
1414
+ T. Mitsuhashi, K. Horiba, H. Kumigashira, M. Yoshida, A. Ochiai,
1415
+ T. Takahashi, and T. Sato, “Three-dimensional band structure of
1416
+ LaSb and CeSb: Absence of band inversion,” Phys. Rev. B 96,
1417
+ 041120 (2017).
1418
+ 17 T. J. Nummy, J. A. Waugh, S. P. Parham, Q. Liu, H.-Y. Yang,
1419
+ H. Li, X. Zhou, N. C. Plumb, F. F. Tafti,
1420
+ and Dessau D. S.,
1421
+ “Anomalous quantum oscillations and evidence for a non-trivial
1422
+ Berry phase in SmSb,” npj Quantum Mater. 3, 24 (2018).
1423
+ 18 X.H. Niu, D.F. Xu, Y.H. Bai, Q. Song, X.P. Shen, B.P. Xie, Z. Sun,
1424
+ Y.B. Huang, D.C. Peets, and D.L. Feng, “Presence of exotic elec-
1425
+ tronic surface states in LaBi and LaSb,” Phys. Rev. B 94, 165163
1426
+ (2016).
1427
+ 19 R. Singha, B. Satpati, and P. Mandal, “Fermi surface topology
1428
+ and signature of surface dirac nodes in LaBi,” Sci. Rep. 7, 1–9
1429
+ (2017).
1430
+ 20 J. Nayak, S.-C. Wu, N. Kumar, C. Shekhar, S. Singh, J. Fink,
1431
+ E.E.D. Rienks, G.H. Fecher, S.S.P. Parkin, B. Yan, and C. Felser,
1432
+ “Multiple Dirac cones at the surface of the topological metal
1433
+ LaBi,” Nat. Commun. 8, 13942 (2017).
1434
+ 21 B. Feng, J. Cao, M. Yang, Y. Feng, S. Wu, B. Fu, M. Arita,
1435
+ K. Miyamoto, S. He, K. Shimada, Y. Shi, T. Okuda,
1436
+ and
1437
+ Y. Yao, “Experimental observation of node-line-like surface states
1438
+ in LaBi,” Phys. Rev. B 97, 155153 (2018).
1439
+ 22 Orest Pavlosiuk, Przemysław Swatek, Dariusz Kaczorowski, and
1440
+ Piotr Wi´sniewski, “Magnetoresistance in LuBi and YBi semimet-
1441
+ als due to nearly perfect carrier compensation,” Phys. Rev. B 97,
1442
+ 235132 (2018).
1443
+ 23 D.D. Liang, Y.J. Wang, C.Y. Xi, W.L. Zhen, J. Yang, L. Pi,
1444
+ W.K. Zhu,
1445
+ and C.J. Zhang, “Extreme magnetoresistance and
1446
+ Shubnikov-de Haas oscillations in ferromagnetic DySb,” APL
1447
+ Mater. 6, 086105 (2018).
1448
+ 24 F Wu, C.Y. Guo, M. Smidman, J.L. Zhang,
1449
+ and H.Q. Yuan,
1450
+ “Large magnetoresistance and fermi surface topology of PrSb,”
1451
+ Phys. Rev. B 96, 125122 (2017).
1452
+ 25 L. Ye, T. Suzuki, C.R. Wicker, and J.G. Checkelsky, “Extreme
1453
+ magnetoresistance in magnetic rare-earth monopnictides,” Phys.
1454
+ Rev B 97, 081108 (2018).
1455
+ 26 Y.-Y. Wang, H. Zhang, X.-Q. Lu, L.-L. Sun, S. Xu, Z.-Y. Lu,
1456
+ K. Liu, S. Zhou, and T.-L. Xia, “Extremely large magnetoresis-
1457
+ tance and electronic structure of TmSb,” Phys. Rev. B 97, 085137
1458
+ (2018).
1459
+ 27 Y.-Y. Wang, L.-L. Sun, S. Xu, Y. Su, and T.-L. Xia, “Unusual
1460
+ magnetotransport in holmium monoantimonide,” Phys. Rev. B 98,
1461
+ 045137 (2018).
1462
+ 28 Y.-Y. Lyu, F. Han, Z.-L. Xiao, J. Xu, Y.-L. Wang, H.-B. Wang, J.-
1463
+ K. Bao, D.y. Chung, M. Li, I. Martin, U. Welp, M.G. Kanatzidis,
1464
+ and W.-K. Kwok, “Magnetization-governed magnetoresistance
1465
+ anisotropy in the topological semimetal CeBi,” Phys. Rev. B 100,
1466
+ 180407 (2019).
1467
+ 29 Z.M. Wu, Y.R. Ruan, F. Tang, L. Zhang, Y. Fang, J.M. Zhang,
1468
+ Z.D. Han, R.J. Tang, B. Qian, and X.F. Jiang, “Multiple meta-
1469
+ magnetism, extreme magnetoresistance and nontrivial topolog-
1470
+ ical electronic structures in the magnetic semimetal candidate
1471
+ holmium monobismuthide,” New J. Phys. 21, 093063 (2019).
1472
+ 30 M. M. Hosen, G. Dhakal, B. Wang, N. Poudel, B. Singh,
1473
+ K. Dimitri, F. Kabir, C. Sims, S. Regmi, W. Neff, A. B. Sarkar,
1474
+
1475
+ 10
1476
+ A. Agarwal, D. Murray, F. Weickert, K. Gofryk, O. Pavlosiuk,
1477
+ P. Wi´sniewski, D. Kaczorowski, A. Bansil,
1478
+ and Neupane. M.,
1479
+ “Observation of gapped state in rare-earth monopnictide HoSb,”
1480
+ Sci. Rep. 10, 1–8 (2020).
1481
+ 31 M. Neupane, M.M. Hosen, I. Belopolski, N. Wakeham, K. Dim-
1482
+ itri, Na. Dhakal, J.-X. Zhu, M.Z. Hasan, E.D. Bauer, and F. Ron-
1483
+ ning, “Observation of Dirac-like semi-metallic phase in NdSb,” J.
1484
+ Condens. Matter Phys. 28, 23LT02 (2016).
1485
+ 32 C. Guo, C. Cao, M. Smidman, F. Wu, Y. Zhang, F. Steglich, F.-
1486
+ C. Zhang, and H. Yuan, “Possible weyl fermions in the magnetic
1487
+ kondo system CeSb,” npj Quantum Mater. 2, 1–6 (2017).
1488
+ 33 F. Wu, C. Guo, M. Smidman, J. Zhang, Y. Chen, J. Singleton,
1489
+ and H. Yuan, “Anomalous quantum oscillations and evidence for
1490
+ a non-trivial Berry phase in SmSb,” npj Quantum Mater. 4, 1–6
1491
+ (2019).
1492
+ 34 H.-Y. Yang, J. Gaudet, A.A. Aczel, D.E. Graf, P. Blaha, B.D.
1493
+ Gaulin, and F.F. Tafti, “Interplay of magnetism and transport in
1494
+ HoBi,” Phys. Rev. B 98, 045136 (2018).
1495
+ 35 F. Hulliger, H.R. Ott, and T. Siegrist, “Low temperature behaviour
1496
+ of HoBi,” J. less-common met. 96, 263–268 (1984).
1497
+ 36 P. Fischer, W. H¨alg, and F. Hulliger, “Magnetic ordering in HoBi,
1498
+ HoS, ErS and ErSe,” Physica B+C 130, 551 – 554 (1985).
1499
+ 37 A. Fente, H. Suderow, S. Vieira, N.M. Nemes, M. Garc´ıa-
1500
+ Hern´andez, S.L. Bud’ko, and P.C. Canfield, “Low temperature
1501
+ magnetic transitions of single crystal HoBi,” Solid State Commun.
1502
+ 171, 59–63 (2013).
1503
+ 38 W.C. Chen, R. Erwin, J.W. McIver III, S. Watson, C.B. Fu, T.R.
1504
+ Gentile, J.A. Borchers, J.W. Lynn, and G.L. Jones, “Applications
1505
+ of 3 He neutron spin filters at the NCNR,” Physica B Condens.
1506
+ 404, 2663–2666 (2009).
1507
+ 39 W.C. Chen, T.R. Gentile, R. Erwin, S. Watson, Q. Ye, K.L.
1508
+ Krycka, and B.B. Maranville, “3He spin filter based polarized
1509
+ neutron capability at the NIST Center for Neutron Research,” J.
1510
+ Phys. Conf. Ser. 528, 012014 (2014).
1511
+ 40 A. Scheie, “LongHCPulse: Long-Pulse heat capacity on a quan-
1512
+ tum design PPMS,” J. Low Temp. Phys. 193, 60–73 (2018).
1513
+ 41 M. Blume, A.J. Freeman, and R.E. Watson, “Neutron magnetic
1514
+ form factors and x-ray atomic scattering factors for rare-earth
1515
+ ions,” Chem. Phys. 37, 1245–1253 (1962).
1516
+ 42 R.M. White and B. Bayne, Quantum theory of magnetism, Vol. 1
1517
+ (Springer, 1983).
1518
+ 43 D. Hohlwein, J.-U. Hoffmann, and R. Schneider, “Magnetic in-
1519
+ teraction parameters from paramagnetic diffuse neutron scattering
1520
+ in MnO,” Phys. Rev. B 68, 140408 (2003).
1521
+ 44 L.C. Bartel, “Stability of f.c.c. type-2 antiferromagnetic ordering
1522
+ and comments on the calculation of exchange constants: Applica-
1523
+ tion to MnO, α-MnS, NiO, GdP and GdAs,” Solid State Commun.
1524
+ 11, 55–59 (1972).
1525
+ 45 N.-N. Sun and H.-Y. Wang, “The J1-J2 model on the face-
1526
+ centered-cubic lattices,” J. Magn. Magn. Mater. 454, 176–184
1527
+ (2018).
1528
+ 46 P. Balla, Y. Iqbal, and K. Penc, “Degenerate manifolds, helimag-
1529
+ nets, and multi-q chiral phases in the classical heisenberg antifer-
1530
+ romagnet on the face-centered-cubic lattice,” Phys. Rev. Res. 2,
1531
+ 043278 (2020).
1532
+ 47 G.E. Bacon and R.D. Lowde, “Secondary extinction and neutron
1533
+ crystallography,” Acta Crystallogr. 1, 303–314 (1948).
1534
+ 48 K.W.H. Stevens, “Matrix elements and operator equivalents con-
1535
+ nected with the magnetic properties of rare earth ions,” Proc. Phys.
1536
+ Soc. Section A 65, 209 (1952).
1537
+ 49 M.T. Hutchings, “Point-charge calculations of energy levels of
1538
+ magnetic ions in crystalline electric fields,” in Solid state physics,
1539
+ Vol. 16 (Elsevier, 1964) pp. 227–273.
1540
+ 50 A.J. Freeman and R.E. Watson, “Theoretical investigation of some
1541
+ magnetic and spectroscopic properties of rare-earth ions,” Phys.
1542
+ Rev. 127, 2058 (1962).
1543
+ 51 A Furrer and W Halg, “Crystal-field splittings of NdN and HoN,”
1544
+ J. Phys. C Solid State Phys. 9, 3499 (1976).
1545
+ 52 B.D. Rainford and J.D. Houmann, “Magnetic exciton dispersion
1546
+ in praseodymium,” Phys. Rev. Lett. 26, 1254 (1971).
1547
+ 53 W.J.L. Buyers, T.M. Holden, E.C. Svensson, R.A. Cowley, and
1548
+ M.T. Hutchings, “Excitations in KCoF3. II. Theoretical,” J. Phys.
1549
+ C Solid State Phys 4, 2139 (1971).
1550
+ 54 P.M. Sarte, M. Songvilay, E. Pachoud, R.A. Ewings, C.D. Frost,
1551
+ D. Prabhakaran, K.H. Hong, A.J. Browne, Z. Yamani, J.P. At-
1552
+ tfield, E.E. Rodriguez, S.D. Wilson, and C. Stock, “Spin-orbit
1553
+ excitons in CoO,” Phys. Rev. B 100, 075143 (2019).
1554
+ 55 P.M. Sarte, C. Stock, B.R. Ortiz, K.H. Hong,
1555
+ and S.D. Wil-
1556
+ son, “Van vleck excitons in Ca2RuO4,” Phys. Rev. B 102, 245119
1557
+ (2020).
1558
+ 56 B. Yuan, M.B. Stone, G.-J. Shu, F.C. Chou, X. Rao, J.P. Clancy,
1559
+ and Y.-J. Kim, “Spin-orbit exciton in a honeycomb lattice magnet
1560
+ CoTiO3: Revealing a link between magnetism in d- and f-electron
1561
+ systems,” Phys. Rev. B 102, 134404 (2020).
1562
+ 57 T.M. Holden, E.C. Svensson, W.J.L. Buyers, and O. Vogt, “Mag-
1563
+ netic excitations in terbium antimonide,” Phys. Rev. B 10, 3864
1564
+ (1974).
1565
+ 58 P. Bak, “Magnetic excitations in rare earth Al2 compounds,” AIP
1566
+ Conference Proceedings 24, 152–158 (1975).
1567
+
NNE4T4oBgHgl3EQfjQ2i/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ONFOT4oBgHgl3EQf3DT4/content/tmp_files/2301.12945v1.pdf.txt ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.12945v1 [math.CO] 30 Jan 2023
2
+ CONTINUED FRACTIONS FOR PARTITION GENERATING
3
+ FUNCTIONS
4
+ GEOFFREY B CAMPBELL
5
+ Dedicated to Professor Rodney J Baxter on his 83rd birthday.
6
+ Abstract. We derive continued fractions for partition generating functions, uti-
7
+ lizing both Euler’s techniques and Ramanujan’s techniques. Although our results
8
+ are for integer partitions there is scope to extend this work to vector partitions,
9
+ including for binary and n-ary partitions.
10
+ 1. Euler’s Continued Fraction
11
+ Almost 290 years ago in 1737, Leonhard Euler wrote De fractionibus continuis dis-
12
+ sertatio, which gave mathematics a first ever comprehensive account of the properties
13
+ of continued fractions, and included the first proof that the number e is irrational.
14
+ (See Sandifer [50]) Later, but still 275 years ago in 1748, Euler, in his Introductio in
15
+ analysin infinitorum Vol. I, Chapter 18 [28], proved:
16
+ (a) the equivalence of his continued fraction to a generalized infinite series,
17
+ (b) every rational number can be written as a finite continued fraction, and
18
+ (c) the continued fraction of an irrational number is infinite.
19
+ 2010 Mathematics Subject Classification. Primary: 11J70; Secondary: 05A15, 05E40, 11Y11,
20
+ 11P21.
21
+ Key words and phrases. Continued fractions and generalizations. Exact enumeration problems,
22
+ generating functions.
23
+ Partitions of integers.
24
+ Elementary theory of partitions.
25
+ Combinatorial
26
+ identities, bijective combinatorics. Lattice points in specified regions.
27
+ Thanks are due to Professor Dr Henk Koppelaar, whose discussions and suggestions have been
28
+ very helpful for the book for which this paper is essentially a chapter.
29
+ 1
30
+
31
+ 2
32
+ GEOFFREY B CAMPBELL
33
+ Euler’s continued fraction is the very nice identity, whose first few cases are:
34
+ a0 + a0a1
35
+ =
36
+ a0/(1 − a1/(1 + a1))
37
+ =
38
+ a0
39
+ 1 −
40
+ a1
41
+ 1 + a1
42
+ ;
43
+ a0 + a0a1 + a0a1a2
44
+ =
45
+ a0/(1 − a1/(1 + a1 − a2/(1 + a2)))
46
+ =
47
+ a0
48
+ 1 −
49
+ a1
50
+ 1 + a1 −
51
+ a2
52
+ 1 + a2
53
+ ;
54
+ a0 + a0a1 + a0a1a2 + a0a1a2a3
55
+ =
56
+ a0/(1 − a1/(1 + a1 − a2/(1 + a2 − a3/(1 + a3))))
57
+ =
58
+ a0
59
+ 1 −
60
+ a1
61
+ 1 + a1 −
62
+ a2
63
+ 1 + a2 −
64
+ a3
65
+ 1 + a3
66
+ .
67
+ Hence, we can state Euler’s Continued Fraction in the following
68
+ Theorem 1.1. If a0, a1, a3, ... an are defined functions such that no denominator
69
+ is zero in the following equations then
70
+ (1.1)
71
+ n
72
+
73
+ k=0
74
+ k
75
+
76
+ j=0
77
+ aj = a0 + a0a1 + a0a1a2 + ... + a0a1...an
78
+ = a0/(1 − a1/(1 + a1 − a2/(1 + a2 − a3/(1 + ... an−1/(1 + an−1 − an/(1 + an))))).
79
+ =
80
+ a0
81
+ 1 −
82
+ a1
83
+ 1 + a1 −
84
+ a2
85
+ 1 + a2 −
86
+ a3
87
+ 1 + a3 −
88
+ ...
89
+ ...
90
+ an−1
91
+ 1 + an−1 −
92
+ an
93
+ 1 + an
94
+ .
95
+ Obviously, this lends itself to many of the elementary series that arise in school
96
+ and university analysis.
97
+ However, we shall put this to good use in applying it
98
+ to partition generating functions. The fact of this theorem involving a finite sum
99
+ allows us to incrementally extend the number of terms until we can infer the infinite
100
+ versions of the theorem.
101
+ Example 1: The exponential function is
102
+ (1.2) exp(z) = 1 + z
103
+ 1! + z2
104
+ 2! + z3
105
+ 3! + ... = 1 +
106
+ �z
107
+ 1
108
+
109
+ +
110
+ �z
111
+ 1
112
+ � �z
113
+ 2
114
+
115
+ +
116
+ �z
117
+ 1
118
+ � �z
119
+ 2
120
+ � �z
121
+ 3
122
+
123
+ + ...
124
+ = 1/
125
+
126
+ 1 − z/
127
+
128
+ 1 + z −
129
+ �z
130
+ 2
131
+
132
+ /
133
+
134
+ 1 +
135
+ �z
136
+ 2
137
+
138
+
139
+ �z
140
+ 3
141
+
142
+ /
143
+
144
+ 1 +
145
+ �z
146
+ 3
147
+
148
+
149
+ �z
150
+ 4
151
+
152
+ /
153
+
154
+ 1 +
155
+ �z
156
+ 4
157
+
158
+ − ...
159
+ �����
160
+ .
161
+
162
+ CONTINUED FRACTION PARTITION IDENTITIES
163
+ 3
164
+ Applying an “equivalence transformation” that consists of clearing the fractions,
165
+ this example is simplified to
166
+ exp(z) = 1/(1 − z/(1 + z − z/(2 + z − 2z/(3 + z − 3z/(4 + z − . . .))))),
167
+ or the equivalent statement
168
+ exp(z) =
169
+ 1
170
+ 1 −
171
+ z
172
+ 1 + z −
173
+ z
174
+ 2 + z −
175
+ 2z
176
+ 3 + z −
177
+ 3z
178
+ 4 + z − . . .
179
+ and we know this continued fraction converges uniformly on every bounded domain
180
+ in the complex plane because it is equivalent to the power series for exp(z).
181
+ Example 2: There is the well-known logarithmic function series
182
+ (1.3)
183
+ log
184
+ �1 + z
185
+ 1 − z
186
+
187
+ = 2z(1
188
+ 1 + z2
189
+ 3 + z4
190
+ 5 + ...)
191
+ = 2z(1 + (z2
192
+ 3 ) + (z2
193
+ 3 )(3z2
194
+ 5 ) + (z2
195
+ 3 )(3z2
196
+ 5 )(5z2
197
+ 7 ) + ...).
198
+ Applying Euler’s continued fraction formula to this expression shows that:
199
+ log
200
+ �1 + z
201
+ 1 − z
202
+
203
+ = 2z/(1−(z2
204
+ 3 )/(1+(z2
205
+ 3 )−(3z2
206
+ 5 )/(1+(3z2
207
+ 5 )−(5z2
208
+ 7 )/(1+(5z2
209
+ 7 )−(7z2
210
+ 9 )/(1+(7z2
211
+ 9 )−...))))).
212
+ Applying the “equivalence transformation” this example is simplified to
213
+ log
214
+ �1 + z
215
+ 1 − z
216
+
217
+ = 2z/(1−z2/(z2+3−(3z)2/(3z2+5−(5z)2/(5z2+7−(7z)2/(7z2+9−...)))))
218
+ =
219
+ 2z
220
+ 1 −
221
+ z2
222
+ z2 + 3 −
223
+ (3z)2
224
+ 3z2 + 5 −
225
+ (5z)2
226
+ 5z2 + 7 −
227
+ (7z)2
228
+ 7z2 + 9 − . . .
229
+ Example 3: A continued fraction for π. We can use the previous example involving
230
+ the principal branch of the natural logarithm function to construct a continued
231
+ fraction representation of π. First we note that
232
+ (i + 1)/(i − 1) = i,
233
+ so
234
+ then
235
+ log((i + 1)/(i − 1)) = iπ/2.
236
+
237
+ 4
238
+ GEOFFREY B CAMPBELL
239
+ Setting z = i in the previous result, and remembering that i2 = −1, we obtain
240
+ immediately
241
+ π =
242
+ 4
243
+ 1 +
244
+ 12
245
+ 2 +
246
+ 32
247
+ 2 +
248
+ 52
249
+ 2 +
250
+ 72
251
+ 2 + . . .
252
+ 2. Euler’s continued fraction applied to partitions
253
+ In this section we will technically do no more than apply the previous section.
254
+ However, the theory of partitions is full of generating functions that are emenable to
255
+ the Euler continued fraction. In a subsequent section we will examine Ramanujan
256
+ type continued fractions, but firstly we will gather some ”low hanging fruit” from
257
+ some elementary series-product identities.
258
+ We begin with the well-known telescoping identities:
259
+ If a1, a2, a3, ... , an, are functions chosen for nonzero denominators, then
260
+ (2.1)
261
+ 1 +
262
+ a1
263
+ 1 − a1
264
+ +
265
+ a2
266
+ (1 − a1)(1 − a2) + ... +
267
+ an
268
+ (1 − a1)(1 − a2)...(1 − an)
269
+ =
270
+ 1
271
+ (1 − a1)(1 − a2)(1 − a3)...(1 − an);
272
+ and
273
+ (2.2) 1 + a1 + a2(1 + a1) + a3(1 + a1)(1 + a2) + ... + an(1 + a1)(1 + a2)...(1 + an−1)
274
+ = (1 + a1)(1 + a2)(1 + a3)...(1 + an).
275
+ The series in (2.1) and (2.2) are already close to being in the required form to
276
+ apply the Euler continued fraction since
277
+ (2.3)
278
+ 1 +
279
+ a1
280
+ 1 − a1
281
+ +
282
+ a2
283
+ (1 − a1)(1 − a2) + ... +
284
+ an
285
+ (1 − a1)(1 − a2)...(1 − an)
286
+ = 1 +
287
+ a1
288
+ 1 − a1
289
+ +
290
+ a1
291
+ 1 − a1
292
+ a2(1 − a1)
293
+ a1(1 − a2) + ... +
294
+ a1
295
+ 1 − a1
296
+ a2(1 − a1)
297
+ a1(1 − a2)...an(1 − an−1)
298
+ an−1(1 − an);
299
+ and
300
+ (2.4) 1 + a1 + a2(1 + a1) + a3(1 + a1)(1 + a2) + ... + an(1 + a1)(1 + a2)...(1 + an−1)
301
+ = 1+a1+a1
302
+ a2(1 + a1)
303
+ a1
304
+ +a1
305
+ a2(1 + a1)
306
+ a1
307
+ a3(1 + a2)
308
+ a2
309
+ +...+a1
310
+ a2(1 + a1)
311
+ a1
312
+ a3(1 + a2)
313
+ a2
314
+ ...an(1 + an−1)
315
+ an−1
316
+ .
317
+ Hence combining (2.1) with (2.3) and then (2.2) with (2.4) respectively, we obtain
318
+ (2.5)
319
+ 1
320
+ (1 − a1)(1 − a2)(1 − a3)...(1 − an)
321
+
322
+ CONTINUED FRACTION PARTITION IDENTITIES
323
+ 5
324
+ =
325
+ 1
326
+ 1 −
327
+ a1
328
+ 1−a1
329
+ 1 +
330
+ a1
331
+ 1−a1 −
332
+ a2(1−a1)
333
+ a1(1−a2)
334
+ 1 + a2(1−a1)
335
+ a1(1−a2) −
336
+ a3(1−a2)
337
+ a2(1−a3)
338
+ 1 + a3(1−a2)
339
+ a2(1−a3) −
340
+ ...
341
+ ...
342
+ an−1(1−an−2)
343
+ an−2(1−an−1)
344
+ 1 + an−1(1−an−2)
345
+ an−2(1−an−1) −
346
+ an(1−an−1)
347
+ an−1(1−an)
348
+ 1 + an(1−an−1)
349
+ an−1(1−an)
350
+ ;
351
+ and
352
+ (2.6)
353
+ (1 + a1)(1 + a2)(1 + a3)...(1 + an)
354
+ =
355
+ 1
356
+ 1 −
357
+ a1
358
+ 1 + a1 −
359
+ a2(1+a1)
360
+ a1
361
+ 1 + a2(1+a1)
362
+ a1
363
+
364
+ a3(1+a2)
365
+ a2
366
+ 1 + a3(1+a2)
367
+ a2
368
+
369
+ ...
370
+ ...
371
+ an−1(1+an−2)
372
+ an−2
373
+ 1 + an−1(1+an−2)
374
+ an−2
375
+
376
+ an(1+an−1)
377
+ an−1
378
+ 1 + an(1+an−1)
379
+ an−1
380
+ .
381
+ After applying the “equivalence transformation” to both of (2.5) and then (2.6)
382
+ to eliminate denominator terms, each continued fraction is simplified giving us the
383
+ following two theorems.
384
+ Theorem 2.1. If a1, a2, a3, ... , an, are functions chosen for nonzero denominators,
385
+ then
386
+ (2.7)
387
+ 1
388
+ (1 − a1)(1 − a2)(1 − a3)...(1 − an)
389
+ =
390
+ 1
391
+ 1 −
392
+ a1
393
+ 1 −
394
+ a2
395
+ a1 + a2 − 2a1a2 −
396
+ a1a3
397
+ a2 + a3 − 2a2a3 −
398
+ ...
399
+ ...
400
+ an−2an
401
+ an−1 + an − 2an−1an
402
+ .
403
+ At first glance we can see this theorem as being applicable to generating functions
404
+ for unrestricted partitions of various kinds. Similarly the next theorem applies for
405
+ partitions of various sorts into distinct parts.
406
+
407
+ 6
408
+ GEOFFREY B CAMPBELL
409
+ Theorem 2.2. If a1, a2, a3, ... , an, are functions chosen for nonzero denominators,
410
+ then
411
+ (2.8)
412
+ (1 + a1)(1 + a2)(1 + a3)...(1 + an)
413
+ =
414
+ 1
415
+ 1 −
416
+ a1
417
+ 1 + a1 −
418
+ (1 + a1)a2
419
+ a1 + a2 + a1a2 −
420
+ (1 + a2)a3
421
+ a2 + a3 + a2a3 −
422
+ ...
423
+ ...
424
+ (1 + an−1)an
425
+ an−1 + an + an−1an
426
+ .
427
+ There are many examples we could choose for substitution into theorems 2.2 and
428
+ 2.2. So, let’s start with the generating functions for unrestricted partitions, and for
429
+ distinct partitions as follows.
430
+ Corollary 2.1. If pn(k), is the number of unrestricted partitions of k into integers
431
+ no greater than n, then
432
+ (2.9)
433
+ 1
434
+ (1 − q1)(1 − q2)(1 − q3)...(1 − qn) =
435
+
436
+
437
+ k=0
438
+ pn(k)qk
439
+ =
440
+ 1
441
+ 1 −
442
+ q1
443
+ 1 −
444
+ q2
445
+ q1 + q2 − 2q1q2 −
446
+ q1q3
447
+ q2 + q3 − 2q2q3 −
448
+ ...
449
+ ...
450
+ qn−2qn
451
+ qn−1 + qn − 2qn−1qn
452
+ .
453
+ Corollary 2.2. If pn(D, k), is the number of distinct partitions of k into integers
454
+ no greater than n, then
455
+ (2.10)
456
+ (1 + q1)(1 + q2)(1 + q3)...(1 + qn) =
457
+
458
+
459
+ k=0
460
+ pn(D, k)qk
461
+ =
462
+ 1
463
+ 1 −
464
+ q1
465
+ 1 + q1 −
466
+ (1 + q1)q2
467
+ q1 + q2 + q1q2 −
468
+ (1 + q2)q3
469
+ q2 + q3 + q2q3 −
470
+ ...
471
+ ...
472
+ (1 + qn−1)qn
473
+ qn−1 + qn + qn−1qn
474
+ .
475
+ Next we choose the odd integer powers substituted into the two theorems.
476
+
477
+ CONTINUED FRACTION PARTITION IDENTITIES
478
+ 7
479
+ Corollary 2.3. If pn(O, k), is the number of unrestricted partitions of k into odd
480
+ integers no greater than 2n − 1, then
481
+ (2.11)
482
+ 1
483
+ (1 − q1)(1 − q3)(1 − q5)...(1 − q2n−1) =
484
+
485
+
486
+ k=0
487
+ pn(O, k)qk
488
+ =
489
+ 1
490
+ 1 −
491
+ q1
492
+ 1 −
493
+ q3
494
+ q1 + q3 − 2q1q3 −
495
+ q1q5
496
+ q3 + q5 − 2q3q5 −
497
+ ...
498
+ ...
499
+ qn−2qn
500
+ q2n−3 + q2n−1 − 2q2n−3q2n−1
501
+ .
502
+ Corollary 2.4. If pn(DO, k), is the number of distinct partitions of k into odd
503
+ integers no greater than 2n − 1, then
504
+ (2.12)
505
+ (1 + q1)(1 + q3)(1 + q5)...(1 + q2n−1) =
506
+
507
+
508
+ k=0
509
+ pn(DO, k)qk
510
+ =
511
+ 1
512
+ 1 −
513
+ q1
514
+ 1 + q1 −
515
+ (1 + q1)q3
516
+ q1 + q3 + q1q3 −
517
+ (1 + q3)q5
518
+ q3 + q5 + q3q5 −
519
+ ...
520
+ ...
521
+ (1 + q2n−3)q2n−1
522
+ q2n−3 + q2n−1 + q2n−3q2n−1
523
+ .
524
+ It is a well-known result due to Euler that p∞(DO, k) = p∞(O, k). Explicitly, as
525
+ n → ∞ equations (2.12) and (2.11) are equal to each other.
526
+ Next, let us give the cases covering binary partitions.
527
+ Corollary 2.5. If bn(2, k), is the number of unrestricted binary partitions of k into
528
+ non-negative powers of two no greater than 2n, then
529
+ (2.13)
530
+ 1
531
+ (1 − q1)(1 − q2)(1 − q4)...(1 − q2n) =
532
+
533
+
534
+ k=0
535
+ bn(2, k)qk
536
+ =
537
+ 1
538
+ 1 −
539
+ q1
540
+ 1 −
541
+ q2
542
+ q1 + q2 − 2q1q2 −
543
+ q1q4
544
+ q2 + q4 − 2q2q4 −
545
+ ...
546
+ ...
547
+ q2n−2q2n
548
+ q2n−1 + q2n − 2q2n−1q2n
549
+ .
550
+ The following distinct binary partitions example is completely solvable.
551
+
552
+ 8
553
+ GEOFFREY B CAMPBELL
554
+ Corollary 2.6. If pn(2D, k), is the number of binary partitions of k into distinct
555
+ non-negative powers of two no greater than 2n, then
556
+ (2.14)
557
+ (1 + q1)(1 + q2)(1 + q4)...(1 + q2n) = 1 − q2n+1
558
+ 1 − q
559
+ =
560
+ 2n+1−1
561
+
562
+ k=0
563
+ pn(2D, k)qk
564
+ =
565
+ 1
566
+ 1 −
567
+ q1
568
+ 1 + q1 −
569
+ (1 + q1)q2
570
+ q1 + q2 + q1q2 −
571
+ (1 + q2)q4
572
+ q2 + q4 + q2q4 −
573
+ ...
574
+ ...
575
+ (1 + q2n−1)q2n
576
+ q2n−1 + q2n + q2n−1q2n
577
+ .
578
+ Note that from (2.14) we have directly that
579
+ pn(2D, k) =
580
+
581
+ 1,
582
+ when 0 ≤ k < 2n+1;
583
+ 0,
584
+ when k ≥ 2n+1.
585
+ The following distinct ternary partitions example is easily stated.
586
+ Corollary 2.7. If pn(3D, k), is the number of ternary partitions of k into distinct
587
+ non-negative powers of three no greater than 3n, then
588
+ (2.15)
589
+ (1 + q1)(1 + q3)(1 + q9)...(1 + q3n) =
590
+ 3n−1
591
+
592
+ k=0
593
+ pn(3D, k)qk
594
+ =
595
+ 1
596
+ 1 −
597
+ q1
598
+ 1 + q1 −
599
+ (1 + q1)q3
600
+ q1 + q3 + q1q3 −
601
+ (1 + q3)q9
602
+ q3 + q9 + q3q9 −
603
+ ...
604
+ ...
605
+ (1 + q3n−1)q3n
606
+ q3n−1 + q3n + q3n−1q3n
607
+ .
608
+ Note that from (2.15) we have directly that
609
+ pn(3D, k) =
610
+
611
+
612
+
613
+ 1,
614
+ for 0 ≤ k < 3n+1; k is a sum of distinct powers of 3.
615
+ 0,
616
+ for 0 ≤ k < 3n+1; k not a sum of distinct powers of 3.
617
+ 0,
618
+ for k ≥ 3n+1.
619
+ Clearly this topic of Euler Continued Fractions applied to partition generating
620
+ functions is an interesting elementary study for students, and a possible tool for
621
+ researchers. The above results are old, and have probably been well-worked over
622
+ time.
623
+
624
+ CONTINUED FRACTION PARTITION IDENTITIES
625
+ 9
626
+ 3. Rogers-Ramanujan Continued Fractions for partition functions
627
+ The fraction given here was mentioned by Ramanujan in his second letter to
628
+ Hardy (see Adiga et al. [2, p. xxviii]); namely
629
+ (3.1)
630
+ R(a, b) = 1 +
631
+ bq
632
+ 1 + aq +
633
+ bq2
634
+ 1 + aq2 +
635
+ bq3
636
+ 1 + aq3 + bq4
637
+ ...
638
+ .
639
+ However, these now famous continued fractions, as with the Rogers-Ramanujan
640
+ identities, were first discovered in 1894 by Rogers (see [49]). We define the functions
641
+ G(q) and H(q) in the context of the Rogers–Ramanujan identities,
642
+ (3.2)
643
+ G(q) =
644
+
645
+
646
+ n=0
647
+ qn2
648
+ (1 − q)(1 − q2) · · · (1 − qn) =
649
+
650
+
651
+ n=0
652
+ qn2
653
+ (q : q)n
654
+ =
655
+ 1
656
+ (q; q5)(q4; q5) =
657
+
658
+
659
+ n=1
660
+ 1
661
+ (1 − q5n−4)(1 − q5n−1),
662
+ and
663
+ (3.3)
664
+ H(q) =
665
+
666
+
667
+ n=0
668
+ qn2+n
669
+ (1 − q)(1 − q2) · · ·(1 − qn) =
670
+
671
+
672
+ n=0
673
+ qn2+n
674
+ (q : q)n
675
+ =
676
+ 1
677
+ (q2; q5)(q3; q5) =
678
+
679
+
680
+ n=1
681
+ 1
682
+ (1 − q5n−3)(1 − q5n−2).
683
+ The Rogers–Ramanujan continued fraction is then,
684
+ (3.4)
685
+ R(q) = q
686
+ 11
687
+ 60 H(q)
688
+ q
689
+ −1
690
+ 60 G(q) = q
691
+ 1
692
+ 5
693
+
694
+
695
+ n=1
696
+ (1 − q5n−4)(1 − q5n−1)
697
+ (1 − q5n−3)(1 − q5n−2)
698
+ = 1 +
699
+ q
700
+ 1
701
+ 5
702
+ 1 +
703
+ q
704
+ 1 +
705
+ q2
706
+ 1 + q3
707
+ ...
708
+ .
709
+ So, we note that R(0, 1) leads us to the celebrated Rogers-Ramanujan contin-
710
+ ued fraction, which has been researched by many (see Andrews [4, Chapter 7], for
711
+ example). In the course of analyzing identities from Ramanujan’s Lost Notebook
712
+ [7], Andrews and Berndt have discussed the fraction R(a, b), but mainly from the
713
+ viewpoint of transformation formulas.
714
+ Our emphasis here is on using (3.1) in a
715
+ generalized approach to several partition identities, but there is a whole adjacent
716
+ theory on particular values of these continued fractions determined from applying
717
+ the theory of modular forms.
718
+ Hence the examples, using ϕ as the golden ratio
719
+ (
720
+
721
+ 5 + 1)/2,
722
+
723
+ 10
724
+ GEOFFREY B CAMPBELL
725
+ (3.5)
726
+ e− −π
727
+ 5
728
+ 1 +
729
+ e−π
730
+ 1 +
731
+ e−2π
732
+ 1 + e−3π
733
+ ...
734
+ = 1
735
+ 2ϕ(
736
+
737
+ 5 − ϕ3/2)(
738
+ 4√
739
+ 5 + ϕ3/2),
740
+ (3.6)
741
+ e− −2π
742
+ 5
743
+ 1 +
744
+ e−2π
745
+ 1 +
746
+ e−4π
747
+ 1 + e−6π
748
+ ...
749
+ =
750
+ 4√
751
+ 5ϕ1/2 − ϕ,
752
+ (3.7)
753
+ e− −4π
754
+ 5
755
+ 1 +
756
+ e−4π
757
+ 1 +
758
+ e−8π
759
+ 1 + e−12π
760
+ ...
761
+ = 1
762
+ 2ϕ(
763
+
764
+ 5 − ϕ3/2)(−
765
+ 4√
766
+ 5 + ϕ3/2).
767
+ So next we examine the continued fraction R(a, b) of Ramanujan and consider
768
+ various restricted partition functions. For further reading, a good reference is Alladi
769
+ and Gordon [3]. We use the continued fraction to give results for several partition
770
+ identities, some of which generalize results of Bressoud [12] and G¨ollnitz [34]. We also
771
+ give a combinatorial interpretation for the coefficients in the power series expansion
772
+ of the reciprocal
773
+ 1
774
+ R(−a,−b), extending a result of Odlyzko and Wilf [42]. The full
775
+ description of this approach would add several more pages to our work, but [3]
776
+ covers all of this very nicely.
777
+ It turns out that Lebesgue’s identity plays a major role in our analysis with
778
+ respect to the numerators and denominators of the finite continued fractions we
779
+ consider.
780
+ (3.8)
781
+
782
+ k≥0
783
+ qk(k+1)/2 �k
784
+ j=1(1 + bqj)
785
+ (1 − q)(1 − q2)...(1 − qk) =
786
+
787
+ m≥1
788
+ (1 + bq2m)(1 + qm).
789
+ It is known that Lebesgue’s identity implies Ramanujan’s fraction R(a, b) has a
790
+ product representation when a = 1. More precisely (3.14) and (3.15) (see below)
791
+ yield
792
+ (3.9)
793
+ 1 +
794
+ bq
795
+ 1 + q +
796
+ bq2
797
+ 1 + q2 +
798
+ bq3
799
+ 1 + q3 + bq4
800
+ ...
801
+ =
802
+
803
+
804
+ m=1
805
+ (1 + bq2m−1)
806
+ (1 + bq2m) .
807
+
808
+ CONTINUED FRACTION PARTITION IDENTITIES
809
+ 11
810
+ A neat case of (3.9) is obtained from q �→ q2 and b �→ bq−1 so then
811
+ (3.10)
812
+ 1 +
813
+ bq
814
+ 1 + q2 +
815
+ bq3
816
+ 1 + q4 +
817
+ bq5
818
+ 1 + q6 + bq7
819
+ ...
820
+ =
821
+
822
+
823
+ m=1
824
+ (1 + bq4m−3)
825
+ (1 + bq4m−1).
826
+ For a continued fraction F, let Pn/Qn denote its nth convergent, and suppose
827
+ that limn→∞ Pn = P, limn→∞ Qn = Q in a suitable topology. We then say that F
828
+ has numerator P and denominator Q, and write P = F N, Q = F D. Consider the
829
+ fraction
830
+ F(a, c) = 1 + a +
831
+ acq
832
+ 1 + aq +
833
+ acq2
834
+ 1 + aq2 +
835
+ acq3
836
+ 1 + aq3 + acq4
837
+ ...
838
+ .
839
+ This can be written in the form
840
+ F(a, c) = f(a, c)
841
+ f(aq, c),
842
+ where
843
+ f(a, c) =
844
+
845
+ k≥0
846
+ Akqk.
847
+ We now compute the coefficients Ak = Ak(c, q), observing that f(a, c) satisfies
848
+ the recurrence
849
+ f(a, c) = (1 + a)f(aq, c) + acq f(aq2, c).
850
+ Therefore the coefficients Ak satisfy
851
+ Ak = qk Ak + qk−1Ak−1 q − cq2k−1 Ak−1,
852
+ which is the same as
853
+ Ak = qk−1(1 + cqk)
854
+ (1 − qk)
855
+ Ak−1.
856
+ By iteration this yields
857
+ F(a, c) =
858
+
859
+ k≥0
860
+ akq
861
+ k(k−1)
862
+ 2
863
+ (−cq)k
864
+ (q)k
865
+ .
866
+ Let c = a−1b. Then
867
+ R(a, b) = f(a, a−1b)
868
+ f(aq, a−1b) − a
869
+ is Ramanujan’s fraction (3.1).
870
+ Lemma 3.1. For the fraction R(a, b), the numerator is
871
+ (3.11)
872
+ RN(a, b) =
873
+
874
+ k≥0
875
+ akqk(k+1)/2(−a−1b)k
876
+ (q)k
877
+ ,
878
+ and the denominator is
879
+ (3.12)
880
+ RD(a, b) =
881
+
882
+ k≥0
883
+ akqk(k+1)/2(−a−1bq)k
884
+ (q)k
885
+ .
886
+
887
+ 12
888
+ GEOFFREY B CAMPBELL
889
+ Proof : The expansion (3.12) is an immediate consequence of
890
+ (3.13)
891
+ RD(a, b) = f(aq, a−1b).
892
+ The expansion (3.11) is more complicated. To obtain it, observe that
893
+ RN(a, b)
894
+ =
895
+ f(a, a−1b) − a f(aq, a−1b)
896
+ =
897
+
898
+ k≥0
899
+ akqk(k−1)/2(−a−1bq)k
900
+ (q)k
901
+
902
+
903
+ k≥0
904
+ ak+1qk(k+1)/2(−a−1bq)k
905
+ (q)k
906
+ =
907
+ 1 +
908
+
909
+ k≥0
910
+ ak+1qk(k+1)/2(−a−1bq)k
911
+ (q)k
912
+ �1 + a−1bqk+1
913
+ 1 − qk+1
914
+ − 1
915
+
916
+ =
917
+ 1 +
918
+
919
+ k≥0
920
+ ak+1q(k+1)(k+2)/2(−a−1bq)k(1 − a−1b)
921
+ (q)k+1
922
+ =
923
+
924
+ k≥0
925
+ akqk(k+1)/2(−a−1b)k
926
+ (q)k
927
+ as required.
928
+
929
+ Andrews (see [5] and [6]) considered the expansions in lemma 3.1 while discussing
930
+ a transformation formula of Ramanujan [47] for R(a, b). Our emphasis here is on
931
+ the partition theorems that can be derived using R(a, b), and for this the following
932
+ lemma is crucial.
933
+ Lemma 3.2. For the fraction R(a, b), we also have the expansions
934
+ (3.14)
935
+ RN(a, b) =
936
+
937
+ i,j≥0
938
+ aibjq(i2+i)/2+ij+j2
939
+ (q)i(q)j
940
+ ,
941
+ and the denominator is
942
+ (3.15)
943
+ RD(a, b) =
944
+
945
+ i,j≥0
946
+ aibjq(i2+i)/2+ij+j2+j
947
+ (q)i(q)j
948
+ .
949
+ Proof : To obtain (3.14) and (3.15) from (3.12) and (3.13) we use the q-binomial
950
+ theorem,
951
+ (−z)k =
952
+ k
953
+
954
+ j=0
955
+ zjqj(j−1)/2
956
+ �k
957
+ j
958
+
959
+ q
960
+ with z = a−1b and z = a−1bq.
961
+ (See Campbell [22] for the n-space q-binomial
962
+ theorem.) Therefore
963
+ RN(a, b)
964
+ =
965
+
966
+ k≥0
967
+ akqk(k+1)/2
968
+ (q)k
969
+ k
970
+
971
+ j=0
972
+ a−jbjqj(j−1)/2(q)k
973
+ (q)j(q)j−k
974
+ =
975
+
976
+ i,j≥0
977
+ aibjq(i+j)(i+j+1)/2
978
+ (q)i(q)j
979
+ ,
980
+ where i = k − j; this is equivalent to (3.12). To obtain (3.13), observe that
981
+ (3.16)
982
+ RD(a, b) = RN(a, bq)
983
+ by comparing (3.14) and (3.15).
984
+
985
+ CONTINUED FRACTION PARTITION IDENTITIES
986
+ 13
987
+ The following two theorems relate successively to the numerator and the denom-
988
+ inator of the fraction (3.1), so then to (3.14) and (3.15). For a proof of these see
989
+ Alladi and Gordon [3].
990
+ Theorem 3.1. (Numerator)
991
+ Let AN(n; i, j) be the number of partitions of n into i + j distinct red parts and j
992
+ distinct blue parts such that one of the blue parts may be zero and every blue part is
993
+ ≤ i + j − 1.
994
+ Let BN(n; i, j) be the number of partitions of n into i distinct red parts and j
995
+ distinct non-consecutive blue parts such that every red part is > j.
996
+ Let CN(n; i, j) be the number of partitions of n into i red parts and j blue parts
997
+ such that all parts are distinct and after each blue part there is a gap of at least 2.
998
+ Then
999
+ AN(n; i, j) = BN(n; i, j) = CN(n; i, j).
1000
+ Theorem 3.2. (Denominator)
1001
+ Let AD(n; i, j) be as in AN(n; i, j) except that every blue part is > 0 and ≤ i + j.
1002
+ Let BD(n; i, j) be as in BN(n; i, j) except that part 1 cannot be blue.
1003
+ Let CD(n; i, j) be as in CN(n; i, j) except that part 1 cannot be blue. Then
1004
+ AD(n; i, j) = BD(n; i, j) = CD(n; i, j).
1005
+ So reprising (3.10) namely
1006
+ 1 +
1007
+ bq
1008
+ 1 + q2 +
1009
+ bq3
1010
+ 1 + q4 +
1011
+ bq5
1012
+ 1 + q6 + bq7
1013
+ ...
1014
+ =
1015
+
1016
+
1017
+ m=1
1018
+ (1 + bq4m−3)
1019
+ (1 + bq4m−1)),
1020
+ we have interesting cancellations in numerator-denominator equations. That is,
1021
+ the numerator is given by
1022
+
1023
+ k≥0
1024
+ qk(k+1)(−bq−1; q2)k
1025
+ (q2; q2)k
1026
+ =
1027
+
1028
+
1029
+ m=1
1030
+ (1 + bq4m−3)(1 + q2m)
1031
+ =
1032
+
1033
+
1034
+ m=1
1035
+ (1 + bq4m−3)(1 + q4m−2)(1 + q4m)
1036
+ and the denominator is given by
1037
+
1038
+ k≥0
1039
+ qk(k+1)(−bq; q2)k
1040
+ (q2; q2)k
1041
+ =
1042
+
1043
+
1044
+ m=1
1045
+ (1 + bq4m−1)(1 + q4m−2)(1 + q4m)
1046
+ with right sides having common factors that eliminate.
1047
+ This leads in particular to the continued fraction identity
1048
+ (3.17)
1049
+ 1 +
1050
+ q
1051
+ 1 + q2 +
1052
+ q3
1053
+ 1 + q4 +
1054
+ q5
1055
+ 1 + q6 + q7
1056
+ ...
1057
+ =
1058
+
1059
+ j≡2,3,7 (mod8)(1 − qj)
1060
+
1061
+ j≡1,5,6 (mod8)(1 − qj).
1062
+
1063
+ 14
1064
+ GEOFFREY B CAMPBELL
1065
+ G¨o11nitz [34] states similar results, but (3.1) seems to have escaped attention. There
1066
+ is a continued fraction identity due to Gordon [33] and G¨o11nitz [34] which looks
1067
+ very similar to (3.17), namely
1068
+ (3.18)
1069
+ 1 + q +
1070
+ q2
1071
+ 1 + q3 +
1072
+ q4
1073
+ 1 + q5 +
1074
+ q4
1075
+ 1 + q7 + bq6
1076
+ ...
1077
+ =
1078
+
1079
+ j≡3,4,5 (mod8)(1 − qj)
1080
+
1081
+ j≡1,4,7 (mod8)(1 − qj).
1082
+ However, this result first appears in Alladi and Gordon [3] almost 30 years after
1083
+ (3.1).
1084
+ 4. Ramanujan’s three parameter continued fraction
1085
+ Ramanujan [45] obtained in addition to (3.1), the following continued fraction
1086
+ with three parameters a, b, q which has also a product representation
1087
+ (4.1)
1088
+ 1 − ab +
1089
+ (a − bq)(b − aq)
1090
+ (1 − ab)(1 + q2) +
1091
+ (a − bq3)(b − aq3)
1092
+ (1 − ab)(1 + q4) +
1093
+ (a − bq5)(b − aq5)
1094
+ (1 − ab)(1 + q6) + (a − bq7)(b − aq7)
1095
+ ...
1096
+ =
1097
+
1098
+
1099
+ m=1
1100
+ (1 + a2q4m−3)(1 + b2q4m−3)
1101
+ (1 + a2q4m−1)(1 + b2q4m−1).
1102
+ This was proved only in 1985 by the reviewers of Chapter 16 of Ramanujan’s Second
1103
+ Notebook [2], 65 years after Ramanujan’s death. If we put a = 0 and replace b2 by
1104
+ −b in (4.1), we get (3.10). It seems there is still scope to study the combinatorial
1105
+ properties of the coefficients in the power series expansion of this fraction.
1106
+ References
1107
+ [1] ABRAMOWITZ, M., and STEGUN, I. Handbook of Mathematical Functions, Dover Publi-
1108
+ cations Inc., New York, 1972.
1109
+ [2] ADIGA,C. BERNDT,B. C.BHARGAVA,S. AND WATSON,G. N. ”Chapter 16 of Ramanu-
1110
+ jan’s Second Notebook: Theta Functions and q-Series”, Memoirs of the American Mathemat-
1111
+ ical Society, Vol. 315, Amer. Math. Soc., Providence, RI, 1985.
1112
+ [3] ALLADI, K. and GORDON H., Partition Identities and a Continued Fraction of Ramanujan,
1113
+ Journal of Combinatorial Theory, Series A 63, 275-300 (1993)
1114
+ [4] ANDREWS, G.E. The Theory of Partitions, Addison-Wesley Publishing Company, Advanced
1115
+ Book Program, Reading, Massachusetts, 1976.
1116
+ [5] ANDREWS,G. E. An introduction to Ramanujan’s ”lost” notebook, Amer. Math. Monthly 86
1117
+ (1979), 89-108.
1118
+ [6] ANDREWS,G. E. Ramanujan’s ”Lost” Notebbook. III. The Rogers-Ramanujan continued frac-
1119
+ tion, Adv. Math. 41 (1981), 186-208.
1120
+ [7] ANDREWS, G. E., and BERNDT, B. C. Ramanujan’s Lost Notebook: Part V Paperback
1121
+ (2018). Springer-Verlag, New York, ISBN-13: 978-3030085506.
1122
+ [8] ANDREWS, G.E. and ERIKSSON, K. Integer Partitions, Cambridge University Press, Cam-
1123
+ bridge, UK, New York, USA, Port Melbourne, Australia, Madrid, Spain, Cape Town, South
1124
+ Africa, 2004.
1125
+
1126
+ CONTINUED FRACTION PARTITION IDENTITIES
1127
+ 15
1128
+ [9] APOSTOL, T. Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
1129
+ [10] BAXTER, R. J. Exactly Solved Models in Statistical Mechanics, Academic Press, New York,
1130
+ 1982.
1131
+ [11] BIRKHOFF, G. and MACLAINE, S. A survey of modern algebra, fourth ed., N.Y., Macmillan,
1132
+ 1977.
1133
+ [12] BRESSOUD, D.M. On a partition theorem of G¨ollnitz, J. Reine Angew. Math. 305 215-217,
1134
+ (1979).
1135
+ [13] CAMPBELL, G. B. Generalization of a Formula of Hardy, Pure Math. Research Paper 79-5,
1136
+ La Trobe University, Melbourne, Australia, 1979.
1137
+ [14] CAMPBELL, G. B. Multiplicative functions over Riemann zeta function products, J. Ramanu-
1138
+ jan Soc. 7 No. 1, 1992, 52-63.
1139
+ [15] CAMPBELL, G. B. Dirichlet summations and products over primes, Int. J. Math. Math. Sci.,
1140
+ Vol 16, No 2, (1993) 359-372.
1141
+ [16] CAMPBELL, G. B. A generalized formula of Hardy, Int. J. Math. Math. Sci., Vol 17, No 2,
1142
+ (1994) 369-378.
1143
+ [17] CAMPBELL, G. B. A new class of infinite products, and Euler’s totient, International
1144
+ Journal of Mathematics and Mathematical Sciences, vol. 17, no. 3, pp. 417-422, 1994.
1145
+ https://doi.org/10.1155/S0161171294000591.
1146
+ [18] CAMPBELL, G. B. Infinite products over visible lattice points,
1147
+ International Jour-
1148
+ nal of Mathematics and Mathematical Sciences,
1149
+ vol. 17,
1150
+ no. 4,
1151
+ pp. 637-654, 1994.
1152
+ https://doi.org/10.1155/S0161171294000918.
1153
+ [19] CAMPBELL, G. B. Combinatorial identities in number theory related to q-series and arith-
1154
+ metical functions, Doctor of Philosophy Thesis, School of Mathematical Sciences, The Aus-
1155
+ tralian National University, October 1997.
1156
+ [20] CAMPBELL,
1157
+ G.
1158
+ B.
1159
+ A
1160
+ closer
1161
+ look
1162
+ at
1163
+ some
1164
+ new
1165
+ identities,
1166
+ International
1167
+ Journal
1168
+ of
1169
+ Mathematics
1170
+ and
1171
+ Mathematical
1172
+ Sciences,
1173
+ vol.
1174
+ 21,
1175
+ no.
1176
+ 3,
1177
+ pp.
1178
+ 581-586,
1179
+ 1998.
1180
+ https://doi.org/10.1155/S0161171298000805.
1181
+ [21] CAMPBELL, G. B. Infinite products over hyperpyramid lattices,
1182
+ International Jour-
1183
+ nal of Mathematics and Mathematical Sciences,
1184
+ vol. 23,
1185
+ no. 4,
1186
+ pp. 271-277, 2000.
1187
+ https://doi.org/10.1155/S0161171200000764.
1188
+ [22] CAMPBELL, G. B. Some n-space q-binomial theorem extensions and similar identities,
1189
+ arXiv:1906.07526v1 [math.NT], Jun 2019. (https://arxiv.org/abs/1906.07526)
1190
+ [23] CAMPBELL,
1191
+ G.
1192
+ B.
1193
+ An
1194
+ interview
1195
+ with
1196
+ Rodney
1197
+ James
1198
+ Baxter,
1199
+ Aust.
1200
+ Math.
1201
+ Soc.
1202
+ Gazette,
1203
+ Volume
1204
+ 47,
1205
+ No1,
1206
+ pp24-32,
1207
+ March
1208
+ 2020.
1209
+ (https://austms.org.au/wp-
1210
+ content/uploads/2020/07/471Web.pdf)
1211
+ [24] CAMPBELL,
1212
+ G.
1213
+ B.
1214
+ Fun
1215
+ with
1216
+ numbers:
1217
+ Rational
1218
+ solutions
1219
+ to
1220
+ xyyx
1221
+ =
1222
+ vwwv,
1223
+ Aust.
1224
+ Math.
1225
+ Soc.
1226
+ Gazette,
1227
+ Volume
1228
+ 49,
1229
+ No5,
1230
+ pp210-211,
1231
+ November
1232
+ 2022.
1233
+ (https://austms.org.au/publications/gazette/gazette495/)
1234
+ [25] CAUCHY, A. M´emoire sur les fonctions dont plusieurs . . . , C. R. Acad. Sci. Paris, T. XVII,
1235
+ p. 523, Oeuvres de Cauchy, 1re s´erie, T. VIII, Gauthier-Villars, Paris, 1893, 42- 50.
1236
+ [26] CHEEMA, M. S., Vector partitions and combinatorial identities, Math. Comp. 18, 1966 414-
1237
+ 420.
1238
+ [27] CHEEMA, M. S. and MOTZKIN, T. S., Multipartitions and multipermutations, Proc. Symp.
1239
+ Pure Math. 19, 1971, 37-39.
1240
+ [28] EULER, L. Introductio in analysin infinitorum, Chapter 16. Marcum-Michaelum, Brousquet,
1241
+ Lausannae (1748).
1242
+ [29] GASPER, G. and RAHMAN, M. Basic Hypergeometric Series, Encyclopedia of Mathematics
1243
+ and its Applications, Vol 35, Cambridge University Press, (Cambridge - New York - Port
1244
+ Chester - Melbourne - Sydney), 1990.
1245
+ [30] GAUSS, C.F. Disquisitiones generales circa seriem infinitam . . . , Comm. soc. reg. sci. G¨ott.
1246
+ rec., Vol II; reprinted in Werke 3 (1876), pp. 123–162.
1247
+ [31] GOLDFELD, D. Beyond the last theorem. Math Horizons. 4 (September): 26–34. (1996).
1248
+ doi:10.1080/10724117.1996.11974985. JSTOR 25678079.
1249
+ [32] GORDON, B. Two theorems on multipartite partitions, J. London Math. Soc. 38, 1963, 459-
1250
+ 464.
1251
+ [33] GORDON, B. Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32
1252
+ (1965), 741-748.
1253
+
1254
+ 16
1255
+ GEOFFREY B CAMPBELL
1256
+ [34] G¨OLLNITZ, H. Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967),
1257
+ 154-190.
1258
+ [35] HARDY, G. H. An extension of a theorem on oscillating series, Collected Papers, Vol VI,
1259
+ Clarendon Press, Oxford, 1974, 500-506.
1260
+ [36] HARDY, G. H. On certain oscillating series, Collected Papers, Vol VI, Clarendon Press,
1261
+ Oxford, 1974, 146-167.
1262
+ [37] HARDY, G. H., and LITTLEWOOD, J. E. A further note on the converse of Abel’s theorem.
1263
+ Collected Papers of Hardy, Vol VI, Clarendon Press, Oxford, 1974, 699-716.
1264
+ [38] HEINE, E. Untersuchungen uber die Reihe ... , J. Reine angew. Math. 34, 1847, 285-328.
1265
+ [39] HEINE, E. Handbuch der Kugelfunctionen, Theorie und Andwendungen, Vol. 1, Reimer,
1266
+ Berlin, 1878.
1267
+ [40] MACDONALD, I. G. Symmetric Functions And Hall Polynomials, 2nd ed., Oxford : Claren-
1268
+ don Press ; New York : Oxford University Press, 1995.
1269
+ [41] MASSER, D. W. (1985). ”Open problems”. In Chen, W. W. L. (ed.). Proceedings of the
1270
+ Symposium on Analytic Number Theory. London: Imperial College.
1271
+ [42] ODLYZKO, A. M. and WILF, H. S. n coins in a fountain, Amer. Math. Monthly 95 (1988),
1272
+ 840-843.
1273
+ [43] OESTERL´E, J. Nouvelles approches du ”th´eor`eme” de Fermat, Ast´erisque, S´eminaire Bour-
1274
+ baki exp 694 (161): 165–186, (1988), ISSN 0303-1179, MR 0992208.
1275
+ [44] RAMANUJAN, S. (1927) Collected Papers of S. Ramanujan, Cambridge University Press,
1276
+ Cambridge (1927); reprinted by Chelsea, New York, 1962.
1277
+ [45] RAMANUJAN,S. ”Notebooks (Two Volumes),” Tata Institute, Bombay, 1957.
1278
+ [46] RAMANUJAN, S. On certain trigonometrical sums and their application to the theory of
1279
+ numbers, Collected Papers of S. Ramanujan, Cambridge University Press, Cambridge (1927),
1280
+ 179-199; reprinted by Chelsea, New York, 1962.
1281
+ [47] RAMANUJAN, S. ”The Lost Notebook, and Other Unpublished Papers,” Narosa, New Delhi,
1282
+ 1988.
1283
+ [48] RIEMANN, G. F. B. ”¨Uber die Anzahl der Primzahlen unter einer gegebenen Gr¨osse.”
1284
+ Monatsber. K¨onigl. Preuss. Akad. Wiss. Berlin, 671-680, Nov. 1859.
1285
+ [49] ROGERS, L. J. (1894). ”Second memoir on the expansion of certain infinite products”. Proc.
1286
+ London Math. Soc. 25: 318-343.
1287
+ [50] SANDIFER, C. E. (2006). ”Chapter 32: Who proved e is irrational?”. How Euler Did It
1288
+ (PDF). Mathematical Association of America. pp. 185–190. ISBN 978-0-88385-563-8. LCCN
1289
+ 2007927658
1290
+ [51] SLOANE, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS) Euler transform.
1291
+ https : //oeis.org/wiki/Euler transform.
1292
+ [52] SLOANE, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS) sequence A061159
1293
+ Numerators in expansion of Euler transform of b(n)=1/2 https://oeis.org/A061159.
1294
+ [53] SLOANE, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS) sequence A061160
1295
+ Numerators in expansion of Euler transform of b(n)=1/3 https://oeis.org/A061160.
1296
+ [54] SZPIRO, L. (1981). ”Propri´et´es num´eriques du faisceau dualisant r´elatif”. Seminaire sur les
1297
+ pinceaux des courbes de genre au moins deux (PDF). Ast´erisque. Vol. 86. pp. 44–78. Zbl
1298
+ 0517.14006.
1299
+ [55] SZPIRO, L. (1987), ”Pr´esentation de la th´eorie d’Arakelov”, Contemp. Math., Contempo-
1300
+ rary Mathematics, 67: 279–293, doi:10.1090/conm/067/902599, ISBN 9780821850749, Zbl
1301
+ 0634.14012
1302
+ [56] WRIGHT, E. M. Partitions of multipartite numbers, Proc. Amer. Math. Soc. 28, 1956, 880-
1303
+ 890.
1304
+ Mathematical Sciences Institute, The Australian National University, Canberra,
1305
+ ACT, 0200, Australia
1306
+ Email address: Geoffrey.Campbell@anu.edu.au
1307
+
ONFOT4oBgHgl3EQf3DT4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PNE0T4oBgHgl3EQfjwHm/content/tmp_files/2301.02465v1.pdf.txt ADDED
@@ -0,0 +1,711 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Direct electrical probing of anomalous Nernst conductivity
2
+ Weinan Zhou,1, ∗ Asuka Miura,2, † Yuya Sakuraba,2 and Ken-ichi Uchida2, 3, ‡
3
+ 1International Center for Young Scientists, National Institute for Materials Science, Tsukuba 305-0047, Japan
4
+ 2Research Center for Magnetic and Spintronic Materials,
5
+ National Institute for Materials Science, Tsukuba 305-0047, Japan
6
+ 3Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
7
+ Despite the usefulness of the anomalous Nernst conductivity (αA
8
+ xy) for studying electronic band
9
+ structures and exploring magnetic materials with large transverse thermopower, there has not been a
10
+ straightforward way to obtain αA
11
+ xy in the experiment. Here, we propose a simple and versatile method
12
+ enabling direct electrical probing of αA
13
+ xy, which is realized by creating a closed circuit consisting
14
+ of a target magnetic material and a non-magnetic conductor.
15
+ This method was experimentally
16
+ demonstrated on a thin film of magnetic Weyl semimetal Co2MnGa, where the closed circuit was
17
+ formed simply by connecting both ends of the Co2MnGa film with a Au wire. A good approximation
18
+ of αA
19
+ xy was obtained, validating the proposed method and exhibiting its potential for aiding the
20
+ further development of topological materials science and transverse thermoelectrics.
21
+ The anomalous Nernst conductivity, i.e., the off-
22
+ diagonal component of the thermoelectric conductivity
23
+ tensor (αA
24
+ xy) stemming from magnetic moments, de-
25
+ scribes an intrinsic material property that directly con-
26
+ verts a longitudinal temperature gradient into a trans-
27
+ verse electric field in a magnetic material. It has been
28
+ shown that αA
29
+ xy is closely linked to the Berry curvature
30
+ of the electronic bands; in comparison with the anoma-
31
+ lous Hall conductivity, which is determined by all oc-
32
+ cupied bands, αA
33
+ xy can be more sensitive to the elec-
34
+ tronic band structures close to the Fermi level, rendering
35
+ it a valuable tool to study the topological features of
36
+ magnetic materials through transport measurements [1–
37
+ 18]. In addition to this rapidly increasing interest from
38
+ the viewpoint of fundamental physics, αA
39
+ xy is regarded
40
+ as a crucial parameter to explain unconventionally large
41
+ transverse thermoelectric output in some magnetic mate-
42
+ rials where intrinsic contribution plays a dominant role.
43
+ Therefore, exploring magnetic materials with large val-
44
+ ues of αA
45
+ xy has become a major strategy for thermoelec-
46
+ tric applications [19–23]. Due to the orthogonal relation-
47
+ ship between the applied temperature gradient and gen-
48
+ erated electric field, the transverse thermoelectric gen-
49
+ eration module can be a simple slab or sheet, where no
50
+ complicated three-dimensional structures are necessary
51
+ unlike conventional Seebeck-effect-based modules. Thus,
52
+ transverse thermoelectric modules could potentially cir-
53
+ cumvent the problems of durability, flexibility, and cost
54
+ that the Seebeck modules encounter [22–26], as well as
55
+ be exploited for additional functionalities, such as heat
56
+ flux sensing [23, 25, 27, 28]. Despite the significant role of
57
+ αA
58
+ xy in topological materials science and transverse ther-
59
+ moelectrics, there has not been a straightforward way
60
+ to experimentally obtain αA
61
+ xy, and establishing such a
62
+ method is of great importance.
63
+ The conventional experimental method for estimat-
64
+ ing αA
65
+ xy consists of the measurements of the anomalous
66
+ Nernst effect (ANE), anomalous Hall effect (AHE), See-
67
+ beck effect (SE), and electrical resistivity of a magnetic
68
+ material. The anomalous Nernst coefficient (SANE), i.e.,
69
+ the transverse thermopower due to ANE, is expressed as
70
+ SANE = ρxxαA
71
+ xy − ρAHEαxx,
72
+ (1)
73
+ where ρxx, ρAHE, and αxx are the longitudinal resistivity,
74
+ anomalous Hall resistivity, and diagonal component of
75
+ the thermoelectric conductivity tensor, respectively. The
76
+ first term on the right-hand side of Eq. (1) (SI = ρxxαA
77
+ xy)
78
+ is regarded as an intrinsic component of ANE, while the
79
+ second term appears as a consequence of AHE acting on
80
+ the longitudinal electric field induced by SE, which can
81
+ be rewritten as SII = −SSEρAHE/ρxx [Fig. 1(a)] with SSE
82
+ being the Seebeck coefficient. As a result, αA
83
+ xy is obtained
84
+ by experimentally measuring all four parameters of ρxx,
85
+ ρAHE, SSE, and SANE, then calculating using Eq. (1).
86
+ Many studies have exploited this conventional method
87
+ to obtain αA
88
+ xy of a variety of magnetic materials [2–5, 7–
89
+ FIG. 1.
90
+ (a) Schematic illustration of ANE in a magnetic
91
+ material. The orange and green arrows represent the contri-
92
+ bution from the SI and SII terms of SANE, while the black
93
+ arrow represents the direction of magnetization (M). The +
94
+ and − symbols indicate the accumulated electric charges due
95
+ to SE and ANE. (b) Schematic illustration of the closed circuit
96
+ in which a magnetic material (cyan) is electrically connected
97
+ to a non-magnetic conductor (gray) at both ends along the
98
+ direction of the applied temperature gradient (∇T).
99
+ arXiv:2301.02465v1 [cond-mat.mtrl-sci] 6 Jan 2023
100
+
101
+ (a)
102
+ (b)
103
+ S = -SsE PAHE IPxx
104
+ e
105
+ M
106
+ e
107
+ VT
108
+ ++++++
109
+ S
110
+ e
111
+ e2
112
+ 19, 22, 23, 25, 28]. However, such a task could be cum-
113
+ bersome, and sometimes challenging to complete, since
114
+ it requires various experimental techniques and measure-
115
+ ment systems.
116
+ In this study, we propose a method to directly mea-
117
+ sure the intrinsic component of ANE of a magnetic ma-
118
+ terial and probe its αA
119
+ xy with ease. This method is real-
120
+ ized simply by creating a closed circuit consisting of the
121
+ target magnetic material and a non-magnetic conductor,
122
+ and then measuring transverse thermopower, as shown
123
+ in Fig. 1(b). The formation of the closed circuit tunes
124
+ the boundary conditions for electron transport, resulting
125
+ in the direct emergence of αA
126
+ xy reflecting the Berry curva-
127
+ ture in the transverse thermopower. We experimentally
128
+ demonstrated this method using a Co2MnGa thin film,
129
+ and compared the result with the value of αA
130
+ xy obtained
131
+ using the conventional method. The proposed method
132
+ grants easy access to αA
133
+ xy, and could be a useful tool in
134
+ studying topological features and transverse thermoelec-
135
+ tric conversion properties of magnetic materials.
136
+ When a magnetic material is electrically connected to
137
+ a non-magnetic conductor at both ends along the direc-
138
+ tion of the applied temperature gradient (∇T), a closed
139
+ circuit is formed, and its total transverse thermopower
140
+ measured at the magnetic material (Sy
141
+ tot) is derived to
142
+ be [29, 30]
143
+ Sy
144
+ tot = SANE −
145
+ ρAHE
146
+ ρC/r + ρM
147
+ (SC − SM).
148
+ (2)
149
+ Here, ρC(M) and SC(M) are the longitudinal resistivity
150
+ and Seebeck coefficient of the non-magnetic conductor
151
+ (magnetic material), respectively. The size ratio r is de-
152
+ termined by the geometry of the closed circuit, and in
153
+ this case, can be expressed as r = (LM/LC) × (AC/AM),
154
+ where LC(M) is the length of the non-magnetic conduc-
155
+ tor (magnetic material) along the closed circuit [x axis
156
+ in Fig. 1(b)] and AC(M) is the cross-section area of the
157
+ non-magnetic conductor (magnetic material) perpendic-
158
+ ular to the LC(M) direction [yz plane in Fig. 1(b)]. Pre-
159
+ viously, thermoelectric materials have been connected to
160
+ magnetic materials to create closed circuits in order to
161
+ generate large transverse thermopower [29, 31], which is
162
+ referred to as the Seebeck-driven transverse thermoelec-
163
+ tric generation. However, Eq. (2) is still valid when a
164
+ non-magnetic conductor having negligible SE is used in-
165
+ stead of thermoelectric materials. If |SC| ≪ |SM| and we
166
+ make ρC/r ≪ ρM through small ρC, large r, or both, the
167
+ second term on the right-hand side of Eq. (2) is reduced
168
+ to SMρAHE/ρM. By substituting Eq. (1) into Eq. (2), the
169
+ SII term in SANE is canceled out, leaving only the SI term
170
+ in Sy
171
+ tot [Fig. 1(b)]. In other words, SE of the magnetic
172
+ material is shunted by connecting to the non-magnetic
173
+ conductor, leading to the disappearance of the SII term.
174
+ Then, αA
175
+ xy can be easily obtained as
176
+ αA
177
+ xy ≈ Sy
178
+ tot
179
+ ρM
180
+ .
181
+ (3)
182
+ FIG. 2.
183
+ (a) Schematic illustration of the sample structure
184
+ and measurement setup for the experimental demonstration
185
+ of the proposed method to directly probe αA
186
+ xy. V1, V2, V3, and
187
+ V4 represent four nanovoltmeters measuring the longitudinal
188
+ thermoelectric signal, transverse thermoelectric signal, and
189
+ resistance of two Pt wires, respectively. (b), (c) H dependence
190
+ of the transverse electric field (Ey) divided by ∇T for the
191
+ closed-circuit sample (b) and the reference sample (c). (d) H
192
+ dependence of the transverse resistivity (ρyx) of the reference
193
+ sample, showing AHE of Co2MnGa.
194
+ (e) H dependence of
195
+ the voltage from V1 of the closed-circuit (blue diamond) and
196
+ reference (red square) samples. The magneto-Seebeck effect
197
+ [32] in Co2MnGa was found to be negligibly small.
198
+ In comparison with the conventional method based on
199
+ Eq. (1), the method proposed here reduces the required
200
+ parameters for obtaining αA
201
+ xy from four to two. If ρM is
202
+ known, a simple measurement of Sy
203
+ tot in the closed circuit
204
+ enables the direct probing of αA
205
+ xy.
206
+ We experimentally demonstrated the proposed method
207
+ using a Co2MnGa thin film.
208
+ We chose Co2MnGa be-
209
+ cause it is known as a magnetic Weyl semimetal hav-
210
+ ing substantial SI and SII terms contributing to its large
211
+ SANE [7, 11, 14, 15]. The 26-nm-thick Co2MnGa thin
212
+ film was epitaxially deposited on a single crystal MgO
213
+ (100) substrate at room temperature by magnetron sput-
214
+
215
+ (a)
216
+ H
217
+ V
218
+ Au bonding wire
219
+ Co2MnGa
220
+ Au electrode
221
+ MgO substrate
222
+ Pt wire
223
+ b
224
+ E*/VT(μVK-1)
225
+ K-1
226
+ 2
227
+ 2
228
+ (μV
229
+ 0
230
+ 0
231
+ 2
232
+ -2
233
+ 3
234
+ 2
235
+ 1
236
+ 0
237
+ 2
238
+ 3
239
+ -3
240
+ -2
241
+ -1
242
+ 0
243
+ 1
244
+ 2
245
+ μoH (T)
246
+ HoH (T)
247
+ 20
248
+ -135
249
+ (d)
250
+ (e)
251
+ -130
252
+ 10
253
+ Pyx (μQ cm)
254
+ (μV)
255
+ -125
256
+ + Reference
257
+ 0
258
+ + Closed circuit
259
+ V
260
+ -10
261
+ -10
262
+ -5
263
+ -20
264
+ -2
265
+ -1
266
+ 0
267
+ 1
268
+ 2
269
+ 3
270
+ -3
271
+ -2
272
+ -1
273
+ 0
274
+ 1
275
+ 2
276
+ -3
277
+ 3
278
+ μoH (T)
279
+ μoH (T)3
280
+ tering, followed by post annealing at 500◦C. After the
281
+ sample was cooled down to room temperature, a 2-nm-
282
+ thick Al capping layer was deposited to prevent oxidiza-
283
+ tion. The composition of Co2MnGa was determined to be
284
+ Co45.7Mn25.4Ga28.9 by X-ray fluorescence spectroscopy.
285
+ The 111 superlattice peak of Co2MnGa was con���rmed
286
+ in the X-ray diffraction pattern, indicating the forma-
287
+ tion of L21 atomic ordering.
288
+ Then, we patterned the
289
+ Co2MnGa film into a 2-mm-wide and 8-mm-long Hall
290
+ bar structure using photolithography and Ar ion milling,
291
+ followed by the formation of Au electrodes through a lift-
292
+ off process. On-chip thermometers made of Pt wires were
293
+ subsequently formed through a lift-off process at the po-
294
+ sitions corresponding to the electrodes of the Hall bar
295
+ along the x axis, as shown in Fig. 2(a). In order to cre-
296
+ ate the closed circuit, we simply connected both ends of
297
+ the the Co2MnGa film along the x axis with a 30-µm-
298
+ diameter Au bonding wire. Here, the Co2MnGa is the
299
+ magnetic material under study, while the Au wire serves
300
+ as the non-magnetic conductor. The electrical resistivity
301
+ of Au wire is 2.3 µΩ cm at room temperature, two orders
302
+ of magnitude smaller than that of the Co2MnGa film,
303
+ which was measured to be ρM = 222.589±0.001 µΩ cm.
304
+ Meanwhile, we assumed a 30-µm-diameter circle as AC,
305
+ and estimated LC = 12 mm for the Au wire, leading to
306
+ estimation of r = 7. Together with SC = 2.0 µV K−1 of
307
+ Au [33] and experimentally measured SM = −32.7 ± 0.2
308
+ µV K−1 for Co2MnGa, the close circuit satisfies the as-
309
+ sumptions of |SC| ≪ |SM| and ρC/r ≪ ρM for Eq. (3).
310
+ To measure the transverse thermopower, we set the sam-
311
+ ple on a home-made holder, where one side of the sample
312
+ was thermally connected to a Cu block then to a heat
313
+ sink while the other side was thermally connected to a
314
+ heater and insulated from the heat sink by a bakelite
315
+ plate, similar to the one used in Ref. 34. When a charge
316
+ current is applied to the heater, ∇T along the x axis
317
+ is generated in the sample. To evaluate ∇T, we placed
318
+ the holder in a physical property measurement system
319
+ (PPMS; Quantum Design), and first calibrated the on-
320
+ chip thermometers by measuring the resistance of the Pt
321
+ wires as a function of temperature using the four-terminal
322
+ method under zero magnetic field (H). Then, we set the
323
+ temperature of PPMS at 295 K, applied the current to
324
+ the heater, and swept H along the z axis while monitor-
325
+ ing the longitudinal and transverse thermoelectric signals
326
+ from the closed circuit with two nanovoltmeters, V1 and
327
+ V2, respectively. The measured resistance of the Pt wires
328
+ during the sweep of H was used to obtain ∇T. As a ref-
329
+ erence, the same measuring process was carried out with-
330
+ out the Au wire connecting both ends of the Co2MnGa
331
+ film; this is the conventional ANE measurement.
332
+ The
333
+ average temperature and ∇T of the closed-circuit (ref-
334
+ erence) sample were 302.56±0.02 (302.01±0.02) K and
335
+ 0.977±0.005 (0.937±0.004) K mm−1, respectively. For
336
+ the reference sample, the ρM and ρAHE were separately
337
+ measured at room temperature.
338
+ FIG. 3.
339
+ (a) SANE and SI of the reference sample in compar-
340
+ ison with Sy
341
+ tot of the closed-circuit sample. (b) αA
342
+ xy obtained
343
+ using the conventional method and Sy
344
+ tot/ρM, which approxi-
345
+ mately corresponds to αA
346
+ xy through Eq. (3).
347
+ Figures 2(b) and 2(c) show the H dependence of the
348
+ transverse electric field (Ey) divided by ∇T for the
349
+ closed-circuit and reference samples, respectively.
350
+ The
351
+ observed signal of the reference sample showed the H-
352
+ odd dependence and saturation at |µ0H| ∼ 1 T, which
353
+ is attributed to ANE of Co2MnGa in the open circuit
354
+ condition. By contrast, the signal of the closed-circuit
355
+ sample is smaller than that of the reference sample, al-
356
+ though the shapes of the H dependence of the signals
357
+ are similar to each other. The curve in Fig. 2(b) also
358
+ saturates at |µ0H| ∼ 1 T along the z axis, suggesting
359
+ the transverse thermopower of the closed-circuit sample
360
+ is determined by the magnetization (M) of Co2MnGa
361
+ as well. Figure 2(d) shows the H dependence of ρyx of
362
+ Co2MnGa measured using the reference sample, where
363
+ the signal is mostly due to AHE of Co2MnGa. The Sy
364
+ tot,
365
+ SANE, and ρAHE values were evaluated by extrapolating
366
+ the curves in Figs. 2(b)-2(d) at high H after the sat-
367
+ uration of M down to zero H. Figure 2(e) shows the
368
+ longitudinal thermopower from V1 measured at the same
369
+ time when the results in Figs. 2(b) and 2(c) were ob-
370
+ tained. In case of the reference sample, this voltage was
371
+ due to SE of the Co2MnGa-Au thermocouple (note that
372
+ similar Au bonding wires were used to connect the elec-
373
+ trodes of the sample to the home-made holder), and SM
374
+ can be calculated by dividing the voltage at zero H with
375
+ the corresponding temperature difference then adding SC
376
+ of Au. On the other hand, the magnitude of the longitu-
377
+ dinal thermopower of the closed-circuit sample was dra-
378
+ matically reduced, indicating that SE of Co2MnGa was
379
+ indeed shunted by the connection to the Au wire at both
380
+ ends.
381
+ By applying Eq. (3) to the experimental results of
382
+ the closed-circuit sample, we were able to probe αA
383
+ xy
384
+ of Co2MnGa with ease. The values obtained using the
385
+ proposed method and the conventional method are com-
386
+ pared in Fig. 3.
387
+ SANE of Co2MnGa was estimated to
388
+ be 4.09±0.02 µV K−1, consistent with the previously re-
389
+ ported result of the sample having similar composition
390
+
391
+ 5
392
+ 1.4
393
+ a
394
+ (b)
395
+ 1.2
396
+ 1.0
397
+ 3
398
+ 0.8
399
+ 0.6
400
+ 2
401
+ 0.4
402
+ 0.2
403
+ 0
404
+ 0
405
+ S,
406
+ PANE
407
+ xy4
408
+ FIG. 4.
409
+ Size ratio r dependence of Sy
410
+ tot calculated using
411
+ Eq. (2) (cyan line) in comparison with SI of Co2MnGa ob-
412
+ tained in the experiment (black dashed line).
413
+ Sy
414
+ tot of the
415
+ closed-circuit sample (blue circle) is also plotted at the corre-
416
+ sponding r.
417
+ [15]. Meanwhile, Sy
418
+ tot = 1.89±0.01 µV K−1 of the closed
419
+ circuit is smaller than SANE, but comparable to its SI =
420
+ 2.01±0.02 µV K−1 [Fig. 3(a)]. For αA
421
+ xy, the value based
422
+ on Eq. (3) was calculated to be 0.848±0.005 A m−1 K−1,
423
+ while 0.905±0.010 A m−1 K−1 was obtained using Eq. (1)
424
+ of the conventional method [Fig. 3(b)]. As one can see,
425
+ the proposed method exhibits a close approximation of
426
+ αA
427
+ xy, although the value is slightly smaller than that ob-
428
+ tained from the conventional method: the difference is
429
+ ∼6%. To understand this difference, we calculated Sy
430
+ tot of
431
+ the closed circuit as a function of r using Eq. (2) and ma-
432
+ terial parameters of Co2MnGa and Au, then compared
433
+ it with the SI term from the conventional method, as
434
+ shown in Fig. 4. The experimentally measured Sy
435
+ tot is
436
+ also plotted at its corresponding r = 7. One can see a
437
+ quantitative agreement in Sy
438
+ tot between the experiment
439
+ and calculation. As r increases, the calculated Sy
440
+ tot de-
441
+ creases from the initial value ∼SANE of Co2MnGa down
442
+ to ∼Sy
443
+ tot measured in the experiment. The tendency of
444
+ the curve suggests that the r of the closed circuit used
445
+ for the demonstration is large enough to neglect the in-
446
+ fluence of ρC. On the other hand, the difference between
447
+ the calculated Sy
448
+ tot and SI at large r is attributed to finite
449
+ SC of Au. The Sy
450
+ tot value being slightly smaller than SI is
451
+ consistent with the fact that SC of Au is positive and op-
452
+ posite to SM of Co2MnGa in sign. These results indicate
453
+ that we should be mindful to the Seebeck coefficient of
454
+ the magnetic material and non-magnetic conductor while
455
+ using the proposed method, as SC being much smaller
456
+ in magnitude than SM is important to achieve a better
457
+ approximation. A non-magnetic conductor having zero
458
+ SC would be an ideal material for the proposed method,
459
+ which could further reduce the difference in αA
460
+ xy.
461
+ As shown above, the proposed method can be eas-
462
+ ily implemented in the experiment to directly measure
463
+ the SI term of a magnetic thin film and probe its αA
464
+ xy.
465
+ While multiple measurement setups are required to use
466
+ the conventional method and evaluate the material pa-
467
+ rameters in Eq. (1), the proposed method can be carried
468
+ out mostly on one setup. This would lead to better relia-
469
+ bility and reproductivity of the results as well as consid-
470
+ erable time and effort saving for the experiment, which
471
+ is especially beneficial for high-throughput materials re-
472
+ search. In addition, using the first-principles calculations
473
+ to obtain the Berry curvature and derive αA
474
+ xy has been
475
+ popularized in recent years and plays an important role in
476
+ exploiting and predicting materials with valuable prop-
477
+ erties. The proposed method could make αA
478
+ xy a direct
479
+ observable in the experiment, thereby enabling fast and
480
+ straightforward comparison with the theory and promot-
481
+ ing further understanding of the matter. It is worth men-
482
+ tioning that although the experimental demonstration
483
+ was done on a magnetic thin film, the proposed method
484
+ should also be applicable to study bulk materials, as long
485
+ as the assumptions of |SC| ≪ |SM| and ρC/r ≪ ρM for
486
+ Eq. (3) are satisfied.
487
+ In summary, we have proposed a method to directly
488
+ probe αA
489
+ xy of a magnetic material, which is realized sim-
490
+ ply by connecting both ends of the magnetic material
491
+ along the direction of ∇T with a non-magnetic conduc-
492
+ tor to create a closed circuit. Sy
493
+ tot of the closed circuit
494
+ approximates the SI term of the magnetic material, and
495
+ αA
496
+ xy can be easily obtained from Sy
497
+ tot and ρM, in con-
498
+ trast to four different parameters required in the conven-
499
+ tional method. The proposed method was experimentally
500
+ demonstrated to probe αA
501
+ xy of a Co2MnGa thin film. The
502
+ closed circuit was easily realized using a Au wire, and a
503
+ good approximation was obtained for both SI and αA
504
+ xy,
505
+ validating this method. Further analysis of the results
506
+ revealed that the small difference was due to finite SC,
507
+ and provided guides for the utilization of the proposed
508
+ method. As the popularity of using αA
509
+ xy is growing, our
510
+ finding could become a powerful tool propelling studies
511
+ of topological materials science and application of trans-
512
+ verse thermoelectric phenomena.
513
+ The authors thank R. Toyama and T. Hirai for their
514
+ support in sample preparation and measurement. This
515
+ work was supported by JST CREST “Creation of In-
516
+ novative Core Technologies for Nano-enabled Thermal
517
+ Management” (Grant No. JPMJCR17I1), JST ERATO
518
+ “Magnetic Thermal Management Materials” (Grant No.
519
+ JPMJER2201), JSPS KAKENHI Grant-in-Aid for Sci-
520
+ entific Research (B) (Grant No.
521
+ JP21H01608) and
522
+ Grant-in-Aid for Research Activity Start-up (Grant No.
523
+ JP22K20494), and NEC Corporation.
524
+ ∗ ZHOU.Weinan@nims.go.jp
525
+ † Present address:
526
+ Integrated Research for Energy and
527
+ Environment Advanced Technology, Kyushu Institute of
528
+ Technology, Fukuoka 804-8550, Japan
529
+ ‡ UCHIDA.Kenichi@nims.go.jp
530
+ [1] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-phase effect
531
+
532
+ 5
533
+ 4
534
+ t (μV K-1)
535
+ 3
536
+ S
537
+ 2
538
+ 0
539
+ 102
540
+ 100
541
+ 102
542
+ 10°
543
+ Size ratio r5
544
+ in anomalous thermoelectric transport, Phys. Rev. Lett.
545
+ 97, 026603 (2006).
546
+ [2] T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda,
547
+ Y. Onose, N. Nagaosa, and Y. Tokura, Crossover behav-
548
+ ior of the anomalous Hall effect and anomalous Nernst
549
+ effect in itinerant ferromagnets, Phys. Rev. Lett. 99,
550
+ 086602 (2007).
551
+ [3] Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi,
552
+ Mott relation for anomalous Hall and Nernst effects in
553
+ Ga1−xMnxAs ferromagnetic semiconductors, Phys. Rev.
554
+ Lett. 101, 117208 (2008).
555
+ [4] X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu,
556
+ and K. Behnia, Anomalous Nernst and Righi-Leduc ef-
557
+ fects in Mn3Sn: Berry curvature and entropy flow, Phys.
558
+ Rev. Lett. 119, 056601 (2017).
559
+ [5] M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki,
560
+ D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakat-
561
+ suji, Large anomalous Nernst effect at room temperature
562
+ in a chiral antiferromagnet, Nat. Phys. 13, 1085 (2017).
563
+ [6] J. Noky, J. Gooth, C. Felser, and Y. Sun, Characteriza-
564
+ tion of topological band structures away from the Fermi
565
+ level by the anomalous Nernst effect, Phys. Rev. B 98,
566
+ 241106(R) (2018).
567
+ [7] A. Sakai, Y. P. Mizuta, A. A. Nugroho, R. Sihomb-
568
+ ing, T. Koretsune, M.-T. Suzuki, N. Takemori, R. Ishii,
569
+ D. Nishio-Hamane, R. Arita, P. Goswami, and S. Nakat-
570
+ suji, Giant anomalous Nernst effect and quantum-critical
571
+ scaling in a ferromagnetic semimetal, Nat. Phys. 14, 1119
572
+ (2018).
573
+ [8] S. N. Guin, P. Vir, Y. Zhang, N. Kumar, S. J. Watz-
574
+ man, C. Fu, E. Liu, K. Manna, W. Schnelle, J. Gooth,
575
+ C. Shekhar, Y. Sun, and C. Felser, Zero-field Nernst ef-
576
+ fect in a ferromagnetic kagome-lattice Weyl-semimetal
577
+ Co3Sn2S2, Adv. Mater. 31, 1806622 (2019).
578
+ [9] L. Ding, J. Koo, L. Xu, X. Li, X. Lu, L. Zhao, Q. Wang,
579
+ Q. Yin, H. Lei, B. Yan, Z. Zhu, and K. Behnia, Intrinsic
580
+ anomalous Nernst effect amplified by disorder in a half-
581
+ metallic semimetal, Phys. Rev. X 9, 041061 (2019).
582
+ [10] C. Wuttke,
583
+ F. Caglieris,
584
+ S. Sykora,
585
+ F. Scaravaggi,
586
+ A. U. B. Wolter, K. Manna, V. S¨uss, C. Shekhar,
587
+ C. Felser, B. B¨uchner, and C. Hess, Berry curvature un-
588
+ ravelled by the anomalous Nernst effect in Mn3Ge, Phys.
589
+ Rev. B 100, 085111 (2019).
590
+ [11] S. N. Guin, K. Manna, J. Noky, S. J. Watzman, C. Fu,
591
+ N. Kumar, W. Schnelle, C. Shekhar, Y. Sun, J. Gooth,
592
+ and C. Felser, Anomalous Nernst effect beyond the mag-
593
+ netization scaling relation in the ferromagnetic Heusler
594
+ compound Co2MnGa, NPG Asia Mater. 11, 16 (2019).
595
+ [12] H. Yang, W. You, J. Wang, J. Huang, C. Xi, X. Xu,
596
+ C. Cao, M. Tian, Z.-A. Xu, J. Dai, and Y. Li, Giant
597
+ anomalous Nernst effect in the magnetic Weyl semimetal
598
+ Co3Sn2S2, Phys. Rev. Materials 4, 024202 (2020).
599
+ [13] Y. Sakuraba, K. Hyodo, A. Sakuma, and S. Mitani, Giant
600
+ anomalous Nernst effect in the Co2MnAl1−xSix Heusler
601
+ alloy induced by Fermi level tuning and atomic ordering,
602
+ Phys. Rev. B 101, 134407 (2020).
603
+ [14] L. Xu, X. Li, L. Ding, T. Chen, A. Sakai, B. Fauqu´e,
604
+ S. Nakatsuji, Z. Zhu, and K. Behnia, Anomalous trans-
605
+ verse response of Co2MnGa and universality of the room-
606
+ temperature αA
607
+ ij/σA
608
+ ij ratio across topological magnets,
609
+ Phys. Rev. B 101, 180404(R) (2020).
610
+ [15] K.
611
+ Sumida,
612
+ Y.
613
+ Sakuraba,
614
+ K.
615
+ Masuda,
616
+ T.
617
+ Kono,
618
+ M. Kakoki, K. Goto, W. Zhou, K. Miyamoto, Y. Miura,
619
+ T. Okuda, and A. Kimura, Spin-polarized Weyl cones and
620
+ giant anomalous Nernst effect in ferromagnetic Heusler
621
+ films, Commun. Mater. 1, 89 (2020).
622
+ [16] T. Asaba, V. Ivanov, S. M. Thomas, S. Y. Savrasov,
623
+ J. D. Thompson, E. D. Bauer, and F. Ronning, Colossal
624
+ anomalous Nernst effect in a correlated noncentrosym-
625
+ metric kagome ferromagnet, Sci. Adv. 7, eabf1467 (2021).
626
+ [17] Y. Pan, C. Le, B. He, S. J. Watzman, M. Yao, J. Gooth,
627
+ J. P. Heremans, Y. Sun, and C. Felser, Giant anoma-
628
+ lous Nernst signal in the antiferromagnet YbMnBi2, Nat.
629
+ Mater. 21, 203 (2022).
630
+ [18] H. Zhang, J. Koo, C. Xu, M. Sretenovic, B. Yan, and
631
+ X. Ke, Exchange-biased topological transverse thermo-
632
+ electric effects in a kagome ferrimagnet, Nat. Commun.
633
+ 13, 1091 (2022).
634
+ [19] H. Nakayama, K. Masuda, J. Wang, A. Miura, K. Uchida,
635
+ M. Murata, and Y. Sakuraba, Mechanism of strong en-
636
+ hancement of anomalous Nernst effect in Fe by Ga sub-
637
+ stitution, Phys. Rev. Materials 3, 114412 (2019).
638
+ [20] A. Miura, H. Sepehri-Amin, K. Masuda, H. Tsuchiura,
639
+ Y. Miura, R. Iguchi, Y. Sakuraba, J. Shiomi, K. Hono,
640
+ and K. Uchida, Observation of anomalous Ettingshausen
641
+ effect and large transverse thermoelectric conductivity
642
+ in permanent magnets, Appl. Phys. Lett. 115, 222403
643
+ (2019).
644
+ [21] J. Noky, Y. Zhang, J. Gooth, C. Felser, and Y. Sun,
645
+ Giant anomalous Hall and Nernst effect in magnetic cubic
646
+ Heusler compounds, npj Comput. Mater. 6, 77 (2020).
647
+ [22] A. Sakai, S. Minami, T. Koretsune, T. Chen, T. Higo,
648
+ Y. Wang, T. Nomoto, M. Hirayama, S. Miwa, D. Nishio-
649
+ Hamane, F. Ishii, R. Arita, and S. Nakatsuji, Iron-based
650
+ binary ferromagnets for transverse thermoelectric conver-
651
+ sion, Nature 581, 53 (2020).
652
+ [23] K. Uchida, W. Zhou, and Y. Sakuraba, Transverse ther-
653
+ moelectric generation using magnetic materials, Appl.
654
+ Phys. Lett. 118, 140504 (2021).
655
+ [24] Y. Sakuraba, K. Hasegawa, M. Mizuguchi, T. Kubota,
656
+ S. Mizukami, T. Miyazaki, and K. Takanashi, Anoma-
657
+ lous Nernst effect in L10-FePt/MnGa thermopiles for
658
+ new thermoelectric applications, Appl. Phys. Express 6,
659
+ 033003 (2013).
660
+ [25] W. Zhou and Y. Sakuraba, Heat flux sensing by anoma-
661
+ lous Nernst effect in Fe–Al thin films on a flexible sub-
662
+ strate, Appl. Phys. Express 13, 043001 (2020).
663
+ [26] K. Uchida and J. P. Heremans, Thermoelectrics: From
664
+ longitudinal to transverse, Joule 6, 2240 (2022).
665
+ [27] T. Higo, Y. Li, K. Kondou, D. Qu, M. Ikhlas, R. Uesugi,
666
+ D. Nishio-Hamane, C. L. Chien, Y. Otani, and S. Nakat-
667
+ suji, Omnidirectional control of large electrical output in
668
+ a topological antiferromagnet, Adv. Funct. Mater. 31,
669
+ 2008971 (2021).
670
+ [28] R. Modak, Y. Sakuraba, T. Hirai, T. Yagi, H. Sepehri-
671
+ Amin, W. Zhou, H. Masuda, T. Seki, K. Takanashi,
672
+ T. Ohkubo, and K. Uchida, Sm-Co-based amorphous al-
673
+ loy films for zero-field operation of transverse thermoelec-
674
+ tric generation, Sci. Technol. Adv. Mater. 23, 767 (2022).
675
+ [29] W. Zhou, K. Yamamoto, A. Miura, R. Iguchi, Y. Miura,
676
+ K. Uchida, and Y. Sakuraba, Seebeck-driven transverse
677
+ thermoelectric generation, Nat. Mater. 20, 463 (2021).
678
+ [30] K.
679
+ Yamamoto,
680
+ R.
681
+ Iguchi,
682
+ A.
683
+ Miura,
684
+ W.
685
+ Zhou,
686
+ Y. Sakuraba, Y. Miura, and K. Uchida, Phenomenolog-
687
+ ical analysis of transverse thermoelectric generation and
688
+ cooling performance in magnetic/thermoelectric hybrid
689
+ systems, J. Appl. Phys. 129, 223908 (2021).
690
+ [31] W. Zhou, T. Hirai, K. Uchida, and Y. Sakuraba, Seebeck-
691
+
692
+ 6
693
+ driven transverse thermoelectric generation in on-chip
694
+ devices, J. Phys. D: Appl. Phys. 55, 335002 (2022).
695
+ [32] K. Uchida, Transport phenomena in spin caloritronics,
696
+ Proc. Jpn. Acad., Ser. B 97, 69 (2021).
697
+ [33] I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical
698
+ Quantities (CRC, 1997).
699
+ [34] J. Wang, Y.-C. Lau, W. Zhou, T. Seki, Y. Sakuraba,
700
+ T.
701
+ Kubota,
702
+ K.
703
+ Ito,
704
+ and
705
+ K.
706
+ Takanashi,
707
+ Strain-
708
+ induced large anomalous Nernst effect in polycrystalline
709
+ Co2MnGa/AlN multilayers, Adv. Electron. Mater. 8,
710
+ 2101380 (2022).
711
+
PNE0T4oBgHgl3EQfjwHm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
R9FRT4oBgHgl3EQfLjfi/content/tmp_files/2301.13503v1.pdf.txt ADDED
@@ -0,0 +1,2011 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Identical Bands Around the Isobaric Rare Earth Even-Even Nuclei
2
+ with the Mass Number A = 164
3
+ M. A. Abdelsalam⋆, H. A. Ghanim⋆, M. Kotb⋆, and A. M. Khalaf⋆
4
+ ⋆Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
5
+ Corresponding author: mahmoudkotb@azhar.edu.eg
6
+ Abstract
7
+ Eight pairs of rare-earth normally - deformed (ND) nuclei around the isobaric nuclei with A = 164
8
+ and have identical values of F-spin, ± F0 and Np Nn (Np and Nn are the number of valence protons and
9
+ valence neutrons respectively ) have been studied. These pairs of identical bands (IB’s) cover 16 mass
10
+ units and are classified as (i) 3 pairs of nuclei separated by (2p,2n) :(162Y b −166 Hf), (162Er −166 Y b),
11
+ (162Dy −166 Er) (ii) 2 pairs of nuclei separated by (4p,4n): (160Dy −168 Y b), (160Er −168 Hf) (iii) 2 pairs
12
+ of nuclei separated by (6p,6n): (158Er −170 W) (158Dy −170 Hf) and (iv) one pair of nuclei separated
13
+ by (8p,8n): (156Dy −172 W).
14
+ We suggested a theoretical collective rotational formula containing three parameters (CRF3) as an
15
+ extended version of Bohr-Mottelson model to calculate the ground state positive parity excitation en-
16
+ ergies. Also, the sd-version of the interacting boson model (IBM) has been used to describe the nuclear
17
+ shapes by using the intrinsic coherent-state. The optimized models parameters for each nucleus are
18
+ adjusted by using a simulation search program to minimize the root mean square deviation between
19
+ the theoretical calculation and experimental excitation energies. The best adopted model parameters
20
+ of the CRF3 are used to calculate the rotational frequencies ¯hω, the kinematic J(1) and dynamic J(2)
21
+ moments of inertia and the evolution of J(1) and J(2) with increasing ¯hω are systematically analyzed.
22
+ A smooth gradual increase in both moments of inertia was seen.
23
+ The calculated results agree excellently with the experimental ones which give strong support to
24
+ the suggested CRF3.
25
+ The adopted IBM parameters are used to calculate the potential energy surfaces (PES’s) which
26
+ describe the nuclear deformation. The PES’s for our nuclei shows two wells corresponding to prolate
27
+ and oblate sides which indicate that these nuclei are deformed and have rotational behaviors.
28
+ The correlation quantities which identify the IB’s are extracted. It is found that the nuclei having
29
+ NpNn/△ where △ is the average pairing gap, exhibit identical excitation energies and energy ratios in
30
+ their ground state rotational bands.
31
+ Keywords : Interacting Boson model (IBM) - Identical Bands - Potential Energy Surface
32
+ 1
33
+ Introduction
34
+ The discovery of rotational bands in adjacent even-even and odd-mass superdeformed (SD) nuclei in
35
+ which the γ-ray transition energies are nearly identical to within a few KeV was an exotic and unex-
36
+ pected phenomenon in nuclear structure physics [1–5]. Since the identical bands (IB’s) have essentially
37
+ identical transition energies, then the associated dynamical moment of inertia are thus identical. Sev-
38
+ eral explanations were put forward [4–12] to understand the origin of IB’s phenomenon assuming the
39
+ occurrence of such IB’s to be a specific property of the SD states in nuclei. The explanations of these IB’s
40
+ includes: the Coriolis force, the particle alignment and pairing [13], the roles of special high-N orbitals of
41
+ intruder configuration and band crossing [14–17], the pseudo-spin in supersymmetry [7, 18, 19] and the
42
+ supersymmetry with many-body interactions [20].
43
+ Soon the phenomenon of low-spin identical bands was found in pairs of even-even normal deformed
44
+ (ND) nuclei [21], and in neighboring even-even and odd-mass nuclei in rare-earth region where they have
45
+ similar moments of inertia [22,23]. If was noted that low spin IB’s are not limited to nearby nuclei but are
46
+ widespread and found in pairs of even-even nucleoside as separated by 24 mass unit (like 156Dy,180 Os)
47
+ 1
48
+ arXiv:2301.13503v1 [nucl-th] 31 Jan 2023
49
+
50
+ [24]. Attempts were made to understand the low-spin IB’s in terms of some simple systematics of the
51
+ moments of inertia in the rare-earth region [25–30] or from several types of consideration [31].
52
+ For the description of normally deformed (ND) bands, some useful models were proposed. Bohr and
53
+ Mottelson [32] pointed out that, under the adiabatic approximation, the rotational energy of an axially
54
+ symmetric nucleus may be expanded for K = 0 band as a power series in the I(I+1) term. The expansion
55
+ for the K ̸= 0 band takes the same form, but includes a band head energy and the I(I+1) is replaced by
56
+
57
+ I(I + 1) − K2�
58
+ . Another useful models for nuclear rotational spectra are the particle-rotor model (PRM)
59
+ [33], the variable moment of inertia (VMI) model [34, 35], the soft rotor model [36] and the interacting
60
+ boson model [37].
61
+ In the concept of F-spin and its projection [38] any pairs of conjugate nuclei with the same F-spin and
62
+ F0 values in any F-multiplet will have the same NpNn [24, 39, 40] where Np and Nn are respectively the
63
+ number of valence protons and valence neutrons. The product NpNn was used in the classification of the
64
+ changes that occur in nuclear structure [41,42]. It was assumed that [25,43] the moment and the P-factor
65
+ depends also on the product NpNn.
66
+ The purpose of the present paper is (i) to analyse the excitation energies for even-even normally de-
67
+ formed nuclei in rare earth region in framework of suggested new collective rotational formula (CRF3).
68
+ (ii) to exhibit the occurrence of IB’s in eight pairs of nuclei in rare earth region. (iii) to present the parame-
69
+ ters which characterize the appearance of IB’s. (iv) use the sd version of interacting boson model (sdIBM)
70
+ to calculate the potential energy surfaces (PES’s).
71
+ 2
72
+ Outline of the Suggested Collective Rotational Formula with Three Pa-
73
+ rameters (CRF3)
74
+ Rotational states in normal deformed (ND) nuclei can be characterized by their excitation energies E(I)
75
+ as a function of spin I, which generally lie low as compared to the single-particle excitation. In the strong
76
+ coupling limit, the rotational ground state energy for an axially symmetric even-even nucleus obeys the
77
+ I(I+1) rule, i.e form bands of levels that fulfill the relation
78
+ E(I) = ¯h2
79
+ 2J I(I + 1) = α Î
80
+ 2
81
+ (1)
82
+ where α = ¯h2/2J and Î = I(I+1)
83
+ The relation (1) defines in addition the nuclear moment of inertia J as a constant for an ideal rotor.
84
+ This simple rotational formula gives deviations from experimental data, So Bohr and Mottelson pointed
85
+ out that agreement was improved by adding to it a second team to yield
86
+ E(I) = αI(I + 1) + β[I(I + 1)]2
87
+ = α Î
88
+ 2 + β Î
89
+ 4
90
+ E(I) = α Î
91
+ 2(1 + γ Î
92
+ 2)
93
+ (2)
94
+ where γ = β/α
95
+ Since the moment of inertia J increases on rotation of the nucleus, the observed deviations from the
96
+ experiment were still more evident.
97
+ According to the variable moment of inertia(VMI) model [34, 35], there is a gradual increase in mo-
98
+ ment of inertia J with increasing the spin I, so we suggest that the moment inertia J can be written as
99
+ J = J(I) = J (1 + σ Î
100
+ 2)
101
+ (3)
102
+ Substituting in equation (2), yield
103
+ E(I) = α Î
104
+ 2
105
+
106
+ 1 + γ Î
107
+ 2
108
+ 1 + σ Î
109
+ 2
110
+
111
+ (4)
112
+ Therefore, the two-term Bohr-Mottelson formula becomes an extended new formula with three pa-
113
+ rameters. We denote formula (4) as the collective rotational formula with three parameters (CRF3). The
114
+ parameters are α, β, γ.
115
+ 2
116
+
117
+ The suggested CRF3 is more general because it leads to the following three predictions:
118
+ a) when σ = γ it gives pure rigid rotor equation(1)
119
+ b) when σ = 0 it gives the two parameters Bohr-Mottelson equation (2)
120
+ c) when γ = 0 it gives soft rotor model [36]
121
+ E(I) = ¯h2
122
+ 2J
123
+ I(I + 1)
124
+ 1 + σ(I + I2)
125
+ (5)
126
+ Two types of moments of inertia were suggested by Bohr-Mottelson which reflect two different as-
127
+ pects of nuclear dynamics. The first moment of inertia is the kinematic J(1), it is equal to the inverse of
128
+ the slope of the curve of energy E versus Î
129
+ 2 (or I(I+1)) times ¯h2/2, while the second moment of inertia is
130
+ the dynamic J(2), it is related to the curvature in the curve of E versus Î (or
131
+
132
+ I(I + 1) ).
133
+ The kinematic J(1)) and dynamic J(2) moments of inertia are defined as:
134
+ J(1) = ¯h2
135
+ 2
136
+
137
+ dE
138
+ dI(I + 1)
139
+ �−1
140
+ = ¯h
141
+
142
+ I(I + 1)
143
+ ω
144
+ = ¯h2
145
+ 2
146
+ �dE
147
+
148
+ 2
149
+ �−1
150
+ = ¯h Î
151
+ ω
152
+ (6)
153
+ J(2) = ¯h2
154
+
155
+ d2E
156
+ d(
157
+
158
+ I(I + 1))2
159
+ �−1
160
+ = ¯hd
161
+
162
+ I(I + 1)
163
+
164
+ = ¯h2
165
+ �d2E
166
+
167
+ 2
168
+ �−1
169
+ = ¯h dÎ
170
+
171
+ (7)
172
+ In the case of our CRF3, the two moments of inertia becomes
173
+ J(1)(I) = ¯h2
174
+
175
+ (1 + σÎ
176
+ 2)2
177
+ [1 + γÎ
178
+ 2(2 + σÎ
179
+ 2)]
180
+ (8)
181
+ J(2)(I) = ¯h2
182
+
183
+ (1 + σÎ
184
+ 2)3
185
+ [(1 + 6γÎ
186
+ 2) + σÎ
187
+ 2(3γÎ
188
+ 2 + αγÎ
189
+ 4 − 3)]
190
+ (9)
191
+ Experimentally ¯hω, J(1)and J(2) are extracted in terms of the transition energy Eγ(I) = E(I)−E(I−2)
192
+ as:
193
+ ¯hω(I) = 1
194
+ 4[Eγ(I + 2) + Eγ(I)]
195
+ (MeV )
196
+ (10)
197
+ J(1)(I) = 2I − 1
198
+ Eγ(I)
199
+ (¯h2MeV −1)
200
+ (11)
201
+ J(2)(I) =
202
+ 4
203
+ Eγ(I + 2) − Eγ(I)
204
+ (¯h2MeV −1)
205
+ (12)
206
+ As a special case, the lowest dynamical moment of inertia reads
207
+ J(2)
208
+ lowest =
209
+ 4
210
+ Eγ(4+
211
+ 1 → 2+
212
+ 1 ) − Eγ(2+
213
+ 1 → 0+
214
+ 1 )
215
+ (13)
216
+ 3
217
+ Determination of Ground State Band Properties of Even-Even Nuclei and
218
+ the Physical Identical Parameters
219
+ In order to understand the behavior of low lying states of an axially symmetric normally deformed nuclei,
220
+ it is insightful to examine some physical observables which exist in a pair of IB’s, the observables include:
221
+ 1. The P- Factor, Structure Factor (SF), and Saturation Parameter (SP)
222
+ Casten [43] introduced the P-Factor
223
+ P =
224
+ NpNn
225
+ Np + Nn
226
+ (14)
227
+ 3
228
+
229
+ where Np and Nn are the numbers of valence protons and valence neutrons respectively which are
230
+ counted as particles or holes from the nearest closed shell
231
+ Np = min[(Z − 50), (82 − Z)]
232
+ (15)
233
+ Nn = min[(N − 82), (126 − N)]
234
+ (16)
235
+ The P- Factor represents the average number of interactions of each valence nucleon with those of the
236
+ other type. It can be viewed as the ratio of the number of valences p-n residual interactions to the number
237
+ of valence like-nucleon pairing interactions, or if the p-n and pairing interactions are orbit independent,
238
+ then P is proportional to the ratio of the integrated p-n interaction strength to the integrated pairing
239
+ interaction strength. The nuclear collectivity and deformation depend sensitively on the P- Factor.
240
+ The structure factor (SF) and the saturation parameter (SP) are given by
241
+ SF = NpNn(Np + Nn)
242
+ (17)
243
+ SP =
244
+
245
+ 1 +
246
+ SF
247
+ SFmax
248
+ �−1
249
+ (18)
250
+ It is found that the lowest dynamical moment of inertia J(2)
251
+ lowest is proportional to
252
+
253
+ SF.
254
+ 2. The Concept of F-Spin
255
+ A nucleus with Np valence protons and Nn valence neutrons has a total boson number
256
+ NB = Np + Nn
257
+ 2
258
+ = Nπ + Nν
259
+ (19)
260
+ The Nπ proton bosons and neutron bosons are assigned F-Spin, F =
261
+ 1
262
+ 2 with projection F0 = + 1
263
+ 2
264
+ for proton bosons and F0 = − 1
265
+ 2 for neutron bosons. A given nucleus is characterized by two quantum
266
+ numbers [38]:
267
+ F = Nπ + Nν
268
+ 2
269
+ and its projection F0 = Nπ − Nν
270
+ 2
271
+ Squaring and subtracting, yield
272
+ 4(F 2 − F 2
273
+ 0 ) = 4NπNν = NpNn
274
+ (20)
275
+ That is any pair of conjugate nuclei with the same F-spin and F0 values in any F-spin multiplet have
276
+ identical NpNn values.
277
+ In our chosen nuclei, the F-spin multiplet is given by: (A+4, Z+2), (A+8, Z+4), (A+12, Z+6) and (A+16,
278
+ Z+8) for Dy, Er, Yb, Hf, and W isotopes.
279
+ Any pair of nuclei which show identical excitation energies have nearly equal value of the product of
280
+ their valence nucleon numbers Np and Nn [41]. However, the analysis of experimental data shows that
281
+ the converse is not true. The simple quantity NpNn helps also in the evolution of nuclear deformation
282
+ and collectivity in nuclei [40]. On the other hand, the product NpNn or the P- Factor plays an important
283
+ role in studying the orbit dependence, shell gaps, and intruder orbitals.
284
+ 3. Pairing Interaction Energy
285
+ The pairing interaction energy △ in an even-even nucleus is the average pairing gap ((△p + △n)/2
286
+ where △p and △n are respectively the proton and neutron pairing gaps which are determined from the
287
+ difference in binding energies of the neighboring odd and even nuclei
288
+ △p = 1
289
+ 4[B(N, Z − 2) − 3B(N, Z − 1) + 3B(N, Z) − B(N, Z + 1)]
290
+ (21)
291
+ △n = 1
292
+ 4[B(N − 2, Z) − 3B(N − 1, Z) + 3B(N, Z) − B(N + 1, Z)]
293
+ (22)
294
+ The pairing gaps △p and △n are determined empirically from the relation
295
+ △p ≃ △n = 12
296
+
297
+ A
298
+ (MeV )
299
+ (23)
300
+ The average pairing gap of the nucleus is then
301
+ 4
302
+
303
+ △ = △p + △n
304
+ 2
305
+ = 12
306
+
307
+ A
308
+ MeV
309
+ (24)
310
+ It is observed that [39, 43] the even-even nuclei belong to different mass number having identical
311
+ (NpNn/△) values exhibit identical excitation energies and identical energy ratios.
312
+ 4. Quadrupole Transition Probabilities and Deformation Parameters
313
+ The quadrupole transition probability per unit time for the transition Ii → If is given by
314
+ T(E2) = 4π
315
+ 75
316
+ �5
317
+ ¯h
318
+ � �E2+
319
+ 1
320
+ ¯hc
321
+ �5
322
+ B(E2; Ii → If)
323
+ (25)
324
+ where B(E2) is the reduced transition probability and E2+
325
+ 1 is the energy of the 2+
326
+ 1 state.
327
+ Experimentally T(E2) for transition 2+
328
+ 1 → 0+
329
+ 1 is obtained by
330
+ T(E2, 2+
331
+ 1 → 0+
332
+ 1 ) =
333
+ ln2
334
+ (1 + α)T1/2
335
+ =
336
+ 0.693
337
+ (1 + α)T1/2
338
+ (26)
339
+ where α is the total conversion coefficient taken from the tabulated values given by Rose [44] and T1/2
340
+ is the lifetime of the rotational level.
341
+ The B(E2, 2+
342
+ 1 → 0+
343
+ 1 ) values carry important information about the collectivity of nuclear rotation and
344
+ can be extracted from the equations (25,26).
345
+ The relation between the intrinsic nuclear quadrupole moment Q0 and B(E2) is given by
346
+ Q2
347
+ 0 = 16π
348
+ e B(E2, 2+
349
+ 1 → 0+
350
+ 1 )
351
+ (27)
352
+ Practically the most reliable method of determining the quadrupole deformation parameter β2 in
353
+ framework of geometric collective model (GCM) is to extract β2 from Q0 according to the formula
354
+ β2(exp) =
355
+
356
+
357
+ 3ZR2
358
+ 0
359
+ Q0
360
+ (28)
361
+ assuming a uniformly charged nucleus of spheroidal shape, where the nuclear radius has the value
362
+ R0 = 1.2A1/3(fm) and Z is the nuclear charge number.
363
+ The expression (28) for β2 is widely used to compare the quadrupole deformation of different nuclei.
364
+ It is noticed that the B(E2, 2+
365
+ 1 → 0+
366
+ 1 ) values increase when going from the closed shell at N=82 toward
367
+ midshell where maximum values are occur, while from midshell toward the shell closure at N= 126 its
368
+ values are decreases.
369
+ In a second way , specially where the B(E2, 2+
370
+ 1 → 0+
371
+ 1 ) value is not known, we estimate β by using the
372
+ approximate empirical Grodzins relation [45]:
373
+ E2+
374
+ 1 B(E2, 2+
375
+ 1 → 0+
376
+ 1 ) = 2.5 × 10−3 Z2
377
+ A
378
+ (29)
379
+ where
380
+ B(E2, 2+
381
+ 1 → 0+
382
+ 1 ) =
383
+ 1
384
+ 16πe2Q2
385
+ 0 =
386
+ 9
387
+ 80π2 e2Z2R4
388
+ 0β2
389
+ (in units of e2b2)
390
+ (30)
391
+ We can relate β and E2+
392
+ 1 as:
393
+ β2
394
+ G =
395
+ 1224
396
+ E2+
397
+ 1 A7/3
398
+ (31)
399
+ where E2+
400
+ 1 is in MeV.
401
+ Also β2 can be determined by using the SU(3) rotational limit of interacting boson model(IBM) [37],
402
+ the square of the deformation parameter β2 in a state of angular momentum I is given by [46]:
403
+ ⟨β2⟩I =
404
+ α2
405
+ 6(2N − 1)[I(I + 1) + 8N2
406
+ B + 22NB − 15]
407
+ (32)
408
+ 5
409
+
410
+ where NB is the total number of valence bosons and α is a normalization constant (α = 0.101 for rare-
411
+ earth nuclei). The expectation value of β2 in the ground state becomes
412
+ ⟨β2⟩0 = α2 8N2
413
+ B + 22NB − 15
414
+ 6(2N − 1)
415
+ (33)
416
+ which is an almost linearly increasing function of the boson number NB and has the same value for
417
+ nuclei having the same number of valence nucleons
418
+ N = [Np + Nn], N = [(Np − 1) + (Nn − 1)]
419
+ (34)
420
+ It is evident that βIBM extracted from IBM is much larger than βGCM extracted from GCM because
421
+ βGCM refer to the deformation of all A nucleons while βIBM describe only 2N valence bosons, the ap-
422
+ proximate relation between them is given by:
423
+ βGCM = 1.18
424
+ �2N
425
+ A
426
+
427
+ βIBM
428
+ (35)
429
+ The deformation parameter β reflects the equilibrium shape and structure of the nucleus such as the
430
+ energy ratio R4/2 = E(4+
431
+ 1 )/E(2+
432
+ 1 ) and the reduced transition probability B(E2, 2+
433
+ 1 → 0+
434
+ 1 ) which are the
435
+ best indicators to exhibit the collective properties of the even-even nuclei.
436
+ 5. Energy Ratios and Percentage Difference in Transition Energies
437
+ The energy ratios and the percentage difference in transition energies give the characteristic of the
438
+ evolution of the collectivity in the even-even nuclei. Only deformed nuclei show rotational levels and
439
+ particularly the even-even nuclei display a simple structure energies proportional to I(I+1) with only
440
+ even values of the spin I considering that the moment of inertia is constant (rigid rotator), therefore
441
+ the energy ratio R4/2 = 3.333. The observed moment of inertia extracted from the experiment is only
442
+ one-quarter to one-half of what one would expect from a rigid rotator which means that not the whole
443
+ nucleons are participating in the collective motion.
444
+ On the other hand for an ideal harmonic quadrupole spectrum for spherical nuclei a system of
445
+ equidistant states is formed by the composition of vibrational quanta. The first excited state is 2+
446
+ 1 fol-
447
+ lowed by the degenerate 0+
448
+ 2 , 2+
449
+ 2 , 4+
450
+ 1 , and so forth. Therefore energy ratioR4/2 = 2.
451
+ To compare level spacing in two nuclei with masses A1, and A2 where A2 > A1, we define the per-
452
+ centage differences ratios in transition energies as :
453
+ δ = △Eγ(I)
454
+ Eγ2(I)
455
+ (36)
456
+ where
457
+ Eγ = E(I) − E(I − 2)
458
+ (37)
459
+ △Eγ(I) = Eγ1(I) − Eγ2(I)
460
+ (38)
461
+ So that
462
+ Eγ1 = (1 + δ)Eγ2
463
+ (39)
464
+ For rigid rotor the ratio
465
+ δR =
466
+ �A2
467
+ A1
468
+ �5/3
469
+ − 1
470
+ (40)
471
+ define the fractional change in A5/3.
472
+ The fractional change in transition energies δ divided by the rigid rotor ratio δR is denoted by δγ. If
473
+ the spacings are identical, then δ = 0, δγ = 0 and if they scale as A5/3 then δγ=1.
474
+ Similarly, the percentage difference in kinematic moment of inertia J(1) is given by
475
+ K = −△J(1)(I)
476
+ J(1)
477
+ 2 (I)
478
+ (41)
479
+ 6
480
+
481
+ where
482
+ J(1)(I) = 2I − 1
483
+ Eγ(I)
484
+ (42)
485
+ △J(1)(I) = J(1)
486
+ 1 (I) − J(1)
487
+ 2 (I)
488
+ (43)
489
+ So that
490
+ J(2)
491
+ 2
492
+ = (1 + K)J(1)
493
+ 1
494
+ (44)
495
+ Substituting for J(1), yield K = δ.
496
+ 4
497
+ The Interacting Boson Model to Calculate the Potential Energy Surfaces
498
+ and Electric Quadrupole Transition Probability
499
+ We consider the Hamiltonian of the first order U(5)- SU(3) quantum shape phase transition in the form
500
+ H = ϵdˆnd + a2 ˆQ(x) ˆQ(x)
501
+ (45)
502
+ where ˆnd and ˆQ(x) are respectively the d-boson number operator and quadrupole operator defined as
503
+ ˆnd =
504
+
505
+ µ
506
+ d†
507
+ µ
508
+
509
+
510
+ (46)
511
+ ˆQ(x) =
512
+
513
+ d†s + s† ∼
514
+ d
515
+ �(2)
516
+ + x
517
+
518
+ d†×
519
+
520
+ d
521
+ �(2)
522
+ (47)
523
+ where
524
+
525
+ s†, d†�
526
+ and
527
+
528
+ s,
529
+
530
+ d
531
+
532
+ are the boson creation and annihilation operators respectively, and x is
533
+ the structure parameter of the quadrupole operator of IBM (x for pure rotational SU(3) limit is equal to
534
+
535
+
536
+ 7/2). Here dµ = (−1)µd−µ and standard notation of angular momentum coupling is used.
537
+ To get the potential energy surface (PES) of the Hamiltonian, we introduce the intrinsic coherent
538
+ frame in which the ground state of a nucleus with N bosons can be expressed as a boson condensate. The
539
+ bosonic intrinsic coherent state for the ground state band of a given even-even nucleus can be written in
540
+ the form [47–49]
541
+ |Nβγ⟩ =
542
+ 1
543
+
544
+ N!
545
+ [b†(β, γ)]N|0⟩
546
+ (48)
547
+ where |0⟩ is the boson vacuum and b† is the boson creation operator which acts in the intrinsic system
548
+ and is given by:
549
+ b† =
550
+ 1
551
+
552
+ 1 + β2 [s† + βcosγ(d†
553
+ 0) + 1
554
+
555
+ 2βsinγ(d†
556
+ 2 + d†
557
+ −2)]
558
+ (49)
559
+ where β is the quadrupole deformation parameter which measures the axial deviation from spherical
560
+ symmetry and the parameter γ controls the departure from axial symmetries.
561
+ The ground state PES is the expectation value of the Hamiltonian in the intrinsic coherent state
562
+ PES = ⟨Nβγ|H|Nβγ⟩
563
+ (50)
564
+ The associated PES of the Hamiltonian (45) for x = −
565
+
566
+ 7/2 reads
567
+ E(N, β, γ) = ϵd
568
+ Nβ2
569
+ 1 + β2 + a2
570
+
571
+ N
572
+ 1 + β2 (5 + 11
573
+ 4 β2) + N(N − 1)
574
+ (1 + β2)2 (4β2 − 2
575
+
576
+ 2β3cos3γ + 1
577
+ 2β4)
578
+
579
+ (51)
580
+ Equation (51) can be written in another form as
581
+ E(N, β, γ) = g1
582
+ Nβ2
583
+ 1 + β2 + N(N − 1)
584
+ (1 + β2)2 [g2β2 + g3β3cos3γ + g4β4] + c
585
+ (52)
586
+ 7
587
+
588
+ where the coefficients involve linear combination of the Hamiltonian parameters
589
+ g1 = ϵd − 9
590
+ 4a2,
591
+ g2 = 4a2
592
+ g3 = 2
593
+
594
+ 2a2,
595
+ g4 = 1
596
+ 2a2,
597
+ c = 5Na2
598
+ Also, equation (51) can be rewritten in general form as
599
+ E(N, β, γ) = A2β2 + A3β3cos3γ + A4β4
600
+ (1 + β2)2
601
+ + A0
602
+ (53)
603
+ where the coefficients read
604
+ A2 =
605
+
606
+ ϵ +
607
+
608
+ 4N − 25
609
+ 4
610
+
611
+ a2
612
+
613
+ N,
614
+ A3 = 2
615
+
616
+ 2a2(N − 1)N
617
+ A4 =
618
+
619
+ ϵ +
620
+ �2N + 5
621
+ 4
622
+ − 4
623
+
624
+ a2
625
+
626
+ N,
627
+ A0 = 5a2N
628
+ For a2 = 0, we get the pure spherical vibrator U(5) limit and for ϵd = 0, we get the pure deformed
629
+ rotational Su(3) limit.
630
+ Another important quantity that tests the nature of the shape phase transition of low lying collective
631
+ states the reduced electric quadrupole transition probabilities B(E2).
632
+ In IBM, the general form of the electric quadrupole operator is written in the form [50]
633
+ T(E2) = eQ(sdIBM)
634
+ (54)
635
+ The coefficient e is the boson’s effective charge.
636
+ The reduced electric quadrupole transition probabilities are given by
637
+ B[E2, Ii → If] =
638
+ 1
639
+ 2Ii + 1|⟨If||T(E2)||Ii⟩|2
640
+ (55)
641
+ For rotational SU(3), yield
642
+ B(E2, I + 2 → I) = e2 3
643
+ 4
644
+ (I + 2)(I + 1)
645
+ (2I + 3)(2I + 5)(2N − 1)(2N + I + 3)
646
+ (56)
647
+ Q(I) = −e
648
+
649
+ 16π
650
+ 40
651
+ I
652
+ 2I + 3(4N + 3)
653
+ (57)
654
+ For the special case for I=0, we have
655
+ B(E2, 2+
656
+ 1 → 0+
657
+ 1 ) = e2 1
658
+ 5N(2N + 3)
659
+ (58)
660
+ 5
661
+ Numerical Calculations and Discussion
662
+ In this section, we applied our formalism to eight pairs of nuclei having identical bands (IB’s) in rare-
663
+ earth region namely: (162Y b−166 Hf), (162Er−166 Y b), (162Dy −166 Er), (160Dy −168 Y b), (160Er−168 Hf),
664
+ (158Er −170 W), (158Dy −170 Hf) and (156Dy −172 W).
665
+ To calculate the ground state positive parity excitation energy E(I) for each nucleus, we suggested the
666
+ CRF3.
667
+ The parameters α, γ, σ of CRF3 have been determined by a fitting procedure using a computer-
668
+ simulated search program to minimize the root mean square deviation of the calculated excitation ener-
669
+ gies from the experimental ones. The quality of the fitting is indicated by the standard common definition
670
+ of x
671
+ x =
672
+
673
+ 1
674
+ N Σi
675
+ �Eexp(Ii) − Ecal(Ii)
676
+ δEexp(Ii)
677
+ �2
678
+ 8
679
+
680
+ where N is the number of experimental data points entering the fitting procedure and δEexp(Ii) is the
681
+ experimental error in the excitation energies - The experimental excitation energies are taken from [51].
682
+ The optimized best adopted values of parameters for each nucleus of our studied nuclei are listed in
683
+ Table (1).
684
+ Figure 1: Systematic of the calculated (solid curves) ground state energies for our selected even-even rare earth Dy,
685
+ Er, YB, Hf, W isotopes versus neutron number N and comparison with the experimental ones (dashed curves). The
686
+ spin-parity are labeled by Iπ.
687
+ 9
688
+
689
+ 68Er Exp
690
+ 6Dy Exp
691
+ 68Er Cal
692
+ 68Er Exp
693
+ 2500F
694
+ 2500F
695
+ 2500
696
+ 2500
697
+ 12+
698
+ 12*
699
+ 12t
700
+ 2000
701
+ 12+
702
+ 2000
703
+ 2000
704
+ 2000
705
+ 1500
706
+ 10*
707
+ 10+
708
+ 1500*
709
+ 1500Q
710
+ 10
711
+ 1500
712
+ 10
713
+ (KeV)
714
+ Energies (KeV)
715
+ 01
716
+ KeV
717
+ KeV
718
+ Energies
719
+ Energies (
720
+ Energies
721
+ 8+
722
+ 1000Q
723
+ 8+
724
+ 1000
725
+ 1000
726
+ 1000
727
+ 10
728
+ 6
729
+ 6
730
+ 500
731
+ 500
732
+ 500
733
+ 4+
734
+ 2
735
+ G
736
+ 2
737
+ 2+
738
+ 92
739
+ 94
740
+ 96
741
+ 92
742
+ t6
743
+ 96
744
+ 90
745
+ 92
746
+ t6
747
+ 96
748
+ 98
749
+ 90
750
+ 92
751
+ t6
752
+ 96
753
+ 98
754
+ N
755
+ N
756
+ 70 Yb Cal
757
+ 70Yb Exp
758
+ 72Hf Cal
759
+ 72Hf Exp
760
+ 2500
761
+ 2500F
762
+ 2500
763
+ 2500
764
+ 12
765
+ 12
766
+ 12
767
+ 12
768
+ 2000*
769
+ 2000Q
770
+ 2000
771
+ 2000
772
+ 10*
773
+ 10*
774
+ 10+
775
+ 10
776
+ 1500
777
+ 1500
778
+ 1500
779
+ 1500
780
+ Energies (KeV)
781
+ Energies (KeV)
782
+ Energies (KeV)
783
+ 8
784
+ 8
785
+ 1000
786
+ 1000
787
+ 1000
788
+ 1000
789
+ 6
790
+ 6
791
+ 6
792
+ 500*
793
+ 500G
794
+ 500
795
+ 4
796
+ 4
797
+ 21
798
+ 2
799
+ 10
800
+ 2
801
+ G
802
+ o2
803
+ oL
804
+ 96
805
+ 94
806
+ 98
807
+ 92
808
+ 94
809
+ 96
810
+ 98
811
+ 95
812
+ 96
813
+ 97
814
+ 98
815
+ 94
816
+ 95
817
+ 86
818
+ N
819
+ N
820
+ N
821
+ 74 W Cal
822
+ 74W Exp
823
+ 2500
824
+ 2500
825
+ 12
826
+ 12t
827
+ 2000
828
+ 2000
829
+ 10°
830
+ 10*
831
+ 500
832
+ 1500
833
+ (KeV)
834
+ (KeV)
835
+ Energies
836
+ 8t
837
+ 1000
838
+ 1000
839
+ 6
840
+ G
841
+ 61
842
+ 500
843
+ 4t
844
+ G
845
+ 96
846
+ 96.5
847
+ 97
848
+ 97.5
849
+ 98
850
+ 96
851
+ 96.5
852
+ 97
853
+ 97.5
854
+ 98
855
+ NTable 1: Values of optimized best parameters α, γ, σ of the collective rotational formula(CRF3) for ground state
856
+ bands in our selected even-even rare-earth nuclei. Np and Nn are the number of valance protons and the number of
857
+ valance neutrons respectively.
858
+ Nuclide
859
+ α (KeV)
860
+ γ (10−3)
861
+ σ (10−3)
862
+ Np
863
+ Nn
864
+ Dy 156
865
+ 22.96
866
+ 6.964
867
+ 14.54
868
+ 16
869
+ 8
870
+ 158
871
+ 16.48
872
+ 2.163
873
+ 4.339
874
+ 16
875
+ 10
876
+ 160
877
+ 14.49
878
+ 0.8683
879
+ 2.021
880
+ 16
881
+ 12
882
+ 162
883
+ 13.49
884
+ 1.398
885
+ 2.233
886
+ 16
887
+ 14
888
+ Er 158
889
+ 32.76
890
+ 9.699
891
+ 23.52
892
+ 14
893
+ 8
894
+ 160
895
+ 20.73
896
+ 3.017
897
+ 6.641
898
+ 14
899
+ 10
900
+ 162
901
+ 17.01
902
+ 1.440
903
+ 3.212
904
+ 14
905
+ 12
906
+ 166
907
+ 13.49
908
+ 0.2573
909
+ 1.188
910
+ 14
911
+ 16
912
+ Yb 162
913
+ 27.87
914
+ 6.334
915
+ 14.27
916
+ 12
917
+ 10
918
+ 166
919
+ 17.08
920
+ 2.053
921
+ 3.95
922
+ 12
923
+ 14
924
+ 168
925
+ 14.72
926
+ 1.039
927
+ 2.425
928
+ 12
929
+ 16
930
+ Hf 166
931
+ 26.60
932
+ 5.565
933
+ 12.67
934
+ 10
935
+ 12
936
+ 168
937
+ 20.58
938
+ 3.116
939
+ 6.849
940
+ 10
941
+ 14
942
+ 170
943
+ 15.92
944
+ -0.00749
945
+ 1.391
946
+ 10
947
+ 16
948
+ W 170
949
+ 26.44
950
+ 5.714
951
+ 13.55
952
+ 8
953
+ 14
954
+ 172
955
+ 20.68
956
+ 3.944
957
+ 9.279
958
+ 8
959
+ 16
960
+ Figure 2: The calculated energy ratio R4/2 = E(4+
961
+ 1 )/E(2+
962
+ 1 ) versus neutron number N characterizes the low lying
963
+ spectrum in Dy, Er, Yb, Hf, and W isotopes. The symbols o, ∗, �, △, and x denote 66Dy,68 Er,70 Y b,72 Hf, and
964
+ 74W respectively.
965
+ The systematic of the excitation energies of the low spin states as a function of neutron number N
966
+ in the considered even-even Dy, Er, Yb, Hf, W isotopes in the mass region A= 156 - 172 in the normally
967
+ deformed nuclear are shown in Figure(1) and compared with the experimental ones. Only the ground
968
+ state of positive parity and spin Iπ = 2+, 4+, 6+, 8+, 10+, 12+ has been indicated. We can see that the
969
+ excitation energies decrease with increasing the neutron number. Also, Figure(2) illustrate the calculated
970
+ 10
971
+
972
+ o Dy
973
+ 162
974
+ Dy
975
+ 3.3
976
+ * Er
977
+ 166
978
+ 3*
979
+ Yb
980
+ 168.
981
+ Yb
982
+ △ Hf
983
+ 162
984
+ Er*
985
+ 166.
986
+ Yb
987
+ × W
988
+ 158
989
+ Dyo
990
+ 170.
991
+ 3.2
992
+ ZHf
993
+ 168
994
+ 160
995
+ AHf
996
+ 3.1
997
+ Er*
998
+ 172,
999
+ W
1000
+ 3
1001
+ R4/2
1002
+ 166
1003
+ 156
1004
+ aHf
1005
+ 170.
1006
+ Dy
1007
+ 162
1008
+ Ybo
1009
+ 2.9
1010
+ 2.8
1011
+ 158
1012
+ Er
1013
+ 2.7
1014
+ 90
1015
+ 92
1016
+ 94
1017
+ 96
1018
+ 98
1019
+ Nenergy ratio R4/2 as a function of neutron number N for our studied nuclei. We observe that for each
1020
+ isotopic chain the value of R4/2 increases with increasing N (that is the deformation increased), and the
1021
+ difference in R4/2 for all pairs of IB’s is ranging from 0.4 % to 2.5 % except the two pairs including the
1022
+ two isotopes 170,172W (the difference is about 5%).
1023
+ Figure 3: The calculated results of kinematic J(1) (dashed curves) and dynamic J(2) (solid curves) moments of
1024
+ inertia plotted as a function of rotational frequency ¯hω for the studied eight pairs of identical bands in the rare-earth
1025
+ region. The ∗ and o correspond to the lighter and heavier nucleus respectively.
1026
+ For the eight pairs of IB’S, the kinematic J(1) and the dynamic J(2) moments of inertia derived from
1027
+ the transition energies are plotted versus the rotational frequency ¯hω as shown in Figure(3). It can be
1028
+ seen that for all bands J(1) is smaller than J(2) and a smooth gradual increase in both J(1) and J(2) with
1029
+ increasing ¯hω are seen and the similarities between each pair of IB’S are observed.
1030
+ 11
1031
+
1032
+ 170W
1033
+ 162Yb -_ 166Hf
1034
+ 70
1035
+ 70
1036
+ 60
1037
+ 60
1038
+ J(), J(2) (h? MeV-1)
1039
+ 50
1040
+ 40
1041
+ 40
1042
+ 30
1043
+ 30
1044
+ 20
1045
+ G
1046
+ 10
1047
+ 0
1048
+ 0.1
1049
+ 0.12
1050
+ 0.14
1051
+ 0.16
1052
+ 0.18
1053
+ 0.2
1054
+ 0.22
1055
+ 0.24
1056
+ 0.26
1057
+ 0.28
1058
+ 0.1
1059
+ 0.12
1060
+ 0.14
1061
+ 0.16
1062
+ 0.18
1063
+ 0.2
1064
+ 0.22
1065
+ 0.24
1066
+ 0.26
1067
+ 0.28
1068
+ ho(MeV)
1069
+ ho(MeV)
1070
+ 156Dy _ 172W
1071
+ 160Er -_ 168Hf
1072
+ 90
1073
+ 80
1074
+ J(M), J(2) (h? MeV-l)
1075
+ 70
1076
+ J(I), J(2) (h? MeV-l)
1077
+ 50
1078
+ 50
1079
+ 40
1080
+ 40
1081
+ 30
1082
+ 20
1083
+ 20
1084
+ 0.08
1085
+ 0.1
1086
+ 0.12
1087
+ 0.14
1088
+ 0.16
1089
+ 0.18
1090
+ 0.2
1091
+ 0.22
1092
+ 0.24
1093
+ 0.26
1094
+ 0.28
1095
+ 0.08
1096
+ 0.1
1097
+ 0.12
1098
+ 0.14
1099
+ 0.16
1100
+ 0.18
1101
+ 0.2
1102
+ 0.22
1103
+ 0.24
1104
+ 0.26
1105
+ 0.28
1106
+ ho(MeV)
1107
+ ho(MeV)
1108
+ 158Dy _ 170Hf
1109
+ 162Er - 166Yb
1110
+ 100
1111
+ 70
1112
+ 06
1113
+ 65
1114
+ (h? MeV-l)
1115
+ J(), J(2) (h? MeV-1)
1116
+ 80
1117
+ 60
1118
+ 70
1119
+ 50
1120
+ J(I), J(2) (
1121
+ 60
1122
+ 45
1123
+ 50
1124
+ 40
1125
+ 40
1126
+ 30
1127
+ 0.06
1128
+ 0.08
1129
+ 0.1
1130
+ 0.12
1131
+ 0.14
1132
+ 0.16
1133
+ 0.18
1134
+ 0.2
1135
+ 0.22
1136
+ 0.24
1137
+ 0.26
1138
+ 0.08
1139
+ 0.1
1140
+ 0.12
1141
+ 0.14
1142
+ 0.16
1143
+ 0.18
1144
+ 0.2
1145
+ 0.22
1146
+ 0.24
1147
+ 0.26
1148
+ 0.28
1149
+ ho(MeV)
1150
+ ho(MeV)
1151
+ 160Dy
1152
+ 168Yb
1153
+ 162Dy
1154
+ 166Er
1155
+
1156
+ 70
1157
+ 70
1158
+ 65
1159
+ 65
1160
+ J(I), J2) (h? MeV-1)
1161
+ 60
1162
+ J(), J(2) (h? MeV-1)
1163
+ 60
1164
+ 55
1165
+ 5
1166
+ 50
1167
+ 50
1168
+ 45
1169
+ 45
1170
+ 40
1171
+ 35
1172
+ 40
1173
+ 30
1174
+ 35
1175
+ 0.06
1176
+ 0.08
1177
+ 0.1
1178
+ 0.12
1179
+ 0.14
1180
+ 0.16
1181
+ 0.18
1182
+ 0.2
1183
+ 0.22
1184
+ 0.24
1185
+ 0.26
1186
+ 0.06
1187
+ 0.08
1188
+ 0.1
1189
+ 0.12
1190
+ 0.14
1191
+ 0.16
1192
+ 0.18
1193
+ 0.2
1194
+ 0.22
1195
+ 0.24
1196
+ 0.26
1197
+ ho(MeV)
1198
+ ho(MeV)The IB’s correlation quantities exist between the considered pairs of nuclei which exhibit the same
1199
+ identical excitation energies in their ground state bands are listed in Table (2). These quantities include
1200
+ the P. Factor, structure Factor SF, Saturation parameter SP, the F-Spin and its projection F0, pairing gaps
1201
+ △, and the deformation parameter β. The maximum structure factor for our region of nuclei is SF= 6720.
1202
+ It is seen that the ratio NpNn/△ rather than the product NpNn may be a better parameter for studying
1203
+ the IB’s. Note that nuclei with symmetric ±F0 values have identical NpNn values. For example the pair
1204
+ (160Er and 168Hf) have (Np, Nn) = (14, 10) and (10, 14) respectively, so that NpNn = 140 and F0 = ±1.
1205
+ Therefore if any F-spin multiplet has F0 =|Np − Nn|/4, those indicate that the pair of nuclei are similar in
1206
+ structure if they have identical (|F0|, NpNn).
1207
+ Table 2: The identical band quantities of our eight pairs of nuclei.
1208
+ NpNn
1209
+ P
1210
+ SF
1211
+ SP
1212
+ |δ|%
1213
+ |k|%
1214
+ (158Er − 170W )
1215
+ 112
1216
+ 5.090
1217
+ 2464
1218
+ 0.7317
1219
+ 1.28
1220
+ 1.27
1221
+ (162Y b − 166Hf)
1222
+ 120
1223
+ 5.4545
1224
+ 2640
1225
+ 0.7179
1226
+ 2.94
1227
+ 2.45
1228
+ (156Dy − 172W )
1229
+ 128
1230
+ 5.333
1231
+ 3072
1232
+ 0.6862
1233
+ 6.73
1234
+ 6.28
1235
+ (160Er − 168Hf)
1236
+ 140
1237
+ 5.833
1238
+ 3360
1239
+ 0.6666
1240
+ 1.35
1241
+ 1.22
1242
+ (158Dy − 170Hf)
1243
+ 160
1244
+ 6.1538
1245
+ 4160
1246
+ 0.6176
1247
+ 1.28
1248
+ 1.27
1249
+ (162Er − 166Y b)
1250
+ 168
1251
+ 6.6461
1252
+ 4368
1253
+ 0.6060
1254
+ 0.22
1255
+ 0.20
1256
+ (160Dy − 168Y b)
1257
+ 192
1258
+ 6.6857
1259
+ 5376
1260
+ 0.5555
1261
+ 0.10
1262
+ 0.30
1263
+ (162Dy − 166Er)
1264
+ 224
1265
+ 7.466
1266
+ 6720
1267
+ 0.5
1268
+ 1.29
1269
+ 1.26
1270
+ (Nπ, Nν)
1271
+ N
1272
+
1273
+
1274
+ (F, F0)
1275
+ △ (MeV)
1276
+ NpNn
1277
+
1278
+ (MeV−1)
1279
+ βG
1280
+ 158Er
1281
+ (7,4)
1282
+ 11
1283
+ 0.571
1284
+ (5.5,1.5)
1285
+ 0.954
1286
+ 117.4
1287
+ 0.2173
1288
+ 170W
1289
+ (4,7)
1290
+ 11
1291
+ 1.750
1292
+ (5.5,-1.5)
1293
+ 0.920
1294
+ 121.739
1295
+ 0.2206
1296
+ 162Y b
1297
+ (6,5)
1298
+ 11
1299
+ 0.833
1300
+ (5.5,0.5)
1301
+ 0.942
1302
+ 127.388
1303
+ 0.2270
1304
+ 166Hf
1305
+ (5,6)
1306
+ 11
1307
+ 1.2
1308
+ (5.5,-0.5)
1309
+ 0.931
1310
+ 128.893
1311
+ 0.2254
1312
+ 156Dy
1313
+ (8,4)
1314
+ 12
1315
+ 0.5
1316
+ (6,2)
1317
+ 0.960
1318
+ 133.333
1319
+ 0.2601
1320
+ 172W
1321
+ (4,8)
1322
+ 12
1323
+ 2.0
1324
+ (6,-2)
1325
+ 0.914
1326
+ 140.043
1327
+ 0.2459
1328
+ 160Er
1329
+ (7,5)
1330
+ 12
1331
+ 0.714
1332
+ (6,1)
1333
+ 0.948
1334
+ 147.679
1335
+ 0.2643
1336
+ 168Hf
1337
+ (5,7)
1338
+ 12
1339
+ 1.4
1340
+ (6,-1)
1341
+ 0.925
1342
+ 151.351
1343
+ 0.2517
1344
+ 158Dy
1345
+ (8,5)
1346
+ 13
1347
+ 0.625
1348
+ (6.5,1.5)
1349
+ 0.954
1350
+ 167.714
1351
+ 0.3026
1352
+ 170Hf
1353
+ (5,8)
1354
+ 13
1355
+ 1.6
1356
+ (6.5,-1.5)
1357
+ 0.920
1358
+ 173.913
1359
+ 0.2754
1360
+ 162Er
1361
+ (7,6)
1362
+ 13
1363
+ 0.857
1364
+ (6.5,0.5)
1365
+ 0.942
1366
+ 178.343
1367
+ 0.2896
1368
+ 166Y b
1369
+ (6,7)
1370
+ 13
1371
+ 1.166
1372
+ (6.5,-0.5)
1373
+ 0.931
1374
+ 180.451
1375
+ 0.2814
1376
+ 160Dy
1377
+ (8,6)
1378
+ 14
1379
+ 0.75
1380
+ (7,1)
1381
+ 0.948
1382
+ 202.531
1383
+ 0.3181
1384
+ 168Y b
1385
+ (6,8)
1386
+ 14
1387
+ 1.333
1388
+ (7,-1)
1389
+ 0.925
1390
+ 207.567
1391
+ 0.2993
1392
+ 162Dy
1393
+ (8,7)
1394
+ 15
1395
+ 0.875
1396
+ (7.5,0.5)
1397
+ 0.942
1398
+ 237.791
1399
+ 0.3256
1400
+ 166Er
1401
+ (7,8)
1402
+ 15
1403
+ 1.142
1404
+ (7.5,-0.5)
1405
+ 0.931
1406
+ 240.601
1407
+ 0.3167
1408
+ The percentage differences ratios in transition energy δ and the rigid rotor ratio δR between pairs
1409
+ of levels in two nuclei are calculated and listed in Table(3) for our eight pairs of IB’s. In spite of the
1410
+ parameters NpNn, P, SF and SP are the same for the pairs (156Dy,172 W), this pair is not really identical
1411
+ according to their high average percentage differences in transition energies (approximately 6.7%).
1412
+ For each nucleus in isotopic chains of 66Dy,68 Er,70 Y b,72 Hf and 74W, the values of lowest dynamical
1413
+ moments of inertia J(2)
1414
+ lowest were calculated and displayed against the neutron number N in Figure(4) - It
1415
+ can be seen that J(2)
1416
+ lowest increases with increasing the neutron number N and the difference inJ(2)
1417
+ lowest for
1418
+ each pair of IB’s is very small ( approximately a horizontal line). As an example of two nuclei that exhibit
1419
+ good IB’s, the pair 162
1420
+ 68 Er(J(2)
1421
+ lowest = 31.525¯h2MeV −1) and 166
1422
+ 70 Y b(J(2)
1423
+ lowest = 31.519¯h2MeV −1), that is nearly
1424
+ the same J(2)
1425
+ lowest.
1426
+ 12
1427
+
1428
+ Table 3: The percentage differences ratios in transition energies δ, the fractional change in transition energies
1429
+ divided by the rigid rotor ratio δR and the ratio R = δ/δR for the eight pairs of identical bands.
1430
+ Identical pairs
1431
+ |δ| = △Eγ
1432
+ Eγ2
1433
+ %
1434
+ δR
1435
+ ⟨Rδ⟩
1436
+ (162Y b − 166Hf)
1437
+ 2.964
1438
+ 4.149
1439
+ 0.714
1440
+ (162Er − 166Y b)
1441
+ 0.415
1442
+ 4.149
1443
+ 0.100
1444
+ (162Dy − 166Er)
1445
+ 1.297
1446
+ 4.149
1447
+ 0.312
1448
+ (160Er − 168Hf)
1449
+ 1.352
1450
+ 8.471
1451
+ 0.159
1452
+ (160Dy − 168Y b)
1453
+ 1.131
1454
+ 8.471
1455
+ 0.133
1456
+ (158Er − 170W )
1457
+ 10.826
1458
+ 12.976
1459
+ 0.834
1460
+ (158Dy − 170Hf)
1461
+ 1.765
1462
+ 12.976
1463
+ 0.136
1464
+ (156Dy − 172W )
1465
+ 7.410
1466
+ 17.671
1467
+ 0.419
1468
+ Figure 4: The lowest dynamical moment of inertia J(2)
1469
+ lowest against the neutron number N for the eight pairs of
1470
+ identical bands. The solid line connects each pair and symbols o, ∗, △, �, and ♦ denotes 66Dy,68 Er,70 Y b,72 Hf,
1471
+ and 74W respectively.
1472
+ We classified our selected pairs of IB’s into four multiplets = (A+4), Z+2), (A+B,Z+4), (A+12,Z+6), and
1473
+ (A+16,Z+8) and the percentage differences in transition energies δ = △Eγ/Eγ2 as a function of spin I (up
1474
+ to I=10) have been calculated and illustrated Figure (5). It is seen that the pairs of IB’s have approximately
1475
+ similar δ ( less than 2.5 %) except the two pairs which include the tungsten isotopes 170,172W where the
1476
+ value of δ reaches ∼ 6 − 10% in spite of they have the same NpNn value (NpNn = 112 for 158Er,170 W and
1477
+ NpNn = 128 for 156Dy,172 W).
1478
+ To further investigation for IB’s we used the SU(3) rotational limit of the IBM to extract the quadrupole
1479
+ deformation βIBM for each nucleus. The calculated βIBM is plotted against the ratio Nν/Nπ (where Nν
1480
+ and Nπ are the number of valence neutron and valence proton bosons respectively) in Figure(6). It is seen
1481
+ that βIBM is the same for each pair of IB’s (horizontal line).
1482
+ 13
1483
+
1484
+ o Dy
1485
+ 162
1486
+ 166
1487
+
1488
+ Er
1489
+ Dy
1490
+ Er
1491
+ 38
1492
+ △Yb
1493
+ Hf
1494
+ 160
1495
+ 168
1496
+ Yb
1497
+ 36
1498
+ 170
1499
+ 34
1500
+ 158
1501
+ Hf
1502
+ Dy
1503
+ 32
1504
+ 162
1505
+ 166
1506
+ Er
1507
+ Yb
1508
+ 2 MeV-l)
1509
+ 172
1510
+ 30
1511
+ W
1512
+ 156
1513
+ Dy
1514
+ 168
1515
+ 28
1516
+ 160
1517
+ west
1518
+ Er*
1519
+ JHO
1520
+ 26
1521
+ 170
1522
+ M
1523
+ 158
1524
+ Er
1525
+ 24
1526
+
1527
+ 162.
1528
+ 166.
1529
+ JH.
1530
+ Yb
1531
+ 90
1532
+ 92
1533
+ 94
1534
+ 96
1535
+ 98
1536
+ NFigure 5: Percentage difference in transition energies δ = △Eγ/Eγ2 for the eight pairs of multiplet (A+4,Z+2),
1537
+ (A+8,Z+4), (A+12,Z+6), and (A+16,Z+8) for Dy, Er, Yb, Hf, and W isotopes. The dashed curve represents the
1538
+ ratio of the rigid rotor.
1539
+ Figure 6: The quadrupole deformation parameter βIBM was calculated from SU(3) limit of IBM as a function of
1540
+ Nν/Nπ for our eight pairs of identical bands.
1541
+ 14
1542
+
1543
+ 162Yb - 166Hf
1544
+ 162Er - 166Yb
1545
+ 162Dy _ 166Er
1546
+ 0.07
1547
+ 0.07
1548
+ 0.07
1549
+ 8| = 2.94 %
1550
+ 8/ = 0.22 %
1551
+ [8| = 1.29 %
1552
+ 0.06
1553
+ 0.06
1554
+ 0.06
1555
+ 0.05
1556
+ 0.05
1557
+ 900
1558
+ 0.04
1559
+ 0.04
1560
+ 0.04
1561
+ 8
1562
+ 8 0.03
1563
+ 0.03
1564
+ 0.03
1565
+ 0.02
1566
+ 0.02
1567
+ 0.02
1568
+ 0.01
1569
+ 0.01
1570
+ 0.01
1571
+ 0.01
1572
+ 10
1573
+ 10
1574
+ 160Er_168Hf
1575
+ 60Dy
1576
+ 168Yb
1577
+ 0.14
1578
+ [8|= 1.35 %
1579
+ 0.12
1580
+ =.1 %
1581
+ d'
1582
+ 0.1
1583
+ 0.08
1584
+ 0.08
1585
+ 8 0.06
1586
+ 0.06
1587
+ 0.04
1588
+ 0.04
1589
+ 0.02
1590
+ 0.02
1591
+
1592
+ 10
1593
+ 6
1594
+ 10
1595
+ 160Dy _ 168Yb
1596
+ 158Dy
1597
+ _ 170Hf
1598
+ 0.14
1599
+ 0.25
1600
+ 0.12
1601
+ [8/ = .1 %
1602
+ 0.2
1603
+ [8/ = 1.28 %
1604
+ 0.1
1605
+ 0.15
1606
+ 0.08
1607
+ 8 0.06
1608
+ 8 0.1
1609
+ 0.04
1610
+ 0.05
1611
+ 0.02
1612
+ 0.05
1613
+ 6
1614
+ 10
1615
+ 6
1616
+ 156Dy - 172W
1617
+ [8| =6.73 %
1618
+ .25
1619
+ 0.2
1620
+ 8 0.150.355
1621
+ 162Dy
1622
+ 166Er
1623
+ N=15
1624
+ 0.35
1625
+ 0.345
1626
+ 160Dy
1627
+ 168Yb
1628
+ N-14
1629
+ 0.34
1630
+ 0.335
1631
+ 162Er
1632
+ 166Yb
1633
+ 170Hf
1634
+ N=13
1635
+ βIBM
1636
+ 0.33
1637
+ 0.325
1638
+ 156Dy
1639
+ 160Er
1640
+ 168Hf
1641
+ N=12172W
1642
+ 0.32
1643
+ 0.315
1644
+ 158Er
1645
+ 162Yb
1646
+ 166Hf
1647
+ G
1648
+ 0.31
1649
+ 0.5
1650
+ A
1651
+ 1.5
1652
+ 2
1653
+ Nv/N元Figure 7: Sketch of the potential energy surface PES calculated from the U(5)-SU(3) shape phase transitions of
1654
+ IBM with intrinsic coherent state versus the deformation parameters β for the eight pairs of even-even nuclei
1655
+ having identical bands.
1656
+ For each nucleus, by using the IBM Hamiltonian equation (45) and its eigenvalues equation (53), the
1657
+ PES’s have been calculated as a function of deformation parameter β along the axial trajectory γ = 0°, 60°.
1658
+ The results are illustrated in Figure(7) and the corresponding calculated parameter of the PES’s A2, A3, A4
1659
+ and Ao which are linear combinations of the original parameters ϵ0 and a2 are listed in Table(4). From
1660
+ the graphs presented in Figure(7), we observe the similarity in PES’s for each pair of IB’s. All studied
1661
+ nuclei are deformed and have rotational characters, the prolate deformation is deeper than the oblate
1662
+ deformation.
1663
+ 15
1664
+
1665
+ 162Dy 166Er
1666
+ 162Er-166Yb
1667
+ 2.5
1668
+ 1.5k
1669
+ 2
1670
+ 1.5
1671
+ 0.5
1672
+ (KeV)
1673
+ (KeV)
1674
+ 0
1675
+ PES
1676
+ 0.5
1677
+ 0
1678
+ -1
1679
+ -0.5
1680
+ -1.5
1681
+ -2
1682
+ -1
1683
+ -2
1684
+ -1
1685
+ 0
1686
+ -1.5
1687
+ -0.50
1688
+ 0.5
1689
+ 1
1690
+ 1.5
1691
+ β
1692
+ β
1693
+ 162Yb _ 166Hf
1694
+ 168Yb
1695
+ 1.5
1696
+ 1.5
1697
+ 0.5
1698
+ (KeV)
1699
+ 0.5
1700
+ 0
1701
+ 0
1702
+ -1
1703
+ -1
1704
+ -1.5
1705
+ -1.5
1706
+ -2
1707
+ -1.5
1708
+ -1
1709
+ -0.5
1710
+ 0
1711
+ 0.5
1712
+ 1
1713
+ 1.5
1714
+ 2
1715
+ -2
1716
+ -1
1717
+ 0
1718
+ β
1719
+ β
1720
+ 160Er - 168Hf
1721
+ 158Dy - 170Hf
1722
+ 2
1723
+ 2.5
1724
+ 1.5
1725
+ 2
1726
+ 1.5
1727
+ PES (KeV)
1728
+ (KeV)
1729
+ 0.5
1730
+ 0.5
1731
+ PES(
1732
+ 0
1733
+ 0
1734
+ -0.5
1735
+ 0.5
1736
+ -1
1737
+ -1.5
1738
+ -1.5
1739
+ -2
1740
+ -1
1741
+ 0
1742
+ 1
1743
+ 2
1744
+ -1.5
1745
+ -1
1746
+ 0
1747
+ 0.5
1748
+ 1.5
1749
+ 2
1750
+ β
1751
+ 158Er-170W
1752
+ 156Dy 172W
1753
+ 2.5
1754
+ 0.6
1755
+ 2
1756
+ 0.4
1757
+ (KeV)
1758
+ 1.5
1759
+ 0.2
1760
+ 1
1761
+ 0
1762
+ -0.4
1763
+ -0.5
1764
+ 0.6
1765
+ -1
1766
+ -2-1.5
1767
+ -1
1768
+ -0.5
1769
+ 0
1770
+ 0.5
1771
+ 1.5
1772
+ -1.5
1773
+ -1
1774
+ -0.5
1775
+ 0.5
1776
+ 1.5
1777
+ β
1778
+ βTable 4: Values of the adopted best (PES) parameters A2, A3, A4, A0 ( in KeV ) for the studied eight pairs of
1779
+ identical bands. NB is the total number of bosons.
1780
+ NB
1781
+ A2
1782
+ A3
1783
+ A4
1784
+ A0
1785
+ 162Dy
1786
+ 15
1787
+ -2.4667
1788
+ -0.5863
1789
+ 1.6665
1790
+ -0.3265
1791
+ 166Er
1792
+ 15
1793
+ -1.6586
1794
+ -2.0341
1795
+ 4.4739
1796
+ -0.7875
1797
+ 162Er
1798
+ 13
1799
+ -5.0526
1800
+ -2.5496
1801
+ 3.7667
1802
+ -0.9375
1803
+ 166Y b
1804
+ 13
1805
+ -5.3088
1806
+ -3.1366
1807
+ 4.0554
1808
+ -0.925
1809
+ 162Y b
1810
+ 11
1811
+ -4.84
1812
+ -1.6163
1813
+ 3.6775
1814
+ -0.9
1815
+ 166Hf
1816
+ 11
1817
+ -2.8484
1818
+ -1.9547
1819
+ 3.9131
1820
+ -0.8625
1821
+ 160Dy
1822
+ 14
1823
+ -1.9568
1824
+ -0.8838
1825
+ 1.1005
1826
+ -0.3
1827
+ 168Y b
1828
+ 14
1829
+ -5.3088
1830
+ -3.1366
1831
+ 4.0554
1832
+ -0.925
1833
+ 160Er
1834
+ 12
1835
+ -3.0403
1836
+ -2.3636
1837
+ 4.1401
1838
+ -0.8625
1839
+ 168Hf
1840
+ 12
1841
+ -3.463
1842
+ -2.4694
1843
+ 4.039
1844
+ -0.875
1845
+ 158Dy
1846
+ 13
1847
+ -1.6288
1848
+ -1.1822
1849
+ 1.0095
1850
+ -0.288
1851
+ 170Hf
1852
+ 13
1853
+ -3.1845
1854
+ -3.395
1855
+ 4.497
1856
+ -0.8375
1857
+ 158Er
1858
+ 11
1859
+ -1.6586
1860
+ -2.0541
1861
+ 4.4739
1862
+ -0.7875
1863
+ 170W
1864
+ 11
1865
+ -0.9761
1866
+ -2.4841
1867
+ 4.7606
1868
+ -0.7546
1869
+ 156Dy
1870
+ 12
1871
+ -1.5043
1872
+ -1.2135
1873
+ 0.9961
1874
+ -0.3
1875
+ 172W
1876
+ 12
1877
+ -0.8852
1878
+ -1.4675
1879
+ 1.0599
1880
+ -0.313
1881
+ 6
1882
+ Conclusion
1883
+ By using a novel three parameters collective rotational formula (CRF3), the positive parity ground state
1884
+ excitation energies are calculated for sixteen nuclei in rare-earth region. The optimized three parameters
1885
+ are deduced by using a computer simulated search program in order to obtain a minimum root mean
1886
+ square deviation of the calculated excitation energies from the measured ones. The potential energy
1887
+ surfaces are calculated by using the sd-version of the interacting boson model.
1888
+ The problem of low-spin identical bands in normal deformed nuclei in rare-earth region is treated. We
1889
+ have exhibited identical bands in eight pairs of conjugate even-even nuclei of widely dispersed spanning
1890
+ as much as sixteen mass unit. Each pair with the same F-spin and projections ±F0 values have identical
1891
+ product of valence proton and neutron numbers NpNn values. Also, the values of dynamical moments
1892
+ of inertia for each identical band pair are approximately the same. We extracted all the identical band
1893
+ symmetry parameters like P-factor, saturation parameter, and structure factor which all depend on Np
1894
+ and Nn. The pairing interaction energy, the quadrupole transition probabilities, and the energy ratios are
1895
+ also treated.
1896
+ References
1897
+ [1] Th Byrski, FA Beck, D Curien, C Schuck, P Fallon, A Alderson, I Ali, MA Bentley, AM Bruce,
1898
+ PD Forsyth, et al. Observation of identical superdeformed bands in N = 86 nuclei. Physical review
1899
+ letters, 64(14):1650, 1990.
1900
+ [2] B. Haas, D. Ward, H. R. Andrews, G. C. Ball, T. E. Drake, S. Flibotte, A. Galindo-Uribarri, V. P. Janzen,
1901
+ J. K. Johansson, H. Kluge, J. Kuehner, A. Omar, S. Pilotte, D. Prevost, J. Rodriguez, D. C. Radford,
1902
+ P. Taras, J. P. Vivien, J. C. Waddington, and S. Aberg. Observation of excited proton and neutron
1903
+ configurations in the superdeformed 149Gd nucleus. Phys. Rev. C, 42:R1817–R1821, Nov 1990.
1904
+ [3] Cyrus Baktash, Bernard Haas, and Witold Nazarewicz. Identical bands in deformed and superde-
1905
+ formed nuclei. Annual Review of Nuclear and Particle Science, 45(1):485–541, 1995.
1906
+ 16
1907
+
1908
+ [4] FS Stephens, MA Deleplanque, JE Draper, RM Diamond, CW Beausang, W Korten, WH Kelly,
1909
+ F Azaiez, JA Becker, EA Henry, et al. Spin alignment in superdeformed hg nuclei. Physical review
1910
+ letters, 64(22):2623, 1990.
1911
+ [5] FS Stephens, MA Deleplanque, JE Draper, RM Diamond, AO Macchiavelli, CW Beausang, W Korten,
1912
+ WH Kelly, F Azaiez, JA Becker, et al. Pseudospin symmetry and quantized alignment in nuclei.
1913
+ Physical review letters, 65(3):301, 1990.
1914
+ [6] Ingemar Ragnarsson. Additivity in superdeformed bands. Physics Letters B, 264(1-2):5–10, 1991.
1915
+ [7] W Nazarewicz, PJ Twin, P Fallon, and JD Garrett. Natural-parity states in superdeformed bands
1916
+ and pseudo su (3) symmetry at extreme conditions. Physical Review Letters, 64(14):1654, 1990.
1917
+ [8] Z Szyma´nski and W Nazarewicz. Rotating pseudo-oscillator scheme: pseudo-spin symmetry and
1918
+ identical bands. Physics Letters B, 433(3-4):229–235, 1998.
1919
+ [9] C Rigollet, Paul Bonche, Hubert Flocard, and P-H Heenen. Microscopic study of the properties of
1920
+ identical bands in the A = 150 mass region. Physical Review C, 59(6):3120, 1999.
1921
+ [10] Jin-Yan Zeng, Shu-Xin Liu, YA Lei, and L Yu. Microscopic mechanism of normally deformed identi-
1922
+ cal bands at low spin in the rare-earth nuclei. Physical Review C, 63(2):024305, 2001.
1923
+ [11] Shu-Xin Liu, Jin-Yan Zeng, and En-Guang Zhao.
1924
+ Microscopic mechanism of identical superde-
1925
+ formed bands in 192,193,194Hg. Physical Review C, 66(2):024320, 2002.
1926
+ [12] Ali Khalaf, Karima Abdelmageed, and MANAL SIRAG. Description of the yrast superdeformed
1927
+ bands in even-even nuclei in A ∼ 190 region using the nuclear softness model. Turkish Journal of
1928
+ physics, 39(2):178–186, 2015.
1929
+ [13] P Fallon, W Nazarewicz, MA Riley, and R Wyss.
1930
+ The influence of pairing on the properties of
1931
+ "identical" superdeformed bands in hg nuclei. Physics Letters B, 276(4):427–431, 1992.
1932
+ [14] Z Szymanski. Nature of the identical bands in atomic nuclei. Physical Review C, 51(3):R1090, 1995.
1933
+ [15] DS Haslip, N Kintz, S Flibotte, RAE Austin, G De France, M Devlin, Ch Finck, A Galindo-Uribarri,
1934
+ G Gervais, DR LaFosse, et al. Superdeformation in 147,148Eu: Identical bands and π61- π63 crossings.
1935
+ Physical Review C, 57(5):2196, 1998.
1936
+ [16] Lennart B Karlsson, Ingemar Ragnarsson, and Sven Åberg. Identical bands in superdeformed nuclei.
1937
+ Physics Letters B, 416(1-2):16–22, 1998.
1938
+ [17] XT He, SX Liu, SY Yu, JY Zeng, and EG Zhao. The i13/2 proton intruder orbital and the identical
1939
+ superdeformed bands in193,194,195Tl. The European Physical Journal A-Hadrons and Nuclei, 23(2):217–
1940
+ 222, 2005.
1941
+ [18] A Gelberg, P Von Brentano, and RF Casten. On a possible supersymmetry in superdeformed bands.
1942
+ Journal of Physics G: Nuclear and Particle Physics, 16(8):L143, 1990.
1943
+ [19] RD Amado, R Bijker, F Cannata, and JP Dedonder. Supersymmetric quantum mechanics and su-
1944
+ perdeformed nuclei. Physical Review Letters, 67(20):2777, 1991.
1945
+ [20] Yu-Xin Liu and Dong-Feng Gao. Description of identical superdeformed bands with △I = 4 bifur-
1946
+ cation. Physical Review C, 63(4):044317, 2001.
1947
+ [21] I Ahmad, MP Carpenter, RR Chasman, RVF Janssens, and TL Khoo. Rotational bands with identical
1948
+ transition energies in actinide nuclei. Physical Review C, 44(3):1204, 1991.
1949
+ [22] C Baktash, JD Garrett, DF Winchell, and A Smith. Low-spin indentical bands in neighboring odd-a
1950
+ and even-even nuclei: A challenge to mean-field theories. Physical review letters, 69(10):1500, 1992.
1951
+ [23] C Baktash, DF Winchell, JD Garrett, and A Smith. Low-spin identical bands in neighboring odd-a
1952
+ and even-even nuclei. Nuclear Physics A, 557:145–156, 1993.
1953
+ 17
1954
+
1955
+ [24] RF Casten, NV Zamfir, P Von Brentano, and W-T Chou. Identical bands in widely dispersed nuclei.
1956
+ Physical Review C, 45(4):R1413, 1992.
1957
+ [25] M. Saha and S. Sen. Low-spin identical bands in the npnn scheme. Phys. Rev. C, 46:R1587–R1590,
1958
+ Nov 1992.
1959
+ [26] M. (Saha) Sarkar and S. Sen. Simple phenomenology for the ground-state bands of even-even nuclei.
1960
+ Phys. Rev. C, 50:2794–2799, Dec 1994.
1961
+ [27] J-Y Zhang, RF Casten, W-T Chou, DS Brenner, NV Zamfir, and P Von Brentano. Identical bands and
1962
+ the varieties of rotational behavior. Physical review letters, 69(8):1160, 1992.
1963
+ [28] EC Halbert and W Nazarewicz. Deformation, pairing, and moments of inertia in ground-state bands
1964
+ of even-even rare-earth nuclei. Physical Review C, 48(5):R2158, 1993.
1965
+ [29] J. Y. Zeng, S. X. Liu, Y. A. Lei, and L. Yu. Microscopic mechanism of normally deformed identical
1966
+ bands at low spin in the rare-earth nuclei. Phys. Rev. C, 63:024305, Jan 2001.
1967
+ [30] AM Khalaf, MD Okasha, and KM Abdelbased. Occurrence and properties of low spin identical
1968
+ bands in normal-deformed even-even nuclei. PROGRESS, 13:50, 2017.
1969
+ [31] Mike W Guidry, Michael R Strayer, Cheng-Li Wu, et al. Some general constraints on identical band
1970
+ symmetries. Physical Review C, 48(4):1739, 1993.
1971
+ [32] A. Bohr, B. R. Mottelson, and W.A. Benjamin (Firm). Nuclear Structure: Volume II (nuclear Deforma-
1972
+ tions). Nuclear Structure. Basic Books, 1975.
1973
+ [33] AM Khalaf. High-spin properties in deformed nuclei using weak coupling model. Indian Journal of
1974
+ pure and Applied Physics, 24(10):469–471, 1986.
1975
+ [34] M. A. J. Mariscotti, Gertrude Scharff-Goldhaber, and Brian Buck. Phenomenological analysis of
1976
+ ground-state bands in even-even nuclei. Physical Review, 178(4):1864, Feb 1969.
1977
+ [35] G Scharff-Goldhaber, CB Dover, and AL Goodman. The variable moment of inertia (vmi) model and
1978
+ theories of nuclear collective motion. Annual review of nuclear science, 26(1):239–317, 1976.
1979
+ [36] P. von Brentano, N. V. Zamfir, R. F. Casten, W. G. Rellergert, and E. A. McCutchan. New yrast energy
1980
+ formula for soft rotors. Phys. Rev. C, 69:044314, Apr 2004.
1981
+ [37] F. Iachello and A. Arima. The Interacting Boson Model. Cambridge Monographs on Mathematical
1982
+ Physics. Cambridge University Press, 1987.
1983
+ [38] T Otsuka, A Arima, F Iachello, and Igal Talmi. Shell model description of interacting bosons. Physics
1984
+ Letters B, 76(2):139–143, 1978.
1985
+ [39] RF Casten. Possible unified interpretation of heavy nuclei. Physical Review Letters, 54(18):1991, 1985.
1986
+ [40] RF Casten and NV Zamfir. The evolution of nuclear structure: the scheme and related correlations.
1987
+ Journal of Physics G: Nuclear and Particle Physics, 22(11):1521, 1996.
1988
+ [41] R. F. Casten, N. V. Zamfir, P. von Brentano, and W.-T. Chou. Identical bands in widely dispersed
1989
+ nuclei. Phys. Rev. C, 45:R1413–R1416, Apr 1992.
1990
+ [42] RF Casten. A simple approach to nuclear transition regions. Physics Letters B, 152(3-4):145–150, 1985.
1991
+ [43] R. F. Casten, D. S. Brenner, and P. E. Haustein. Valence p-n interactions and the development of
1992
+ collectivity in heavy nuclei. Phys. Rev. Lett., 58:658–661, Feb 1987.
1993
+ [44] T. A. Green and M. E. Rose. Nuclear structure effects in internal conversion. Phys. Rev., 110:105–122,
1994
+ Apr 1958.
1995
+ [45] L Grodzins. The uniform behaviour of electric quadrupole transition probabilities from first 2+
1996
+ states in even-even nuclei. Phys. Letters, 2, 1962.
1997
+ 18
1998
+
1999
+ [46] A Partensky and Christiane Quesne. Deformation of nuclei as a function of angular momentum in
2000
+ the u (6)⊃ su (3) model. Annals of Physics, 136(2):340–370, 1981.
2001
+ [47] A. E. L. Dieperink, O Scholten, and F Iachello. Classical limit of the interacting-boson model. Physical
2002
+ Review Letters, 44(26):1747, 1980.
2003
+ [48] J.N. Ginocchio. An exactly solvable anharmonic bohr hamiltonian and its equivalent boson hamil-
2004
+ tonian. Nuclear Physics A, 376(3):438–450, 1982.
2005
+ [49] Y Alhassid and N Whelan. Chaotic properties of the interacting-boson model: A discovery of a new
2006
+ regular region. Physical review letters, 67(7):816, 1991.
2007
+ [50] DD Warner and RF Casten. Predictions of the interacting boson approximation in a consistent q
2008
+ framework. Physical Review C, 28(4):1798, 1983.
2009
+ [51] Evaluated Nuclear Structure Data File National Nuclear Data Center. https://www.nndc.bnl.gov/.
2010
+ 19
2011
+
R9FRT4oBgHgl3EQfLjfi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
RtE0T4oBgHgl3EQfUQDk/content/tmp_files/2301.02249v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
RtE0T4oBgHgl3EQfUQDk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UNAzT4oBgHgl3EQf0_5k/content/tmp_files/2301.01792v1.pdf.txt ADDED
@@ -0,0 +1,1048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Saturation of fishbone modes by self-generated zonal flows in
2
+ tokamak plasmas
3
+ G. Brochard, C. Liu, X. Wei, W. Heidbrink, Z. Lin, N. Gorelenkov,
4
+ S.D. Pinches, P. Liu, J. H. Nicolau, H. L¨utjens
5
+ Abstract
6
+ Gyrokinetic and kinetic-MHD simulations of n=1 fishbone modes in DIII-D plasmas find that self-generated zonal flows
7
+ can dominate the fishbone saturation. The saturation mechanism is identified in phase space, where the zonal flows
8
+ prevent holes and clumps from persisting or drifting in phase space with mode down-chirping, reducing the wave-particle
9
+ resonant drive. This saturation is confirmed by quantitative agreement with experimental measurements for both mode
10
+ saturation amplitude and neutron emissivity. Zonal flows shearing rate exceeds the drift-wave growth rate, consistent
11
+ with the ITB observed in DIII-D plasmas. The deliberate destabilization of fishbones for the development of high
12
+ performance scenarios in ITER is then proposed.
13
+ Introduction. - Energetic Particles (EPs) in tokamak plas-
14
+ mas can destabilize a large spatial range of instabilities that
15
+ may lead to their outward transport. This is a critical issue
16
+ for burning plasmas as in ITER [1] since such a transport
17
+ can degrade the fusion performances, the plasma confine-
18
+ ment as well as threaten the reactor’s integrity. This trans-
19
+ port therefore needs to be predicted for mitigation strategies
20
+ to be incorporated in plasma scenarios.
21
+ Fortunately, it was discovered theoretically [2][3][4][5] and
22
+ shown numerically [6][7][8][9][10] that instabilities arising at
23
+ the microscopic and mesoscopic scales such as drift-waves
24
+ and Alfv´en eigenmodes (AEs) are able to excite zonal flows
25
+ (ZFs), that can mitigate the saturation amplitudes of these
26
+ modes, and therefore the associated EP transport. Besides
27
+ this mitigation, the destabilisation of zonal flows can gener-
28
+ ate strongly sheared poloidal flows that suppress turbulent
29
+ transport by damping drift-waves turbulence [11], resulting
30
+ in the formation of an internal transport barrier (ITB) that
31
+ greatly enhances plasma confinement [12][13]. Macroscopic
32
+ MHD modes triggered by energetic particles such as the fish-
33
+ bone instability [14][15] however were not self-consistently
34
+ observed to trigger n = m = 0 zonal flows so far.
35
+ The
36
+ mechanism dominating the fishbone saturation was identi-
37
+ fied in nonlinear simulations [16][17][18][19] to be the res-
38
+ onant wave-particle trapping due to kinetic nonlinearities,
39
+ mode-mode nonlinearities playing a secondary role.
40
+ In this Letter, we report the first self-consistent gyrokinetic
41
+ simulations finding fishbone saturation by the self-generated
42
+ zonal flows, in a DIII-D discharge. This discharge is chosen
43
+ for validation purposes to predict the EP transport in a
44
+ ITER baseline prefusion scenario [20]. The zonal flows are
45
+ found to be force-driven by the fishbone and are the main
46
+ mechanism for the fishbone saturation. This mechanism is
47
+ observed for the first time in phase space, where zonal flows
48
+ prevent hole and clump structures from persisting or drift-
49
+ ing in the nonlinear phase, reducing the EP resonant drive.
50
+ This saturation by zonal flows is confirmed by experimental
51
+ measurements, as simulations including zonal flows are able
52
+ to recover quantitatively, for the first time, the mode satura-
53
+ tion amplitude and the neutron emissivity drop. Moreover,
54
+ the shearing rate generated by the fishbone-induced zonal
55
+ flows exceeds the linear growth rate of unstable drift-wave
56
+ modes, similar to recent numerical work based on EAST
57
+ discharges [21]. This strong E × B suppression is consistent
58
+ with the ITB arising experimentally after fishbone bursts in
59
+ the DIII-D discharge. It confirms the long suspected role of
60
+ fishbones in ITB formation [22], fishbone bursts having been
61
+ observed to precede ITBs in ASDEX [23], MAST [24][25],
62
+ HL-2A [4] and EAST [26][27] plasmas. Finally, gyrokinetic
63
+ simulations find that the fishbone-induced EP transport in
64
+ the ITER scenario is marginal, 2% of the core EPs being re-
65
+ distributed, similar to previous studies on the alpha fishbone
66
+ in ITER DT scenarios [19]. The intentional destabilization
67
+ of fishbone modes in ITER scenarios is therefore possibly a
68
+ way to enhance fusion performances.
69
+ Experimental setup.
70
+ - The selected DIII-D discharge
71
+ #178631 [28] has a nearly circular oval shape (elongation
72
+ κ = 1.17, triangularity δ = 0.07) that is limited on the car-
73
+ bon inner wall. The major radius is R0 = 1.74 m, the minor
74
+ radius is a = 0.64 m, the toroidal field is 2.0 T, the plasma
75
+ current is 0.88 MA, and the line-average electron density is
76
+ ∼ 2.0 × 1019 m−3. This discharge was chosen primarily be-
77
+ cause it has an accurately known, weakly reversed, q profile
78
+ with q0 = 1.2, qmin = 1.09, and q95 = 3.8 values that re-
79
+ semble the profile predicted for the ITER baseline scenario.
80
+ The deuterium, L-mode plasma is heated by 3.8 MW of 81
81
+ 1
82
+ arXiv:2301.01792v1 [physics.plasm-ph] 4 Jan 2023
83
+
84
+ keV deuterium beams that are injected in the midplane in
85
+ the direction of the plasma current and by 1.0 MW of 2nd
86
+ harmonic, central electron cyclotron heating.
87
+ Numerical setups.
88
+ - The DIII-D discharge #178631 is
89
+ studied numerically mostly through gyrokinetic simulations
90
+ with the GTC code [6][29][30][31], and with kinetic-MHD
91
+ simulations using the M3D-C1 [32][33][34] and XTOR-K
92
+ [35][36][37] codes.
93
+ GTC capability at simulating MHD
94
+ modes was recently verified and validated on DIII-D ex-
95
+ periments [38]. The magnetic configuration is reproduced
96
+ from the EFIT code at t=1580ms. Plasma profiles are ob-
97
+ tained from TRANSP simulations.
98
+ To simulate properly
99
+ MHD modes, the sum of partial pressures need to add up
100
+ to the total pressure in EFIT, which is not always the case
101
+ using TRANSP profiles. To ensure it, the EP pressure is
102
+ constrained as pf = ptot − pi − pe, given that the uncer-
103
+ tainty on EP profiles in TRANSP is the highest. The exper-
104
+ imental NBI distribution is reproduced from the NUBEAM
105
+ code. Such a distribution is described in our first-principle
106
+ simulations with an anisotropic slowing-down model, us-
107
+ ing a zero-th order Legendre expansion [39].
108
+ A superpo-
109
+ sition of three slowing-downs is used to reproduce the in-
110
+ jection energies at nominal, half and third energies.
111
+ The
112
+ critical velocity is artificially set to recover similar gradi-
113
+ ents in the (E, v||/v) phase space. All nonlinear simulations
114
+ cover the whole simulation domain, with an edge buffer after
115
+ ρT =
116
+
117
+ ψT /ψT,edge = 0.8 in GTC suppressing equilibrium
118
+ gradients. GTC retains only the n=1 mode in its simula-
119
+ tions, with or without the n=m=0 zonal component, using
120
+ kinetic thermal/fast ions and fluid electrons. M3D-C1 cov-
121
+ ers low n modes n ∈ [0, 2] with both thermal and fast ions
122
+ kinetic effects. Due to the anisotropic nature of the cho-
123
+ sen configuration that has βf/βtot = 54% on axis, XTOR-K
124
+ only evolves the n=1 mode, as the n=0 mode contains both
125
+ equilibrium and perturbed fields in the code, contrarily to
126
+ GTC and M3D-C1.
127
+ XTOR-K treats kinetically only the
128
+ fast ion specie. Convergence studies over spatial grid size,
129
+ time step and number of particles per cell were successfully
130
+ conducted.
131
+ Fishbone mitigation by self-induced zonal flows - The im-
132
+ pact of MHD nonlinearities on the n=1 fishbone were pre-
133
+ viously examined numerically by keeping side-band n=0-4
134
+ modes, highlighting reduction of initial saturation ampli-
135
+ tude [18][21], and generation of n=m=0 sheared poloidal
136
+ flows [19][21].
137
+ The role played specifically by zonal flows
138
+ in fishbone mitigation was however not identified. The ef-
139
+ fects of zonal flows on the fishbone instability are studied
140
+ here self-consistently for the first time with the gyrokinetic
141
+ GTC code.
142
+ A gyrokinetic treatment of zonal flows is es-
143
+ sential as it takes into account their collisionless damping
144
+ [40], which is absent in the kinetic-MHD formalism without
145
+ kinetic thermal ions effects. For the considered DIII-D con-
146
+ figuration, a n=1 fishbone mode is linearly unstable, close to
147
+ marginal stability at pf,thres = 0.8pf, with a growth rate of
148
+ γn=1 = 8.5×104 s−1 and a mode frequency of ω/2π = 17kHz
149
+ in GTC simulations.
150
+ (a)
151
+ (b)
152
+ (c)
153
+ (d)
154
+ Figure 1: Time evolution of (a) the volume-averaged per-
155
+ turbed electrostatic potential eφ/Te (n=0,1), and (b) the
156
+ the n=1 mode frequency ω, with and without zonal flows
157
+ in GTC simulations. The linearly resonant precessional fre-
158
+ quency plus the zonal E × B frequency is also displayed.
159
+ (c) eφ/Te mode structure in the poloidal plane after mode
160
+ saturation. (d) Zonal electric field eEr,00/Te after mode sat-
161
+ uration.
162
+ When the realistic beam is replaced by its equivalent
163
+ Maxwellian distribution, this mode is fully stabilized, high-
164
+ lighting the sensitivity of fishbone instabilities over EP dis-
165
+ tributions.
166
+ Nonlinear simulations are performed with and without the
167
+ n=m=0 component, as illustrated in Fig.1. The time evo-
168
+ lution of the volume-averaged electrostatic potential eφ/Te,
169
+ displayed on Fig.1a, shows that the n=1 fishbone mode is
170
+ able to force-drive the n=m=0 zonal flow, with a growth
171
+ rate twice that of the n=1.
172
+ As shown analytically in [5]
173
+ for TAEs, the mechanism for this zonal flow generation is
174
+ the charge separation induced by nonlinear EP redistribu-
175
+ tion, as opposed to the usual one relying on Reynolds and
176
+ Maxwell stresses [2][3][4][9]. As the n=0 amplitude exceeds
177
+ the n=1 at t=0.13ms, the zonal mode forces the fishbone
178
+ to
179
+ 2
180
+
181
+ Mode amplitude
182
+ n=0, ZFs
183
+ -n=1. without ZFs
184
+ 10-1
185
+ -n=1, with ZFs
186
+ e
187
+ 10°
188
+ e
189
+ 10~3
190
+ n=1
191
+ 0.06
192
+ 0.08
193
+ 0.1
194
+ 0.12
195
+ 0.14
196
+ 0.16
197
+ 0.18
198
+ 0.2
199
+ Time (ms)Mode frequency
200
+ 24
201
+ 22
202
+ 一w/2π without ZFs
203
+ -w/2π with ZFs
204
+ 20
205
+ d.res
206
+ 18
207
+ (ZH) /
208
+ 16
209
+ 14
210
+ 12
211
+ 10
212
+ 8
213
+ 6
214
+ 0.06
215
+ 0.08
216
+ 0.1
217
+ 0.12
218
+ 0.14
219
+ 0.16
220
+ 0.18
221
+ 0.2
222
+ Time (ms)ed
223
+ -/T-, t=0.19ms
224
+ n=1
225
+ ed
226
+ n=1
227
+ e
228
+ 0.1
229
+ 0.6
230
+ -q=2
231
+ ....q=3
232
+ 0.4
233
+ 0.05
234
+ 0.2
235
+ 0
236
+ 0
237
+ N
238
+ -0.2
239
+ -0.05
240
+ -0.4
241
+ -0.6
242
+ -0.1
243
+ 1.2
244
+ 1.4
245
+ 1.6
246
+ 1.8
247
+ 2
248
+ 2.2
249
+ R (m)eE
250
+ T
251
+ at t=0.19ms and q
252
+ r,00°
253
+ e
254
+ -0.2
255
+ e
256
+ 3
257
+ -0.4
258
+ eE.
259
+ 2
260
+ -0.6
261
+ -0.8
262
+ 0
263
+ 0.2
264
+ 0.4
265
+ 0.6
266
+ 0.8
267
+ ld(a)
268
+ (b)
269
+ (c)
270
+ (d)
271
+ Figure 2: Radial envelope of δTe after saturation without
272
+ (a) and with (b) zonal flows in GTC, M3D-C1 and XTOR-
273
+ K simulations, compared to the ECE measurement for the
274
+ DIII-D #178631 discharge. (c) Time evolution of the sim-
275
+ ulated neutron drop, with and without zonal flows. (d) EP
276
+ density profiles in GTC simulations before and after fishbone
277
+ burst.
278
+ saturate at δB/B0 ∼ 2 × 10−3, with a saturation amplitude
279
+ lower by a factor of 4 compared to the case without zonal
280
+ flows. The zonal flows saturates at an even larger amplitude,
281
+ about six times larger than the n=1 mode when including
282
+ zonal flows, with a spontaneous growth after t=0.15ms when
283
+ the n=1 is fully saturated. Such mitigation by zonal flows
284
+ have been theoretically predicted [2][3][5] and numerically
285
+ observed [7][8][9][10] for Alfv´en eigenmodes, but never so
286
+ far for the fishbone instability.
287
+ The zonal flows inclusion
288
+ also lowers significantly the EP diffusivity at saturation,
289
+ from 30 to 4 m2.s−1.
290
+ As shown in Figure 1b, the mode
291
+ frequency down-chirps after the n=1 mode saturation with
292
+ and without zonal flows, which is a typical fishbone signa-
293
+ ture, with similar chirping rates. Just before saturation, the
294
+ case without zonal flows experiences a notable up-chirping
295
+ of the mode frequency, that stops when the mode starts
296
+ saturating. This increase may be attributed to the larger
297
+ mode amplitude near saturation. The n=1 electrostatic po-
298
+ tential and the n=0 radial electric field after saturation at
299
+ t=0.19ms are displayed on Fig.1c-d.
300
+ The n=1 mode fea-
301
+ tures a dominant m=1 harmonic centered around qmin, as
302
+ well as a significant m=2 side-band that vanishes after q = 2.
303
+ The zonal electric field exhibits a macroscopic structure cen-
304
+ tered near qmin as well, which differs from the usual mi-
305
+ croscopic/mesoscopic scale observed with drift-waves/AEs-
306
+ induced zonal flows. This large structure can be attributed
307
+ to the charge separation provoked by the outward drift of
308
+ resonant EPs within the n=1 mode. It leads to a strongly
309
+ sheared poloidal rotation in the electron direction, which is
310
+ opposite to the n=1 fishbone rotation, and a weak toroidal
311
+ rotation.
312
+ This fishbone mitigation by self-generated zonal flows is ex-
313
+ perimentally confirmed by DIII-D measurements as can be
314
+ seen in Fig.2. The δTe envelope obtained from GTC, M3D-
315
+ C1 and XTOR-K nonlinear simulations at saturation are
316
+ compared with the ECE measurements on Fig.2 (a-b), with
317
+ and without zonal flows inclusion. The δTe envelope is de-
318
+ fined here as the n=1 sum of all poloidal harmonics. With-
319
+ out zonal flows, XTOR-K and GTC results have compa-
320
+ rable saturation amplitudes with δTe,max ∼ 500 − 600 eV,
321
+ which are three time larger than the experimental satura-
322
+ tion. The simulated envelopes differ however, GTC results
323
+ having a dominant m=2 harmonic after ρ = 0.34. When
324
+ including zonal flows however, M3D-C1 and GTC satura-
325
+ tion amplitudes at δTe,max ∼ 200 eV match very well with
326
+ the experimental one.
327
+ The significant m=2 harmonic in
328
+ GTC simulations leads to a quantitative agreement with
329
+ the ECE measurement, which provides a nonlinear valida-
330
+ tion for GTC regarding fishbone instabilities, completing the
331
+ linear one obtained in [38] for kink instabilities.
332
+ Nonlin-
333
+ ear scans for the fishbone saturation amplitude performed
334
+ over the radial position and amplitude of qmin recover the
335
+ same significant mitigation by zonal flows. This nonlinear
336
+ validation is further demonstrated by comparing the sim-
337
+ ulated and experimental volume-averaged neutron emissiv-
338
+ ity. In GTC the volume-averaged neutron flux is defined as
339
+ ΓN = ni
340
+ �N
341
+ k δ(x − xf,k)δ(v − vf,k)σ(vf,k)vf,k with ni the
342
+ thermal ion density profile, xk and vk the position and ve-
343
+ locity of EPs and σ the D-D nuclear fusion cross section,
344
+ assuming reasonably that vi ≪ vf.
345
+ As shown on Fig.2c,
346
+ without zonal flows GTC recovers a neutron drop at satura-
347
+ tion of about 6%, much higher than the experimental one at
348
+ δΓN = 0.9% ± 0.3%. When including zonal flows however,
349
+ the neutron drop yields δΓN ∼ 1.1%, which falls within the
350
+ experimental interval. As expected from these neutron drop
351
+ values, the fishbone-induced EP transport with zonal flows
352
+ is rather weak as shown on Fig. 2d, with about 3% of EPs
353
+ inside of the qmin volume redistributed outward. The redis-
354
+ tribution is more significant without zonal flows, as it affects
355
+ 15% of EPs in the core plasma.
356
+ Mechanism for fishbone mitigation by zonal flows - Beyond
357
+ the additional dissipation brought by the inclusion of the
358
+ n=0 toroidal mode [7], phase-space analysis reveals that
359
+ zonal flows influence the time evolution of coherent phase
360
+ space structures, impacting the n=1 fishbone mode satu-
361
+ ration. On Fig.3, the instantaneous EP transport ∂tδf is
362
+ displayed in the invariants phase space diagram (Pζ, λ =
363
+ µB0/E) at fixed magnetic momentum µB0 = 45keV before
364
+ 3
365
+
366
+ T.(eV), without ZFs
367
+ 600
368
+ =1.09
369
+ q=2
370
+ min
371
+ 500
372
+ -XTOR-K n=1
373
+ -GTC n=1
374
+ +ECE
375
+ 400
376
+ (eV)
377
+ 300
378
+ OS
379
+ 200
380
+ 100
381
+ 0
382
+ 0
383
+ 0.2
384
+ 0.4
385
+ 0.6
386
+ 0.8
387
+ PT T.(eV), with ZFs
388
+ 600
389
+ .
390
+ =1.09
391
+ q=2
392
+ min
393
+ M3D-C1, n=0,1,2
394
+ 500
395
+ GTC n=0,1
396
+ ECE
397
+ 400
398
+ (eV)
399
+ e
400
+ 300
401
+ OS
402
+ 200
403
+ 100
404
+ 0
405
+ 0
406
+ 0.2
407
+ 0.4
408
+ 0.6
409
+ 0.8
410
+ PTNeutron drop
411
+ 0
412
+ Experimental
413
+ -1
414
+ neutron drop
415
+ -2
416
+ Neutron drop (%)
417
+ -Without ZFs
418
+ 3
419
+ _With ZFs
420
+ -6
421
+ 0.08
422
+ 0.1
423
+ 0.12
424
+ 0.14
425
+ 0.16
426
+ 0.18
427
+ 0.2
428
+ Time (ms)X1018
429
+ EP density profiles
430
+ 10
431
+ -t = Oms
432
+ ...t = 0.19ms with ZFs
433
+ -t = 0.19ms without ZFs
434
+ 8
435
+ 6
436
+ EP
437
+ =1.09
438
+ 9
439
+ min
440
+ q=2
441
+ n
442
+ 4
443
+ :
444
+ 2
445
+ 0
446
+ 0
447
+ 0.2
448
+ 0.4
449
+ 0.6
450
+ 0.8
451
+ 1
452
+ ldand after the fishbone saturation, with and without zonal
453
+ flows. The instantaneous transport is chosen rather than the
454
+ usual perturbed EP distribution δf as the fishbone mode
455
+ frequency is chirping in the nonlinear phase, which leads
456
+ phase space structure to drift in time. In the linear phase,
457
+ the mode is driven by two resonances, the precessional one
458
+ ω = ωd linked to trapped particles, and a drift-transit one
459
+ ω = ωζ −ωb due to passing particles, with ωζ = qωb +ωd the
460
+ drift frequency and ωb the bounce/transit frequency. The
461
+ passing and trapped phase space zones are separated by a
462
+ black line on the diagrams.
463
+ (a)
464
+ (b)
465
+ (c)
466
+ (d)
467
+ Figure 3: Time evolution of the instantaneous EP transport
468
+ ∂tδf without (left) and with (right) zonal flows, in the invari-
469
+ ants (Pζ, λ) phase space diagram at fixed µ (µB0 = 45keV ).
470
+ As can be observed on Fig.3 (a-b), a hole and clump struc-
471
+ ture develops around each resonances in the linear phase,
472
+ indicating a resonant outward EP redistribution. In the non-
473
+ linear phase, the dynamical evolution of these phase space
474
+ structures differ significantly with and without zonals flows.
475
+ In their absence, the hole and clump in the trapped region
476
+ drifts to higher ψ positions, under the influence of the mode
477
+ down-chirping as ωd ∝ 1/ψ, while the one in the passing part
478
+ does not move. However with zonal flows, the phase space
479
+ structure in the trapped region remains static, even thought
480
+ the mode is chirping down, and the hole and clump in the
481
+ passing part vanishes. Such behaviours prevent the fishbone
482
+ mode from affecting resonantly new EPs, which leads to its
483
+ weaker saturation due to the absence of drive.
484
+ These differences in dynamical evolution can be explained
485
+ by the influence of the zonal flows on the EPs wave-
486
+ particle resonance. The perturbed radial electric field as-
487
+ sociated with zonal flows generates an additional drift ve-
488
+ locity δvE,00 = δE00 ×B/B2. This additional velocity leads
489
+ to an E × B drift frequency defined in general geometry
490
+ as ωE,00 = ⟨vE,00 · (∇ζ − q∇θ)⟩ with ⟨· · ·⟩ the bounce-
491
+ average operator, which yields δωE,00 = δEψ = −∇φ00 us-
492
+ ing a thin-orbit width approximation for simplicity. This
493
+ is similar to the so-called ”orbit-squeezing” effects in neo-
494
+ classical theory [41], EPs have an overall decrease of their
495
+ precessional frequency due to their large orbit width over a
496
+ strongly sheared radial electric field. As can be observed on
497
+ Fig.1b, the time evolution of the precessional frequency of
498
+ linearly resonant EPs plus the perturbed E×B frequency at
499
+ ρ = ρqmin matches almost exactly the time evolution of the
500
+ fishbone frequency with zonal flows, which explains why the
501
+ phase space structure in the trapped region remains static.
502
+ The strongly sheared E × B poloidal flow can also perturb
503
+ the EPs transit frequencies due to their large orbit width,
504
+ leading to a resonance detuning and the disappearance of
505
+ the ω = ωζ − ωb hole and clump. Zonal flows are therefore
506
+ able to dominate the fishbone saturation by strongly reduc-
507
+ ing the resonant wave-particle trapping.
508
+ Fishbone-induced ion ITB formation - On top of affecting
509
+ the fishbone mode mitigation, the zonal flows also generate a
510
+ strong shearing rate within ρT ∈ [0.1, 0.5] with γE ∼ 3×105
511
+ s−1.
512
+ High-n electrostatic GTC simulations with kinetic
513
+ trapped electrons were performed for this DIII-D configu-
514
+ ration, finding that the most unstable drift-wave is a TEM
515
+ mode at ρ = 0.4, shown on Fig.4a, with a linear growth rate
516
+ of γT EM = 1.38 × 105 s−1. The shearing rate being larger
517
+ than the TEM growth rate, as displayed on Fig.4b, the sim-
518
+ ulated fishbone mode could then lead to turbulence modu-
519
+ lation by suppression the TEM growth through zonal flows
520
+ [11], confirming the speculated role of fishbones in the emer-
521
+ gence of ITBs [22]. This modulation is supported experi-
522
+ mentally in DIII-D by the charge exchange recombination
523
+ spectroscopy diagnostic. The formation of an ion ITB after
524
+ fishbone bursts occurring at t=1581,1594,1607 and 1615ms
525
+ can indeed be observed on Fig.4 c. The core-increase of Ti
526
+ cannot be explained by additional heating from the beam, as
527
+ it was at constant power since t=300ms, multiple slowing-
528
+ down times before the onset of fishbones. Fishbone bursts
529
+ were also observed to precede ion-ITB in four others DIII-D
530
+ discharges with similar heating power, density, current and
531
+ qmin parameters. Electrons are not affected by the ITB, as
532
+ zonal flows are only able to mitigate ion-scale turbulence
533
+ [42].
534
+ EP transport in ITER prefusion baseline - The GTC code
535
+ having been nonlinearly validated for fishbone simulations,
536
+ it can now be applied to the selected ITER scenario to pre-
537
+ dict the fishbone-induced EP transport. Similar to the DIII-
538
+ D simulations, the NBI beam is reproduced from an analyt-
539
+ ical anisotropic slowing-down distribution.
540
+ 4
541
+
542
+ 0,of, with ZFs, t=0.13ms
543
+ 3
544
+ 1.1
545
+ 3
546
+ 2
547
+ 1
548
+ 1
549
+ 4
550
+ 0.9
551
+ ,=1.09
552
+ 入=μ/B。
553
+ min
554
+ 0
555
+ T
556
+ 0.8
557
+ P
558
+ -1
559
+ 0.7
560
+ -2
561
+ 0.6
562
+ -3
563
+ -0.3
564
+ -0.2
565
+ -0.1
566
+ 0
567
+ 0.1
568
+ 0.2
569
+ 0.3
570
+ P
571
+ wall0,of, no ZFs, t=0.2ms
572
+ 60
573
+ ..
574
+ 1.1
575
+ 3
576
+ 3
577
+ 40
578
+ 1
579
+ 20
580
+ 0.9
581
+ in=1.09
582
+ 入=μ/B。
583
+ min
584
+ 0
585
+ T
586
+ 0.8
587
+ p
588
+ -20
589
+ 0.7
590
+ Va
591
+ -40
592
+ 0.6
593
+ -60
594
+ -0.3
595
+ -0.2
596
+ -0.1
597
+ 0
598
+ 0.1
599
+ 0.2
600
+ 0.3
601
+ P
602
+ wall0,of, with ZFs, t=0.2ms
603
+ ...
604
+ 20
605
+ 1.1
606
+ d
607
+ 3=3:
608
+ 3
609
+ 15
610
+ 1
611
+ 10
612
+ 5
613
+ 4
614
+ 0.9
615
+ 入=μ/B。
616
+ 0
617
+ T
618
+ 0.8
619
+ P
620
+ -5
621
+ -10
622
+ 0.7
623
+ V
624
+ -15
625
+ 0.6
626
+ -20
627
+ -0.3
628
+ -0.2
629
+ -0.1
630
+ 0
631
+ 0.1
632
+ 0.2
633
+ 0.3
634
+ P
635
+ wall0,of, no ZFs, t=0.13ms
636
+ ...8
637
+ 3
638
+ 1.1
639
+ d
640
+ 3
641
+ 3
642
+ 3
643
+ 2
644
+ 1
645
+ 1
646
+ 0.9
647
+ n =1.09
648
+ 入=μ/B。
649
+ min
650
+ 0
651
+ T
652
+ 0.8
653
+ P
654
+ -1
655
+ 0.7
656
+ Vab
657
+ -2
658
+ 0.6
659
+ -3
660
+ -0.3
661
+ -0.2
662
+ -0.1
663
+ 0
664
+ 0.1
665
+ 0.2
666
+ 0.3
667
+ P
668
+ b
669
+ wall(a)
670
+ (b)
671
+ (c)
672
+ Figure 4: a) Electrostatic potential φ of unstable TEM mode
673
+ in the poloidal plane b) Fishbone-induced shearing rate pro-
674
+ file after saturation c) Ti profiles in eV before and after
675
+ fishbone bursts from charge exchange recombination spec-
676
+ troscopy, exhibiting an ion-ITB.
677
+ Linear GTC simulations show that the configuration is un-
678
+ stable to the n=1 fishbone with the realistic beam, with
679
+ a mode growth rate and frequency of γ = 4.4 × 104 s−1
680
+ and ω/2π = 48 kHz, while simulations with equivalent
681
+ Maxwellian distributions find a configuration stable to n=1
682
+ modes.
683
+ Similarly to DIII-D based simulations, the zonal flows inclu-
684
+ sion lowers the n=1 mode saturation. The zonal electric field
685
+ also peaks with negative values close to the qmin surface,
686
+ with a subdominant positive layer further in the plasma.
687
+ Electrostatic GTC simulations were also performed for this
688
+ ITER scenario, finding an unstable TEM mode at ρ = 0.71
689
+ with γT EM = 3 × 104 s−1. At that location, the fishbone-
690
+ induced shearing rate is three times larger than the TEM
691
+ linear growth rate, suggesting that an ion-ITB can also be
692
+ triggered for this ITER scenario.
693
+ However after saturation with zonal flows, the n=1 mode
694
+ abruptly explodes. This numerical instability is due to how
695
+ zonal flows are computed in GTC. The flux-surface averaged
696
+ potential φ00 is computed over the equilibrium flux surfaces,
697
+ which can be a strong assumption in the nonlinear fishbone
698
+ phase as δB/B grows. This computation will soon be modi-
699
+ fied to include the perturbed flux surface to enable long time
700
+ cross-scale simulation between microturbulence and MHD
701
+ modes with GTC. The study of the fishbone-induced EP
702
+ transport for that scenario is then conducted without the
703
+ inclusion of zonal flows to achieve a long nonlinear phase.
704
+ The transport level will then represent the upper-bound as
705
+ zonal flows decrease it significantly.
706
+ After the end of the fishbone burst, the overall redistribu-
707
+ tion within qmin is of order 2% of the initial distribution,
708
+ with both inward and outward EP fluxes due to positive
709
+ and negative EP equilibrium pressure gradient. Such a re-
710
+ distribution tends to marginally flatten the initial pressure
711
+ gradient, the NBI pressure drive being too low to cause large
712
+ redistribution. Overall, the NBI fishbone should not impact
713
+ significantly the plasma heating of this ITER baseline pre-
714
+ fusion, similar to what was shown for the alpha-fishbone in
715
+ the ITER 15MA baseline DT scenario [19].
716
+ Conclusion - Since fishbone oscillations may not cause signif-
717
+ icant EP redistribution in ITER plasmas, it can be of great
718
+ interest to design ITER scenarios to trigger them on purpose
719
+ rather than avoiding them. As was shown in this Letter,
720
+ fishbones can generate zonal flows which present two ad-
721
+ vantages : 1) mitigating the fishbone saturation and its im-
722
+ pact on EP transport and 2) creating strong shearing rates
723
+ that can damp drift-wave instabilities and hence reducing
724
+ the turbulent transport. While it was observed here and in
725
+ several tokamak discharges [23][24][43][26][27][25] that fish-
726
+ bone oscillations led to ITBs formation, that was not the
727
+ case in some others such as JET [44][45][42], despite efforts
728
+ to reproduce the fishbone-induced ITB formation observed
729
+ in ASDEX plasmas [23].
730
+ It may therefore exist a para-
731
+ metric dependency for the fishbone instability that controls
732
+ the emergence of strongly sheared fishbone-induced zonal
733
+ flows. The numerical identification and experimental obser-
734
+ vation of such a dependency could enable the creation of
735
+ high-performance scenarios, of crucial importance for ITER
736
+ burning plasmas.
737
+ References
738
+ [1] ITER Physics Expert Group on Energe Drive and ITER
739
+ Physics Basis Editors. Chapter 5: Physics of energetic
740
+ ions. Nuclear Fusion, 39(12):2471–2495, dec 1999.
741
+ [2] Liu Chen, Zhihong Lin, and Roscoe White. Excitation
742
+ of zonal flow by drift waves in toroidal plasmas. Physics
743
+ of Plasmas, 7(8):3129–3132, aug 2000.
744
+ [3] Liu Chen and Fulvio Zonca. Nonlinear excitations of
745
+ zonal structures by toroidal alfv´en eigenmodes. Physi-
746
+ cal Review Letters, 109(14):145002, oct 2012.
747
+ [4] Liu Chen and Fulvio Zonca. Physics of alfv´en waves
748
+ and energetic particles in burning plasmas. Reviews of
749
+ Modern Physics, 88(1):015008, mar 2016.
750
+ [5] Z. Qiu, L. Chen, and F. Zonca. Effects of energetic par-
751
+ ticles on zonal flow generation by toroidal alfv´en eigen-
752
+ mode. Physics of Plasmas, 23(9):090702, sep 2016.
753
+ [6] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang,
754
+ and R. B. White.
755
+ Turbulent transport reduction by
756
+ zonal flows: Massively parallel simulations.
757
+ Science,
758
+ 281(5384):1835–1837, sep 1998.
759
+ [7] Y. Todo, H.L. Berk, and B.N. Breizman. Saturation of
760
+ a toroidal alfv´en eigenmode due to enhanced damping
761
+ of nonlinear sidebands. Nuclear Fusion, 52(9):094018,
762
+ sep 2012.
763
+ [8] Huasen Zhang and Zhihong Lin. Nonlinear generation
764
+ of zonal fields by the beta-induced alfv´en eigenmode in
765
+ tokamak. Plasma Science and Technology, 15(10):969–
766
+ 973, oct 2013.
767
+ 5
768
+
769
+ Φ, TEM mode
770
+ ×10~3
771
+ 0.6
772
+ d
773
+ =1.09
774
+ 2
775
+ min
776
+ -p=0.41
777
+ 0.4
778
+ 1.5
779
+ .q=2
780
+ 1
781
+ 0.2
782
+ 0.5
783
+ 0
784
+ 0
785
+ N
786
+ 1
787
+ -0.5
788
+ -0.2
789
+ -1
790
+ -0.4
791
+ -1.5
792
+ -2
793
+ -0.6
794
+ 1.2
795
+ 1.4
796
+ 1.6
797
+ 1.8
798
+ 2
799
+ 2.2
800
+ R (m)Fishbone-induced ZFs shearing rate
801
+ 6
802
+ TEM
803
+ min
804
+ location
805
+ 5
806
+ 4
807
+ YTEM
808
+ 3
809
+ B
810
+ x
811
+ 3
812
+ 2
813
+ YTEM
814
+ 0.2
815
+ 0.4
816
+ 0.6
817
+ 0.8
818
+ don ITB in D-D #178631
819
+ 5000
820
+ t=1580ms
821
+ 4500
822
+ t=1620ms
823
+ 4000
824
+ TEM
825
+ =1.09
826
+ min
827
+ location
828
+ 3500
829
+ (eV)
830
+ 3000
831
+ 2500
832
+ 2000
833
+ 1500
834
+ 1000
835
+ 0
836
+ 0.1
837
+ 0.2
838
+ 0.3
839
+ 0.4
840
+ 0.5
841
+ 0.6
842
+ PT[9] Y. Chen, G. Y. Fu, C. Collins, S. Taimourzadeh, and
843
+ S. E. Parker. Zonal structure effect on the nonlinear
844
+ saturation of reverse shear alfven eigenmodes. Physics
845
+ of Plasmas, 25(3):032304, mar 2018.
846
+ [10] H.W. Zhang, Z.W. Ma, J. Zhu, W. Zhang, and Z.Y.
847
+ Qiu. Zonal flow generation and toroidal alfv´en eigen-
848
+ mode excitation due to tearing mode induced energetic
849
+ particle redistribution. Nuclear Fusion, 62(2):026047,
850
+ jan 2022.
851
+ [11] T. S. Hahm and K. H. Burrell. Flow shear induced fluc-
852
+ tuation suppression in finite aspect ratio shaped toka-
853
+ mak plasma. Physics of Plasmas, 2(5):1648–1651, may
854
+ 1995.
855
+ [12] G. D. Conway, D. N. Borba, B. Alper, D. V. Bartlett,
856
+ C. Gormezano, M. G. von Hellermann, A. C. Maas,
857
+ V. V. Parail, P. Smeulders, and K-D. Zastrow. Sup-
858
+ pression of plasma turbulence during optimized shear
859
+ configurations in JET.
860
+ Physical Review Letters,
861
+ 84(7):1463–1466, feb 2000.
862
+ [13] A Di Siena, R Bilato, T Grler, E Poli, A Ba˜n´on
863
+ Navarro, D Jarema, and F Jenko. Core transport bar-
864
+ riers induced by fast ions in global gyrokinetic GENE
865
+ simulations.
866
+ Plasma Physics and Controlled Fusion,
867
+ 64(6):064003, may 2022.
868
+ [14] K. McGuire and al. Study of high-beta magnetohydro-
869
+ dynamic modes and fast-ion losses in PDX. Physical
870
+ Review Letters, 51(20):1925–1925, nov 1983.
871
+ [15] Liu Chen, R. B. White, and M. N. Rosenbluth. Excita-
872
+ tion of internal kink modes by trapped energetic beam
873
+ ions. Physical Review Letters, 52(13):1122–1125, mar
874
+ 1984.
875
+ [16] J. Candy, H. L. Berk, B. N. Breizman, and F. Por-
876
+ celli. Nonlinear modeling of kinetic plasma instabilities.
877
+ Physics of Plasmas, 6(5):1822–1829, may 1999.
878
+ [17] A. ¨Odblom, B. N. Breizman, S. E. Sharapov, T. C. Hen-
879
+ der, and V. P. Pastukhov. Nonlinear magnetohydro-
880
+ dynamical effects in precessional fishbone oscillations.
881
+ Physics of Plasmas, 9(1):155–166, jan 2002.
882
+ [18] G. Y. Fu, W. Park, H. R. Strauss, J. Breslau, J. Chen,
883
+ S. Jardin, and L. E. Sugiyama. Global hybrid simu-
884
+ lations of energetic particle effects on the n=1 mode
885
+ in tokamaks:
886
+ Internal kink and fishbone instability.
887
+ Physics of Plasmas, 13(5):052517, may 2006.
888
+ [19] G. Brochard, R. Dumont, H. L¨utjens, X. Garbet,
889
+ T. Nicolas, and P. Maget. Nonlinear dynamics of the
890
+ fishbone-induced alpha transport on ITER. Nuclear Fu-
891
+ sion, 60(12):126019, oct 2020.
892
+ [20] A.R. Polevoi, A.A. Ivanov, S.Yu. Medvedev, G.T.A.
893
+ Huijsmans, S.H. Kim, A. Loarte, E. Fable, and A.Y.
894
+ Kuyanov.
895
+ Reassessment of steady-state operation in
896
+ ITER with NBI and EC heating and current drive. Nu-
897
+ clear Fusion, 60(9):096024, aug 2020.
898
+ [21] Wanling Ge, Zheng-Xiong Wang, Feng Wang, Zixi Liu,
899
+ and Liqing Xu. Multiple interactions between fishbone
900
+ instabilities and ITBs in EAST plasmas. Nuclear Fu-
901
+ sion, nov 2022.
902
+ [22] S. D. Pinches, S. G¨unter, and A. G. Peeters. Fishbone
903
+ generation of sheared flows and the creation of trans-
904
+ port barriers. 28th EPS Conference on Contr. Fusion
905
+ and Plasma Phys. (Funchal) Vol 25A p 57, 2001.
906
+ [23] S G¨unter, A Gude, J Hobirk, M Maraschek, S Saarelma,
907
+ S Schade, R.C Wolf, and ASDEX Upgrade Team. MHD
908
+ phenomena in advanced scenarios on ASDEX upgrade
909
+ and the influence of localized electron heating and cur-
910
+ rent drive. Nuclear Fusion, 41(9):1283–1290, sep 2001.
911
+ [24] A.R.
912
+ Field,
913
+ C.
914
+ Michael,
915
+ R.J.
916
+ Akers,
917
+ J.
918
+ Candy,
919
+ G. Colyer, W. Guttenfelder, Y. c. Ghim, C.M. Roach,
920
+ and S. Saarelma and.
921
+ Plasma rotation and trans-
922
+ port in MAST spherical tokamak.
923
+ Nuclear Fusion,
924
+ 51(6):063006, apr 2011.
925
+ [25] C.A. Michael, N.A. Crocker, and J. Hillesheim.
926
+ In-
927
+ fluence of fishbone-induced fast-ion losses on rota-
928
+ tion and transport barrier formation in mast.
929
+ INIS-
930
+ XA–21M2910 - International Atomic Energy Agency
931
+ (IAEA), 2019.
932
+ [26] Y Yang, X Gao, H Q Liu, G Q Li, T Zhang, L Zeng,
933
+ Y K Liu, M Q Wu, D F Kong, T F Ming, X Han, Y M
934
+ Wang, Q Zang, B Lyu, Y Y Li, Y M Duan, F B Zhong,
935
+ K Li, L Q Xu, X Z Gong, Y W Sun, J P Qian, B J
936
+ Ding, Z X Liu, F K Liu, C D Hu, N Xiang, Y F Liang,
937
+ X D Zhang, B N Wan, J G Li, and Y X Wan and.
938
+ Observation of internal transport barrier in ELMy h-
939
+ mode plasmas on the EAST tokamak. Plasma Physics
940
+ and Controlled Fusion, 59(8):085003, jun 2017.
941
+ [27] Xiang
942
+ Gao.
943
+ Sustained
944
+ high
945
+ 10.1088/1009-
946
+ 0630/15/10/02betan
947
+ plasmas
948
+ on
949
+ EAST
950
+ tokamak.
951
+ Physics Letters A, 382(18):1242–1246, may 2018.
952
+ [28] W.W. Heidbrink, M.A. Van Zeeland, M.E. Austin, N.A.
953
+ Crocker, X.D. Du, G.R. McKee, and D.A. Spong. Sta-
954
+ bility of beta-induced alfv´en eigenmodes (BAE) in DIII-
955
+ d. Nuclear Fusion, 61(6):066031, may 2021.
956
+ [29] W. Deng, Z. Lin, and I. Holod. Gyrokinetic simula-
957
+ tion model for kinetic magnetohydrodynamic processes
958
+ in magnetized plasmas. Nuclear Fusion, 52(2):023005,
959
+ jan 2012.
960
+ [30] Yong Xiao, Ihor Holod, Zhixuan Wang, Zhihong Lin,
961
+ and Taige Zhang.
962
+ Gyrokinetic particle simulation of
963
+ 6
964
+
965
+ microturbulence for general magnetic geometry and ex-
966
+ perimental profiles. Physics of Plasmas, 22(2):022516,
967
+ feb 2015.
968
+ [31] Ge Dong, Jian Bao, Amitava Bhattacharjee, Alain
969
+ Brizard, Zhihong Lin, and Peter Porazik.
970
+ Gyroki-
971
+ netic particle simulations of the effects of compressional
972
+ magnetic perturbations on drift-alfvenic instabilities in
973
+ tokamaks. Physics of Plasmas, 24(8):081205, aug 2017.
974
+ [32] Chang Liu, Stephen C. Jardin, Hong Qin, Jianyuan
975
+ Xiao, Nathaniel M. Ferraro, and Joshua Breslau. Hy-
976
+ brid simulation of energetic particles interacting with
977
+ magnetohydrodynamics using a slow manifold algo-
978
+ rithm and gpu acceleration.
979
+ Arxiv:2107.13663, July
980
+ 2021.
981
+ [33] S C Jardin, N Ferraro, J Breslau, and J Chen. Multi-
982
+ ple timescale calculations of sawteeth and other global
983
+ macroscopic dynamics of tokamak plasmas. Computa-
984
+ tional Science & Discovery, 5(1):014002, may 2012.
985
+ [34] N.M. Ferraro and S.C. Jardin. Calculations of two-fluid
986
+ magnetohydrodynamic
987
+ axisymmetric
988
+ steady-states.
989
+ Journal of Computational Physics, 228(20):7742–7770,
990
+ nov 2009.
991
+ [35] Hinrich L¨utjens and Jean-Fran¸cois Luciani. The XTOR
992
+ code for nonlinear 3d simulations of MHD instabilities
993
+ in tokamak plasmas. Journal of Computational Physics,
994
+ 227(14):6944–6966, jul 2008.
995
+ [36] Hinrich L¨utjens and Jean-Fran¸cois Luciani. XTOR-2f:
996
+ A fully implicit newton–krylov solver applied to nonlin-
997
+ ear 3d extended MHD in tokamaks. Journal of Com-
998
+ putational Physics, 229(21):8130–8143, oct 2010.
999
+ [37] G. Brochard, R. Dumont, H. L¨utjens, and X. Garbet.
1000
+ Linear stability of the ITER 15 MA scenario against
1001
+ the alpha fishbone. Nuclear Fusion, 60(8):086002, jul
1002
+ 2020.
1003
+ [38] G. Brochard, J. Bao, C. Liu, N. Gorelenkov, G. Choi,
1004
+ G. Dong, P. Liu, J. Mc.Clenaghan, J.H. Nicolau,
1005
+ F. Wang, W.H. Wang, X. Wei, W.L. Zhang, W. Heid-
1006
+ brink, J.P. Graves, Z. Lin, and H. L¨utjens. Verification
1007
+ and validation of linear gyrokinetic and kinetic-MHD
1008
+ simulations for internal kink instability in DIII-d toka-
1009
+ mak. Nuclear Fusion, 62(3):036021, jan 2022.
1010
+ [39] Dmitry Moseev and Mirko Salewski.
1011
+ Bi-maxwellian,
1012
+ slowing-down, and ring velocity distributions of fast
1013
+ ions in magnetized plasmas.
1014
+ Physics of Plasmas,
1015
+ 26(2):020901, feb 2019.
1016
+ [40] M. N. Rosenbluth and F. L. Hinton.
1017
+ Poloidal flow
1018
+ driven by ion-temperature-gradient turbulence in toka-
1019
+ maks. Physical Review Letters, 80(4):724–727, jan 1998.
1020
+ [41] F. L. Hinton, J. Kim, Y.-B. Kim, A. Brizard, and K. H.
1021
+ Burrell. Poloidal rotation near the edge of a tokamak
1022
+ plasma in h mode. Physical Review Letters, 72(8):1216–
1023
+ 1219, feb 1994.
1024
+ [42] R C Wolf. Internal transport barriers in tokamak plas-
1025
+ mas. Plasma Physics and Controlled Fusion, 45(1):R1–
1026
+ R91, nov 2003.
1027
+ [43] W. Chen, Y. Xu, X.T. Ding, Z.B. Shi, M. Jiang, W.L.
1028
+ Zhong, and X.Q. Ji and. Dynamics between the fish-
1029
+ bone instability and nonlocal transient transport in HL-
1030
+ 2a NBI plasmas.
1031
+ Nuclear Fusion, 56(4):044001, mar
1032
+ 2016.
1033
+ [44] R C Wolf, O Gruber, M Maraschek, R Dux, C Fuchs,
1034
+ S Gnter, A Herrmann, A Kallenbach, K Lackner, P J
1035
+ McCarthy, H Meister, G Pereverzev, J Schweinzer,
1036
+ U Seidel, and the ASDEX Upgrade Team.
1037
+ Station-
1038
+ ary advanced scenarios with internal transport barrier
1039
+ on ASDEX upgrade. Plasma Physics and Controlled
1040
+ Fusion, 41(12B):B93–B107, dec 1999.
1041
+ [45] E Joffrin, G Gorini, C D Challis, N C Hawkes, T C Hen-
1042
+ der, D F Howell, P Maget, P Mantica, D Mazon, S E
1043
+ Sharapov, G Tresset, , and contributors to the EFDA-
1044
+ JET Workprogramme. Triggering of internal transport
1045
+ barrier in JET. Plasma Physics and Controlled Fusion,
1046
+ 44(8):1739–1752, aug 2002.
1047
+ 7
1048
+
UNAzT4oBgHgl3EQf0_5k/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
V9AzT4oBgHgl3EQfJ_vP/content/2301.01091v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:840f5ffe0d1b932d48d0d83d2ad3d7f2e2f4f12445548fa38d51e0eb1d53a789
3
+ size 558972
WdFJT4oBgHgl3EQf4i1g/content/tmp_files/2301.11666v1.pdf.txt ADDED
@@ -0,0 +1,1370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Thermal curvature perturbations
2
+ in thermal inflation
3
+ Mar Bastero-Gil,a Joaquim M. Gomes,b and Jo˜ao G. Rosac
4
+ aDepartamento de F´ısica Te´orica y del Cosmos, Universidad de Granada,
5
+ Granada-18071, Spain
6
+ bDepartment of Mathematical Sciences, University of Liverpool,
7
+ Liverpool L69 7ZL, United Kingdom
8
+ cUniv Coimbra, Faculdade de Ciˆencias e Tecnologia da Universidade de Coimbra and CFisUC,
9
+ Rua Larga, 3004-516 Coimbra, Portugal
10
+ E-mail: mbg@ugr.es, j.m.gomes@liverpool.ac.uk, jgrosa@uc.pt
11
+ Abstract. We compute the power spectrum of super-horizon curvature perturbations gen-
12
+ erated during a late period of thermal inflation, taking into account fluctuation-dissipation
13
+ effects resulting from the scalar flaton field’s interactions with the ambient radiation bath.
14
+ We find that, at the onset of thermal inflation, the flaton field may reach an equilibrium
15
+ with the radiation bath even for relatively small coupling constants, maintaining a spectrum
16
+ of thermal fluctuations until the critical temperature Tc, below which thermal effects stop
17
+ holding the field at the false potential minimum. This enhances the field variance compared
18
+ to purely quantum fluctuations, therefore increasing the average energy density during ther-
19
+ mal inflation and damping the induced curvature perturbations. In particular, we find that
20
+ this inhibits the later formation of primordial black holes, at least on scales that leave the
21
+ horizon for T > Tc. The larger thermal field variance also reduces the duration of a period
22
+ of fast-roll inflation below Tc, as the field rolls to the true potential minimum, which should
23
+ also affect the generation of (large) curvature perturbations on even smaller scales.
24
+ arXiv:2301.11666v1 [hep-ph] 27 Jan 2023
25
+
26
+ Contents
27
+ 1
28
+ Introduction
29
+ 1
30
+ 2
31
+ Thermal inflation
32
+ 2
33
+ 3
34
+ Curvature Perturbations
35
+ 5
36
+ 4
37
+ Comparison between the thermal and quantum power spectra
38
+ 10
39
+ 5
40
+ Conclusion
41
+ 12
42
+ A Evolution of the temperature during thermal inflation
43
+ 13
44
+ B Field correlation functions
45
+ 14
46
+ 1
47
+ Introduction
48
+ It is widely believed that the universe went through a period of inflation in its early stages
49
+ [1–4], thus explaining its observed homogeneity and isotropy on large scales, as well as its
50
+ apparently small spatial curvature.
51
+ Most importantly, inflation in principle provided the
52
+ seeds for the small curvature perturbations that grew into the large-scale structure that we
53
+ observe in the Universe.
54
+ Although the simplest models postulate a single period of slow-roll inflation lasting for at
55
+ least 50-60 e-folds after the largest presently observable scales became super-horizon, there is
56
+ a priori no reason to exclude scenarios with multiple inflation periods with different dynamics.
57
+ In particular, it is well known that reheating after inflation may lead to the production of e.g.
58
+ topological defects if the associated reheating temperature exceeds the grand unification scale
59
+ (∼ 1016 GeV) [5] or other unwanted relics such as moduli or gravitinos in supersymmetric
60
+ (SUSY) models [6–8]. Such relics could have overclosed the Universe or spoiled the successful
61
+ predictions of primordial nucleosynthesis through their late decay [9]. This and the fact that
62
+ currently there is no evidence for such relics motivates considering scenarios with additional
63
+ inflationary stages that could have diluted their abundances [10–14].
64
+ One of the most appealing possibilities is a late period of thermal inflation, where a
65
+ scalar flaton field is trapped in a false vacuum by thermal effects above a certain critical
66
+ temperature. Candidates to drive such a secondary inflation period are ubiquitous in SUSY
67
+ and supergravity theories, in particular given the many flat directions in the scalar potential
68
+ that characterize such models at the renormalizable level [15]. The spectrum of curvature
69
+ perturbations generated during such a period (or possibly multiple periods) need not be
70
+ nearly as scale-invariant as the one generated by the first period of slow-roll inflation, during
71
+ which the large-scale perturbations observable in the Cosmic Microwave Background (CMB)
72
+ anisotropies became super-horizon. In fact, this spectrum was recently computed in [16],
73
+ where it was shown that large curvature perturbations could have been generated (on small
74
+ scales) during a period of thermal inflation and a fast roll inflation period [17] that potentially
75
+ followed it once thermal effects stopped trapping the field in the false vacuum state. These
76
+ large curvature/density perturbations could have then collapsed into a significant population
77
+ of primordial black holes upon horizon-reentry later in the radiation-dominated epoch. Such a
78
+ – 1 –
79
+
80
+ possibility has attracted a substantial interest in the recent literature given the latter’s appeal
81
+ as dark matter candidates and the possibility that these may explain the recent LIGO/Virgo
82
+ detections of heavy black hole binaries (see e.g. [18]).
83
+ The analysis in [16] considered, however, only the part of the curvature spectrum gen-
84
+ erated by quantum fluctuations of the flaton scalar field. Since thermal effects are a crucial
85
+ aspect in the dynamics of thermal inflation, one should investigate whether thermal fluctua-
86
+ tions also play an important role, which is our goal with this work. We note, in particular,
87
+ that the flaton field is trapped in a false vacuum at temperatures above a certain critical tem-
88
+ perature, as we review in the next section, due to the large thermal mass resulting from its
89
+ interactions with the ambient thermal bath. It is well-known that such interactions also lead
90
+ to fluctuation-dissipation effects, resulting in an effective Langevin-like equation describing
91
+ the dynamics of the scalar field. Such effects have been thoroughly analyzed in the context
92
+ of warm inflation scenarios [19–36], in setting initial conditions for slow-roll inflation in a
93
+ pre-inflationary radiation epoch [37], and in cosmological phase transitions both after and
94
+ during (warm) inflation [38,39]. Our objective is then to apply the techniques developed in
95
+ these contexts to the case of thermal inflation, and investigate their role in the generation of
96
+ curvature perturbations during this period.
97
+ Surprisingly, we find that for thermal flaton fluctuations the amplitude of the curvature
98
+ power spectrum is suppressed with respect to the purely quantum case analyzed in [16], at
99
+ least for scales exiting the horizon before the temperature decreases below the critical value.
100
+ This is essentially due to the fact that, as we will show, thermal effects, by enhancing flaton
101
+ density fluctuations, also increase the time-dependent part of the average energy density
102
+ during thermal inflation. This effect overcomes the enhancement of individual perturbation
103
+ modes, therefore suppressing the corresponding power spectrum.
104
+ This work is organized as follows. We will start by constructing a generic model for
105
+ thermal inflation in Section 2. The curvature perturbation spectrum induced by the thermal
106
+ flaton fluctuations is computed in Section 3. In Section 4 we compare our result with the
107
+ purely quantum computation performed in [16], discussing and summarizing our conclusions
108
+ in Section 5. We use natural units throughout this work, ℏ = c = kB = 1 and the reduced
109
+ Planck mass MP = 2.435 × 1018 GeV.
110
+ 2
111
+ Thermal inflation
112
+ Let us consider a scalar field φ interacting with a thermal radiation bath at temperature
113
+ T, with energy density ρR = π2
114
+ 30g∗T 4, where g∗ denotes the number of relativistic degrees
115
+ of freedom. For concreteness, we consider a radiation bath made up of NF Dirac fermion
116
+ species ψi, which interact with the scalar field through Yukawa interactions with universal
117
+ coupling constant g:
118
+ LY = −gφ
119
+ NF
120
+
121
+ i=1
122
+ ¯ψiψi .
123
+ (2.1)
124
+ We take the mass of the fermions mψi ≪ T, so that they can be treated as relativistic degrees
125
+ of freedom, but such that mψi > H so that flat quantum field theory calculations for the
126
+ decay width of scalars into fermions are valid [37].
127
+ We assume that the scalar field φ corresponds to a renormalizable flat direction, or flaton
128
+ field, common in several SUSY/supergravity scenarios [11,12,14,40,41], such that its potential
129
+ is only lifted by soft terms such as a mass term from SUSY breaking, and non-renormalizable
130
+ – 2 –
131
+
132
+ terms. We are interested in the case where the squared mass term is negative, such that the
133
+ field acquires a large expectation value M0 at zero temperature from the latter’s interplay
134
+ with the non-renormalizable operators.
135
+ The interaction with the radiation bath induces,
136
+ however, a thermal mass correction such that the field’s effective mass is of the form [42]:
137
+ m2
138
+ eff = α2T 2 − m2 ,
139
+ (2.2)
140
+ where m corresponds to the zero temperature (tachyonic) mass and α is the effective coupling
141
+ to the thermal bath. For the Yukawa interactions described above we have α2 = g2NF /6 at
142
+ one-loop order. This implies, in particular, that for temperatures above the critical value,
143
+ Tc ≡ m/α, the origin is a stable minimum of the scalar potential, whereas for lower tempera-
144
+ tures the minimum is non-trivial and asymptotes to M0 in the limit of vanishing temperature.
145
+ The origin thus constitutes a false vacuum state, near which we may write the scalar potential
146
+ as:
147
+ V (φ) = 1
148
+ 3M2
149
+ 0 m2 + 1
150
+ 2m2
151
+ effφ2 + · · · ,
152
+ (2.3)
153
+ where for concreteness we have chosen the constant term such that, if the leading non-
154
+ renormalizable term is ∼ φ6 the cosmological constant vanishes at the minimum, V (φ =
155
+ M0) = 0, although this is not crucial to our analysis. For typical flat directions, M0 ≫ m,
156
+ since the scale at which the non-renormalizable operators become relevant is generically large
157
+ (around the grand unification or even the Planck scale).
158
+ If, after the first period of slow-roll inflation, the Universe is reheated to attain a tem-
159
+ perature T > Tc, the flaton field will thus be driven to the false minimum at the origin by
160
+ Hubble friction, where it is trapped and gives a contribution V0 = M2
161
+ 0 m2/3 to the vacuum
162
+ energy. Since the temperature drops as the universe expands, i.e. ρR ∝ a−4, eventually this
163
+ vacuum energy may become dominant, thus triggering a new period of inflation, with expan-
164
+ sion rate H ≃ mM0/3MP ≲ m. Thermal inflation thus begins when the temperature drops
165
+ below:
166
+ Ti =
167
+ � 10
168
+ g∗π2
169
+ � 1
170
+ 4 �
171
+ M0m .
172
+ (2.4)
173
+ Assuming that there is no significant entropy production during thermal inflation, as we
174
+ confirm in Appendix A, the temperature of the radiation bath drops as T ∝ a−1 during
175
+ thermal inflation, eventually reaching the critical value Tc below which the minimum at the
176
+ origin is destabilized. The nature of the phase transition (or smooth crossover) that ensues is
177
+ model-dependent and irrelevant to our discussion (see e.g. [43]), since we are mostly interested
178
+ in what happens for temperatures Tc < T < Ti.
179
+ We note that thermal inflation is only possible if the flaton field has a non-negligible
180
+ interaction with the thermal bath, and in particular Ti > Tc imposes:
181
+ α >
182
+ �g∗π2
183
+ 10
184
+ � 1
185
+ 4 � m
186
+ M0
187
+ .
188
+ (2.5)
189
+ For instance, for m ∼ 10 TeV and M0 ∼ MP , this imposes the lower bound α ≳ 10−7 for
190
+ g∗ = 10−100. Although this may not seem too restrictive, we note that the number of e-folds
191
+ of thermal inflation is given by:
192
+ N(TI)
193
+ e
194
+ = ln
195
+ �Ti
196
+ Tc
197
+
198
+ = 1
199
+ 2 ln
200
+ �M0
201
+ m
202
+
203
+ + 1
204
+ 4 ln
205
+ � 10
206
+ π2g∗
207
+
208
+ + ln(α) .
209
+ (2.6)
210
+ – 3 –
211
+
212
+ For the reference values given above, we see that a period of thermal inflation lasting more
213
+ than 10 e-folds is only possible for α ≳ 0.01, with even larger effective couplings required for
214
+ scenarios with a smaller hierarchy between the mass scales m and M0.
215
+ We note that inflation does not necessarily end when the temperature falls below Tc,
216
+ since expansion only stops accelerating once the flaton’s kinetic energy surpasses its potential
217
+ energy. Below Tc the field develops a tachyonic instability, since m2
218
+ eff ≃ −m2 < 0 once T ≪ Tc,
219
+ and its value moves away from the origin as ∼ emt ∼ e
220
+ m
221
+ H Ne for H ≲ m, and there may be
222
+ a period of fast-roll inflation [17] until the field gets close to the minimum at M0 and its
223
+ kinetic energy takes over. Note that, in the opposite regime m ≲ H, thermal inflation would
224
+ be followed by an additional period of slow-roll inflation, but we will not consider this regime
225
+ in our discussion. The duration of the fast-roll period is, of course, model dependent and,
226
+ moreover, dependent on the mean field value at the critical temperature.
227
+ In [16,17] it was shown that this period may last for as much as, or even longer than, the
228
+ thermal inflation period for H/m ≲ 1, depending on the flaton’s mass value. This assumed,
229
+ however, that the mean field value at the critical temperature is set by quantum fluctuations,
230
+ which as we will see is not necessarily the case. In particular, thermal fluctuations typically
231
+ enhance the field’s variance at Tc, therefore reducing the duration of the subsequent fast-
232
+ roll period.
233
+ For this reason, we will restrict our analysis to the thermal inflation period
234
+ (Tc < T < Ti), discussing the implications of our results to the subsequent cosmological
235
+ evolution at the end of our discussion.
236
+ Independently of whether or not there is a significant period of inflation below Tc, the
237
+ field will eventually begin oscillating about the minimum of its potential and decay away
238
+ through the Yukawa interactions in Eq. (2.1) [44]. Although we do not specify the exact
239
+ nature of the fermion fields in the thermal bath, since we are only modelling the interactions
240
+ between the flaton and the ambient radiation and our discussion is largely independent of the
241
+ particular interactions considered, it is implicit that such interactions will eventually lead to
242
+ the reheating of the Standard Model degrees of freedom at temperatures exceeding at least
243
+ a few MeV to ensure the correct conditions for primordial nucleosynthesis.
244
+ We note that having late thermal inflation and fast-roll inflation periods alters the
245
+ predictions of inflationary cosmology [45], since the largest CMB scales leave the horizon
246
+ 50-60 e-folds before the end of the full inflationary epoch, including the primary slow-roll
247
+ inflation period, which therefore must necessarily be shorter.
248
+ Although the leading effect of the interactions between the flaton and the thermal bath
249
+ is the thermal mass correction responsible for its trapping at the origin, it also induces
250
+ fluctuation-dissipation effects in the flaton’s dynamics that, as we will see, can play an im-
251
+ portant role in the evolution of field perturbations during thermal inflation. These have been
252
+ considered in [46] to analyze the nature of the phase transition at Tc, but their effects on
253
+ the associated spectrum of curvature perturbations have so far been overlooked. To study
254
+ them, we consider the full Langevin-like equation for the flaton field modes φk of comoving
255
+ momentum k, which can be obtained through standard techniques in linear response theory
256
+ assuming the ambient radiation bath is close to an equilibrium state, and is given by (see
257
+ e.g. [25,47]):
258
+ ¨φk + (3H + Γφ) ˙φk + ω2
259
+ kφk = ξk ,
260
+ (2.7)
261
+ where ω2
262
+ k = k2/a2 +m2
263
+ eff and Γφ is the dissipation coefficient, which for a field oscillating near
264
+ a local minimum of its potential (in this case the false minimum at the origin for T > Tc)
265
+ coincides with its finite-temperature decay width [48]. On the right hand side of (2.7), ξk
266
+ is a stochastic noise term which encodes the randomness of the field’s interactions with the
267
+ – 4 –
268
+
269
+ thermal bath. For modes with physical momentum p = k/a ≲ πT it is well approximated by
270
+ a gaussian white noise term with a two-point correlator given by the fluctuation-dissipation
271
+ relation [46,49].:
272
+ ⟨ξk(t)ξk′(t′)⟩ = 2ΓφT (2π)3
273
+ a3
274
+ δ3(k + k′)δ(t − t′) .
275
+ (2.8)
276
+ We note that physically this is reminiscent of the Brownian motion of a heavy particle in an
277
+ gas, for which random collisions with the gas molecules induce an effective friction that damps
278
+ its motion. However, the particle never actually comes to rest due to the very same random
279
+ collisions, eventually reaching an equilibrium with the gas. We expect something very similar
280
+ to occur to the flaton field modes, with the combined effects of dissipation (Γφ) and thermal
281
+ fluctuations (ξk) driving the field towards a thermal equilibrium with the radiation bath.
282
+ This behaviour has been observed for scalar fields interacting with a radiation bath both
283
+ in an inflationary and non-inflationary context [37, 39], so we anticipate that the same will
284
+ occur in the case of thermal inflation.
285
+ At finite temperature the flaton decay width into relativistic fermions is given by [27,37]:
286
+ Γφ(p) = 3m2
287
+ effα2
288
+ 4πωp
289
+
290
+ 1 + 2T
291
+ p ln
292
+ �1 + exp(− ω+
293
+ T )
294
+ 1 + exp(− ω−
295
+ T )
296
+ ��
297
+ ,
298
+ (2.9)
299
+ where ω± = |ωp±p|
300
+ 2
301
+ and we have neglected the mass of the fermions, T ≫ mψi. Note that
302
+ fermions acquire a mass through their interaction with the flaton field but, as we will obtain
303
+ bellow,
304
+
305
+ ⟨φ2⟩ ≲ T for perturbative couplings.
306
+ Since the thermal bath will excite field modes p ≲ T and meff ≲ T, the decay width can
307
+ be well approximated by:
308
+ Γφ ≃ 3m2
309
+ effα2
310
+ 16πT
311
+ ≃ 3α4
312
+ 16πT ,
313
+ (2.10)
314
+ where in the last step we have used meff ≃ αT for T ≳ Tc. At the onset of thermal inflation,
315
+ we then have:
316
+ Γφ
317
+ H
318
+ ����
319
+ Ti
320
+
321
+ 9
322
+ 16π
323
+ � 10
324
+ g∗π2 ,
325
+ �1/4
326
+ α4
327
+ MP
328
+ √M0m
329
+ ≃ 2.3g−1/4
330
+
331
+ � α
332
+ 0.03
333
+ �4 �MP
334
+ M0
335
+ �1/2 �
336
+ m
337
+ 10 TeV
338
+ �−1/2
339
+ ,
340
+ (2.11)
341
+ so that we expect dissipative effects to play an important role in the field’s dynamics roughly
342
+ for the same range of the effective coupling α leading to a period of thermal inflation lasting
343
+ for more than 10 e-folds, as we have seen above. In the next section we compute the thermal
344
+ field correlators and associated curvature perturbation power spectrum to better quantify
345
+ this statement.
346
+ 3
347
+ Curvature Perturbations
348
+ Let us consider the gauge-invariant curvature perturbation on uniform density hypersurfaces,
349
+ which in the flat gauge can be written as [50,51]:
350
+ ζ = − H
351
+ ˙⟨ρ⟩
352
+ δρ ,
353
+ (3.1)
354
+ – 5 –
355
+
356
+ where the perturbation of a generic function is given by δf(t, x) ≡ f(t, x) − ⟨f(t, x)⟩, and
357
+ brackets denote its thermal averaged value. The dimensionless power spectrum of ζ is defined
358
+ as [16],
359
+ ∆2
360
+ ζ(k) = k3
361
+ 2π2
362
+
363
+ d3x exp(−ik · x) ⟨ζ(0)ζ(x)⟩ ,
364
+ =
365
+ 2k3
366
+ (2π)2
367
+ � H
368
+ ˙⟨ρ⟩
369
+ �2 �
370
+ d3x exp(−ik · x) ⟨δρ(0)δρ(x)⟩ .
371
+ (3.2)
372
+ The total energy density ρ during thermal inflation includes the contributions from both the
373
+ flaton field and the radiation fluid [52]:
374
+ ρ = ρφ + ρR = 1
375
+ 2
376
+ ˙φ2 + V (φ) + 1
377
+ 2a−2(t)∂iφ∂iφ + π2
378
+ 30g∗T 4 ,
379
+ (3.3)
380
+ and so we have
381
+ ⟨ρ⟩ = π2
382
+ 30g∗T 4 + 1
383
+ 3m2M2
384
+ 0 + 1
385
+ 2m2
386
+ eff ⟨φ2⟩ + 1
387
+ 2 ⟨ ˙φ2⟩ + 1
388
+ 2a−2 ⟨∂iφ∂iφ⟩ ,
389
+ (3.4a)
390
+ δρ = 1
391
+ 2m2
392
+ effδ(φ2) + 1
393
+ 2δ( ˙φ2) + 1
394
+ 2a−2δ(∂iφ∂iφ) .
395
+ (3.4b)
396
+ Since density perturbations involve perturbations of quadratic functions of the field and its
397
+ derivatives, the power spectrum, Eq. (3.2), involves contributions of the form:
398
+ ⟨δ(Xi(0)2)δ(Xj(x)2)⟩ = ⟨Xi(0)2Xj(x)2⟩ − ⟨Xi(0)2⟩ ⟨Xj(x)2⟩ ,
399
+ (3.5)
400
+ where Xi generically denotes the field perturbations and their derivatives. The first term
401
+ on the right-hand side corresponds to 4th moments involving the gaussian variables Xi.
402
+ According to Isserlis’ theorem [53] it is possible to write a kth moment of zero-average
403
+ gaussian variables in terms of their variances. Thus, the correlators can be simply written
404
+ as [54]:
405
+ ⟨δ(Xi(0)2)δ(Xj(x)2)⟩ = 2 ⟨Xi(0)Xj(x)⟩2 .
406
+ (3.6)
407
+ The two-point correlation function for the energy density is then:
408
+ ⟨δρ(0)δρ(x)⟩ = m4
409
+ eff
410
+ 2
411
+ ⟨φ(0)φ(x)⟩2 + m2
412
+ eff ⟨φ(0) ˙φ(x)⟩
413
+ 2 + a−2m2
414
+ eff ⟨φ(0)∂iφ(x)⟩2 ,
415
+ + 1
416
+ 2 ⟨ ˙φ(0) ˙φ(x)⟩
417
+ 2 + a−2 ⟨ ˙φ(0)∂iφ(x)⟩
418
+ 2 + a−4
419
+ 2
420
+ ⟨∂iφ(0)∂jφ(x)⟩2 ,
421
+ (3.7)
422
+ that is, contributions from all possible correlation functions involving φ, ˙φ and ∂iφ.
423
+ We note that we are interested in computing the curvature perturbation power spectrum
424
+ on super-horizon scales, k ≪ aH. To do this we need to compute the field variance ⟨φ2⟩ and
425
+ the average kinetic and gradient energies appearing in Eq. (3.4a), which involve integrating
426
+ over all thermally excited field modes. Since the noise term correlator is exponentially sup-
427
+ pressed for physical momentum scales p ≳ πT [46], we use this value as a hard cutoff. This
428
+ can be translated into a comoving momentum cutoff kc = πTc if we set a(Tc) = 1, following
429
+ the conventions of [16] to allow for a better comparison with the purely quantum calculation.
430
+ To compute the power spectrum we need the three combinations of the correlations
431
+ between φk and ˙φk, i.e. ⟨φkφk⟩, ⟨φk ˙φk⟩ and ⟨ ˙φk ˙φk⟩. These are the building blocks of all the
432
+ remaining correlation functions involved in the power spectrum. We will explicitly compute
433
+ – 6 –
434
+
435
+ the correlator of the field modes and list all others in Appendix B as their computation
436
+ follows similar steps.
437
+ The equal-time two-point correlation function of the field modes can be written in terms
438
+ of the Green’s function associated with (2.7) and the noise correlator:
439
+ ⟨φk(z)φk′(z)⟩ = H−4
440
+ � z
441
+ zi
442
+ ds1
443
+ � z
444
+ zi
445
+ ds2 s−2
446
+ 1 s−2
447
+ 2 Gs(z, s1)Gs(z, s2) ⟨ξk(s1)ξk′(s2)⟩ ,
448
+ (3.8)
449
+ where we have traded the time-dependence for a dependence on the variable z = T/H, with
450
+ zi = Ti/H. Note that z ∝ a−1 during thermal inflation, so that it is a decreasing function
451
+ of time. We have ignored the contributions from the homogeneous solutions of (2.7) since,
452
+ as we will see bellow, they quickly become subdominant. These are required, however, to
453
+ compute the Green’s function, which is given by the usual expression:
454
+ Gs(z, s) = φ(1)
455
+ k (s)φ(2)
456
+ k (z) − φ(1)
457
+ k (z)φ(2)
458
+ k (s)
459
+ W(φ(1)
460
+ k , φ(2)
461
+ k )(s)
462
+ ,
463
+ (3.9)
464
+ where φ(1)
465
+ k
466
+ and φ(2)
467
+ k
468
+ are the homogeneous solutions of equation (2.7) and W denotes their
469
+ Wronskian.
470
+ During most of thermal inflation, except for temperatures close to the critical value,
471
+ the thermal mass dominates over the field’s zero temperature mass, αT ≫ m. This allows
472
+ us to compute analytically the field modes, and thus obtain the field’s two-point correlation
473
+ function with a decay width of the form (2.10).
474
+ The homogeneous equation of motion for the flaton field modes (2.7) can be written in
475
+ terms of the z variable as:
476
+ z2φ′′
477
+ k − z (2 + γz) φ′
478
+ k + z2¯ω2
479
+ kφk = 0 ,
480
+ (3.10)
481
+ where ¯ω2
482
+ k ≡ ω2
483
+ k/T 2 ≃ k2/T 2
484
+ c + α2 and γ ≡ 3α4/16π, such that Γφ/H = γz. Let us define
485
+ φk = zeγz/2χk, such that:
486
+ χ′′
487
+ k +
488
+
489
+ ¯ω2
490
+ k − γ2
491
+ 4 − γ
492
+ z − 2
493
+ z2
494
+
495
+ χk = 0 .
496
+ (3.11)
497
+ Even though we can express the exact solutions of the above equation in terms of Whittaker
498
+ functions [55], it is more instructive to note that, since γ ≪ ¯ω2
499
+ k for α ≲ 1 and z > zc =
500
+ m/αH > α−1 > 1, we may neglect all the terms inside the brackets in Eq. (3.11) except for
501
+ the one involving ¯ω2
502
+ k to a good approximation. This means that the homogeneous solutions
503
+ are approximately given by:
504
+ φ(1)
505
+ k (z) ≃ ze
506
+ γ
507
+ 2 z sin(¯ωkz) ,
508
+ φ(2)
509
+ k (z) ≃ ze
510
+ γ
511
+ 2 z cos(¯ωkz) ,
512
+ (3.12)
513
+ thus constituting oscillatory functions in the z variable with an amplitude decreasing due to
514
+ both Hubble expansion (z ∝ a−1) and the field’s decay into the light fermions. This yields
515
+ the Green’s function:
516
+ Gs(z, s) = 1
517
+ ¯ωk
518
+ z
519
+ s exp
520
+ �γ
521
+ 2(z − s)
522
+
523
+ sin
524
+
525
+ ¯ωk(z − s)
526
+
527
+ .
528
+ (3.13)
529
+ – 7 –
530
+
531
+ The noise correlation function can be written in terms of the z variable as:
532
+ ⟨ξk(z1)ξk′(z2)⟩ = 2Hz1ΓφT (2π)3
533
+ a3
534
+ δ3(k + k′)δ(z1 − z2) ,
535
+ ≃ 2γH3z6
536
+ 1
537
+ (2π)3
538
+ z3c
539
+ δ3(k + k′)δ(z1 − z2) ,
540
+ (3.14)
541
+ where in the second line we used the dominance of the thermal mass for T > Tc.
542
+ We may now substitute Eqs. (3.13) and (3.14) into Eq. (3.8) to obtain the field’s two-
543
+ point correlation function:
544
+ ⟨φk(z)φk′(z)⟩ = (2π)3δ3(k + k′) T
545
+ a3ω2
546
+ k
547
+ (1 − δ) ,
548
+ δ = exp
549
+
550
+ − 3α4
551
+ 16π
552
+ Ti
553
+ H
554
+
555
+ 1 − T
556
+ Ti
557
+ ��
558
+ ,
559
+ (3.15)
560
+ where again we used that ¯ωk ≫ γ. Note that for Γφ/H(Ti) ≳ 1, we have δ ≪ 1 for all
561
+ temperatures below Ti (but above Tc), thus yielding a thermal equilibrium distribution for
562
+ the field modes that is independent of the decay width. This means that if the field decays
563
+ efficiently at the onset of thermal inflation it will attain an equilibrium distribution that
564
+ simplify redshifts with expansion (with corresponding decrease in temperature).
565
+ This is
566
+ a generic result obtained in other cosmological contexts [37, 39] that we now recover also
567
+ within thermal inflation – it simply states that if the field interacts significantly with the
568
+ thermal bath at some point during its evolution it reaches a near-thermal configuration that
569
+ is subsequently maintained unless there is some significant change in the field’s properties
570
+ (in our case the tachyonic instability just below the critical temperature).
571
+ We note that the two-point correlation function vanishes at the onset of thermal inflation
572
+ by construction, since the integral Eq. (3.8) is zero at z = zi.
573
+ This assumes that field
574
+ modes were not excited when thermal inflation begins, which need not be the case since
575
+ interactions with the thermal bath are present in the prior radiation-dominated epoch. If field
576
+ modes thermalize before its vacuum energy becomes dominant, Eq. (3.15) will nevertheless
577
+ hold (with δ ≃ 0), since this result is also valid for a radiation-dominated cosmological
578
+ background [37]. However, we note that during the radiation era Γφ/H ∝ T/H ∝ a, while
579
+ Γφ/H ∝ a−1 during thermal inflation, so that this ratio attains its maximum value at the
580
+ onset of thermal inflation. Recalling Eq. (2.11), we conclude that α ≳ 0.01 is required for
581
+ field thermalization if the zero temperature mass m is not far from the TeV scale at which
582
+ new physics may be expected. As discussed in the previous section, this is exactly the regime
583
+ where a period of thermal inflation lasting more than 10 e-folds (and which can in particular
584
+ sufficiently dilute unwanted relics of the first reheating process) can occur. We will thus
585
+ henceforth focus our analysis on this parametric regime, in which the field thermalizes either
586
+ before or at the onset of the thermal inflation epoch.
587
+ We may now use Eq. (3.15) to compute the field variance and related correlation func-
588
+ tions, as we detail in Appendix B. We obtain for the total average energy density:
589
+ ⟨ρ⟩ = π2
590
+ 30
591
+
592
+ g∗ + 5
593
+ π(1 − δ)
594
+
595
+ T 4 + 1
596
+ 3m2M2
597
+ 0 ,
598
+ (3.16)
599
+ where we note that the field contributes essentially as an additional bosonic degree of freedom
600
+ to the radiation energy density if thermalization is efficient (δ ≪ 1). Its contribution is not
601
+ exactly one degree of freedom since we have considered a hard-cutoff on the momentum of
602
+ the modes that are excited by interactions with the thermal bath at kc = πTc.
603
+ This is
604
+ – 8 –
605
+
606
+ only an approximation to the smooth cutoff associated with the noise correlator [46], which
607
+ nevertheless captures the essential physics of the problem.
608
+ Using the values of each component of the power spectrum (3.5) given in Appendix B,
609
+ the density perturbations are:
610
+
611
+ d3x exp(−ik · x) ⟨δρ(0)δρ(x)⟩ ≈ πT 5
612
+ 6a3
613
+
614
+ 1 + 3
615
+ � 3α4
616
+ 32π2
617
+ �2�
618
+ 1 − α
619
+ π arctan
620
+ �π
621
+ α
622
+ � ��
623
+ (1 − δ)2 ,
624
+ (3.17)
625
+ to leading order on super-horizon scales k < aH < αTc. We note that the first term within
626
+ the square brackets dominates over the second one. This then yields for the power spectrum
627
+ on super-horizon scales:
628
+ ∆2
629
+ ζ
630
+ (therm)(k) =
631
+ 150
632
+ (2π)5
633
+ k3
634
+ T 3c
635
+ (1 − δ)2
636
+
637
+ g∗ + 5
638
+ π(1 − δ) − 5
639
+ π
640
+ 3α4
641
+ 64π
642
+ T
643
+ H δ
644
+ �2 ,
645
+
646
+ 150
647
+ (2π)5
648
+ α3
649
+ g2
650
+ ∗,f
651
+ �H
652
+ m
653
+ �3� k
654
+ kc
655
+ �3
656
+ ,
657
+ (3.18)
658
+ where in the second line we have taken the prompt thermalization limit, i.e. δ ≪ 1, in
659
+ which case the flaton field contributes to the total number of relativistic degrees of freedom,
660
+ given by g∗,f ≃ g∗ + 5/π. Note that this result is time-independent, reflecting the freeze-out
661
+ of curvature perturbations on super-horizon scales and thus the single-fluid nature of the
662
+ dynamics, i.e. the fact that the flaton field thermalized with the radiation bath.
663
+ The power spectrum is blue-tilted so its maximum value is attained for the last scale to
664
+ leave the horizon during thermal inflation, i.e. kc = H which leaves at T = Tc. Although our
665
+ calculation assumes the dominance of the thermal piece of the flaton’s mass, an approximation
666
+ that breaks down close to the critical temperature, we may extrapolate our results with a
667
+ reasonable accuracy to kc, thus yielding an upper bound on the power spectrum of scales
668
+ leaving the horizon before the phase transition, in the thermal equilibrium limit:
669
+ ∆2
670
+ ζ
671
+ (therm, max)(k) ≃ 150
672
+ (2π)5
673
+ α3
674
+ g2
675
+ ∗,f
676
+ �H
677
+ m
678
+ �3
679
+ .
680
+ (3.19)
681
+ The power spectrum would, thus, be maximized for g∗,f ∼ α ∼ H
682
+ m ∼ 1, yielding ∆2
683
+ ζ
684
+ (therm, max) ∼
685
+ 10−2, but in realistic scenarios with perturbative couplings and at least one fermionic degree
686
+ of freedom in the ambient thermal bath the power spectrum should have a parametrically
687
+ smaller amplitude.
688
+ Hence, if the flaton field has significant interactions with the radiation bath, α ≳ 0.01 (as
689
+ expected in scenarios with a significant number of e-folds of thermal inflation), the thermal
690
+ nature of its fluctuations suppresses the amplitude of the induced curvature perturbations
691
+ on super-horizon scales, which is the main result of this work. While this may seem sur-
692
+ prising, given that thermal fluctuations generically have a larger amplitude than quantum
693
+ vacuum fluctuations (as considered in [16]), it has a simple physical explanation: fluctuation-
694
+ dissipation effects increase not only the density fluctuations on super-horizon scales but also
695
+ the field variance and the average gradient and kinetic energies, thus, the average energy den-
696
+ sity. The latter effect turns out to be more significant and, hence, decreases the amplitude
697
+ of the associated curvature power spectrum with respect to the quantum case.
698
+ – 9 –
699
+
700
+ A relevant consequence of our analysis is that, in realistic scenarios, we do not expect the
701
+ amplitude of the curvature power spectrum to be sufficiently large to lead to the formation of
702
+ primordial black holes, which would require ∆2
703
+ ζ ≳ 10−2 [56–58], at least on scales that become
704
+ super-horizon above the critical temperature. This motivates a better comparison with the
705
+ results obtained in [16] for quantum flaton fluctuations, where larger curvature perturbations
706
+ were obtained. We pursue this comparison in the next Section.
707
+ 4
708
+ Comparison between the thermal and quantum power spectra
709
+ The linear approximation to the quantum power spectrum is given in [16] by:
710
+ ∆2
711
+ ζ
712
+ (quan)(k) =
713
+ 4
714
+ √π
715
+ Γ(ν)
716
+ ν2Γ
717
+
718
+ ν − 3
719
+ 2
720
+
721
+ �H
722
+ m
723
+ �3−2ν� k
724
+ kc
725
+ �3�� k
726
+ kc
727
+ �2
728
+ + m2
729
+ H2
730
+ �−ν
731
+ ,
732
+ (4.1)
733
+ where ν =
734
+
735
+ m2/H2 + 9/4. To better compare our results with those obtained assuming
736
+ purely quantum flaton fluctuations in [16], we plot both power spectra as a function of
737
+ comoving momentum in Figure 1. We show the case of H/m = 0.3 (which according to the
738
+ analysis in [16] yields all dark matter in the form of primordial black holes) and taking α = 1,
739
+ NF = 1 and δ = 0 to maximize the thermal power spectrum. We note that the thermal power
740
+ spectrum is only shown up to k = kc, since our calculation is only valid for modes that exit
741
+ the horizon before the phase transition; whereas the quantum calculation can be extended to
742
+ larger momentum, assuming a subsequent period of fast-roll inflation as mentioned earlier.
743
+ quantum
744
+ thermal
745
+ 0.5
746
+ 1
747
+ 5
748
+ 10
749
+ 10-5
750
+ 10-4
751
+ 10-3
752
+ 10-2
753
+ k / kc
754
+ Δζ
755
+ 2
756
+ Figure 1. The quantum power spectrum (blue) and the thermal power spectrum (red) as a function
757
+ of k for H/m = 0.3, α = 1, mNF = 1 and δ = 0.
758
+ As one can clearly see in this figure, thermal fluctuations significantly suppress the cur-
759
+ vature perturbation spectrum with respect to the quantum case, for the reasons explained
760
+ in the above section. Furthermore, whereas quantum vacuum fluctuations may yield a suffi-
761
+ ciently large amplitude to lead to primordial black hole formation, a thermalized flaton field
762
+ induces much smaller perturbations, although they may nevertheless exceed the even smaller
763
+ fluctuations observed on large scales in the CMB anisotropies spectrum.
764
+ We should note that the quantum power spectrum peaks at scales that leave the horizon
765
+ for T < Tc, where our approximations break down. Extending our calculation to this regime
766
+ – 10 –
767
+
768
+ would involve a different form of the dissipation coefficient, since as the field experiences
769
+ a tachyonic instability the latter no longer corresponds to the perturbative decay width
770
+ at finite temperature. Let us note, however, that fluctuation-dissipation effects are more
771
+ pronounced at the start of thermal inflation as discussed earlier, so that they no longer
772
+ play a significant role near Tc. If the field thermalizes at the onset of thermal inflation, it
773
+ will nevertheless maintain an equilibrium distribution with a decreasing temperature due to
774
+ inflationary expansion. Let us then compare the magnitude of field fluctuations at Tc in both
775
+ the quantum vacuum and thermal cases. The thermal variance is obtained by expanding the
776
+ field in terms of its modes
777
+ ⟨φ(x)φ(y)⟩ =
778
+
779
+ d3k
780
+ (2π)3
781
+ d3k′
782
+ (2π)3 ⟨φkφk′⟩ exp(ik · x) exp(ik · y) ,
783
+ (4.2)
784
+ and using the field modes correlator (3.15), we obtain for the field variance in the thermalized
785
+ limit:
786
+ ⟨φ2⟩therm =
787
+ 2
788
+ (2π)2
789
+ T
790
+ a
791
+ � kcutoff
792
+ 0
793
+ dk
794
+ k2
795
+ k2 + α2T 2c
796
+ = T 2
797
+
798
+
799
+ 1 − α
800
+ π arctan
801
+ �π
802
+ α
803
+ ��
804
+ ,
805
+ (4.3)
806
+ which we note is only mildly dependent on the effective coupling α, while the quantum one
807
+ is given by [16]:
808
+ ⟨φ2⟩quan =
809
+ � H
810
+
811
+ �2 Γ2(ν)22ν
812
+
813
+ �aH
814
+ m
815
+ �2ν
816
+ F
817
+
818
+ ν, 3
819
+ 2; 5
820
+ 2; −
821
+ �aH
822
+ m
823
+ �2�
824
+ ,
825
+ (4.4)
826
+ where F(a, b, c, z) denotes the Hypergeometric function. The field variance in both cases is
827
+ shown in Figure 2, where we extrapolate the thermal variance beyond the phase transition
828
+ purely for comparison purposes.
829
+ quantum
830
+ thermal
831
+ 0.1
832
+ 0.5
833
+ 1
834
+ 5
835
+ 10
836
+ 10-8
837
+ 10-4
838
+ 1
839
+ a / ac
840
+ ϕ2 / H2
841
+ Figure 2. Quantum (blue) and thermal (red) field variance as a function of the scale factor for
842
+ H/m = 0.3, α = 1 and δ = 0. The critical temperature corresponds to the dashed vertical line, below
843
+ which the thermal variance is extrapolated, as indicated by the dashed red line.
844
+ As one can clearly observe in this figure, the quantum field variance is several orders of
845
+ magnitude smaller than the thermal variance before the phase transition, which validates our
846
+ calculation in neglecting vacuum fluctuations in the thermalized flaton scenario. While at
847
+ the critical temperature this is still true, if one extrapolates the thermal variance for T < Tc
848
+ – 11 –
849
+
850
+ (a > ac = 1), we see that quantum fluctuations become dominant less than one e-fold after
851
+ the critical temperature is attained.
852
+ While this extrapolation is non-trivial, since the fluctuation-dissipation effects would
853
+ have to be re-computed, it may suggest that vacuum perturbations may become dominant
854
+ after the phase transition, in which case the computation in [16] would hold. In fact, the peak
855
+ in the quantum power spectrum is obtained for modes with k = H
856
+ 2
857
+
858
+ 3(2ν + 3) > kc = H,
859
+ which leave the horizon for temperatures below the critical value and thus, in the example
860
+ shown above, already in the regime where the quantum variance is dominant.
861
+ This would, in fact, suggest that large enough curvature perturbations leading to pri-
862
+ mordial black hole formation may be generated after thermal inflation (from quantum fluc-
863
+ tuations), but it is not clear that quantum and thermal fluctuations may be examined in-
864
+ dependently nor that the thermal variance maintains its form below Tc. In addition, and
865
+ perhaps most importantly, the fact that the thermal variance is still typically a few orders of
866
+ magnitude larger than the quantum one at the critical temperature indicates that the flaton
867
+ field should reach the minimum of its potential much more quickly if it thermalizes, therefore
868
+ considerably shortening, or even possibly, precluding an ensuing period of fast-roll inflation.
869
+ A more complete analysis of the problem including both thermal and quantum fluctua-
870
+ tions in the analysis, potentially along the lines of [59], is required to compute the spectrum
871
+ of curvature perturbations on scales that leave the horizon at temperatures below Tc, and is
872
+ left for future work.
873
+ 5
874
+ Conclusion
875
+ We have computed the spectrum of curvature perturbations generated during thermal in-
876
+ flation taking into account the thermal fluctuations of the flaton field driving this period.
877
+ These are associated with fluctuation-dissipation effects driven by the flaton’s interactions
878
+ with the ambient radiation bath. Our analysis involved solving the Langevin-like equation
879
+ effectively describing the evolution of the flaton’s Fourier modes. We computed the associ-
880
+ ated correlation functions in the approximation of a gaussian white noise and a dominant
881
+ thermal contribution to the flaton’s mass, for temperatures above the critical value at which
882
+ the flaton is held at the false vacuum at the origin.
883
+ We have concluded that, if the flaton’s (finite-temperature) decay width exceeds the
884
+ Hubble parameter at the onset of thermal inflation, the field essentially thermalizes with
885
+ the ambient radiation bath, contributing approximately as an extra relativistic degree of
886
+ freedom. This occurs when the effective coupling between the flaton and the thermalized
887
+ degrees of freedom α ≳ 0.01, which roughly corresponds to the parametric regime where over
888
+ 10 e-folds of thermal inflation (above Tc) occur. We found that the consequent increase in
889
+ the field variance and the average gradient and kinetic energies enhances the background
890
+ energy density (namely its time-dependent part that determines curvature perturbations)
891
+ with respect to a field with purely quantum vacuum fluctuations analyzed in [16]. Despite the
892
+ enhancement of super-horizon density fluctuations in the thermal case, the overall amplitude
893
+ of the curvature power spectrum is significantly reduced with respect to the quantum case, so
894
+ that thermal fluctuations behave very differently compared to their quantum counterparts,
895
+ regarding the generation of curvature perturbations during periods of thermal inflation.
896
+ While our analysis is not applicable for modes that leave the horizon once the tempera-
897
+ ture has fallen below the critical value and the field starts rolling towards the true minimum
898
+ of its potential, we expect thermal effects to become less relevant in this regime and quantum
899
+ – 12 –
900
+
901
+ fluctuations to become dominant, potentially yielding large curvature perturbations at such
902
+ scales as computed in [16]. However, a full analysis including both quantum and thermal
903
+ fluctuations in the dynamics of the flaton field is required to accurately describe the puta-
904
+ tive fast-roll inflation phase below the critical temperature. It must be noted, in any case,
905
+ that such a phase is necessarily shortened by the fact that the field variance at the critical
906
+ temperature, which sets the typical field value at this stage, is much larger if the field ther-
907
+ malizes with the radiation bath. It is therefore unclear whether super-horizon fluctuations
908
+ with k > kc can be generated in this phase.
909
+ We have modelled the thermal bath through a set of fermion species coupled to the
910
+ flaton field, but we expect our main conclusions to hold with the inclusion of other bosonic
911
+ fields, like scalars or vector bosons: if Γφ > H at some stage during thermal inflation, the
912
+ field will be driven towards a thermal fluctuation spectrum. Only the details of how and when
913
+ this equilibrium is attained may depend on the types of light fields that interact with the flat
914
+ direction. Our analysis shows that thermalization does not require large coupling constants
915
+ describing the interaction between the flaton and the radiation bath.
916
+ In any case such
917
+ couplings cannot be too suppressed to sustain a sufficiently long period of thermal inflation
918
+ that may, in particular, dilute any unwanted relics generated after the primary slow-roll
919
+ inflation period. Hence, fluctuation-dissipation effects cannot in general be neglected in the
920
+ dynamics of the flaton field and on the curvature perturbations they induce during thermal
921
+ inflation. This is particularly relevant if one wishes to understand whether thermal inflation
922
+ periods may leave behind a sizeable population of primordial black holes, and we hope that
923
+ our work motivates further exploration of these and related issues, including other potential
924
+ implications for structure formation in our Universe [60].
925
+ Acknowledgements
926
+ M.B.G. work has been partially supported by MICINN (PID2019-105943GB-I00/AEI/10.130
927
+ 39/501100011033) and “Junta de Andaluc´ıa” grant P18-FR-4314. JMG acknowledges the
928
+ support from the Funda¸c˜ao para a Ciˆencia e a Tecnologia, I.P. (FCT) through the Research
929
+ Fellowship No.
930
+ 2021.05180.BD derived from Portuguese national funds.
931
+ This work was
932
+ supported by the CFisUC project No. UID/FIS/04564/2020 and by the FCT-CERN grant
933
+ No. CERN/FIS-PAR/0027/2021.
934
+ A
935
+ Evolution of the temperature during thermal inflation
936
+ In our calculation we assumed that no significant entropy is produced during thermal inflation
937
+ as a result of fluctuation-dissipation effects, i.e. that T ∝ a−1. In this appendix we aim to
938
+ verify this assumption. The flaton field satisfies the Langevin-like equation [25]:
939
+ ¨φ + (3H + Γφ) ˙φ − a−2∇2φ + m2
940
+ effφ = ξ ,
941
+ (A.1)
942
+ and by multiplying both sides by ˙φ we obtain:
943
+ ˙ρφ + 3H(ρφ + pφ) = ξ ˙φ − Γφ ˙φ2 + α2T ˙Tφ2 + a−2∂i( ˙φ∂iφ) ,
944
+ (A.2)
945
+ where the field’s energy density and pressure are given by:
946
+ ρφ = 1
947
+ 2
948
+ ˙φ2 + 1
949
+ 2a−2∂iφ∂iφ + V (φ) ,
950
+ pφ = 1
951
+ 2
952
+ ˙φ2 − 1
953
+ 6a−2∂iφ∂iφ − V (φ) .
954
+ (A.3)
955
+ – 13 –
956
+
957
+ Conservation of the full energy-momentum tensor then yields the following continuity equa-
958
+ tion for the radiation energy density:
959
+ ˙ρR + 4HρR = − ⟨ξ ˙φ⟩ + Γφ ⟨ ˙φ2⟩ − α2T ˙T ⟨φ2⟩ − a−2 ⟨∂i( ˙φ∂iφ⟩) .
960
+ (A.4)
961
+ We note that the radiation energy density is an ensemble average over the energy density
962
+ of the relativistic degrees of freedom, which justifies considering also the thermal average
963
+ of the terms on the right-hand side of the above equation. Here we have also neglected the
964
+ sub-leading corrections to the radiation energy and entropy densities from the fermions’ finite
965
+ mass, ∼ g ⟨
966
+
967
+ φ2⟩ ∼ gT ≪ T.
968
+ Using the field solutions we obtained for the correlators1:
969
+ ⟨ξ ˙φ⟩ = π
970
+ 6 ΓφT 4 ,
971
+ Γφ ⟨ ˙φ2⟩ = π
972
+ 6 ΓφT 4(1 − δ) ,
973
+ α2T ˙T ⟨φ2⟩ = α2
974
+ 2πT 3 ˙T
975
+
976
+ 1 − α
977
+ π arctan
978
+ �π
979
+ α
980
+ ��
981
+ (1 − δ) ≈ 15α2
982
+ 4π3g∗
983
+ (1 − δ) ˙ρR ,
984
+ ⟨∂i( ˙φ∂iφ⟩ = 0 .
985
+ (A.5)
986
+ Note that the third term is related to the time-dependence of the thermal flaton mass, and
987
+ yields a contribution to the variation of the radiation energy density comparable to the above-
988
+ mentioned sub-leading corrections from the fermions’ non-vanishing mass. For consistency,
989
+ we thus neglect this term, and obtain:
990
+ ˙ρR + 4HρR = −5/π
991
+ g∗
992
+ ΓφρRδ .
993
+ (A.6)
994
+ From this we immediately see that the right-hand side can only be significant if Γφ ≳ H,
995
+ but this implies a quick thermalization of the flaton field such that δ → 0 exponentially
996
+ fast, thus making this term negligible. This simply reflects the balance between the effects
997
+ of fluctuations and dissipation as the flaton field reaches an equilibrium with the radiation
998
+ bath. Note, furthermore, that the term on the right-hand side is suppressed by the relative
999
+ contribution of the flaton to the number of relativistic species in equilibrium, (g∗,f − g∗)/g∗,
1000
+ as obtained in Section 3. We therefore conclude that one may consistently assume ρR ∝ a−4
1001
+ and hence that T ∝ a−1 during thermal inflation.
1002
+ B
1003
+ Field correlation functions
1004
+ Here we list the field correlation functions used to compute the curvature perturbation power
1005
+ spectrum. As we mentioned above, when integrating over momentum modes we consider
1006
+ a sharp cut-off at k = πTc, which constitutes a good approximation to the behaviour of
1007
+ the noise correlation function [46].
1008
+ To compute the curvature perturbation power spec-
1009
+ trum on super-horizon scales, k ≪ aH, we consider the leading order results in k/αTc ∼
1010
+ (k/aH)(M0/MP )a ≪ 1 considering M0 < MP and noting that in our convention a < ac = 1
1011
+ above the critical temperature.
1012
+ 1⟨∇( ˙φ∇φ⟩) = −
1013
+
1014
+ d3k1
1015
+ (2π)3
1016
+ d3k2
1017
+ (2π)3 ⟨ ˙φk1φk2⟩ k2 · (k1 + k2) exp [ix · (k1 + k2)] = 0 , since the integral of this delta
1018
+ function is non-zero if and only if k1 = −k2.
1019
+ – 14 –
1020
+
1021
+ Mode correlators
1022
+ The building blocks of all field correlators are the equal time correlators between the field
1023
+ modes and their time derivatives. Writing φk and ˙φk in terms of the Green’s function (3.13):
1024
+ φk = H−2
1025
+ � z
1026
+ zi
1027
+ ds s−2Gs(z, s)ξk(s) ,
1028
+ ˙φk = H−1z
1029
+ � z
1030
+ zi
1031
+ ds s−2∂zGs(z, s)ξk(s) ,
1032
+ (B.1)
1033
+ one finds:
1034
+ ⟨φkφk′⟩ = (2π)3δ3(k + k′) T
1035
+ a3ω2
1036
+ k
1037
+ (1 − δ) ,
1038
+ ⟨ ˙φk ˙φk′⟩ = (2π)3δ3(k + k′) T
1039
+ a3 (1 − δ) ,
1040
+ ⟨φk ˙φk′⟩ = −Γφ
1041
+ 2 ⟨φkφk′⟩ = −(2π)3δ3(k + k′) TΓφ
1042
+ 2a3ω2
1043
+ k
1044
+ (1 − δ) .
1045
+ (B.2)
1046
+ Field correlators
1047
+ To compute the total energy density (3.4a) one needs to determine the field variance and the
1048
+ average kinetic and gradient energies. Expanding the field in terms of comoving momentum
1049
+ modes, these are given by:
1050
+ ⟨φ2⟩ =
1051
+
1052
+ d3k
1053
+ (2π)3
1054
+ d3k′
1055
+ (2π)3 ⟨φkφk′⟩ exp(ix · (k + k′)) ,
1056
+ ⟨ ˙φ2⟩ =
1057
+
1058
+ d3k
1059
+ (2π)3
1060
+ d3k′
1061
+ (2π)3 ⟨ ˙φk ˙φk′⟩ exp(ix · (k + k′)) ,
1062
+ ⟨∂iφ∂iφ⟩ =
1063
+
1064
+ d3k
1065
+ (2π)3
1066
+ d3k′
1067
+ (2π)3 ⟨φkφk′⟩ k · k′ exp(ix · (k + k′)) .
1068
+ (B.3)
1069
+ Inserting the mode correlation functions (B.2) and integrating over comoving momenta up
1070
+ to πTc one obtains:
1071
+ ⟨φ2⟩ = T 2
1072
+ 2π (1 − δ)
1073
+
1074
+ 1 − α
1075
+ π arctan
1076
+ �π
1077
+ α
1078
+ ��
1079
+ ,
1080
+ ⟨ ˙φ2⟩ = πT 4
1081
+ 6 (1 − δ) ,
1082
+ ⟨∂iφ∂iφ⟩ = π
1083
+ 2 a2T 4(1 − δ)
1084
+ �1
1085
+ 3 −
1086
+ �α
1087
+ π
1088
+ �2
1089
+ +
1090
+ �α
1091
+ π
1092
+ �3
1093
+ arctan
1094
+ �π
1095
+ α
1096
+ ��
1097
+ .
1098
+ (B.4)
1099
+ Contributions to the power spectrum
1100
+ Consider the power spectrum of a generic correlator ⟨Xi(0)Xj(x)⟩, for example X1 = φ,
1101
+ X2 = ˙φ and X3 = ∂iφ, that appears in (3.7):
1102
+
1103
+ d3x exp(−ik · x) ⟨Xi(0)Xj(x)⟩2 .
1104
+ (B.5)
1105
+ Note that, upon expanding each quantity Xj(x) in terms of comoving momentum modes, this
1106
+ yields four momentum integrals and a volume integral. Two of the momentum integrals can
1107
+ – 15 –
1108
+
1109
+ be performed using the two delta functions appearing in the mode correlators (B.2). Then,
1110
+ the volume integral will generate a delta function with the two surviving momentum modes:
1111
+
1112
+ d3x exp[−ix · (k1 + k2 + k)] = (2π)3δ3(k1 + k2 + k) .
1113
+ (B.6)
1114
+ After integrating this delta function over another of the 3-momentum variables, we are left
1115
+ with a single 3-dimensional integral over k that we need to compute in each case. In the
1116
+ following table we give the different contributions to the power spectrum in terms of their
1117
+ corresponding momentum integrals:
1118
+ Table 1. Contributions to the power spectrum in Eq. (3.17).
1119
+ field-field
1120
+ m4
1121
+ eff
1122
+ 2
1123
+
1124
+ d3x exp(−ik · x) ⟨φ(0)φ(x)⟩2
1125
+ (1 − δ)2
1126
+ α3
1127
+ 2(2π)3 T 5
1128
+ a3 I1(k)
1129
+ field-kinetic
1130
+ m2
1131
+ eff
1132
+
1133
+ d3x exp(−ik · x) ⟨φ(0) ˙φ(x)⟩
1134
+ 2
1135
+ (1 − δ)2
1136
+ α
1137
+ (2π)3
1138
+ � 3α4
1139
+ 32π
1140
+ �2 T 5
1141
+ a3 I1(k)
1142
+ field-gradient
1143
+ a−2m2
1144
+ eff
1145
+
1146
+ d3x exp(−ik · x) ⟨φ(0)∂iφ(x)⟩2
1147
+ (1 − δ)2
1148
+ α3
1149
+ (2π)3 T 5
1150
+ a3 I2(k)
1151
+ kinetic-kinetic
1152
+ 1
1153
+ 2
1154
+
1155
+ d3x exp(−ik · x) ⟨ ˙φ(0) ˙φ(x)⟩
1156
+ 2
1157
+ (1 − δ)2
1158
+ α3
1159
+ 2(2π)3 T 5
1160
+ a3 I3(k)
1161
+ kinetic-gradient
1162
+ a−2 �
1163
+ d3x exp(−ik · x) ⟨ ˙φ(0)∂iφ(x)⟩
1164
+ 2
1165
+ (1 − δ)2
1166
+ α
1167
+ (2π)3
1168
+ � 3α4
1169
+ 32π
1170
+ �2 T 5
1171
+ a3 I2(k)
1172
+ gradient-gradient
1173
+ a−4
1174
+ 2
1175
+
1176
+ d3x exp(−ik · x) ⟨∂iφ(0)∂jφ(x)⟩2
1177
+ (1 − δ)2
1178
+ α3
1179
+ 2(2π)3 T 5
1180
+ a3 I4(k)
1181
+ The momentum integrals can be expressed in terms of the normalized comoving mo-
1182
+ mentum y = k/αTc with norm 0 < y < π/α. These are given by:
1183
+ I1(k) =
1184
+
1185
+ dy dΩ
1186
+ y2
1187
+ (y2 + 1)[(y + k/(αTc))2 + 1] ,
1188
+ I2(k) =
1189
+
1190
+ dy dΩ
1191
+ y2y · (y + k/(αTc))
1192
+ (y2 + 1)[(y + k/(αTc))2 + 1] ,
1193
+ I3(k) =
1194
+
1195
+ dy dΩ y2 = 4π4
1196
+ 3α3 ,
1197
+ I4(k) =
1198
+
1199
+ dy dΩ
1200
+ y2[y · (y + k/(αTc))]2
1201
+ (y2 + 1)[(y + k/(αTc))2 + 1] ,
1202
+ (B.7)
1203
+ where dΩ denotes integration over the solid angle in momentum space. Except for I3(k), all
1204
+ integrals above depend non-trivially on k. To leading order in k/αTc these integrals are given
1205
+ by:
1206
+ I1(k) ≃ 4π
1207
+
1208
+ − 1
1209
+ 2
1210
+ πα
1211
+ α2 + π2 + 1
1212
+ 2 arctan(π/α)
1213
+
1214
+ ,
1215
+ I2(k) ≃ 4π
1216
+ �π
1217
+ α + 1
1218
+ 2
1219
+ απ
1220
+ α2 + π2 − 3
1221
+ 2 arctan(π/α)
1222
+
1223
+ ,
1224
+ I4(k) ≃ 4π
1225
+
1226
+ − 2π
1227
+ α + 1
1228
+ 3
1229
+ π3
1230
+ α3 − 1
1231
+ 2
1232
+ απ
1233
+ α2 + π2 + 5
1234
+ 2 arctan(π/α)
1235
+
1236
+ ,
1237
+ (B.8)
1238
+ which are the expressions used to compute the curvature perturbation power spectrum (3.17)
1239
+ given in the main body of this article.
1240
+ – 16 –
1241
+
1242
+ References
1243
+ [1] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
1244
+ Lett. B 91 (1980) 99.
1245
+ [2] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not.
1246
+ Roy. Astron. Soc. 195 (1981) 467.
1247
+ [3] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness
1248
+ Problems, Phys. Rev. D 23 (1981) 347.
1249
+ [4] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon,
1250
+ Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982)
1251
+ 389.
1252
+ [5] J. Rocher and M. Sakellariadou, Supersymmetric grand unified theories and cosmology, JCAP
1253
+ 03 (2005) 004 [hep-ph/0406120].
1254
+ [6] H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev.
1255
+ Lett. 48 (1982) 223.
1256
+ [7] S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev.
1257
+ Lett. 48 (1982) 1303.
1258
+ [8] M.Y. Khlopov and A.D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett. B 138 (1984) 265.
1259
+ [9] M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and
1260
+ Gravitino, Phys. Rev. D 78 (2008) 065011 [0804.3745].
1261
+ [10] L. Randall and S.D. Thomas, Solving the cosmological moduli problem with weak scale inflation,
1262
+ Nucl. Phys. B 449 (1995) 229 [hep-ph/9407248].
1263
+ [11] D.H. Lyth and E.D. Stewart, Cosmology with a TeV mass GUT Higgs, Phys. Rev. Lett. 75
1264
+ (1995) 201 [hep-ph/9502417].
1265
+ [12] D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53
1266
+ (1996) 1784 [hep-ph/9510204].
1267
+ [13] T. Asaka and M. Kawasaki, Cosmological moduli problem and thermal inflation models, Phys.
1268
+ Rev. D 60 (1999) 123509 [hep-ph/9905467].
1269
+ [14] T. Barreiro, E.J. Copeland, D.H. Lyth and T. Prokopec, Some aspects of thermal inflation:
1270
+ The Finite temperature potential and topological defects, Phys. Rev. D 54 (1996) 1379
1271
+ [hep-ph/9602263].
1272
+ [15] T. Gherghetta, C.F. Kolda and S.P. Martin, Flat directions in the scalar potential of the
1273
+ supersymmetric standard model, Nucl. Phys. B 468 (1996) 37 [hep-ph/9510370].
1274
+ [16] K. Dimopoulos, T. Markkanen, A. Racioppi and V. Vaskonen, Primordial Black Holes from
1275
+ Thermal Inflation, JCAP 07 (2019) 046 [1903.09598].
1276
+ [17] A.D. Linde, Fast roll inflation, JHEP 11 (2001) 052 [hep-th/0110195].
1277
+ [18] B. Carr and F. Kuhnel, Primordial black holes as dark matter candidates, SciPost Phys. Lect.
1278
+ Notes 48 (2022) 1 [2110.02821].
1279
+ [19] A. Berera, Warm inflation, Phys. Rev. Lett. 75 (1995) 3218 [astro-ph/9509049].
1280
+ – 17 –
1281
+
1282
+ [20] A. Berera and L.-Z. Fang, Thermally induced density perturbations in the inflation era, Phys.
1283
+ Rev. Lett. 74 (1995) 1912 [astro-ph/9501024].
1284
+ [21] A. Berera, M. Gleiser and R.O. Ramos, Strong dissipative behavior in quantum field theory,
1285
+ Phys. Rev. D 58 (1998) 123508 [hep-ph/9803394].
1286
+ [22] A. Berera, M. Gleiser and R.O. Ramos, A First principles warm inflation model that solves the
1287
+ cosmological horizon / flatness problems, Phys. Rev. Lett. 83 (1999) 264 [hep-ph/9809583].
1288
+ [23] A. Berera, Warm inflation at arbitrary adiabaticity: A Model, an existence proof for
1289
+ inflationary dynamics in quantum field theory, Nucl. Phys. B 585 (2000) 666
1290
+ [hep-ph/9904409].
1291
+ [24] A. Berera and R.O. Ramos, The Affinity for scalar fields to dissipate, Phys. Rev. D 63 (2001)
1292
+ 103509 [hep-ph/0101049].
1293
+ [25] A. Berera, I.G. Moss and R.O. Ramos, Warm Inflation and its Microphysical Basis, Rept.
1294
+ Prog. Phys. 72 (2009) 026901 [0808.1855].
1295
+ [26] M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009)
1296
+ 2207 [0902.0521].
1297
+ [27] M. Bastero-Gil, A. Berera and R.O. Ramos, Dissipation coefficients from scalar and fermion
1298
+ quantum field interactions, JCAP 09 (2011) 033 [1008.1929].
1299
+ [28] M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D
1300
+ 84 (2011) 103503 [1103.5623].
1301
+ [29] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm baryogenesis, Phys. Lett. B 712
1302
+ (2012) 425 [1110.3971].
1303
+ [30] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, General dissipation coefficient in
1304
+ low-temperature warm inflation, JCAP 01 (2013) 016 [1207.0445].
1305
+ [31] S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos and J.G. Rosa, The importance
1306
+ of being warm (during inflation), Phys. Lett. B 732 (2014) 116 [1307.5868].
1307
+ [32] M. Bastero-Gil, A. Berera, I.G. Moss and R.O. Ramos, Cosmological fluctuations of a random
1308
+ field and radiation fluid, JCAP 05 (2014) 004 [1401.1149].
1309
+ [33] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm Little Inflaton, Phys. Rev. Lett.
1310
+ 117 (2016) 151301 [1604.08838].
1311
+ [34] J.a.G. Rosa and L.B. Ventura, Warm Little Inflaton becomes Cold Dark Matter, Phys. Rev.
1312
+ Lett. 122 (2019) 161301 [1811.05493].
1313
+ [35] M. Bastero-Gil, A. Berera, R.O. Ramos and J.a.G. Rosa, Towards a reliable effective field
1314
+ theory of inflation, Phys. Lett. B 813 (2021) 136055 [1907.13410].
1315
+ [36] K.V. Berghaus, P.W. Graham and D.E. Kaplan, Minimal Warm Inflation, JCAP 03 (2020)
1316
+ 034 [1910.07525].
1317
+ [37] M. Bastero-Gil, A. Berera, R. Brandenberger, I.G. Moss, R.O. Ramos and J.G. Rosa, The role
1318
+ of fluctuation-dissipation dynamics in setting initial conditions for inflation, JCAP 01 (2018)
1319
+ 002 [1612.04726].
1320
+ [38] S. Bartrum, A. Berera and J.G. Rosa, Fluctuation-dissipation dynamics of cosmological scalar
1321
+ fields, Phys. Rev. D 91 (2015) 083540 [1412.5489].
1322
+ – 18 –
1323
+
1324
+ [39] J.a.G. Rosa and L.B. Ventura, Spontaneous breaking of the Peccei-Quinn symmetry during
1325
+ warm inflation, 2105.05771.
1326
+ [40] M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric
1327
+ standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453].
1328
+ [41] G.R. Dvali and Q. Shafi, Gauge hierarchy, Planck scale corrections and the origin of GUT scale
1329
+ in supersymmetric SU(3)**3, Phys. Lett. B 339 (1994) 241 [hep-ph/9404334].
1330
+ [42] L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974)
1331
+ 3320.
1332
+ [43] K. Yamamoto, Phase Transition Associated With Intermediate Gauge Symmetry Breaking in
1333
+ Superstring Models, Phys. Lett. B 168 (1986) 341.
1334
+ [44] L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73
1335
+ (1994) 3195 [hep-th/9405187].
1336
+ [45] K. Dimopoulos and C. Owen, How Thermal Inflation can save Minimal Hybrid Inflation in
1337
+ Supergravity, JCAP 10 (2016) 020 [1606.06677].
1338
+ [46] T. Hiramatsu, Y. Miyamoto and J. Yokoyama, Effects of thermal fluctuations on thermal
1339
+ inflation, JCAP 03 (2015) 024 [1412.7814].
1340
+ [47] E.A. Calzetta and B.-L.B. Hu, Nonequilibrium Quantum Field Theory, Cambridge Monographs
1341
+ on Mathematical Physics, Cambridge University Press (9, 2008), 10.1017/CBO9780511535123.
1342
+ [48] I.G. Moss and C.M. Graham, Particle production and reheating in the inflationary universe,
1343
+ Phys. Rev. D 78 (2008) 123526 [0810.2039].
1344
+ [49] M. Gleiser and R.O. Ramos, Microphysical approach to nonequilibrium dynamics of quantum
1345
+ fields, Phys. Rev. D 50 (1994) 2441 [hep-ph/9311278].
1346
+ [50] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale - Free
1347
+ Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679.
1348
+ [51] D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary Particle
1349
+ Physics: Physics of the Large and the Small, pp. 523–686, 2011, DOI [0907.5424].
1350
+ [52] E.W. Kolb and M.S. Turner, The Early Universe, vol. 69, CRC Press (1990),
1351
+ 10.1201/9780429492860.
1352
+ [53] L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency
1353
+ distribution in any number of variables, 11, 1918. 10.2307/2331932.
1354
+ [54] C. Vignat, A generalized isserlis theorem for location mixtures of gaussian random vectors,
1355
+ Statistics & Probability Letters 82 (2012) 67–71 [1107.2309].
1356
+ [55] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of
1357
+ Standards, 10th edition ed. (1972).
1358
+ [56] A.M. Green and A.R. Liddle, Constraints on the density perturbation spectrum from primordial
1359
+ black holes, Phys. Rev. D 56 (1997) 6166 [astro-ph/9704251].
1360
+ [57] M.Y. Khlopov, Primordial Black Holes, Res. Astron. Astrophys. 10 (2010) 495 [0801.0116].
1361
+ [58] A.M. Green, Primordial Black Holes: sirens of the early Universe, Fundam. Theor. Phys. 178
1362
+ (2015) 129 [1403.1198].
1363
+ – 19 –
1364
+
1365
+ [59] R.O. Ramos and L.A. da Silva, Power spectrum for inflation models with quantum and thermal
1366
+ noises, JCAP 03 (2013) 032 [1302.3544].
1367
+ [60] M. Leo, C.M. Baugh, B. Li and S. Pascoli, N-body simulations of structure formation in
1368
+ thermal inflation cosmologies, JCAP 12 (2018) 010 [1807.04980].
1369
+ – 20 –
1370
+
WdFJT4oBgHgl3EQf4i1g/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
X9FRT4oBgHgl3EQf_DhA/content/tmp_files/2301.13693v1.pdf.txt ADDED
@@ -0,0 +1,959 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13693v1 [math.NA] 31 Jan 2023
2
+ Application of dimension truncation error analysis to
3
+ high-dimensional function approximation
4
+ Philipp A. Guth†
5
+ Vesa Kaarnioja‡
6
+ February 1, 2023
7
+ Abstract
8
+ Parametric mathematical models such as partial differential equations with random
9
+ coefficients have received a lot of attention within the field of uncertainty quantifica-
10
+ tion. The model uncertainties are often represented via a series expansion in terms of
11
+ the parametric variables. In practice, this series expansion needs to be truncated to
12
+ a finite number of terms, introducing a dimension truncation error to the numerical
13
+ simulation of a parametric mathematical model. There have been several studies of
14
+ the dimension truncation error corresponding to different models of the input random
15
+ field in recent years, but many of these analyses have been carried out within the
16
+ context of numerical integration. In this paper, we study the L2 dimension truncation
17
+ error of the parametric model problem. Estimates of this kind arise in the assessment
18
+ of the dimension truncation error for function approximation in high dimensions. In
19
+ addition, we show that the dimension truncation error rate is invariant with respect to
20
+ certain transformations of the parametric variables. Numerical results are presented
21
+ which showcase the sharpness of the theoretical results.
22
+ 1
23
+ Introduction
24
+ In the field of uncertainty quantification it is common to study mathematical models with
25
+ uncertain influences parameterized by countably infinite sequences of random variables.
26
+ Consider, for instance, an abstract model M : X × U → Y such that
27
+ M(g(y), y) = 0,
28
+ (1)
29
+ where X and Y are separable Hilbert spaces and U is a nonempty subset of the infinite-
30
+ dimensional sequence space of parameters RN. The solution g(y) ∈ X to (1) for y ∈ U, if
31
+ it exists, may be computationally expensive to evaluate. To this end, it may be preferable
32
+ to instead approximate g using a surrogate which is cheap to evaluate and hence enables,
33
+ e.g., efficient sampling of the (approximated) solution.
34
+ Some possible surrogate models include, but are not limited to, Gaussian process
35
+ regression [3], reduced basis approaches [1, 21], generalized polynomial chaos expansions
36
+ [4, 23], neural network approximations [2, 7, 9, 22], and kernel interpolation based on
37
+ lattice point sets [16, 25, 26]. The results presented in this manuscript are particularly
38
+ well-suited to the analysis of kernel methods used in conjunction with the so-called periodic
39
+ model discussed in [13, 16, 17], and we will devote a section of this manuscript to explore
40
+ the application of our dimension truncation results within this framework.
41
+ †Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences,
42
+ Altenbergerstraße 69, A-4040 Linz, Austria, philipp.guth@ricam.oeaw.ac.at
43
+ ‡Department of Mathematics and Computer Science, Free University of Berlin, Arnimallee 6, 14195
44
+ Berlin, Germany, vesa.kaarnioja@fu-berlin.de
45
+ 1
46
+
47
+ Integration
48
+ Function approximation
49
+ Affine parametric
50
+ [6, 20]
51
+ [16]
52
+ operator equation setting
53
+ rate O(s− 2
54
+ p +1)
55
+ rate O(s− 1
56
+ p + 1
57
+ 2)
58
+ Non-affine parametric
59
+ [8, 12]
60
+ this paper
61
+ operator equation setting
62
+ rate O(s− 2
63
+ p +1)
64
+ rate O(s− 1
65
+ p + 1
66
+ 2)
67
+ Table 1: An overview of various dimension truncation results.
68
+ A natural first step for the numerical treatment of (1) is the approximation by a
69
+ dimensionally-truncated model Ms : X × Us → Y such that
70
+ Ms(gs(y≤s), y≤s) = 0,
71
+ where ∅ ̸= Us ⊆ Rs and gs(y≤s) ∈ X for all y≤s ∈ Us. Consider the problem of finding
72
+ a surrogate solution gs,n := An(gs) using an algorithm An which uses n point evaluations
73
+ of the s-dimensional function gs, where the surrogate belongs to X such that
74
+ ∥gs − gs,n∥L2µ(U;X)
75
+ n→∞
76
+ −−−→ 0
77
+ with some known convergence rate and µ indicating a probability measure on U. The total
78
+ error of the approximation obtained in this fashion can be estimated using the triangle
79
+ inequality
80
+ ∥g − gs,n∥L2µ(U;X) ≤ ∥g − gs∥L2µ(U;X) + ∥gs − gs,n∥L2µ(U;X).
81
+ In this manuscript we focus on the first term—the dimension truncation error—which is
82
+ independent of the chosen approximation scheme An.
83
+ Dimension truncation error rates are typically studied for problems involving partial
84
+ differential equations (PDEs) with random inputs. For integration problems a dimension
85
+ truncation rate is derived in [20] for the source problem with an affine parameterization
86
+ of the diffusion coefficient. This rate was then improved by [6] in the generalized context
87
+ of affine parametric operator equations. Dimension truncation has also been studied for
88
+ coupled PDE systems arising in optimal control problems under uncertainty [10], in the
89
+ context of the periodic model of uncertainty quantification for both numerical integra-
90
+ tion [17] and kernel interpolation [16], as well as for Bayesian inverse problems governed
91
+ by PDEs [5, 15]. The results in these papers have been proved using Neumann series,
92
+ which is known to work well in the affine parametric setting, but may lead to suboptimal
93
+ results if the problem depends nonlinearly on the parameters.
94
+ In the non-affine setting, using Taylor series makes it possible to derive dimension
95
+ truncation error rates by exploiting the parametric regularity of the problem, whereas the
96
+ Neumann series approach relies fundamentally on the parametric structure of the model.
97
+ The Taylor series approach was first applied in [8], and motivated the authors in [11]
98
+ and [12] to derive dimension truncation error rates for sufficiently smooth, Banach space
99
+ valued integrands, and with parameters following a generalized β-Gaussian distribution.
100
+ An overview of the various dimension truncation error bounds studied in the literature is
101
+ given in Table 1.
102
+ Our manuscript is structured as follows. Subsection 1.1 introduces the multi-index
103
+ notation used throughout the paper.
104
+ The problem setting is introduced in Section 2,
105
+ including the central assumptions for the ensuing dimension truncation analysis. Section 3
106
+ contains the L2 dimension truncation theorem for Hilbert space valued functions, and
107
+ in Section 4 we discuss the invariance of the dimension truncation rate under certain
108
+ transformations of the variables. Numerical experiments assessing the sharpness of our
109
+ 2
110
+
111
+ theoretical results are presented in Section 5. The paper ends with some conclusions in
112
+ Section 6.
113
+ 1.1
114
+ Notations and preliminaries
115
+ Throughout this manuscript, boldfaced symbols are used to denote multi-indices while the
116
+ subscript notation mj is used to refer to the j-th component of multi-index m. Let
117
+ F := {m ∈ NN
118
+ 0 : |m| < ∞}
119
+ denote the set of finitely supported multi-indices, where the order of multi-index m is
120
+ defined as
121
+ |m| :=
122
+
123
+ j≥1
124
+ mj.
125
+ Moreover, we denote
126
+ |m|∞ := max
127
+ j≥1 mj,
128
+ and, for any sequence x := (xj)∞
129
+ j=1 of real numbers and m ∈ F, we define
130
+ xm :=
131
+
132
+ j≥1
133
+ xmj
134
+ j ,
135
+ where we use the convention 00 := 1.
136
+ 2
137
+ Problem setting
138
+ Let X be a real separable Hilbert space, U := [− 1
139
+ 2, 1
140
+ 2]N a set of parameters, and suppose
141
+ that g(y) ∈ X is a parameterized family of functions with smooth dependence on y ∈
142
+ U.
143
+ We define gs(y) := g(y≤s, 0) := g(y1, . . . , ys, 0, 0, . . .) and assume that µ(dy) :=
144
+
145
+ j≥1 µ(dyj) is a countable product probability measure, i.e., µ(U) = 1. We suppose that
146
+ 1. For µ-a.e. y ∈ U, there holds
147
+ ∥g(y) − gs(y)∥X
148
+ s→∞
149
+ −−−→ 0.
150
+ 2. Let (Θk)k≥0 and b := (bj)j≥1 be sequences of nonnegative numbers such that b ∈
151
+ ℓp(N) for some p ∈ (0, 1) and b1 ≥ b2 ≥ · · · .
152
+ Suppose that g is continuously
153
+ differentiable up to order k + 1, with
154
+ ∥∂νg(y)∥X ≤ Θ|ν|bν
155
+ for all y ∈ U and for all ν ∈ Fk := {ν ∈ NN
156
+ 0 : |ν| ≤ k + 1}, where k := ⌈
157
+ 1
158
+ 1−p⌉.
159
+ 3. There holds
160
+ � 1/2
161
+ −1/2 yj µ(dyj) = 0 and there exists a constant Cµ ≥ 0 such that
162
+ � 1/2
163
+ −1/2 |yj|k µ(dyj) ≤ Cµ for all k ≥ 2.
164
+ If Assumption 2 holds, then we infer that y �→ G(g(y)) for all G ∈ X′ is continuous as
165
+ a composition of continuous mappings. Hence y �→ G(g(y)) is measurable for all G ∈ X′,
166
+ i.e., y �→ g(y) is weakly measurable.
167
+ Since X is assumed to be a separable Hilbert
168
+ space, by Pettis’ theorem (cf., e.g., [24, Chapter 4]) we obtain that y �→ g(y) is strongly
169
+ measurable. The upper bound in Assumption 2 is µ-integrable. Thus we conclude from
170
+ Bochner’s theorem (cf., e.g., [24, Chapter 5]) and Assumption 2 that g is µ-integrable over
171
+ U.
172
+ 3
173
+
174
+ Further, µ-a.e. equality defines an equivalence relation among strongly µ-measurable
175
+ functions. By L2
176
+ µ(U; X) we denote the Hilbert space of equivalence classes of strongly
177
+ µ-measurable functions f : U → X with norm
178
+ ∥f∥L2µ(U;X) :=
179
+ � �
180
+ U
181
+ ∥f(y)∥2
182
+ X µ(dy)
183
+ � 1
184
+ 2
185
+ < ∞.
186
+ Moreover, under the Assumptions 1 and 2 it can be shown that g, gs ∈ L2
187
+ µ(U; X) and
188
+ lim
189
+ s→∞ ∥g(y) − g(y≤s, 0)∥L2µ(U;X) = lim
190
+ s→∞
191
+ � �
192
+ U
193
+ ∥g(y) − g(y≤s, 0)∥2
194
+ X µ(dy)
195
+ � 1
196
+ 2
197
+ = 0,
198
+ by applying Lebesgue’s dominated convergence theorem (see, e.g., [18, Theorem 1] and
199
+ [14, Section 26]) to
200
+ F s(y) := ∥g(y) − g(y≤s, 0)∥2
201
+ X,
202
+ which converges µ-a.e. to zero by Assumption 1, and can be bounded by (2Θ0)2 by As-
203
+ sumption 2. We use the superscript to avoid confusion with the notation used to denote
204
+ dimensionally-truncated functions elsewhere in the document.
205
+ 3
206
+ Dimension truncation error
207
+ We will require the following parametric regularity bound for the main dimension trunca-
208
+ tion result.
209
+ Lemma 1. Under Assumption 2, there holds
210
+ |∂ν∥g(y) − gs(y)∥2
211
+ X| ≤
212
+
213
+ max
214
+ 0≤ℓ≤|ν|
215
+ 2Θℓ
216
+ ℓ!
217
+ �2
218
+ (|ν| + 1)!bν
219
+ for all ν ∈ Fk and y ∈ U.
220
+ Proof. Let ν ∈ Fk. We apply the Leibniz product rule with respect to the inner product
221
+ of the Hilbert space X to obtain
222
+ ∂ν∥g(y) − gs(y)∥2
223
+ X = ∂ν⟨g(y) − gs(y), g(y) − gs(y)⟩X
224
+ =
225
+
226
+ m≤ν
227
+ � ν
228
+ m
229
+
230
+ ⟨∂m(g(y) − gs(y)), ∂ν−m(g(y) − gs(y))⟩X.
231
+ Using the Cauchy–Schwarz inequality together with Assumption 2 yields
232
+ |∂ν∥g(y) − gs(y)∥2
233
+ X| ≤
234
+
235
+ m≤ν
236
+ � ν
237
+ m
238
+
239
+ ∥∂m(g(y) − gs(y))∥X∥∂ν−m(g(y) − gs(y))∥X
240
+ ≤ 4
241
+
242
+ m≤ν
243
+ � ν
244
+ m
245
+
246
+ Θ|m|bmΘ|ν|−|m|bν−m
247
+ = 4bν
248
+ |ν|
249
+
250
+ ℓ=0
251
+ ΘℓΘ|ν|−ℓ
252
+
253
+ |m|=ℓ
254
+ m≤ν
255
+ � ν
256
+ m
257
+
258
+ = 4bν
259
+ |ν|
260
+
261
+ ℓ=0
262
+ ΘℓΘ|ν|−ℓ
263
+ |ν|!
264
+ ℓ!(|ν| − ℓ)!
265
+ ≤ 4
266
+
267
+ max
268
+ 0≤ℓ≤|ν|
269
+ Θℓ
270
+ ℓ!
271
+ �2
272
+ (|ν| + 1)!bν,
273
+ where we used the Vandermonde convolution �
274
+ |m|=ℓ
275
+ m≤ν
276
+ � ν
277
+ m
278
+
279
+ =
280
+ �|ν|
281
+
282
+
283
+ =
284
+ |ν|!
285
+ ℓ!(|ν|−ℓ)!.
286
+ 4
287
+
288
+ The main result of this document is stated below.
289
+ Theorem 1. Let g(y) ∈ X, y ∈ U, satisfy Assumptions 1–3. Then
290
+ ∥g − gs∥L2µ(U;X) = O(s− 1
291
+ p + 1
292
+ 2),
293
+ where the implied coefficient is independent of s.
294
+ Proof. Let s ≥ 1 and define
295
+ F s(y) := ∥g(y) − gs(y)∥2
296
+ X
297
+ for y ∈ U.
298
+ In the special case of the uniform distribution µ(dy) = dy, we can apply [12, Theorem 4.2]
299
+ to obtain
300
+ ∥g − gs∥2
301
+ L2(U;X) =
302
+ ����
303
+
304
+ U
305
+ (F s(y) − F s(y≤s, 0)) dy
306
+ ���� = O(s− 2
307
+ p +1),
308
+ from which the claim follows. For completeness, we present the proof below for the prob-
309
+ ability measure µ and because parts of the argument will also be useful to establish the
310
+ invariance of the dimension truncation rate in Section 4.
311
+ Developing the Taylor expansion of F s about (y≤s, 0) and observing that F s(y≤s, 0) =
312
+ 0, we obtain
313
+ F s(y) =
314
+ k
315
+
316
+ ℓ=1
317
+
318
+ |ν|=ℓ
319
+ νj=0 ∀j≤s
320
+
321
+ ν! ∂νF s(y≤s, 0)
322
+ +
323
+
324
+ |ν|=k+1
325
+ νj=0 ∀j≤s
326
+ k + 1
327
+ ν! yν
328
+ � 1
329
+ 0
330
+ (1 − t)k∂νF s(y≤s, ty>s) dt,
331
+ (2)
332
+ where y>s := (yj)j>s. Integrating both sides over y ∈ U yields
333
+
334
+ U
335
+ F s(y) µ(dy) =
336
+ k
337
+
338
+ ℓ=1
339
+
340
+ |ν|=ℓ
341
+ νj=0 ∀j≤s
342
+ 1
343
+ ν!
344
+
345
+ U
346
+ yν∂νF s(y≤s, 0) µ(dy)
347
+ +
348
+
349
+ |ν|=k+1
350
+ νj=0 ∀j≤s
351
+ k + 1
352
+ ν!
353
+
354
+ U
355
+ � 1
356
+ 0
357
+ (1 − t)kyν∂νF s(y≤s, ty>s) dt µ(dy).
358
+ If ν ∈ Fk is such that νj = 1 for any j > s, then Fubini’s theorem together with Assump-
359
+ tion 3 imply for the summands appearing in the first term that
360
+
361
+ U
362
+ yν∂νF s(y≤s, 0) µ(dy) =
363
+ � �
364
+ j>s
365
+
366
+ 1
367
+ 2
368
+ − 1
369
+ 2
370
+ yνj
371
+ j µ(dyj)
372
+
373
+
374
+ ��
375
+
376
+ =0
377
+
378
+ [− 1
379
+ 2, 1
380
+ 2]s ∂νF s(y≤s, 0) µ(dy>s).
381
+ Therefore all multi-indices with any component equal to 1 can be removed from the first
382
+ sum (especially, we can omit all multi-indices with |ν| = 1). Further, applying the regu-
383
+ larity bound proved in Lemma 1 and writing open the definition of F s yields
384
+
385
+ U
386
+ ∥g(y) − gs(y)∥2
387
+ X µ(dy) ≤ Ck
388
+ µ
389
+
390
+ max
391
+ 0≤ℓ≤k
392
+ 2Θℓ
393
+ ℓ!
394
+ �2
395
+ (k + 1)!
396
+ k
397
+
398
+ ℓ=2
399
+
400
+ |ν|=ℓ
401
+ νj=0 ∀j≤s
402
+ νj̸=1 ∀j>s
403
+
404
+ + Ck+1
405
+ µ
406
+
407
+ max
408
+ 0≤ℓ≤k+1
409
+ 2Θℓ
410
+ ℓ!
411
+ �2
412
+ (k + 2)!
413
+
414
+ |ν|=k+1
415
+ νj=0 ∀j≤s
416
+ 1
417
+ ν!bν,
418
+ (3)
419
+ 5
420
+
421
+ where we used
422
+ � 1
423
+ 0 (1 − t)k dt =
424
+ 1
425
+ k+1 and Assumption 3.
426
+ The second term in (3) can
427
+ be estimated from above using the multinomial theorem in conjunction with Stechkin’s
428
+ lemma:
429
+
430
+ |ν|=k+1
431
+ νj=0 ∀j≤s
432
+ 1
433
+ ν!bν ≤
434
+
435
+ |ν|=k+1
436
+ νj=0 ∀j≤s
437
+ |ν|!
438
+ ν! bν =
439
+ � �
440
+ j>s
441
+ bj
442
+ �k+1
443
+ ≤ s(k+1)(− 1
444
+ p +1)
445
+ � �
446
+ j≥1
447
+ bp
448
+ j
449
+ � k+1
450
+ p
451
+ .
452
+ On the other hand, the first term in (3) can be estimated similarly to [6]:
453
+
454
+ 2≤|ν|≤k
455
+ νj=0 ∀j≤s
456
+ νj̸=1 ∀j>s
457
+ bν ≤
458
+
459
+ 0̸=|ν|∞≤k
460
+ νj=0 ∀j≤s
461
+ νj̸=1 ∀j>s
462
+ bν = −1 +
463
+
464
+ j>s
465
+
466
+ 1 +
467
+ k
468
+
469
+ ℓ=2
470
+ bℓ
471
+ j
472
+
473
+ = −1 +
474
+
475
+ j>s
476
+
477
+ 1 + b2
478
+ j
479
+ k−2
480
+
481
+ ℓ=0
482
+ bℓ
483
+ j
484
+
485
+ ≤ −1 +
486
+
487
+ j>s
488
+
489
+ 1 + b2
490
+ j
491
+ k−2
492
+
493
+ ℓ=0
494
+ bℓ
495
+ 1
496
+ � �� �
497
+ =:βk
498
+
499
+ ≤ −1 + exp
500
+
501
+ βk
502
+
503
+ j>s
504
+ b2
505
+ j
506
+
507
+ =
508
+
509
+ ℓ≥1
510
+ 1
511
+ ℓ!
512
+
513
+ βk
514
+
515
+ j>s
516
+ b2
517
+ j
518
+ �ℓ
519
+ .
520
+ Using �
521
+ j>s b2
522
+ j ≤ s− 2
523
+ p +1(�
524
+ j≥1 bp
525
+ j)
526
+ 2
527
+ p , which follows from Stechkin’s lemma, we further
528
+ estimate
529
+
530
+ ℓ≥1
531
+ 1
532
+ ℓ!
533
+
534
+ βk
535
+
536
+ j>s
537
+ b2
538
+ j
539
+ �ℓ
540
+ ≤ s− 2
541
+ p +1 �
542
+ ℓ≥1
543
+ 1
544
+ ℓ!(βk∥b∥2
545
+ p)ℓ = s− 2
546
+ p +1(−1 + exp(βk∥b∥2
547
+ p)
548
+ since s− 2
549
+ p +1 ≥ (s− 2
550
+ p +1)ℓ for all ℓ ≥ 1.
551
+ Altogether, the above discussion yields the bound
552
+ ∥g(y) − gs(y)∥2
553
+ L2µ(U;X) =
554
+
555
+ U
556
+ ∥g(y) − gs(y)∥2
557
+ X µ(dy) = O(s− 2
558
+ p +1 + s(k+1)(− 1
559
+ p +1)),
560
+ where the implied coefficient is independent of s. Since we assumed that k = ⌈
561
+ 1
562
+ 1−p⌉, the
563
+ assertion follows by taking the square root on both sides.
564
+ 4
565
+ Invariance of the dimension truncation rate under trans-
566
+ formations of variables
567
+ An interesting consequence of the Taylor series argument used in Theorem 1 is that the di-
568
+ mension truncation rate remains invariant under certain transformations of the variables.
569
+ This has been previously observed in the context of dimension truncation for integration
570
+ problems under the periodic model [13]. To make this notion precise, let us consider a
571
+ mapping ξ: U → U, ξ(y) := (ξ(y1), ξ(y2), . . .), which satisfies the following conditions:
572
+ 4. There hold ξ(0) = 0 and
573
+ � 1/2
574
+ −1/2 ξ(y) dy = 0.
575
+ 5. There exists Cξ ≥ 0 such that
576
+ � 1/2
577
+ −1/2 |ξ(y)|k dy ≤ Cξ for all k ≥ 2.
578
+ Then we obtain the following as a consequence of Theorem 1.
579
+ Corollary 1. Let g(y) ∈ X, y ∈ U, satisfy Assumptions 1–3 and let ξ : U → U satisfy
580
+ Assumptions 4–5. Define the ξ-transformed function gξ by
581
+ gξ(y) := g(ξ(y)),
582
+ y ∈ U,
583
+ 6
584
+
585
+ and its dimension truncation by gξ,s(y) := gξ(y≤s, 0) for y ∈ U. Then
586
+ ∥gξ − gξ,s∥L2µ(U;X) = O(s− 1
587
+ p + 1
588
+ 2 ),
589
+ where the implied coefficient is independent of s.
590
+ Proof. We introduce F s
591
+ ξ (y) := ∥gξ(y) − gξ,s(y)∥2
592
+ X for y ∈ U. By carrying out the change
593
+ of variable y ← ξ(y) in (2), we obtain
594
+ F s
595
+ ξ (y) =
596
+ k
597
+
598
+ ℓ=1
599
+
600
+ |ν|=ℓ
601
+ νj=0 ∀j≤s
602
+ ξ(y)ν
603
+ ν!
604
+ ∂νF s(ξ(y≤s, 0))
605
+ +
606
+
607
+ |ν|=k+1
608
+ νj=0 ∀j≤s
609
+ k + 1
610
+ ν! ξ(y)ν
611
+ � 1
612
+ 0
613
+ (1 − t)k∂νF s(ξ(y≤s, ty>s)) dt.
614
+ Integrating the above formula on both sides over y ∈ U and utilizing Lemma 1 as well as
615
+ Assumption 5, we obtain—in complete analogy with the proof of Theorem 1—that
616
+
617
+ U
618
+ ∥gξ(y) − gξ,s(y)∥2
619
+ X dy ≤ Ck
620
+ ξ
621
+
622
+ max
623
+ 0≤ℓ≤k
624
+ 2Θℓ
625
+ ℓ!
626
+ �2
627
+ (k + 1)!
628
+ k
629
+
630
+ ℓ=2
631
+
632
+ |ν|=ℓ
633
+ νj=0 ∀j≤s
634
+ νj̸=1 ∀j>s
635
+
636
+ + Ck+1
637
+ ξ
638
+
639
+ max
640
+ 0≤ℓ≤k+1
641
+ 2Θℓ
642
+ ℓ!
643
+ �2
644
+ (k + 2)!
645
+
646
+ |ν|=k+1
647
+ νj=0 ∀j≤s
648
+ 1
649
+ ν!bν.
650
+ The desired result follows by exactly the same argument as in the proof of Theorem 1.
651
+ As an application, with U := [− 1
652
+ 2, 1
653
+ 2]N, let ξ: U → U satisfy the Assumptions 4 and 5,
654
+ let D ⊂ Rd, d ∈ {1, 2, 3}, be a bounded Lipschitz domain, and let f : D → R be a fixed
655
+ source term. Consider the parametric PDE problem
656
+
657
+ −∇ · (aξ(x, y)∇uξ(x, y)) = f(x),
658
+ x ∈ D, y ∈ U,
659
+ uξ(x, y) = 0,
660
+ x ∈ ∂D, y ∈ U,
661
+ (4)
662
+ endowed with the ξ-transformed diffusion coefficient
663
+ aξ(x, y) := a0(x) +
664
+
665
+
666
+ i=1
667
+ ξ(yi)ψi(x),
668
+ x ∈ D, y ∈ U,
669
+ which is assumed to satisfy the following:
670
+ 6. There exist amin, amax > 0 such that 0 < amin ≤ aξ(x, y) ≤ amax < ∞ for all x ∈ D
671
+ and y ∈ U.
672
+ 7. a0 ∈ L∞(D) and ψi ∈ L∞(D) for all i ∈ N.
673
+ 8. �∞
674
+ i=1 ∥ψi∥p
675
+ L∞(D) < ∞ for some p ∈ (0, 1).
676
+ In this case, the transformation ξ(y) := ( 1
677
+
678
+ 6 sin(2πyj))j≥1 corresponds to the so-called
679
+ periodic model studied in [13, 16, 17]. Let X := H1
680
+ 0(D) be equipped with the norm ∥v∥X :=
681
+ 7
682
+
683
+
684
+ D ∥∇v(x)∥2
685
+ Rd dx. In this special case, it is known that the weak solution u(·, y) ∈ X to (4)
686
+ for y ∈ U satisfies the parametric regularity bound
687
+ ∥∂νuξ(·, y)∥X ≤ (2π)|ν|∥f∥X′
688
+ amin
689
+
690
+ m≤ν
691
+ |m|!bm �
692
+ j≥1
693
+ S(νj, mj)
694
+ for all ν ∈ F and y ∈ U, where the source term f ∈ X′, S(·, ·) denotes the Stirling number
695
+ of the second kind, and b := (bj)j≥1 is defined by setting bj :=
696
+ ∥ψj∥L∞(D)
697
+
698
+ 6amin
699
+ for all j ≥ 1.
700
+ Let µ(dµ) = dy. Then Corollary 1 can be used to deduce that
701
+ ∥uξ − uξ,s∥L2µ(U;X) = O(s− 1
702
+ p + 1
703
+ 2 ),
704
+ where the constant is independent of the dimension s.
705
+ In fact, if Xh is a conforming
706
+ finite element subspace of X, uξ,h(·, y) ∈ Xh denotes the finite element discretization of
707
+ uξ(·, y) ∈ X for all y ∈ U, and uξ,h,s(·, y) ∈ Xh denotes the dimension truncation of
708
+ uξ,h(·, y) for all y ∈ U, then we have
709
+ ∥uξ,h − uξ,h,s∥L2µ(U;X) = O(s− 1
710
+ p + 1
711
+ 2),
712
+ independently of s.
713
+ Finally, we present an example illustrating how our results can be applied to nonlinear
714
+ quantities of interest.
715
+ Example. Let X := H1
716
+ 0(D) as above. Consider the nonlinear quantity of interest
717
+ Gnl(v) := ∥v∥2
718
+ X :=
719
+
720
+ D
721
+ ∥∇v(x)∥2
722
+ Rd dx,
723
+ v ∈ X.
724
+ (5)
725
+ If u(·, y) ∈ X is the solution to (4) with U = [− 1
726
+ 2, 1
727
+ 2]N, µ(dy) := dy, and ξ(y) := y, then
728
+ it is known to satisfy Assumptions 1–3 with the regularity bound
729
+ ∥∂νu(·, y)∥X ≤ C|ν|!bν,
730
+ where the constant C > 0 only depends on ∥f∥X′ and amin. By the Leibniz product rule,
731
+ there holds
732
+ ∂νGnl(u(·, y)) =
733
+
734
+ D
735
+
736
+ m≤ν
737
+ � ν
738
+ m
739
+
740
+ ∇∂mu(x, y) · ∇∂ν−mu(x, y) dx
741
+
742
+
743
+ m≤ν
744
+ � ν
745
+ m
746
+
747
+ ∥∂mu(·, y)∥X∥∂ν−mu(·, y)∥X
748
+ ≤ C2 �
749
+ m≤ν
750
+ � ν
751
+ m
752
+
753
+ |m|!bm|ν − m|!bν−m
754
+ = C2bν
755
+ |ν|
756
+
757
+ ℓ=0
758
+ ℓ!(|ν| − ℓ)!
759
+
760
+ m≤ν
761
+ |m|=ℓ
762
+ � ν
763
+ m
764
+
765
+ = C2bν(|ν| + 1)!,
766
+ where we used the Vandermonde convolution �
767
+ |m|=ℓ
768
+ m≤ν
769
+ � ν
770
+ m
771
+
772
+ =
773
+ �|ν|
774
+
775
+
776
+ =
777
+ |ν|!
778
+ ℓ!(|ν|−ℓ)!.
779
+ It follows from Theorem 1 that
780
+ ∥Gnl(u) − Gnl(us)∥L2µ(U;R) = O(s− 1
781
+ p + 1
782
+ 2),
783
+ independently of s. Moreover, if ξ(y) := ( 1
784
+
785
+ 6 sin(2πyj))j≥1, then it follows from Corollary 1
786
+ that
787
+ ∥Gnl(uξ) − Gnl(uξ,s)∥L2µ(U;R) = O(s− 1
788
+ p + 1
789
+ 2 ),
790
+ independently of s.
791
+ 8
792
+
793
+ 5
794
+ Numerical experiments
795
+ Let D = (0, 1)2 be a spatial domain, U = [− 1
796
+ 2, 1
797
+ 2]N, and f(x) := x1 a fixed source term.
798
+ Let ξ: U → U, ξ(y) = ( 1
799
+
800
+ 6 sin(2πyj))j≥1. We consider the PDE problem
801
+
802
+ −∇ · (aξ(x, y)∇uξ(x, y)) = f(x),
803
+ x ∈ D, y ∈ U,
804
+ uξ(x, y) = 0,
805
+ x ∈ ∂D, y ∈ U,
806
+ (6)
807
+ equipped with the diffusion coefficient
808
+ aξ(x, y) = 3
809
+ 2 +
810
+
811
+ j≥1
812
+ ξ(yj)j−ϑ sin(jπx1) sin(jπx2),
813
+ x ∈ D, y ∈ U, ϑ > 1.
814
+ The PDE (6) is spatially discretized using a first-order conforming finite element method
815
+ with mesh size h = 2−5.
816
+ We consider the dimension truncation error for the full PDE solution using the formula
817
+ ∥uξ − uξ,s∥L2(U;L2(D)) ≈
818
+ � �
819
+ [− 1
820
+ 2 , 1
821
+ 2 ]s′ ∥uξ,s′(·, y) − uξ,s(·, y)∥2
822
+ L2(D) dy
823
+ � 1
824
+ 2
825
+ ,
826
+ and we also consider the nonlinear quantity of interest (5), estimating the dimension
827
+ truncation error using the formula
828
+ ∥Gnl(uξ) − Gnl(uξ,s)∥L2(U) ≈
829
+ � �
830
+ [− 1
831
+ 2, 1
832
+ 2]s′ |Gnl(uξ,s′(·, y)) − Gnl(uξ,s(·, y))|2 dy
833
+ � 1
834
+ 2
835
+ .
836
+ In both cases, we choose s′ ≫ s and the high-dimensional integrals are approximated using
837
+ a randomly shifted rank-1 lattice rule with 220 cubature nodes and a single random shift.
838
+ As the integration lattice, we use in both cases an off-the-shelf rank-1 lattice rule [19,
839
+ lattice-39101-1024-1048576.3600] and use the same random shift for each value of ϑ. As
840
+ the reference solution, we use the PDE solution corresponding to s′ = 211.
841
+ The numerical results for dimensions s ∈ {2k : k = 1, . . . , 9} and decay rates ϑ ∈
842
+ {1.5, 2.0, 3.0} corresponding to the full PDE solution and the nonlinear quantity of interest
843
+ are displayed in Figures 1 and 2, respectively. The theoretical convergence rates in each
844
+ case are −1.0, −1.5, and −2.5, respectively, and they are displayed alongside the numerical
845
+ results.
846
+ The convergence graphs corresponding to the full PDE solution in Figure 1 display
847
+ an aliasing behavior between 10 ≤ s ≤ 100, which may be explained by the contributions
848
+ of the finite element discretization error as well as the use of an “off-the-shelf” lattice
849
+ rule (in contrast to a “tailored” lattice rule). This behavior appear to be exacerbated in
850
+ the convergence graphs corresponding to the nonlinear quantity of interest in Figure 2.
851
+ Nonetheless, in all cases the theoretically anticipated convergence rates are easily observed
852
+ in practice.
853
+ We remark that the convergence graphs corresponding to the affine and
854
+ uniform model with ξ(y) := (yj)j≥1 are extremely similar to the results corresponding to
855
+ the periodic model, and have thus been omitted.
856
+ 9
857
+
858
+ Figure 1: The dimension truncation errors of the full PDE solution corresponding to a periodically parameterized
859
+ input random field with decay parameters ϑ ∈ {1.5, 2.0, 3.0}. The expected dimension truncation error rates are
860
+ −1.0, −1.5, and −2.5, respectively.
861
+ Figure 2: The dimension truncation errors of the nonlinear quantity of interest corresponding to a periodically
862
+ parameterized input random field with decay parameters ϑ ∈ {1.5, 2.0, 3.0}. The expected dimension truncation
863
+ error rates are −1.0, −1.5, and −2.5, respectively.
864
+ 6
865
+ Conclusions
866
+ Unlike many studies which have considered the dimension truncation error rate within
867
+ the context of high-dimensional numerical integration, we considered the L2 dimension
868
+ truncation error rate for parametric Hilbert space valued functions. Our theory covers
869
+ both affine parametric as well as non-affine parametric problems with sufficiently smooth
870
+ dependence on a sequence of bounded, parametric variables. The main dimension trun-
871
+ cation results presented in this work can be applied to nonlinear quantities of interest of
872
+ parametric model problems, provided that they satisfy the conditions of our framework.
873
+ 10
874
+
875
+ In addition, the Hilbert space can be chosen to be a finite element subspace, indicating
876
+ that our dimension truncation results are also valid for conforming finite element approx-
877
+ imations of parametric PDEs.
878
+ The L2 dimension truncation error rates considered in this work arise, e.g., in the
879
+ study of high-dimensional function approximation of parametric PDEs. An example of
880
+ such an approximation scheme is the kernel method over lattice point sets considered
881
+ in [16]. The kernel method was analyzed in the context of the so-called periodic model, in
882
+ which a countable number of independent random variables enter the input random field
883
+ of the PDE as periodic functions. Our second main result shows that the L2 dimension
884
+ truncation error rate remains invariant under certain transformations of the parametric
885
+ variables: especially, the L2 dimension truncation rate considered in this work holds for
886
+ periodically parametrized model problems such as those studied in [13, 16, 17].
887
+ References
888
+ [1] Bachmayr, M., Cohen, A., Dahmen, W.: Parametric PDEs: sparse or low-rank
889
+ approximations? IMA J. Numer. Anal., 38(4):1661–1708 (2017)
890
+ [2] Bhattacharya, K., Hosseini, B., Kovachki, N. B., Stuart, A. M.: Model reduction and
891
+ neural networks for parametric PDEs. SMAI J. Comput. Math., 7:121–157 (2021)
892
+ [3] Chen, Y., Hosseini, B., Owhadi, H., Stuart, A. M.: Solving and learning nonlinear
893
+ PDEs with Gaussian processes. J. Comput. Phys., 447:110668 (2021)
894
+ [4] Cohen, A., DeVore, R., Schwab, Ch.: Convergence rates of best N-term Galerkin
895
+ approximations for a class of elliptic sPDEs. Found. Comput. Math., 10:615–646
896
+ (2010)
897
+ [5] Dick, J., Gantner, R. N., Le Gia, Q. T., Schwab, Ch.: Higher order quasi-Monte
898
+ Carlo integration for Bayesian PDE inversion. Comput. Math. Appl., 77(1):144–172
899
+ (2019)
900
+ [6] Gantner, R. N.: Dimension truncation in QMC for affine-parametric operator equa-
901
+ tions. In: A. B. Owen, P. W. Glynn (eds.), Monte Carlo and Quasi-Monte Carlo
902
+ Methods 2016, pp. 249–264. Springer (2018)
903
+ [7] Geist, M., Petersen, P., Raslan, M., Schneider, R., Kutyniok, G.: Numerical solution
904
+ of the parametric diffusion equation by deep neural networks. J. Sci. Comput., 88:22
905
+ (2021)
906
+ [8] Gilbert, A. D., Graham, I. G., Kuo, F. Y., Scheichl, R., Sloan, I. H.: Analysis of quasi-
907
+ Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients.
908
+ Numer. Math., 142:863–915 (2019)
909
+ [9] Grohs, P., Herrmann, L.: Deep neural network approximation for high-dimensional
910
+ elliptic PDEs with boundary conditions. IMA J. Numer. Anal., 42(3):2055–2082
911
+ (2022)
912
+ [10] Guth, P. A., Kaarnioja, V., Kuo, F. Y., Schillings, C., Sloan, I. H.: A quasi-Monte
913
+ Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quan-
914
+ tif., 9(2):354–383 (2021)
915
+ [11] Guth, P. A., Kaarnioja, V., Kuo, F. Y., Schillings, C., Sloan, I. H.: Parabolic PDE-
916
+ constrained optimal control under uncertainty with entropic risk measure using quasi-
917
+ Monte Carlo integration. Preprint arXiv:2208.02767 [math.NA] (2022)
918
+ 11
919
+
920
+ [12] Guth, P. A., Kaarnioja, V.: Generalized dimension truncation error analysis for
921
+ high-dimensional numerical integration:
922
+ lognormal setting and beyond. Preprint
923
+ arXiv:2209.06176 [math.NA] (2022)
924
+ [13] Hakula, H., Harbrecht, H., Kaarnioja, V., Kuo, F. Y., Sloan, I. H.:
925
+ Uncer-
926
+ tainty quantification for random domains using periodic random variables. Preprint
927
+ arXiv:2210.17329 [math.NA] (2022)
928
+ [14] Halmos, P. R.: Measure Theory. Springer, New York, NY (1974)
929
+ [15] Herrmann, L., Keller, M., Schwab, Ch.: Quasi-Monte Carlo Bayesian estimation
930
+ under Besov priors in elliptic inverse problems. Math. Comp., 90:1831–1860 (2021)
931
+ [16] Kaarnioja, V., Kazashi, Y., Kuo, F. Y., Nobile, F., Sloan, I. H.: Fast approximation
932
+ by periodic kernel-based lattice-point interpolation with application in uncertainty
933
+ quantification. Numer. Math., 150:33–77 (2022)
934
+ [17] Kaarnioja, V., Kuo, F. Y., Sloan, I. H.: Uncertainty quantification using periodic
935
+ random variables. SIAM J. Numer. Anal., 58(2):1068–1091 (2020)
936
+ [18] Kuo, F. Y., Nuyens, D., Plaskota, L., Sloan, I. H., Wasilkowski, G. W.: Infinite-
937
+ dimensional integration and the multivariate decomposition method. J. Comput.
938
+ Appl. Math., 326:217–234 (2017)
939
+ [19] Kuo, F. Y.: Lattice generating vectors.
940
+ https://web.maths.unsw.edu.au/~fkuo/lattice/index.html
941
+ [20] Kuo, F. Y., Schwab, Ch., Sloan, I. H.: Quasi-Monte Carlo finite element methods
942
+ for a class of elliptic partial differential equations with random coefficients. SIAM J.
943
+ Numer. Anal., 50(6):3351–3374 (2012)
944
+ [21] Rozza, G., Huynh, D. B. P., Patera, A. T.: Reduced basis approximation and a pos-
945
+ teriori error estimation for affinely parametrized elliptic coercive partial differential
946
+ equations. Arch. Comput. Methods Eng., 15:229 (2008)
947
+ [22] Schwab, Ch., Zech, J.: Deep learning in high dimension: Neural network expression
948
+ rates for generalized polynomial chaos expansions in UQ. Anal. Appl. (Singap.),
949
+ 17(1):19–55 (2019)
950
+ [23] Xiu, D., Karniadakis, G. E.: The Wiener-Askey polynomial chaos for stochastic
951
+ differential equations. SIAM J. Sci. Comput., 24:619–644 (2002)
952
+ [24] Yosida, K.: Functional Analysis. Springer, Heidelberg (1980)
953
+ [25] Zeng, X. Y., Leung, K. T., Hickernell, F. J.: Error analysis of splines for periodic
954
+ problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.), Monte Carlo
955
+ and Quasi-Monte Carlo Methods 2004, pp. 501–514, Springer (2006)
956
+ [26] Zeng, X. Y., Kritzer, P., Hickernell, F. J.: Spline methods using integration lattices
957
+ and digital nets. Constr. Approx., 30:529–555 (2009)
958
+ 12
959
+
X9FRT4oBgHgl3EQf_DhA/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf,len=486
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
3
+ page_content='13693v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
4
+ page_content='NA] 31 Jan 2023 Application of dimension truncation error analysis to high-dimensional function approximation Philipp A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
5
+ page_content=' Guth† Vesa Kaarnioja‡ February 1, 2023 Abstract Parametric mathematical models such as partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantifica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
6
+ page_content=' The model uncertainties are often represented via a series expansion in terms of the parametric variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
7
+ page_content=' In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
8
+ page_content=' There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
9
+ page_content=' In this paper, we study the L2 dimension truncation error of the parametric model problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
10
+ page_content=' Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
11
+ page_content=' In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
12
+ page_content=' Numerical results are presented which showcase the sharpness of the theoretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
13
+ page_content=' 1 Introduction In the field of uncertainty quantification it is common to study mathematical models with uncertain influences parameterized by countably infinite sequences of random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
14
+ page_content=' Consider, for instance, an abstract model M : X × U → Y such that M(g(y), y) = 0, (1) where X and Y are separable Hilbert spaces and U is a nonempty subset of the infinite- dimensional sequence space of parameters RN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
15
+ page_content=' The solution g(y) ∈ X to (1) for y ∈ U, if it exists, may be computationally expensive to evaluate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
16
+ page_content=' To this end, it may be preferable to instead approximate g using a surrogate which is cheap to evaluate and hence enables, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
17
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
18
+ page_content=', efficient sampling of the (approximated) solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
19
+ page_content=' Some possible surrogate models include, but are not limited to, Gaussian process regression [3], reduced basis approaches [1, 21], generalized polynomial chaos expansions [4, 23], neural network approximations [2, 7, 9, 22], and kernel interpolation based on lattice point sets [16, 25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
20
+ page_content=' The results presented in this manuscript are particularly well-suited to the analysis of kernel methods used in conjunction with the so-called periodic model discussed in [13, 16, 17], and we will devote a section of this manuscript to explore the application of our dimension truncation results within this framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
21
+ page_content=' †Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, A-4040 Linz, Austria, philipp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
22
+ page_content='guth@ricam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
23
+ page_content='oeaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
24
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
25
+ page_content='at ‡Department of Mathematics and Computer Science, Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany, vesa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
26
+ page_content='kaarnioja@fu-berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
27
+ page_content='de 1 Integration Function approximation Affine parametric [6, 20] [16] operator equation setting rate O(s− 2 p +1) rate O(s− 1 p + 1 2) Non-affine parametric [8, 12] this paper operator equation setting rate O(s− 2 p +1) rate O(s− 1 p + 1 2) Table 1: An overview of various dimension truncation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
28
+ page_content=' A natural first step for the numerical treatment of (1) is the approximation by a dimensionally-truncated model Ms : X × Us → Y such that Ms(gs(y≤s), y≤s) = 0, where ∅ ̸= Us ⊆ Rs and gs(y≤s) ∈ X for all y≤s ∈ Us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
29
+ page_content=' Consider the problem of finding a surrogate solution gs,n := An(gs) using an algorithm An which uses n point evaluations of the s-dimensional function gs, where the surrogate belongs to X such that ∥gs − gs,n∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
30
+ page_content='X) n→∞ −−−→ 0 with some known convergence rate and µ indicating a probability measure on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
31
+ page_content=' The total error of the approximation obtained in this fashion can be estimated using the triangle inequality ∥g − gs,n∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
32
+ page_content='X) ≤ ∥g − gs∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
33
+ page_content='X) + ∥gs − gs,n∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
34
+ page_content='X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
35
+ page_content=' In this manuscript we focus on the first term—the dimension truncation error—which is independent of the chosen approximation scheme An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
36
+ page_content=' Dimension truncation error rates are typically studied for problems involving partial differential equations (PDEs) with random inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
37
+ page_content=' For integration problems a dimension truncation rate is derived in [20] for the source problem with an affine parameterization of the diffusion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
38
+ page_content=' This rate was then improved by [6] in the generalized context of affine parametric operator equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
39
+ page_content=' Dimension truncation has also been studied for coupled PDE systems arising in optimal control problems under uncertainty [10], in the context of the periodic model of uncertainty quantification for both numerical integra- tion [17] and kernel interpolation [16], as well as for Bayesian inverse problems governed by PDEs [5, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
40
+ page_content=' The results in these papers have been proved using Neumann series, which is known to work well in the affine parametric setting, but may lead to suboptimal results if the problem depends nonlinearly on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
41
+ page_content=' In the non-affine setting, using Taylor series makes it possible to derive dimension truncation error rates by exploiting the parametric regularity of the problem, whereas the Neumann series approach relies fundamentally on the parametric structure of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
42
+ page_content=' The Taylor series approach was first applied in [8], and motivated the authors in [11] and [12] to derive dimension truncation error rates for sufficiently smooth, Banach space valued integrands, and with parameters following a generalized β-Gaussian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
43
+ page_content=' An overview of the various dimension truncation error bounds studied in the literature is given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
44
+ page_content=' Our manuscript is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
45
+ page_content=' Subsection 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
46
+ page_content='1 introduces the multi-index notation used throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
47
+ page_content=' The problem setting is introduced in Section 2, including the central assumptions for the ensuing dimension truncation analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
48
+ page_content=' Section 3 contains the L2 dimension truncation theorem for Hilbert space valued functions, and in Section 4 we discuss the invariance of the dimension truncation rate under certain transformations of the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
49
+ page_content=' Numerical experiments assessing the sharpness of our 2 theoretical results are presented in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
50
+ page_content=' The paper ends with some conclusions in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
51
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
52
+ page_content='1 Notations and preliminaries Throughout this manuscript, boldfaced symbols are used to denote multi-indices while the subscript notation mj is used to refer to the j-th component of multi-index m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
53
+ page_content=' Let F := {m ∈ NN 0 : |m| < ∞} denote the set of finitely supported multi-indices, where the order of multi-index m is defined as |m| := � j≥1 mj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
54
+ page_content=' Moreover, we denote |m|∞ := max j≥1 mj, and, for any sequence x := (xj)∞ j=1 of real numbers and m ∈ F, we define xm := � j≥1 xmj j , where we use the convention 00 := 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
55
+ page_content=' 2 Problem setting Let X be a real separable Hilbert space, U := [− 1 2, 1 2]N a set of parameters, and suppose that g(y) ∈ X is a parameterized family of functions with smooth dependence on y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
56
+ page_content=' We define gs(y) := g(y≤s, 0) := g(y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
57
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
58
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
59
+ page_content=' , ys, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
60
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
61
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
62
+ page_content=') and assume that µ(dy) := � j≥1 µ(dyj) is a countable product probability measure, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
63
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
64
+ page_content=', µ(U) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
65
+ page_content=' We suppose that 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
66
+ page_content=' For µ-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
67
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
68
+ page_content=' y ∈ U, there holds ∥g(y) − gs(y)∥X s→∞ −−−→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
69
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
70
+ page_content=' Let (Θk)k≥0 and b := (bj)j≥1 be sequences of nonnegative numbers such that b ∈ ℓp(N) for some p ∈ (0, 1) and b1 ≥ b2 ≥ · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
71
+ page_content=' Suppose that g is continuously differentiable up to order k + 1, with ∥∂νg(y)∥X ≤ Θ|ν|bν for all y ∈ U and for all ν ∈ Fk := {ν ∈ NN 0 : |ν| ≤ k + 1}, where k := ⌈ 1 1−p⌉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
72
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
73
+ page_content=' There holds � 1/2 −1/2 yj µ(dyj) = 0 and there exists a constant Cµ ≥ 0 such that � 1/2 −1/2 |yj|k µ(dyj) ≤ Cµ for all k ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
74
+ page_content=' If Assumption 2 holds, then we infer that y �→ G(g(y)) for all G ∈ X′ is continuous as a composition of continuous mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
75
+ page_content=' Hence y �→ G(g(y)) is measurable for all G ∈ X′, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
76
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
77
+ page_content=', y �→ g(y) is weakly measurable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
78
+ page_content=' Since X is assumed to be a separable Hilbert space, by Pettis’ theorem (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
79
+ page_content=', e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
80
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
81
+ page_content=', [24, Chapter 4]) we obtain that y �→ g(y) is strongly measurable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
82
+ page_content=' The upper bound in Assumption 2 is µ-integrable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
83
+ page_content=' Thus we conclude from Bochner’s theorem (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
84
+ page_content=', e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
85
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
86
+ page_content=', [24, Chapter 5]) and Assumption 2 that g is µ-integrable over U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
87
+ page_content=' 3 Further, µ-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
88
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
89
+ page_content=' equality de���nes an equivalence relation among strongly µ-measurable functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
90
+ page_content=' By L2 µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
91
+ page_content=' X) we denote the Hilbert space of equivalence classes of strongly µ-measurable functions f : U → X with norm ∥f∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
92
+ page_content='X) := � � U ∥f(y)∥2 X µ(dy) � 1 2 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
93
+ page_content=' Moreover, under the Assumptions 1 and 2 it can be shown that g, gs ∈ L2 µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
94
+ page_content=' X) and lim s→∞ ∥g(y) − g(y≤s, 0)∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
95
+ page_content='X) = lim s→∞ � � U ∥g(y) − g(y≤s, 0)∥2 X µ(dy) � 1 2 = 0, by applying Lebesgue’s dominated convergence theorem (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
96
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
97
+ page_content=', [18, Theorem 1] and [14, Section 26]) to F s(y) := ∥g(y) − g(y≤s, 0)∥2 X, which converges µ-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
98
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
99
+ page_content=' to zero by Assumption 1, and can be bounded by (2Θ0)2 by As- sumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
100
+ page_content=' We use the superscript to avoid confusion with the notation used to denote dimensionally-truncated functions elsewhere in the document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
101
+ page_content=' 3 Dimension truncation error We will require the following parametric regularity bound for the main dimension trunca- tion result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
102
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
103
+ page_content=' Under Assumption 2, there holds |∂ν∥g(y) − gs(y)∥2 X| ≤ � max 0≤ℓ≤|ν| 2Θℓ ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
104
+ page_content=' �2 (|ν| + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
105
+ page_content='bν for all ν ∈ Fk and y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
106
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
107
+ page_content=' Let ν ∈ Fk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
108
+ page_content=' We apply the Leibniz product rule with respect to the inner product of the Hilbert space X to obtain ∂ν∥g(y) − gs(y)∥2 X = ∂ν⟨g(y) − gs(y), g(y) − gs(y)⟩X = � m≤ν � ν m � ⟨∂m(g(y) − gs(y)), ∂ν−m(g(y) − gs(y))⟩X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
109
+ page_content=' Using the Cauchy–Schwarz inequality together with Assumption 2 yields |∂ν∥g(y) − gs(y)∥2 X| ≤ � m≤ν � ν m � ∥∂m(g(y) − gs(y))∥X∥∂ν−m(g(y) − gs(y))∥X ≤ 4 � m≤ν � ν m � Θ|m|bmΘ|ν|−|m|bν−m = 4bν |ν| � ℓ=0 ΘℓΘ|ν|−ℓ � |m|=ℓ m≤ν � ν m � = 4bν |ν| � ℓ=0 ΘℓΘ|ν|−ℓ |ν|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
110
+ page_content=' ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
111
+ page_content=' (|ν| − ℓ)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
112
+ page_content=' ≤ 4 � max 0≤ℓ≤|ν| Θℓ ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
113
+ page_content=' �2 (|ν| + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
114
+ page_content='bν, where we used the Vandermonde convolution � |m|=ℓ m≤ν � ν m � = �|ν| ℓ � = |ν|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
115
+ page_content=' ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
116
+ page_content=' (|ν|−ℓ)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
117
+ page_content='. 4 The main result of this document is stated below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
118
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
119
+ page_content=' Let g(y) ∈ X, y ∈ U, satisfy Assumptions 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
120
+ page_content=' Then ∥g − gs∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
121
+ page_content='X) = O(s− 1 p + 1 2), where the implied coefficient is independent of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
122
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
123
+ page_content=' Let s ≥ 1 and define F s(y) := ∥g(y) − gs(y)∥2 X for y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
124
+ page_content=' In the special case of the uniform distribution µ(dy) = dy, we can apply [12, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
125
+ page_content='2] to obtain ∥g − gs∥2 L2(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
126
+ page_content='X) = ���� � U (F s(y) − F s(y≤s, 0)) dy ���� = O(s− 2 p +1), from which the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
127
+ page_content=' For completeness, we present the proof below for the prob- ability measure µ and because parts of the argument will also be useful to establish the invariance of the dimension truncation rate in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
128
+ page_content=' Developing the Taylor expansion of F s about (y≤s, 0) and observing that F s(y≤s, 0) = 0, we obtain F s(y) = k � ℓ=1 � |ν|=ℓ νj=0 ∀j≤s yν ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
129
+ page_content=' ∂νF s(y≤s, 0) + � |ν|=k+1 νj=0 ∀j≤s k + 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
130
+ page_content=' yν � 1 0 (1 − t)k∂νF s(y≤s, ty>s) dt, (2) where y>s := (yj)j>s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
131
+ page_content=' Integrating both sides over y ∈ U yields � U F s(y) µ(dy) = k � ℓ=1 � |ν|=ℓ νj=0 ∀j≤s 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
132
+ page_content=' � U yν∂νF s(y≤s, 0) µ(dy) + � |ν|=k+1 νj=0 ∀j≤s k + 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
133
+ page_content=' � U � 1 0 (1 − t)kyν∂νF s(y≤s, ty>s) dt µ(dy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
134
+ page_content=' If ν ∈ Fk is such that νj = 1 for any j > s, then Fubini’s theorem together with Assump- tion 3 imply for the summands appearing in the first term that � U yν∂νF s(y≤s, 0) µ(dy) = � � j>s � 1 2 − 1 2 yνj j µ(dyj) � � �� � =0 � [− 1 2, 1 2]s ∂νF s(y≤s, 0) µ(dy>s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
135
+ page_content=' Therefore all multi-indices with any component equal to 1 can be removed from the first sum (especially, we can omit all multi-indices with |ν| = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
136
+ page_content=' Further, applying the regu- larity bound proved in Lemma 1 and writing open the definition of F s yields � U ∥g(y) − gs(y)∥2 X µ(dy) ≤ Ck µ � max 0≤ℓ≤k 2Θℓ ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
137
+ page_content=' �2 (k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
138
+ page_content=' k � ℓ=2 � |ν|=ℓ νj=0 ∀j≤s νj̸=1 ∀j>s bν + Ck+1 µ � max 0≤ℓ≤k+1 2Θℓ ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
139
+ page_content=' �2 (k + 2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
140
+ page_content=' � |ν|=k+1 νj=0 ∀j≤s 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
141
+ page_content='bν, (3) 5 where we used � 1 0 (1 − t)k dt = 1 k+1 and Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
142
+ page_content=' The second term in (3) can be estimated from above using the multinomial theorem in conjunction with Stechkin’s lemma: � |ν|=k+1 νj=0 ∀j≤s 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
143
+ page_content='bν ≤ � |ν|=k+1 νj=0 ∀j≤s |ν|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
144
+ page_content=' ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
145
+ page_content=' bν = � � j>s bj �k+1 ≤ s(k+1)(− 1 p +1) � � j≥1 bp j � k+1 p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
146
+ page_content=' On the other hand, the first term in (3) can be estimated similarly to [6]: � 2≤|ν|≤k νj=0 ∀j≤s νj̸=1 ∀j>s bν ≤ � 0̸=|ν|∞≤k νj=0 ∀j≤s νj̸=1 ∀j>s bν = −1 + � j>s � 1 + k � ℓ=2 bℓ j � = −1 + � j>s � 1 + b2 j k−2 � ℓ=0 bℓ j � ≤ −1 + � j>s � 1 + b2 j k−2 � ℓ=0 bℓ 1 � �� � =:βk � ≤ −1 + exp � βk � j>s b2 j � = � ℓ≥1 1 ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
147
+ page_content=' � βk � j>s b2 j �ℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
148
+ page_content=' Using � j>s b2 j ≤ s− 2 p +1(� j≥1 bp j) 2 p , which follows from Stechkin’s lemma, we further estimate � ℓ≥1 1 ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
149
+ page_content=' � βk � j>s b2 j �ℓ ≤ s− 2 p +1 � ℓ≥1 1 ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
150
+ page_content=' (βk∥b∥2 p)ℓ = s− 2 p +1(−1 + exp(βk∥b∥2 p) since s− 2 p +1 ≥ (s− 2 p +1)ℓ for all ℓ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
151
+ page_content=' Altogether, the above discussion yields the bound ∥g(y) − gs(y)∥2 L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
152
+ page_content='X) = � U ∥g(y) − gs(y)∥2 X µ(dy) = O(s− 2 p +1 + s(k+1)(− 1 p +1)), where the implied coefficient is independent of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
153
+ page_content=' Since we assumed that k = ⌈ 1 1−p⌉, the assertion follows by taking the square root on both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
154
+ page_content=' 4 Invariance of the dimension truncation rate under trans- formations of variables An interesting consequence of the Taylor series argument used in Theorem 1 is that the di- mension truncation rate remains invariant under certain transformations of the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
155
+ page_content=' This has been previously observed in the context of dimension truncation for integration problems under the periodic model [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
156
+ page_content=' To make this notion precise, let us consider a mapping ξ: U → U, ξ(y) := (ξ(y1), ξ(y2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
157
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
158
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
159
+ page_content=' ), which satisfies the following conditions: 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
160
+ page_content=' There hold ξ(0) = 0 and � 1/2 −1/2 ξ(y) dy = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
161
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
162
+ page_content=' There exists Cξ ≥ 0 such that � 1/2 −1/2 |ξ(y)|k dy ≤ Cξ for all k ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
163
+ page_content=' Then we obtain the following as a consequence of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
164
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
165
+ page_content=' Let g(y) ∈ X, y ∈ U, satisfy Assumptions 1–3 and let ξ : U → U satisfy Assumptions 4–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
166
+ page_content=' Define the ξ-transformed function gξ by gξ(y) := g(ξ(y)), y ∈ U, 6 and its dimension truncation by gξ,s(y) := gξ(y≤s, 0) for y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
167
+ page_content=' Then ∥gξ − gξ,s∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
168
+ page_content='X) = O(s− 1 p + 1 2 ), where the implied coefficient is independent of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
169
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
170
+ page_content=' We introduce F s ξ (y) := ∥gξ(y) − gξ,s(y)∥2 X for y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
171
+ page_content=' By carrying out the change of variable y ← ξ(y) in (2), we obtain F s ξ (y) = k � ℓ=1 � |ν|=ℓ νj=0 ∀j≤s ξ(y)ν ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
172
+ page_content=' ∂νF s(ξ(y≤s, 0)) + � |ν|=k+1 νj=0 ∀j≤s k + 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
173
+ page_content=' ξ(y)ν � 1 0 (1 − t)k∂νF s(ξ(y≤s, ty>s)) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
174
+ page_content=' Integrating the above formula on both sides over y ∈ U and utilizing Lemma 1 as well as Assumption 5, we obtain—in complete analogy with the proof of Theorem 1—that � U ∥gξ(y) − gξ,s(y)∥2 X dy ≤ Ck ξ � max 0≤ℓ≤k 2Θℓ ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
175
+ page_content=' �2 (k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
176
+ page_content=' k � ℓ=2 � |ν|=ℓ νj=0 ∀j≤s νj̸=1 ∀j>s bν + Ck+1 ξ � max 0≤ℓ≤k+1 2Θℓ ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
177
+ page_content=' �2 (k + 2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
178
+ page_content=' � |ν|=k+1 νj=0 ∀j≤s 1 ν!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
179
+ page_content='bν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
180
+ page_content=' The desired result follows by exactly the same argument as in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
181
+ page_content=' As an application, with U := [− 1 2, 1 2]N, let ξ: U → U satisfy the Assumptions 4 and 5, let D ⊂ Rd, d ∈ {1, 2, 3}, be a bounded Lipschitz domain, and let f : D → R be a fixed source term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
182
+ page_content=' Consider the parametric PDE problem � −∇ · (aξ(x, y)∇uξ(x, y)) = f(x), x ∈ D, y ∈ U, uξ(x, y) = 0, x ∈ ∂D, y ∈ U, (4) endowed with the ξ-transformed diffusion coefficient aξ(x, y) := a0(x) + ∞ � i=1 ξ(yi)ψi(x), x ∈ D, y ∈ U, which is assumed to satisfy the following: 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
183
+ page_content=' There exist amin, amax > 0 such that 0 < amin ≤ aξ(x, y) ≤ amax < ∞ for all x ∈ D and y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
184
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
185
+ page_content=' a0 ∈ L∞(D) and ψi ∈ L∞(D) for all i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
186
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
187
+ page_content=' �∞ i=1 ∥ψi∥p L∞(D) < ∞ for some p ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
188
+ page_content=' In this case, the transformation ξ(y) := ( 1 √ 6 sin(2πyj))j≥1 corresponds to the so-called periodic model studied in [13, 16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
189
+ page_content=' Let X := H1 0(D) be equipped with the norm ∥v∥X := 7 � D ∥∇v(x)∥2 Rd dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
190
+ page_content=' In this special case, it is known that the weak solution u(·, y) ∈ X to (4) for y ∈ U satisfies the parametric regularity bound ∥∂νuξ(·, y)∥X ≤ (2π)|ν|∥f∥X′ amin � m≤ν |m|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
191
+ page_content='bm � j≥1 S(νj, mj) for all ν ∈ F and y ∈ U, where the source term f ∈ X′, S(·, ·) denotes the Stirling number of the second kind, and b := (bj)j≥1 is defined by setting bj := ∥ψj∥L∞(D) √ 6amin for all j ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
192
+ page_content=' Let µ(dµ) = dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
193
+ page_content=' Then Corollary 1 can be used to deduce that ∥uξ − uξ,s∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
194
+ page_content='X) = O(s− 1 p + 1 2 ), where the constant is independent of the dimension s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
195
+ page_content=' In fact, if Xh is a conforming finite element subspace of X, uξ,h(·, y) ∈ Xh denotes the finite element discretization of uξ(·, y) ∈ X for all y ∈ U, and uξ,h,s(·, y) ∈ Xh denotes the dimension truncation of uξ,h(·, y) for all y ∈ U, then we have ∥uξ,h − uξ,h,s∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
196
+ page_content='X) = O(s− 1 p + 1 2), independently of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
197
+ page_content=' Finally, we present an example illustrating how our results can be applied to nonlinear quantities of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
198
+ page_content=' Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
199
+ page_content=' Let X := H1 0(D) as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
200
+ page_content=' Consider the nonlinear quantity of interest Gnl(v) := ∥v∥2 X := � D ∥∇v(x)∥2 Rd dx, v ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
201
+ page_content=' (5) If u(·, y) ∈ X is the solution to (4) with U = [− 1 2, 1 2]N, µ(dy) := dy, and ξ(y) := y, then it is known to satisfy Assumptions 1–3 with the regularity bound ∥∂νu(·, y)∥X ≤ C|ν|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
202
+ page_content='bν, where the constant C > 0 only depends on ∥f∥X′ and amin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
203
+ page_content=' By the Leibniz product rule, there holds ∂νGnl(u(·, y)) = � D � m≤ν � ν m � ∇∂mu(x, y) · ∇∂ν−mu(x, y) dx ≤ � m≤ν � ν m � ∥∂mu(·, y)∥X∥∂ν−mu(·, y)∥X ≤ C2 � m≤ν � ν m � |m|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
204
+ page_content='bm|ν − m|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
205
+ page_content='bν−m = C2bν |ν| � ℓ=0 ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
206
+ page_content=' (|ν| − ℓ)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
207
+ page_content=' � m≤ν |m|=ℓ � ν m � = C2bν(|ν| + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
208
+ page_content=', where we used the Vandermonde convolution � |m|=ℓ m≤ν � ν m � = �|ν| ℓ � = |ν|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
209
+ page_content=' ℓ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
210
+ page_content=' (|ν|−ℓ)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
211
+ page_content='. It follows from Theorem 1 that ∥Gnl(u) − Gnl(us)∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
212
+ page_content='R) = O(s− 1 p + 1 2), independently of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
213
+ page_content=' Moreover, if ξ(y) := ( 1 √ 6 sin(2πyj))j≥1, then it follows from Corollary 1 that ∥Gnl(uξ) − Gnl(uξ,s)∥L2µ(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
214
+ page_content='R) = O(s− 1 p + 1 2 ), independently of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
215
+ page_content=' 8 5 Numerical experiments Let D = (0, 1)2 be a spatial domain, U = [− 1 2, 1 2]N, and f(x) := x1 a fixed source term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
216
+ page_content=' Let ξ: U → U, ξ(y) = ( 1 √ 6 sin(2πyj))j≥1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
217
+ page_content=' We consider the PDE problem � −∇ · (aξ(x, y)∇uξ(x, y)) = f(x), x ∈ D, y ∈ U, uξ(x, y) = 0, x ∈ ∂D, y ∈ U, (6) equipped with the diffusion coefficient aξ(x, y) = 3 2 + � j≥1 ξ(yj)j−ϑ sin(jπx1) sin(jπx2), x ∈ D, y ∈ U, ϑ > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
218
+ page_content=' The PDE (6) is spatially discretized using a first-order conforming finite element method with mesh size h = 2−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
219
+ page_content=' We consider the dimension truncation error for the full PDE solution using the formula ∥uξ − uξ,s∥L2(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
220
+ page_content='L2(D)) ≈ � � [− 1 2 , 1 2 ]s′ ∥uξ,s′(·, y) − uξ,s(·, y)∥2 L2(D) dy � 1 2 , and we also consider the nonlinear quantity of interest (5), estimating the dimension truncation error using the formula ∥Gnl(uξ) − Gnl(uξ,s)∥L2(U) ≈ � � [− 1 2, 1 2]s′ |Gnl(uξ,s′(·, y)) − Gnl(uξ,s(·, y))|2 dy � 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
221
+ page_content=' In both cases, we choose s′ ≫ s and the high-dimensional integrals are approximated using a randomly shifted rank-1 lattice rule with 220 cubature nodes and a single random shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
222
+ page_content=' As the integration lattice, we use in both cases an off-the-shelf rank-1 lattice rule [19, lattice-39101-1024-1048576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
223
+ page_content='3600] and use the same random shift for each value of ϑ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
224
+ page_content=' As the reference solution, we use the PDE solution corresponding to s′ = 211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
225
+ page_content=' The numerical results for dimensions s ∈ {2k : k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
226
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
227
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
228
+ page_content=' , 9} and decay rates ϑ ∈ {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
229
+ page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
230
+ page_content='0, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
231
+ page_content='0} corresponding to the full PDE solution and the nonlinear quantity of interest are displayed in Figures 1 and 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
232
+ page_content=' The theoretical convergence rates in each case are −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
233
+ page_content='0, −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
234
+ page_content='5, and −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
235
+ page_content='5, respectively, and they are displayed alongside the numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
236
+ page_content=' The convergence graphs corresponding to the full PDE solution in Figure 1 display an aliasing behavior between 10 ≤ s ≤ 100, which may be explained by the contributions of the finite element discretization error as well as the use of an “off-the-shelf” lattice rule (in contrast to a “tailored” lattice rule).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
237
+ page_content=' This behavior appear to be exacerbated in the convergence graphs corresponding to the nonlinear quantity of interest in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
238
+ page_content=' Nonetheless, in all cases the theoretically anticipated convergence rates are easily observed in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
239
+ page_content=' We remark that the convergence graphs corresponding to the affine and uniform model with ξ(y) := (yj)j≥1 are extremely similar to the results corresponding to the periodic model, and have thus been omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
240
+ page_content=' 9 Figure 1: The dimension truncation errors of the full PDE solution corresponding to a periodically parameterized input random field with decay parameters ϑ ∈ {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
241
+ page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
242
+ page_content='0, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
243
+ page_content='0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
244
+ page_content=' The expected dimension truncation error rates are −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
245
+ page_content='0, −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
246
+ page_content='5, and −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
247
+ page_content='5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
248
+ page_content=' Figure 2: The dimension truncation errors of the nonlinear quantity of interest corresponding to a periodically parameterized input random field with decay parameters ϑ ∈ {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
249
+ page_content='5, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
250
+ page_content='0, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
251
+ page_content='0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
252
+ page_content=' The expected dimension truncation error rates are −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
253
+ page_content='0, −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
254
+ page_content='5, and −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
255
+ page_content='5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
256
+ page_content=' 6 Conclusions Unlike many studies which have considered the dimension truncation error rate within the context of high-dimensional numerical integration, we considered the L2 dimension truncation error rate for parametric Hilbert space valued functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
257
+ page_content=' Our theory covers both affine parametric as well as non-affine parametric problems with sufficiently smooth dependence on a sequence of bounded, parametric variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
258
+ page_content=' The main dimension trun- cation results presented in this work can be applied to nonlinear quantities of interest of parametric model problems, provided that they satisfy the conditions of our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
259
+ page_content=' 10 In addition, the Hilbert space can be chosen to be a finite element subspace, indicating that our dimension truncation results are also valid for conforming finite element approx- imations of parametric PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
260
+ page_content=' The L2 dimension truncation error rates considered in this work arise, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
261
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
262
+ page_content=', in the study of high-dimensional function approximation of parametric PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
263
+ page_content=' An example of such an approximation scheme is the kernel method over lattice point sets considered in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
264
+ page_content=' The kernel method was analyzed in the context of the so-called periodic model, in which a countable number of independent random variables enter the input random field of the PDE as periodic functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
265
+ page_content=' Our second main result shows that the L2 dimension truncation error rate remains invariant under certain transformations of the parametric variables: especially, the L2 dimension truncation rate considered in this work holds for periodically parametrized model problems such as those studied in [13, 16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
266
+ page_content=' References [1] Bachmayr, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
267
+ page_content=', Cohen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
268
+ page_content=', Dahmen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
269
+ page_content=': Parametric PDEs: sparse or low-rank approximations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
270
+ page_content=' IMA J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
271
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
272
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
273
+ page_content=', 38(4):1661–1708 (2017) [2] Bhattacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
274
+ page_content=', Hosseini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
275
+ page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
276
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
277
+ page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
278
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
279
+ page_content=': Model reduction and neural networks for parametric PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
280
+ page_content=' SMAI J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
281
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
282
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
283
+ page_content=', 7:121–157 (2021) [3] Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
284
+ page_content=', Hosseini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
285
+ page_content=', Owhadi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
286
+ page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
287
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
288
+ page_content=': Solving and learning nonlinear PDEs with Gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
289
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
290
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
291
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
292
+ page_content=', 447:110668 (2021) [4] Cohen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
293
+ page_content=', DeVore, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
294
+ page_content=', Schwab, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
295
+ page_content=' : Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
296
+ page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
297
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
298
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
299
+ page_content=', 10:615–646 (2010) [5] Dick, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
300
+ page_content=', Gantner, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
301
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
302
+ page_content=', Le Gia, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
303
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
304
+ page_content=', Schwab, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
305
+ page_content=' : Higher order quasi-Monte Carlo integration for Bayesian PDE inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
306
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
307
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
308
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
309
+ page_content=', 77(1):144–172 (2019) [6] Gantner, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
310
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
311
+ page_content=': Dimension truncation in QMC for affine-parametric operator equa- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
312
+ page_content=' In: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
313
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
314
+ page_content=' Owen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
315
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
316
+ page_content=' Glynn (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
317
+ page_content=' ), Monte Carlo and Quasi-Monte Carlo Methods 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
318
+ page_content=' 249–264.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
319
+ page_content=' Springer (2018) [7] Geist, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
320
+ page_content=', Petersen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
321
+ page_content=', Raslan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
322
+ page_content=', Schneider, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
323
+ page_content=', Kutyniok, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
324
+ page_content=': Numerical solution of the parametric diffusion equation by deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
325
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
326
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
327
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
328
+ page_content=', 88:22 (2021) [8] Gilbert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
329
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
330
+ page_content=', Graham, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
331
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
332
+ page_content=', Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
333
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
334
+ page_content=', Scheichl, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
335
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
336
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
337
+ page_content=': Analysis of quasi- Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
338
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
339
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
340
+ page_content=', 142:863–915 (2019) [9] Grohs, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
341
+ page_content=', Herrmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
342
+ page_content=': Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
343
+ page_content=' IMA J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
344
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
345
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
346
+ page_content=', 42(3):2055–2082 (2022) [10] Guth, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
347
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
348
+ page_content=', Kaarnioja, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
349
+ page_content=', Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
350
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
351
+ page_content=', Schillings, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
352
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
353
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
354
+ page_content=': A quasi-Monte Carlo method for optimal control under uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
355
+ page_content=' SIAM/ASA J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
356
+ page_content=' Uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
357
+ page_content=' Quan- tif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
358
+ page_content=', 9(2):354–383 (2021) [11] Guth, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
359
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
360
+ page_content=', Kaarnioja, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
361
+ page_content=', Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
362
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
363
+ page_content=', Schillings, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
364
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
365
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
366
+ page_content=': Parabolic PDE- constrained optimal control under uncertainty with entropic risk measure using quasi- Monte Carlo integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
367
+ page_content=' Preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
368
+ page_content='02767 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
369
+ page_content='NA] (2022) 11 [12] Guth, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
370
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
371
+ page_content=', Kaarnioja, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
372
+ page_content=': Generalized dimension truncation error analysis for high-dimensional numerical integration: lognormal setting and beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
373
+ page_content=' Preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
374
+ page_content='06176 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
375
+ page_content='NA] (2022) [13] Hakula, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
376
+ page_content=', Harbrecht, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
377
+ page_content=', Kaarnioja, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
378
+ page_content=', Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
379
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
380
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
381
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
382
+ page_content=': Uncer- tainty quantification for random domains using periodic random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
383
+ page_content=' Preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
384
+ page_content='17329 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
385
+ page_content='NA] (2022) [14] Halmos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
386
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
387
+ page_content=': Measure Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
388
+ page_content=' Springer, New York, NY (1974) [15] Herrmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
389
+ page_content=', Keller, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
390
+ page_content=', Schwab, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
391
+ page_content=' : Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
392
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
393
+ page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
394
+ page_content=', 90:1831–1860 (2021) [16] Kaarnioja, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
395
+ page_content=', Kazashi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
396
+ page_content=', Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
397
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
398
+ page_content=', Nobile, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
399
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
400
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
401
+ page_content=': Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
402
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
403
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
404
+ page_content=', 150:33–77 (2022) [17] Kaarnioja, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
405
+ page_content=', Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
406
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
407
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
408
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
409
+ page_content=': Uncertainty quantification using periodic random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
410
+ page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
411
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
412
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
413
+ page_content=', 58(2):1068–1091 (2020) [18] Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
414
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
415
+ page_content=', Nuyens, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
416
+ page_content=', Plaskota, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
417
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
418
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
419
+ page_content=', Wasilkowski, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
420
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
421
+ page_content=': Infinite- dimensional integration and the multivariate decomposition method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
422
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
423
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
424
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
425
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
426
+ page_content=', 326:217–234 (2017) [19] Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
427
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
428
+ page_content=': Lattice generating vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
429
+ page_content=' https://web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
430
+ page_content='maths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
431
+ page_content='unsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
432
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
433
+ page_content='au/~fkuo/lattice/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
434
+ page_content='html [20] Kuo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
435
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
436
+ page_content=', Schwab, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
437
+ page_content=', Sloan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
438
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
439
+ page_content=': Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
440
+ page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
441
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
442
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
443
+ page_content=', 50(6):3351–3374 (2012) [21] Rozza, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
444
+ page_content=', Huynh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
445
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
446
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
447
+ page_content=', Patera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
448
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
449
+ page_content=': Reduced basis approximation and a pos- teriori error estimation for affinely parametrized elliptic coercive partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
450
+ page_content=' Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
451
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
452
+ page_content=' Methods Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
453
+ page_content=', 15:229 (2008) [22] Schwab, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
454
+ page_content=', Zech, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
455
+ page_content=': Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
456
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
457
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
458
+ page_content=' (Singap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
459
+ page_content=' ), 17(1):19–55 (2019) [23] Xiu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
460
+ page_content=', Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
461
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
462
+ page_content=': The Wiener-Askey polynomial chaos for stochastic differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
463
+ page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
464
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
465
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
466
+ page_content=', 24:619–644 (2002) [24] Yosida, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
467
+ page_content=': Functional Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
468
+ page_content=' Springer, Heidelberg (1980) [25] Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
469
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
470
+ page_content=', Leung, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
471
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
472
+ page_content=', Hickernell, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
473
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
474
+ page_content=': Error analysis of splines for periodic problems using lattice designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
475
+ page_content=' In: Niederreiter, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
476
+ page_content=', Talay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
477
+ page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
478
+ page_content=' ), Monte Carlo and Quasi-Monte Carlo Methods 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
479
+ page_content=' 501–514, Springer (2006) [26] Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
480
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
481
+ page_content=', Kritzer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
482
+ page_content=', Hickernell, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
483
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
484
+ page_content=': Spline methods using integration lattices and digital nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
485
+ page_content=' Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
486
+ page_content=' Approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}
487
+ page_content=', 30:529–555 (2009) 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf'}